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This supplement complements Appendix A of the main paper, and we use a sequential num-
bering that follows Appendix A. In Appendix B, we provide primitive conditions for Assumption
2.6 and work through the binary choice model in Eq. (6) of the main text. In Appendix C, we
provide results for the sieve maximum likelihood estimators proposed in the main paper. In
Appendix D, we provide a consistent estimator for Qg ; that is needed for the Hausman-type

test proposed in Section 4.1. We present the Monte Carlo simulation results in Appendix E.

B. Discussion on Assumption 2.6

B.1. Primitive Conditions for Assumption 2.6

The internally consistent semiparametric density of observable variables has the following for-

m:
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To illustrate, we consider a = (61,11,12), i.e., 0 is a scalar and A is a 2 x 1 vector. Similar lines
of argument show that the same conclusion holds for general cases. The scale factor can be

written as follows:
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The gradient of the log likelihood at the true value ag in this simple case is
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Compared with the conventional CRE approach that V ~ N(0,1), and me(cm;A) =¢(c—wl)
where ¢(-) denotes the density function of the standard normal, the derivative term 6‘%1 fClW(clw; a)
in Eq. in our model is generally nonzero and related to the sample density and the pro-
posed model. This implies that the term ﬁg frix.cylx,c; (90)6%1 fClW(clw; @) in our model is used
to accommodate the modeling of the panel data structure fy x c(ylx,c;0) and the distribution
of the unobserved heterogeneity.

To provide a more primitive condition on the densities, we need to write out the deriva-

tives of the composite distribution of the unobserved heterogeneity 6%1 fCIW'a’ % fCIW'a’ and



%fC\W;a at the true value ag, where fC|W;a = fCIW(c@; a). We have
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We note that these derivatives are mainly stated in terms of the proposed parametric non-
linear panel data model fy x c(ylx,c;0) and the density of observables le x 7%, w). These

derivatives evaluated at the true parameter ag are
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It follows that
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The derivatives at the true value ag can be stated as follows
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where c¢q, (W) =1, and ¢y.q, (&) = ¢, (E).

When ¥ =R, or the domain of C is a real line, using the relationship in Eq. (A.11) we obtain

” e W (O)dE.
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Applying the relations %ﬂg e %cdc = % % e7%ede = 8() and [f()8()dt = £(0) into Egs.



(B.11)-(B.13) yields
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The gradient of the log likelihood in Eq. is therefore expressed in terms of the popu-
lation panel data model fyx c(ylx,c;00) and the density of observables leX,W(ylx,w). The
negative definiteness of the information matrix in Assumption 2.6 is equivalent to the pos-
itive definiteness of the outer product of the gradient of the log likelihood. The property of
the positive definiteness can be imposed by choosing the outer product E % log F(Y1X,W;ap)-
% logf(Y|X,W;a0)|X =x,W = w] as a strictly diagonally dominant matrix. To provide a more

transparent condition, we define the vector of the derivatives of the average likelihood as

Jio 597 Fr1x,c (1%, ¢500)f ¢y (clw; ao)d e

. ol —.
(B.16) Dyl ag = | €O ei80) 5 fopy (el aode

Joo Frix,c 1%, ¢;00) 55 Fo(clw; @o)de

Jio Frix.c(lx,¢;00) 53 f o (clw; ao)de

The detailed formulae of lefCW(clw;ao), %folw(clw; agp), and %fCIW(Clw;ao) are in Eqs.

(B.11)-(B.13) respectively.

Assumption B.1. (Strictly Diagonally Dominant)

Assume that every element of D f(ylx,w;ag) is nonzero and the outer product of the derivatives



of the average likelihood
(B.17) E[Df(ylx,w;ao)-Df(ylx,w;ao)' X=x,W=w

is strictly diagonally dominant.E]

Assumption implies that the expectation of the squared term of each derivative of the
average likelihood is larger than the sum of the expectation of the magnitudes of the prod-
ucts of the derivative and other derivatives of the average likelihood. It is straightforward
to verify that Assumption implies that every element of the gradient of the log likelihood
%bg f(Y|X,W;ao) is nonzero and its outer product is strictly diagonally dominant. Because
every diagonal element of the matrix E [% log f(YIX,W; agp)- % logf(YlX,W; ao)”X =x,W= w]

is positive, symmetric, and strictly diagonally dominant, the matrix is positive deﬁniteﬂ

B.2. Primitive Conditions for the Binary Choice Model

To better elucidate these sufficient conditions, we work through the binary choice model in Eq.

(6) by assuming that &; is symmetrically distributed, and m(X;,C;0) = 6X; + C. It follows that
frax,c(yelae,c;0) = (1-F¢, (0X; + C))l_thgt OX;+Cy".

Denote 1 = (11,...,17), and suppose that the conditional density function f(x,w_1ly = 1) # 0.
We choose a weighting function concentrating at y = 1, ie., Qy = 1,x,w_1) = flx,w_1ly = 1)
for all (x,w_1) and zero elsewhere. It follows that Q(y = i,x) =flxly = 1) for all w_; and zero
elsewhere.

The denominator term of ¢,.,(¢) in Eq. becomes
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LA square matrix A = [a;;] s strictly diagonally dominant if |a;;| > ¥ j; |a; ;| for all i.
2The result can be found as Corollary 6.1.10. in Horn and Johnson|(1985).



Similarly, the numerator term of ¢,.4(¢) becomes
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where D(¢; A) is related to the population density and M(¢;0) is related to the panel data model.

Assume that the support € is compact and the domain of C is a real line. Thus, we have
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We consider a = (01,11,12) and denote the derivatives of D(&;1) and M(&;0) with respect to A

and 6, respectively, as
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The derivatives of fC|W(clw;a) with respect to 01, 11, and A9 at the true value ag can then be

stated as
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Let f¢, be the PDF of ¢;. In the binary choice model, we have
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With the detailed formulae, we can construct the vector of the derivatives of the average likeli-
hood D f(y|x,w;ag) defined in Eq. (B.16) for the binary choice model. Assumption B.1 requires
that the outer product of Df(y|x,w;aq) is strictly diagonally dominant. Thus, Assumption |B.1

is intuitive and provides a sufficient condition for Assumption 2.6.

C. Sieve Maximum Likelihood Estimators

C.1. Sufficient Conditions and Proof for Theorem 3.1

We provide sufficient conditions and proof for Theorem 3.1. We first present conditions such

that the estimator is consistent. Let g = (@, fi).
Assumption C.1. For any € > 0, there exists a nonincreasing positive sequence cy(€) such that

for all N =1 we have

(C.D Ely(Z,g,)]- sup Elw(Z,g)] = cn(e),
g€9n:llg—8ollg=e

and liminfepn(e) > 0.

Define un(f) =N ’12‘;2 Lf(Zi) - E[f(Z)]], which denotes the empirical process indexed by



Assumption C.2. Assume that (i) for all N, there exists some gy € 9n such that
(C.2) |Ely(Z,gNn)]-Ely(Z,8,)]l = o(1);

(i1) supgeg, |UN(W(Z,8)) = 0p(1).
Theorem C.1. If Assumptions and hold, then |8 —goll = 0p(1).

Let C denote a positive finite number. Define A, c ={g€¥:llg—g,I=<Cland N, nc=1{g€
9N :llg — 8ol = C}. By Theorem we have g € A, y ¢ with probability approaching 1. Next,

we provide conditions to derive the convergence rate of g.

Assumption C.3. There exist some finite, positive, and nonincreasing sequences 61y, Oan, and

Osn that are all o(1) such that (i)

(C.3) sup |un(W(Z,8) - W(Z,g,))| = 0,(07y);
gENN,C

(ii) for all N large enough and for any 6 > 0 small enough,

c1¢N(6)

(C.4) E sup N W(Z,8) - ¥(Z,g0))|| < N

geNgncillg—8gollg<o

where c1 is some positive number and ¢n(-) is some function such that 6" yn(5) is a decreasing
function for some v € (0,2);

(ii1) 651%,4)(52]\1) < coV'N for some finite positive co > 0; (iv) llgn — &ollg = O(63N).

Theorem C.2. Suppose that Assumptions and hold. Then, we have ||g§ - gol =

Op(ex), where ey = max{01n,02n,03n} = o(1).
Assumption C.4. Assume that there exists cy < oo such that [[v]y < cylvlg.

Letey = EJ*V'(SN with 6y — oo such that ey remains 0,(1). Let 9y = o/ x F1n. Let N, ={(g €
YG:lg-8ollg <en)t and Ny N = N;NYy. It is true that g€ A, ;y with probability approaching
one. Let IIy denote the projection of g on ¥y under the norm |-y and let gon = IIngo.
Assumption implies that g, vy € A5 N.

Iy is also the projection of v on ¥y, which is the closed linear span of ¥y — g, n. Let



vy =y -vi,..., Iy vc*la) € 7/]\‘,1“. By construction, we have for all v € 7y
dpy(go)vl = (Y'vx,v)y.

Let xy denote a sequence of positive numbers and xy = o(N~Y2). For any g, let g, =8*KN-
Y'vy-

Assumption C.5. Assume that (i)

(C.5) sup |.UN (W(Z .8~ w(Z,8) - Ay(Z, ) +xN -Y’v?iz])| = 0,3,
8€ENg N

(C.6) sup | (Ay(Z, O vr1- Ay(Z, g0y v31)| = Opcw);
gENg N

(ii) let Ky (g) = Ely(Z,8) - w(Z,8,)); then,

lg* —goll2 — g —goll2
C.7) sup |Ky(g)—Ky(go)— il ad

| =0,K3);
gENg N 2

(iii) KN/EZ*V =0(1) and (iv) IIU;T ly <ocoforall j=1,...,d,.
Theorem C.3. Suppose that Assumptions and [C.5| hold. Then
AVN@-ag) & H(0,02) = ¥ (0,7 Qy).

The proofs of Theorem and follow the same arguments as [Chen, Liao, and
Sun| (2014) and Hahn, Liao, and Ridder| (2018), so we omit the details. By the Cramér-Wold
theorem, Theorem [C.3|implies Theorem 3.1.

C.2. A Consistent Estimator for QQ

To make inference, one would need a consistent estimator for O when the sieve MLE is imple-

mented based on a Hermite polynomial series. The estimator is a sample analog. To be specific,

10



for j=1,...,d,, define the empirical Riesz representer 17;7 as

dpi(@lv]l= (ﬁ;,v)N,w, where

Y. dAy(Z;, g +Tv1)lve]
= dr =0’

1
U1,V =—
(V1,V2)N,y N
A consistent estimator for Q is given as

1 N !/ AN\ ~k AN\ Ak
Z (AU/(Zlag)[l/)\;]a'7A1[/(Zla§)[l/)\;a]) (Aw(zug)[vl]a'7A1[/(Zlag)[vda])

(C.8) Q=—
Nizl

The consistency of Q can be proven by Theorem 4.1 of Hahn, Liao, and Ridder (2018). More
important, even if appears complicated, one can apply Theorem 6.1 and Remark 6.1 of
Hahn, Liao, and Ridder| (2018) to use the variance estimator of the parametric MLE model
when the sieve space is generated by a finite number of basis functions such as a Hermite
polynomial series. Specifically, suppose that f; is approximated by f1(v; ) where § has K(N)

dimensions. We then write

FragOeTap= [ frixobls.co)fic-Thpide,
and the sieve estimator is given by
N 1N —
((i, ﬁ) = argn;aﬁxﬁ Z log (fY|X,W(Yl |Xi1Wi;65/17 .B))a and
s i=1
F1) = f1(w; B).

Let §; = Vlog(leX’W(Yi 1X;,W;;a,0)) and H; = Vzlog(wa,W(YiIXi,Wi;a,ﬁ)) be the gradi-
ent and the Hessian of log (le X W(YiIX i,Wi;a,ﬁ)), respectively, evaluated at (&, ,3). Let V be

the variance matrix estimator of the MLE estimator that is given by

)|

2|~
1o
2| =
M=

~ R 1N -1
P A (ke )

1

~
1]

The expression for Q will then be the upper-left d 4 x d, matrix of V. Equivalently, let 3, a,i be the

1=

first d, row of the vector ofjf_l-ﬂ with 7= N1 Zli\il —ﬁi, and Q is given by N-1yN 1 §a,i§'a i

11



D. A Consistent Estimator for Q ;

In this section, we provide a consistent estimator for Q4;. Recall that the parameter MLE

estimator given in Section 4.1 is

P 1 XY =
(apaana) = argmaxaed,ref’/_ﬁ Z fpa(Yi|XiaWi§a,T)7
i=1

fpa(ylx,w;a,r)=Lfmx,c(ylx,C;B)fv(c—W/l;r)dc.

Let Spq,i = V1og(fpa(Yi 1X;,W;;a,B)) and I/-Ipa,i =V2 log(fpa(YiIXi,Wi; a, ) be the gradient and
the Hessian of log(f,q(Y;|Xi, W;;a, ), respectively, evaluated at (@pq,Tpa). Let Vyq be the

variance matrix estimator of the MLE estimator that is given by

The expression for Q pa Will then be the upper-left d, xd, matrix of Vpa. Equivalently, let $,,4 q,;
be the first d, row of the vector of J/z,zp_(} “Spa,i With J?pa =N"1 Zli\il —ﬁpa,i, and ﬁpa is given by
Nt Zi\;l §paa"‘vi'é\lpa,z)c,i :

Given these results, a consistent estimator for Qg; is given by

N 1 N N . = ~
Qqi = N 2 (3pa,0i =5a,i) - (Bpa,ai = Fa,i) -

i=1
E. Monte Carlo Simulation

In this section, we present simulation results to illustrate the finite-sample performance of the
proposed sieve ML estimation procedure of a panel data model in Section 3. We consider both

panel data probit models and panel data Poisson models.

12



E.1. Panel Data Probit Models

We demonstrate our simulation results through static and dynamic settings. The static data

generating process (DGP) is defined as follows:
Y: = 1(9Xt+C+€t =0), for t = 1,2,
_ _ 12
C=AW+V, W= X,,
23

X9=0.5X1+¢, X1 ~U(0,2), {~N(0,1),

(e1,€2) ~ N(0,I5),

where I is the 2 x 2 identity matrix and (8,1) = (=0.5,0.5). For a random variable @, we denote
the corresponding truncated random variable over interval [a,b] as Trun(Q,la, b])ﬂ Let u, be

the mean of w. Three specifications of V are considered:

(E.1) DGPI. V ~Trun(N(0,1),[-1,1]),
(E.2) DGPIIL: V =w -y, with w ~ Trun(H,[—2,2])) and InH = N(0,5),
(E.3) DGPIIL: V = w — p, with Vo ~ Trun(Rayleigh(1),[-2,15]).

The unobserved heterogeneities in all the simulation designs have bounded supports, so As-
sumption 2.4(ii) is satisfied in all cases. We consider sample sizes of 500 and 1,000, and for
each case, we consider 1000 simulation replications. For comparison, we also consider two oth-
er estimators. The first is an infeasible estimator that treats V as known. The second is the
conventional random effects estimator, which specifies the unobserved heterogeneity to be nor-
mally distributed. The simulation results for parameters and APE are presented in Tables
and respectively.

The estimation results of the parameters in DGP I show a small bias in all three estimators.
In this case, the normal specification in the conventional random effects estimator is close to
the true distribution of the data, and the estimation does not suffer from the misspecification

of the estimator. The proposed sieve ML estimator exhibits small degrees of bias in DGPs II &

3Trun(Q,[a,b]) is a random variable generated by Fél(u ‘(Fg(b)-Fg(a)) + Fg(a)), where Fg is the CDF of the

@ random variable, Fél is the inverse of Fy, and u is a uniform random variable on [0, 1].

13



III, but the conventional random effects estimator exhibits conspicuous bias in 6, A, and o for
all sample sizes.

The simulation results overall show that the proposed sieve ML estimator works well in
simulation designs. As expected, the infeasible estimator outperforms the proposed estima-
tor in RMSE. The conventional estimator performs well at estimating 8 and A in DGP I, but
causes bias in DGPs II & III. The estimation results for APEs in Tables present a similar
pattern. While the infeasible estimator and the proposed sieve ML estimator perform well in
all simulations, the conventional estimator performs well only in DGP 1.

We also consider the Hausman-type test proposed in Section 4.1 for the normality assump-
tion of V. The results are summarized in Table[9] For DGP I, the rejection rates are 0.051 and
0.033, which are close to the nominal size of 5% given that the normality assumption holdsE]
For DGPs II and III, the rejection rates are much higher than the nominal size of 5% and in-
crease with sample size, indicating that our test is consistent when the normality assumption
is violated.

The plots of the simulation results for the remaining error in the CRE specification fy of
DGPs I, II, and III in the static probit models appear in Figures 1-3. While the distribution of
V in DGP I is symmetric, the distributions of V in DGPs II and III are nonsymmetric. These
plots show that the sieve ML estimators perform poorly in DGPs II and III simulation designs
because not only do the average results miss the shape of the function, but the confidence
bands also do not offer a view of accuracy. This implies that to obtain a better nonparametric
estimate of fy, a sample size larger than 1000 may be needed. However, the visual displays
of the average estimator capture the basic features of the true fy such as the location of the
mode and symmetry or nonsymmetry. The black dashed lines are constructed by 1000 sieve
ML estimated curves from 1000 replications in the 10th and 90th percentiles.

The simulation design for dynamic panel data probit models is close to the static panel data

probit models. We define the DGP for dynamic models as

Yt=1('}’Yt_1+9Xt+C+€tZO), fOI‘t=1,...,7,

4We use an empirical covariance matrix, which is the average of the 1000 simulated estimators, to conduct the
Hausman test in the simulations.
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where (y,0,1) = (-0.5,0.5,0.5) and DGPs for X; and C are the same as those in the static
models.

Tables and present the estimation results for parameters and the magnitudes of
state dependence. We reach the same conclusion as the estimation results of the static models.
While the proposed sieve ML estimator performs well in all DGPs, the conventional random
effects estimator cannot deliver a consistent estimation for the parameters y, 1, and o in DGPs

IT & III. The simulation results for the Hausman-type test are also similar to the static case.

E.2. Dynamic Panel Data Poisson Models

We consider a data generating process for dynamic panel data Poisson models as follows:
(E.4) m(yi—1,%¢,¢;0) =vY;_1+0X; +C with  y,=0,1,...,

where m(y;—1,x¢,¢;0) = E(Y¢lyi-1,%:,¢) and (y,0,1) =(=0.5,0.5). While the DGP for X; is X; ~
U(0,2), X; ~N(0,1) for t > 1, the DGP for Cis C =0.5W+V, W=24¥" X,+z withz ~ N(0,1).

In this case, we consider unbounded support for V and three specifications:

(E.5) DGPIV:V ~N(0,1),
(E.6) DGPV:V =w-yu, with w ~ Student’s ¢ with 100 degrees of freedom,

(E.7) DGP VLV =w—py with v =w1 +wa,w1 ~N(0,1),ws ~ Trun(Rayleigh(1),[-2,12]).

The finite-sample performance is evaluated over two different time dimensions: T = 2 and
T=4.

While Tables report the estimated results for panel data for two periods, Tables
[I7report the estimated results for panel data for four periods. From the estimation results, we
find that in the designs of panel data for two periods, the proposed estimator outperforms the
conventional estimator in the parameter estimation. However, for longer periods, such as four
periods, the conventional estimator performs well and is close to the proposed estimator. Table
[18|reports the Hausman-type test proposed for the normality assumption of V. In the simulated
data for two periods, the rejection rates of the proposed Hausman-type test are much higher

than the nominal size of 5% and increase with sample size in all designs. This implies that the
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conventional estimator performs poorly even for the case in which V is normally distributed.
However, in the simulated data for four periods with a sample size of 1000, the estimation
results of the conventional estimator are close to those of the proposed estimator in DGP I,
and the rejection rate is 0.080. This suggests under an unbounded assumption of V that the
conventional estimator may perform better for panel data with a longer period and with a

larger sample size.
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Table 1: Simulations of Static Probit Models

Infeasible Conventional Sieve ML
N=500 0 A 0 A o 0 A
True -0.5 0.5 -0.5 0.5 1 -0.5 0.5
DGPI:
Mean -0.500 0.500 -0.502 0.505 0.920 -0.423 0.404

Std.dev. -0.499 0.500 -0.500 0.503 0.919 -0.420 0.408
RMSE 0.049 0.057 0.065 0.079 0.141 0.165 0.143

DGP II:
Mean -0.499 0.496 -0.607 0.197 1879 -0.419 0.403

Std.dev. -0.497 0.496 -0.600 0.200 1.868 -0.415 0.416
RMSE 0.060 0.062 0.141 0.321 0911 0.176 0.158
DGP III:

Mean -0.499 0.496 -0.594 0.228 1.768 -0.417 0.405
Std.dev. -0.496 0.496 -0.590 0.229 1.755 -0.410 0.421
RMSE 0.057 0.061 0.129 0.292 0.797 0.184 0.163

Note: Standard deviations of the parameters are computed by the standard devia-
tions of the estimates across 1000 simulations. The notations DGP I, DGP II, and

DGP III represent the data generating processes in Egs. (E-I), (E.2), and (E:3),
respectively.

Table 2: Simulations of Static Probit Models

Infeasible Conventional Sieve ML
N=1000 0 A 0 A o 0 A
True -0.5 0.5 -0.5 0.5 1 -0.5 0.5
DGPI:
Mean -0.501 0.500 -0.504 0.506 0.923 -0.489 0.558

Std.dev. -0.502 0.500 -0.503 0.504 0.926 -0.491 0.552
RMSE 0.034 0.038 0.045 0.0565 0.114 0.116 0.161
DGP II:

Mean -0.502 0.501 -0.608 0.206 1866 -0.474 0.543
Std.dev.  -0.500 0.500 -0.606 0.207 1.853 -0.465 0.546
RMSE 0.041 0.044 0.128 0.304 0.883 0.114 0.111
DGP III:

Mean -0.501 0.501 -0.594 0.235 1.758 -0.469 0.545
Std.dev. -0.500 0.499 -0.592 0.234 1.749 -0.462 0.551
RMSE 0.039 0.043 0.114 0.275 0.773 0.114 0.112

Note: Standard deviations of the parameters are computed by the standard devia-
tions of the estimates across 1000 simulations. The notations DGP I, DGP II, and

DGP III represent the data generating processes in Egs. (E-I), (E.2), and (E:3),
respectively.
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Table 3: Simulation of APE(X) in Static Probit Models

Infeasible Conventional Sieve ML
N=500 Estimator Estimator Estimator

DGPI:

Mean -0.168 -0.143 -0.126
Std. dew. 0.001 0.017 0.042
RMSE — 0.017 0.059
DGP II:

Mean -0.188 -0.113 -0.125
Std. dev. 0.001 0.017 0.045
RMSE - 0.026 0.072
DGP III:

Mean -0.188 -0.116 -0.124
Std. dev. 0.001 0.016 0.046
RMSE — 0.025 0.079

Note: Standard deviations of the parameters are comput-
ed by the standard deviations of the estimates across 1000
simulations. The notations DGP I, DGP II, and DGP III

represent the data generating processes in Eqs. (E.I), (E.2),
and (E.3), respectively.

Table 4: Simulation of APE(X) in Static Probit Models

Infeasible Conventional Sieve ML
N=1000 Estimator Estimator Estimator

DGPI:

Mean -0.168 -0.144 -0.141
Std. dew. 0.001 0.011 0.034
RMSE — 0.011 0.043
DGP II:

Mean -0.188 -0.113 -0.136
Std. devw. 0.001 0.011 0.032
RMSE - 0.024 0.055
DGP III:

Mean -0.188 -0.116 -0.135
Std. dew. 0.001 0.011 0.031
RMSE — 0.022 0.062

Note: Standard deviations of the parameters are comput-
ed by the standard deviation of the estimates across 1000
simulations. The notation DGP I, DGP II, and DGP III rep-
resent the data generating processes in Egs. (E.I), (E2),
and (E.3), respectively.
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Table 5: Simulations of Dynamic Probit Models

Infeasible Conventional Sieve ML

N=500 Y 0 A Y 0 A o Y 0 A

True -0.5 0.5 0.5 -0.5 0.5 0.5 1 -0.5 0.5 0.5
DGP I:
Mean -0.502 0.498 0.498 -0.382 0.378 0.198 0.301 -0.555 0.444 0.490
Std.dev. -0.501 0.500 0.496 -0.379 0.376 0.198 0.334 -0.551 0.453 0.464
RMSE 0.034 0.066 0.057 0.125 0.138 0.307 0.722 0.158 0.156 0.191
DGP II:
Mean -0.503 0.497 0.500 -0.383 0.376 0.198 0.306 -0.553 0.449 0.501
Std.dev. -0.501 0.498 0.500 -0.381 0.378 0.195 0.338 -0.545 0.459 0.460
RMSE 0.033 0.067 0.059 0.124 0.140 0.306 0.718 0.153 0.177 0.220
DGP III:
Mean -0.505 0.500 0.500 -0.372 0.352 0.155 0.317 -0.543 0.454 0.512
Std.dev. -0.502 0.501 0.500 -0.370 0.349 0.154 0.351 -0.536 0.463 0.467
RMSE 0.034 0.068 0.062 0.135 0.163 0.349 0.710 0.160 0.172 0.232

Note: Standard deviations of the parameters are computed by the standard deviations of the estimates across
1000 simulations. The notations DGP I, DGP II, and DGP III represent the data generating processes in Egs.

(E-1), (E-2), and (E-3), respectively.

Table 6: Simulations of Dynamic Probit Models

Infeasible Conventional Sieve ML

N=1000 Y 0 A 04 0 A o Y 0 A

True -0.5 0.5 0.5 -0.5 0.5 0.5 1 -0.5 0.5 0.5
DGPI:
Mean -0.501 0.498 0.498 -0.372 0.352 0.155 0.317 -0.510 0.500 0.512
Std.dev. -0.500 0.499 0.500 -0.370 0.349 0.154 0.351 -0.513 0.495 0.513
RMSE 0.024 0.045 0.042 0.135 0.163 0.349 0.710 0.105 0.102 0.098
DGP II:
Mean -0.501 0.499 0.499 -0.380 0.381 0.198 0.328 -0.506 0.505 0.507
Std.dev. -0.500 0.497 0.499 -0.379 0.382 0.198 0.354 -0.505 0.505 0.507
RMSE 0.023 0.045 0.043 0.123 0.127 0.304 0.687 0.104 0.103 0.103
DGP III:
Mean -0.501 0.497 0497 -0.371 0.360 0.159 0.339 -0.508 0.503 0.508
Std.dev. -0.500 0.499 0.495 -0.368 0.360 0.158 0.367 -0.506 0.504 0.508
RMSE 0.023 0.050 0.044 0.133 0.147 0.343 0.679 0.102 0.099 0.107

Note: Standard deviations of the parameters are computed by the standard deviations of the estimates across
1000 simulations. The notations DGP I, DGP II, and DGP III represent the data generating processes in Eqs.

(E3), (E-2), and (E-3), respectively.
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Table 7: Simulations of State Dependence in the Dynamic Probit Models

Infeasible Conventional Sieve ML
N=500 Estimator Estimator Estimator

DGPI:

Mean -0.127 -0.138 -0.162
Std. dew. 0.003 0.013 0.042
RMSE — 0.019 0.055
DGP II:

Mean -0.126 -0.138 -0.161
Std. dev. 0.003 0.013 0.041
RMSE - 0.019 0.054
DGP III:

Mean -0.117 -0.135 -0.158
Std. dev. 0.003 0.013 0.044
RMSE — 0.024 0.060

Note: Standard deviations of the parameters are comput-
ed by the standard deviations of the estimates across 1000
simulations. The notations DGP I, DGP II, and DGP III
represent the data generating processes in Eqs. (E.I), (E.2),
and (E.3), respectively.

Table 8: Simulations of State Dependence in the Dynamic Probit Models

Infeasible Conventional Sieve ML
N=1000 Estimator Estimator Estimator

DGPI:

Mean -0.127 -0.137 -0.141
Std. dew. 0.002 0.009 0.029
RMSE — 0.016 0.033
DGP II:

Mean -0.126 -0.137 -0.140
Std. devw. 0.002 0.009 0.029
RMSE - 0.016 0.032
DGP III:

Mean -0.117 -0.135 -0.141
Std. dew. 0.002 0.010 0.029
RMSE — 0.022 0.037

Note: Standard deviations of the parameters are comput-
ed by the standard deviations of the estimates across 1000
simulations. The notations DGP I, DGP II, and DGP III
represent the data generating processes in Eqs. (E.T), (E.2),
and (E.3), respectively.
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Table 9: Hausman-type Test for Normality: Empirical Size

Static Probit Models Dynamic Probit Models
N=500 N=1000 N=500 N=1000

DGPI: 0.051 0.033 0.039 0.062
DGP II: 0.145 0.977 0.420 0.598
DGPIII: 0.139 0.957 0.368 0.545

Note: The p-values of 0.05 of Chi-distributions for static models and
dynamic models are 5.991 and 7.815, respectively. Empirical size refer-
s to the fraction of rejections when using these values as the critical
values. The notations DGP I, DGP II, and DGP III represent the data

generating processes in Egs. (E-I), (E.2), and (E.3), respectively.
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Table 10: Simulations of Two-Period Dynamic Poisson Models

Infeasible Conventional Sieve ML

N=500 Y 0 A Y 0 A o Y 0 A

True -0.5 0.5 0.5 -0.5 0.5 0.5 1 -0.5 0.5 0.5
DGP IV:
Mean -0.502 0.498 0.498 -0.382 0.378 0.198 0.301 -0.555 0.444 0.490
Std.dev. -0.501 0.500 0.496 -0.379 0.376 0.198 0.334 -0.551 0.453 0.464
RMSE 0.034 0.066 0.057 0.125 0.138 0.307 0.722 0.158 0.156 0.191
DGP V:
Mean -0.503 0.497 0.500 -0.383 0.376 0.198 0.306 -0.553 0.449 0.501
Std.dev. -0.501 0.498 0.500 -0.381 0.378 0.195 0.338 -0.545 0.459 0.460
RMSE 0.033 0.067 0.059 0.124 0.140 0.306 0.718 0.153 0.177 0.220
DGP VI:
Mean -0.505 0.500 0.500 -0.372 0.352 0.155 0.317 -0.543 0.454 0.512
Std.dev. -0.502 0.501 0.500 -0.370 0.349 0.154 0.351 -0.536 0.463 0.467
RMSE 0.034 0.068 0.062 0.135 0.163 0.349 0.710 0.160 0.172 0.232

Note: Standard deviations of the parameters are computed by the standard deviations of the estimates across
1000 simulations. The notations DGP IV, DGP V, and DGP VI represent the data generating processes in Egs.

(E-5), (E-6), and (E.7), respectively.

Table 11: Simulations of Two-Period Dynamic Poisson Models

Infeasible Conventional Sieve ML

N=1000 Y 0 A Y 0 A o Y 0 A

True -0.5 0.5 0.5 -0.5 0.5 0.5 1 -0.5 0.5 0.5
DGPIV:
Mean -0.501 0.498 0.498 -0.372 0.352 0.155 0.317 -0.510 0.500 0.512
Std.dev. -0.500 0.499 0.500 -0.370 0.349 0.154 0.351 -0.513 0.495 0.513
RMSE 0.024 0.045 0.042 0.135 0.163 0.349 0.710 0.105 0.102 0.098
DGPV:
Mean -0.501 0.499 0.499 -0.380 0.381 0.198 0.328 -0.506 0.505 0.507
Std.dev. -0.500 0.497 0.499 -0.379 0.382 0.198 0.354 -0.505 0.505 0.507
RMSE 0.023 0.045 0.043 0.123 0.127 0.304 0.687 0.104 0.103 0.103
DGP VI:
Mean -0.501 0.497 0.497 -0.371 0.360 0.159 0.339 -0.508 0.503 0.508
Std.dev. -0.500 0.499 0.495 -0.368 0.360 0.158 0.367 -0.506 0.504 0.508
RMSE 0.023 0.050 0.044 0.133 0.147 0.343 0.679 0.102 0.099 0.107

Note: Standard deviations of the parameters are computed by the standard deviations of the estimates across
1000 simulations. The notations DGP IV, DGP V, and DGP VI represent the data generating processes in Eqs.

(E-5), (E-6), and (E7), respectively.
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Table 12: Simulations of APE(%) in the Two-Period Dynamic Poisson Models

Infeasible Conventional Sieve ML
N=500 Estimator Estimator Estimator

DGP IV:

Mean -0.127 -0.138 -0.162
Std. dew. 0.003 0.013 0.042
RMSE - 0.019 0.055
DGP V:

Mean -0.126 -0.138 -0.161
Std. devw. 0.003 0.013 0.041
RMSE - 0.019 0.054
DGP VI:

Mean -0.117 -0.135 -0.158
Std. dew. 0.003 0.013 0.044
RMSE - 0.024 0.060

Note: Standard deviations of the parameters are comput-
ed by the standard deviations of the estimates across 1000
simulations. The notations DGP IV, DGP V, and DGP VI
represent the data generating processes in Egs. (E.5), (E.6),
and (E.7), respectively.

Table 13: Simulations of APE(%) in the Two-Period Dynamic Poisson Models

Infeasible Conventional Sieve ML
N=1000 Estimator Estimator Estimator

DGP IV:

Mean -0.127 -0.137 -0.141
Std. dew. 0.002 0.009 0.029
RMSE - 0.016 0.033
DGP V:

Mean -0.126 -0.137 -0.140
Std. dev. 0.002 0.009 0.029
RMSE - 0.016 0.032
DGP VI:

Mean -0.117 -0.135 -0.141
Std. dew. 0.002 0.010 0.029
RMSE - 0.022 0.037

Note: Standard deviations of the parameters are comput-
ed by the standard deviations of the estimates across 1000
simulations. The notations DGP IV, DGP V, and DGP VI
represent the data generating processes in Egs. (E.5), (E.6),
and (E.7), respectively.
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Table 14: Simulations of Four-Period Dynamic Poisson Models

Infeasible Conventional Sieve ML

N=500 Y 0 A Y 0 A o Y 0 A

True -0.5 0.5 0.5 -0.5 0.5 0.5 1 -0.5 0.5 0.5
DGP IV:
Mean -0.500 0.499 0.500 -0.524 0.494 0.500 1.004 -0.418 0.445 0.358
Std. dev. -0.500 0.499 0.499 -0.522 0.494 0.499 1.004 -0.429 0.458 0.351
RMSE 0.020 0.023 0.018 0.035 0.036 0.039 0.046 0.133 0.157 0.196
DGP V:
Mean -0.501 0.499 0.501 -0.525 0.493 0.499 1.013 -0.421 0.460 0.393
Std. dev. -0.500 0.501 0.500 -0.525 0.492 0.500 1.011 -0.427 0.463 0.385
RMSE 0.020 0.023 0.018 0.036 0.040 0.040 0.047 0.121 0.130 0.152
DGP VI:
Mean -0.502 0.500 0.500 -0.528 0.487 0.497 1.200 -0.463 0.454 0.366
Std. dev. -0.502 0.500 0.500 -0.527 0.488 0.499 1.199 -0.475 0.461 0.359
RMSE 0.020 0.021 0.017 0.039 0.048 0.046 0.206 0.101 0.150 0.183

Note: Standard deviations of the parameters are computed by the standard deviations of the estimates across
1000 simulations. The notations DGP IV, DGP V, and DGP VI represent the data generating processes in Egs.

(E-5), (E-6), and (E.7), respectively.

Table 15: Simulations of Four-Period Dynamic Poisson Models

Infeasible Conventional Sieve ML

N=1000 Y 0 A Y 0 A o Y 0 A

True -0.5 0.5 0.5 -0.5 0.5 0.5 1 -0.5 0.5 0.5
DGPIV:
Mean -0.500 0.500 0.499 -0.524 0.491 0.502 1.004 -0.511 0.470 0.462
Std. dev. -0.500 0.500 0.500 -0.524 0.491 0.502 1.005 -0.516 0.472 0.460
RMSE 0.015 0.015 0.012 0.031 0.028 0.029 0.032 0.073 0.089 0.098
DGPV:
Mean -0.500 0.499 0.500 -0.524 0.492 0.501 1.013 -0.421 0.472 0.389
Std. dev. -0.501 0.499 0.500 -0.524 0.492 0.501 1.013 -0.426 0.484 0.382
RMSE 0.015 0.016 0.013 0.030 0.027 0.030 0.034 0.119 0.116 0.154
DGP VI:
Mean -0.501 0.500 0.500 -0.527 0.484 0.494 1.203 -0.471 0.448 0.365
Std. dev. -0.501 0.501 0.499 -0.526 0.486 0.493 1.203 -0.484 0.452 0.357
RMSE 0.015 0.015 0.011 0.033 0.038 0.032 0.206 0.101 0.149 0.182

Note: Standard deviations of the parameters are computed by the standard deviations of the estimates across
1000 simulations. The notations DGP IV, DGP V, and DGP VI represent the data generating processes in Eqs.

(E-5), (E-6), and (E7), respectively.
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Table 16: Simulations of State Dependence in the Four-Period Dynamic Poisson Models

Infeasible Conventional Sieve ML
N=500 Estimator Estimator Estimator

DGP IV:

Mean -0.130 -0.133 -0.119
Std. dew. 0.003 0.007 0.030
RMSE - 0.009 0.032
DGP V:

Mean -0.129 -0.133 -0.120
Std. devw. 0.003 0.007 0.026
RMSE - 0.009 0.027
DGP VI:

Mean -0.119 -0.124 -0.132
Std. dew. 0.003 0.007 0.027
RMSE - 0.010 0.030

Note: Standard deviations of the parameters are comput-
ed by the standard deviations of the estimates across 1000
simulations. The notations DGP IV, DGP V, and DGP VI
represent the data generating processes in Egs. (E.5), (E.6),
and (E.7), respectively.

Table 17: Simulations of State Dependence in the Four-Period Dynamic Poisson Models

Infeasible Conventional Sieve ML
N=1000 Estimator Estimator Estimator

DGP IV:

Mean -0.130 -0.133 -0.144
Std. dew. 0.002 0.005 0.020
RMSE - 0.008 0.025
DGP V:

Mean -0.129 -0.132 -0.120
Std. dev. 0.002 0.005 0.025
RMSE - 0.007 0.027
DGP VI:

Mean -0.119 -0.123 -0.134
Std. dew. 0.002 0.005 0.028
RMSE - 0.008 0.031

Note: Standard deviations of the parameters are comput-
ed by the standard deviations of the estimates across 1000
simulations. The notations DGP IV, DGP V, and DGP VI
represent the data generating processes in Egs. (E.5), (E.6),
and (E.7), respectively.
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Table 18: Hausman-type Test for Normality: Empirical Size

Two-Period Dynamic Poisson Models Four-Period Dynamic Poisson Models

N=500 N=1000 N=500 N=1000
DGP I: 0.313 0.833 0.190 0.080
DGPII:  0.287 0.807 0.210 0.200
DGPII: 0.340 0.867 0.166 0.139

Note: The p-values of 0.05 of Chi-distributions for static models and dynamic models are 5.991 and
7.815, respectively. Empirical size refers to the fraction of rejections when using these values as the
critical values. The notations DGP IV, DGP V, and DGP VI represent the data generating processes in

Egs. (E'5), (E.6), and (E.7), respectively.
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