
Supplement to “Estimation of Volatility Functions in Jump

Diffusions Using Truncated Bipower Increments”

Jihyun Kim
Toulouse School of Economics

University of Toulouse Capitole

Joon Y. Park
Indiana University

and Sungkyunkwan University

Bin Wang
Harbin Institute of Technology, Shenzhen

This supplement contains two sections, Sections C and D. Section C provides the proofs
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C Proofs of Lemmas A.1-A.4

Proof of Lemma A.1. By the occupation time formula and change of variables, we have

1

h

∫ T

0
fx,h(Xt)[g(Xt)− g(x)]dt =

∫
f(u)[g(x+ hu)− g(x)]`(T, x+ hu)du

= g′(x)h

∫
(ιf)(u)`(T, x+ hu)du+

ı2(f)

2
g′′(x)h2`(T, x)

+ op(h
2`(T, x)). (C.1)

For the first term in (C.1), we may write
∫

(ιf)(u)`(T, x+ hu)du as∫
(ιf)(u)σ−2(x+ hu)`[T, x+ hu]du

= σ−2(x)

∫
(ιf)(u)`[T, x+ hu]du+ (σ−2)′(x)ı2(f)h`[T, x] + op(h`(T, x)) (C.2)

by Taylor expansion. Then, we are left to analyze the first term in (C.2).
Let u > 0, and ϕ(u, v) = 1{0 ≤ (v − x)/h < u} and Φ(u, v) =

∫ v
−∞ ϕ(u,w)dw. By the

Bouleau-Yor formula (see, e.g., Theorem 78 in Chapter IV of Protter (2005)),

`[T, x+ hu]− `[T, x] = 2

∫ T

0
ϕ(u,Xt)dX

c
t

+ 2

∫ T

0

∫
R

[
Φ(u,Xt−+zτ(Xt−))−Φ(u,Xt−)]Λ(dt, dz)+Oa.s.(hu),
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from which, together with ı1(f) = 0 and Fubini’s theorem for stochastic integrals (see, e.g., Theorem
64 in Chapter IV of Protter (2005)), we may readily deduce that∫

(ιf)(u)`[T, x+ hu]du =

∫
(ιf)(u) (`[T, x+ hu]− `[T, x]) du

= 2 (AT +BT + CT +DT ) +Oa.s.(h), (C.3)

with

AT +BT =

∫ T

0
(ιf)1

(
Xt − x
h

)
(σ(Xt)dWt + µ(Xt)dt) ,

CT +DT =

∫ T

0

∫
R

∫ Xt−+zτ(Xt−)

Xt−

(ιf)1

(
v − x
h

)
dv (Γ(dt, dz) + λ(dz)dt) .

Using similar arguments, we may show that (C.3) also holds for u < 0.
By Lemma A.1 in PW, we have

BT = ı2(f)µ(x)h`(T, x)(1 + op(1)), (C.4)

noting that ı(f1) = ı1(f) for f defined on [−1, 1], and therefore, ı((ιf)1) = ı1(ιf) = ı2(f).
Next, it follows from the occupation time formula and changing the order of integrals that

DT = h

∫ ∞
−∞

∫ ∞
−∞

λ1

(
x− u+ hv

τ(u)

)
(ιf)1(v)dv`(T, u)du = ı2(f)hξ(T, x)(1 + op(1)) (C.5)

due to Lemma A.2 in PW. The stated result then follows from (C.1)-(C.5).

Proof of Lemma A.2. We may write

|∆iW ||∆i+1W | − ωδ = |∆iW |
(
|∆i+1W | −

√
ωδ
)

+
√
ωδ
(
|∆iW | −

√
ωδ
)
, (C.6)

from which we have NT = UT +RT , where

UT =
1√
δh

n−1∑
i=2

[
(fx,hg) (X(i−2)δ)|∆i−1W |+(fx,hg)(X(i−1)δ)

√
ωδ
] (
|∆iW |−

√
ωδ
)

RT =
1√
δh

[
(fx,hg) (X(n−2)δ)|∆n−1W |

(
|∆nW |−

√
ωδ
)
+(fx,hg) (X0)

√
ωδ
(
|∆1W |−

√
ωδ
)]
.

It is easy to show that RT is asymptotically negligible, and therefore, we have NT = UT (1 + op(1)).

For each T, δ, h > 0, let V T,δ,h =
(
V T,δ,h
1 , V T,δ,h

2

)
, with V T,δ,h

j =
(
V T,δ,h
j,t

)
t≥0 for j = 1, 2 as

processes indexed by t and V T,δ,h
j,t =

∑bTt/δc
i=2 ζT,δ,hj,i , where

ζT,δ,h1,i =
1√
h

(χx,hϕ) (X(i−1)δ)∆iW

ζT,δ,h2,i =
1√
δh

[
(fx,hg) (X(i−2)δ)|∆i−1W |+(fx,hg)(X(i−1)δ)

√
ωδ
] (
|∆iW |−

√
ωδ
)
.
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For the stated result in Lemma A.2, it then suffices to show that(
V T,δ,h
1,1 , V T,δ,h

2,1

)
=d `(T, x)1/2Z(1 + op(1)) (C.7)

as δ, h→ 0, and T either fixed or T →∞.
Case 1. T is fixed. In this case, we show that for any 0 < t ≤ 1,

bTt/δc∑
i=2

E(i−1)δ

(
ζT,δ,hi

)
= 0, (C.8)

bTt/δc∑
i=2

E(i−1)δ

[(
ζT,δ,hi

)(
ζT,δ,hi

)>]
→p `(tT, x)Σ, (C.9)

bTt/δc∑
i=2

E(i−1)δ

(∥∥ζT,δ,hi

∥∥4)→p 0, (C.10)

bTt/δc∑
i=2

E(i−1)δ

(
ζT,δ,hi ∆iH

)
→p 0 (C.11)

for H being W or any bounded martingale orthogonal to W , where ζT,δ,hi =
(
ζT,δ,h1,i , ζT,δ,h2,i

)
. Then,

by Lemma 3.7 in Jacod (2012), the process V T,δ,h converges stably in law (as δ, h → 0) to a
continuous process defined on an extension (Ω̃, F̃ , P̃) of the probability space (Ω,F ,P), and which,
conditionally on F , is a bivariate centered Gaussian process, with conditional variance process given
by the right hand side of (C.9). Then, (C.7) follows with t = 1.

First, (C.8) clearly holds. For (C.9), by Lemmas A.9 and A.14 in PW,

bTt/δc∑
i=2

E(i−1)δ

(
ζT,δ,h1,i

)2
=
δ

h

bTt/δc∑
i=2

(χx,hϕ)2 (X(i−1)δ)→p ı(χ
2)ϕ2(x)`(tT, x) (C.12)

under δ = op(h
2). Moreover, by Lemma D.2 and E(i−1)δ

(
|∆iW |−

√
ωδ
)2

= (1− ω)δ, we have

bTt/δc∑
i=2

E(i−1)δ

(
ζT,δ,h2,i

)2
→p c(π)ı(f2)g2(x)`(tT, x), (C.13)

which, together with (C.12), implies that (C.9) holds, noting that E(i−1)δ
(
ζT,δ,h1,i ζT,δ,h2,i

)
= 0.

For (C.10), by analogous arguments as (C.12), we have

bTt/δc∑
i=2

E(i−1)δ

(
ζT,δ,h1,i

)4
≤ cδ2

h2

bTt/δc∑
i=2

(χx,hϕ)4(X(i−1)δ) = Op

(
δ`(Tt, x)

h

)
= op(1),
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and

bTt/δc∑
i=2

E(i−1)δ

(
ζT,δ,h2,i

)4
≤ c

h2

bTt/δc∑
i=2

[
(fx,hg)4(X(i−2)δ)(∆i−1W )4 + (fx,hg)4(X(i−1)δ)δ

2
]

≤p
cδ2

h2

bTt/δc∑
i=2

[
(fx,hg)4(X(i−2)δ) + (fx,hg)4(X(i−1)δ)

]
= op(1).

where the second relation “≤p” holds by Lenglart domination property. Therefore, (C.10) follows.
For (C.11), it suffices to show that for j = 1, 2,

bTt/δc∑
i=2

E(i−1)δ

(
ζT,δ,hj,i ∆iH

)
→p 0. (C.14)

For j = 1, (C.14) holds forH being a bounded martingale orthogonal toW since E(i−1)δ(∆iW∆iH)=
0 for 2 ≤ i ≤ n. For H = W , it holds that

bTt/δc∑
i=2

E(i−1)δ

(
ζT,δ,h1,i ∆iH

)
=

δ√
h

bTt/δc∑
i=2

(χx,hϕ)(X(i−1)δ) = Op

(√
h`(tT, x)

)
= op(1).

For j = 2, (C.14) holds for H = W since E(i−1)δ
[
(|∆iW |−

√
ωδ)∆iW

]
= 0 for 2 ≤ i ≤ n. Moreover,

using analogous arguments as in the proof of Lemma 3.18 in Jacod (2012), we may readily show

that for H being any bounded martingale orthogonal to W , E(i−1)δ
(
ζT,δ,h2,i ∆iH

)
= 0 for 2 ≤ i ≤ n,

which completes the proof of (C.11).
Case 2. T →∞. By Equation (14) in Kanaya (2016), it holds that lim supδ→0 sups,t∈[0,∞),|t−s|∈[0,δ]

|Wt−Ws| = 2
√
δ log(1/δ) almost surely as δ → 0, as the global modulus of continuity of Brownian

motion. Then we readily have

max
i≥1

∣∣∣ζT,δ,h1,i

∣∣∣ ≤ 1√
h
‖χx,hϕ‖∞

(
max
i≥1
|∆iW |

)
→ 0

max
i≥1

∣∣∣ζT,δ,h2,i

∣∣∣ ≤ 1√
δh
‖fx,hg‖∞

(
max
i≥1
|∆iW |+

√
ωδ

)2

→ 0 (C.15)

almost surely under δ = o(h2).
Next, for each T > 0, let (`Tt )t≥0 be a process given by `Tt = `(Tt, x)/κT . Noting that we write

κ(T ) as κT for simplicity, and κ(·) is as in Assumption 2.1 (g). Using similar arguments as Lemma

D.2, we may readily deduce that for predictable quadratic variation processes 〈V T,δ,h
j 〉 with j = 1, 2,

it holds that for each t > 0,

sup
0<s≤t

∣∣∣κ−1T 〈V T,δ,h
j,s 〉 − aj(x)`Ts

∣∣∣→p 0, (C.16)

where a1(x) = ı(χ2)ϕ2(x) and a2(x) = c(π)ı(f2)g2(x).
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Moreover, it follows from Lemma D.2 in PW that

`T →st m(x)L (C.17)

as T → ∞ on an extended probability space
(
Ω̃, F̃ , P̃

)
of
(
Ω,F ,P

)
, on which L and F are inde-

pendent, where “→st” denotes stable convergence in law, and L = (Lt)t≥0 denotes a Mittag-Leffler
process of index ρ ∈ (0, 1] as in Assumption 2.1 (g). Together with (C.16), we have(

`T , κ−1T 〈V
T,δ,h
1 〉, κ−1T 〈V

T,δ,h
2 〉

)
→st (m(x)L, (a1m)(x)L, (a2m)(x)L) (C.18)

as T →∞ on the extended probability space
(
Ω̃, F̃ , P̃

)
. Moreover, note that E(i−1)δ

[
∆iW

(
|∆iW |−√

ωδ
)]

= 0, which implies that the predictable quadratic covariation between V T,δ,h
1 and V T,δ,h

2 is
zero. It then follows from (C.15), (C.18), Theorem 5.5 in Ueltzhöfer (2013), and (3.5) in Höpfner
et al. (1990) that(

`T , κ−1T 〈V
T,δ,h
1 〉, κ−1T 〈V

T,δ,h
2 〉, κ−1/2T V T,δ,h

1 , κ
−1/2
T V T,δ,h

2

)
→st

(
m(x)L, (a1m)(x)L, (a2m)(x)L,

√
(a1m)(x)B1 ◦ L,

√
(a2m)(x)B2 ◦ L

)
, (C.19)

as h, δ → 0 and T → ∞ on an extended probability space
(
Ω̃, F̃ , P̃

)
, on which L, B and F are

mutually independent, with B = (B1, B2) as a two dimensional Brownian motion. Therefore, it
follows from (C.16) and (C.19) that (C.7) also holds in the case of T → ∞, which completes the
proof.

Proof of Lemma A.3. We first define

Zi1 = |∆iX||∆i+1X
c
1|, Zi2 = |∆iX||∆i+1X

d|, Zi3 = |σ|(X(i−1)δ)|∆i+1W ||∆iX
c
1|,

Zi4 = |σ|(X(i−1)δ)|∆i+1W ||∆iX
d|, Zi5 = |∆iX||∆i+1W ||σ(Xiδ)− σ(X(i−1)δ)|,

Zi6 = |∆iX|
∣∣ ∫ (i+1)δ

iδ
(σ(Xt)− σ(Xiδ))dWt

∣∣,
Zi7 = |σ|(X(i−1)δ)|∆i+1W |

∣∣ ∫ iδ

(i−1)δ
(σ(Xt)− σ(X(i−1)δ))dWt

∣∣
Zi8 = σ2(X(i−1)δ)|∆iW ||∆i+1W |

(
1− 1{|∆iX| ≤ δβ, |∆i+1X| ≤ δβ}

)
, (C.20)

so that we may readily write∣∣∣|∆iX||∆i+1X|1{|∆iX| ≤ δβ, |∆i+1X| ≤ δβ}−σ2(X(i−1)δ)|∆iW ||∆i+1W |
∣∣∣

≤
∣∣|∆iX||∆i+1X|−σ2(X(i−1)δ)|∆iW ||∆i+1W |

∣∣ 1{|∆iX| ≤ δβ, |∆i+1X| ≤ δβ}

+ σ2(X(i−1)δ)|∆iW ||∆i+1W |
(

1− 1{|∆iX| ≤ δβ, |∆i+1X| ≤ δβ}
)

≤
∣∣|∆iX||∆i+1X|−σ2(X(i−1)δ)|∆iW ||∆i+1W |

∣∣+ Zi8 ≤
8∑
j=1

Zij , (C.21)
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from which it follows that
∣∣RT (K,σ2)

∣∣ ≤∑8
j=1Rj , where

Rj =
π

2h

n−1∑
i=1

Kx,h(X(i−1)δ)Zij

for j = 1, 2, . . . , 8. However, it follows from Lemmas D.6, D.7, D.12, D.8, D.10, D.11 and D.13 that
Rj = Op(δ

1/2`(T, x)) for j = 1, 2, . . . , 8, from which the stated result follows.

Proof of Lemma A.4. Firstly, by applying Lemma A.16 in PW with f = K and g = σ2, we have

BT (K) = Op

(
δT 2pq`(T, x) + δh−1/2T pq`(T, x)1/2

)
= op(h

2`(T, x)) (C.22)

under δ = o(h3 ∧ T−6pq). Secondly, note that CT (K) = −MT (K,σ2)−RT (K,σ2) with MT (K,σ2)
andRT (K,σ2) defined as in Section 3.1 and that, as shown in the proof of Theorem 3.1, MT (K,σ2) =
Op
(√

δ`(T, x)/h
)

and RT (K,σ2) = Op
(
δ1/2`(T, x)

)
, from which it follows that

CT (K) = Op

(√
δ`(T, x)

h

)
+Op

(
δ1/2`(T, x)

)
. (C.23)

For AT (K), we write AT (K) = FT +GT , where

FT =
2

h

n∑
i=1

Kx,h(X(i−1)δ)

∫ iδ

(i−1)δ
(Xt −X(i−1)δ)µ(Xt)dt

GT =
2

h

n∑
i=1

Kx,h(X(i−1)δ)

∫ iδ

(i−1)δ
(Xt− −X(i−1)δ)

(
σ(Xt)dWt +

∫
R
zτ(Xt−)Γ(dt, dz)

)
.

Using similar arguments as BT (K) in (C.22), we have

FT = Op

(
δT 2pq`(T, x) + δh−1/2T pq`(T, x)1/2

)
= op(h

2`(T, x)) (C.24)

under δ = o(h3 ∧ T−6pq), noting that we may write (Xt −X(i−1)δ)µ(Xt) = ιµ(Xt)− ιµ(X(i−1)δ)−[
x+ h

(
(X(i−1)δ − x)/h

)]
(µ(Xt)− µ(X(i−1)δ)). Moreover, for GT , we have

〈G〉T ≤ T (σ2 + τ2)
4

h2

n∑
i=1

K2
x,h(X(i−1)δ)

∫ iδ

(i−1)δ
(Xt −X(i−1)δ)

2dt

≤p T (σ2 + τ2)
4

h2

n∑
i=1

K2
x,h(X(i−1)δ)

∫ iδ

(i−1)δ

∫ t

(i−1)δ
(σ2 + τ2)(Xs)dsdt

≤ T 2(σ2 + τ2)

(
2δ2

h2

n∑
i=1

K2
x,h(X(i−1)δ)

)
= Op

(
δT 2pqh−1`(T, x)

)
,

which implies that

GT = Op

(
δ1/2T pqh−1/2`(T, x)1/2

)
= op

(
h1/2`(T, x)1/2

)
. (C.25)
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under δ = o(h3 ∧ T−6pq). Then, the stated result follows from (C.22)-(C.25).

D Lemmas D.1-D.13 and their proofs

This section contains some preliminary lemmas, Lemmas D.1-D.13 and their proofs. Lemmas D.1
and D.2 are useful for the proof of Lemma A.2; and Lemmas D.3-D.13 are used in the proof of
Lemma A.3.

Lemma D.1. Let (i) f and g be twice continuously differentiable, (ii) Assumptions 2.1, 2.3 and
2.5 (b) hold, (iii) η satisfies Assumption 2.5 (a) for η = τ2, and (iv) δ = o(h2 ∧ T−pq). Then

δ

h

n∑
i=2

(fx,hg) (X(i−2)δ) (fx,hg) (X(i−1)δ) = ı(f2)g2(x)`(T, x)(1 + op(1)).

Proof. We write

δ

h

n∑
i=2

(fx,hg) (X(i−2)δ) (fx,hg) (X(i−1)δ) = AT +BT , (D.1)

where

AT =
δ

h

n∑
i=2

(fx,hg)2 (X(i−2)δ)

BT =
δ

h

n∑
i=2

(fx,hg) (X(i−2)δ)
[
(fx,hg) (X(i−1)δ)− (fx,hg) (X(i−2)δ)

]
,

which will be considered in the sequel. For AT , using similar arguments as (C.12), we have

AT = ı(f2)g2(x)`(T, x)(1 + op(1)) (D.2)

under δ = o(h2). For BT , by Itô’s formula, we may write BT = PT +QT +RT , where

PT =
δ

h

n∑
i=2

(fx,hg)(X(i−2)δ)

∫ (i−1)δ

(i−2)δ

[
(fx,hg)′µ+ (fx,hg)′′σ2/2

]
(Xt)dt

QT =
δ

h

n∑
i=2

(fx,hg)(X(i−2)δ)

∫ (i−1)δ

(i−2)δ

[
(fx,hg)′σ

]
(Xt)dWt

RT =
δ

h

n∑
i=2

(fx,hg)(X(i−2)δ)

∫ (i−1)δ

(i−2)δ

∫
R

[(fx,hg)(Xt− + zτ(Xt−))− (fx,hg)(Xt−)] Λ(dt, dz).

For PT , we have

|PT | ≤ δT
(

(fx,hg)′µ+
1

2
(fx,hg)′′σ2

)(
sup
|x−y|≤h

|g|(y)

)(
δ

h

n∑
i=2

fx,h(X(i−2)δ)

)
= Op

(
δh−2`(T, x)

)
= op(`(T, x)),
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noting that T
(
(fx,hg)′µ+(fx,hg)′′σ2/2

)
= O(h−2), since f has support [−1, 1] and µ, σ2, g, g′, g′′

are locally bounded. For RT , we may easily deduce from Lenglart domination property that

|RT | ≤ δT
(
(fx,hg)′

)
T (τ)

(
sup
|x−y|≤h

|g|(y)

)(
1

h

n∑
i=2

fx,h(X(i−2)δ)

∫ (i−1)δ

(i−2)δ

∫
R
|z|Λ(dt, dz)

)

≤p δT
(
(fx,hg)′

)
T (τ)

(
sup
|x−y|≤h

|g|(y)

)(
ı(|ι|λ)δ

h

n∑
i=2

fx,h(X(i−2)δ)

)
= Op

(
δh−1T pq/2`(T, x)

)
= op(`(T, x))

under δ = o(h2 ∧ T−pq).
Finally, we have

[Q]T =
δ2

h2

n∑
i=2

(fx,hg)2 (X(i−2)δ)

∫ (i−1)δ

(i−2)δ

[
(fx,hg)′σ

]2
(Xt)dt

≤ δ2

h
T
([

(fx,hg)′σ
]2)(

sup
|x−y|≤h

g2(y)

)(
δ

h

n∑
i=2

f2x,h(X(i−2)δ)

)
= Op

(
δ2h−3`(T, x)

)
,

from which it follows that QT = Op
(
δh−3/2`(T, x)1/2

)
= op(`(T, x)). Therefore, BT = op(`(T, x)),

from which, together with (D.1) and (D.2), the stated result follows.

Lemma D.2. Let the conditions in Lemma D.1 hold. Then

1

h

n−1∑
i=2

[(
fx,hg

)
(X(i−2)δ)|∆i−1W |+

(
fx,hg

)
(X(i−1)δ)

√
ωδ
]2

= (1 + 3ω)ı(f2)g2(x)`(T, x)(1 + op(1)). (D.3)

Proof. We may readily write the left hand side of (D.3) as AT +BT + CT +DT , where

AT =
δ

h

n−1∑
i=2

[
(fx,hg)2 (X(i−2)δ)+ω (fx,hg)2(X(i−1)δ)

]
+

2ωδ

h

n−1∑
i=2

(fx,hg)(X(i−2)δ)(fx,hg)(X(i−1)δ)

BT =
2

h

n−1∑
i=2

(fx,hg)2 (X(i−2)δ)

∫ (i−1)δ

(i−2)δ

∫ t

(i−2)δ
dWsdWt

CT =
2
√
ωδ

h

n−1∑
i=2

(fx,hg)2 (X(i−2)δ)
(
|∆i−1W |−

√
ωδ
)

DT =
2
√
ωδ

h

n−1∑
i=2

(fx,hg) (X(i−2)δ)
[
(fx,hg) (X(i−1)δ)−(fx,hg) (X(i−2)δ)

] (
|∆i−1W |−

√
ωδ
)
.

Note that E|∆i−1W | =
√
ωδ and (∆i−1W )2 = δ + 2

∫ (i−1)δ
(i−2)δ

∫ t
(i−2)δ dWsdWt.
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Using similar arguments as (C.12), together with Lemma D.1, we may readily deduce that

AT = (1 + 3ω)ı(f2)g2(x)`(T, x)(1 + op(1)).

In the sequel, we show that
BT , CT , DT = op(`(T, x)),

which then completes the proof. For BT , it holds that

[B]T =
4

h2

n−1∑
i=2

(fx,hg)4 (X(i−2)δ)

∫ (i−1)δ

(i−2)δ

(∫ t

(i−2)δ
dWs

)2

dt

≤p
4δ

h

(
δ

h

n−1∑
i=2

(fx,hg)4 (X(i−2)δ)

)
= Op(δh

−1`(T, x)),

which implies that BT = Op
(
(δh−1`(T, x))1/2

)
= op(`(T, x)) under δ = o(h). Similarly, we have

CT = Op
(
(δh−1`(T, x))1/2

)
= op(`(T, x)). Next, we use Cauchy-Schwarz inequality and deduce

that |DT | ≤ c
√
PTQT , where

PT =
1

h

n−1∑
i=2

(fx,hg) (X(i−2)δ)
(
|∆i−1W | −

√
ωδ
)2

QT =
δ

h

n−1∑
i=2

(fx,hg) (X(i−2)δ)
[
(fx,hg) (X(i−1)δ)− (fx,hg) (X(i−2)δ)

]2
.

However, similarly CT , we may easily show that PT = op(`(T, x)). Moreover, we may write[
(fx,hg) (X(i−1)δ)− (fx,hg) (X(i−2)δ)

]2
=
[

(fx,hg)2 (X(i−1)δ)− (fx,hg)2 (X(i−2)δ)
]

− 2 (fx,hg) (X(i−2)δ)
[
(fx,hg) (X(i−1)δ)− (fx,hg) (X(i−2)δ)

]
,

and show, as for BT in the proof of Lemma D.1, that QT = op(`(T, x)), which implies that DT =
op(`(T, x)). The proof is therefore complete.

Lemma D.3. Let (i) g be twice continuously differentiable on D, (ii) Assumptions 2.1, 2.3 and
2.5 (b) hold, (iii) η satisfies Assumption 2.5 (a) for η = µ, σ2, τ2, g′, and (iv) δ = o(h2 ∧ T−4pq).
Then

1

h

n∑
i=1

fx,h(X(i−1)δ)

∫ (i+1)δ

iδ
g(Xt)dt = ı(f)g(x)`(T, x)(1 + op(1)).

Proof. We write

1

h

n∑
i=1

fx,h(X(i−1)δ)

∫ (i+1)δ

iδ
g(Xt)dt = AT +BT + CT ,

9



where

AT =
δ

h

n∑
i=1

(fx,hg) (X(i−1)δ)

BT =
δ

h

n∑
i=1

fx,h(X(i−1)δ)
[
g(Xiδ)− g(X(i−1)δ)

]
CT =

1

h

n∑
i=1

fx,h(X(i−1)δ)

∫ (i+1)δ

iδ
[g(Xt)− g(Xiδ)] dt.

By similar arguments as (C.12), we have

AT = ı(f)g(x)`(T, x)(1 + op(1)) (D.4)

under δ = o(h2). For BT , we may write

|BT | ≤ T (g′)
δ

h

n∑
i=1

fx,h(X(i−1)δ)
(
|∆iX

c|+ |∆iX
d|
)

= PT +QT ,

for which we have

PT ≤ T (g′) max
1≤i≤n

|∆iX
c|

(
δ

h

n∑
i=1

fx,h(X(i−1)δ)

)
= Op

(
δ1/2T 3pq/2`(T, x)

√
log(T/δ)

)
,

under δ = o(h2), due to the modulus of continuity of diffusion, and

QT ≤ T (g′τ)
δ

h

n∑
i=1

fx,h(X(i−1)δ)

∫ iδ

(i−1)δ

∫
R
|z|Λ(dt, dz)

≤p ı(|ι|λ)δT (g′τ)

(
δ

h

n∑
i=1

fx,h(X(i−1)δ)

)
= Op

(
δT 3pq/2`(T, x)

)
,

by Lenglart domination property. Therefore, it follows that

BT = Op

(
δ1/2T 3pq/2`(T, x)

√
log(T/δ)

)
= op(`(T, x)). (D.5)

under δ = o(T−4pq). We may also similarly deduce that CT = op(`(T, x)), which completes the
proof, together with (D.4) and (D.5).

Lemma D.4. Let (i) σ be twice continuously differentiable on D, (ii) Assumptions 2.1, 2.3 and 2.5
(b) hold, (iii) η satisfies Assumption 2.5 (a) for η = µ, σ2, τ2, σ2′, σ2′′, and (iv) δ = o(h2 ∧ T−2pq).
Then

δ

h

n−1∑
i=1

fx,h(X(i−1)δ)|∆iX| = Op(δ
1/2`(T, x)).
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Proof. Note that

δ

h

n−1∑
i=1

fx,h(X(i−1)δ)|∆iX| ≤ AT +BT + CT , (D.6)

where AT , BT and CT are defined as the left hand side in (D.6) with |∆iX| replaced by |∆iX
c
1|,

|∆iX
c
2| and |∆iX

d|, respectively. For AT , we have

AT ≤ δT (µ)

(
δ

h

n−1∑
i=1

fx,h(X(i−1)δ)

)
= Op(δT

pq`(T, x)) = op(δ
1/2`(T, x)) (D.7)

under δ = o(h2 ∧ T−2pq). For BT , we use Itô’s formula to have BT ≤ PT +QT +RT + ST , where

PT =
δ

h

n−1∑
i=1

(fx,h|σ|)(X(i−1)δ)|∆iW |

QT =
δ

h

n−1∑
i=1

fx,h(X(i−1)δ)

∣∣∣∣∣
∫ iδ

(i−1)δ

∫ t

(i−1)δ
(µσ′ + σ2σ′′/2)(Xs)dsdt

∣∣∣∣∣
RT =

δ

h

n−1∑
i=1

fx,h(X(i−1)δ)

∣∣∣∣∣
∫ iδ

(i−1)δ

∫ t

(i−1)δ
σσ′(Xs)dWsdt

∣∣∣∣∣
ST =

δ

h

n−1∑
i=1

fx,h(X(i−1)δ)

∣∣∣∣∣
∫ iδ

(i−1)δ

∫ t

(i−1)δ

∫
R

(σ(Xs− + zτ(Xs−))− σ(Xs−)) Λ(ds, dz)dt

∣∣∣∣∣ ,
which will be considered subsequently.

It follows from Lenglart domination property that

PT ≤p

√
πδ

2

(
sup
|x−y|≤h

|σ(y)|

)(
δ

h

n−1∑
i=1

fx,h(X(i−1)δ)

)
= Op(δ

1/2`(T, x)).

Also, we have

QT ≤ δ2T (µσ′ + σ2σ′′/2)

(
δ

h

n−1∑
i=1

fx,h(X(i−1)δ)

)
= Op

(
δ2T 3pq/2`(T, x)

)
,

and

RT ≤ δ sup
t∈[0,T ]

sup
s∈[0,δ]

∣∣∣∣∫ t+s

t
(σσ′)(Xr)dWr

∣∣∣∣
(
δ

h

n−1∑
i=1

fx,h(X(i−1)δ)

)
≤p δ3/2T (σσ′)

√
log(T/δ)`(T, x) = Op

(
δ3/2T pq`(T, x)

√
log(T/δ)

)
,

due to the modulus of continuity of diffusion. Moreover, we may change the order of integrals to
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have

ST =
δ

h

n−1∑
i=1

fx,h(X(i−1)δ)

∣∣∣∣∣
∫ iδ

(i−1)δ

∫
R

(iδ − t) [σ(Xt− + zτ(Xt−))− σ(Xt−)] Λ(dt, dz)

∣∣∣∣∣
≤ δ2T (σ′τ)

(
1

h

n−1∑
i=1

fx,h(X(i−1)δ)

∫ iδ

(i−1)δ

∫
R
|z|Λ(dt, dz)

)
= Op

(
δ2T pq`(T, x)

)
,

as for QT in the proof of Lemma D.3. Consequently, we have

BT = Op(δ
1/2`(T, x)) (D.8)

under δ = o(T−2pq).
Finally, we may deduce that CT = Op(δT

pq/2`(T, x)) = op(δ
1/2`(T, x)) similarly ST above, from

which, together with (D.6), (D.7) and (D.8), the stated result follows.

Lemma D.5. Let (i) g be twice continuously differentiable on D, (ii) Assumptions 2.1, 2.3, 2.5
(b) and 2.7 hold, (iii) η satisfies Assumption 2.5 (a) for η = µ, σ2, τ2, σ2′, σ2′′, τ2′, τ2′′, g, g′, g′′, and
(iv) δ = o(h2 ∧ T−6pq). Then

1

h

n−1∑
i=1

fx,h(X(i−1)δ)|∆iX|
∣∣g(Xiδ)− g(X(i−1)δ)

∣∣ = Op(`(T, x)).

Proof. We write

1

h

n−1∑
i=1

fx,h(X(i−1)δ)|∆iX|
∣∣g(Xiδ)− g(X(i−1)δ)

∣∣ ≤ AT +BT + CT , (D.9)

where

AT =
1

h

n−1∑
i=1

fx,h(X(i−1)δ)|∆iX|

∣∣∣∣∣
∫ iδ

(i−1)δ
(µg′ + σ2g′′/2)(Xt)dt

∣∣∣∣∣
BT =

1

h

n−1∑
i=1

fx,h(X(i−1)δ)|∆iX|

∣∣∣∣∣
∫ iδ

(i−1)δ
(σg′)(Xt)dWt

∣∣∣∣∣
CT =

1

h

n−1∑
i=1

fx,h(X(i−1)δ)|∆iX|

∣∣∣∣∣
∫ iδ

(i−1)δ

∫
R

(g(Xt− + zτ(Xt−))− g(Xt−)) Λ(dt, dz)

∣∣∣∣∣ .
For AT , it follows from Lemma D.4 that

AT ≤ T (µg′ + σ2g′′/2)
δ

h

n−1∑
i=1

fx,h(X(i−1)δ)|∆iX| = Op

(
δ1/2T 2pq`(T, x)

)
= op(`(T, x)) (D.10)

under δ = o(h2 ∧ T−4pq).
For BT , we show that

BT ≤ PT +QT = Op(`(T, x)), (D.11)
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where PT and QT are defined in the same way as BT with |∆iX| replaced by |∆iX
c
1| and |∆iX

c
2 +

∆iX
d| respectively. We have

PT ≤p δ1/2T (µ)T (σg′)
√

log(T/δ)

(
δ

h

n−1∑
i=1

fx,h(X(i−1)δ)

)
= Op

(
δ1/2T 5pq/2`(T, x)

√
log(T/δ)

)
= op(`(T, x))

under δ = o(T−6pq), due to the modulus of continuity of diffusion. Moreover, we may use Cauchy-
Schwarz inequality to have QT ≤

√
UTVT , where

UT =
1

h

n−1∑
i=1

fx,h(X(i−1)δ)

(∫ iδ

(i−1)δ
σ(Xt)dWt +

∫ iδ

(i−1)δ

∫
R
zτ(Xt−)Λ(dt, dz)

)2

VT =
1

h

n−1∑
i=1

fx,h(X(i−1)δ)

(∫ iδ

(i−1)δ
(σg′)(Xt)dWt

)2

.

However, it follows from Lenglart domination property that

UT ≤p
1

h

n−1∑
i=1

fx,h(X(i−1)δ)

∫ iδ

(i−1)δ

(
σ2(Xt) + ı2(λ)τ2(Xt)

)
dt = Op(`(T, x))

due to Lemmas A.9, A.14 and A.16 in PW under δ = o
(
h2 ∧ T−6pq

)
. Similarly, we may deduce

that VT = Op(`(T, x)), and therefore, QT = Op(`(T, x)). Consequently, (D.11) follows.
Finally, for CT , we show that

CT ≤MT +NT = Op(`(T, x)), (D.12)

where MT and NT are defined in the same way as CT with |∆iX| replaced by |∆iX
c| and |∆iX

d|
respectively. For MT , similarly QT in the proof of Lemma D.3, we may deduce that

MT ≤ T (τg′)

(
max
1≤i≤n

|∆iX
c|
)(

1

h

n−1∑
i=1

fx,h(X(i−1)δ)

∫ iδ

(i−1)δ

∫
R
|z|Λ(dt, dz)

)
= Op

(
δ1/2T 2pq`(T, x)

√
log(T/δ)

)
= op(`(T, x)),

under δ = o(T−5pq), due to the modulus of continuity of diffusion. Therefore, it suffices to show
that

NT = Op(`(T, x)), (D.13)

from which, together with (D.9), (D.10), (D.11) and (D.12), the stated result follows immediately.
To establish (D.13), we write Xt = Xt− + zτ(Xt−), and let

Eit =
{
|Xt −X(i−1)δ| ≤ δβ

}
∩
{
|Xt− −X(i−1)δ| ≤ δβ

}
and define FT and GT similarly as NT with g(Xt) − g(Xt−) replaced by

(
g(Xt) − g(Xt−)

)
1(Eit)
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and
(
g(Xt)− g(Xt−)

)
1(Ecit) respectively, so that NT = FT +GT . It follows that

FT ≤

(
sup

|x−y|≤h+δβ
|g′(y)|

)
1

h

n−1∑
i=1

fx,h(X(i−1)δ)
∣∣∣∆iX

d
∣∣∣ ∣∣∣∣∣
∫ iδ

(i−1)δ

∫
R
|z|τ(Xt−)Λ(dt, dz)

∣∣∣∣∣
≤

(
sup

|x−y|≤h+δβ
|g′(y)|

)
1

h

n−1∑
i=1

fx,h(X(i−1)δ)

(∫ iδ

(i−1)δ

∫
R
|z|τ(Xt−)Λ(dt, dz)

)2

≤p
ı2(λ)

h

n∑
i=1

fx,h(X(i−1)δ)

∫ iδ

(i−1)δ
τ2(Xt)dt = Op(`(T, x)),

due to similar arguments as UT above. Moreover, we may apply Cauchy-Schwartz inequality to
deduce that

G2
T ≤

[
1

h

n−1∑
i=1

fx,h(X(i−1)δ)
(

∆iX
d
)2]

×

1

h

n−1∑
i=1

fx,h(X(i−1)δ)

(∫ iδ

(i−1)δ

∫
R

(g(Xt)− g(Xt−))1(Ecit)Λ(dt, dz)

)2
 .

We may easily show that the first term in parenthesis is of order Op(`(T, x)) similarly as above.
Moreover, since supt∈[0,T ] |g(Xt) − g(Xt−)| ≤ T (g′τ)|z|, we may bound the second term in paren-
thesis by

T
(
g′2τ2

)1

h

n−1∑
i=1

fx,h(X(i−1)δ)

[∫ iδ

(i−1)δ

∫
R
|z|1(Ecit)Λ(dt, dz)

]2

≤p T
(
g′2τ2

) ı2(λ)

h

n−1∑
i=1

fx,h(X(i−1)δ)

∫ iδ

(i−1)δ
P
(
Ecit
∣∣F(i−1)δ

)
dt

≤ 2ı2(λ)T
(
g′2τ2

)(
sup
|x−y|≤h

sup
0<t≤δ

Py
(
|Xt − y| > δβ

))( δ
h

n−1∑
i=1

fx,h(X(i−1)δ)

)
= Op

(
δ1−αβ−εT 3pq`(T, x)

)
= op(`(T, x)),

where the first inequality in probability follows from Lenglart domination property, the second
inequality holds since f has support [−1, 1], the third equality follows from Lemmas A.9, A.13
and A.14 in PW for any ε > 0, and the fourth equality holds if we choose ε < 1/2 − αβ given
δ = o(T−6pq). Therefore, we have GT = op(`(T, x)), which implies (D.13), as was to be shown.

Lemma D.6. Let the conditions in Lemma D.5 hold with g replaced by µ. Then

1

h

n−1∑
i=1

fx,h(X(i−1)δ)|∆iX||∆i+1X
c
1| = Op(δ

1/2`(T, x)).
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Proof. We may apply Itô’s formula to have

1

h

n−1∑
i=1

fx,h(X(i−1)δ)|∆iX||∆i+1X
c
1| ≤ AT +BT + CT +DT + ET ,

where

AT =
δ

h

n−1∑
i=1

(fx,h|µ|) (X(i−1)δ)|∆iX|

BT =
1

h

n−1∑
i=1

fx,h(X(i−1)δ)|∆iX|

∣∣∣∣∣
∫ (i+1)δ

iδ

∫ t

iδ
(µµ′ + σ2µ′′/2)(Xs)dsdt

∣∣∣∣∣
CT =

1

h

n−1∑
i=1

fx,h(X(i−1)δ)|∆iX|

∣∣∣∣∣
∫ (i+1)δ

iδ

∫ t

iδ
(σµ′)(Xs)dWsdt

∣∣∣∣∣
DT =

1

h

n−1∑
i=1

fx,h(X(i−1)δ)|∆iX|

∣∣∣∣∣
∫ (i+1)δ

iδ

∫ t

iδ

∫
R

(µ(Xs− + zτ(Xs−))− µ(Xs−))Λ(ds, dz)dt

∣∣∣∣∣
ET =

δ

h

n−1∑
i=1

fx,h(X(i−1)δ)|∆iX|
∣∣µ(Xiδ)− µ(X(i−1)δ)

∣∣ .
We have AT = Op(δ

1/2`(T, x)) by Lemma D.4, and also by changing the order of integrals
BT , CT , DT = op(δ

1/2`(T, x)) as in the proof of Lemma D.5. Moreover, it follows from Lemma
D.5 that ET = Op(δ`(T, x)), which completes the proof.

Lemma D.7. Let the conditions in Lemma D.5 hold with g replaced by τ . Then

1

h

n−1∑
i=1

fx,h(X(i−1)δ)|∆iX||∆i+1X
d| = Op(δ

1/2`(T, x)).

Proof. It follows from Lenglart domination property that

1

h

n−1∑
i=1

fx,h(X(i−1)δ)|∆iX||∆i+1X
d|

≤ 1

h

n−1∑
i=1

fx,h(X(i−1)δ)|∆iX|

(∫ (i+1)δ

iδ
τ(Xt−)

∫
R
|z|Λ(dt, dz)

)

≤p
ı(|ι|λ)

h

n−1∑
i=1

fx,h(X(i−1)δ)|∆iX|

(∫ (i+1)δ

iδ
τ(Xt)dt

)
= Op(δ

1/2`(T, x)),

similarly as in the proof of Lemma D.5.
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Lemma D.8. Let the conditions in Lemma D.5 hold with g replaced by σ. Then

1

h

n−1∑
i=1

fx,h(X(i−1)δ)|∆iX||∆i+1W |
∣∣σ(Xiδ)− σ(X(i−1)δ)

∣∣ = Op(δ
1/2`(T, x)).

Proof. Due to Lenglart domination property, we have

1

h

n−1∑
i=1

fx,h(X(i−1)δ)|∆iX||∆i+1W |
∣∣σ(Xiδ)− σ(X(i−1)δ)

∣∣
≤p

√
2δ

π

1

h

n−1∑
i=1

fx,h(X(i−1)δ)|∆iX|
∣∣σ(Xiδ)− σ(X(i−1)δ)

∣∣ = Op(δ
1/2`(T, x)),

due to Lemma D.5.

Lemma D.9. Let (i) σ and g be twice continuously differentiable on D, (ii) Assumptions 2.1,
2.3 and 2.5 (b) hold, (iii) η satisfies Assumption 2.5 (a) for η = µ, σ2, τ2, σ2′, σ2′′, g, g′, and (iv)
δ = o

(
h2 ∧ T−6pq

)
. Then

1

h

n−1∑
i=1

fx,h(X(i−1)δ)|∆iX|

∣∣∣∣∣
∫ (i+1)δ

iδ

∫ t

iδ
g(Xs)dWsdWt

∣∣∣∣∣ = Op(δ
1/2`(T, x)).

Proof. We write

1

h

n−1∑
i=1

fx,h(X(i−1)δ)|∆iX|

∣∣∣∣∣
∫ (i+1)δ

iδ

∫ t

iδ
g(Xs)dWsdWt

∣∣∣∣∣ = AT +BT , (D.14)

where AT and BT are defined in the same way as the left hand side in (D.14) with |∆iX| replaced
by |∆iX

c
1 + ∆iX

d| and |∆iX
c
2| respectively.

Using the modulus of continuity of diffusion, we have

AT ≤

(
max
1≤i≤n

∣∣∣∣∣
∫ (i+1)δ

iδ

∫ t

iδ
g(Xs)dWsdWt

∣∣∣∣∣
)(

1

h

n−1∑
i=1

fx,h(X(i−1)δ)|∆iX
c
1 + ∆iX

d|

)

≤p δT (g)
√

log(T/δ)

[
1

h

n−1∑
i=1

fx,h(X(i−1)δ)

(
δT (µ) + T (τ)

∫ iδ

(i−1)δ

∫
R
|z|Λ(dt, dz)

)]
= Op

(
δT 2pq`(T, x)

√
log(T/δ)

)
, (D.15)

due to Lenglart domination property. Moreover, it follows from Cauchy-Schwarz inequality that
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BT ≤
√
PTQT , where

PT =
1

h

n−1∑
i=1

fx,h(X(i−1)δ)(∆iX
c
2)2

QT =
1

h

n−1∑
i=1

fx,h(X(i−1)δ)

(∫ (i+1)δ

iδ

∫ t

iδ
g(Xs)dWsdWt

)2

,

for which we have

PT ≤p
1

h

n−1∑
i=1

fx,h(X(i−1)δ)

∫ iδ

(i−1)δ
σ2(Xt)dt = Op(`(T, x)) (D.16)

by similar arguments as UT in the proof of Lemma D.5, and similarly,

QT ≤p
1

h

n−1∑
i=1

fx,h(X(i−1)δ)

∫ (i+1)δ

iδ

(∫ t

iδ
g(Xs)dWs

)2

dt

≤p
1

h

n−1∑
i=1

fx,h(X(i−1)δ)

∫ (i+1)δ

iδ

∫ t

iδ
g2(Xs)dsdt = Op(δ`(T, x)) (D.17)

by Lemma D.3. The stated result follows immediately from (D.14), (D.15) (D.16) and (D.17) under
δ = o(T−6pq).

Lemma D.10. Let (i) σ be twice continuously differentiable on D, (ii) Assumptions 2.1, 2.3 and 2.5
(b) hold, (iii) η satisfies Assumption 2.5 (a) for η = µ, σ2, τ2, σ2′, σ2′′, and (iv) δ = o(h2 ∧ T−6pq).
Then

1

h

n−1∑
i=1

fx,h(X(i−1)δ)|∆iX|

∣∣∣∣∣
∫ (i+1)δ

iδ
(σ(Xt)− σ(Xiδ))dWt

∣∣∣∣∣ = Op(δ
1/2`(T, x)).

Proof. We use Itô’s formula to have

1

h

n−1∑
i=1

fx,h(X(i−1)δ)|∆iX|

∣∣∣∣∣
∫ (i+1)δ

iδ
(σ(Xt)− σ(Xiδ))dWt

∣∣∣∣∣ ≤ AT +BT + CT , (D.18)

where

AT =
1

h

n−1∑
i=1

fx,h(X(i−1)δ)|∆iX|

∣∣∣∣∣
∫ (i+1)δ

iδ

∫ t

iδ
(µσ′ + σ2σ′′/2)(Xs)dsdWt

∣∣∣∣∣
BT =

1

h

n−1∑
i=1

fx,h(X(i−1)δ)|∆iX|

∣∣∣∣∣
∫ (i+1)δ

iδ

∫ t

iδ
(σσ′)(Xs)dWsdWt

∣∣∣∣∣
CT =

1

h

n−1∑
i=1

fx,h(X(i−1)δ)|∆iX|

∣∣∣∣∣
∫ (i+1)δ

iδ

∫ t

iδ

∫
R

(σ(Xs− + zτ(Xs−))− σ(Xs−))Λ(ds, dz)dWt

∣∣∣∣∣ .
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As shown in Lemma D.9, we have BT = Op(δ
1/2`(T, x)). By changing the order of integrals and

using the modulus of continuity of diffusion, and subsequently applying Lemma D.4, we may also
easily deduce that

AT =
1

h

n−1∑
i=1

fx,h(X(i−1)δ)|∆iX|

∣∣∣∣∣
∫ (i+1)δ

iδ

∫ (i+1)δ

t
dWs(µσ

′ + σ2σ′′/2)(Xt)dt

∣∣∣∣∣
= Op

(
δT 3pq/2`(T, x)

√
log(T/δ)

)
.

Similarly, by the modulus of continuity of diffusion and Lenglart domination property,

CT =
1

h

n−1∑
i=1

fx,h(X(i−1)δ)|∆iX|

∣∣∣∣∣
∫ (i+1)δ

iδ

∫
R

∫ (i+1)δ

t
dWs(σ(Xt− + zτ(Xt−))− σ(Xt−))Λ(dt, dz)

∣∣∣∣∣
≤p ı(|ι|λ)δ1/2T (σ′τ)

√
log(T/δ)

(
δ

h

n−1∑
i=1

fx,h(X(i−1)δ)|∆iX|

)
=Op

(
δT pq`(T, x)

√
log(T/δ)

)
.

The stated result therefore follows under δ = o(T−6pq).

Lemma D.11. Let the conditions in Lemma D.10 hold. Then

1

h

n−1∑
i=1

(fx,h|σ|) (X(i−1)δ)|∆i+1W |

∣∣∣∣∣
∫ iδ

(i−1)δ
(σ(Xt)− σ(X(i−1)δ))dWt

∣∣∣∣∣ = Op(δ
1/2`(T, x)).

Proof. The proof is almost identical to that of Lemma D.10, and therefore omitted.

Lemma D.12. Let (i) µ and τ be twice continuously differentiable on D, (ii) Assumptions 2.1,
2.3 and 2.5 (b) hold, (iii) η satisfies Assumption 2.5 (a) for η = µ, σ2, τ2, µ′, τ2′, and (iv) δ =
o(h2 ∧ T−4pq). Then

1

h

n−1∑
i=1

(fx,h|σ|)(X(i−1)δ)|∆i+1W ||∆iX
c
1| = Op(δ

1/2`(T, x)),

1

h

n−1∑
i=1

(fx,h|σ|)(X(i−1)δ)|∆i+1W ||∆iX
d| = Op(δ

1/2`(T, x)).

Proof. The stated results follow readily from Lenglart domination property. We have

1

h

n−1∑
i=1

(fx,h|σ|)(X(i−1)δ)|∆i+1W ||∆iX
c
1| ≤p

δ1/2

h

n−1∑
i=1

(fx,h|σ|)(X(i−1)δ)|∆iX
c
1|,

from which the first part readily follows due to Lemma D.3, and Lemmas A.9 and A.14 in PW.
The second part also follows immediately from

1

h

n−1∑
i=1

(fx,h|σ|)(X(i−1)δ)|∆i+1W ||∆iX
d| ≤p ı(|ι|λ)

δ1/2

h

n−1∑
i=1

(fx,h|σ|) (X(i−1)δ)

∫ iδ

(i−1)δ
τ(Xt)dt,
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and Lemma D.3.

Lemma D.13. Let Assumptions 2.1, 2.3, 2.7 and 3.1 hold. Then

1

h

n−1∑
i=1

(fx,hσ
2)(X(i−1)δ)|∆iW ||∆i+1W |

(
1
{
|∆iX| ≤ δβ, |∆i+1X| ≤ δβ

}
− 1
)

= Op(δ
1/2`(T, x)).

Proof. We may write∣∣∣1{|∆iX|≤δβ, |∆i+1X|≤δβ}−1
∣∣∣≤1{|∆iX|>δβ}+1{|∆i+1X|>δβ}

≤2×1{|∆iX|>δβ/2}+1{|X(i+1)δ−X(i−1)δ|>δβ/2}, (D.19)

noting that

1{|∆i+1X|>δβ}≤1{|X(i+1)δ−X(i−1)δ|>δβ−|∆iX|}
≤1{|∆iX|>δβ/2}+1{|X(i+1)δ−X(i−1)δ|>δβ/2}.

It then follows from (D.19) that∣∣∣∣∣1h
n−1∑
i=1

(fx,hσ
2)(X(i−1)δ)|∆iW ||∆i+1W |

(
1{|∆iX| ≤ δβ, |∆i+1X| ≤ δβ} − 1

)∣∣∣∣∣
≤
(

max
1≤i≤n

|∆iW |2
)(

sup
|y−x|≤h

σ2(y)

)[
1

h

n−1∑
i=1

fx,h(X(i−1)δ)
∣∣∣1{|∆iX|≤δβ, |∆i+1X| ≤ δβ} − 1

∣∣∣]
≤p δ log(T/δ) (AT +BT ) , (D.20)

where the second relation “≤p” follows from the modulus of continuity of Brownian motion, and
the local boundedness of σ2, with

AT =
2

h

n−1∑
i=1

fx,h(X(i−1)δ)1{|∆iX| > δβ/2},

BT =
1

h

n−1∑
i=1

fx,h(X(i−1)δ)1{|X(i+1)δ −X(i−1)δ| > δβ/2}.

For AT , we have

AT ≤p
1

h

n−1∑
i=1

fx,h(X(i−1)δ)E(i−1)δ{|∆iX| > δβ/2}

≤ δ−1
(

sup
|y−x|≤h

sup
0<t≤δ

Py
(
|Xt − y| > δβ/2

))( δ
h

n−1∑
i=1

fx,h(X(i−1)δ)

)
= Op

(
δ−αβ−ε`(T, x)

)
(D.21)

for any ε > 0, where the third equality follows from Lemma A.13 in PW. Similarly, we have
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BT = Op
(
δ−αβ−ε`(T, x)

)
for any ε > 0, which, together with (D.19)-(D.21), completes the proof

by choosing 0 < ε < 1/2− αβ.
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