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This Supplement provides proofs of the results given in the text of the main paper. It is

organised as follows: Section A provides proofs of the main results on exponential inequalities

of Section 4 of the main paper. Section B provides proofs of Theorems 1-3 of the main paper.

Section C contains auxiliary technical lemmas.

Formula numbering in this supplement includes the section number, e.g. (A.1), and refer-

ences to lemmas are signified as “Lemma A#”, “Lemma B#”, “Lemma C#”, e.g. Lemma A1.

Equation, lemma and theorem references to the main paper do not include section number

and are signified as “Equation (#)”, “Lemma #”, “Theorem #”, e.g. (1), Theorem 1.

In the proofs, C stands for a generic positive constant which may assume different values

in different contexts, and we denote a ∨ b = max(a, b), a ∧ b = min(a, b).

A. Exponential inequalities. Proofs

This section contains the proofs of the results of Section 4 on Bernstein inequalities for

(weighted) sums of random variables ξj that are dependent, unbounded and have thin- or

heavy-tailed distributions.

We shall frequently refer to the α-mixing Assumption A and property (36) of (ξj) of Section

4 of the main paper. To denote that r.v.’s (ξj) have thin- or heavy-tailed distributions, we

use respectively notation (ξj) ∈ E(s), s > 0 and (ξj) ∈ H(θ), θ > 2 of Section 4 of the main

paper, see (37) and (38).

Merlevede, Peligrad and Rio (2009) in their Theorem 2 obtained a Bernstein type in-

equality for bounded α- mixing random variables. The following lemma is a minor auxiliary

generalization of their result to a sequence of truncated random variables.

Lemma A1 Let the sequence (ξk) of zero mean random variables satisfy Assumption A. Set

ξD,k := ξkI(|ξk| ≤ D) where D > 0. Suppose that

m∗ := max
k≥1

(E|ξk|p)1/p <∞ for some p > 2.
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Then, there exist 0 < c <∞ such that for all ζ > 0, D > 0 and T ≥ 2,

P
(∣∣ T∑

k=1

(ξD,k − EξD,k)
∣∣ ≥ ζ

)
≤ exp

(− cζ2

v̄2T +D2 + ζD log2 T

)
, (A.1)

with v̄2 = m∗(1 + 24
∑∞

j=1 α
1−2/p
j ) where c > 0 depends only on c∗ in (36) of Assumption A.

Proof of Lemma A1. By Theorem 14.1 of Davidson (1994), under Assumption A, the

truncated process (ξD,t) is also α-mixing with mixing coefficients α̃k ≤ αk. Hence, the bound

(2.3) of Theorem 2 in Merlevede et al. (2009) implies

P
(∣∣∑T

k=1(ξD,k − EξD,k)
∣∣ ≥ ζ

)
≤ exp

(− cζ2

v2DT+D2+ζD log2 T

)
,

with

v2D = sup
i>0

(
var(ξD,i) + 2

∑
j>i

|cov(ξD,i, ξD,j)|
)
,

where c depends only on c∗ in (36). We will show that v2D ≤ v̄2 which proves (A.1).

The conclusion (2.2) in Davydov (1968) applied with p = q > 2 gives

|cov(ξD,i, ξD,j)| ≤ 12(E|ξD,i|p)1/p(E|ξD,j|p)1/pα̃1−2/p
|i−j| ≤ 12m∗α1−2/p

|i−j| .

Observe that var(ξD,i) ≤ Eξ2D,i ≤ (E|ξD,i|p)2/p ≤ m∗. Hence,

v2D ≤ m∗(1 + 24
∞∑
j=1

α
1−2/p
j

)
= v̄2 <∞

which completes the proof of the lemma. �
The proof of Lemma 1 of the main paper combines the modified version, Lemma A1, of the

exponential inequality for bounded random variables by Merlevede, Peligrad and Rio (2009),

with a truncation argument employed in White and Wooldridge (1991).

Proof of Lemma 1. Without restriction of generality we prove the validity of (40), (41) for

ζ ≥ 1. (The inequalities (40) and (41) can be extended to 0 < ζ < 1 by selecting large enough

constant c0.) Recall that ST = T−1/2
∑T

k=1(ξk − Eξk).

We start with (40). We need to prove that

P
( |ST | > ζ

) ≤ fT (2, γ, c, ζ) = c0

{
exp

(− c1ζ
2) + exp

(− c2(
ζ
√
T

log2 T
)γ
)}

, (A.2)

with γ = s/(s + 1) where positive constants c0, c1, c2 do not depend on ζ, T . Denote by

D = DT,ζ the truncation constant depending on T, ζ which will be selected later. Write

ξk = wk + vk where wk = ξkI(|ξk| ≤ D), vk = ξkI(|ξk| > D). Then,

ST = T−1/2
T∑

k=1

(wk − Ewk) + T−1/2
T∑

k=1

(vk − Evk) (A.3)

=: sT,1 + sT,2
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and

P (|ST | ≥ ζ) ≤ P (|sT,1| ≥ ζ/2) + P (|sT,2| ≥ ζ/2).

Thus, to prove (A.2), it suffices to show that for some c, for all ζ ≥ 1, T ≥ 2,

P
(|sT,i| ≥ ζ

) ≤ fT (2, γ, c, ζ), i = 1, 2. (A.4)

By Assumption A, (ξj−Eξj) is an α-mixing process which mixing coefficients αk satisfy (36).

Hence, by Theorem 14.1 in Davidson (1994), (wj−Ewj) and (vj−Evj) are α-mixing sequences

and their respective mixing coefficients αw,k and αv,k satisfy

αw,k ≤ αk, αv,k ≤ αk, k ≥ 1. (A.5)

Thus, by Lemma A1, for all T ≥ 2 and D > 0,

P
(|sT,1| ≥ ζ

) ≤ exp
(− c1ζ

2T

v̄2T +D2 + ζT 1/2D log2 T

)
(A.6)

where c1 > 0 does not depend on T , D or ζ. Using, on the r.h.s. of (A.6), the inequality

− 1

|a|+ |b|+ |c| ≤ −
1

3max(|a|, |b|, |c|) ,

with a = v̄2T , b = D2, c = ζT 1/2D log2 T , we obtain

P
(|sT,1| ≥ ζ

) ≤ exp
(− c′1ζ

2
)
+ exp

(− c′2ζ
2T

D2

)
+ exp

(− c′2ζT
1/2

D log2 T

)
, ζ ≥ 1 (A.7)

with c′1 = c1/(3v̄
2), c′2 = c1/3. Setting

ΔT =
T 1/2

log2 T
,

(A.7) becomes

P
(|sT,1| ≥ ζ

)
≤ exp

(− c′1ζ
2
)
+ exp

(− c′2
(ζΔT

D

)2
log4 T

)
+ exp

(− c′2ζΔT

D

)
. (A.8)

We select D = DT,ζ such that ζΔT/D = Ds. Then,

D =
(
ζΔT

)1/(s+1)
, Ds =

(
ζΔT

)s/(s+1)
and ζΔT

D
=

(
ζΔT

)s/(s+1)
. (A.9)

For ζ ≥ 1, T ≥ 2 it holds ζΔT ≥ ΔT ≥ 1. This together with (A.9) implies
(
ζΔT

)
/D ≥ 1.

Notice that log4 T ≥ log4 2 =: v > 0 for T ≥ 2, and v ∈ (0, 1). Hence,(ζΔT

D

)2
log4 T ≥ (ζΔT

D

)
v,

ζΔT

D
≥ v

ζΔT

D
= v(ζΔT )

s/(s+1) = v
( ζ
√
T

log2 T

)s/(s+1)
.
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Applying these relations in (A.8), we obtain

P
(|sT,1| ≥ ζ

) ≤ exp
(− c′1ζ

2
)
+ 2 exp

(− c′2vζΔT

D

)
≤ exp

(− c′1ζ
2
)
+ 2 exp

(− c′2v(ζΔT )
s/(s+1)

)
≤ 2

(
exp

(− c′1ζ
2
)
+ exp

(− c′2v
( ζ
√
T

log2 T

)s/(s+1)))
≤ fT (2, γ, c, ζ).

This proves (A.4) for P (|sT,1| ≥ ζ). Turning to sT,2, by Markov inequality,

P
(|sT,2| ≥ ζ

) ≤ ζ−2T−1E
( T∑

k=1

(vk − Evk)
)2

(A.10)

≤ ζ−2T−1
T∑

j,k=1

cov(vj, vk).

Let p, q > 1, 1/p + 1/q < 1. Assumption (ξj) ∈ E(s) implies E|vj|p < ∞, E|vj|q < ∞.

Since (vj − Evj) is α-mixing sequence with the mixing coefficients αv,k ≤ αk, k ≥ 1, then, by

Conclusion 2.2 in Davydov (1968),

|cov(vj, vk)| ≤ 12(E|vj|p)1/p(E|vj|q)1/qα1−1/p−1/q
|j−k| , j 	= k. (A.11)

In turn, for j = k, var(vj) ≤ Ev2j . Setting

Vp := max
j≥1

(E|vj|p)1/p,

we obtain

P
(|sT,2| ≥ ζ

) ≤ ζ−2T−1
[ T∑
j=1

var(vj) +
T∑

j,k=1: k �=j

cov(vj, vk)
]

≤ ζ−2V 2
2 + ζ−212VpVq

(
T−1

T∑
j,k=1:k �=j

αe
|j−k|

)
where e := 1− 1/p− 1/q > 0. By (36),

T−1
∑T

j,k=1:j>k α
e
|j−k| = T−1

∑T
s=1 α

e
s(T − s) ≤∑∞

s=1 α
e
s <∞.

This implies that with some C that does not depend on T or D, it holds that

P
(|sT,2| ≥ ζ

) ≤ Cζ−2(V 2
2 + VpVq). (A.12)

Set p = q = 2 + δ where δ > 0 is a small number. Then, by (A.12),

P
(|sT,2| ≥ ζ

) ≤ Cζ−2(V 2
2 + V 2

p ) ≤ Cζ−2V 2
p (A.13)
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because V 2
2 = maxj Ev2j ≤ maxj(E|vj|p)2/p = V 2

p . For D > 0, by (C.9) it holds that

E|vj|p = E[|ξj|pI(|ξj| > D)] ≤ c′0 exp(−c′1Ds)

for some c′0, c
′
1 > 0 which do not depend on j and D. This implies

V 2
p ≤ (c0

′)2/p exp(−(2/p)c1′Ds).

Thus, there exists c0 > 0, c2 > 0 such that for all ζ ≥ 1, T ≥ 2, in view of (A.9),

P
(|sT,2| ≥ ζ

) ≤ Cζ−2 exp
(− (2/p)c′2D

s
)

≤ c0 exp
(− c2(ζΔT )

s/(s+1)
)

= c0 exp
(− c2(

ζ
√
T

log2 T

)s/(s+1)
)

≤ fT (2, γ, c, ζ),

which proves the bound (A.4) for sT,2 and completes the proof of (A.2) and (40).

Proof of (41). Let (ξj) ∈ H(θ). We need to prove that for any fixed 2 < θ′ < θ,

P (|ST | > ζ) ≤ gT (2, θ
′, c, ζ) (A.14)

= c0

{
exp(−c1ζ2) + ζ−θ

′
T−(θ

′/2−1)
}
, ζ > 0, T ≥ 2.

Write ST = sT,1 + sT,2 as in (A.3). To verify (A.14), it remains to show that

P (|sT,i| ≥ ζ) ≤ gT (2, θ
′, c, ζ), i = 1, 2 for some c.

It suffices to consider the case ζ ≥ 1.

We start with the evaluation P (|sT,1| ≥ ζ). Set

D =
a−1ζ

√
T

log3(ζ
√
T )
≥ 1,

where a > 0 will be selected below. For ζ ≥ 1 it holds log(ζ
√
T ) ≥ log(

√
T ) ≥ log(

√
2) =:

b > 0. Then, from (A.7) we obtain

P
(|sT,1| ≥ ζ) ≤ exp

(− c′1ζ
2
)
+ exp

(− c′2a
2 log6(ζ

√
T )

)
+ exp

(− c′2a log(ζ
√
T )

)
≤ exp

(− c′1ζ
2
)
+ exp

(− c′2a
2b5 log(ζ

√
T )

)
+ exp

(− c′2a log(ζ
√
T )

)
.

Hence, selecting a such that c′2a
2b5 ≥ θ′, c′2a ≥ θ′, we obtain

P
(|sT,1| ≥ ζ) ≤ exp

(− c′1ζ
2
)
+ 2(ζ

√
T )−θ

′
.
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This proves the bound (A.14) for P
(|sT,1| ≥ ζ).

Next we turn to P (|sT,2| ≥ ζ). By (A.13),

P (|sT,2| ≥ ζ) ≤ Cζ−2V 2
p

with p = 2 + δ. According to (C.10), we can bound

E|vj|p = E[|ξj|pI(|ξj| > D)] ≤ c′0D
−(θ−p)

with some c′0 > 0 which does not depend on D and j. This implies

V 2
p ≤ (c′0)

2/pD−(θ−p)(2/p).

Hence,

P (|sT,2| ≥ ζ) ≤ Cζ−2D−(θ−p)(2/p) (A.15)

= Cζ−2(ζ
√
T )−(θ

′−2)aT,ζ ,

where

aT,ζ :=
(ζ
√
T )θ

′−2

D(θ−p)(2/p) =
(a log3(ζ

√
T ))(θ−p)(2/p)

(ζ
√
T )γ

and

γ = (θ − p)(2/p)− (θ′ − 2) = θ − θ′ − θ(p− 2)/p = θ − θ′ − θδ/p > 0

when θ > θ′, p = 2 + δ and δ > 0 is selected sufficiently small. Since ζ
√
T ≥ √2 for ζ ≥ 1,

T ≥ 2, this implies that supζ≥1, T≥2 aT,ζ ≤ C ′ <∞. Thus, (A.15) implies

P (|sT,2| ≥ ζ) ≤ Cζ−θ
′
T−(θ

′/2−1) ≤ gT (2, θ
′, c, ζ)

which proves the bound (A.14) for P (|sT,2| ≥ ζ).

This completes the proof of (41) and the lemma. �

We start the proof of Lemma 2 with the following technical lemma.

Lemma A2 Let xtk, k, t ≥ 1 be random variables such that E|xtk| <∞ and atk and vtk > 0

be real numbers such that

max
n≥1

max
1≤t≤n

n∑
1≤k≤n

|atk|vtk <∞. (A.16)

Then there exists ε > 0 such that for all ζ > 0, t ≥ 1,

P
(| n∑

k=1

atkxtk| ≥ ζ
) ≤ ε−1 max

1≤k≤n
E
[ |xtk|
ζvtk

I(
|xtk|
ζvtk

≥ ε)
]
. (A.17)
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Proof of Lemma A2. By (A.16) there exists ε > 0 such that

n∑
k=1

|atkvtk| < 1/(2ε), t ≥ 1.

From

|xtk/vtk| = |xtk/vtk|
(
I(|xtk/vtk| ≤ εζ) + I(|xtk/vtk| > εζ)

) ≤ εζ + ytk,

where ytk := |xtk/vtk|I(|xtk/vtk| ≥ εζ), we obtain

|
n∑

k=1

atkxtk| ≤
n∑

k=1

|atkvtk| |xtk|
vtk

≤
n∑

k=1

|atkvtk|(εζ) +
n∑

k=1

|atkvtk|ytk

≤ ζ/2 +
n∑

k=1

|atkvtk|ytk.

Then, by Markov inequality,

P
(|∑n

k=1 atkxtk| ≥ ζ
) ≤ P

(∑n
k=1 |atkvtk|ytk ≥ ζ/2

) ≤ (ζ/2)−1
∑n

k=1 |atkvtk|Eytk

≤ (ζ/2)−1
(∑n

k=1 |atkvtk|
)
max1≤k≤n Eytk

≤ (ζ/2)−1(2ε)−1 max
1≤k≤n

Eytk

which proves (A.17). �

Proof of Lemma 2. Without restriction of generality assume that ζ ≥ 1. Notice that

property (43) of bH,k implies

max
k=1,...,T

bH,k(
k ∨H

H
)1/2 ≤ C,

T−1∑
k=1

|bH,k − bH,k+1|(k ∨H

H
)1/2 ≤ C, (A.18)

where C <∞ does not depend on H,T .

Denote ξ′k := ξt−k, ξ′′k := ξt+k for k ≥ 0. Write

ST,t = H−1/2 ∑T
k=1 bH,|t−k|(ξk − Eξk) (A.19)

= H−1/2 ∑t−1
k=1 bH,k(ξ

′
k − Eξ′k) +H−1/2 ∑T−t

k=0 bH,k(ξ
′′
k − Eξ′′k)

=: s
(1)
T,t + s

(2)
T,t.

To prove (44) for P (|ST,t| ≥ ζ), it suffices to verify that for 	 = 1, 2,

P (|s(�)T,t| ≥ ζ) ≤ fH(2, γ, c, ζ) if (ξj) ∈ E(s), s > 0. (A.20)

To prove (45) for P (|ST,t| ≥ ζ), it suffices to show that for 	 = 1, 2,

P (|s(�)T,t| ≥ ζ) ≤ gH(2, θ
′, c, ζ) if (ξj) ∈ H(θ), θ > 2. (A.21)
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We provide the proof for s
(1)
T,t. (For s

(2)
T,t the proof is similar). Set

xk =
∑k

i=1(ξ
′
i − Eξ′i), yk = k−1/2xk, νk =

(
k∨H
k

)1/2
for k = 1, ..., t− 1.

Using summation by parts, we can write s
(1)
T,t as

s
(1)
T,t = H−1/2

t−2∑
k=1

(bH,k − bH,k+1)xk +H−1/2bH,t−1xt−1

=
t−1∑
k=1

atkxk, (A.22)

where

atk = H−1/2(bH,k − bH,k+1) for k = 1, ..., t− 2, at,t−1 = H−1/2bH,t−1.

Subsequently, using notation yk and νk introduced above, we can write

s
(1)
T,t =

∑t−1
k=1 atk (k ∨H)1/2 (yk/νk). (A.23)

From (A.18) it follows
t−1∑
k=1

atk (k ∨H)1/2 ≤ C

where C <∞ does not depend on t,H, T . Hence, by Lemma A2, there exists ε > 0 such that

pT,ζ = P (|s(1)T,t| ≥ ζ) ≤ ε−1 max
1≤k<t

E
[ |yk|
ζνk

I(
|yk|
ζνk

≥ ε)
]
. (A.24)

Notice that νk ≥ 1.

Proof of (44). Suppose that (ξj) ∈ E(s). Then, (40) of Lemma 1 implies

P (|yk| ≥ ζ) ≤ fk(2, γ, c, ζ), ζ > 0, k ≥ 2.

Therefore, by (C.11) of Lemma C2(ii),

E[|yk|I(|yk| ≥ εζνk)] ≤ fk
(
2, γ, c′, εζνk

)
for some c′ which does not depend on k. Thus, (A.24) implies

pT,ζ ≤ C max
1≤k<t

ν−1k fk
(
2, γ, c′, εζνk

) ≤ C max
1≤k<t

fk
(
2, γ, c′, εζνk

)
. (A.25)

For k ≥ H, it holds that νk = 1, and we have

fk
(
2, γ, c, εζνk

)
= c0

{
exp

(− c1(εζ)
2
)
+ exp

(− c2(
εζ
√
k

log2 k
)s/(s+1)

)}
≤ fH(2, γ, c, ζ).

8



For 1 ≤ k < H, we have νk = (H/k)1/2 ≥ 1 and νk
√
k =

√
H, which allows to conclude

fk
(
2, γ, c, εζνk

)
= c0

{
exp(−c1(εζνk)2) + exp

(− c2(
εζνk

√
k

log2 k
)s/(s+1)

)}
≤ c0

{
exp

(− c1(εζ)
2) + exp

(− c2(
εζ
√
H

log2 H
)s/(s+1)

)}
= fH(2, γ, c, ζ).

Together with (A.24), this yields pT,ζ ≤ fH(2, γ, c, ζ) which proves (A.20).

Proof of (45). Assume that (ξj) ∈ H(θ) and let θ′ ∈ (2, θ). By (41) of Lemma 1,

P (|yk| ≥ ζ) ≤ gk(2, θ
′, c, ζ)

for k ≥ 2, and by (C.12) of Lemma C2(iii),

E[|yk|I(|yk| ≥ εζνk)] ≤ max(εζνk, 1)gk
(
2, θ′, c, εζνk

)
(A.26)

for some c which does not depend on k. Notice that ζνk ≥ 1. Then,

(εζνk)
−1 max(εζνk, 1) ≤ max

(
1, (εζνk)

−1) ≤ 1 + ε−1.

Thus, by (A.26) and (A.24),

pT,ζ ≤ C max
1≤k<t

gk
(
2, θ′, c′, εζνk

)
(A.27)

where C depends on ε. For k ≥ H we have νk = 1, and therefore

gk
(
2, θ′, c, εζνk

)
= gk

(
2, θ′, c, εζ

)
= c0

{
exp

(− c1(εζ)
2
)
+ (εζ)−θ

′
k−(θ

′/2−1)
}

≤ gH
(
2, θ′, c, εζ

)
.

For k ≤ H, we have νk = (H/k)1/2 ≥ 1 and therefore

(ζνk)
−θ′k−(θ

′/2−1) = (ζ(H/k)1/2)−θ
′
k−θ

′/2k = (ζH1/2)−θ
′
k

≤ ζ−θ
′
H−(θ′/2−1)

which allows to conclude

gk
(
2, θ′, c, εζνk

)
= c0

{
exp

(− c1(εζνk)
2
)
+ (εζνk)

−θ′k−(θ
′/2−1)

}
≤ c0

{
exp

(− c1(εζ)
2
)
+ (εζ)−θ

′
H−(θ′/2−1)

}
= gH

(
2, θ′, c, εζ

)
.

Together with (A.27), this implies pT,ζ ≤ gH(2, θ
′, c, ζ) which proves (A.21). �
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Proof of Lemma 3. (a) Write S̃T,t = ST,t + rT,t. Assumption ζ > 2|rT,t| implies ζ − |rT,t| ≥
ζ/2. Therefore

P (|S̃T,t| ≥ ζ) ≥ P (|ST,t| ≥ ζ − |rT,t|) ≤ P (|ST,t| ≥ ζ/2).

(b) If |Eξk − Eξt| ≤ C|k − t|/(t ∨ k) for k, t ≥ 1, then by (C.16) of Lemma C3,

|rT,t| ≤ CH−1/2 ∑T
k=1 bH,|t−k|(

|t−k|
t∨k ) ≤ c1

H3/2

H∨t

for some c1 > 0 which proves (46).

If |Eξk − Eξt| ≤ C|k − t|/T for k, t = 1, ..., T , then by (43),

|rT,t| ≤ CH−1/2
T∑

k=1

bH,|t−k|(
|t− k|
T

)

≤ C
(
H−1

T∑
k=1

bH,|t−k|(
|t− k|
H

)
)H3/2

T
≤ c2

H3/2

T
(A.28)

for some c2 > 0 which does not depend on t,H, T . This proves (47). �

Proof of Corollary 6.

Proof of (a). The bounds (44)-(45) together with definition of ft, gt in (39) imply

P (|ST,t| ≥ b)→ 0, T →∞, b→∞.

Hence, ST,t = OP (1) which proves (48).

Proof of (b). Assume that (ξj) ∈ E(s), s > 0. We will show that as T →∞, b→∞,

P
(

max
t=1,...,T

|ST,t| > bδT,H
)
= oP (1), δT,H = (log T )1/2 +

(logH)2

H1/2
(log T )1/γ (A.29)

with γ = s/(s+ 1). Let b > 0. Then by (44) and (39),

P
(
maxt=1,...,T |ST,t| ≥ bδT,H

) ≤∑T
t=1 P

(|ST,t| ≥ bδT,H
)

≤
T∑
t=1

fH(2, γ, c, bδT,H)

≤ Tc0

{
exp

(− c1(bδT,H)
2
)
+ exp

(− c2(
(bδT,H)

√
H

log2 H
)γ
)}

≤ Tc0

{
exp

(− c1b
2 log T ) + exp

(− c2b
γ log T

)}
≤ 2T−1 → 0

for b such that c1b
2 ≥ 2, c2b

γ ≥ 2. This proves (A.29). Under assumption cT δ ≤ H ≤ T it

holds δT,H = O(log1/2 T ). Hence, (A.29) implies (50):

P
(

max
t=1,...,T

|ST,t| > b log1/2 T
)→ 0, T →∞, b→∞.
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Next, assume that (ξj) ∈ H(θ), θ > 2. Let θ′ ∈ (2, θ). We will show that, as T →∞, b→ ∞,

P
(

max
t=1,...,T

|ST,t| > bδT,H
)
= oP (1), δT,H = (log T )1/2 +H1/2

( T

Hθ′−1
)1/θ′

. (A.30)

For b > 0, by (45) and definition of gt, (39),

P
(
maxt=1,...,T |ST,t| ≥ bδT,H

)
≤∑T

t=1 P
(|ST,t| ≥ bδT,H

) ≤∑T
t=1 gH(2, θ

′, c, bδT,H)

≤ Tc0

{
exp

(− c1(bδT,H)
2) + (bδT,H)

−θ′H−(θ′/2−1)
}

≤ c0{T exp
(− c1b

2 log T ) + b−θ
′
( T
Hθ′/2−1 )

−1TH−(θ′/2−1)
}

≤ c0{T−1 + b−θ
′} → 0

as T → ∞ and b → ∞. This proves (A.30). To prove that (A.30) implies (51), it suffices to

show that for any ε > 0 there exists 2 < θ′ < θ and a > 0 such that

log1/2 T + (HT )1/θHε−1/2 ≥ aδT,H , δT,H = log1/2 T + (TH)1/θ
′
H−1/2. (A.31)

Write

(HT )1/θHε−1/2 = (HT )1/θ
′
H−1/2vH , vH := (HT )1/θ−1/θ

′
Hε.

We will show that vH ≥ a > 0 for some 1 > a > 0 which proves (A.31). By the assumption

of the corollary, cT δ ≤ H ≤ T . Then,

vH =
Hε

(HT )1/θ′−1/θ
≥ (cT δ)ε

T 2(1/θ′−1/θ) = cε T b, b := δε− 2(1/θ′ − 1/θ).

If b ≥ 0, this implies vH ≥ cε. Clearly, b ≥ 0 if θ′ is selected sufficiently close to θ. �

Proof of Corollary 7. Let 0 ≤ ν ≤ 1. Write

vT,t := H−1
T∑

k=1

b̃H,|t−k||ξk|, b̃H,|t−k| := bH,|t−k|(|t− k|/H)ν . (A.32)

By (43), b̃H,|t−k| ≤ C(1+ (k/H)ν−1)−1. It is easy to see that b̃H,k satisfies (43) with parameter

ν − 1. Since under assumptions of corollary,

max
k≥1

E|ξk| ≤ C <∞, max
t≥1

H−1
T∑

k=1

b̃H,|t−k| ≤ C,

then

max
1≤t≤T

|vT,t| ≤ max
1≤t≤T

|v′T,t|+ C, v′T,t = H−1
T∑

k=1

b̃H,|t−k|(|ξk| − E|ξk|).

11



Since (ξk) satisfies Assumption A, then by Theorem 14.1 in Davidson (1994), (|ξk|) also satisfies
Assumption A. To prove the claim (52)-(53) of the corollary, it remains to show that

max
1≤t≤T

|v′T,t| = OP (1). (A.33)

Let (ξj) ∈ E(s), s > 0. Then, by (50) of Corollary 6 and assumption (49) on H,

max
1≤t≤T

|v′T,t| = O(H−1/2 log1/2 T ) = oP (1).

Let (ξj) ∈ H(θ), θ > 2. Then, by (51) of Corollary 6 and assumption (49), for any ε > 0,

max
1≤t≤T

|v′T,t| = OP

(
H−1/2 log1/2 T + (TH)1/θHε−1).

By assumption, H ≥ cT δ with δ > 1/(θ − 1) which implies that (TH)1/θHε−1 = o(1) when ε

is selected sufficiently small. This proves (A.33) and completes the proof of the corollary. �

Proof of Lemma 4. Without restriction of generality assume that ζ ≥ 1.

Proof of (58)-(59) for P (|S(h)
T,t | ≥ ζ). Denote

h′k := ht−k, ξ′k := ξt−k, h′′k := ht+k, ξ
′′
k := ξt+k for k ≥ 0.

As in (A.19) write S
(h)
T,t as

S
(h)
T,t = H−1/2 ∑T

k=1 bH,|t−k|hk(ξk − Eξk)

= H−1/2 ∑t−1
k=1 bH,kh

′
kξ
′
k +H−1/2 ∑T−t

k=0 bH,kh
′′
kξ
′′
k

= : s
(h)
T,t;1 + s

(h)
T,t;2.

Proof of (58)-(59) for S
(h)
T,t reduces to verification of these bounds for s

(h)
T,t;1 and s

(h)
T,t;2:

P (|s(h)T,t;�| ≥ ζ) ≤
{

fH
(
γ1, γ2, c, ζ ∧ ζ ′

)
if (ξj) ∈ E(s), (A.34)

gH
(
γ1, θ

′, c, ζ ∧ ζ ′
)

if (ξj) ∈ H(θ), θ > 2 (A.35)

for 	 = 1, 2. We start with s
(h)
T,t;1. Denote

xk =
k∑

i=1

(ξ′i − Eξ′i), yk = k−1/2xk, y′k = h′kyk, νk :=
(k ∨H

k

)1/2
, k ≥ 1. (A.36)

Then as in (A.22), summation by parts yields

s
(h)
T,t;1 = H−1/2 ∑t−2

k=1(bH,kh
′
k − bH,k+1h

′
k+1)xk +H−1/2bH,t−1h′t−1

=
{
H−1/2 ∑t−2

k=1(bH,k − bH,k+1)(h
′
kxk) +H−1/2bH,t−1(h′t−1xt−1)

}
+H−1/2 ∑t−2

k=1 bH,k(h
′
k − h′k+1)xk

=: s
(1)
T,t;1 + s

(2)
T,t;1. (A.37)
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Hence, it suffices to verify the bounds (A.34)-(A.35) for s
(1)
T,t;1 and s

(2)
T,t;1.

First, we evaluate P (|s(1)T,t;1| ≥ ζ). The sum s
(1)
T,t;1 can be obtained from s

(1)
T,t in (A.22) by

replacing xk by h′kxk. Therefore, the same argument as in the proof of (A.24) implies that

there exists ε > 0 such that

P (|s(1)T,t;1| ≥ ζ) ≤ ε−1 max
k=1,...,T

(ζνk)
−1E[|y′k|I(|y′k| ≥ εζνk], ζ ≥ 1, T ≥ 2. (A.38)

We now show that for all ζ > 0, k ≥ 2,

P
(|y′k| ≥ ζ

) ≤ fk(γ1, γ2, c, ζ) if (ξk) ∈ E(s), (A.39)

P
(|y′k| ≥ ζ

) ≤ gk(γ1, θ
′, c, ζ) if (ξj) ∈ H(θ), (A.40)

with γ1, γ2 and θ′ as in (58)-(59). Recall that y′k = h′kyk where (h′k) ∈ E(α) by assumption

(56). Moreover, (40) and (41) imply that

P (|yk| ≥ ζ) ≤ fk(2, γ, c, ζ) if (ξk) ∈ E(s),
P (|yk| ≥ ζ) ≤ gk(2, θ

′, c, ζ) if (ξj) ∈ H(θ).

So, (A.39) and (A.40) follow from Lemma C1 (iii) and (iv), respectively.

As shown in the proof of (44) and (45), the relations (A.38)-(A.40) imply

P
(|s(1)T,t;1| ≥ ζ

) ≤ fH
(
γ1, γ2, c, ζ

)
if (ξk) ∈ E(s), (A.41)

P
(|s(1)T,t;1| ≥ ζ

) ≤ gH
(
γ1, θ

′, c, ζ
)

if (ξk) ∈ H(θ), (A.42)

which verifies (A.34)-(A.35) for s
(1)
T,t;1. Next we show that setting ζ ′ = ζdHt,

P
(|s(2)T,t;1| ≥ ζ

) ≤ fH
(
γ1, γ2, c, ζ

′) if (ξk) ∈ E(s), (A.43)

P
(|s(2)T,t;1| ≥ ζ

) ≤ gH
(
γ1, θ

′, c, ζ ′
)

if (ξk) ∈ H(θ). (A.44)

Together with (A.37)-(A.40), the latter proves (A.34)-(A.35) for s
(h)
T,t;1.

We now prove (A.43)-(A.44). We have

P
(|s(2)T,t;1| ≥ ζ

)
= P (dHt|s(2)T,t;1| ≥ dHtζ). (A.45)

In view of definition of h′k, by assumptions (54)-(55),

h′k − h′k+1 = ht−k − ht−k−1 = δ
−1/2
tk ξtk, for k = 1, ..., t− 2,

and δtk = t − k if (54) holds; δtk = T if (55) holds, while (ξtk) ∈ E(α) by assumption (56).

Then, with νk and yk as in (A.36), setting y′′k = ξtkxkk
−1/2 = ξtkyk, we can write

(h′k − h′k+1)xk = (
k

δtk
)1/2

ξtkxk

k1/2
= (

k ∨H

δtk
)1/2

y′′k
νk

.
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Hence,

dHts
(2)
T,t;1 =

t−2∑
k=1

dHt

H1/2
bH,k(h

′
k − h′k+1) xk (A.46)

=
t−2∑
k=1

ãtk(
y′′k
νk

), ãtk =
dHt

H1/2
bH,k(

k ∨H

δtk
)1/2.

Next we show that for all t,H, T ,

sHt :=
t−2∑
k=1

|ãtk| ≤ C <∞. (A.47)

Let (54) hold. Then, by definition, dHt = (H ∨ t)1/2H−1, δHt = |t− k|, and by (C.17),

sHt = dHt

t−2∑
k=1

bH,k

H1/2
(
k ∨H

t− k
)1/2 ≤ (

H

H ∨ t
)−1/2

( t−1∑
j=1

bH,|t−j|
H

(
|t− j| ∨H

j
)1/2

) ≤ C, t ≥ 2.

Let (55) holds. Then, dHt = T 1/2H−1, δHt = T , and by property (43) of bH,k,

sHt =
t−2∑
k=1

bH,k

H

(k ∨H

H

)1/2 ≤ C, t ≥ 2, T ≥ 2.

From (A.45)–(A.47) and Lemma A2 it follows that there exists ε > 0 such that

P
(|s(2)T,t;1| ≥ ζ

)
= P

(|dHts
(2)
T,t;1| ≥ ζ ′

) ≤ ε−1 max
1≤k≤t−2

E
[ |y′′k |
ζ ′νk

I(
|y′′k |
ζ ′νk

≥ ε)
]
. (A.48)

This bound is of the same type as (A.38) for P (|s(1)T,t;1| ≥ ζ). Recall that y′′k = ξtkyk and by

(56), variables ξtk have the property (ξtk) ∈ E(α). Hence, (A.48) implies (A.43)-(A.44) by the

same argument as in the proof of (A.41)-(A.42) for s
(1)
T,t;1.

The proof of the bounds (A.34)-(A.35) for s
(h)
T,t;2 can be obtained using similar arguments as

above for s
(h)
T,t;1. This completes the proof of (A.34)-(A.35) which imply (58)-(59) of Lemma 4

for P
(|S(h)

T,t | ≥ ζ
)
. �

Proof of Lemma 5. It suffices to verify (A.34)-(A.35) for P
(|S̃(h)

T,t | ≥ ζ
)
. Write

S̃
(h)
T,t = S

(h)
T,t + rT,t, rT,t := H−1/2 ∑T

k=1 bH,|t−k|(hkEξk − htEξt).

Since by Lemma 4, P (|S(h)
T,t | ≥ ζ) satisfies (58)-(59) and thus (A.34)-(A.35), to establish the

corresponding bounds for P
(|S̃(h)

T,t | ≥ ζ
)
, it suffices to show that P (|rT,t| ≥ ζ) satisfies (A.34)-

(A.35) as well. We will prove that there exists c0 > 0 and c1 > 0 such that

P
(|rT,t| ≥ ζ

) ≤ c0 exp(−c1ζα), ζ > 0, T ≥ 2. (A.49)
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Since α > γ1 = 2α/(2 + α), (A.49) together with definition (39) of ft and gt, implies (A.34)-

(A.35) for P
(|rT,t| ≥ ζ

)
.

Proof of (A.49). Write

P
(|rT,t| ≥ ζ

)
= P

(
dHt|rT,t| ≥ ζ ′

)
, ζ ′ = dHtζ.

Case 1. Suppose that E|ξk − Eξt| and |hk − ht| satisfy assumptions ((60), (54)). Then,

|hkEξk − htEξt| ≤ |hk(Eξk − Eξt)|+ |Eξt| |hk − ht| (A.50)

≤ C(
|t− k|
t ∨ k

)1/2zk, zk = |hk|+ |ξtk|.

Under (54), by definition (57), dHt = (t ∨H)1/2H−1. Hence,

dHt|rT,t| ≤ C
T∑

k=1

atkzk, atk = (
t ∨H

H
)1/2

bH,|t−k|
H

(
|t− k|
t ∨ k

)1/2.

Applying (C.16) with γ = 1/2, we get

max
t=1,...,T

T∑
k=1

atk ≤ C <∞.

Hence, by Lemma A2, there exists ε > 0 such that

P
(
dHt|rT,t| ≥ ζ ′

) ≤ ε−1 max
1≤k≤T

E
[ |zk|
ζ ′

I(
|zk|
ζ ′
≥ ε)

]
. (A.51)

By assumption (56), (zk) ∈ E(α). Hence, by Lemma C2(i),

E
[|zk|I(|zk| ≥ εζ ′)

] ≤ c′0 exp(−c′1ζ ′α)

which together with (A.51) implies

P
(
dHt|rT,t| ≥ ζ ′

) ≤ c′0ζ
′−1 exp(−c′1ζ ′α).

Therefore,

P
(|rT,t| ≥ ζ

) ≤ c′0 exp(−c′1ζ ′α) for ζ ′ ≥ 1. (A.52)

This bound remains valid for 0 < ζ ′ < 1 if c′0 is selected such that c′0 exp(−c′1) ≥ 1. Then,

c′0 exp(−c′1ζ ′α) ≥ c′0 exp(−c′1) ≥ 1 for 0 < ζ ′ < 1

and, thus, (A.52) holds. This proves (A.49).
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Case 2. Suppose that E|ξk−Eξt| and |hk−ht| satisfy assumptions ((61), (55)). Then, instead

of (A.50), we have the bound

|hkEξk − htEξt| ≤ C(
|t− k|
T

)1/2zk, zk = |hk|+ |ξtk|. (A.53)

Under (55), by definition (57), dHt = T 1/2H−1 for t = 1, ..., T . Hence,

dHt|rT,t| ≤ C
T∑

k=1

a∗tkzk, a∗tk = (
T

H
)1/2

bH,|t−k|
H

(
|t− k|
T

)1/2 =
bH,|t−k|
H

(
|t− k|
H

)1/2.

By the same argument as in (A.28) it follows that

max
t=1,...,T

T∑
k=1

a∗tk ≤ C <∞.

Hence, as above, by Lemma A2, there exists ε > 0 such that (A.51) holds, and using the same

argument as in Case 1, we obtain (A.49).

Thus, P (|rT,t| ≥ ζ) satisfies (A.49) which completes the proof of the lemma. �

Proof of Corollary 8. (a) Recall that ζ ∧ ζ ′ = ζ(1 ∧ dHt). The bounds (58)-(59) together

with definitions of ft, gt in (39) imply

P
(
(1 ∧ dHt)|S(h)

T,t | ≥ b
)→ 0, b→∞.

This proves (62):

S
(h)
T,t = OP ((1 ∧ dHt)

−1) = OP

(
1 + d−1Ht

)
.

The same argument implies S̃
(h)
T,t = OP

(
1+ d−1Ht

)
, since by Lemma 5, P (|S̃(h)

T,t | ≥ ζ) satisfies

the same bounds (58)-(59).

(b) Under assumption (55), dHt = T 1/2H−1. Set zT,t := (1 ∧ dHt)S̃
(h)
T,t .

Assume that (ξj) ∈ E(s), s > 0. We will show that as T →∞, b→∞,

P
(

max
t=1,...,T

|zT,t| > bδT,H
)
= oP (1), δT,H = (log T )1/γ1 +

(logH)2

H1/2
(log T )1/γ2 , (A.54)

where γ1 and γ2 are the same as in (58) of Lemma 4.

For b > 0, by (58), definition of ft, (39), and equality (ζ ∧ ζ ′)(1 ∧ dHt)
−1 = ζ,

P (maxt=1,...,T |zT,t| ≥ bδT,H) ≤
∑T

t=1 P ((1 ∧ dHt)|ST,t| ≥ bδT,H)

≤∑T
t=1 fH(γ1, γ2, c, bδT,H)

≤ Tc0

{
exp

(− c1(bδT,H)
γ1
)
+ exp

(− c2(
(bδT,H)

√
H

log2 H
)γ2

)}
≤ Tc0

{
exp

(− c1b
γ1 log T ) + exp

(− c2b
γ2 log T

)}
≤ 2c0T

−1 → 0
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for b such that c1b
γ1 ≥ 2, c2b

γ2 ≥ 2. This proves (A.54). Since for cT δ ≤ H ≤ T it holds

δT,H = O
(
log1/γ1 T

)
, (A.54) implies:

max
t=1,...,T

|zT,t| = OP (δT,H) = OP (log
1/γ1 T ).

This together with definition zT,t := (1 ∧ dHt)S̃
(h)
T,t , where dHt = T 1/2H−1, and inequality

(1 ∧ T 1/2H−1)−1 ≤ 1 +HT−1/2, implies (63):

max
t=1,...,T

|S̃(h)
T,t | = OP

(
(1 ∧ T 1/2H−1)−1 log1/γ1 T

)
= OP

(
(1 +HT−1/2) log1/γ1 T

)
.

Next, consider the case (ξj) ∈ H(θ), θ > 2. First we show that for any θ′ ∈ (2, θ), as T →∞,

max
t=1,...,T

|zT,t| = OP (δT,H), δT,H = (log T )1/γ1 +H1/2
( T

Hθ′−1
)1/θ′

. (A.55)

For b > 0, by (59), definition of gt, (39) and equality (ζ ∧ ζ ′)(1 ∧ dHt)
−1 = ζ, we obtain

P
(
maxt=1,...,T |zT,t| ≥ bδT,H

)
≤∑T

t=1 P
(
(1 ∧ dHt)|ST,t| ≥ bδT,H

)
≤∑T

t=1 gH(γ1, θ
′, c, bδT,H)

≤ Tc0

{
exp

(− c1(bδT,H)
γ1) + (bδT,H)

−θ′H−(θ′/2−1)
}

≤ c0{T exp
(− c1b

γ1 log T ) + b−θ
′
( T
Hθ′/2−1 )

−1TH−(θ′/2−1)
}

≤ c0{T−1 + b−θ
′} → 0

as T → ∞ and b → ∞. This proves (A.55). The same argument as in the proof of (51) of

Corollary 6 shows that validity of (A.55) for any 2 < θ′ < θ implies that for any ε > 0,

max
t=1,...,T

|zT,t| = OP

(
δ̃T,H

)
, δ̃T,H = (log T )1/γ1 +Hε−1/2(TH)1/θ. (A.56)

In turn, since dHt = T 1/2H−1, this yields

max
t=1,...,T

|S̃(h)
T,t | = OP

(
(1 ∧+H−1T 1/2)−1δ̃T,H

)
= OP

(
(1 +HT−1/2){(log T )1/γ1 +Hε−1/2(TH)1/θ})

which proves (64) and completes the proof of the corollary. �

Proof of Corollary 9. Denote

vT,t,ν = H−1
T∑

k=1

bH,|t−k||t− k

H
|ν |ξk|, 0 ≤ ν ≤ 1. (A.57)
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Proof of (67) and (69). Let (65) hold. Then,

|ΔT,t| ≤ CH−1
T∑

k=1

bH,|t−k||t− k

T
| |ξk| = C(H/T )vT,t,1. (A.58)

Since under assumptions of lemma, maxk E|ξk| <∞, together with (43) this implies

EvT,t,1 ≤ C(max
k

E|ξk|)H−1
T∑

k=1

bH,|t−k||t− k

H
| = O(1).

Hence, vT,t,1 = OP (1) which together with (A.58) proves (67):

|ΔT,t| = C(H/T )OP (1) = OP (H/T ).

Notice that by Corollary 7, under the assumptions of Corollary 9(b),

max
1≤s≤T

|vT,s,ν | = OP (1), 0 ≤ ν ≤ 1. (A.59)

This together with (A.58) proves (69):

max
1≤s≤T

|ΔT,t| ≤ C(H/T ) max
1≤s≤T

|vT,s,1| = OP (H/T ).

Proof of (68) and (70). Let (66) hold. Then

|ΔT,t| ≤ CH−1
T∑

k=1

bH,|t−k|(
t− k

T
)1/2|νtkξk|. (A.60)

By (66), (νtk) ∈ E(α), α > 0, while by assumption of corollary, (ξj) ∈ E(s), s > 0 or

(ξj) ∈ H(θ), θ > 2. Thus, from Lemma C1 (i)-(ii) it follows maxtk E|νtkξk| <∞. Hence,

E|ΔT,t| ≤ C(H/T )1/2(max
tk

E|νtkξk|)H−1
T∑

k=1

bH,|t−k|(
t− k

H
)1/2 ≤ C(H/T )1/2,

where C > 0 does not depend on t,H, T . This proves (68), ΔT,t = OP

(
(H/T )1/2

)
.

Next, by (A.60),

max
1≤t≤T

|ΔT,t| ≤ C(H/T )1/2( max
1≤k,t≤T

|νtk|)( max
1≤t≤T

vT,s,1/2), (A.61)

where vT,s,1/2 is defined by (A.57). Since (νtk) ∈ E(α), (C.3) of Lemma C1 implies:

max
1≤k,t≤T

|νtk| = OP

(
(log T )1/α

)
.

By (A.59),

max
1≤t≤T

|vT,s,1/2| = OP (1)

which together with (A.61) proves (70):

max
1≤t≤T

|ΔT,t| = OP

(
(H/T )1/2(log T )1/α

)
.

This completes the proof of the corollary. �
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B. Proofs of Theorems 1-3.

For convenience of the proof of Theorems 1-3, we include Lemma B1 which summarizes the

key steps of the proof of Theorem 1, Bickel and Levina (2008) and adjusts them to our setting.

Recall notation of p× p covariance matrix Σt = [σij,t], sample covariance estimator Σ̂t =

[σ̂ij,t] of Σt, (10), and the regularized sample covariance estimate defined in (11):

Tλ

(
Σ̂t

)
=

(
σ̂ij,tI(|σ̂ij,t| > λ)

)
.

Denote

M = max
i,j=1,...,p

|σ̂ij,t − σij,t|, N = max
i=1,...,p

p∑
j=1

I
(|σ̂ij,t − σij,t| > λ/2

)
.

Recall the definition of the sparsity parameter np of covariance matrix Σt which is the maxi-

mum number of non-zero elements in a row of Σt, see, e.g., (8).

Lemma B1 (see Bickel and Levina (2008, proof of Theorem 1)). For any λ > 0,

||Tλ(Σ̂t)−Σt|| ≤ 2M N +Mnp + 2λnp. (B.1)

Moreover, if λ is such that as T →∞,

maxi,j=1,...,p P
(|σ̂ij,t − σij,t| > λ/2

)
= o(p−2), (B.2)

then ∥∥Tλ

(
Σ̂t

)−Σt

∥∥ = OP (npλ). (B.3)

In addition, if (B.3) holds, npλ = o(1) and ||Σt|| ≥ c > 0, then∥∥Tλ

(
Σ̂t

)−1 −Σ−1t

∥∥ = OP (npλ). (B.4)

Proof. Verification of (B.1) follows closely the steps of the proof of Theorem 1, pp. 2582-2584

in Bickel and Levina (2008). For clarity, we include the details of the proof.

We have

Tλ(Σ̂t)−Σt = [δij,t]i,j=1,...,p, δij,t = σ̂ij,tI(|σ̂ij,t| > λ)− σij,t.

By the well-known property of the spectral norm of a symmetric matrix,

||Tλ(Σ̂t)−Σt|| ≤ max
i=1,...,p

( p∑
j=1

|δij,t|
)
. (B.5)
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Write

δij,t = {σ̂ij,tI(|σ̂ij,t| > λ)− σij,tI(|σij,t| > λ/2)}+ {−σij,tI(|σij,t| ≤ λ/2)}
= δ

(1)
ij,t + δ

(2)
ij,t.

Notice that

|δ(2)ij,t| ≤ |σij,t|I
(|σij,t| ≤ λ/2

) ≤ (λ/2)I(|σij,t| 	= 0).

On the other hand,

δ
(1)
ij,t = σ̂ij,t

(
I(|σ̂ij,t| > λ)− I(|σij,t| > λ/2)

)
+ (σ̂ij,t − σij,t)I(|σij,t| > λ/2)

= {σ̂ij,tI(|σ̂ij,t| > λ, |σij,t| ≤ λ/2)}+ {−σ̂ij,tI(|σ̂ij,t| ≤ λ, |σij,t| > λ/2)}
+{(σ̂ij,t − σij,t)I(|σij,t| > λ/2)} = v

(1)
ij,t + v

(2)
ij,t + v

(3)
ij,t.

Notice that for |σ̂ij,t| > λ, |σij,t| ≤ λ/2 it holds

|σ̂ij,t| ≤ 2(|σ̂ij,t| − |σij,t|) ≤ 2|σ̂ij,t − σij,t|,
|σ̂ij,t − σij,t| ≥ |σ̂ij,t| − |σij,t| > λ/2.

Hence,

|v(1)ij,t| ≤ 2|σ̂ij,t − σij,t|I
(|σ̂ij,t − σij,t| > λ/2

)
,

|v(2)ij,t| ≤ λI(|σij,t| 	= 0),

|v(3)ij,t| ≤ |σ̂ij,t − σij,t|I(|σij,t| 	= 0).

Therefore,

|δij,t| ≤ |δ(1)ij,t|+ |δ(2)ij,t| ≤ |v(1)ij,t|+ |v(2)ij,t|+ |v(3)ij,t|+ |δ(2)ij,t|
≤ 2|σ̂ij,t − σij,t|I

(|σ̂ij,t − σij,t| > λ/2
)
+ |σ̂ij,t − σij,t|I

(|σij,t| 	= 0
)
+ 2λI

(|σij,t| 	= 0
)
.

Note that by definition of the sparsity parameter, maxi=1,...,p

∑p
j=1 I(|σij,t| 	= 0) = np. Apply-

ing this in (B.5), we obtain

||Tλ(Σ̂t)−Σt|| ≤ max
i=1,...,p

( p∑
j=1

|δij,t|
)

≤ 2{ max
i,j=1,...,p

|σ̂ij,t − σij,t|}{ max
i=1,...,p

p∑
j=1

I(|σ̂ij,t − σij,t| > λ/2)}

+{ max
i,j=1,...,p

|σ̂ij,t − σij,t|}{max
i

p∑
j=1

I(|σij,t| 	= 0)}+ 2λ{max
i

p∑
j=1

I(|σij,t| 	= 0)}

≤ 2M N +Mnp + 2λnp
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which proves (B.1).

Proof of (B.3). If (B.2) holds then

P
(
M ≥ λ/2

) ≤ p∑
i,j=1

P
(|σ̂ij,t − σij,t| > λ/2

) ≤ p2 max
ij

P
(|σ̂ij,t − σij,t| > λ/2

)
= o(1).

In turn,

P (N > 1) ≤ P (N > 0) ≤ P (M > λ/2)→ 0.

This shows that M = OP (λ) and N = OP (1) which together with (B.1) proves (B.3).

To prove (B.4), set B := Tλ

(
Σ̂t), A := Σt. By assumption, ‖A‖ ≥ c > 0 and npλ = o(1).

By (B.3), ‖B − A‖ = OP (npλ) = oP (1). Thus,

‖B‖ ≥ ‖A+ (B − A)‖ ≥ ‖A‖ − ‖B − A‖ ≥ c− oP (1) ≥ c(1 + oP (1)).

This implies ‖B−1‖ = OP (1). Hence,

‖B−1 − A−1‖ = ‖A−1(A− B)B−1‖ ≤ ‖A−1‖ ‖A−B‖ ‖B−1‖
≤ c−1OP

(
npλ

)
OP (1) = OP

(
npλ

)
which proves (B.4). �

Proof of Theorem 1. Recall that

λ = κ(T−1 log p)1/2 (B.6)

has property λ → 0 as T → ∞ in view of (9). By assumption of the theorem, (yt) is a

stationary sequence, the sample covariance matrix Σ̂ = (σ̂ij) given by (5) is the estimate of

Σ = (σij) = var(yt) and σij does not depend on t.

By Lemma B1, in view of definition (B.6), to show (B.3) and thus, the claim (6) of Theorem

1, it suffices to prove that for sufficiently large κ,

maxi,j=1,...,p P
(|σ̂ij − σij| > 2λ

)
= o(p−2). (B.7)

(Notice that (B.7) implies that (B.2) holds for sufficiently large κ which in turn proves (B.3).)

Fix (i, j) and set zk = yikyjk. Because of stationarity assumption, Eyik = Eyi1, Eyjk = Eyj1

and Ezk = σij do not depend on k. Observe that

σij = cov(yik, yjk) = Ezk − EyikEyjk.
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Then we can write

σ̂ij − σij = T−1
T∑

k=1

yikyjk − ȳiȳj − σij

= sT,ij − ȳiȳj + Eyi1Eyj1, sT,ij := T−1
T∑

k=1

(zk − Ezk), ȳi = T−1
T∑

k=1

yik.

Observe that

ȳiȳj − Eyi1Eyj1 = (ȳi − Eyi1)(ȳj − Eyj1) + E[yi1](ȳj − Eyj1) + E[yj1](ȳi − Eyi1).

Both assumptions (yik) ∈ E(s) and (yik) ∈ H(θ) imply that m = maxi,k E|yik| <∞.

Therefore,

|σ̂ij − σij| ≤ |sT,ij|+ |ȳi − Eyi1| |ȳj − Eyj1|+m|ȳj − Eyj1|+m|ȳi − Eyi1|.

So, we obtain

P
(|σ̂ij − σij| > 4λ

) ≤ P
(|sT,ij| > λ

)
+ P

(|ȳi − Eyi1| |ȳj − Eyj1| > λ
)

(B.8)

+P
(
m|ȳj − Eyj1| > λ

)
+ P

(
m|ȳi − Eyi1| > λ

)
.

Since λ = o(1) as T →∞, then
√
λ ≥ λ for λ ≤ 1. Hence,

P
(|ȳi − Eyi1| |ȳj − Eyj1| > λ

)
(B.9)

≤ P
(|ȳi − Eyi1| >

√
λ
)
+ P

(|ȳj − Eyj1| >
√
λ
)

≤ P
(|ȳi − Eyi1| > λ

)
+ P

(|ȳj − Eyj1| > λ
)
.

Therefore, to prove (B.7), it suffices to show that uniformly in i, j, as T →∞,

max
i,j=1,...,p

P
(|sT,ij| > λ

)
= o(p−2), max

i=1,...,p
P
(|ȳi − Eyi1| > λ

)
= o(p−2), (B.10)

max
i=1,...,p

P
(
m|ȳi − Eyi1| > λ

)
= o(p−2), (B.11)

when κ is selected sufficiently large. We will prove (B.10), while (B.11) can be shown using

the same argument as in the proof of the second claim in (B.10).

Denote

S∗T,ij = T 1/2sT,ij, S∗T,i = T 1/2ȳi = T−1/2
T∑

k=1

(yik − Eyik).

Then, with η = T 1/2λ,

P
(|sT,ij| > λ

) ≤ P
(|S∗T,ij| > η

)
, (B.12)

P
(|ȳi − Eyi1| > λ

) ≤ P
(|S∗T,i| ≥ η

)
.
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By Assumption M, the process (yk − Eyk) is α-mixing, and therefore processes (zk − Ezk),

(yik − Eyik) are also α-mixing with mixing coefficients satisfying (1).

(i) Let (yik) ∈ E(s). Then (zk) ∈ E(s/2), and Ezk = σij does not depend on k. Hence, (40) of

Lemma 1 implies that with γ = (s/2)(1 + s/2),

P
(|S∗T,ij| > η

) ≤ fT (2, γ, c, η), (B.13)

P
(|S∗T,i| > η

) ≤ fT (2, γ, c, η).

Notice that η = κ(log p)1/2. Then, by definition of ft in (39),

fT (2, γ, c, η) = c0

{
exp(−c1η2) + exp

(− c2
( ηT 1/2

log2 T

)γ}
= c0

{
exp(−c1κ2 log T ) + exp

(− c2
(κ(log T )1/2T 1/2

log2 T

)γ}
= o(p−2)

because c1κ
2 > 2 when κ is chosen large enough, and under assumption (9), T ≥ cpε,

log p = o
(((log T )1/2T 1/2

log2 T

)γ)
.

This together with (B.13) and (B.12) proves (B.10).

(ii) Let (yik) ∈ H(θ). Then, (zk) ∈ H(θ/2), and (41) of Lemma 1 implies

P
(|S∗T,ij| > η

) ≤ gT (2, θ
′, c, η), 2 < θ′ < θ/2, (B.14)

P
(|S∗T,i| > η

) ≤ gT (2, θ
′, c, η).

Recall that η = κ(log p)1/2. Then the function gT given in (39) has property

gT (2, θ
′, c, η) = c0

{
exp

(− c1η
2
)
+ η−θT−(θ

′/2−1)
}

= c0

{
exp

(− c1κ
2 log p

)
+ (κ(log p)1/2)−θ

′
T−(θ

′/2−1)
}

= o(p−2)

because c1κ
2 > 2 for large enough κ, and since under assumption (9) of the theorem,

p2 = o(T θ′/2−1) (B.15)

if θ′ ∈ (2, θ/2) is selected close enough to θ/2. Indeed, then T ≥ c0p
ε, ε > 8/(θ − 4) which

implies p2 = o(T θ′/2−1) if θ′ is selected close enough to θ/2.

This, together with (B.14) and (B.12) proves (B.10) which completes the proof of (6).

Property (7) follows using (B.4) of Lemma B1. �
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Proof of Theorem 2. Recall that in Theorem 2

λ = κ(log p)1/2 max
(
H−1/2, H/T

)
. (B.16)

By Lemma B1, to prove (B.3) which is equivalent to the claim (15) of theorem, it suffices

to verify validity of (B.2) when parameter κ is selected sufficiently large. For notational

simplicity, instead of (B.2) we will show that for sufficiently large κ,

max
i,j=1,...,p

P
(|σ̂ij,t − σij,t| > 4λ

)
= o(p−2). (B.17)

Since κ can be arbitrary selected, (B.17) implies (B.2).

Recall that yt = (y1t, ..., ypt)
′. Set zk = yikyjk. Notice that

σij,k = cov(yik, yjk) = Ezk − EyikEyjk.

Then,

σ̂ij,t − σij,t = K−1
t

∑T
k=1 bH,|t−k|yikyjk − ȳitȳjt − σij,t

= sT,ij,t − ȳitȳjt + EyitEyjt, (B.18)

sT,ij,t = K−1
t

∑T
k=1 bH,|t−k|(zk − Ezt), ȳit = K−1

t

∑T
k=1 bH,|t−k|yik.

Notice that

ȳitȳjt − EyitEyjt = (ȳit − Eyit)(ȳjt − Eyjt) + E[yit](ȳjt − Eyjt) + E[yjt](ȳit − Eyit).

Under assumption (yik) ∈ E(s) or (yik) ∈ H(θ), maxi,t |Eyit| ≤ m <∞. Hence,

|σ̂ij,t − σij,t| ≤ |sT,ij,t|+ |ȳit − Eyit| |ȳjt − Eyjt|+m|ȳjt − Eyjt|+m|ȳit − Eyit|.

Therefore,

P
(|σ̂ij,t − σij,t| > 4λ

) ≤ P
(|sT,ij,t| > λ

)
+ P

(|ȳit − Eyit| |ȳjt − Eyjt| > λ
)

(B.19)

+P
(
m|ȳjt − Eyjt| > λ

)
+ P

(
m|ȳit − Eyit| > λ

)
.

Notice that λ = o(1) as T →∞ by (14). Hence,
√
λ ≥ λ for λ ≤ 1. So,

P
(|ȳit − Eyit| |ȳjt − Eyjt| > λ

)
(B.20)

≤ P
(|ȳit − Eyit| >

√
λ
)
+ P

(|ȳjt − Eyjt| >
√
λ
)

≤ P
(|ȳit − Eyit| > λ

)
+ P

(|ȳjt − Eyjt| > λ
)
.
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Therefore, to prove (B.17), it suffices to show that uniformly in i, j, as T →∞,

max
i,j=1,...,p

P
(|sT,ij,t| > λ

)
= o(p−2), max

i=1,...,p
P
(|ȳit − Eyit| > λ

)
= o(p−2), (B.21)

max
i=1,...,p

P
(
m|ȳit − Eyit| > λ

)
= o(p−2). (B.22)

We will prove (B.21). ((B.22) can be shown using the same argument as in the proof of the

second claim in (B.21)). Write

sT,ij,t = H1/2K−1
t

(
H−1/2

T∑
k=1

bH,|t−k|(zk − Ezk) +H−1/2
T∑

k=1

bH,|t−k|(Ezk − Ezt)
)

=: H1/2K−1
t (s∗T,ij,t + rT,ij,t),

ȳit − Eyit = H1/2K−1
t

(
H−1/2

T∑
k=1

bH,|t−k|(yik − Eyik) +H−1/2
T∑

k=1

bH,|t−k|(Eyik − Eyit)
)

=: H1/2K−1
t (s∗T,i,t + rT,i,t).

Observe that there exists a1, a2 > 0 such that for all 1 ≤ t ≤ T , T ≥ 1,

a1H ≤ Kt ≤ a2H.

Then

(Kt/H
1/2)λ ≥ a1H

1/2λ =: η. (B.23)

Therefore

P
(|sT,ij,t| > λ

) ≤ P
(|s∗T,ij,t + rT,ij,t| > η

) ≤ P
(|s∗T,ij,t| > η − |rT,ij,t|

)
,

P
(|ȳit − Eyit| > λ

) ≤ P
(|s∗T,i,t + rT,i,t| > η

) ≤ P
(|s∗T,i,t| > η − |rT,i,t|

)
.

First we show that, as p→∞,

|rT,ij,t| ≤ η/2, |rT,i,t| ≤ η/2 (B.24)

which implies

P
(|sT,ij,t| > λ

) ≤ P
(|s∗T,ij,t| ≥ η/2

)
, (B.25)

P
(|ȳit − Eyit| > λ

) ≤ P
(|s∗T,i,t| ≥ η/2

)
.

To verify (B.24), we use the equality Ezt = E[yityjt] = cov(yit, yjt) +EyitEyjt which together

with assumption (2) implies that uniformly in i, t, s,

|Eyit| ≤ C, |Eyit − Eyis| ≤ C
|t− s|
t ∨ s

, (B.26)

|Ezt| ≤ C, |Ezt − Ezs| ≤ C
|t− s|
t ∨ s

.
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This together with (46) of Lemma 3 and the assumption of the theorem, δT ≤ t ≤ T , yields

|rT,ij,t| ≤ C∗
H3/2

H ∨ t
≤ C∗

H3/2

H ∨ δT
≤ C∗

H3/2

δT
, (B.27)

|rT,i,t| ≤ C∗
H3/2

δT

because H = o(T ) by the assumption (14). Since

λ
√
H ≥ κ(log p)1/2H3/2/T,

this implies
η

|rT,ij,t| ≥
a1κ(log p)

1/2

C∗/δ
> 2,

η

|rT,i,t| > 2

when κ(log p)1/2 is sufficiently large. This proves (B.24) and (B.25).

By Assumption M, the process (xt − Ext) is α-mixing, and therefore (zt − Ezt) is also

α-mixing with mixing coefficients satisfying (1).

(i) Let (yk) ∈ E(s). Then, (zk) ∈ E(s/2) and (yik) ∈ E(s/2). So, applying (44) of Lemma 2

we obtain

P
(|s∗T,ij,t| > η/2

) ≤ fH(2, γ, c, η/2), γ = (s/2)(1 + s/2), (B.28)

P
(|s∗T,i,t| > η/2

) ≤ fH(2, γ, c, η/2).

The function

fH(γ1, γ2, c, ζ) ≤ c0

{
exp(−c1ζγ1) + exp

(− c2
( ζH1/2

log2 H

)γ2} (B.29)

given in (39) is non-increasing in ζ. By (B.23),

η/2 ≥ (a1/2)κ(log p)
1/2. (B.30)

Thus,

fH(2, γ, c, η/2) (B.31)

≤ c0

{
exp

(− c1(a1/2)
2κ2 log p

)
+ exp

(− c2
(
(a1/2)κ log

1/2 p
H1/2

log2 H

)γ)}
= o(p−2)

because c1(a1/2)
2κ2 > 2 when κ is chosen large enough, and by (14), H ≥ c0p

ε, which implies

log p = o
((

log1/2 p
H1/2

log2 H

)γ)
.

This together with (B.28) and (B.25) proves (B.21).
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(ii) Let (yk) ∈ H(θ). Then, (zk) ∈ H(θ/2) and (yik) ∈ H(θ/2), and using (45) of Lemma 2,

we obtain

P
(|s∗T,ij,t| > η/2

) ≤ gH
(
2, θ′, c, η/2

)
, 2 < θ′ < θ/2, (B.32)

P
(|s∗T,i,t| > η/2

) ≤ gH
(
2, θ′, c, η/2

)
.

The function

gH(γ, θ
′, c, ζ) = c0

{
exp

(− c1ζ
γ
)
+ ζ−θt−(θ

′/2−1)
}

(B.33)

given in (39) is non-increasing in ζ. Again, using the bound η/2 ≥ (a1/2)κ(log p)
1/2, we obtain

gH(2, θ
′, c, η/2) (B.34)

≤ c0

{
exp

(− c1(a1/2)
2κ2 log p

)
+ ((a1/2)κ(log p)

1/2)−θ
′
H−(θ′/2−1)

}
= o(p−2)

because c1(a1/2)
2κ2 > 2 for large enough κ and because p2 = o(Hθ′/2−1) under the assumption

(14) of the theorem if θ′ ∈ (2, θ/2) is selected close enough to θ/2, see the proof of (B.15).

Clearly, (B.34), (B.32) and (B.25) prove (B.21).

This completes the proof of the claim (15) of theorem.

The claim (16) of the theorem is shown in (B.4) of Lemma B1.

The bandwidth Hopt = T 2/3 minimizes max
(
H−1/2, (H/T )

)
, so

λ = κ(log p)1/2 max
(
H−1/2, (H/T )

) ≥ λopt = κ(log p)1/2T−1/3

which proves the last claim of the theorem. �

Proof of Theorem 4. In this theorem,

λ = κ(log p)ν max
(
H−1/2, (H/T )1/2

)
, ν =

α + 4

2α
. (B.35)

Notice that by (19), λ = o(1). As in Theorem 2, to prove the main result (20) of this theorem,

it suffices to verify (B.17), i.e. to show that uniformly in i, j, for sufficiently large κ it holds:

P
(|σ̂ij,t − σij,t| > 4λ

)
= o(p−2). (B.36)

We will rewrite σ̂ij,t − σij,t as follows. Observe that

yk = Hkxt = (y1k, ..., ypk)
′, where yik =

∑p
u=1 hiu,kxuk,

Σt = H tΣ
(x)
t H ′

t = (σij,t), where σij,t =
∑p

u,v=1 hiu,thju,tσ
(x)
uv,t
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and yikyjk =
∑p

u,v=1 hiu,khjv,kxukxvk. Since σ
(x)
uv,t = E[xutxvt]− ExutExvt, then

σij,t =

p∑
u,v=1

hiu,thju,t

(
E[xutxvt]− E[xut]E[xvt]

)
.

So,

σ̂ij,t − σij,t = K−1
t

∑T
k=1 bH,|t−k|yikyjk − ȳitȳjt − σij,t (B.37)

=
∑p

u,v=1 πij,uv,t, where

πij,uv,t = s̃ij,uv,t − ȳiu,tȳjv,t + (hiu,tE[xut])(hjv,tE[xvt]),

s̃ij,uv,t = K−1
t

∑T
k=1 bH,|t−k|

(
hiu,khjv,kxukxvk − hiu,thjv,tE[xutxvt]

)
,

ȳiu,t = K−1
t

∑T
k=1 bH,|t−k|hiu,kxuk.

By assumption of the theorem, the sparsity parameter nH of H t is finite and fixed, and does

not depend on t, p, T . Therefore, for any fixed (i, j) the sum
∑p

u,v=1[...] in (B.37) includes no

more than n2
H of non-zero terms. Without restriction of generality, assume that

σ̂ij,t − σij,t =

nH∑
u,v=1

πij,uv,t.

Hence, to verify (B.36), it suffices to show that uniformly in i, j, u, v, for sufficiently large κ it

holds:

P
(|πij,uv,t| > 4λ′

)
= o(p−2), λ′ = λ/n2

H . (B.38)

Set siu,t = ȳiu,t − hiu,tE[xut], viu,t = hiu,tE[xut]. Then,

πij,uv,t = s̃ij,uv,t − (siu,tsjv,t + viu,tsjv,t + vjv,tsiu,t).

Thus, similarly to (B.19),

πij,uv,t ≤ P
(|s̃ij,uv,t| > λ′

)
+ P

(|siu,tsjv,t| > λ′
)

(B.39)

+P
(|viu,tsjv,t| > λ′

)
+ P

(|vjv,tsiu,t| > λ′
)
.

Since λ→ 0, assume that λ ≤ 1. Then, λ′ < 1, and similarly to (B.20),

P
(|siu,tsjv,t| > λ′

) ≤ P
(|siu,t| > λ′

)
+ P

(|sjv,t| > λ′
)
.

Therefore, to prove (B.38), it suffices to show that uniformly in u, v, i, j, as T → ∞, for

sufficiently large κ it holds

P
(|s̃ij,uv,t| > λ′

)
= o(p−2), P

(|sjv,t| > λ′
)
= o(p−2), (B.40)

P
(|viu,tsjv,t| > λ′

)
= o(p−2).
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Let i, j, u, v be fixed. Define zk := xukxvk, h̃k := hiu,khjv,k. By Assumption M, the process

(xk − Exk) is α-mixing, and therefore the process (zk − Ezk) is also α-mixing with mixing

coefficients satisfying (1). Moreover, as in the proof of Theorem 2, Ezk satisfies (B.26). By

Assumption H, (hiu,k) satisfies (18) with parameter α and (h̃k) with parameter α/2.

We can write

s̃ij,uv,t = K−1
t H1/2qij,uv,t, qij,uv,t = H−1/2 ∑T

k=1 bH,|t−k|
(
h̃kzk − h̃tEzt

)
,

siu,t = K−1
t H1/2qiu,t, qiu,t = H−1/2 ∑T

k=1 bH,|t−k|
(
hiu,kxuk − hiu,tExut

)
.

This together with (B.23), setting η = a1H
1/2λ′, implies

P
(|s̃ij,uv,t| > λ′

) ≤ P
(|qij,uv,t| > η

)
, (B.41)

P
(|siu,t| > λ′

) ≤ P
(|qiu,t| ≥ η

)
,

P
(|viu,tsjv,t| > λ′

) ≤ P
(|viu,tqjv,t| ≥ η

)
.

In addition, set L = b(log p)1/α > 1, where b > 0 will be selected below. Then,

P
(|viu,tqjv,t| ≥ η

) ≤ P
(|viu,t| ≥ L

)
+ P

(
L|qjv,t| ≥ η

)
(B.42)

= P
(|viu,t| ≥ L

)
+ P

(|qjv,t| ≥ L−1η
)
,

P
(|qiu,t| ≥ η

) ≤ P
(|qiu,t| ≥ L−1η

)
.

We will show that there exist sufficiently large b > 0 and κ > 0 such that

P
(|viu,t| ≥ L

)
= o(p−2), (B.43)

P
(|qij,uv,t| ≥ η

)
= o(p−2), P

(|qjv,t| ≥ η/L
)
= o(p−2) (B.44)

which together with (B.42), (B.41) implies (B.40) which completes the proof of (B.36).

Proof of (B.43). By assumption, (xt) ∈ E(s) or (xt) ∈ H(θ) which implies maxi,t |Exit| ≤ m <

∞. Therefore, |viu,t| = |hiu,tE[xut]| ≤ m|hiu,t|. By Assumption H, (hiu,t) ∈ E(α). Therefore,

(viu,t) ∈ E(α) which implies that for some c0, c1 ≥ 0,

P
(|viu,t| ≥ ζ

) ≤ c0 exp(−c1|ζ|α), ζ > 0.

Using this bound with ζ = L = b(log p)1/α, we obtain

P
(|viu,t| ≥ L

) ≤ c0 exp(−c1bα log p) = o(p−2)

when b is selected such that c1b
α > 2. This proves (B.43).
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Proof of (B.44).

(i) Let (xik) ∈ E(s). Recall that qij,uv,t is a weighted sum of variables h̃kzk, and by the

assumptions of the theorem, (hiu,k) ∈ E(α). Thus, (h̃k) ∈ E(α/2) and (zk) ∈ E(s/2). On the

other hand, qiu,t is a weighted sum of variables hiu,kxuk, where (hiu,k) ∈ E(α) and (xuk) ∈ E(s).
Hence, by the claim (58) of Lemma 5,

P
(|qij,uv,t| > η

) ≤ fH
(
γ1, γ2, c, η(1 ∧ dHt)

)
, (B.45)

P
(|qiu,t| ≥ η/L

) ≤ fH
(
γ′1, γ

′
2, c, (η/L)(1 ∧ dHt)

)
,

where

γ1 =
2(α/2)

α/2 + 2
=

2α

α + 4
, γ2 =

(α/2)(s/2)

α/2 + s/2 + 1
=

αs

2α + 2s+ 4
, (B.46)

γ′1 =
2α

α + 2
, γ′2 =

αs

α + s+ 1
.

By assumption of the theorem, δT ≤ t ≤ T . We will show below that

η(1 ∧ dHt) ≥ aδκ(log p)
1/γ1 , aδ = δ1/2(a1/n

2
H), (B.47)

(η/L)(1 ∧ dHt) ≥ a′δκ(log p)
1/γ′1 , a′δ = b−1δ1/2(a1/n2

H).

The function fH(γ1, γ2, c, ζ), see (B.29), is non-increasing in ζ. So,

fH
(
γ1, γ2, c, η(1 ∧ dHt)

) ≤ fH(γ1, γ2, c, aδκ(log p)
1/γ1),

fH
(
γ′1, γ

′
2, c, (η/L)(1 ∧ dHt)

) ≤ fH(γ
′
1, γ

′
2, c, a

′
δκ(log p)

1/γ′1).

Notice that,

fH(γ1, γ2, c, aδκ(log p)
1/γ1)

≤ c0

{
exp

(− c1(aδκ)
γ1 log p

)
+ exp

(− c2
(
aδκ(log p)

1/γ1
H1/2

log2 H

)γ2} = o(p−2)

because c1(aδκ)
γ1 > 2 when κ is selected sufficiently large, and because by the assumption

(19), H ≥ c0p
ε, which implies

log p = o
((

log1/γ1 p
H1/2

log2 H

)γ2).
The same argument implies, that for sufficiently large κ,

fH(γ
′
1, γ

′
2, c, a

′
δκ(log p)

1/γ′1) = o(p−2).

Together with (B.45) and (B.41) this proves (B.40).
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Proof of (B.47). Notice that ν = (α + 4)/(2α) in (B.35) has property:

νγ1 = 1, (ν − α−1)γ′1 = 1. (B.48)

By definition (57), dHt = (t ∨ H)1/2H−1. By assumption, δT ≤ t ≤ T and H = o(T ).

Therefore,

dHt ≥ (δT ∧H)1/2H−1 ≥ (δT )1/2H−1,

1 ∧ dHt ≥ δ1/2(1 ∧ T 1/2H−1).

Since for any e > 0, (1 ∨ e)(1 ∧ e−1) = 1, we obtain

η(1 ∧ dHt) = (a1/n
2
H)κ(log p)

ν{(H−1/2 ∨ (H/T )1/2)H1/2}(1 ∧ dHt)

≥ (a1/n
2
H)κ(log p)

νδ1/2(1 ∨HT−1/2)(1 ∧ T 1/2H−1)

= (a1/n
2
H)δ

1/2κ(log p)ν = aδκ(log p)
ν .

Since by (B.48), ν = 1/γ1 this proves the first claim in (B.47).

On the other hand, L−1 = b−1(log p)−1/α, and therefore,

(η/L)(1 ∧ dHt) ≥ b−1(a1/n2
H)δ

1/2κ(log p)ν−1/α = a′δκ(log p)
1/γ′1

by (B.48) which completes the proof of (B.47).

(ii) Let (xit) ∈ H(θ). Then qij,uv,t is a weighted sum of variables h̃kzk where (h̃k) ∈ E(α/2)
and (zk) ∈ H(θ/2). In turn, qiu,t is a weighted sum of variables hiu,kxuk where (hiu,k) ∈ E(α)
and (xuk) ∈ H(θ). Thus, by the claim (59) of Lemma 5,

P
(|qij,uv,t| > η

) ≤ gH
(
γ1, θ

′, c, η(1 ∧ dHt)
)
, θ′ ∈ (2, θ/2), (B.49)

P
(|qiu,t| ≥ η/L

) ≤ gH
(
γ′1, θ

′, c, (η/L)(1 ∧ dHt)
)
,

where γ1 and γ′1 are the same as in (B.46). Since gH(γ1, γ2, c, ζ), (B.33), is a non-increasing

function in ζ, by (B.47) we can bound

gH
(
γ1, θ

′, c, η(1 ∧ dHt)
) ≤ gH

(
γ1, θ

′, c, aδκ(log p)1/γ1
)
,

gH
(
γ′1, θ

′, c, (η/L)(1 ∧ dHt)
) ≤ gH

(
γ′1, θ

′, c, a′δκ(log p)
1/γ′1

)
.

Notice that

gH
(
γ1, θ

′, c, aδκ(log p)1/γ1
)

≤ c0

{
exp

(− c1(aδκ)
γ1 log p

)
+

1

(aδκ(log p)1/γ1)θ
′

1

Hθ′/2−1

}
= o(p−2)
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when κ is selected such that c1(aδκ)
γ1 > 2, and θ′ ∈ (2, θ/2) is selected close enough to θ/2,

see the proof of (B.34). Similarly, it can be shown that for sufficiently large κ,

gH
(
γ′1, θ

′, c, a′δκ(log p)
1/γ′1

)
= o(p−2).

Together with (B.49) this implies (B.44). This completes the proof of the claim (20) of

Theorem 4.

The claim (21) of the theorem is shown in (B.4) of Lemma B1.

The bandwidth Hopt = T 1/2 minimizes max
(
H−1/2, (H/T )1/2

)
which implies

λ = κ(log p)ν max
(
H−1/2, (H/T )1/2

) ≥ λopt = κ(log p)νT−1/4

which proves the last claim of the theorem. �

C. Auxiliary results

This section contains auxiliary results used in the proofs.

Recall definition of functions ft and gt, (39).

Lemma C1 (i) Let x ∈ E(α), y ∈ E(α′) where α > 0, α′ > 0. Then xy ∈ E(α̃) where

α̃ = αα′/(α + α′).

Moreover, x+ y ∈ E(min(α, α′)) and |z| ≤ |x| implies z ∈ E(α).

(ii) Let x ∈ E(α), y ∈ H(θ) where α > 0, θ > 0. Then xy ∈ H(
θ′
)
for any 0 < θ′ < θ.

(iii) Let (xt) ∈ E(α), α > 0 and P (|yt| ≥ ζ) ≤ ft(γ1, γ2, c, ζ), ζ > 0, t ≥ 2 with γ1, γ2 > 0.

Then

P (|xtyt| ≥ ζ) ≤ ft(γ̃1, γ̃2, c
′, ζ), ζ > 0, t ≥ 2, (C.1)

where γ̃1 = αγ1/(α + γ1), γ̃2 = αγ2/(α + γ2) and c′ does not depend on t, ζ.

(iv) Let (xt) ∈ E(α), α > 0 and P (|yt| ≥ ζ) ≤ gt(γ, θ, c, ζ), ζ > 0, t ≥ 2 where γ > 0, θ > 2.

Then for any θ′ ∈ (2, θ),

P (|xtyt| ≥ ζ) ≤ gt(γ̃, θ
′, c′, ζ), ζ > 0, t ≥ 2, (C.2)

where γ̃ = αγ/(α + γ) and c′ does not depend on t, ζ.

(v) If (xt) ∈ E(α), (xtk) ∈ E(α) for some α > 0 then as T →∞,

max
1≤t≤T

|xt| = OP

(
(log T )1/α

)
, max

1≤t,k≤T
|xtk| = OP

(
(log T )1/α

)
. (C.3)
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Proof.

(i) Let x ∈ E(α), y ∈ E(α′) where α > 0, α′ > 0 and let α̃ = αα′/(α + α′). Then for some

a > 0,

E exp(a|x|α) <∞, E exp(a|y|α′) <∞.

To prove (i), we will show that E exp(a|xy|α̃) <∞.

Set p = (α + α′)/α′, q = (α + α′)/α. Then p > 1, q > 1, 1/p + 1/q = 1 and α̃p = α,

α̃q = α′. Hence, for k = 1, 2, ... by Hölder’s inequality,

E|xy|α̃k = E[|x|α̃k|y|α̃k] ≤ (E|x|k α̃p)1/p(E|y|k α̃q)1/q = (E|x|k α)1/p(E|y|k α′)1/q

≤ (max(E|x|k α, E|y|k α′)1/p+1/q = max(E|x|k α, E|y|k α′)

≤ E|x|k α + E|y|k α′ .

Therefore,

E exp(a|xy|α̃) ≤
∞∑
k=0

akE|xy|α̃k
k!

≤
∞∑
k=0

ak(E|x|k α + E|y|k α′)

k!

≤ E exp(a|x|α) + E exp(a|y|α′) <∞.

(ii) Let x ∈ E(α), y ∈ H(θ) where α > 0, θ > 0. Then, for some a > 0,

E exp(a|x|α) <∞, E|y|θ <∞.

The latter implies that E|x|b <∞ for any b > 0.

Let θ′ ∈ (0, θ). To prove (ii), we will show that E|xy|θ′ < ∞. Set p = θ/θ′ and let q > 1

be defined by equality 1/p+ 1/q = 1. Then, by Hölder inequality,

E|xy|θ′ ≤ (E|x|θ′q)1/q(E|y|θ′p)1/p = (E|x|θ′q)1/q(E|y|θ)1/p <∞.

This completes the proof of (ii).

Before proceeding to the proof of (iii)-(iv), we obtain the following two auxiliary results.

First, consider the function

f(x) = xα + c(v/x)α
′
, x > 0

where α > 0, α′ > 0, v > 0, c > 0. It achieves its unique minimum at

x0 = (cα′/α)1/(α+α′)vα
′/(α+α′)

because x0 is a unique solution of equation f ′(x) = αxα−1 − cα′(v/x)α
′
x−1 = 0 and f ′′(x0) =

xα−2
0 α(α + α′) > 0. Thus,

f(x) ≥ f(x0) = c′vα̃, x ≥ 0 (C.4)
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where α̃ = αα′/(α + α′) and c′ = (cα′/α)α/(α+α′)(1 + α/α′).

Second, we obtain the upper bound for P (|xy| ≥ ζ) for the product of r.v.′s x and y when

x ∈ E(α), α > 0. Let p, q > 1, 1/p+ 1/q = 1. Then

P
(|xy| ≥ ζ

)
=

∑∞
k=0 P

({|x| ∈ [k, k + 1)} ∩ {|xy| ≥ ζ})
≤ ∑∞

k=0 P
1/p

(|x| ∈ [k, k + 1)
)
P 1/q

(|y| ≥ ζ/(k + 1)
)
.

Since x ∈ E(α), then for k ≥ 0,

P
(|x| ∈ [k, k + 1)

) ≤ P
(|x| ≥ k

) ≤ c′0 exp(−2c′1kα), k ≥ 0

for some c′0 > 0, c′1 > 0. Denote

gkζ := exp(−c′1kα)P 1/q(|y| ≥ ζ/k).

Then,

P
(|xy| ≥ ζ

) ≤ C
∑∞

k=0 exp{−2c′1kα + c′1(k + 1)α}gk+1,ζ

≤ Cmaxk≥1 gkζ
∑∞

k=0{−2c′1kα + c′1(k + 1)α}
≤ Cmax

k≥1
gkζ . (C.5)

We use this result to evaluate P (|xy| ≥ ζ) in parts (iii)-(iv) of the lemma.

(iii) Without restriction of generality, we assume that ζ ≥ 1. By (C.5),

P (|xtyt| ≥ ζ) ≤ Cmax
k≥1

gkζ . (C.6)

Under assumptions of (iii), gkζ = exp(−c′1kα)f
1/q
t (2, γ, c, ζ/k). To evaluate f

1/q
t (2, γ, c, ζ/k),

denote ζt = ζ
√
t/ log2 t. Using the definition of function ft, (39), and inequality

(a+ b)1/q ≤ a1/q + b1/q, a, b > 0, (C.7)

we obtain

f
1/q
t (γ1, γ2, c, ζ/k) ≤ C

(
exp

(− c1(ζ/k)
γ1
)
+ exp

(− c2(ζt/k)
γ2
))1/q

≤ C
(
exp

(− (c1/q)(ζ/k)
γ1
)
+ exp

(− (c2/q)(ζt/k)
γ2
))

.

Hence, there exist constants c
′′
1 , c

′′
2 > 0 such that

gk,ζ ≤ C{exp(−c′′1(kα + (ζ/k)γ1)) + exp(−c′′2(kα + (ζt/k)
γ2))}.
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Next, using (C.4) to bound f(k) := kα +(ζ/k)γ1 , f(k) := kα +(ζt/k)
γ2 from below, we obtain

gk,ζ ≤ c∗0
(
exp(−c∗1ζ γ̃1) + exp(−c∗2ζ γ̃2t )

)
= ft(γ̃1, γ̃2, c

∗, ζ), k ≥ 1,

with γ̃1 = αγ1/(α + γ1), γ̃2 = αγ2/(α + γ2). Thus, (C.6) implies

P
(|xtyt| ≥ ζ

) ≤ ft(γ̃1, γ̃2, c
′′
, ζ)

which proves (iii).

(iv) Let ζ ≥ 1. Under assumptions of (iv), (C.6) holds with

gkζ = exp(−c′1kα)g
1/q
t (γ, θ, c, ζ/k).

Next we evaluate g
1/q
t (γ, θ, c, ζ/k). Let 2 < θ′ < θ. Then, θ/θ′ > 1 and (θ − 2)/(θ′ − 2) > 1.

Let q > 1 be such that min(θ/θ′, (θ − 2)/(θ′ − 2)) > q. By (C.7) and definition of gt, (39),

g
1/q
t (γ, θ′, c, ζ/k) ≤ C

(
exp{−c1(ζ/k)γ}+ (ζ/k)−θt−(θ/2−1)

)1/q

≤ C{exp{−(c1/q)(ζ/k)γ}+ ζ−θ/qt−(θ/2−1)/qkθ/q}. (C.8)

Definition of q > 1 implies θ/q > θ′ and (θ/2 − 1)/q > θ′/2 − 1. This together with (C.8)

yields

g
1/q
t (γ, θ′, c, ζ/k) ≤ C

(
exp{−(c1/q)(ζ/k)γ}+ ζ−θ

′
t−(θ

′/2−1)kθ/q
)
, ζ ≥ 1, t ≥ 1.

Hence,

max
k≥1

gkζ ≤ Cmax
k≥1

exp{−c1′′(kα + (ζ/k)γ)}+ Cζ−θ
′
t−(θ

′/2−1) max
k≥1

{exp(−c2′kα)kθ/q}
≤ C

(
max
k≥1

exp{−c1′′(kα + (ζ/k)γ)}+ ζ−θ
′
t−(θ

′/2−1)).
Applying to f(k) := kα + (ζ/k)γ the bound (C.4), we obtain

max
k≥1

gkζ ≤ c∗0
(
exp(−c∗1ζ γ̃) + ζ−θ

′
t−(θ

′/2−1)
)
= gt(γ̃, θ

′, c∗, ζ)

with γ̃ = αγ/(α + γ). Then (C.6) implies P (|xtyt| ≥ ζ) ≤ gt(γ̃, θ
′, c∗, ζ) which proves (iv).

(v) We need to show that, as T →∞, b→∞,

P
(

max
t=1,...,T

|xt| ≥ b(log T )1/α
)→ 0, P

(
max

t,k=1,...,T
|xtk| ≥ b(log T )1/α

)→ 0.

By assumption, there exist a > 0 and α > 0 such that

max
t≥1

E exp(a|xt|α) <∞, max
t,k≥1

E exp(a|xtk|α) <∞.

35



Let b be such that abα ≥ 2. Then, as T →∞,

P
(

max
t=1,...,T

|xt| ≥ b(log T )1/α
) ≤ T∑

t=1

P
(|xt| ≥ b(log T )1/α

)
≤

T∑
t=1

E(exp(a|xt|α)
exp(abα log T )

≤ T−2
T∑
t=1

C → 0.

Similarly,

P
(

max
t,k=1,...,T

|xtk| ≥ b(log T )1/α
) ≤ T∑

t,k=1

P
(|xtk| ≥ b(log T )1/α

)
≤

T∑
t,k=1

E(exp(a|xtk|α)
exp(abα log T )

≤ T−2
T∑

t,k=1

C → 0.

This completes the proof of (v) and the lemma. �

Lemma C2 Let γ > 0.

(i) Let ξ be a zero mean random variable. Then for all ζ > 0,

E
(|ξ|γI(|ξ| > ζ)

) ≤ {
c0 exp(−c1ζs) if ξ ∈ E(s), s > 0 (C.9)

c0ζ
γ−θ if ξ ∈ H(θ), γ < θ (C.10)

for some c0 > 0, c1 > 0 which do not depend on ζ.

(ii) Let st, t ≥ 1 be zero mean random variables such that for some γ1 > 0, γ2 > 0 and c,

P
(|st| ≥ ζ

) ≤ ft(γ1, γ2, c, ζ) for all ζ > 0, t ≥ 2.

Then,

E
[|st|γI(|st| > ζ)

] ≤ ft(γ1, γ2, c
′, ζ), ζ > 0, t ≥ 2, (C.11)

where c′ does not depend on ζ, t.

(iii) Let st, t ≥ 1 be zero mean random variables such that for some θ > 0, γ1 > 0 and c,

P
(|st| ≥ ζ

) ≤ gt(γ1, θ, c, ζ) for all ζ > 0, t ≥ 2.

Then, for 0 < γ < θ,

E
[|st|γI(|st| > ζ)

] ≤ max(ζγ, 1)gt(γ1, θ, c
′, ζ), ζ > 0, t ≥ 2, (C.12)

where c′ does not depend on ζ, t.
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Proof. Without restriction of generality let ζ ≥ 1. Denote F (x) = P (|ξ| ≥ x). Then

E
[|ξ|γI(|ξ| > ζ)

]
= − ∫∞

ζ
xγdF (x) = −ζγF (ζ) +

∫∞
ζ

xγ−1F (x)dx. (C.13)

(i) If (ξk) ∈ E(s), then F (x) ≤ c′0 exp
(−2c′1|x|s

)
for some c′0, c

′
1 > 0. Notice that F (x) ≥ F (ζ),

x ≥ ζ. Applying these bounds in (C.13), we obtain (C.9):

E
[|ξ|γI(|ξ| > ζ)

] ≤ F 1/2(ζ)
{
ζγF 1/2(ζ) +

∫∞
1

xγ−1F 1/2(x)dx
}

≤ CF 1/2(ζ) ≤ C exp(−c′1ζs).

If (ξ) ∈ H(θ), then F (x) ≤ c′0|x|−θ. Using this bound in (C.13), we obtain (C.10):

E[|ξ|γI(|ξ| > ζ)] ≤ C
{
ζγ|ζ|−θ +

∫ ∞

ζ

xγ−1x−θdx
} ≤ Cζγ−θ.

(ii) Let again ζ ≥ 1. Denote F ∗t (x) = P (|St| ≥ x). Then as in (C.13),

E
[|st|γI(|st| > ζ)

]
= −

∫ ∞

ζ

xγdF ∗t (x) = −ζγF ∗t (ζ) +
∫ ∞

ζ

xγ−1F ∗t (x)dx, (C.14)

E
[|st|γI(|st| > ζ)

] ≤ F
∗1/2
t (ζ)

{
ζγF

∗ 1/2
t (ζ) +

∫ ∞

1

xγ−1F ∗ 1/2t (x)dx
}
.

By assumption, P (|st| ≥ ζ) ≤ ft(γ1, θ, c, ζ). Definition (39) of ft implies that

ft(γ1, γ2, c, ζ) ≤ c0 exp
(− 2c1ζ

min(γ1,γ2)
)
, ζ > 0, t ≥ 2

for some c0, c1 > 0. Thus, by (C.14), for ζ ≥ 1

E
[|st|γI(|st| > ζ)

] ≤ f
1/2
t (γ1, γ2, c, ζ)

(
ζγf

1/2
t (γ1, γ2, c, ζ) +

∫∞
1

xγ−1f 1/2
t (γ1, γ2, c, x)dx

)
≤ Cf

1/2
t (γ1, γ2, c, ζ) ≤ Cft(γ1, γ2, c

′, ζ)

for some c′ in view of (C.7). This proves (C.11).

(iii) Let ζ ≥ 1. Since P (|st| ≥ ζ) ≤ gt(γ1, θ, c, ζ), (C.14) implies

E[|st|γI(|st| > ζ)] ≤ ζγgt(γ1, θ, c, ζ) +

∫ ∞

ζ

xγ−1gt(γ1, θ, c, x)dx. (C.15)

By definition (39), gt(γ1, θ, c, ζ) ≤ c0{exp(−2c1ζγ1) + ζ−θt−(θ/2−1)} for some c0, c1 > 0. Thus,∫ ∞

ζ

xγ−1gt(γ1, θ, c, x)dx

≤ C
(
exp(−c1ζγ1)

∫ ∞

ζ

xγ−1 exp(−c1xγ1)dx+

∫ ∞

ζ

xγ−θ−1t−(θ/2−1)dx
)

≤ Cζγ
(
exp(−c1ζγ1) + ζ−θt−(θ/2−1)

)
= ζγgt(γ1, θ, c

′, ζ)

for some c′. This together with (C.15) proves (C.12). �
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Lemma C3 Let bH,k satisfy (43) with ν > 3 and 0 ≤ γ < 2. Then for 1 ≤ t,H ≤ T , T ≥ 1,

H−1
T∑

k=1

bH,|t−k|(
|t− k|
t ∨ k

)γ ≤ C(
H

H ∨ t
)γ, (C.16)

H−1
T∑

k=1

bH,|t−k|(
|t− k| ∨H

k
)1/2 ≤ C(

H

H ∨ t
)1/2, (C.17)

where C > 0 does not depend on t, T,H.

Proof. Notice that

(
H

H ∨ t
)γ =

(
(
H

t
)γ ∧ 1

)
= (

H ∧ t

t
)γ. (C.18)

By (43), bH,k ≤ C(1 + (k/H)ν)−1 for k ≥ 0 where ν ≥ 3. Therefore, for 0 ≤ γ < 2,

H−1
T∑

k=1

bH,k(k/H)γ ≤ C, max
k≥1

bH,k(k/H)γ ≤ C, (C.19)

where C does not depend on H, T .

Denote by Iγ,H the l.h.s. of (C.16). Then, by (C.19), noting that t ∨ k ≥ t,

Iγ,H = H−1
T∑

k=1

bH,|t−k|(
|t− k|
t ∨ k

)γ = H−1
T∑

k=1

bH,|t−k|(
|t− k|
H

)γ(
H

t ∨ k
)γ ≤ C(

H

t
)γ.

On the other hand, since |t− k|/(t ∨ k) ≤ 1, using (C.19) we obtain

Iγ,H ≤ H−1 ∑T
k=1 bH,|t−k| ≤ C

which together with (C.18) proves (C.16).

To prove (C.17), denote by IH the l.h.s. of (C.17). Write

IH = H−1
T∑

k=t/2+1

[...] +H−1
t/2∑
k=1

[...] =: IH;1 + IH;2.

Then,

IH;1 ≤ [
H−1

T∑
k=t/2+1

bT,|t−k|(
|t− k| ∨H

H
)1/2(

H

k
)1/2]

≤ C(
H

t
)1/2

[
H−1

T∑
k=1

bT,|t−k|(
|t− k| ∨H

H
)1/2

] ≤ C(
H

t
)1/2

by (C.19). On the other hand, for 1 ≤ k ≤ t/2, it holds |t− k| ≥ t/2. Then,

1 = (|t− k|/H)(H/|t− k|) ≤ 2(|t− k|/H)(H/t),
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and

IH;2 ≤ 2H−1
t/2∑
k=1

{bT,|t−k|( |t− k| ∨H

H
)1/2

|t− k|
H

}(H
t
)(
H

k
)1/2.

Then, using the second claim of (C.19), we obtain

IH;2 ≤ C(
H1/2

t
)

t/2∑
k=1

k−1/2 ≤ C(
H

t
)1/2.

The bounds for IH;1 and IH;2 imply IH ≤ C(H/t)1/2.

In view of (C.18), to prove (C.17), it remains to show that IH ≤ C. By (C.19),

IH ≤ H−1 ∑T
k=1 bT,|t−k|(

|t−k|∨H
H

)1/2(H
k
)1/2

≤ H−1 ∑2H
k=1 bT,|t−k|(

|t−k|∨H
H

)1/2(H
k
)1/2 + 2H−1 ∑T

k=2H bT,|t−k|(
|t−k|∨H

H
)1/2

≤ CH−1/2 ∑2H
k=1 k

−1/2 + CH−1 ∑T
k=1 bT,|t−k|(

|t−k|∨H
H

)1/2 ≤ C,

where C <∞ does not depend on t,H and T . This proves IH ≤ C and (C.17), and completes

the proof of the lemma. �
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