Supplement to "Estimation of Volatility Functions in Jump Diffusions Using Truncated Bipower Increments"

Jihyun Kim	Joon Y. Park
Toulouse School of Economics	Indiana University
University of Toulouse Capitole	and Sungkyunkwan University

Bin Wang Harbin Institute of Technology, Shenzhen

This supplement contains two sections, Sections C and D. Section C provides the proofs of Lemmas A.1-A.4 in the Mathematical Appendix; Section D includes some preliminary lemmas, Lemmas D.1-D.13 that are useful for the proofs in Section C.

C Proofs of Lemmas A.1-A.4

Proof of Lemma A.1. By the occupation time formula and change of variables, we have

$$\frac{1}{h} \int_{0}^{T} f_{x,h}(X_{t})[g(X_{t}) - g(x)]dt = \int f(u)[g(x + hu) - g(x)]\ell(T, x + hu)du$$

$$= g'(x)h \int (\iota f)(u)\ell(T, x + hu)du + \frac{\imath_{2}(f)}{2}g''(x)h^{2}\ell(T, x)$$

$$+ o_{p}(h^{2}\ell(T, x)).$$
(C.1)

For the first term in (C.1), we may write $\int (\iota f)(u)\ell(T, x + hu)du$ as

$$\int (\iota f)(u)\sigma^{-2}(x+hu)\ell[T,x+hu]du$$

= $\sigma^{-2}(x)\int (\iota f)(u)\ell[T,x+hu]du + (\sigma^{-2})'(x)\iota_2(f)h\ell[T,x] + o_p(h\ell(T,x))$ (C.2)

by Taylor expansion. Then, we are left to analyze the first term in (C.2).

Let u > 0, and $\varphi(u, v) = 1\{0 \le (v - x)/h < u\}$ and $\Phi(u, v) = \int_{-\infty}^{v} \varphi(u, w) dw$. By the Bouleau-Yor formula (see, e.g., Theorem 78 in Chapter IV of Protter (2005)),

$$\ell[T, x + hu] - \ell[T, x] = 2 \int_0^T \varphi(u, X_t) dX_t^c + 2 \int_0^T \int_{\mathbb{R}} \left[\Phi(u, X_{t-} + z\tau(X_{t-})) - \Phi(u, X_{t-}) \right] \Lambda(dt, dz) + O_{a.s.}(hu) dx_t^c$$

from which, together with $i_1(f) = 0$ and Fubini's theorem for stochastic integrals (see, e.g., Theorem 64 in Chapter IV of Protter (2005)), we may readily deduce that

$$\int (\iota f)(u)\ell[T, x + hu]du = \int (\iota f)(u) \left(\ell[T, x + hu] - \ell[T, x]\right) du$$

= 2 (A_T + B_T + C_T + D_T) + O_{a.s.}(h), (C.3)

with

$$\begin{split} A_T + B_T &= \int_0^T (\iota f)_1 \left(\frac{X_t - x}{h}\right) \left(\sigma(X_t) dW_t + \mu(X_t) dt\right), \\ C_T + D_T &= \int_0^T \int_{\mathbb{R}} \int_{X_{t-}}^{X_{t-} + z\tau(X_{t-})} (\iota f)_1 \left(\frac{v - x}{h}\right) dv \left(\Gamma(dt, dz) + \lambda(dz) dt\right). \end{split}$$

Using similar arguments, we may show that (C.3) also holds for u < 0.

By Lemma A.1 in PW, we have

$$B_T = i_2(f)\mu(x)h\ell(T,x)(1+o_p(1)),$$
(C.4)

noting that $i(f_1) = i_1(f)$ for f defined on [-1, 1], and therefore, $i((\iota f)_1) = i_1(\iota f) = i_2(f)$.

Next, it follows from the occupation time formula and changing the order of integrals that

$$D_T = h \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \lambda_1 \left(\frac{x - u + hv}{\tau(u)} \right) (\iota f)_1(v) dv \ell(T, u) du = \iota_2(f) h\xi(T, x) (1 + o_p(1))$$
(C.5)

due to Lemma A.2 in PW. The stated result then follows from (C.1)-(C.5).

Proof of Lemma A.2. We may write $A_{1,2}$

$$|\Delta_{i}W||\Delta_{i+1}W| - \omega\delta = |\Delta_{i}W| \left(|\Delta_{i+1}W| - \sqrt{\omega\delta} \right) + \sqrt{\omega\delta} \left(|\Delta_{i}W| - \sqrt{\omega\delta} \right), \quad (C.6)$$

from which we have $N_T = U_T + R_T$, where

$$U_{T} = \frac{1}{\sqrt{\delta h}} \sum_{i=2}^{n-1} \left[(f_{x,h}g) \left(X_{(i-2)\delta} \right) |\Delta_{i-1}W| + (f_{x,h}g) \left(X_{(i-1)\delta} \right) \sqrt{\omega \delta} \right] \left(|\Delta_{i}W| - \sqrt{\omega \delta} \right)$$
$$R_{T} = \frac{1}{\sqrt{\delta h}} \left[(f_{x,h}g) \left(X_{(n-2)\delta} \right) |\Delta_{n-1}W| \left(|\Delta_{n}W| - \sqrt{\omega \delta} \right) + (f_{x,h}g) \left(X_{0} \right) \sqrt{\omega \delta} \left(|\Delta_{1}W| - \sqrt{\omega \delta} \right) \right].$$

It is easy to show that R_T is asymptotically negligible, and therefore, we have $N_T = U_T(1 + o_p(1))$. For each $T, \delta, h > 0$, let $V^{T,\delta,h} = (V_1^{T,\delta,h}, V_2^{T,\delta,h})$, with $V_j^{T,\delta,h} = (V_{j,t}^{T,\delta,h})_{t\geq 0}$ for j = 1, 2 as processes indexed by t and $V_{j,t}^{T,\delta,h} = \sum_{i=2}^{\lfloor Tt/\delta \rfloor} \zeta_{j,i}^{T,\delta,h}$, where

$$\begin{aligned} \zeta_{1,i}^{T,\delta,h} &= \frac{1}{\sqrt{h}} \left(\chi_{x,h} \varphi \right) \left(X_{(i-1)\delta} \right) \Delta_i W \\ \zeta_{2,i}^{T,\delta,h} &= \frac{1}{\sqrt{\delta h}} \left[\left(f_{x,h} g \right) \left(X_{(i-2)\delta} \right) |\Delta_{i-1} W| + \left(f_{x,h} g \right) \left(X_{(i-1)\delta} \right) \sqrt{\omega \delta} \right] \left(|\Delta_i W| - \sqrt{\omega \delta} \right). \end{aligned}$$

For the stated result in Lemma A.2, it then suffices to show that

$$\left(V_{1,1}^{T,\delta,h}, V_{2,1}^{T,\delta,h}\right) =_d \ell(T,x)^{1/2} Z(1+o_p(1))$$
(C.7)

as $\delta, h \to 0$, and T either fixed or $T \to \infty$.

Case 1. T is fixed. In this case, we show that for any $0 < t \leq 1$,

$$\sum_{i=2}^{Tt/\delta \rfloor} \mathbb{E}_{(i-1)\delta} \left(\zeta_i^{T,\delta,h} \right) = 0, \qquad (C.8)$$

$$\sum_{i=2}^{\lfloor Tt/\delta \rfloor} \mathbb{E}_{(i-1)\delta} \left[\left(\zeta_i^{T,\delta,h} \right) \left(\zeta_i^{T,\delta,h} \right)^\top \right] \to_p \ell(tT,x)\Sigma,$$
(C.9)

$$\sum_{i=2}^{Tt/\delta} \mathbb{E}_{(i-1)\delta}\left(\left\|\zeta_i^{T,\delta,h}\right\|^4\right) \to_p 0,\tag{C.10}$$

$$\sum_{i=2}^{\lfloor Tt/\delta \rfloor} \mathbb{E}_{(i-1)\delta}\left(\zeta_i^{T,\delta,h} \Delta_i H\right) \to_p 0 \tag{C.11}$$

for *H* being *W* or any bounded martingale orthogonal to *W*, where $\zeta_i^{T,\delta,h} = (\zeta_{1,i}^{T,\delta,h}, \zeta_{2,i}^{T,\delta,h})$. Then, by Lemma 3.7 in Jacod (2012), the process $V^{T,\delta,h}$ converges stably in law (as $\delta, h \to 0$) to a continuous process defined on an extension $(\tilde{\Omega}, \tilde{\mathcal{F}}, \tilde{\mathbb{P}})$ of the probability space $(\Omega, \mathcal{F}, \mathbb{P})$, and which, conditionally on \mathcal{F} , is a bivariate centered Gaussian process, with conditional variance process given by the right hand side of (C.9). Then, (C.7) follows with t = 1.

First, (C.8) clearly holds. For (C.9), by Lemmas A.9 and A.14 in PW,

$$\sum_{i=2}^{\lfloor Tt/\delta \rfloor} \mathbb{E}_{(i-1)\delta} \left(\zeta_{1,i}^{T,\delta,h} \right)^2 = \frac{\delta}{h} \sum_{i=2}^{\lfloor Tt/\delta \rfloor} \left(\chi_{x,h} \varphi \right)^2 \left(X_{(i-1)\delta} \right) \to_p \imath(\chi^2) \varphi^2(x) \ell(tT,x)$$
(C.12)

under $\delta = o_p(h^2)$. Moreover, by Lemma D.2 and $\mathbb{E}_{(i-1)\delta} (|\Delta_i W| - \sqrt{\omega\delta})^2 = (1-\omega)\delta$, we have

$$\sum_{i=2}^{\lfloor Tt/\delta \rfloor} \mathbb{E}_{(i-1)\delta} \left(\zeta_{2,i}^{T,\delta,h} \right)^2 \to_p c(\pi) \imath(f^2) g^2(x) \ell(tT,x), \tag{C.13}$$

which, together with (C.12), implies that (C.9) holds, noting that $\mathbb{E}_{(i-1)\delta}(\zeta_{1,i}^{T,\delta,h}\zeta_{2,i}^{T,\delta,h}) = 0.$

For (C.10), by analogous arguments as (C.12), we have

$$\sum_{i=2}^{\lfloor Tt/\delta \rfloor} \mathbb{E}_{(i-1)\delta} \left(\zeta_{1,i}^{T,\delta,h} \right)^4 \le \frac{c\delta^2}{h^2} \sum_{i=2}^{\lfloor Tt/\delta \rfloor} (\chi_{x,h}\varphi)^4 (X_{(i-1)\delta}) = O_p \left(\frac{\delta\ell(Tt,x)}{h} \right) = o_p(1),$$

and

$$\sum_{i=2}^{\lfloor Tt/\delta \rfloor} \mathbb{E}_{(i-1)\delta} \left(\zeta_{2,i}^{T,\delta,h} \right)^4 \leq \frac{c}{h^2} \sum_{i=2}^{\lfloor Tt/\delta \rfloor} \left[(f_{x,h}g)^4 (X_{(i-2)\delta}) (\Delta_{i-1}W)^4 + (f_{x,h}g)^4 (X_{(i-1)\delta}) \delta^2 \right]$$
$$\leq_p \frac{c\delta^2}{h^2} \sum_{i=2}^{\lfloor Tt/\delta \rfloor} \left[(f_{x,h}g)^4 (X_{(i-2)\delta}) + (f_{x,h}g)^4 (X_{(i-1)\delta}) \right] = o_p(1).$$

where the second relation " \leq_p " holds by Lenglart domination property. Therefore, (C.10) follows.

For (C.11), it suffices to show that for j = 1, 2,

$$\sum_{i=2}^{\lfloor Tt/\delta \rfloor} \mathbb{E}_{(i-1)\delta} \left(\zeta_{j,i}^{T,\delta,h} \Delta_i H \right) \to_p 0.$$
 (C.14)

For j = 1, (C.14) holds for H being a bounded martingale orthogonal to W since $\mathbb{E}_{(i-1)\delta}(\Delta_i W \Delta_i H) = 0$ for $2 \leq i \leq n$. For H = W, it holds that

$$\sum_{i=2}^{\lfloor Tt/\delta \rfloor} \mathbb{E}_{(i-1)\delta}\left(\zeta_{1,i}^{T,\delta,h}\Delta_i H\right) = \frac{\delta}{\sqrt{h}} \sum_{i=2}^{\lfloor Tt/\delta \rfloor} (\chi_{x,h}\varphi)(X_{(i-1)\delta}) = O_p\left(\sqrt{h}\ell(tT,x)\right) = o_p(1)$$

For j = 2, (C.14) holds for H = W since $\mathbb{E}_{(i-1)\delta} \left[(|\Delta_i W| - \sqrt{\omega \delta}) \Delta_i W \right] = 0$ for $2 \le i \le n$. Moreover, using analogous arguments as in the proof of Lemma 3.18 in Jacod (2012), we may readily show that for H being any bounded martingale orthogonal to W, $\mathbb{E}_{(i-1)\delta} \left(\zeta_{2,i}^{T,\delta,h} \Delta_i H \right) = 0$ for $2 \le i \le n$, which completes the proof of (C.11).

Case 2. $T \to \infty$. By Equation (14) in Kanaya (2016), it holds that $\limsup_{\delta \to 0} \sup_{s,t \in [0,\infty), |t-s| \in [0,\delta]} |W_t - W_s| = 2\sqrt{\delta \log(1/\delta)}$ almost surely as $\delta \to 0$, as the global modulus of continuity of Brownian motion. Then we readily have

$$\max_{i \ge 1} \left| \zeta_{1,i}^{T,\delta,h} \right| \le \frac{1}{\sqrt{h}} \| \chi_{x,h} \varphi \|_{\infty} \left(\max_{i \ge 1} |\Delta_i W| \right) \to 0$$

$$\max_{i \ge 1} \left| \zeta_{2,i}^{T,\delta,h} \right| \le \frac{1}{\sqrt{\delta h}} \| f_{x,h} g \|_{\infty} \left(\max_{i \ge 1} |\Delta_i W| + \sqrt{\omega \delta} \right)^2 \to 0$$
(C.15)

almost surely under $\delta = o(h^2)$.

Next, for each T > 0, let $(\ell_t^T)_{t \ge 0}$ be a process given by $\ell_t^T = \ell(Tt, x)/\kappa_T$. Noting that we write $\kappa(T)$ as κ_T for simplicity, and $\kappa(\cdot)$ is as in Assumption 2.1 (g). Using similar arguments as Lemma D.2, we may readily deduce that for predictable quadratic variation processes $\langle V_j^{T,\delta,h} \rangle$ with j = 1, 2, it holds that for each t > 0,

$$\sup_{0 < s \le t} \left| \kappa_T^{-1} \langle V_{j,s}^{T,\delta,h} \rangle - a_j(x) \ell_s^T \right| \to_p 0, \tag{C.16}$$

where $a_1(x) = i(\chi^2)\varphi^2(x)$ and $a_2(x) = c(\pi)i(f^2)g^2(x)$.

Moreover, it follows from Lemma D.2 in PW that

$$\ell^T \to_{st} m(x)L$$
 (C.17)

as $T \to \infty$ on an extended probability space $(\widetilde{\Omega}, \widetilde{\mathcal{F}}, \widetilde{\mathbb{P}})$ of $(\Omega, \mathcal{F}, \mathbb{P})$, on which L and \mathcal{F} are independent, where " \to_{st} " denotes stable convergence in law, and $L = (L_t)_{t\geq 0}$ denotes a Mittag-Leffler process of index $\rho \in (0, 1]$ as in Assumption 2.1 (g). Together with (C.16), we have

$$\left(\ell^{T}, \kappa_{T}^{-1}\langle V_{1}^{T,\delta,h}\rangle, \kappa_{T}^{-1}\langle V_{2}^{T,\delta,h}\rangle\right) \to_{st} (m(x)L, (a_{1}m)(x)L, (a_{2}m)(x)L)$$
(C.18)

as $T \to \infty$ on the extended probability space $(\widetilde{\Omega}, \widetilde{\mathcal{F}}, \widetilde{\mathbb{P}})$. Moreover, note that $\mathbb{E}_{(i-1)\delta} [\Delta_i W(|\Delta_i W| - \sqrt{\omega\delta})] = 0$, which implies that the predictable quadratic covariation between $V_1^{T,\delta,h}$ and $V_2^{T,\delta,h}$ is zero. It then follows from (C.15), (C.18), Theorem 5.5 in Ueltzhöfer (2013), and (3.5) in Höpfner et al. (1990) that

$$\left(\ell^{T}, \kappa_{T}^{-1} \langle V_{1}^{T,\delta,h} \rangle, \kappa_{T}^{-1} \langle V_{2}^{T,\delta,h} \rangle, \kappa_{T}^{-1/2} V_{1}^{T,\delta,h}, \kappa_{T}^{-1/2} V_{2}^{T,\delta,h} \right)$$

$$\rightarrow_{st} \left(m(x)L, (a_{1}m)(x)L, (a_{2}m)(x)L, \sqrt{(a_{1}m)(x)}B_{1} \circ L, \sqrt{(a_{2}m)(x)}B_{2} \circ L \right),$$
 (C.19)

as $h, \delta \to 0$ and $T \to \infty$ on an extended probability space $(\tilde{\Omega}, \tilde{\mathcal{F}}, \tilde{\mathbb{P}})$, on which L, B and \mathcal{F} are mutually independent, with $B = (B_1, B_2)$ as a two dimensional Brownian motion. Therefore, it follows from (C.16) and (C.19) that (C.7) also holds in the case of $T \to \infty$, which completes the proof.

Proof of Lemma A.3. We first define

$$Z_{i1} = |\Delta_{i}X||\Delta_{i+1}X_{1}^{c}|, \ Z_{i2} = |\Delta_{i}X||\Delta_{i+1}X^{d}|, \ Z_{i3} = |\sigma|(X_{(i-1)\delta})|\Delta_{i+1}W||\Delta_{i}X_{1}^{c}|,$$

$$Z_{i4} = |\sigma|(X_{(i-1)\delta})|\Delta_{i+1}W||\Delta_{i}X^{d}|, \ Z_{i5} = |\Delta_{i}X||\Delta_{i+1}W||\sigma(X_{i\delta}) - \sigma(X_{(i-1)\delta})|,$$

$$Z_{i6} = |\Delta_{i}X||\int_{i\delta}^{(i+1)\delta} (\sigma(X_{t}) - \sigma(X_{i\delta}))dW_{t}|,$$

$$Z_{i7} = |\sigma|(X_{(i-1)\delta})|\Delta_{i+1}W||\int_{(i-1)\delta}^{i\delta} (\sigma(X_{t}) - \sigma(X_{(i-1)\delta}))dW_{t}|$$

$$Z_{i8} = \sigma^{2}(X_{(i-1)\delta})|\Delta_{i}W||\Delta_{i+1}W|\left(1 - 1\{|\Delta_{i}X| \le \delta^{\beta}, |\Delta_{i+1}X| \le \delta^{\beta}\}\right),$$

(C.20)

so that we may readily write

$$\begin{aligned} \left| |\Delta_{i}X||\Delta_{i+1}X|1\{|\Delta_{i}X| \leq \delta^{\beta}, |\Delta_{i+1}X| \leq \delta^{\beta}\} - \sigma^{2}(X_{(i-1)\delta})|\Delta_{i}W||\Delta_{i+1}W| \right| \\ \leq \left| |\Delta_{i}X||\Delta_{i+1}X| - \sigma^{2}(X_{(i-1)\delta})|\Delta_{i}W||\Delta_{i+1}W| \left| 1\{|\Delta_{i}X| \leq \delta^{\beta}, |\Delta_{i+1}X| \leq \delta^{\beta}\} \right| \\ + \sigma^{2}(X_{(i-1)\delta})|\Delta_{i}W||\Delta_{i+1}W| \left(1 - 1\{|\Delta_{i}X| \leq \delta^{\beta}, |\Delta_{i+1}X| \leq \delta^{\beta}\} \right) \\ \leq \left| |\Delta_{i}X||\Delta_{i+1}X| - \sigma^{2}(X_{(i-1)\delta})|\Delta_{i}W||\Delta_{i+1}W| \right| + Z_{i8} \leq \sum_{j=1}^{8} Z_{ij}, \end{aligned}$$
(C.21)

from which it follows that $\left| R_T(K, \sigma^2) \right| \leq \sum_{j=1}^8 R_j$, where

$$R_j = \frac{\pi}{2h} \sum_{i=1}^{n-1} K_{x,h}(X_{(i-1)\delta}) Z_{ij}$$

for j = 1, 2, ..., 8. However, it follows from Lemmas D.6, D.7, D.12, D.8, D.10, D.11 and D.13 that $R_j = O_p(\delta^{1/2}\ell(T, x))$ for j = 1, 2, ..., 8, from which the stated result follows.

Proof of Lemma A.4. Firstly, by applying Lemma A.16 in PW with f = K and $g = \sigma^2$, we have

$$B_T(K) = O_p\left(\delta T^{2pq}\ell(T,x) + \delta h^{-1/2}T^{pq}\ell(T,x)^{1/2}\right) = o_p(h^2\ell(T,x))$$
(C.22)

under $\delta = o(h^3 \wedge T^{-6pq})$. Secondly, note that $C_T(K) = -M_T(K, \sigma^2) - R_T(K, \sigma^2)$ with $M_T(K, \sigma^2)$ and $R_T(K, \sigma^2)$ defined as in Section 3.1 and that, as shown in the proof of Theorem 3.1, $M_T(K, \sigma^2) = O_p(\sqrt{\delta \ell(T, x)/h})$ and $R_T(K, \sigma^2) = O_p(\delta^{1/2} \ell(T, x))$, from which it follows that

$$C_T(K) = O_p\left(\sqrt{\frac{\delta\ell(T,x)}{h}}\right) + O_p\left(\delta^{1/2}\ell(T,x)\right).$$
(C.23)

For $A_T(K)$, we write $A_T(K) = F_T + G_T$, where

$$F_T = \frac{2}{h} \sum_{i=1}^n K_{x,h}(X_{(i-1)\delta}) \int_{(i-1)\delta}^{i\delta} (X_t - X_{(i-1)\delta}) \mu(X_t) dt$$
$$G_T = \frac{2}{h} \sum_{i=1}^n K_{x,h}(X_{(i-1)\delta}) \int_{(i-1)\delta}^{i\delta} (X_{t-} - X_{(i-1)\delta}) \left(\sigma(X_t) dW_t + \int_{\mathbb{R}} z\tau(X_{t-}) \Gamma(dt, dz)\right).$$

Using similar arguments as $B_T(K)$ in (C.22), we have

$$F_T = O_p\left(\delta T^{2pq}\ell(T,x) + \delta h^{-1/2}T^{pq}\ell(T,x)^{1/2}\right) = o_p(h^2\ell(T,x))$$
(C.24)

under $\delta = o(h^3 \wedge T^{-6pq})$, noting that we may write $(X_t - X_{(i-1)\delta})\mu(X_t) = \iota\mu(X_t) - \iota\mu(X_{(i-1)\delta}) - [x + h((X_{(i-1)\delta} - x)/h)](\mu(X_t) - \mu(X_{(i-1)\delta}))$. Moreover, for G_T , we have

$$\begin{split} \langle G \rangle_T &\leq T(\sigma^2 + \tau^2) \frac{4}{h^2} \sum_{i=1}^n K_{x,h}^2(X_{(i-1)\delta}) \int_{(i-1)\delta}^{i\delta} (X_t - X_{(i-1)\delta})^2 dt \\ &\leq_p T(\sigma^2 + \tau^2) \frac{4}{h^2} \sum_{i=1}^n K_{x,h}^2(X_{(i-1)\delta}) \int_{(i-1)\delta}^{i\delta} \int_{(i-1)\delta}^t (\sigma^2 + \tau^2)(X_s) ds dt \\ &\leq T^2(\sigma^2 + \tau^2) \left(\frac{2\delta^2}{h^2} \sum_{i=1}^n K_{x,h}^2(X_{(i-1)\delta}) \right) = O_p \left(\delta T^{2pq} h^{-1} \ell(T, x) \right), \end{split}$$

which implies that

$$G_T = O_p\left(\delta^{1/2}T^{pq}h^{-1/2}\ell(T,x)^{1/2}\right) = o_p\left(h^{1/2}\ell(T,x)^{1/2}\right).$$
 (C.25)

under $\delta = o(h^3 \wedge T^{-6pq})$. Then, the stated result follows from (C.22)-(C.25).

D Lemmas D.1-D.13 and their proofs

This section contains some preliminary lemmas, Lemmas D.1-D.13 and their proofs. Lemmas D.1 and D.2 are useful for the proof of Lemma A.2; and Lemmas D.3-D.13 are used in the proof of Lemma A.3.

Lemma D.1. Let (i) f and g be twice continuously differentiable, (ii) Assumptions 2.1, 2.3 and 2.5 (b) hold, (iii) η satisfies Assumption 2.5 (a) for $\eta = \tau^2$, and (iv) $\delta = o(h^2 \wedge T^{-pq})$. Then

$$\frac{\delta}{h} \sum_{i=2}^{n} \left(f_{x,h}g \right) \left(X_{(i-2)\delta} \right) \left(f_{x,h}g \right) \left(X_{(i-1)\delta} \right) = \imath(f^2)g^2(x)\ell(T,x)(1+o_p(1)).$$

Proof. We write

$$\frac{\delta}{h} \sum_{i=2}^{n} (f_{x,h}g) \left(X_{(i-2)\delta} \right) \left(f_{x,h}g \right) \left(X_{(i-1)\delta} \right) = A_T + B_T, \tag{D.1}$$

where

$$A_{T} = \frac{\delta}{h} \sum_{i=2}^{n} (f_{x,h}g)^{2} (X_{(i-2)\delta})$$
$$B_{T} = \frac{\delta}{h} \sum_{i=2}^{n} (f_{x,h}g) (X_{(i-2)\delta}) \left[(f_{x,h}g) (X_{(i-1)\delta}) - (f_{x,h}g) (X_{(i-2)\delta}) \right],$$

which will be considered in the sequel. For A_T , using similar arguments as (C.12), we have

$$A_T = i(f^2)g^2(x)\ell(T,x)(1+o_p(1))$$
(D.2)

under $\delta = o(h^2)$. For B_T , by Itô's formula, we may write $B_T = P_T + Q_T + R_T$, where

$$P_{T} = \frac{\delta}{h} \sum_{i=2}^{n} (f_{x,h}g)(X_{(i-2)\delta}) \int_{(i-2)\delta}^{(i-1)\delta} \left[(f_{x,h}g)'\mu + (f_{x,h}g)''\sigma^{2}/2 \right] (X_{t})dt$$

$$Q_{T} = \frac{\delta}{h} \sum_{i=2}^{n} (f_{x,h}g)(X_{(i-2)\delta}) \int_{(i-2)\delta}^{(i-1)\delta} \left[(f_{x,h}g)'\sigma \right] (X_{t})dW_{t}$$

$$R_{T} = \frac{\delta}{h} \sum_{i=2}^{n} (f_{x,h}g)(X_{(i-2)\delta}) \int_{(i-2)\delta}^{(i-1)\delta} \int_{\mathbb{R}} \left[(f_{x,h}g)(X_{t-} + z\tau(X_{t-})) - (f_{x,h}g)(X_{t-}) \right] \Lambda(dt, dz).$$

For P_T , we have

$$|P_T| \le \delta T \left((f_{x,h}g)' \mu + \frac{1}{2} (f_{x,h}g)'' \sigma^2 \right) \left(\sup_{|x-y| \le h} |g|(y) \right) \left(\frac{\delta}{h} \sum_{i=2}^n f_{x,h}(X_{(i-2)\delta}) \right) \\ = O_p \left(\delta h^{-2} \ell(T,x) \right) = o_p(\ell(T,x)),$$

noting that $T((f_{x,h}g)'\mu + (f_{x,h}g)''\sigma^2/2) = O(h^{-2})$, since f has support [-1,1] and $\mu, \sigma^2, g, g', g''$ are locally bounded. For R_T , we may easily deduce from Lenglart domination property that

$$\begin{aligned} |R_T| &\leq \delta T\left((f_{x,h}g)'\right) T(\tau) \left(\sup_{|x-y|\leq h} |g|(y)\right) \left(\frac{1}{h} \sum_{i=2}^n f_{x,h}(X_{(i-2)\delta}) \int_{(i-2)\delta}^{(i-1)\delta} \int_{\mathbb{R}} |z| \Lambda(dt, dz)\right) \\ &\leq_p \delta T\left((f_{x,h}g)'\right) T(\tau) \left(\sup_{|x-y|\leq h} |g|(y)\right) \left(\frac{\imath(|\iota|\lambda)\delta}{h} \sum_{i=2}^n f_{x,h}(X_{(i-2)\delta})\right) \\ &= O_p\left(\delta h^{-1} T^{pq/2}\ell(T, x)\right) = o_p(\ell(T, x)) \end{aligned}$$

under $\delta = o(h^2 \wedge T^{-pq}).$

Finally, we have

$$\begin{split} [Q]_T &= \frac{\delta^2}{h^2} \sum_{i=2}^n \left(f_{x,h}g \right)^2 (X_{(i-2)\delta}) \int_{(i-2)\delta}^{(i-1)\delta} \left[(f_{x,h}g)'\sigma \right]^2 (X_t) dt \\ &\leq \frac{\delta^2}{h} T\left(\left[(f_{x,h}g)'\sigma \right]^2 \right) \left(\sup_{|x-y| \leq h} g^2(y) \right) \left(\frac{\delta}{h} \sum_{i=2}^n f_{x,h}^2 (X_{(i-2)\delta}) \right) = O_p\left(\delta^2 h^{-3} \ell(T,x) \right), \end{split}$$

from which it follows that $Q_T = O_p(\delta h^{-3/2}\ell(T,x)^{1/2}) = o_p(\ell(T,x))$. Therefore, $B_T = o_p(\ell(T,x))$, from which, together with (D.1) and (D.2), the stated result follows.

Lemma D.2. Let the conditions in Lemma D.1 hold. Then

$$\frac{1}{h} \sum_{i=2}^{n-1} \left[(f_{x,h}g)(X_{(i-2)\delta}) | \Delta_{i-1}W | + (f_{x,h}g)(X_{(i-1)\delta})\sqrt{\omega\delta} \right]^2 = (1+3\omega)i(f^2)g^2(x)\ell(T,x)(1+o_p(1)).$$
(D.3)

Proof. We may readily write the left hand side of (D.3) as $A_T + B_T + C_T + D_T$, where

$$\begin{split} A_{T} &= \frac{\delta}{h} \sum_{i=2}^{n-1} \left[(f_{x,h}g)^{2} \left(X_{(i-2)\delta} \right) + \omega \left(f_{x,h}g \right)^{2} (X_{(i-1)\delta}) \right] + \frac{2\omega\delta}{h} \sum_{i=2}^{n-1} (f_{x,h}g) (X_{(i-2)\delta}) (f_{x,h}g) (X_{(i-1)\delta}) \\ B_{T} &= \frac{2}{h} \sum_{i=2}^{n-1} \left(f_{x,h}g \right)^{2} \left(X_{(i-2)\delta} \right) \int_{(i-2)\delta}^{(i-1)\delta} \int_{(i-2)\delta}^{t} dW_{s} dW_{t} \\ C_{T} &= \frac{2\sqrt{\omega\delta}}{h} \sum_{i=2}^{n-1} \left(f_{x,h}g \right)^{2} \left(X_{(i-2)\delta} \right) \left(|\Delta_{i-1}W| - \sqrt{\omega\delta} \right) \\ D_{T} &= \frac{2\sqrt{\omega\delta}}{h} \sum_{i=2}^{n-1} \left(f_{x,h}g \right) \left(X_{(i-2)\delta} \right) \left[(f_{x,h}g) \left(X_{(i-1)\delta} \right) - (f_{x,h}g) \left(X_{(i-2)\delta} \right) \right] \left(|\Delta_{i-1}W| - \sqrt{\omega\delta} \right). \end{split}$$

Note that $\mathbb{E}|\Delta_{i-1}W| = \sqrt{\omega\delta}$ and $(\Delta_{i-1}W)^2 = \delta + 2 \int_{(i-2)\delta}^{(i-1)\delta} \int_{(i-2)\delta}^t dW_s dW_t$.

Using similar arguments as (C.12), together with Lemma D.1, we may readily deduce that

$$A_T = (1+3\omega)\iota(f^2)g^2(x)\ell(T,x)(1+o_p(1)).$$

In the sequel, we show that

$$B_T, C_T, D_T = o_p(\ell(T, x)),$$

which then completes the proof. For B_T , it holds that

$$[B]_T = \frac{4}{h^2} \sum_{i=2}^{n-1} (f_{x,h}g)^4 (X_{(i-2)\delta}) \int_{(i-2)\delta}^{(i-1)\delta} \left(\int_{(i-2)\delta}^t dW_s \right)^2 dt$$
$$\leq_p \frac{4\delta}{h} \left(\frac{\delta}{h} \sum_{i=2}^{n-1} (f_{x,h}g)^4 (X_{(i-2)\delta}) \right) = O_p(\delta h^{-1}\ell(T,x)),$$

which implies that $B_T = O_p\left((\delta h^{-1}\ell(T,x))^{1/2}\right) = o_p(\ell(T,x))$ under $\delta = o(h)$. Similarly, we have $C_T = O_p\left((\delta h^{-1}\ell(T,x))^{1/2}\right) = o_p(\ell(T,x))$. Next, we use Cauchy-Schwarz inequality and deduce that $|D_T| \leq c\sqrt{P_T Q_T}$, where

$$P_T = \frac{1}{h} \sum_{i=2}^{n-1} (f_{x,h}g) \left(X_{(i-2)\delta} \right) \left(|\Delta_{i-1}W| - \sqrt{\omega\delta} \right)^2$$
$$Q_T = \frac{\delta}{h} \sum_{i=2}^{n-1} (f_{x,h}g) \left(X_{(i-2)\delta} \right) \left[(f_{x,h}g) \left(X_{(i-1)\delta} \right) - (f_{x,h}g) \left(X_{(i-2)\delta} \right) \right]^2.$$

However, similarly C_T , we may easily show that $P_T = o_p(\ell(T, x))$. Moreover, we may write

$$\left[(f_{x,h}g) (X_{(i-1)\delta}) - (f_{x,h}g) (X_{(i-2)\delta}) \right]^2 = \left[(f_{x,h}g)^2 (X_{(i-1)\delta}) - (f_{x,h}g)^2 (X_{(i-2)\delta}) \right] - 2 (f_{x,h}g) (X_{(i-2)\delta}) \left[(f_{x,h}g) (X_{(i-1)\delta}) - (f_{x,h}g) (X_{(i-2)\delta}) \right],$$

and show, as for B_T in the proof of Lemma D.1, that $Q_T = o_p(\ell(T, x))$, which implies that $D_T = o_p(\ell(T, x))$. The proof is therefore complete.

Lemma D.3. Let (i) g be twice continuously differentiable on \mathcal{D} , (ii) Assumptions 2.1, 2.3 and 2.5 (b) hold, (iii) η satisfies Assumption 2.5 (a) for $\eta = \mu, \sigma^2, \tau^2, g'$, and (iv) $\delta = o(h^2 \wedge T^{-4pq})$. Then

$$\frac{1}{h}\sum_{i=1}^{n} f_{x,h}(X_{(i-1)\delta}) \int_{i\delta}^{(i+1)\delta} g(X_t)dt = i(f)g(x)\ell(T,x)(1+o_p(1)).$$

Proof. We write

$$\frac{1}{h}\sum_{i=1}^{n} f_{x,h}(X_{(i-1)\delta}) \int_{i\delta}^{(i+1)\delta} g(X_t)dt = A_T + B_T + C_T,$$

where

$$A_{T} = \frac{\delta}{h} \sum_{i=1}^{n} (f_{x,h}g) (X_{(i-1)\delta})$$
$$B_{T} = \frac{\delta}{h} \sum_{i=1}^{n} f_{x,h}(X_{(i-1)\delta}) \left[g(X_{i\delta}) - g(X_{(i-1)\delta})\right]$$
$$C_{T} = \frac{1}{h} \sum_{i=1}^{n} f_{x,h}(X_{(i-1)\delta}) \int_{i\delta}^{(i+1)\delta} \left[g(X_{t}) - g(X_{i\delta})\right] dt$$

By similar arguments as (C.12), we have

$$A_T = i(f)g(x)\ell(T,x)(1+o_p(1))$$
(D.4)

under $\delta = o(h^2)$. For B_T , we may write

$$|B_T| \le T(g')\frac{\delta}{h}\sum_{i=1}^n f_{x,h}(X_{(i-1)\delta})\left(|\Delta_i X^c| + |\Delta_i X^d|\right) = P_T + Q_T,$$

for which we have

$$P_T \le T(g') \max_{1 \le i \le n} |\Delta_i X^c| \left(\frac{\delta}{h} \sum_{i=1}^n f_{x,h}(X_{(i-1)\delta})\right) = O_p\left(\delta^{1/2} T^{3pq/2}\ell(T,x)\sqrt{\log(T/\delta)}\right),$$

under $\delta = o(h^2)$, due to the modulus of continuity of diffusion, and

$$Q_T \leq T(g'\tau) \frac{\delta}{h} \sum_{i=1}^n f_{x,h}(X_{(i-1)\delta}) \int_{(i-1)\delta}^{i\delta} \int_{\mathbb{R}} |z| \Lambda(dt, dz)$$
$$\leq_p \imath(|\iota|\lambda) \delta T(g'\tau) \left(\frac{\delta}{h} \sum_{i=1}^n f_{x,h}(X_{(i-1)\delta})\right) = O_p\left(\delta T^{3pq/2}\ell(T, x)\right),$$

by Lenglart domination property. Therefore, it follows that

$$B_T = O_p\left(\delta^{1/2} T^{3pq/2} \ell(T, x) \sqrt{\log(T/\delta)}\right) = o_p(\ell(T, x)).$$
(D.5)

under $\delta = o(T^{-4pq})$. We may also similarly deduce that $C_T = o_p(\ell(T, x))$, which completes the proof, together with (D.4) and (D.5).

Lemma D.4. Let (i) σ be twice continuously differentiable on \mathcal{D} , (ii) Assumptions 2.1, 2.3 and 2.5 (b) hold, (iii) η satisfies Assumption 2.5 (a) for $\eta = \mu, \sigma^2, \tau^2, \sigma^{2\prime}, \sigma^{2\prime\prime}$, and (iv) $\delta = o(h^2 \wedge T^{-2pq})$. Then

$$\frac{\delta}{h} \sum_{i=1}^{n-1} f_{x,h}(X_{(i-1)\delta}) |\Delta_i X| = O_p(\delta^{1/2} \ell(T, x)).$$

Proof. Note that

$$\frac{\delta}{h} \sum_{i=1}^{n-1} f_{x,h}(X_{(i-1)\delta}) |\Delta_i X| \le A_T + B_T + C_T,$$
(D.6)

where A_T , B_T and C_T are defined as the left hand side in (D.6) with $|\Delta_i X|$ replaced by $|\Delta_i X_1^c|$, $|\Delta_i X_2^c|$ and $|\Delta_i X^d|$, respectively. For A_T , we have

$$A_T \le \delta T(\mu) \left(\frac{\delta}{h} \sum_{i=1}^{n-1} f_{x,h}(X_{(i-1)\delta}) \right) = O_p(\delta T^{pq} \ell(T, x)) = o_p(\delta^{1/2} \ell(T, x))$$
(D.7)

under $\delta = o(h^2 \wedge T^{-2pq})$. For B_T , we use Itô's formula to have $B_T \leq P_T + Q_T + R_T + S_T$, where

$$P_{T} = \frac{\delta}{h} \sum_{i=1}^{n-1} (f_{x,h} |\sigma|) (X_{(i-1)\delta}) |\Delta_{i}W|$$

$$Q_{T} = \frac{\delta}{h} \sum_{i=1}^{n-1} f_{x,h} (X_{(i-1)\delta}) \left| \int_{(i-1)\delta}^{i\delta} \int_{(i-1)\delta}^{t} (\mu \sigma' + \sigma^{2} \sigma''/2) (X_{s}) ds dt \right|$$

$$R_{T} = \frac{\delta}{h} \sum_{i=1}^{n-1} f_{x,h} (X_{(i-1)\delta}) \left| \int_{(i-1)\delta}^{i\delta} \int_{(i-1)\delta}^{t} \sigma \sigma' (X_{s}) dW_{s} dt \right|$$

$$S_{T} = \frac{\delta}{h} \sum_{i=1}^{n-1} f_{x,h} (X_{(i-1)\delta}) \left| \int_{(i-1)\delta}^{i\delta} \int_{(i-1)\delta}^{t} \int_{\mathbb{R}}^{t} (\sigma (X_{s-} + z\tau (X_{s-})) - \sigma (X_{s-})) \Lambda (ds, dz) dt \right|,$$

which will be considered subsequently.

It follows from Lenglart domination property that

$$P_T \leq_p \sqrt{\frac{\pi\delta}{2}} \left(\sup_{|x-y| \leq h} |\sigma(y)| \right) \left(\frac{\delta}{h} \sum_{i=1}^{n-1} f_{x,h}(X_{(i-1)\delta}) \right) = O_p(\delta^{1/2}\ell(T,x)).$$

Also, we have

$$Q_T \le \delta^2 T(\mu\sigma' + \sigma^2\sigma''/2) \left(\frac{\delta}{h} \sum_{i=1}^{n-1} f_{x,h}(X_{(i-1)\delta})\right) = O_p\left(\delta^2 T^{3pq/2}\ell(T,x)\right),$$

and

$$R_T \leq \delta \sup_{t \in [0,T]} \sup_{s \in [0,\delta]} \left| \int_t^{t+s} (\sigma \sigma')(X_r) dW_r \right| \left(\frac{\delta}{h} \sum_{i=1}^{n-1} f_{x,h}(X_{(i-1)\delta}) \right)$$
$$\leq_p \delta^{3/2} T(\sigma \sigma') \sqrt{\log(T/\delta)} \ell(T,x) = O_p \left(\delta^{3/2} T^{pq} \ell(T,x) \sqrt{\log(T/\delta)} \right),$$

due to the modulus of continuity of diffusion. Moreover, we may change the order of integrals to

have

$$S_{T} = \frac{\delta}{h} \sum_{i=1}^{n-1} f_{x,h}(X_{(i-1)\delta}) \left| \int_{(i-1)\delta}^{i\delta} \int_{\mathbb{R}} (i\delta - t) \left[\sigma(X_{t-} + z\tau(X_{t-})) - \sigma(X_{t-}) \right] \Lambda(dt, dz) \right|$$

$$\leq \delta^{2} T(\sigma'\tau) \left(\frac{1}{h} \sum_{i=1}^{n-1} f_{x,h}(X_{(i-1)\delta}) \int_{(i-1)\delta}^{i\delta} \int_{\mathbb{R}} |z| \Lambda(dt, dz) \right) = O_{p} \left(\delta^{2} T^{pq} \ell(T, x) \right),$$

as for Q_T in the proof of Lemma D.3. Consequently, we have

$$B_T = O_p(\delta^{1/2}\ell(T,x)) \tag{D.8}$$

under $\delta = o(T^{-2pq}).$

Finally, we may deduce that $C_T = O_p(\delta T^{pq/2}\ell(T,x)) = o_p(\delta^{1/2}\ell(T,x))$ similarly S_T above, from which, together with (D.6), (D.7) and (D.8), the stated result follows.

Lemma D.5. Let (i) g be twice continuously differentiable on \mathcal{D} , (ii) Assumptions 2.1, 2.3, 2.5 (b) and 2.7 hold, (iii) η satisfies Assumption 2.5 (a) for $\eta = \mu, \sigma^2, \tau^2, \sigma^{2\prime}, \sigma^{2\prime\prime}, \tau^{2\prime}, \tau^{2\prime\prime}, g, g', g''$, and (iv) $\delta = o(h^2 \wedge T^{-6pq})$. Then

$$\frac{1}{h} \sum_{i=1}^{n-1} f_{x,h}(X_{(i-1)\delta}) |\Delta_i X| \left| g(X_{i\delta}) - g(X_{(i-1)\delta}) \right| = O_p(\ell(T, x)).$$

Proof. We write

$$\frac{1}{h} \sum_{i=1}^{n-1} f_{x,h}(X_{(i-1)\delta}) |\Delta_i X| \left| g(X_{i\delta}) - g(X_{(i-1)\delta}) \right| \le A_T + B_T + C_T, \tag{D.9}$$

where

$$A_{T} = \frac{1}{h} \sum_{i=1}^{n-1} f_{x,h}(X_{(i-1)\delta}) |\Delta_{i}X| \left| \int_{(i-1)\delta}^{i\delta} (\mu g' + \sigma^{2} g''/2)(X_{t}) dt \right|$$

$$B_{T} = \frac{1}{h} \sum_{i=1}^{n-1} f_{x,h}(X_{(i-1)\delta}) |\Delta_{i}X| \left| \int_{(i-1)\delta}^{i\delta} (\sigma g')(X_{t}) dW_{t} \right|$$

$$C_{T} = \frac{1}{h} \sum_{i=1}^{n-1} f_{x,h}(X_{(i-1)\delta}) |\Delta_{i}X| \left| \int_{(i-1)\delta}^{i\delta} \int_{\mathbb{R}} (g(X_{t-} + z\tau(X_{t-})) - g(X_{t-})) \Lambda(dt, dz) \right|.$$

For A_T , it follows from Lemma D.4 that

$$A_T \le T(\mu g' + \sigma^2 g''/2) \frac{\delta}{h} \sum_{i=1}^{n-1} f_{x,h}(X_{(i-1)\delta}) |\Delta_i X| = O_p\left(\delta^{1/2} T^{2pq} \ell(T, x)\right) = o_p(\ell(T, x))$$
(D.10)

under $\delta = o(h^2 \wedge T^{-4pq}).$

For B_T , we show that

$$B_T \le P_T + Q_T = O_p(\ell(T, x)),$$
 (D.11)

where P_T and Q_T are defined in the same way as B_T with $|\Delta_i X|$ replaced by $|\Delta_i X_1^c|$ and $|\Delta_i X_2^c + \Delta_i X^d|$ respectively. We have

$$P_T \leq_p \delta^{1/2} T(\mu) T(\sigma g') \sqrt{\log(T/\delta)} \left(\frac{\delta}{h} \sum_{i=1}^{n-1} f_{x,h}(X_{(i-1)\delta}) \right)$$
$$= O_p \left(\delta^{1/2} T^{5pq/2} \ell(T, x) \sqrt{\log(T/\delta)} \right) = O_p(\ell(T, x))$$

under $\delta = o(T^{-6pq})$, due to the modulus of continuity of diffusion. Moreover, we may use Cauchy-Schwarz inequality to have $Q_T \leq \sqrt{U_T V_T}$, where

$$U_{T} = \frac{1}{h} \sum_{i=1}^{n-1} f_{x,h}(X_{(i-1)\delta}) \left(\int_{(i-1)\delta}^{i\delta} \sigma(X_{t}) dW_{t} + \int_{(i-1)\delta}^{i\delta} \int_{\mathbb{R}} z\tau(X_{t-}) \Lambda(dt, dz) \right)^{2}$$
$$V_{T} = \frac{1}{h} \sum_{i=1}^{n-1} f_{x,h}(X_{(i-1)\delta}) \left(\int_{(i-1)\delta}^{i\delta} (\sigma g')(X_{t}) dW_{t} \right)^{2}.$$

However, it follows from Lenglart domination property that

$$U_T \le_p \frac{1}{h} \sum_{i=1}^{n-1} f_{x,h}(X_{(i-1)\delta}) \int_{(i-1)\delta}^{i\delta} \left(\sigma^2(X_t) + \imath_2(\lambda)\tau^2(X_t) \right) dt = O_p(\ell(T,x))$$

due to Lemmas A.9, A.14 and A.16 in PW under $\delta = o(h^2 \wedge T^{-6pq})$. Similarly, we may deduce that $V_T = O_p(\ell(T, x))$, and therefore, $Q_T = O_p(\ell(T, x))$. Consequently, (D.11) follows.

Finally, for C_T , we show that

$$C_T \le M_T + N_T = O_p(\ell(T, x)),$$
 (D.12)

where M_T and N_T are defined in the same way as C_T with $|\Delta_i X|$ replaced by $|\Delta_i X^c|$ and $|\Delta_i X^d|$ respectively. For M_T , similarly Q_T in the proof of Lemma D.3, we may deduce that

$$M_T \le T(\tau g') \left(\max_{1 \le i \le n} |\Delta_i X^c| \right) \left(\frac{1}{h} \sum_{i=1}^{n-1} f_{x,h}(X_{(i-1)\delta}) \int_{(i-1)\delta}^{i\delta} \int_{\mathbb{R}} |z| \Lambda(dt, dz) \right)$$
$$= O_p \left(\delta^{1/2} T^{2pq} \ell(T, x) \sqrt{\log(T/\delta)} \right) = o_p(\ell(T, x)),$$

under $\delta = o(T^{-5pq})$, due to the modulus of continuity of diffusion. Therefore, it suffices to show that

$$N_T = O_p(\ell(T, x)), \tag{D.13}$$

from which, together with (D.9), (D.10), (D.11) and (D.12), the stated result follows immediately. To establish (D.13), we write $X_t = X_{t-} + z\tau(X_{t-})$, and let

$$E_{it} = \left\{ |X_t - X_{(i-1)\delta}| \le \delta^{\beta} \right\} \cap \left\{ |X_{t-} - X_{(i-1)\delta}| \le \delta^{\beta} \right\}$$

and define F_T and G_T similarly as N_T with $g(X_t) - g(X_{t-})$ replaced by $(g(X_t) - g(X_{t-})) \mathbb{1}(E_{it})$

and $(g(X_t) - g(X_{t-})) \mathbb{1}(E_{it}^c)$ respectively, so that $N_T = F_T + G_T$. It follows that

$$F_T \leq \left(\sup_{|x-y|\leq h+\delta^{\beta}} |g'(y)|\right) \frac{1}{h} \sum_{i=1}^{n-1} f_{x,h}(X_{(i-1)\delta}) \left|\Delta_i X^d\right| \left|\int_{(i-1)\delta}^{i\delta} \int_{\mathbb{R}} |z|\tau(X_{t-})\Lambda(dt,dz)\right|$$
$$\leq \left(\sup_{|x-y|\leq h+\delta^{\beta}} |g'(y)|\right) \frac{1}{h} \sum_{i=1}^{n-1} f_{x,h}(X_{(i-1)\delta}) \left(\int_{(i-1)\delta}^{i\delta} \int_{\mathbb{R}} |z|\tau(X_{t-})\Lambda(dt,dz)\right)^2$$
$$\leq_p \frac{\imath_2(\lambda)}{h} \sum_{i=1}^n f_{x,h}(X_{(i-1)\delta}) \int_{(i-1)\delta}^{i\delta} \tau^2(X_t) dt = O_p(\ell(T,x)),$$

due to similar arguments as U_T above. Moreover, we may apply Cauchy-Schwartz inequality to deduce that

$$G_T^2 \le \left[\frac{1}{h} \sum_{i=1}^{n-1} f_{x,h}(X_{(i-1)\delta}) \left(\Delta_i X^d\right)^2\right] \\ \times \left[\frac{1}{h} \sum_{i=1}^{n-1} f_{x,h}(X_{(i-1)\delta}) \left(\int_{(i-1)\delta}^{i\delta} \int_{\mathbb{R}} (g(X_t) - g(X_{t-1})) 1(E_{it}^c) \Lambda(dt, dz)\right)^2\right].$$

We may easily show that the first term in parenthesis is of order $O_p(\ell(T, x))$ similarly as above. Moreover, since $\sup_{t \in [0,T]} |g(X_t) - g(X_{t-})| \le T(g'\tau)|z|$, we may bound the second term in parenthesis by

$$\begin{split} T\left(g'^{2}\tau^{2}\right) &\frac{1}{h} \sum_{i=1}^{n-1} f_{x,h}(X_{(i-1)\delta}) \left[\int_{(i-1)\delta}^{i\delta} \int_{\mathbb{R}} |z| 1(E_{it}^{c}) \Lambda(dt, dz) \right]^{2} \\ &\leq_{p} T\left(g'^{2}\tau^{2}\right) \frac{\imath_{2}(\lambda)}{h} \sum_{i=1}^{n-1} f_{x,h}(X_{(i-1)\delta}) \int_{(i-1)\delta}^{i\delta} \mathbb{P}\left(E_{it}^{c} |\mathcal{F}_{(i-1)\delta}\right) dt \\ &\leq 2\imath_{2}(\lambda) T\left(g'^{2}\tau^{2}\right) \left(\sup_{|x-y| \leq h} \sup_{0 < t \leq \delta} \mathbb{P}_{y}\left(|X_{t}-y| > \delta^{\beta}\right) \right) \left(\frac{\delta}{h} \sum_{i=1}^{n-1} f_{x,h}(X_{(i-1)\delta}) \right) \\ &= O_{p}\left(\delta^{1-\alpha\beta-\varepsilon} T^{3pq}\ell(T,x) \right) = o_{p}(\ell(T,x)), \end{split}$$

where the first inequality in probability follows from Lenglart domination property, the second inequality holds since f has support [-1, 1], the third equality follows from Lemmas A.9, A.13 and A.14 in PW for any $\varepsilon > 0$, and the fourth equality holds if we choose $\varepsilon < 1/2 - \alpha\beta$ given $\delta = o(T^{-6pq})$. Therefore, we have $G_T = o_p(\ell(T, x))$, which implies (D.13), as was to be shown. \Box

Lemma D.6. Let the conditions in Lemma D.5 hold with g replaced by μ . Then

$$\frac{1}{h}\sum_{i=1}^{n-1} f_{x,h}(X_{(i-1)\delta})|\Delta_i X||\Delta_{i+1} X_1^c| = O_p(\delta^{1/2}\ell(T,x)).$$

Proof. We may apply Itô's formula to have

$$\frac{1}{h}\sum_{i=1}^{n-1} f_{x,h}(X_{(i-1)\delta})|\Delta_i X||\Delta_{i+1}X_1^c| \le A_T + B_T + C_T + D_T + E_T,$$

where

$$\begin{aligned} A_T &= \frac{\delta}{h} \sum_{i=1}^{n-1} \left(f_{x,h} |\mu| \right) (X_{(i-1)\delta}) |\Delta_i X| \\ B_T &= \frac{1}{h} \sum_{i=1}^{n-1} f_{x,h} (X_{(i-1)\delta}) |\Delta_i X| \left| \int_{i\delta}^{(i+1)\delta} \int_{i\delta}^t (\mu \mu' + \sigma^2 \mu''/2) (X_s) ds dt \right| \\ C_T &= \frac{1}{h} \sum_{i=1}^{n-1} f_{x,h} (X_{(i-1)\delta}) |\Delta_i X| \left| \int_{i\delta}^{(i+1)\delta} \int_{i\delta}^t (\sigma \mu') (X_s) dW_s dt \right| \\ D_T &= \frac{1}{h} \sum_{i=1}^{n-1} f_{x,h} (X_{(i-1)\delta}) |\Delta_i X| \left| \int_{i\delta}^{(i+1)\delta} \int_{i\delta}^t \int_{\mathbb{R}} (\mu (X_{s-} + z\tau(X_{s-})) - \mu(X_{s-})) \Lambda(ds, dz) dt \right| \\ E_T &= \frac{\delta}{h} \sum_{i=1}^{n-1} f_{x,h} (X_{(i-1)\delta}) |\Delta_i X| \left| \mu(X_{i\delta}) - \mu(X_{(i-1)\delta}) \right|. \end{aligned}$$

We have $A_T = O_p(\delta^{1/2}\ell(T,x))$ by Lemma D.4, and also by changing the order of integrals $B_T, C_T, D_T = o_p(\delta^{1/2}\ell(T,x))$ as in the proof of Lemma D.5. Moreover, it follows from Lemma D.5 that $E_T = O_p(\delta\ell(T,x))$, which completes the proof.

Lemma D.7. Let the conditions in Lemma D.5 hold with g replaced by τ . Then

$$\frac{1}{h}\sum_{i=1}^{n-1} f_{x,h}(X_{(i-1)\delta})|\Delta_i X||\Delta_{i+1} X^d| = O_p(\delta^{1/2}\ell(T,x)).$$

Proof. It follows from Lenglart domination property that

$$\frac{1}{h} \sum_{i=1}^{n-1} f_{x,h}(X_{(i-1)\delta}) |\Delta_i X| |\Delta_{i+1} X^d| \\
\leq \frac{1}{h} \sum_{i=1}^{n-1} f_{x,h}(X_{(i-1)\delta}) |\Delta_i X| \left(\int_{i\delta}^{(i+1)\delta} \tau(X_{t-}) \int_{\mathbb{R}} |z| \Lambda(dt, dz) \right) \\
\leq_p \frac{i(|\iota|\lambda)}{h} \sum_{i=1}^{n-1} f_{x,h}(X_{(i-1)\delta}) |\Delta_i X| \left(\int_{i\delta}^{(i+1)\delta} \tau(X_t) dt \right) = O_p(\delta^{1/2} \ell(T, x)),$$

similarly as in the proof of Lemma D.5.

Lemma D.8. Let the conditions in Lemma D.5 hold with g replaced by σ . Then

$$\frac{1}{h} \sum_{i=1}^{n-1} f_{x,h}(X_{(i-1)\delta}) |\Delta_i X| |\Delta_{i+1} W| \left| \sigma(X_{i\delta}) - \sigma(X_{(i-1)\delta}) \right| = O_p(\delta^{1/2} \ell(T, x)).$$

Proof. Due to Lenglart domination property, we have

$$\frac{1}{h} \sum_{i=1}^{n-1} f_{x,h}(X_{(i-1)\delta}) |\Delta_i X| |\Delta_{i+1} W| \left| \sigma(X_{i\delta}) - \sigma(X_{(i-1)\delta}) \right|$$

$$\leq_p \sqrt{\frac{2\delta}{\pi}} \frac{1}{h} \sum_{i=1}^{n-1} f_{x,h}(X_{(i-1)\delta}) |\Delta_i X| \left| \sigma(X_{i\delta}) - \sigma(X_{(i-1)\delta}) \right| = O_p(\delta^{1/2} \ell(T, x)),$$

due to Lemma D.5.

Lemma D.9. Let (i) σ and g be twice continuously differentiable on \mathcal{D} , (ii) Assumptions 2.1, 2.3 and 2.5 (b) hold, (iii) η satisfies Assumption 2.5 (a) for $\eta = \mu, \sigma^2, \tau^2, \sigma^{2\prime}, \sigma^{2\prime\prime}, g, g'$, and (iv) $\delta = o(h^2 \wedge T^{-6pq})$. Then

$$\frac{1}{h} \sum_{i=1}^{n-1} f_{x,h}(X_{(i-1)\delta}) |\Delta_i X| \left| \int_{i\delta}^{(i+1)\delta} \int_{i\delta}^t g(X_s) dW_s dW_t \right| = O_p(\delta^{1/2} \ell(T, x)).$$

Proof. We write

$$\frac{1}{h} \sum_{i=1}^{n-1} f_{x,h}(X_{(i-1)\delta}) |\Delta_i X| \left| \int_{i\delta}^{(i+1)\delta} \int_{i\delta}^t g(X_s) dW_s dW_t \right| = A_T + B_T,$$
(D.14)

where A_T and B_T are defined in the same way as the left hand side in (D.14) with $|\Delta_i X|$ replaced by $|\Delta_i X_1^c + \Delta_i X^d|$ and $|\Delta_i X_2^c|$ respectively.

Using the modulus of continuity of diffusion, we have

$$A_{T} \leq \left(\max_{1 \leq i \leq n} \left| \int_{i\delta}^{(i+1)\delta} \int_{i\delta}^{t} g(X_{s}) dW_{s} dW_{t} \right| \right) \left(\frac{1}{h} \sum_{i=1}^{n-1} f_{x,h}(X_{(i-1)\delta}) |\Delta_{i}X_{1}^{c} + \Delta_{i}X^{d}| \right)$$
$$\leq_{p} \delta T(g) \sqrt{\log(T/\delta)} \left[\frac{1}{h} \sum_{i=1}^{n-1} f_{x,h}(X_{(i-1)\delta}) \left(\delta T(\mu) + T(\tau) \int_{(i-1)\delta}^{i\delta} \int_{\mathbb{R}} |z| \Lambda(dt, dz) \right) \right]$$
$$= O_{p} \left(\delta T^{2pq} \ell(T, x) \sqrt{\log(T/\delta)} \right), \tag{D.15}$$

due to Lenglart domination property. Moreover, it follows from Cauchy-Schwarz inequality that

 $B_T \leq \sqrt{P_T Q_T}$, where

$$P_T = \frac{1}{h} \sum_{i=1}^{n-1} f_{x,h}(X_{(i-1)\delta}) (\Delta_i X_2^c)^2$$
$$Q_T = \frac{1}{h} \sum_{i=1}^{n-1} f_{x,h}(X_{(i-1)\delta}) \left(\int_{i\delta}^{(i+1)\delta} \int_{i\delta}^t g(X_s) dW_s dW_t \right)^2,$$

for which we have

$$P_T \leq_p \frac{1}{h} \sum_{i=1}^{n-1} f_{x,h}(X_{(i-1)\delta}) \int_{(i-1)\delta}^{i\delta} \sigma^2(X_t) dt = O_p(\ell(T,x))$$
(D.16)

by similar arguments as U_T in the proof of Lemma D.5, and similarly,

$$Q_{T} \leq_{p} \frac{1}{h} \sum_{i=1}^{n-1} f_{x,h}(X_{(i-1)\delta}) \int_{i\delta}^{(i+1)\delta} \left(\int_{i\delta}^{t} g(X_{s}) dW_{s} \right)^{2} dt$$
$$\leq_{p} \frac{1}{h} \sum_{i=1}^{n-1} f_{x,h}(X_{(i-1)\delta}) \int_{i\delta}^{(i+1)\delta} \int_{i\delta}^{t} g^{2}(X_{s}) ds dt = O_{p}(\delta \ell(T, x))$$
(D.17)

by Lemma D.3. The stated result follows immediately from (D.14), (D.15) (D.16) and (D.17) under $\delta = o(T^{-6pq})$.

Lemma D.10. Let (i) σ be twice continuously differentiable on \mathcal{D} , (ii) Assumptions 2.1, 2.3 and 2.5 (b) hold, (iii) η satisfies Assumption 2.5 (a) for $\eta = \mu, \sigma^2, \tau^2, \sigma^{2\prime}, \sigma^{2\prime\prime}$, and (iv) $\delta = o(h^2 \wedge T^{-6pq})$. Then

$$\frac{1}{h} \sum_{i=1}^{n-1} f_{x,h}(X_{(i-1)\delta}) |\Delta_i X| \left| \int_{i\delta}^{(i+1)\delta} (\sigma(X_t) - \sigma(X_{i\delta})) dW_t \right| = O_p(\delta^{1/2} \ell(T, x)).$$

Proof. We use Itô's formula to have

$$\frac{1}{h} \sum_{i=1}^{n-1} f_{x,h}(X_{(i-1)\delta}) |\Delta_i X| \left| \int_{i\delta}^{(i+1)\delta} (\sigma(X_t) - \sigma(X_{i\delta})) dW_t \right| \le A_T + B_T + C_T,$$
(D.18)

where

$$\begin{aligned} A_T &= \frac{1}{h} \sum_{i=1}^{n-1} f_{x,h}(X_{(i-1)\delta}) |\Delta_i X| \left| \int_{i\delta}^{(i+1)\delta} \int_{i\delta}^t (\mu \sigma' + \sigma^2 \sigma''/2) (X_s) ds dW_t \right| \\ B_T &= \frac{1}{h} \sum_{i=1}^{n-1} f_{x,h}(X_{(i-1)\delta}) |\Delta_i X| \left| \int_{i\delta}^{(i+1)\delta} \int_{i\delta}^t (\sigma \sigma') (X_s) dW_s dW_t \right| \\ C_T &= \frac{1}{h} \sum_{i=1}^{n-1} f_{x,h}(X_{(i-1)\delta}) |\Delta_i X| \left| \int_{i\delta}^{(i+1)\delta} \int_{i\delta}^t \int_{\mathbb{R}} (\sigma (X_{s-} + z\tau(X_{s-})) - \sigma(X_{s-})) \Lambda(ds, dz) dW_t \right|. \end{aligned}$$

As shown in Lemma D.9, we have $B_T = O_p(\delta^{1/2}\ell(T, x))$. By changing the order of integrals and using the modulus of continuity of diffusion, and subsequently applying Lemma D.4, we may also easily deduce that

$$A_{T} = \frac{1}{h} \sum_{i=1}^{n-1} f_{x,h}(X_{(i-1)\delta}) |\Delta_{i}X| \left| \int_{i\delta}^{(i+1)\delta} \int_{t}^{(i+1)\delta} dW_{s}(\mu\sigma' + \sigma^{2}\sigma''/2)(X_{t}) dt \right|$$

= $O_{p} \left(\delta T^{3pq/2} \ell(T, x) \sqrt{\log(T/\delta)} \right).$

Similarly, by the modulus of continuity of diffusion and Lenglart domination property,

$$C_{T} = \frac{1}{h} \sum_{i=1}^{n-1} f_{x,h}(X_{(i-1)\delta}) |\Delta_{i}X| \left| \int_{i\delta}^{(i+1)\delta} \int_{\mathbb{R}} \int_{t}^{(i+1)\delta} dW_{s}(\sigma(X_{t-} + z\tau(X_{t-})) - \sigma(X_{t-})) \Lambda(dt, dz) \right|$$

$$\leq_{p} \imath(|\iota|\lambda) \delta^{1/2} T(\sigma'\tau) \sqrt{\log(T/\delta)} \left(\frac{\delta}{h} \sum_{i=1}^{n-1} f_{x,h}(X_{(i-1)\delta}) |\Delta_{i}X| \right) = O_{p} \left(\delta T^{pq} \ell(T, x) \sqrt{\log(T/\delta)} \right).$$

The stated result therefore follows under $\delta = o(T^{-6pq})$.

Lemma D.11. Let the conditions in Lemma D.10 hold. Then

$$\frac{1}{h} \sum_{i=1}^{n-1} (f_{x,h}|\sigma|) (X_{(i-1)\delta}) |\Delta_{i+1}W| \left| \int_{(i-1)\delta}^{i\delta} (\sigma(X_t) - \sigma(X_{(i-1)\delta})) dW_t \right| = O_p(\delta^{1/2}\ell(T,x)).$$

Proof. The proof is almost identical to that of Lemma D.10, and therefore omitted.

Lemma D.12. Let (i) μ and τ be twice continuously differentiable on \mathcal{D} , (ii) Assumptions 2.1, 2.3 and 2.5 (b) hold, (iii) η satisfies Assumption 2.5 (a) for $\eta = \mu, \sigma^2, \tau^2, \mu', \tau^{2\prime}$, and (iv) $\delta = o(h^2 \wedge T^{-4pq})$. Then

$$\frac{1}{h} \sum_{i=1}^{n-1} (f_{x,h}|\sigma|) (X_{(i-1)\delta}) |\Delta_{i+1}W| |\Delta_i X_1^c| = O_p(\delta^{1/2}\ell(T,x)),$$

$$\frac{1}{h} \sum_{i=1}^{n-1} (f_{x,h}|\sigma|) (X_{(i-1)\delta}) |\Delta_{i+1}W| |\Delta_i X^d| = O_p(\delta^{1/2}\ell(T,x)).$$

Proof. The stated results follow readily from Lenglart domination property. We have

$$\frac{1}{h}\sum_{i=1}^{n-1} (f_{x,h}|\sigma|)(X_{(i-1)\delta})|\Delta_{i+1}W||\Delta_i X_1^c| \le_p \frac{\delta^{1/2}}{h}\sum_{i=1}^{n-1} (f_{x,h}|\sigma|)(X_{(i-1)\delta})|\Delta_i X_1^c|,$$

from which the first part readily follows due to Lemma D.3, and Lemmas A.9 and A.14 in PW. The second part also follows immediately from

$$\frac{1}{h} \sum_{i=1}^{n-1} (f_{x,h}|\sigma|) (X_{(i-1)\delta}) |\Delta_{i+1}W| |\Delta_i X^d| \le_p \imath (|\iota|\lambda) \frac{\delta^{1/2}}{h} \sum_{i=1}^{n-1} (f_{x,h}|\sigma|) (X_{(i-1)\delta}) \int_{(i-1)\delta}^{i\delta} \tau(X_t) dt,$$

and Lemma D.3.

Lemma D.13. Let Assumptions 2.1, 2.3, 2.7 and 3.1 hold. Then

$$\frac{1}{h} \sum_{i=1}^{n-1} (f_{x,h}\sigma^2)(X_{(i-1)\delta}) |\Delta_i W| |\Delta_{i+1} W| \left(1\left\{ |\Delta_i X| \le \delta^\beta, |\Delta_{i+1} X| \le \delta^\beta \right\} - 1 \right) = O_p(\delta^{1/2} \ell(T, x)).$$

Proof. We may write

$$\begin{aligned} \left| 1\{ |\Delta_{i}X| \leq \delta^{\beta}, |\Delta_{i+1}X| \leq \delta^{\beta} \} - 1 \right| \leq 1\{ |\Delta_{i}X| > \delta^{\beta} \} + 1\{ |\Delta_{i+1}X| > \delta^{\beta} \} \\ \leq 2 \times 1\{ |\Delta_{i}X| > \delta^{\beta}/2 \} + 1\{ |X_{(i+1)\delta} - X_{(i-1)\delta}| > \delta^{\beta}/2 \}, \quad (D.19) \end{aligned}$$

noting that

$$\begin{split} 1\{|\Delta_{i+1}X| > \delta^{\beta}\} &\leq 1\{|X_{(i+1)\delta} - X_{(i-1)\delta}| > \delta^{\beta} - |\Delta_{i}X|\}\\ &\leq 1\{|\Delta_{i}X| > \delta^{\beta}/2\} + 1\{|X_{(i+1)\delta} - X_{(i-1)\delta}| > \delta^{\beta}/2\}. \end{split}$$

It then follows from (D.19) that

$$\left| \frac{1}{h} \sum_{i=1}^{n-1} (f_{x,h} \sigma^2) (X_{(i-1)\delta}) |\Delta_i W| |\Delta_{i+1} W| \left(1\{ |\Delta_i X| \le \delta^\beta, |\Delta_{i+1} X| \le \delta^\beta \} - 1 \right) \right| \\
\leq \left(\max_{1 \le i \le n} |\Delta_i W|^2 \right) \left(\sup_{|y-x| \le h} \sigma^2(y) \right) \left[\frac{1}{h} \sum_{i=1}^{n-1} f_{x,h}(X_{(i-1)\delta}) \left| 1\{ |\Delta_i X| \le \delta^\beta, |\Delta_{i+1} X| \le \delta^\beta \} - 1 \right| \right] \\
\leq_p \delta \log(T/\delta) \left(A_T + B_T \right), \tag{D.20}$$

where the second relation " \leq_p " follows from the modulus of continuity of Brownian motion, and the local boundedness of σ^2 , with

$$A_T = \frac{2}{h} \sum_{i=1}^{n-1} f_{x,h}(X_{(i-1)\delta}) \mathbb{1}\{|\Delta_i X| > \delta^\beta/2\},\$$
$$B_T = \frac{1}{h} \sum_{i=1}^{n-1} f_{x,h}(X_{(i-1)\delta}) \mathbb{1}\{|X_{(i+1)\delta} - X_{(i-1)\delta}| > \delta^\beta/2\}$$

For A_T , we have

$$A_T \leq_p \frac{1}{h} \sum_{i=1}^{n-1} f_{x,h}(X_{(i-1)\delta}) \mathbb{E}_{(i-1)\delta} \{ |\Delta_i X| > \delta^\beta / 2 \}$$

$$\leq \delta^{-1} \left(\sup_{|y-x| \leq h} \sup_{0 < t \leq \delta} \mathbb{P}_y \left(|X_t - y| > \delta^\beta / 2 \right) \right) \left(\frac{\delta}{h} \sum_{i=1}^{n-1} f_{x,h}(X_{(i-1)\delta}) \right)$$

$$= O_p \left(\delta^{-\alpha\beta - \varepsilon} \ell(T, x) \right)$$
(D.21)

for any $\varepsilon > 0$, where the third equality follows from Lemma A.13 in PW. Similarly, we have

 $B_T = O_p \left(\delta^{-\alpha\beta-\varepsilon} \ell(T,x) \right)$ for any $\varepsilon > 0$, which, together with (D.19)-(D.21), completes the proof by choosing $0 < \varepsilon < 1/2 - \alpha\beta$.

References

- Höpfner, R., Jacod, J., and Ladelli, L. (1990). Local asymptotic normality and mixed normality for Markov statistical models. *Probability Theory and Related Fields*, 86:105–129.
- Jacod, J. (2012). Statistics and high frequency data. In Kessler, M., Lindner, A., and Sorensen, M., editors, *Statistical Methods for Stochastic Differential Equations*, pages 191–310. Chapman and Hall.
- Kanaya, S. (2016). Uniform convergence rates of kernel-based nonparametric estimators for continuous time diffusion processes: A damping function approach. *Econometric Theory*, 32:1–41.
- Protter, P. E. (2005). Stochastic Integration and Differential Equations. Springer, New York, NY.
- Ueltzhöfer, F. A. J. (2013). On non-parametric estimation of the Lévy kernel of Markov processes. Stochastic Processes and their Applications, 123:3663–3709.