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This Supplement provides proofs of the results given in the text of the main paper. It is
organised as follows: Section A provides proofs of the main results on exponential inequalities
of Section 4 of the main paper. Section B provides proofs of Theorems 1-3 of the main paper.
Section C contains auxiliary technical lemmas.

Formula numbering in this supplement includes the section number, e.g. (A.1), and refer-
ences to lemmas are signified as “Lemma A#”, “Lemma B#”, “Lemma C#”, e.g. Lemma Al.
Equation, lemma and theorem references to the main paper do not include section number
and are signified as “Equation (#)”, “Lemma #”, “Theorem #”, e.g. (1), Theorem 1.

In the proofs, C' stands for a generic positive constant which may assume different values

in different contexts, and we denote a V b = max(a,b), a A b = min(a, b).

A. Exponential inequalities. Proofs

This section contains the proofs of the results of Section 4 on Bernstein inequalities for
(weighted) sums of random variables &; that are dependent, unbounded and have thin- or
heavy-tailed distributions.

We shall frequently refer to the a-mixing Assumption A and property (36) of (£;) of Section
4 of the main paper. To denote that r.v.’s (¢;) have thin- or heavy-tailed distributions, we
use respectively notation (&) € £(s), s > 0 and (&) € H(6), 0 > 2 of Section 4 of the main
paper, see (37) and (38).

Merlevede, Peligrad and Rio (2009) in their Theorem 2 obtained a Bernstein type in-
equality for bounded a- mixing random variables. The following lemma is a minor auxiliary

generalization of their result to a sequence of truncated random variables.

Lemma A1 Let the sequence (&) of zero mean random variables satisfy Assumption A. Set
Epk =&l (|&k| < D) where D > 0. Suppose that

m* = %3¥(E|§k|p)1/p < oo for somep > 2.



Then, there exist 0 < ¢ < oo such that for all( >0, D >0 and T > 2,

T C<2
P(‘ ;(gl),k - EgD,k)‘ > C) < €xXp ( B @2T+ D2 + ngOgQT)7 (Al)

with 92 = m*(1+ 24377, ajl-_Q/p) where ¢ > 0 depends only on c, in (36) of Assumption A.

Proof of Lemma Al. By Theorem 14.1 of Davidson (1994), under Assumption A, the
truncated process ({p;) is also a-mixing with mixing coefficients ay < ay. Hence, the bound
(2.3) of Theorem 2 in Merlevede et al. (2009) implies

P(‘ ZZ:1(§DJ€ - E§D,k)} > C) < exp ( - 'U2DT+D2Ci2CDlog2T)’

with
vp = sup (var(€p;) + 2 Z lcov(€p.i,€p,5)),

i>0 —
7>
where ¢ depends only on ¢, in (36). We will show that v%, < ©* which proves (A.1).
The conclusion (2.2) in Davydov (1968) applied with p = ¢ > 2 gives

~1-2 x 1-2
lcov(Ep,i, €p)| < 12(EJ€palP) P (Elep 17)7a 2 < 12m*af .

\ |i—|

Observe that var(ép;) < EE; < (El€pl?)*? < m*. Hence,

vh <m*(1+ 242043152/1”) =% < o0
j=1
which completes the proof of the lemma. [
The proof of Lemma 1 of the main paper combines the modified version, Lemma A1, of the

exponential inequality for bounded random variables by Merlevede, Peligrad and Rio (2009),
with a truncation argument employed in White and Wooldridge (1991).

Proof of Lemma 1. Without restriction of generality we prove the validity of (40), (41) for
¢ > 1. (The inequalities (40) and (41) can be extended to 0 < ¢ < 1 by selecting large enough
constant co.) Recall that Sp = T-Y2 3] (& — E&).

We start with (40). We need to prove that

Ik oo

log? T

with v = s/(s + 1) where positive constants ¢y, c1,ce do not depend on (,7. Denote by

P(|Sr] > ¢) < fr(2,7,¢,¢) = Co{exp (—e16?) +exp (= eof

D = Dg the truncation constant depending on 7', ¢ which will be selected later. Write

ék = wy, + v, where w, = gkj(‘€k| < D), Vp = gk[(|£k| > D) Then,
T T

Spo= T2 (wy— Bwy) + T (v — Euvy) (A.3)
k=1 k=1
=! S71 -+t S72



and
P(|Sr] = ¢) < P([sral =2 ¢/2) + P(|srel 2 ¢/2).

Thus, to prove (A.2), it suffices to show that for some ¢, for all { > 1, T > 2,

P(lsil =€) < fr(2,7,¢,¢), i=1.2. (A.4)

By Assumption A, (§; — E¥¢;) is an a-mixing process which mixing coefficients oy, satisty (36).
Hence, by Theorem 14.1 in Davidson (1994), (w; — Ew,) and (v; — Ev;) are a-mixing sequences

and their respective mixing coefficients a, ; and «, ; satisfy
Ay & < A, Ay | < g, k > 1. (A5)

Thus, by Lemma A1, for all T"> 2 and D > 0,

01C2T
02T + D? + (TY2D1og* T

P(|ST71| > C) < exp ( - ) (A.6)

where ¢; > 0 does not depend on 7', D or . Using, on the r.h.s. of (A.6), the inequality

1 1
— S — ,
lal + o[ + [e| = 3max(]al, [b], ¢])

with a = 0*T, b = D?, ¢ = (T"/?Dlog* T, we obtain

0T (T
Fexp(— 2
D? ) P ( Dlog?T

P(]5T71| > C) < exp ( — c'lCz) + exp ( — ), (>1 (A.7)

with ¢} = ¢;/(30%), dy = ¢ /3. Setting

1/2
M=o
(A7) becomes
P(lsra] > ¢)
<oxp (—4¢) +exp (— (C2T) g T) + exp (— L5, (A.8)
We select D = Dy such that (Aq/D = D*. Then,
D= (¢Ar)""™ Do = (car)”C ™ and Ar = (¢Ap)TCY. (A.9)

For ( > 1, T > 2 it holds (Ar > A7 > 1. This together with (A.9) implies (CAT)/D > 1.
Notice that log* T > log*2 =: v > 0 for T > 2, and v € (0, 1). Hence,

CAr\2 CA

(—DT) log* T > (—DT)U,
CA_T CAT _ s/(s+1) __ Cﬁ s/(s+1)
p 2 = AT = ()



Applying these relations in (A.8), we obtain

P(|sT71| > g) < exp ( _ C/1C2) 4 2exp ( B CQUIC)AT)

<exp (— (%) +2exp (— du(CAr )/ o+ )

VT | sj(s+1)
o))

§2<exp(—c’1C)—i—eXp(—c2 (

< fT(277aca C)

This proves (A.4) for P(|sy| > ¢). Turning to sy, by Markov inequality,

P(|ST’2’ > C) < ’Uk — Evk >2 (AlO)

<

U]vvk

2T 1E(
k=

T

T ) cov

jk=1

Let p,g > 1, 1/p+ 1/q¢ < 1. Assumption (§;) € &(s) implies Elv;|? < oo, Elv;|? < oo.
Since (v; — Ev;) is a-mixing sequence with the mixing coefficients «, , < ay, k > 1, then, by
Conclusion 2.2 in Davydov (1968),

Jcov (s, vl < 12(Eluy PP (Bluy /ool e, j 2 1 (A1)
In turn, for j = k, var(v;) < Ev?. Setting
Vy = max(EJu;|") '/,

we obtain

T T
P(|3T’2| > C) < C_QT_I[Z var(v;) + Z cov (v, vg) ]
Jj=1 J.k=1: k#j
T

< VR H V(T YD afy)
Jk=1:k#]

where e :=1—1/p—1/¢g > 0. By (36),
Tt ka:l;pk af_y =T Y1 (T =) < 3222, af < oo
This implies that with some C' that does not depend on 7" or D, it holds that
P(Iszal = ¢) < CCH(VE2 + V). (A12)
Set p = ¢ =2+ where § > 0 is a small number. Then, by (A.12),

P(lszal > ¢) < CC2(VE +V2) < ¢V (A.13)



because V3 = max; Ev? < max;(E|v;[?)?? = V2. For D > 0, by (C.9) it holds that

Elv;|? = E[|&P1(|&] > D)] < cgexp(—c,D?)
for some ¢, ¢} > 0 which do not depend on j and D. This implies
V2 < ()P exp(—(2/p)er' D).
Thus, there exists ¢g > 0, ¢a > 0 such that for all ( > 1, 7" > 2, in view of (A.9),

P(|sra| > ¢) < C¢ 2 exp (— (2/p)c,D*)
< cpexp (— CQ(CAT)S/(SH))

Cﬁ )5/(5—1—1))
log? T

= coexp ( — cof

S fT(2> 75 G, C)a

which proves the bound (A.4) for sy and completes the proof of (A.2) and (40).

Proof of (41). Let (§;) € H(0). We need to prove that for any fixed 2 < 6" < 6,

P(|ST| > C) S gT(Q;G/,C, C)
= co{exp(—chQ) + (_HIT_(QI/Q_”}, (>0, T>2

Write Sp = sr1 + sr2 as in (A.3). To verify (A.14), it remains to show that
P(|sryl > €) < gr(2,6/,¢,¢), i=1,2 for some c.

It suffices to consider the case ¢ > 1.
We start with the evaluation P(|sri| > (). Set

a VT

D=—%—"—2>1

log*(¢(VT) —

(A.14)

where a > 0 will be selected below. For ¢ > 1 it holds log(¢v/T) > log(vVT) > log(v/2) =:

b > 0. Then, from (A.7) we obtain

P(|sra| > ¢) <exp (—c\¢%) +exp (— cha? 10g6(C\/T)) +exp (— c'galog({’ﬁ))

< exp (— ¢, ¢%) +exp (— cya®b’ log(CVT)) + exp ( — chalog(¢VT)).

Hence, selecting a such that cya®b® > ', cha > ¢, we obtain

P(|sr1] > ¢) < exp (= ¢1¢?) +2(¢VT) ™"



This proves the bound (A.14) for P(|s7.1| > ¢).
Next we turn to P(|sz2| > (). By (A.13),

P(|sra| > ¢) < CCT2V7
with p =2+ 4. According to (C.10), we can bound
Elv|P = E[lg["1(I&]| > D)] < ¢, D=7
with some ¢}, > 0 which does not depend on D and j. This implies

‘/;)2 < (66)2/171)—(9—17)(2/17).

Hence,
P(lsre] > ¢) < C©¢ 2D~ O-nC/p) (A.15)
= CCPVT) " Pagy,
where /
(VD)2 (alog?(CVT))e-n@/p)
T Pl (T
and

T=0-p)2/p)—(0'-2)=0-0—-0(p—2)/p=0-0—05/p>0

when 0 > ¢, p =2+ 6 and ¢ > 0 is selected sufficiently small. Since (VT > /2 for ¢ > 1,
T > 2, this implies that sup;s; 759 ar¢ < C" < 0co. Thus, (A.15) implies

P(|sra| > ¢) <CC/T 020 < gr(2,6,¢,C)

which proves the bound (A.14) for P(|sr2| > ().
This completes the proof of (41) and the lemma. [J

We start the proof of Lemma 2 with the following technical lemma.

Lemma A2 Let xy, k,t > 1 be random variables such that E|xy| < oo and ay, and vy > 0

be real numbers such that

n
r;gt{( 1r2ta§>; Z | @ |vg < oo. (A.16)
1<k<n

Then there exists € > 0 such that for all ( >0, t > 1,

["'”“41 [zl g)]. (A.17)

1<k<n LQuy  Qugp —

P(|Zathtk| > C) <e ! max F
k=1



Proof of Lemma A2. By (A.16) there exists £ > 0 such that

D lawvw| < 1/(20), t>1.
k=1

From
|Jitk/Utk| = |$tk/vtk|(f(|$tk/vtk| < 60 + I(’xtk/vtk| > 5@) < eC + yu,
where vy, == [Ty /vik| L (|2 /vi| > C), we obtain
" T
‘ Z athtk| < Z ’atkvtk’ | tk ’atkvtk’ 5C + Z ’atkvtk’ytk
k=1 =1 k=1

< ({/2+ Z ’atkvtk|ytk-
Then, by Markov inequality,

P(] Y02y anww] > Q)

IN

P(>r_y lamwvmlyse > €/2) < (¢/2)71 300 lawvu| By
(¢/2)7H(Xhsy lawvw|) maxi<p<n By,

e -1
(¢/2)7 (2¢) max By,

IN

IN

which proves (A.17). O

Proof of Lemma 2. Without restriction of generality assume that ( > 1. Notice that
property (43) of by implies

T-1

kv H k\/H

max_ b j( 2 < O Y  bag = big( )2 <, (A.18)
=1,.., ot
where C' < 0o does not depend on H,T.
Denote &, := &, & = & i for k> 0. Write
Sri = H~Y/? ZZ L b |t7k\(§k — E&,) (A.19)
= HPY0 bua(§ — BE) + HV 3 5 bu(€ — BEY)
1
S e
To prove (44) for P(|S7.| > (), it suffices to verify that for £ = 1,2,
P(|s5] = Q) < fu(2.7.¢,¢) if (&) € £(s), 5 > 0. (A.20)
To prove (45) for P(| S| > (), it suffices to show that for ¢ = 1,2
P(|s)] > Q) < gn(2,0',¢,C) if (&) € H(), 0> 2. (A.21)

7



We provide the proof for s(Tli (For sg,% 1 the proof is similar). Set

T = Zf:l(fz{ — B¢, ye =k Pay, v = (%)1/2 fork=1,...,t—1.

Using summation by parts, we can write 5(T7)5 as

t—2
Sg’}i = HP Z(bH,k — bp )Tk + H by 1
k=1

t—1
= Zatk$k, (A.22)
k=1

where
gl = Hil/Q(bH’k — bH,k+1) for k= 17 ,t — 2, at7t_1 = H71/2bH,t—1-

Subsequently, using notation y and v introduced above, we can write

s = Yohy au (kv H)Y? (yi /). (A.23)
From (A.18) it follows
t—1
Zatk k\/H 1/2 < C
k=1

where C' < oo does not depend on ¢, H,T'. Hence, by Lemma A2, there exists € > 0 such that

prc = Psf 2 ) < = e B[] 5 o) (A20

Notice that v, > 1.
Proof of (44). Suppose that (§;) € £(s). Then, (40) of Lemma 1 implies
P(lyr| > ) < fi(2,7,¢,¢), (>0, k>2.

Therefore, by (C.11) of Lemma C2(ii),

Ellyel (lyx| = eCva)] < fi(2,7, ¢, eCu)
for some ¢ which does not depend on k. Thus, (A.24) implies
pre < Cflgll??t v fi(2,7,d eCuy) < Clngll?i(t fi (2,7, ¢, eCw). (A.25)

For k > H, it holds that v, = 1, and we have

eCVEk

fk(27’Y7Ca€CVk) = Co{eXP(—Cl(€C)2)+eXp(—02(10g2k

fH(2777 & C)

)s/(s+1))}

IN



For 1 < k < H, we have v, = (H/k)"/> > 1 and v,k = vH, which allows to conclude

Fr(2,7,0.6Cm) = CO{eXp(—C1(€CVk)2) +exp (— 02(—€folg€2f)8/(s+l))}
< Co{eXp (—c1(eQ)?) +exp (- 02(_l€§g\2/§)s/(s+l))}

= fH<2”Yan C)
Together with (A.24), this yields pr¢ < fu (2,7, ¢, ¢) which proves (A.20).
Proof of (45). Assume that (§;) € H(0) and let ¢ € (2,6). By (41) of Lemma 1,

P(lyel > ¢) < gr(2,¢',¢,¢)

for k > 2, and by (C.12) of Lemma C2(iii),

Ellul () = )] < ma(eCun, 1e(2,6', ¢, Cun) (A.26)
for some ¢ which does not depend on k. Notice that (v, > 1. Then,

(eCvp) ' max(eCy, 1) < max (1, (€Cl/k)71) <l+e L
Thus, by (A.26) and (A.24),

pre < C’lngll?i(tgk (2,0, eCu) (A.27)

where C' depends on €. For kK > H we have v, = 1, and therefore

Ik (27 9/7 ¢, 5gyk) = Gk (27 9/) &) 5g) = CO{GXP ( —C (€C>2) + <8<)_6,k_(0//2_1)}
< 9gu (2a 9/7 ¢, SC) :

For k < H, we have v}, = (H/k)/? > 1 and therefore

() ™" k=T = (C(H /R R Pk = (CH2) "k
< C—efH—(9//2_1)

which allows to conclude

9k (27 9/7 C, ECVk) = CO{eXp ( —C (ECVk)Z) + (€Cyk)_9/k;_(9,/2_1)}

Co{eXp ( — cl(eg)z) + (gg)*G’H*(WZfl)}
= gu(2,0,¢,eQ).

IN

Together with (A.27), this implies pr¢ < gu(2,6', ¢, ¢) which proves (A.21). O

9



Proof of Lemma 3. (a) Write §T7t = St + rrp. Assumption ¢ > 2|rp,| implies ¢ — |rr4]| >
(/2. Therefore

P(|§T,t| > () > P(|ST,t| > (- |TT,t|) < P(|ST,t| > (/2).

(b) If |E¢, — E&| < Clk —t|/(t Vv k) for k,t > 1, then by (C.16) of Lemma C3,

_ — /
Pl < CH Y20 gy (Hy < ¢ 222

for some ¢; > 0 which proves (46).
If |B&, — B&| < Clk —t|/T for k.t =1,..., T, then by (43),

P [t — K
reel < CH™Y2 by )
k=1
T
t—k H3/2 H3/2
< O(H*;bmm(’ NI <o (A.25)

for some ¢ > 0 which does not depend on ¢, H, T". This proves (47). O

Proof of Corollary 6.
Proof of (a). The bounds (44)-(45) together with definition of f;, g; in (39) imply

P(|Srs| >b) =0, T — o0, b— 0.

Hence, St = Op(1) which proves (48).
Proof of (b). Assume that (§;) € £(s), s > 0. We will show that as 7" — oo, b — o0,

P( max_|St,| > bdr,y) = op(1), orm = (lo T)1/2+M(lo )\ (A.29)
(A 19T T.H rll), T,H g H1/2 g .

-----

< Tco{exp ( — cl(b5T7H)2) + exp ( — 02(%)7)}
< Tco{exp ( —c1b?logT) + exp ( — b log T)}
<271 =0

for b such that ¢;b? > 2, cob? > 2. This proves (A.29). Under assumption ¢7° < H < T it
holds 07,5 = O(log'/*T'). Hence, (A.29) implies (50):

P<t£rllaXT|ST’t| > blogl/zT) —0, T — o0, b— o0.

10



Next, assume that (&;) € H(6), 6 > 2. Let 0" € (2,6). We will show that, as T" — oo, b — o0,

T 1/
P(tgl% Sr4| > b0rw) = op(1), drm = (logT)"* + HW(W) : (A.30)

P(Hlathl ..... T |ST,t| 2 b(sT,H)
= ZtTil P(|ST¢| = béTvH) = ZtT:1 gr(2,0',¢,b0r,11)
< Tco{exp (— c1(bdrm)?) + (b5T7H)_9/H_(9//2_1)}

< co{T exp ( —c1b*logT) + b—‘9’(He,€%1 )—1TH—(6"/2—1)}

<c{T 7+ =0

as T" — oo and b — oo. This proves (A.30). To prove that (A.30) implies (51), it suffices to
show that for any € > 0 there exists 2 < 6’ < 6 and a > 0 such that

log'?T + (HT)YH*"'? > adry, Opy =log"* T + (TH)Y" HY2, (A.31)
Write
(HT)1/9H€—1/2 — (HT)I/E’/H—I/Q,UH7 vy = (HT)I/H—I/GIHE'
We will show that vy > a > 0 for some 1 > a > 0 which proves (A.31). By the assumption
of the corollary, ¢cT° < H < T. Then,

He (CT5)5

- = E b Py—
Ui = i 2 paaem = ¢ 1 b= 0e =21/ —1/0).

If b > 0, this implies vy > . Clearly, b > 0 if 6’ is selected sufficiently close to 6. [
Proof of Corollary 7. Let 0 < v < 1. Write
T o~ ~
vre = H™Y byl brje—r = b (It — k[ /H). (A.32)
k=1

By (43), ZH’|t_k| < C(1+ (k/H)"™1)7L. It is ecasy to see that by, satisfies (43) with parameter

v — 1. Since under assumptions of corollary,
T
ax B|&,| < ax H'Y by g <
max & < C < o0, max ; H -k < C,

then

T
max |or,| < max for,|+C, v, = H ;bH,lt—k(Kk! — E&l)-

11



Since (&) satisfies Assumption A, then by Theorem 14.1 in Davidson (1994), (|&x|) also satisfies
Assumption A. To prove the claim (52)-(53) of the corollary, it remains to show that

max [vy,| = Op(1). (A.33)

1<t<T

Let (&) € £(s), s > 0. Then, by (50) of Corollary 6 and assumption (49) on H,

max [vf,| = O(H ?log'? T') = op(1).

1<t<T

Let (&) € H(0), 6 > 2. Then, by (51) of Corollary 6 and assumption (49), for any € > 0,

max [v,| = Op(HV21og" > T + (TH)YH*Y).

1<t<T

By assumption, H > ¢ with § > 1/(6 — 1) which implies that (TH)Y?H*=! = o(1) when ¢
is selected sufficiently small. This proves (A.33) and completes the proof of the corollary. [

Proof of Lemma 4. Without restriction of generality assume that ¢ > 1.
Proof of (58)-(59) for P(]S(Tht)\ > (). Denote

Ry = hi—k, & = &, P} = higr, & = &qp for £ > 0.
As in (A.19) write S;ht) as

Spi = H Y2 bujewhi (6 — Bé)
= HOE o buahi G+ B2 Y 20 b

_ . M) (h)
- ST,t;l + ST,t;Q'

Proof of (58)-(59) for S}’? reduces to verification of these bounds for sgff 2;1 and sgf 2;2:

P(‘ (h) ‘ > C) < fH(’ylafY?aQC/\ C/) if (5]) € 5(5), (A34)
Syl = C) <
ot g (1, 0,6, CAC) i (&) € H(B), 6> 2 (A.35)
for £ =1,2. We start with S(T}fz;r Denote
k
kv H
no=Y (G- BE), we=k o, gh=hye o= ()" k21 (A30)
i=1
Then as in (A.22), summation by parts yields
3%2;1 = HV23 2 (buih) — b1y )z + H V2o 1 by

= {H Y2 (b — b)) (Wyxw) + HY2bp ey (B _yw01) )
HH VST b gl — By )
o (2) (A.37)

_' STt;l + ST,t;l'

12



Hence, it suffices to verify the bounds (A.34)-(A.35) for Sg};;l and 3%;1-
First, we evaluate P(|s(Tlﬂ)t;1| > (). The sum 3%1;1 can be obtained from sgﬂli in (A.22) by
replacing xj by hix. Therefore, the same argument as in the proof of (A.24) implies that

there exists € > 0 such that

P(sppal 2 Q) <™t max (Cn) " EllgilI (] = eCml, (21, T22. (A38)

-----

We now show that for all { > 0, k> 2,

with 71, 72 and 0" as in (58)-(59). Recall that y, = hjyr where (h}) € £(a) by assumption
(56). Moreover, (40) and (41) imply that

P(lyr] > Q) < fr(2,7,¢,¢) if (&) € E(s),
Plyel = Q) < gi(2,0',¢,¢) if (&) € H(P).

So, (A.39) and (A.40) follow from Lemma C1 (iii) and (iv), respectively.
As shown in the proof of (44) and (45), the relations (A.38)-(A.40) imply

P(Is$)1 > ¢) < fu(m,m e €) if (&) € E(s), (A.41)
Pl =€) < gn(n.0,c.Q) if (&) € H(O), (A.42)

which verifies (A.34)-(A.35) for s%)t;l. Next we show that setting (" = (dpq,

P(Is51al = Q) < fu(n.ze () i (&) € E(s), (A.43)
P(Is$11 >¢) < gu(m,0,¢,C) if (&) € H(O). (A.44)

Together with (A.37)-(A.40), the latter proves (A.34)-(A.35) for sgfz;l.
We now prove (A.43)-(A.44). We have

P(Isfhl = ¢) = P(dudlsiral = dmeC): (A.45)
In view of definition of A}, by assumptions (54)-(55),
By — oy = he g — o gy = 6,6, fork=1,..,t—2,

and &y, = t — k if (54) holds; &y, = T if (55) holds, while (&) € E(«) by assumption (56).

Then, with v, and y;, as in (A.36), setting v} = &park ™2 = &y, We can write

k §inT kv H. oy
(h;g - h§c+1)xk - (a)l/z k1/2 - ( 5tk )1/272'
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Hence,

sy, = ;ﬁ’; biri(Ry — Byy) T (A.46)
k=1
S . - dm EVH., ),
R atk(y_k); Qg = Hl/Qka( o )
Next we show that for all ¢, H, T,
t—2
Spp = Z lay| < C < . (A.47)
k=1

Let (54) hold. Then, by definition, dyy = (H V t)Y2H=Y, 65, = |t — k|, and by (C.17),

§ bH k kv H 1/2 H -1/2 Et 1/‘ ZH [t—J] |t .7| vV H 1/2
d - > < > 9.
SHi Htk H1/2( /{) (H\/t) (j 1 H ( ] ) ) C’ t 2

Let (55) holds. Then, dy, = TY?H™!, 6y = T, and by property (43) of by,

t—2
b7 kv H 1/2
sHt:;%(T) <C, t>2, T>2

From (A.45)-(A.47) and Lemma A2 it follows that there exists € > 0 such that

gl ol S ) (A.48)

2 2 _
P(|S(T,)t;1| = C) = P(|dHtS’EF,1;1| = C/) s¢ 11<k<t—2 [C’l/k C'vp —

This bound is of the same type as (A.38) for P(]s(Tli;ﬂ > (). Recall that y = &uyr and by
(56), variables &, have the property (&) € £(a). Hence, (A.48) implies (A.43)-(A.44) by the
same argument as in the proof of (A.41)-(A.42) for sTl 1

The proof of the bounds (A.34)-(A.35) for ST,Z,;Q can be obtained using similar arguments as
above for sgfz;l. This completes the proof of (A.34)-(A.35) which imply (58)-(59) of Lemma 4
for P(|S{)] > ¢). O

Proof of Lemma 5. It suffices to verify (A.34)-(A.35) for P(|S(Tt)| > (). Write

SU = 8™ 4rpy, rpy = HY2 YT by (B, — hyEE).

Since by Lemma 4, P(\S;h,?] > () satisfies (58)-(59) and thus (A.34)-(A.35), to establish the
corresponding bounds for P( ’S?(Thz | > (), it suffices to show that P(|ry,| > () satisfies (A.34)-
(A.35) as well. We will prove that there exists ¢g > 0 and ¢; > 0 such that

P(lrry| = ¢) < coexp(—ci¢®), ¢>0, T >2. (A.49)
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Since a > 71 = 2a/(2 + «), (A.49) together with definition (39) of f; and g¢¢, implies (A.34)-
(A.35) for P(|rry] > ¢).
Proof of (A.49). Write

P<|7“T,t| > Q) = P(dHt|rT,t| > C/), C/ = dHtC-

Case 1. Suppose that E|&, — E&| and |hy — he| satisfy assumptions ((60), (54)). Then,

b E& — hE&| < |hi(E& — E&)| 4 | B |hie — Ry (A.50)
t—k
= C(|t\/—k;|)l/22k7 2 = |he| + [Eun-

Under (54), by definition (57), dgy = (t vV H)/2H~'. Hence,

T
_JVH 1/26H,|t*k\ |t — k| 1/2
dHt’TT,t|§Ck2;atkzk; atk—< H ) H (t\/k) :
Applying (C.16) with v = 1/2, we get
T
t:rr117gj?§TZatk <(C <o
k=1
Hence, by Lemma A2, there exists € > 0 such that
P(dglrry] > ¢') < &' max E['Z’“U('Z’“' > ¢ (A51)
T - 1<k<T ¢’ ¢~ ' '
By assumption (56), (z;) € £(a). Hence, by Lemma C2(i),
Bzl I(|21] = ()] < cyexp(—c1(®)
which together with (A.51) implies
P(duelrrel > ¢') < ¢ exp(=¢i¢’):
Therefore,
P(|7"T7t| > Q) < cyexp(—c ') for ¢' > 1. (A.52)

This bound remains valid for 0 < (" < 1 if ¢ is selected such that ¢ exp(—¢}) > 1. Then,
coexp(—ci (') > chexp(—c)) > 1 for 0 < (' < 1

and, thus, (A.52) holds. This proves (A.49).
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Case 2. Suppose that F|&, — E&| and |hy, — hy| satisfy assumptions ((61), (55)). Then, instead

of (A.50), we have the bound
t—k
e~ heel < Ol 2z, o = g + el (A53)

Under (55), by definition (57), dgy = TY/2H =" for t = 1,...,T. Hence,

T
) T b [t —k birton |t — K
dinlrrd < O i, ay = (et Ly bt [0k

H H T H H
k=1
By the same argument as in (A.28) it follows that
T
 nax ay, < C < oo
T k=1

Hence, as above, by Lemma A2, there exists € > 0 such that (A.51) holds, and using the same
argument as in Case 1, we obtain (A.49).

Thus, P(|ry:| > () satisfies (A.49) which completes the proof of the lemma. [J

Proof of Corollary 8. (a) Recall that ( A (" = ((1 A dp). The bounds (58)-(59) together
with definitions of f;, g; in (39) imply

P((l/\dHt)‘Sg?t” >b) =0, b— .

This proves (62):
S0 = O0p((1 Adyy)™") = Op(1 +dyh).
The same argument implies §¥2 = Op(1+dp,), since by Lemma 5, P(|§(Tht)] > () satisfies
the same bounds (58)-(59).
(b) Under assumption (55), dg; = TY2H™. Set z¢, == (1 A dHt)§¥l§
Assume that (§;) € £(s), s > 0. We will show that as T" — oo, b — o0,

log H)?
P(tglax 214| > bru) = 0p(1), Orm = (log T)"/™ + (log H)

- W(lOg T)1/727 (A54)

where 7, and v, are the same as in (58) of Lemma 4.
For b > 0, by (58), definition of f;, (39), and equality (¢ A (') (1 Adw) ™t = ¢,

-----

< Ethl fr (71,72, ¢, 007, 1)
< Teo{exp (— (b)) + exp (— ex( By |
< Tco{exp ( — b log T) + exp ( — b7 log T)}

< 2T ' =0
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for b such that ¢;b" > 2, b7 > 2. This proves (A.54). Since for c¢T® < H < T it holds
o n = O(logl/71 T), (A.54) implies:

max \zr¢| = Op(dr.m) = Op(logl/“*1 T).

This together with definition z7; = (1 A dHt)§§rh2 . where dy;, = TY?H™', and inequality
(LATY2H-YL <1+ HTY2 implies (63):

max ISP = Op((LATY2H™) log " T) = Op((1 + HTV/?) log"/ " T).

t=

.....

Next, consider the case (§;) € H(6), # > 2. First we show that for any 0’ € (2, 0), as T' — o0,

T o'
max |27 = Op(dr.m), Oru = (log T)ml + Hl/z( )1/

t=1,...T HO' -1 (A.55)

.....

< Zf:l P((1LAdp)|Ste| > bor,)

< Z,:Tzl QH(’Yb v, c, b5T,H)

< Teo{exp (= er(br.)) + (b7.) H- 20}

< co{T exp ( — b logT) + bfel(#)*l’f]{*(@’/?*l)}
<c{T'+07} =0

as " — oo and b — oo. This proves (A.55). The same argument as in the proof of (51) of
Corollary 6 shows that validity of (A.55) for any 2 < 6 < 6 implies that for any € > 0,

IIllaXT |ZT7t| = Op (gT,H)a gT,H = (log T)l/’yl + Ha_l/Q(TH)l/e. (A56)

t=1,...,

tgllaxT|§;’jg| = Op((LA+H TV Yor 1)

= Op((1+ HTV*){(logT)"/™" + H=*(TH)"?})

which proves (64) and completes the proof of the corollary. [

Proof of Corollary 9. Denote

t—k
H

T
vriw =HY b V&), 0<v <1, (A.57)
k=1
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Proof of (67) and (69). Let (65) hold. Then,

d t—k
|Ary| <CH™! ZbH7\t—k|| T

k=1

||&] = C(H/T)vry1. (A.58)

Since under assumptions of lemma, maxy, F|&;| < oo, together with (43) this implies

Bur,, < C(max B|& ) H met k|| O(1).
Hence, vy;1 = Op(1) which together with (A.58) proves (67):
|Ary| = C(H/T)Op(1) = Op(H/T).
Notice that by Corollary 7, under the assumptions of Corollary 9(b),
max, lvr s, =0p(1), 0<v <L (A.59)

1<s

This together with (A.58) proves (69):

< —
12188%)%|AT¢| < C(H/T) 11;1%)%]1)@571\ Op(H/T).

Proof of (68) and (70). Let (66) hold. Then
t—k

T
|Ary| < cH™! Z b je—k) )1/2’%1@514‘- (A.60)

k=1
By (66), () € &(a), o > 0, while by assumption of corollary, (§;) € £(s), s > 0 or
(&;) € H(), 6 > 2. Thus, from Lemma C1 (i)-(ii) it follows maxy, E|vy&x| < co. Hence,

E|Ar| < C’(H/T)W(maxE\utkfk Z br i k| 1/2 < C(H/T)"?,

where C' > 0 does not depend on ¢, H,T. This proves (68), Az, = Op((H/T)"?).
Next, by (A.60),

max |Ag,| < C(H/T)"?*( max |y, |)(H13XTUT31/2) (A.61)

1<t<T 1<k, t<T

where v 1/2 is defined by (A.57). Since (vy) € (), (C.3) of Lemma C1 implies:

max_|vu| = Op((logT)"/*).

1<k t<T
By (A.59),

1225 [orsajel = Op(1)

which together with (A.61) proves (70).
max [Ar| = Op((H/T)"*(log T)"/*).

This completes the proof of the corollary. [J
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B. Proofs of Theorems 1-3.

For convenience of the proof of Theorems 1-3, we include Lemma B1 which summarizes the
key steps of the proof of Theorem 1, Bickel and Levina (2008) and adjusts them to our setting.
Recall notation of p x p covariance matrix ¥, = [0;;,], sample covariance estimator it =

[0.¢] of 334, (10), and the regularized sample covariance estimate defined in (11):
T\ (1) = (Gijul (16550l > N).
Denote

tj=l,...p T i=l., D

p
M= maXp|3z‘j,t =0y, N = max > 1(1Gi4 — ol > A/2).
j=1

Recall the definition of the sparsity parameter n, of covariance matrix ¥, which is the maxi-

mum number of non-zero elements in a row of ¥;, see, e.g., (8).
Lemma B1 (see Bickel and Levina (2008, proof of Theorem 1)). For any A > 0,

IT\(Z) — || < 2M N + Mn, + 2)n,,. (B.1)
Moreover, if \ is such that as T — oo,

max; j=1,...p P(|8,;j’t — Uij,t‘ > /\/2) = O(p_Q), (B2)

.....

then

In addition, if (B.3) holds, n,A = o(1) and ||X;|| > ¢ > 0, then

T3 (2) 7" = =] = Op(n,N). (B.4)

Proof. Verification of (B.1) follows closely the steps of the proof of Theorem 1, pp. 2582-2584
in Bickel and Levina (2008). For clarity, we include the details of the proof.
We have

A~

T)\<Et) - Zt - [5ij,t]i,j:1 Y3 5ij,t - a\-z'j,tj(|/O-\ij,t| > /\) — Oijt-

~~~~~

By the well-known property of the spectral norm of a symmetric matrix,

7777 P

p
IT(E0 = Sl £ e (3 o) (B.5)
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Write

Oijt = {8ijt[(|aijt| > A) = oyl (Joije] > N/2)} +{—0ijl(|oijel < A/2)}
— 50 452

it ij,t"

Notice that

8521 < loigal I (Jos5e] < A/2) < (A/2)I(|o4] # 0,

On the other hand,
1 ~ o~ ~
051 = Gi(I(Gial > N) = I(|oijal > A/2)) + Gige — 015.) L (030] > A/2)
= {0y (030 > A, 0wl < A2)} + {0350 ([Gie] < N, |oijel > A/2)}
~ 1 2 3
+{(Gije — o) L (|03j4] > A/2)} = vff) + 055, + v
Notice that for [;;:| > A, 04| < A/2 it holds
Gijel < 201035 — loije]) < 2[00 — gl

Gije — 0igel = |Tijel — lowgel > A/2.

Hence,
I < 2= ol (il > 312),
03] < M (|oie] #0),
3 o~
!vfj,)t < 5.0 = 03l (|03je| # 0).
Therefore,
|5ij,t| < |5’th’ + |5zjt| < |U2]t| + |vljt| + |th| t |5wt

< 206550 — 04l L (10350 — 0ijal > N2) + (G350 — 0iel L (|0ija] # 0) + 2X ([oi4] # 0).

-----

T3 (Z) — S| < max (> 163541)

=1,...

IN
\"}
—~
5
~o
><
§
<
9
<
(-
—
s
><
~
§
<
3
<
V
>
~
N
N’

----------

j—].

-----

2M N + Mn,, + 2An,

IN
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which proves (B.1).
Proof of (B.3). If (B.2) holds then

p
P(M > /\/2) < E P(|3,~j7t _Uij,t| > /\/2) SmeaxP(|/a\ij7t _Uij,t| > /\/2) = 0(1)
ij

ij=1

In turn,
P(N>1)<P(N>0)<P(M=>\2)—0.

This shows that M = Op(A\) and N = Op(1) which together with (B.1) proves (B.3).
To prove (B.4), set B := T,\(flt), A :=%,. By assumption, ||A]| > ¢ > 0 and n,\ = o(1).
By (B.3), ||B — Al| = Op(ny\) = op(1). Thus,

1Bl = |A+ (B = A)[| = |A] = |[B = Al =2 ¢ = 0op(1) = e(1 + 0p(1)).
This implies |B~!|| = Op(1). Hence,

B =AY = A A-B)BY| < A A - Bl B
¢ 0p(nN) Op(1) = Op (n,\)

IN

which proves (B.4). O

Proof of Theorem 1. Recall that
A = k(T ' ogp)'/? (B.6)

has property A — 0 as T" — oo in view of (9). By assumption of the theorem, (y:) is a
stationary sequence, the sample covariance matrix 3 = (G;;) given by (5) is the estimate of
3 = (0y;) = var(y:) and o0;; does not depend on t.

By Lemma B1, in view of definition (B.6), to show (B.3) and thus, the claim (6) of Theorem

1, it suffices to prove that for sufficiently large x,

.....

max; j=1 PP(|6-\U — O'ij’ > 2)\) = 0(p_2). (B?)

(Notice that (B.7) implies that (B.2) holds for sufficiently large x which in turn proves (B.3).)
Fix (i,7) and set z; = yuy;,. Because of stationarity assumption, Ey;, = Ey;1, Eyjr = Eyj
and Ez, = 0;; do not depend on k. Observe that

0ij = cov(Yir, Yjx) = Bz — Evir Eyjg.
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Then we can write

Gy —oy = T Z YikYjk — Yillj — Oij
k=1
T
= sri — Uiy + ByaEyn, s =1~ ! Z 2 — Ezp), U= T Zyzk
k=1 —

Observe that

Yi¥; — Eyan By = (4 — By ) (75 — Byj) + Elyal(7; — Eyj) + Elyal(@: — Eya).

Both assumptions (y;) € £(s) and (y;x) € H(#) imply that m = max; ; Flyx| < oc.

Therefore,
035 — 03| < lsasl + |7 — Eyal [§; — Eyjl + mly; — Eyj| +mli — Eyal.
So, we obtain
P(|5ij — oyl >4\) < P(lsri| > A) + P(|7 — Eyal 95 — Byl > A) (B.8)
+P(m|y; — Eyj| > X) + P(m|y; — Eya| > X).
Since A = o(1) as T — oo, then v/A > X for A < 1. Hence,
P(’Z/_i — EByal |y, — Eynl > )\) (B.9)

< P(|gi — Eyal| > \/X> + P(ly; — Byl > \/X)
< P(‘@z — Byal| > /\) +P(|gjj — Byji| > )\).

Therefore, to prove (B.7), it suffices to show that uniformly in i, j, as T — oo,
max P([sr;] > \) = o(p™?), max P(|g; — Eya| > \) = o(p~?), (B.10)
1,....p i=1,...,p
max P(m|yz Eyi| > ) =o(p~?), (B.11)

when « is selected sufficiently large. We will prove (B.10), while (B.11) can be shown using
the same argument as in the proof of the second claim in (B.10).

Denote

T
S =T 5745, Sy, =Ty =T7? Z(yzk — Evyir,).
k=1

Then, with n = T2\,

P(lsril > ) < P(IS7.50 > n), (B.12)
P(|5: — Eyal > X) < P(|S7.] > n).
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By Assumption M, the process (y, — Ey,) is a-mixing, and therefore processes (zx — Ezy),
(yir — Eyix) are also a-mixing with mixing coeflicients satisfying (1).

(i) Let (yir) € £(s). Then (z;) € £(s/2), and Ez, = 0;; does not depend on k. Hence, (40) of
Lemma 1 implies that with v = (s/2)(1 + s/2),

P(lsf}k“,zj’ > 77) S fT(277767 77)) (Blg)
P(IS7il > n) < fr(2,7,¢,m).

Notice that 7 = r(logp)*/2. Then, by definition of f; in (39),

fr(2 ) { (—en?) ( (77 i 7}
Y, C, = cyiexp(—c + ex c
(4,7, C 1 0 p 1n p 2 lOgQT
log T)'/21/?
= e logT) + exp ( — e (™ 7}
co{exp( 1k logT') exp( 02( log?

= o(p™?)
because ¢;x% > 2 when k is chosen large enough, and under assumption (9), 7' > cp®,

(logT)1/2T1/2 5

loop = of (2L~

ogp 0(( 10g2T

This together with (B.13) and (B.12) proves (B.10).

(i) Let (yi) € H(O). Then, (z;) € H(0/2), and (41) of Lemma 1 implies
P(|Sﬁj| >n) <gr(2,60,¢,m), 2<0 <6/2, (B.14)
P(|S7l > 1) < gr(2,0,c.1).

1/2

Recall that n = k(logp)'/?. Then the function gr given in (39) has property

gr(2,0,¢,m) = Co{eXp (—an?) + n“’T—<9’/2—1>}
= Co{eXp ( — 0152 logp) + (H(logp)l/Q)fG’Tf(e’/zq)}
= o(p™?)
because ¢;x% > 2 for large enough &, and since under assumption (9) of the theorem,
P = o) (B.15)

if ¢ € (2,60/2) is selected close enough to /2. Indeed, then T > cqp®, € > 8/(6 — 4) which

implies p? = o(T?/?>71) if ¢ is selected close enough to 6/2.

This, together with (B.14) and (B.12) proves (B.10) which completes the proof of (6).
Property (7) follows using (B.4) of Lemma B1. [
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Proof of Theorem 2. Recall that in Theorem 2
A = r(log p)*/? max (H_l/z,H/T). (B.16)

By Lemma B1, to prove (B.3) which is equivalent to the claim (15) of theorem, it suffices
to verify validity of (B.2) when parameter x is selected sufficiently large. For notational

simplicity, instead of (B.2) we will show that for sufficiently large &,

ij:llaxpp(|8ij’t — 0yt > 4)\) = o(p*Q). (B.17)

Since k can be arbitrary selected, (B.17) implies (B.2).
Recall that y, = (Y11, ..., Ypt)'. Set zx = yiry;x. Notice that

Tijk = coV(Yir, Yjr) = Ezr — By, By,
Then,

Gije — 0 = KPS0, b je—k|YikYik — Yiljt — Tijs
= ST — Yilje + Eya By, (B.18)
STijt — Kfl Zle bH,|t—k|(Zk - Ezt% Yit = Kfl Zle bH,\t—sz‘k.

Notice that
UitUjt — Evie Byje = (Ui — Evir) (Uie — Eyse) + Elya) (e — Eyie) + Ely) (G — Eva).
Under assumption (y;) € E(s) or (yu) € H(0), max;; |Ey;:] < m < co. Hence,
1Gij0 — 0ijel < sl + |Gt — Evael [Uje — Eyje|l + m|yje — Eyje| + m|Y — Evya.
Therefore,

P(|8ij,t — Uij,t‘ > 4)\) S P(’STJ']"t’ > )\) + P(\Q,t — Eth‘ ‘gjt — Eyjt’ > )\) (Blg)
—i—P(m]yjﬁ — Eyjt| > )\) + P(m|g,t — Eyzt| > )\)

Notice that A = o(1) as T — oo by (14). Hence, v/A > \ for A < 1. So,

P(I% — Byl |yje — Eyje| > )\) (B.20)
< P(‘@;t — BEyy| > \/X) + P(|§jt — Byj| > \/X)
< P(|is — Byie| > A) + P(|9;0 — Eyje] > ).
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Therefore, to prove (B.17), it suffices to show that uniformly in 7, j, as T" — oo,

Z,jfili%X1[)P<|8T,ij,t| > \) =o(p~?), igaxpp(mt — Eya| > A) =o(p™?), (B.21)

max P(m|gi — Eya| > X) = o(p™?). (B.22)

..... D
We will prove (B.21). ((B.22) can be shown using the same argument as in the proof of the
second claim in (B.21)). Write

T T
srije = H'YPK (H_m > bupn(zr— Ez) + H Y by g (B — EZO)
k=1 k=1
= Hl/QK;I(S;ij,t + TT,ij,t)a
T T
Ui — Byy = HPKT(HY?Y by (i — Eya) + H D bajwy (Byar — Eyzt))
k=1 k=1

=: Hl/ngl(si}m + 1)
Observe that there exists aq,as > 0 such that forall 1 <t <T, T > 1,
aH < K, <ayH.
Then
(K, /HY*)\ > a HY?\ =: . (B.23)
Therefore

P(lsrijel > A) < P70 + gl > ) < PIspi,.l > 1= rrgel),
P(|§it — BEyi| > >\) < P(|5*T,i,t + 7] > 77) < P(|3*T,¢,t| >0 = |7"T,i,t’)~
First we show that, as p — oo,
rrajel <n/2, Jregd <n/2 (B.24)
which implies
P(|srjel > A) < P([s7.54 = 1/2), (B.25)
P(|?7it — Byu| > )\) < P(|5},i,t’ > 77/2)-

To verify (B.24), we use the equality Ez = Elyiy;t] = cov(Yir, yje) + Evie Eyj which together

with assumption (2) implies that uniformly in i,¢, s,

t—s

1yl <€, [Eya— Byl <002 (B.26)
t_

Ea| < C. |En— Bz <ol
tVs
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This together with (46) of Lemma 3 and the assumption of the theorem, 07 <t < T, yields

H3/2 H3/2 H3/2
ol <C— <, <o = B.27
Irriidl < Oy < Gy 5T (B:27)
H3/2
il < C
Irrael < Oy

because H = o(T') by the assumption (14). Since
MWH > r(logp)2H??T,

this implies
1/2

n aik(logp) o,

[rrijel — C./o 7700
when x(logp)/? is sufficiently large. This proves (B.24) and (B.25).

By Assumption M, the process (x; — Ex;) is a-mixing, and therefore (z; — Fz;) is also

> 2,

a-mixing with mixing coefficients satisfying (1).
(i) Let (y,) € E(s). Then, (zx) € E(s/2) and (yix) € E(s/2). So, applying (44) of Lemma 2
we obtain
P(I874 > n/2) < fu(2,7,¢,1/2), 7= (s/2)(1 +5/2), (B.28)
P(|S;,i,t| > 77/2> S fH(Q”Ya ¢, 77/2)

The function

. CHl/Q
(v, 72,6,¢) < co{exp(—clé‘” ) + exp ( - 62(10,9;—2]-1)72} (B.29)
given in (39) is non-increasing in ¢. By (B.23),
n/2 > (a1/2)r(logp)'’?. (B-30)
Thus,
1/2
< CO{exp (—ci(ar/2)*w?logp) +exp (— 02((a1/2)mog1/2p1mg—2H)”)} =o(p~?)

because ¢ (a;/2)*k? > 2 when & is chosen large enough, and by (14), H > ¢yp°, which implies

H1/2
10g2 H) )

logp = o((log"? p
This together with (B.28) and (B.25) proves (B.21).
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(ii) Let (y,) € H(0). Then, (z) € H(0/2) and (yix) € H(0/2), and using (45) of Lemma 2,

we obtain

P(|S§“,ij,t| > 77/2) S 9H (2a 0,7 G, 77/2)7 2< 9/ < 0/27 (B32)
P(lsql >n/2) < gu(2,0,¢,1/2).

The function

g1(1,0',¢.¢) = cofexp (= () + ¢ @20 (B.33)
given in (39) is non-increasing in ¢. Again, using the bound /2 > (a;/2)x(log p)'/2, we obtain

gu(2,60',¢,m/2) (B.34)
< co{exp ( — 01(a1/2)2/{2 logp) + ((al/Q)H(logp)1/2)—9’H—(9’/2—1)}
=o(p~?)

because ¢, (a1 /2)?k? > 2 for large enough « and because p? = o( H?/?>~1) under the assumption
(14) of the theorem if 6’ € (2,60/2) is selected close enough to 6/2, see the proof of (B.15).
Clearly, (B.34), (B.32) and (B.25) prove (B.21).

This completes the proof of the claim (15) of theorem.

The claim (16) of the theorem is shown in (B.4) of Lemma B1.

The bandwidth H,, = T%?3 minimizes max (H /2, (H/T)), so

A = w(logp)'? max (H™/2, (H/T)) > Ao = r(logp)/*T
which proves the last claim of the theorem. []

Proof of Theorem 4. In this theorem,

4
A = k(logp) max (H~V2, (H/T)'?), v= a2+ : (B.35)
a

Notice that by (19), A
it suffices to verify (B.17), i.e. to show that uniformly in i, j, for sufficiently large x it holds:

= 0(1). Asin Theorem 2, to prove the main result (20) of this theorem,
P([6ij+ — 044 > 4X) = o(p~2). (B.36)

We will rewrite 0;;; — 0, as follows. Observe that

Y = Hyzy = (Yi, - Ypr)'s  where yix = 320 hiwpZur,
I thgm)H; = (Uij,t>> where Oijt = ZP

u,v=1

(z)

hz’u,t h’ju,to-uvyt
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_\P : () _
and Yy = Zu,v:l Riw o kTuk ok Since o,y = E[Tyy] — Exy Ex,, then

P
Oijt = Z hiu,thju,t(E[xut%t] — E[mut]E[x,Ut]),

u,v=1

So,

Oijt — Oijt = Kt ZL b je—k|YikYik — Yaljt — Tijt (B.37)
= D ho—i Tijuvt, Where
Tijuvt = Sijuvt — JiutYjot T (Pt B Tut]) (Pjo s B[T0]),
Sijuvs = K Zle brr k) (i k Tk ok — PiwtPjo 1 BT,
Yiut = Kfl Zle O |t —k| i b Tk
By assumption of the theorem, the sparsity parameter ny of H, is finite and fixed, and does

not depend on ¢, p, T. Therefore, for any fixed (7,7) the sum > » _ [...] in (B.37) includes no

u,v=1

more than n% of non-zero terms. Without restriction of generality, assume that

ng
Oijt — Oijt = Z T v, t-

u,v=1

Hence, to verify (B.36), it suffices to show that uniformly in 7, j, u, v, for sufficiently large & it
holds:

P(|Tijung] > 4N) =o(p7?), XN =\/n. (B.38)
Set Siut = Yiut — Niwt B[Tuw)s  Viug = Niw i E[zy]. Then,

Tijuvt = Sijuvt — (SiutSjvt + ViutSjut + VjutSiut)-
Thus, similarly to (B.19),

Tijuv,t < P<’§ij,uv,t| > )\/) + P(‘Siu,tsjv,t‘ > )\/) (B39)
+P(|Uiu,t5jv,t| > )\/) -+ P('”jv,tsiu,t| > )\/)

Since A — 0, assume that A < 1. Then, A" < 1, and similarly to (B.20),
P(|Siu,t8jv,t| > A,) S P(|Siu,t| > )\/) -+ P(ISjU,t| > A/)

Therefore, to prove (B.38), it suffices to show that uniformly in w,v,i,7j, as T" — oo, for

sufficiently large x it holds

P(|§ij,uv,t > >\/> = O<p_2)7 P<|Sjv,t| > /\/) - O(p_2)7 <B40)
P(|viuesjus] > N) = o(p~?).
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Let 7, j,u,v be fixed. Define zp := x 12y, Ek = Niykhjor. By Assumption M, the process
(xp — Fxy) is a-mixing, and therefore the process (z; — Ezy) is also a-mixing with mixing
coefficients satisfying (1). Moreover, as in the proof of Theorem 2, Ez; satisfies (B.26). By
Assumption H, (h;, ) satisfies (18) with parameter o and (hy) with parameter /2.

We can write

~ _ ge—lyr1/2 _ g7-1/2T 7 7

Sijuvt = K, "H / Qijouvyty  Qijuvt = HY Zkzl bH,|tfk| (thk - htEZt)y
_ gr—1lr71/2 _ g-1/2\T

Siut = Kt H / Qiuts Qiut = H / Zkzl bH,\t—k| (hm,kxuk - hiu,tEmut)-

This together with (B.23), setting n = a; HY/2)N, implies

P(|§ij,uv,t| > Al) P(|q¢j,uv,t| > n)7 (B41)
P(|5iu,t’ > )\/) P(’qzu,t‘ Z 77)7
P(|viu,t8jv,t| > )\,) S P(|Uiu,tij,t| 2 77)

IA

IN

In addition, set L = b(logp)*/® > 1, where b > 0 will be selected below. Then,

P([vinsgjoel 2 ) < P(lvingl 2 L) + P(Llgjoa] = n) (B.42)
= P(Jvis| > L) + P(|gjus] > L7'n),
P(lgiuel = 1) < P(lgiug| = L7'n).

We will show that there exist sufficiently large b > 0 and x > 0 such that

P(’Um,t| > L) = o(p_Q), (B.43)
P(|gijuwsl = 1) =0(p™?),  P(lgjuel > n/L) = o(p~?) (B.44)

which together with (B.42), (B.41) implies (B.40) which completes the proof of (B.36).

Proof of (B.43). By assumption, (x;) € £(s) or (x;) € H(#) which implies max; ; |EFz;y| < m <
oo. Therefore, |viyt| = |hiwtE|xu]| < m|hiws]|. By Assumption H, (hi,:) € (). Therefore,
(Vint) € E(a) which implies that for some ¢, ¢; > 0,

P(|Uiu,t| > C) < coexp(—ci[C]?), (>0,
Using this bound with ¢ = L = b(log p)'/®, we obtain
P(|vius| = L) < coexp(—c1b®logp) = o(p~?)

when b is selected such that ¢,b® > 2. This proves (B.43).
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Proof of (B.44).

(i) Let () € £(s). Recall that ¢ is a weighted sum of variables %kzk, and by the
assumptions of the theorem, (h;, ) € £(a). Thus, (hi) € E(e/2) and (z,) € £(s/2). On the
other hand, g;, is a weighted sum of variables h;, yZuk, where (h;, 1) € E(a) and (zu) € E(s).
Hence, by the claim (58) of Lemma 5,

p(|qij,uv,t’ > 7]) < fH(ﬁYl?’YZaC?n(l A dHt))? (B45)
P(giuil = n/L) < fu (4.7, ¢, (/L)L A dm)),

where
2(a/2 2x a/2)(s/2 as
L2 20 (@) | -
a/24+2 a+4 a/24+s/24+1 2a+2s+4
, 2« ;o as
71 - a+27 72_0{"‘8—'—1

By assumption of the theorem, 67" <t <T. We will show below that

n(1Adp) > ask(logp)™, a5 = 6Y%(ay/n%), (B.47)
(/L) Adme) > aprllogp)/™,  ay = 0716"(ar /nFy).

The function fy(y1,72,¢, (), see (B.29), is non-increasing in ¢. So,

fu(rve (LA dm)) < fu(m, 72, ¢ ask(log p)/ ™),

!

fr(Vivh e /DA Aduy)) < fu(3, 7 ¢, azr(log p)/h).

Notice that,

fH(’Yl; Y2, C, a(s’i(logp)l/’h)

)"’2} =o(p™?)

< co{exp ( _ Cl(aw)vl 1ng) + exp ( — C2 (aéli(lng)l/’h 10g2 H-

because ¢;(ask)” > 2 when k is selected sufficiently large, and because by the assumption
(19), H > ¢op°, which implies
1/2

logp = o((logl/”’1 plog—QH)v )

The same argument implies, that for sufficiently large x,
(17, ¢, asr(log p) ' /5) = o(p™?).
Together with (B.45) and (B.41) this proves (B.40).
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Proof of (B.47). Notice that v = (o +4)/(2«) in (B.35) has property:
vy =1, (v—a )y =1 (B.48)

By definition (57), dgy = (¢t vV H)Y2H~'. By assumption, 67 < t < T and H = o(T).

Therefore,

dyy > (0T ANH)YV2H™Y > (6T)Y2H!,
LAdye > SY2(AATYV2HTY.

Since for any e > 0, (1Ve)(1 Aet) =1, we obtain

n(IAda) = (ay/nd)k(logp) {(H 2V (H/T)*)H'}(1 A dpze)
(al/n%)m(logp)”cslﬂ(l Vv HT_l/Q)(l A Tl/QH_l)

Vv

(a1/n2)0Y?k(log p)” = ask(log p)".
Since by (B.48), v = 1/~ this proves the first claim in (B.47).
On the other hand, L=' = b~ (log p) '/, and therefore,

(n/L)(L A dp) 2 0~ (ar/ng)6 2 k(log p) =/ = ar(log p)'/™

by (B.48) which completes the proof of (B.47).

(ii) Let (z) € H(A). Then g;ju, is a weighted sum of variables hiz. where (%k) € &(a/2)
and (z) € H(0/2). In turn, g, is a weighted sum of variables hj, xzux where (hi, ) € E(a)
and (z,%) € H(6). Thus, by the claim (59) of Lemma 5,

P(|gijuvel > 1) < gu(n. 0, en(A A dm)), 0 € (2, 0/2), (B.49)
P(|Qw,t| > 77/L) < gH(IYiue/?C? (U/L)(l/\dHt))7

where v, and 7] are the same as in (B.46). Since gy (71,72, ¢, (), (B.33), is a non-increasing

function in ¢, by (B.47) we can bound

g (1,0 en(L A die)) < g (1,0, ¢, ask(log )/ ™),
g (1.0 . (n/L) (L Aduy)) < g (7,0, ¢, ajr(log p) /).

Notice that

g1 (M, ¢, agr(log p) /)
1 1 _
< co{exp ( — 1 (agk)™ logp) + (agl-f(logp)l/%)9/ 02T } =o(p 2)
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when & is selected such that ¢;(ask)” > 2, and 0" € (2,0/2) is selected close enough to 6/2,
see the proof of (B.34). Similarly, it can be shown that for sufficiently large &,
gi (1,0, ¢, agr(log p) '/ 7t) = o(p?).

Together with (B.49) this implies (B.44). This completes the proof of the claim (20) of
Theorem 4.

The claim (21) of the theorem is shown in (B.4) of Lemma Bl1.

The bandwidth H,, = 7"/ minimizes max (H~'/2, (H/T)"?) which implies

A = k(log p)” max (H’I/Q, (H/T)I/Q) > Nopt = ri(logp)?T~1/4

which proves the last claim of the theorem. [

C. Auxiliary results

This section contains auxiliary results used in the proofs.
Recall definition of functions f; and g, (39).

Lemma C1 (i) Let © € E(a), y € E(a') where a > 0, o/ > 0. Then zy € E(a) where
a=ad/(a+d).

Moreover, x +y € E(min(a, ') and |z| < |z| implies z € E(a).
(it) Let x € E(a), y € H(0) where o >0, 6 > 0. Then xy € H(8') for any 0 <6 < 6.

(iii) Let (x;) € E(a), a > 0 and P(lye] > () < fi(y1,72,¢,C), ¢ > 0, t > 2 with 7,7, > 0.
Then

P(|xtyt| Z C) S ft(:?b:?% C,7C)7 C > Oa t Z 27 (Cl)
where 31 = ay /(a4 1), Yo = aye/(a+72) and ¢ does not depend on t, (.

() Let (x;) € E(a), a > 0 and P(ly)| > ) < g1(7,0,¢,(), ¢ >0, t>2 wherey >0, 6 > 2.
Then for any 0" € (2, 0),

P(|$tyt| Z C) S gt(;\y/a 9176/’ <)a C > 07 t Z 2a (CQ)

where ¥ = ay/(a+ ) and ¢ does not depend on t, .

(v) If (z¢) € E(a), (zu) € E(a) for some a > 0 then as T — oo,

max |z, = Op((logT)l/o‘), max 2] = Op ((log T)M*). (C.3)

1<t<T 1<t k<T
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Proof.
(i) Let z € E(a), y € E(a’) where @ > 0, o > 0 and let @ = ad//(a + ). Then for some
a >0,

Eexplalz|®) < oo, Eexp(aly|*) < co.

To prove (i), we will show that E exp(a|zy|¥) < oo.
Set p = (o +d)/d/, g = (¢ +a')/a. Thenp > 1,¢ > 1, 1/p+1/qg =1 and ap = a,
aq = «'. Hence, for k = 1,2, ... by Holder’s inequality,
Elry|™ = Bllz[™y|™] < (Bla|* )P (Bly|* )" = (Ela|**)"/?(Ely[*)"
(max(Ela]*, Bly|**) /P17 = max(Ela|**, Ely[**)
Elz|* + Ely[*".

IN

IN

Therefore,

5 P Ely™ o~ af (Bt + Ely[*)
Eexp(alzy|®) < Z i < Z I
k=0 ' k=0 '

< Eexp(alz|*) + Eexp(aly|”) < oc.

(ii) Let = € E(), y € H(A) where a > 0, 6 > 0. Then, for some a > 0,
Eexp(alr|*) < oo, Ely|’ < cc.

The latter implies that E|z|* < oo for any b > 0.
Let 6 € (0,6). To prove (ii), we will show that E|zy|” < co. Set p = 0/6" and let ¢ > 1
be defined by equality 1/p+ 1/¢ = 1. Then, by Hélder inequality,
Elay” < (Ela|"")Y4(Ely|"?)? = (Bl2|"")1(Ely|’)? < co.

This completes the proof of (ii).
Before proceeding to the proof of (iii)-(iv), we obtain the following two auxiliary results.

First, consider the function
f@) =2+ clv/z)”, >0

where o > 0,0’ > 0, v > 0, ¢ > 0. It achieves its unique minimum at
T = (Co//a)1/(a+a/)va//(a+a’)

because g is a unique solution of equation f'(x) = az®~! — ca/(v/x)* 2~ = 0 and f"(x¢) =

25 %a(a+ ') > 0. Thus,

flx) > f(zg) =cv® x>0 (C.4)
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where @ = aa//(a+ /) and ¢ = (ca’ /o) @) (1 + a/d).
Second, we obtain the upper bound for P(|zy| > () for the product of r.v.’s  and y when
re&(a),«>0. Let p,¢g>1,1/p+1/q=1. Then

Plzyl >¢) = Yo P({lz] € [k k+ 1)} n{|zyl > ¢})
< Yoo PYr(|z) € [k k+ 1)) PY(lyl = ¢/ (k+1)).

Since = € £(«), then for k > 0,
P(|lz] € [k, k+1)) < P(|z| > k) < ¢fexp(—2cik*), k>0
for some ¢, > 0, ¢; > 0. Denote

e 1= exp(—c\k*) P (|y| > (/k).

Then,
Playl >¢) < CYpgexp{—2ck* + i (k+ 1)*}gric
< Cmaxgs1 gre Dol =261k + ¢4 (K + 1)}
< . .
< C rilzafc Gie (C.5)

We use this result to evaluate P(|xy| > () in parts (iii)-(iv) of the lemma.

(iii) Without restriction of generality, we assume that ¢ > 1. By (C.5),

P(lzye] = ¢) < C'max gec. (C.6)

Under assumptions of (iii), gre = exp(—c,k®)f/%(2,7,¢,¢/k). To evaluate f/9(2,~, ¢, C/k),
denote ¢, = (v/t/log?t. Using the definition of function f;, (39), and inequality

(a+ b)Y <aT 401 a, b>0, (C.7)
we obtain

£ e R < Cexp (= el¢/R)™) +exp (- ealci/R))
< C(exp (= (@/a)(C/R™) +exp (= (e2/a) (G/R)™)).

Hence, there exist constants c;, ¢, > 0 such that

grg < Cfexp(—ey (K + (C/R)™)) + exp(—c, (K + (G:/k)™))}-
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Next, using (C.4) to bound f(k) := k*+ (¢/k)™, f(k) := k*+ ({/k)* from below, we obtain
grc < 65 (exp(=ciC) +exp(=6GP)) = LG Ao, ¢, Q) k21,
with 71 = ay/(a+7), Y2 = aye/(a + 7). Thus, (C.6) implies
Pzl > €) < fi(F1,732.¢",¢)

which proves (iii).

(iv) Let ¢ > 1. Under assumptions of (iv), (C.6) holds with

grc = exp(—¢ k™) g (7,0, ¢, C/K).

Next we evaluate gtl/q(%e,c, (/k). Let 2 < 0 < 0. Then, /0" > 1 and (0 —2)/(0' —2) > 1.
Let g > 1 be such that min(6/6’, (§ —2)/(0' — 2)) > ¢q. By (C.7) and definition of g, (39),

G0y < (epl-elc/Ry + (¢m) 0 )
Clexp{—(c1/q)(¢/k)"} + ¢ O/ag= /2 Dlagblay, (C.8)

IN

Definition of ¢ > 1 implies /g > ¢ and (0/2 —1)/q > 6'/2 — 1. This together with (C.8)
yields

91,0, ¢, /) < Cexp{—(c1/q)(C/k)} + 02 0E0) - > 10> 1.
Hence,

maxgec < Cmaxexp{—et" (k" + ((/k))} + CC 74727 max{exp(—e'k)k"/7)

< C(maxexp{—e)" (k" + (¢/k))} + ¢t 0/270),
Applying to f(k) := k* + (¢/k)" the bound (C.4), we obtain

max gy, < 68<6Xp(—6’{<’7)+C‘9’t‘(9'/z‘”)zgt(?,G’,C*,C)

with ¥ = ay/(a + 7). Then (C.6) implies P(|z,y:| > ¢) < (7,8, ¢*, () which proves (iv).

(v) We need to show that, as T — 0o, b — o0,

1/a 1/a
P(tirllaXT’xt‘ > b(log T)"/*) = 0, P(t7kf£ffT’$tk\ > b(log T')"/*) — 0.

-----

By assumption, there exist a > 0 and a > 0 such that

I?Zachexp(a|xt|a) < 00, g}lg}lcEeXp(a]xtk\a) < 0.
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Let b be such that ab® > 2. Then, as T" — o0,

T
P( max_ o] > b(log T)"/*) <Y P(|zy| > b(log T)"/*)

.....

Similarly,

~

P( max v > blog T)"*) < Y P(|xul > b(log T)"/*)

t k=1
t k=1

T
E(exp(a|zy]®)
— 0.
- Z exp(ab®log T') Z

t,k=1

-----

This completes the proof of (v) and the lemma. [

Lemma C2 Let vy > 0.

(i) Let & be a zero mean random variable. Then for all { > 0,

coexp(—ci(®)  ifE€&(s), s>0 (C.9)

E(|£’7[(|£| >C)) < {0067_9 ifeEeM®),v<0 (C.10)

for some co > 0, ¢; > 0 which do not depend on (.

(ii) Let sy, t > 1 be zero mean random variables such that for some v > 0, v2 > 0 and c,

P(lsi] > ¢) < filn,n2,6,C) forall¢ >0, t>2.

Then,
Ells:"I(|s:] > Q)] < felv1,72,¢5¢), ¢ >0, t > 2, (C.11)

where ¢ does not depend on (, t.

(iii) Let sy, t > 1 be zero mean random variables such that for some 6 >0, v, > 0 and c,

P(|st| > C) < gi(m,0,¢,() forall(>0,t>2.

Then, for 0 <~y <0,
E[|s:"1(|s:] > ¢)] < max(¢",1)gy(71,0,¢,¢), ¢ >0, t >2, (C.12)

where ¢ does not depend on (, t.
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Proof. Without restriction of generality let ¢ > 1. Denote F(z) = P(|¢| > x). Then
E[|EPI(E] > ()] =— fcoo 2VdF (z) = =C'F(C) + fcoo 27 F(z)dx. (C.13)

(i) If (&) € E(s), then F(z) < ¢ exp (—2c|z|*) for some cf, ¢} > 0. Notice that F(z) > F((),

x > (. Applying these bounds in (C.13), we obtain (C.9):

FY(O{OF(Q) + [ 27 FY () da

CFY2(¢) < Cexp(—¢,¢?).

E[lEl1(¢] > O]

<
<

If (&) € H(O), then F(x) < cj|z|™?. Using this bound in (C.13), we obtain (C.10):
B[ (€] > O) < C{O1¢ + /< 0} < 00,
(ii) Let again ¢ > 1. Denote F(x) = P(|S,| > ). Then as in (C.13),
Ells:'I(|s:] > Q)] = - /< TP (2) = —CTFF(C) + /C T B (@) de, (C14)
Ellsl (sl > 0] < EVOOR O+ [ E )i},
By assumption, P(|s;| > ¢) < f.(71,6, ¢, ¢). Definition (39) of f, implies that
Filr 7, €, €) < coexp (= 26,¢M) €50, £ 2

for some co,c; > 0. Thus, by (C.14), for ¢ > 1

E Ust|71(’8t| > C)] S ft1/2</717 V2, C, C) (C’thl/z(fyla V2, G, C) + floo xw_lft1/2(717 V2, C, .ﬁl})dl’)
< Cft1/2(717 72, €, C) < Cft(/yla V25 Cla C)

for some ¢ in view of (C.7). This proves (C.11).
(iii) Let ¢ > 1. Since P(|sy] > () < g:(m,0,¢,(), (C.14) implies
Blla (s > Q) < Qo 0.6+ [, 6.0, (©15)
By definition (39), g:(71,6, ¢, ¢) < co{exp(—2¢,¢") + ¢~%~0/2=D} for some ¢y, ¢; > 0. Thus,
/OO 27 g, (71,0, ¢, x)dx
¢
< C’(exp(—clcm) /COO 27 exp(—ciz")dx + /OO xw_e_lt_(eﬂ_l)dx)

¢
< CO (exp(=eiC™) + ¢ = g, 0,¢,)

for some ¢. This together with (C.15) proves (C.12). O
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Lemma C3 Let by, satisfy (43) withv >3 and 0 <~y < 2. Then for 1 <t,H <T,T > 1,

T
1 it — k|, H
< — )7 )
H E b je—k)( Nk ) < C(H\/t) ; (C.16)
kva H
-1 1/2 1/2 1
E ba -k (———) C(H\/t) ; (C.17)

where C' > 0 does not depend on t, T, H.

Proof. Notice that i i =
A
T=((—=)"A1l) = v, C.18
(=) = (G A1) = () (C.18)

By (43), by, < C(1+ (k/H)")~! for k > 0 where v > 3. Therefore, for 0 < v < 2,

H- me (k/H) < C, maxb(k/H) <C, (C.19)
k=1

where C' does not depend on H,T.
Denote by I, j the Lh.s. of (C.16). Then, by (C.19), noting that t V k > t,

a It — k
I = H 'S by,

On the other hand, since |t — k|/(t V k) < 1, using (C.19) we obtain

H
.
t)'

IS— ZT t =k, H
= H B v 7T < i

]'y,H S H_l Zgzl bH,\t—k| S C

which together with (C.18) proves (C.16).
To prove (C.17), denote by Iy the Lh.s. of (C.17). Write

T t/2
Iy=H" > [J+H"Y []=Tua + o
k=t/2+1 =

Then,

IN

Z bT,|t—k\(w)l/2(£)l/2]

-[H;l
k=t/2+1 H k

H e t—klVH H
< C()PH 1ZbT,|tk|(%)W] <C(—
k=1

by (C.19). On the other hand, for 1 < k < ¢/2, it holds |t — k| > t/2. Then,

)1/2

= ([t = K[/ H)(H/[t = k[) < 2(|t = k|/H)(H/1),
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and
t/2

Ipo <2H! Z{bT,\t—m(
k=1

it —klvVH

7 )1/2|t ;kl}( E

N

H
t

Then, using the second claim of (C.19), we obtain

Y2 L H
Iy < C kU2 < o(=)Y3,
ne SO LR <06

The bounds for Iy, and I, imply Iy < C(H/t)'/2
In view of (C.18), to prove (C.17), it remains to show that Iy < C. By (C.19),

I

IN

_ T —k|VH
H VS0 by (R 12 ()12

_ 2H —k|IVH _ T —k|VH
H Y2 by gy (M2 (12 4 o=t ST g (R 2
< CHYPRE R+ CHOV L by ()2 < C

IN

where C' < 0o does not depend on ¢, H and T'. This proves Iy < C and (C.17), and completes
the proof of the lemma. [J
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