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1 Supplemental Appendix

I will extensively use basic results from operator theory and Hilbert spaces in this online Sup-

plemental Material. See Carrasco, Florens and Renault (2007) for an excellent review of these

results. This Appendix is organized as follows. Section 1.1 establishes suffi cient conditions for

local irregular identification in models linear in nuisance parameters. Section 1.2 characterizes

identification of linear continuous functionals of nuisance parameters in semiparametric models.

Section 1.3 establishes suffi cient conditions for identification in general nonlinear models.

1.1 Models Linear in Nuisance Parameters

Define the nuisance score operator

l̇η(θ)bη =
fθ,η0+bη − fθ,η0

fθ0,η0
, (1)

and the (negative) approximated score for θ as

sθ =
fθ0,η0 − fθ,η0

fθ0,η0
.

I drop the dependence on θ0 and denote l̇η ≡ l̇η(θ0). Define the (negative) approximated effi cient

score s̃θ := sθ − ΠR(l̇η(θ))
sθ, and the approximated Fisher Information

G(θ) = ||s̃θ||2.
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Let Ψ be the class of measurable functions ψ : [0,∞) −→ [0,∞) that are increasing, right

continuous at 0 and with ψ(0) = 0. Then, consider the following assumption.

Assumption D: (i) The map l̇η(θ) : T (η0) ⊆ H 7→ L2 is linear for each θ in a neighborhood of

θ0 (ii) there exists a positive constant C such that G(θ) > Cψ(|θ − θ0|2) in a neighborhood of

θ0, where ψ ∈ Ψ.

Assumption D(i) holds for many models of interest. Assumption D(ii) follows from conditions on

the derivative of G(θ) at θ0. For example, if G(θ) is differentiable at θ0 with full rank derivative

at θ0, then Assumption D(ii) holds with ψ(ε) = ε. This corresponds to the case of regular local

identification. A necessary condition for Assumption D(ii) is that N (l̇∗η(θ)) 6= 0, since otherwise

G(θ) = 0.

Theorem 1.1 Let Assumption D hold. Then, θ is locally identified at θ0.

Proof of Theorem 1.1: Write
fθ,η − fθ0,η0

fθ0,η0
=
fθ,η − fθ,η0
fθ0,η0

− fθ0,η0 − fθ,η0
fθ0,η0

= l̇η(θ)bη − sθ.

Note that by standard least squares theory for all bη ∈ T (η0), and all θ in a neighborhood of θ0,

||l̇η(θ)bη − sθ||2 ≥ ||ΠR(l̇η(θ))
sθ − sθ||2

> Cψ(|θ − θ0|2).

This inequality implies local identification. �

1.2 Functionals of Nuisance Parameters in Semiparametric Models

Let χ : H 7→ R be a linear continuous functional, and let rχ ∈ T (η0) ⊂ H be such that for all

bη ∈ T (η0),

χ(bη) = 〈bη, rχ〉H.

To give a general result, I allow for θ to be infinite-dimensional, and ask the question: When does

lack of identification of one parameter, here θ, have no effect, at least locally, on identification

on another parameter χ(η)?

A similar characterization to that of Proposition ?? is obtained for φ(λ) = χ(η), allowing

for singular information for both θ and the functional φ(λ) = χ(η). Define the operator

Aηθ =
(
l̇∗η l̇η

)−
l̇∗η l̇θ,

where B− denotes the generalized Moore-Penrose inverse of B.
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Proposition 1.1 For the functional φ(λ) = χ(η) ∈ R: (i) if R(l̇θ)∩R(l̇η) = {0}, then N (S) ⊂
N (φ̇) holds iff rχ ∈ R(l̇∗η); (ii) if R(l̇θ) ∩ R(l̇η) 6= {0}, then N (S) ⊂ N (φ̇) holds if rχ ∈
R(l̇∗η) ∩N (A∗ηθ).

Proof of Proposition 1.1: Note that for the functional φ(λ) = χ(η), where χ : H 7→ R is a
linear continuous functional with

χ(bη) = 〈bη, rχ〉H ,

it holds that N (φ̇) = {(bθ, bη) : 〈bη, rχ〉H = 0}. Therefore, by the proof of Proposition ?? (which
is also valid for infinite-dimensional θ, with Ĩθ interpreted as an operator), N (S) ⊂ N (φ̇)

iff b′θĨθbθ = 0 and ΠR(l̇η)
l̇′θbθ = −l̇ηbη implies 〈bη, rχ〉H = 0. If Ĩθ is positive definite, then

(bθ, bη) ∈ N (S) iff bθ = 0 and 0 = l̇ηbη. Therefore, (bθ, bη) ∈ N (φ̇) iff N (l̇η) ⊂ N (χ), which is

equivalent to rχ ∈ R(l̇∗η). If Ĩθ is semi-positive definite, there are two cases (i)R(l̇θ)∩R(l̇η) 6= {0}
and (ii) R(l̇θ) ⊂ R(l̇η)�R(l̇η). In case (i), l̇θbθ = −l̇ηbη, and for all such bη it must hold that
〈bη, rχ〉H = 0. All the solutions of l̇θbθ = −l̇ηbη can be written as bη = N (l̇η) − Aηθbθ. Thus,

the orthogonality 〈bη, rχ〉H = 0 holds if rχ ∈ R(l̇∗η) ∩ N (A∗ηθ). In case (ii) 0 = l̇ηbη must imply

that (bθ, bη) ∈ N (φ̇), which holds if N (l̇η) ⊂ N (χ) or equivalently rχ ∈ R(l̇∗η). Therefore,

if R(l̇θ) ∩ R(l̇η) = {0} (Ĩθ is positive definite or case (ii) above) then N (S) ⊂ N (φ̇) holds iff

rχ ∈ R(l̇∗η); (ii) ifR(l̇θ)∩R(l̇η) 6= {0} (case (i) above) thenN (S) ⊂ N (φ̇) holds ifR(l̇∗η)∩N (A∗ηθ).

�

Remark 1.1 The conditions for local identification of χ(η0) depend on whether θ0 is locally

identified or not. The case (ii) corresponds to the situation of local unidentification of θ0, and it

is shown that despite this lack of local identification of θ0, χ(η0) might still be locally identified.

To interpret the result, one can think of rχ ∈ R(l̇∗η) as the identification condition for χ(η0) that

would be needed if θ0 was known. If θ0 is not known, but is identified, one can treat it as known

for the purpose of identifying χ(η0). However, if θ0 is not identified, an additional condition

must be met to avoid the lack of identification of θ0 to spread out to χ(η0). Technically, this

condition is that for all b = (bθ, bη) such that l̇θbθ = −l̇ηbη (these b′s are directions that lead to
zero nonparametric information), it must hold that 〈bη, rχ〉H = 0. Under rχ ∈ R(l̇∗η), a simple

condition for this orthogonality is rχ ∈ N (A∗ηθ).

Remark 1.2 In both cases rχ ∈ R(l̇∗η)�R(l̇∗η) corresponds to the case of zero information for

φ(λ) = χ(η) at φ(λ0) = χ(η0). Regular identification of χ(η) in case (ii) requires that for all r∗χ
that solve rχ = l̇∗ηr

∗
χ it holds that r

∗
χ ∈ N (l̇∗θ). Under this condition, lack of identification of θ0

does not affect regular identification of χ(η0).

Van der Vaart (1991) has shown that positive information of χ(η0) is equivalent to rχ ∈ R(l̇∗η)

when θ0 is locally regularly identified and η0 is identified. Proposition 1.1 characterizes local
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regular and irregular identification of χ(η0), allowing for θ0 to be locally regular or irregularly

identified, or even unidentified. The results of Proposition 1.1 are applied to measures of risk

aversion in Example 3 on the Euler equation.

1.3 General Nonlinear Models

The following modulus of continuity is shown to be useful for the study of identification

$(ε) = sup
λ∈Bδ(λ0):||(fλ−fλ0)f

−1
λ0
||≤ε
|φ(λ)− φ(λ0)| . (2)

I drop the dependence of $(ε) on δ for simplicity of notation. Lemma 1.3 below shows that

$(ε) ↓ 0 as ε ↓ 0 is suffi cient for local identification of φ(λ0). A related modulus of continuity was

introduced in Donoho and Liu (1987) for the purpose of obtaining bounds on the optimal rate of

convergence for functionals of a density (they assume identification and use the Hellinger metric).

Using || (fλ − fλ0) f−1
λ0
|| is convenient because we can exploit simultaneously the linearity of

certain models and the Hilbert space structure.

Lemma If there exists δ > 0 such that $(ε)→ 0 as ε→ 0, then φ(λ0) is locally identified.

Proof of Lemma 1.3: Suppose that φ(λ0) is not locally identified. Then, for all δ > 0, we can

find a λ∗ ∈ Λδ(λ0) such that ‖(fλ∗ − fλ0) /fλ0‖ = 0 and φ(λ∗) 6= φ(λ0), and therefore, for all

ε > 0,

$(ε) ≥ |φ(λ∗)− φ(λ0)| > 0,

showing that $(ε) does not converge to zero as ε→ 0. �

The following result provides a general local identification result. Recall Ψ is the class of

measurable functions ψ : [0,∞) −→ [0,∞) that are increasing, right continuous at 0 and with

ψ(0) = 0.

Assumption N: For all ε > 0, there exists δ > 0, ψ1, ψ2 ∈ Ψ, and a continuous linear operator

S : T (λ0) ⊆ H 7→ L2, such that for all λ = (θ, η) ∈ Bδ(λ0),

(i)
‖(fλ − fλ0) /fλ0 − S(λ− λ0)‖ < εψ1 (‖λ− λ0‖H) ;

(ii)
|φ(λ)− φ(λ0)| ≤ ψ2 (‖λ− λ0‖H) ; and

(iii)

inf
λ∈Bδ(λ0)

||S(λ− λ0)||
ψ1 (‖λ− λ0‖H)

> 0.
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Assumption N(i) and N(ii) are mild smoothness conditions that often hold in applications.

Condition N(iii) is a positive nonparametric generalized information condition. Then, I have

the following result.

Theorem 1.2 Let Assumption N hold. Then, φ(λ) is locally identified at φ(λ0).

Proof of Theorem 1.2: Assumptions N(i-ii) imply that if || (fλ − fλ0) f−1
λ0
|| ≤ ε then we can

find a positive constant C and 0 < ε < C such that for all λ = (θ, η) ∈ Bδ(λ0),

Cψ1 (‖λ− λ0‖H) ≤ ‖S(λ− λ0)‖ ≤ εψ1 (‖λ− λ0‖H) + ε,

which in turn implies

ψ1 (‖λ− λ0‖H) ≤ ε

C − ε.

Hence, by Assumption N(ii)

$(ε) = sup
λ∈Bδ(λ0):||(fλ−fλ0)f

−1
λ0
||≤ε
|φ(λ)− φ(λ0)| ,

≤ sup
λ∈Bδ(λ0):ψ1(‖λ−λ0‖H)≤ ε

C−ε

ψ2 (‖λ− λ0‖H)

≤ ψ2

(
ψ−1

1

(
ε

C − ε

))
→ 0 as ε→ 0.

Thus, the Theorem follows from Lemma 1.3. �

1.3.1 A Counterexample

I provide a counterexample, building on that given in Chen et al. (2014, pg. 791), that shows

that regular identification is not equivalent to Iφ > 0 in general (and hence to Van der Vaart’s

(1991) differentiability condition). Let λ = (λ1, λ2, ...) be a sequence of real numbers. Let

(p1, p2, ...) be probabilities, pj > 0,
∑∞

j=1 pj = 1. Let f(x) be a twice continuously differentiable

function of a scalar x that is bounded with bounded second derivative. Suppose f(x) = 0 if

and only if x ∈ {0, 1} and ∂f(0)/∂x = 1. Let m(λ) = (f(λ1), f(λ2), ...) also be a sequence with

‖m(λ)‖2 =
∑∞

j=1 pjf
2(λj) < ∞. Then, for ‖λ‖Λ =

(∑∞
j=1 pjλ

4
j

)1/4

the mapping m is Frechet

differentiable at λ0 = 0 with derivative Sb = b, but λ0 = 0 is not locally identified (Chen et al.

2014).

Consider the nonlinear functional

φ(λ) =
∞∑
j=1

f(λj)pj.
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This functional has a derivative at λ0 = 0 given by

φ̇(b) =

∞∑
j=1

bjpj,

and by Cauchy-Schwarz

∣∣∣φ̇(b)
∣∣∣2 ≤ ( ∞∑

j=1

b2
jpj

)
= ‖Sb‖2 .

Hence, Iφ ≥ 1 > 0. However, the functional is not identified, since φ(αk) = 0 = φ(0), where

αk = (0, .., 0, 1, 1, 1...) has zeros in the first k positions and a one everywhere else.
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