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Section S.1 presents the convergence analysis for the algorithm. Section S.2 provides

details on the non-asymptotic risk analysis of Γ̂τ,δ. Section S.3 covers miscellaneous technical

details. Section S.4 lists some auxiliary results used in our proof.

Additional notation. For any two matrices A,B ∈ Rp×m, 〈·, ·〉 : Rn×m × Rn×m → R
denotes the trace inner product given by 〈A,B〉 = tr(AB>). Define the empirical measure

of (Yi,Xi) by Pn. For a function f : Rp → R, and Zi ∈ Rp, define the empirical process

Gn(f) = n−1/2
∑n

i=1{f(Zi)− E[f(Zi)]}. The subgradient for Q̂τ (S) is the matrix

∇Q̂τ (S)
def
= (nm)−1

n∑
i=1

XiWτ,i∗(S)>
def
= (nm)−1X>Wτ (S) ∈ Rp×m, (0.1)

where

Wτ,i∗(S)
def
=
(
1(Yij −X>

i S∗j ≤ 0)− τ
)

1≤j≤m , Wτ (S) = [Wτ,1(S) ... Wτ,n(S)]> ∈ Rn×m.

For the true coefficient matrix Γτ , Wτ,i∗(Γτ )
def
= Wτ,i∗ and Wτ

def
= Wτ (Γτ ).

S.1: Proofs for Algorithmic Convergence Analysis

S.1.1 Proof of (A.2)

To see that this equation holds, note that for each pair of i, j, when Yij−X>
i S∗j > 0, Θij = τ ,

since τ is the largest ”positive” value in the interval [τ − 1, τ ]. When Yij −X>
i S∗j ≤ 0,

Θij = τ − 1 since τ is the smallest ”negative” value in the interval [τ − 1, τ ]. This verifies

the equation.
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Remark S.1.1. It is necessary to choose [τ − 1, τ ] rather than {τ − 1, τ} for the support

of Θij in (A.2) (though both choices fulfill the equation). The previous choice is an interval

and is therefore a convex set, and the conditions given in Nesterov (2005) are fulfilled.

S.1.2 Proof of Theorem 2.1

Recall the definition of Lτ (S) and Q̂τ (S) in (A.1), L̃τ (S) and Q̂τ,κ(S) in (A.5) and (A.3).

We note a comparison property in (2.7) of Nesterov (2005), for an arbitrary S ∈ Rp×m,

Q̂τ,κ(S) ≤ Q̂τ (S) ≤ Q̂τ,κ(S) + κ max
Θ∈[τ−1,τ ]n×m

‖Θ‖2
F

2
(S.1.1)

where

max
Θ∈[τ−1,τ ]n×m

‖Θ‖2
F = max

Θ∈[τ−1,τ ]n×m

∑
i≤n,j≤m

Θ2
ij ≤ (τ ∨ {1− τ})2nm.

Recall that Γ̂τ is a minimizer of Lτ (S) defined in (A.1). It follows by (S.1.1) that for an

arbitrary S ∈ Rp×m,

L̃τ (Γ̂τ ) ≤ Lτ (Γ̂τ ) ≤ Lτ (S) ≤ L̃τ (S) + κ(τ ∨ {1− τ})2nm

2
, (S.1.2)

where the first inequality is from the first inequality of (S.1.1), the second is the definition

of the minimizer Γ̂τ , and the third inequality is from the second inequality of (S.1.1). Recall

that Γτ,∞ = limt→∞ Γτ,t is a minimizer of L̃τ (S), then (S.1.2) gives

L̃τ (Γτ,∞) ≤ L̃τ (Γ̂τ ) ≤ L̃τ (Γτ,∞) + κ(τ ∨ {1− τ})2nm

2
, (S.1.3)

where the first inequality is from the definition of Γτ,∞ as a minimizer of L̃τ (S) and the

second inequality is from (S.1.2), which holds for an arbitrary matrix S ∈ Rp×m.

Now from triangle inequality,∣∣Lτ (Γτ,T )− Lτ (Γ̂τ )
∣∣ ≤∣∣Lτ (Γτ,T )− L̃τ (Γτ,T )

∣∣+
∣∣L̃τ (Γτ,T )− L̃τ (Γτ,∞)

∣∣+
∣∣L̃τ (Γτ,∞)− L̃τ (Γ̂τ )

∣∣
+
∣∣Lτ (Γ̂τ )− L̃τ (Γ̂τ )

∣∣. (S.1.4)

The third term on the right-hand side of (S.1.4) is bounded by (S.1.3). For any matrix S,

we have from (S.1.1) that

∣∣Lτ (S)− L̃τ (S)
∣∣ ≤ κ

nm(τ ∨ {1− τ})2

2
. (S.1.5)
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Hence, both
∣∣Lτ (Γτ,T )− L̃τ (Γτ,T )

∣∣ and
∣∣Lτ (Γ̂τ )− L̃τ (Γ̂τ )

∣∣ satisfy (S.1.5).

Lemma S.1.3 implies that the gradient of Q̂τ,κ(S) is Lipschitz continuous with Lipschitz

constant M . By Theorem 4.1 of Ji and Ye (2009) or Theorem 4.4 of Beck and Teboulle

(2009) (applied in general real Hilbert space, see their Remark 2.1), we have

∣∣L̃τ (Γτ,T )− L̃τ (Γτ,∞)
∣∣ ≤ 2M‖Γτ,0 − Γτ,∞‖2

F

(t+ 1)2
, (S.1.6)

where M = (κm2n2)−1‖X‖2 as given in Lemma S.1.3.

S.1.3 Technical Details for Theorem 2.1

Lemma S.1.2. For any S,Θ ∈ Rp×m, Q̃τ (S,Θ) can be expressed as Q̃τ (S,Θ) = 〈−XS,Θ〉+
〈Y,Θ〉.

Proof of Lemma S.1.2. One can show by elementary matrix algebra that

Q̃τ (S,Θ) =
n∑
i=1

m∑
j=1

Θij

(
Yij −X>

i S∗j
)

=
n∑
i=1

m∑
j=1

ΘijYij −
n∑
i=1

m∑
j=1

ΘijX
>
i S∗j

= 〈Y,Θ〉+ 〈−XS,Θ〉.

The proof is therefore completed.

Lemma S.1.3. For any κ > 0, Q̂τ,κ(S) is a well-defined, convex and continuously differen-

tiable function in S with the gradient ∇Q̂τ,κ(S) = −(mn)−1X>Θ∗(S) ∈ Rp×m, where Θ∗(S)

is the optimal solution to (A.3), namely

Θ∗(S) = [[(κmn)−1(Y −XS)]]τ . (S.1.7)

The gradient ∇Q̂τ,κ(S) is Lipschitz continuous with the Lipschitz constant M = (κm2n2)−1‖X‖2.

Proof of Lemma S.1.3. In view of Lemma S.1.2, we have from (A.3) that

Q̂τ,κ(S) = max
Θij∈[τ−1,τ ]

{
(mn)−1〈Y,Θ〉+ (mn)−1〈−XS,Θ〉 − κ

2
‖Θ‖2

F

}
. (S.1.8)

Q̂τ,κ(S) matches the form in (2.5) on page 131 of Nesterov (2005), with their φ̂(Θ) =

(mn)−1〈Y,Θ〉 which is a continuous convex function, and their A = −(mn)−1X which

maps from the vector space Rp×m to the space Rn×m (the model setting described below

(2.2) on page 129 of Nesterov (2005)), and their d2(Θ) = κ
2
‖Θ‖2

F. Therefore, applying

Theorem 1 of Nesterov (2005), with σ2 = 1, d(Θ) = ‖Θ‖2
F/2, the gradient ∇Q̂τ,κ(S) =
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−(mn)−1X>Θ∗(S) ∈ Rp×m, where Θ∗(S) is the optimal solution to (A.3):

Θ∗(S) = [[(κmn)−1(Y −XS)]]τ ,

and the Lipschitz constant of ∇Q̂τ,κ(S) is ‖X‖/(κn2m2), where ‖X‖ is the spectral norm of

X (see line 8 on page 129 of Nesterov (2005)). Hence, the proof is completed.

S.2: Proofs for Non-Asymptotic Bounds

Remark S.2.1. For any ∆ ∈ Rp×m, from (A2),

‖∆‖2
L2(PX) = m−1E

[
‖∆>Xi‖2

2

]
= m−1

m∑
j=1

∆>∗jE[XiX
>
i ]∆∗j ≥ m−1σmin(ΣX)‖∆‖2

F. (S.2.1)

Moreover, by ‖PΓτ (∆)‖F ≤ ‖∆‖F, we have a bound

‖∆‖L2(PX) ≥
(σmin(ΣX)

m

)1/2

‖∆‖F ≥
(σmin(ΣX)

m

)1/2

‖PΓτ (∆)‖F. (S.2.2)

S.2.1 Proof for Lemma 3.1

To prove the first statement, applying the same E-net argument on the unit Euclidean sphere

Sm−1 = {u ∈ Rm : ‖u‖2 = 1} as in the first part of the proof of Lemma 3 in Negahban and

Wainwright (2011) (page 6 to the beginning of page 7 in their supplemental materials), we

obtain

P

(
1

n
‖X>Wτ‖ ≥ 4s

)
= P

(
sup

v∈Sp−1

u∈Sm−1

1

n

∣∣v>X>Wτu
∣∣ ≥ 4s

)
≤ 8p+m sup

v∈Sp−1,u∈Sm−1

‖u‖=‖v‖=1

P

(
|〈Xv,Wτu〉|

n
≥ s

)
.

(S.2.3)

To bound n−1〈Xv,Wτu〉 = n−1
∑n

i=1〈v,Xi〉〈u,Wτ,i∗〉, first we show the sub-Gaussianity of

〈u,Wτ,i∗〉. Theorem 3.1 of Buldygin and Moskvichova (2013) suggests that the sub-Gaussian

norm of the jth component of Wτ,i∗ is

‖Wτ,ij‖ψ2 =


0, τ = 0, 1;

2τ−1
2{log τ−log(1−τ)} , τ ∈ (0, 1)− {1/2};
1/4, τ = 1/2,
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where ‖ · ‖ψ2 denotes the sub-Gaussian norm. It follows by Lemma S.4.3 (Hoeffding’s in-

equality) that

P
(
〈u,Wτ,i∗〉 ≥ s

)
≤ exp

(
1− C ′s2

K(τ)‖u‖2
2

)
= exp

(
1− C ′s2

K(τ)

)
.

We apply Lemma S.4.3 again to bound n−1
∑n

i=1〈v,Xi〉〈u,Wτ,i∗〉. Conditioning on Xi,

we have

P

(∣∣∣∣n−1

n∑
i=1

〈v,Xi〉〈u,Wτ,i∗〉
∣∣∣∣ ≥ s

)
≤ exp

(
1− C ′ns2

K(τ)n−1
∑n

i=1〈v,Xi〉2

)
≤ exp

(
1− C ′ns2

K(τ)c2‖ΣX‖

)
.

where the second inequality follows from the fact that ‖v‖2 = 1 and n−1
∑n

i=1〈v,Xi〉2 ≤
‖X>X/n‖ ≤ c2‖ΣX‖ on the event that (A2) holds.

To summarize, on the event that (A2) holds,

P

(
1

n
‖X>Wτ‖ ≥ 4s

)
≤ 8p+m exp

(
1− C ′ns2

K(τ)c2‖ΣX‖

)
≤ exp

(
1− C ′ns2

K(τ)c2‖ΣX‖
+ (p+m) log 8

)
.

Therefore, for arbitrary u > 1, the event

1

n
‖X>Wτ‖ ≥ 4 ·

√
u(log 8)

K(τ)c2‖ΣX‖
C ′

√
p+m

n
, (S.2.4)

has probability smaller than 3e−(u−1)(p+m) log 8 + γn, as e < 3.

To prove the second statement, we note that the event in (S.2.4) has probability less than

η by setting k = 1− (η − γn)/(3(p+m) log 8).

S.2.2 Proof for Theorem 3.2

Before we prove Theorem 3.2, we first define the ”support” of matrices by projections.

Definition S.2.2. For A ∈ Rp×m with rank r, the singular value decomposition of A is

A =
∑r

j=1 σ(A)ujv
>
j . The support of A is defined by (S1, S2) in which S1 = span{u1, ...,ur}

and S2 = span{v1, ...,vr}. Define the projection matrix on S1: P1
def
= U[1:r]U

>
[1:r], in which

U[1:r] = [u1 ...ur] ∈ Rp×r; P2
def
= V[1:r]V

>
[1:r], where V[1:r] = [v1 ...vr] ∈ Rm×r. Denote
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P⊥1 = Ip×r −P1 and P⊥2 = Im×r −P2. For any matrix S ∈ Rp×m, define

PA(S)
def
= P1SP2; P⊥A(S)

def
= P⊥1 SP⊥2 .

Define for any a ≥ 0,

K(Γτ ; a)
def
=
{
S ∈ Rp×m : ‖P⊥Γτ (S)‖∗ ≤ 3‖PΓτ (S)‖∗ + a

}
. (S.2.5)

We note that the nuclear norm is decomposable under the projection: for any S,A ∈
Rp×m, ‖S‖∗ = ‖PA(S)‖∗ + ‖P⊥A(S)‖∗. This is analogous to the `1 norm for vectors: for any

vector v and support S, ‖v‖1 = ‖vS‖1 + ‖vSc‖1; see Definition 1 on page 541 of Negahban

et al. (2012). Moreover, the rank of PA(S) is at most rank(A).

The shape of K(Γτ ; a) is not a cone when a > 0, but is still a star-shaped set. This set

has a similar shape as the set defined in equation (17) on page 544 in Negahban et al. (2012).

See also their Figure 1 on page 544.

To simplify the notations in this proof, let

∆̂ = Γ̂τ,δ − Γτ , (S.2.6)

αr = 4
√
r/σmin(ΣX), (S.2.7)

αr,m = m1/2αr, (S.2.8)

cn = 16
√

2m−1/2δλ−1
√
c2σmax(ΣX) +Bp

√
logm+ log p, (S.2.9)

dn = 8
√

2αr

√
c2σmax(ΣX) +Bp

√
logm+ log p. (S.2.10)

Let the events

Ω1 : Assumption (A2) holds;

Ω2 : A(t) ≤ u(tdn + cn) for u > 1, where

A(t)
def
= sup
‖∆‖L2(PX )≤t,∆∈K(Γτ ;2δ/λ)

∣∣∣∣Gn

[
m−1

m∑
j=1

(
ρτ{Yij −X>

i (Γτ,∗j + ∆∗j)} − ρτ{Yij −X>
i Γτ,∗j}

)]∣∣∣∣.
(S.2.11)

Ω3 :
1

n
‖X>W‖ ≤ C∗

√
σmax(ΣX)K(τ)

√
p+m

n
,

where C∗ = 4
√

2 c2
C′

log 8.

The probability of event P(Ω1 ∩ Ω2 ∩ Ω3) ≥ 1 − γn − 16(pm)1−u2 − 3e−(p+m) log 8 by

Assumption (A2), Lemma 3.1 and Lemma S.2.5.
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Recall that αr,m, cn and dn are defined in (S.2.8), (S.2.9) and (S.2.10). Set

t =

√
n−1/2ucn

4

f τ
+

8

f τ
δ +

4

f τ
(n−1/2udn + λαr,m). (S.2.12)

We will prove by contradiction. Suppose to the contrary that ‖∆̂‖L2(PX) ≥ t. Since Γ̂τ

minimizes Lτ (S) = Q̂τ (S) + λ‖S‖∗ (defined in (1.3)) and Lτ (Γ̂τ )− Lτ (Γτ ) < 0, we have

Q̂τ (Γτ + ∆̂)− Q̂τ (Γτ ) + λ(‖Γτ + ∆̂‖∗ − ‖Γτ‖∗)

= Lτ (Γ̂τ )− Lτ (Γτ ) + Lτ (Γτ + ∆̂)− Lτ (Γ̂τ )

≤ δ, (S.2.13)

where we recall (2.1).

Observe that ∆̂ = Γ̂τ,δ−Γτ ∈ K(Γτ ; 0) ⊂ K(Γτ ; 2δ/λ) with probability 1−η by applying

(3.6) and Lemma S.2.3. Hence, from (2.1),

δ > inf
‖∆‖L2(PX )≥t,∆∈K(Γτ ;2δ/λ)

Q̂τ (Γτ + ∆)− Q̂τ (Γτ ) + λ(‖Γτ + ∆‖∗ − ‖Γτ‖∗). (S.2.14)

Note the facts that

1. Q̂τ (·) + λ‖ · ‖∗ is convex (unique optimum);

2. K(Γτ ; 2δ/λ) is star-shaped (see Figure 1 of Negahban et al. (2012)).

Hence, ‖∆̂‖L2(PX) ≥ t can be replaced by ‖∆̂‖L2(PX) = t and the strict inequality in (S.2.14)

is maintained

δ ≥ inf
‖∆‖L2(PX )=t,∆∈K(Γτ ;2δ/λ)

Q̂τ (Γτ + ∆)− Q̂τ (Γτ ) + λ(‖Γτ + ∆‖∗ − ‖Γτ‖∗).

It can be deducted from the last display that

δ ≥ inf
‖∆‖L2(PX )=t,∆∈K(Γτ ;2δ/λ)

Qτ (Γτ + ∆)−Qτ (Γτ )− n−1/2A(t) + λ(‖Γτ + ∆‖∗ − ‖Γτ‖∗),

By triangle inequality,
∣∣‖Γτ +∆‖∗−‖Γτ‖∗

∣∣ ≤ ‖∆‖∗ ≤ αr,mt+2δ/λ on the set {‖∆‖L2(PX) =

t,∆ ∈ K(Γτ ; 2δ/λ)} by Lemma S.2.4(ii). Applying the bound in Ω2 obtains

δ ≥ inf
‖∆‖L2(PX )=t,∆∈K(Γτ ;2δ/λ)

Qτ (Γτ + ∆)−Qτ (Γτ )− n−1/2u(dnt+ cn)− λ(αr,mt+ 2δ/λ).
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Since δ ≤ Cλ
√
m/n, by Remark 3.3,

ντ (2δ/λ) ≥ ντ (2C
√
m/n) > uεn,τ,r ≥ t/4

(where the second inequality is from (3.7); the last inequality will be shown in (S.2.18)

below), invoking Lemma S.2.4 (i) to get the minorization

δ ≥ inf
‖∆‖L2(PX )=t,∆∈K(Γτ ;2δ/λ)

1

4
f τ t2 − n−1/2u(dnt+ cn)− λ(αr,mt+ 2δ/λ). (S.2.15)

Rearranging terms to get

0 ≥ inf
‖∆‖L2(PX )=t,∆∈K(Γτ ;2δ/λ)

1

4
f τ t2 − n−1/2u(dnt+ cn)− λαr,mt− 3δ. (S.2.16)

However, the right-hand side of (S.2.16) is strictly greater than 0 whenever

t >
2

f τ
(n−1/2udn + λαr,m) +

2

f τ

√
(n−1/2udn + λαr,m)2 + f τ (n−1/2ucn + 3δ). (S.2.17)

The right hand side of the last display is upper bounded by (by
√
a+ b <

√
a +
√
b for all

a, b > 0)

t =
2

f τ
(n−1/2udn + λαr,m) +

2

f τ
(n−1/2udn + λαr,m) +

√
4

f τ
n−1/2ucn +

12

f τ
δ,

which leads to the t in (S.2.12). We get a contradiction, so ‖∆̂‖L2(PX) ≥ t does not hold.

Namely, ‖∆̂‖L2(PX) < t.

To show (3.8), we will prove

t ≤ uεn,τ,r, (S.2.18)

where εn,τ,r is defined in (3.7). To see this, first note that,

λ
(3.6)

≤ 2λ̄
(3.4)

≤ 2
C∗

m

√(
1− η − γn

3(p+m) log 8

)
σmax(ΣX)K(τ)

√
p+m

n

≤ 2C∗

m

√
σmax(ΣX)K(τ)

√
p+m

n
(S.2.19)

since 0 < η < 1 and γn → 0.
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Elementary calculation shows that for u ≥ 1,

max
{

2λαr,m/f
τ , 2n−1/2udn/f

τ
}

≤ 2(32
√

2 + 8C∗)u

f τ ∧ 1

√
σmax(ΣX) ∨ 1

σmin(ΣX) ∧ 1

√
r(m+ p ∨Bp)(log p+ logm)

mn
. (S.2.20)

Under the condition that δ < λm1/2n−1/2, r ≥ 1,√
1

f τ
n−1/2ucn ≤

√
u

f τ
dn
αrn
≤ α−1/2

r

udn
(f τ ∧ 1)

√
n
≤ (σmin(ΣX)1/2 ∨ 1)udn

(f τ ∧ 1)
√
n

≤ (32
√

2 + 8C∗)u

f τ ∧ 1

√
σmax(ΣX) ∨ 1

σmin(ΣX) ∧ 1

√
r(m+ p ∨Bp)(log p+ logm)

mn
(S.2.21)

since u ≥ 1, dn ≥ 1 (as m, p→∞).

Lastly, again from δ < λm1/2n−1/2 and (S.2.19),

δ ≤ λm1/2n−1/2 ≤ 2C∗
√
σmax(ΣX)K(τ)

p+m

n2m
≤ C∗n−1

√
σmax(ΣX)

p+m

m

≤ C∗
p+m

nm

√
σmax(ΣX), (S.2.22)

where in the third inequality the fact supτ |K(τ)| ≤ 1/4 (noted below Lemma 3.1, or in

(K4) of Lemma 2.1 on p.35 of Buldygin and Moskvichova (2013)) is applied, where K(τ) is

defined in (3.3); in the last inequality, the fact
√

1 + p/m ≤ 1 + p/m is applied. Hence,√
1

f τ
δ ≤ 1

f τ ∧ 1

√
C∗
p+m

nm
σmax(ΣX)1/4

≤ (32
√

2 + 8C∗)u

f τ ∧ 1

√
σmax(ΣX) ∨ 1

σmin(ΣX) ∧ 1

√
r(m+ p ∨Bp)(log p+ logm)

mn
(S.2.23)
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where the inequality follows by the facts:

•
√
C∗

f τ ∧ 1
≤ C∗

f τ ∧ 1
≤ (32

√
2 + 8C∗)u

f τ ∧ 1
, (u > 1 from the hypothesis of the Theorem,

and C∗ ≥ 1 from Lemma 3.1)

• σmax(ΣX)1/4 ≤ (σmax(ΣX) ∨ 1)1/4 ≤ (σmax(ΣX) ∨ 1)1/2 ≤

√
σmax(ΣX) ∨ 1

σmin(ΣX) ∧ 1

•
√
p+m

nm
≤
√
r(m+ p ∨Bp)(log p+ logm)

mn
, Bp ≥ 1 by (A2), r ≥ 1, p,m ≥ 3 in (A1).

Note that if r = rank(Γτ ) = 0, then the matrix Γτ = 0 and this case is excluded.

Combining (S.2.20), (S.2.21) and (S.2.23) gives (S.2.18).

S.2.3 Technical Details for Theorem 3.2

The following lemma asserts that Γ̂τ,δ − Γτ lies in the cone K(Γτ ; 2δ/λ).

Lemma S.2.3. Suppose λ ≥ 2‖∇Q̂(Γτ )‖ and ∆̂ = Γ̂τ,δ − Γτ , where ∇Q̂(Γτ ) is the subgra-

dient of Q̂(Γτ ) defined in (A.10). Then ‖P⊥Γτ (∆̂)‖∗ ≤ 3‖PΓτ (∆̂)‖∗ + 2δ′/λ for all δ′ ≥ δ.

That is, ∆̂ ∈ K(Γτ ; 2δ′/λ) for all δ′ ≥ δ.

Proof for Lemma S.2.3.

0 ≤ Q̂τ (Γτ )− Q̂τ (Γ̂τ ) + λ(‖Γτ‖∗ − ‖Γ̂τ‖∗) (Γ̂τ is the minimizer of Q̂τ (S) + λ‖S‖∗)

≤ Q̂τ (Γτ )− Q̂τ (Γ̂τ,δ) + λ(‖Γτ‖∗ − ‖Γ̂τ,δ‖∗) + δ (by (2.1))

≤ ‖∇Q̂τ (Γτ )‖‖∆̂‖∗ + λ(‖Γτ‖∗ − ‖Γ̂τ,δ‖∗) + δ

≤ ‖∇Q̂τ (Γτ )‖
(
‖PΓτ (∆̂)‖∗ + ‖P⊥Γτ (∆̂)‖∗

)
+ λ(‖PΓτ (Γτ )‖∗ − ‖P⊥Γτ (Γ̂τ,δ)‖∗ − ‖PΓτ (Γ̂τ,δ)‖∗) + δ

≤ ‖∇Q̂τ (Γτ )‖
(
‖PΓτ (∆̂)‖∗ + ‖P⊥Γτ (∆̂)‖∗

)
+ λ(‖PΓτ (∆̂)‖∗ − ‖P⊥Γτ (∆̂)‖∗) + δ, (S.2.24)

where the second inequality follows from the definition of subgradient:

Q̂τ (Γ̂τ )− Q̂τ (Γτ ) ≥ 〈∇Q̂τ (Γτ ), Γ̂τ − Γτ 〉,

and Hölder’s inequality; the third inequality is from the fact that P⊥Γτ (Γτ ) = 0 and for any S,

‖S‖∗ = ‖PΓτ (S)‖∗+ ‖P⊥Γτ (S)‖∗ (the discussion after Definition S.2.2) ; the fourth inequality

is from the triangle inequality.

Rearrange expression (S.2.24) to get,

(λ− ‖∇Q̂τ (Γτ )‖)‖P⊥Γτ (∆̂)‖∗ ≤ (λ+ ‖∇Q̂τ (Γτ )‖)‖PΓτ (∆̂)‖∗ + δ.
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Choose λ ≥ 2‖∇Q̂τ (Γτ )‖,

1

2
λ‖P⊥Γτ (∆̂)‖∗ ≤

3

2
λ‖PΓτ (∆̂)‖∗ + δ.

Hence, ‖P⊥Γτ (∆̂)‖∗ ≤ 3‖PΓτ (∆̂)‖∗ + 2δ/λ ≤ 3‖PΓτ (∆̂)‖∗ + 2δ′/λ for all δ′ ≥ δ.

Lemma S.2.4. Under assumptions (A2), (A3), we have for all δ > 0,

(i) If ‖∆‖L2(PX) ≤ 4ντ (δ), and ∆ ∈ K(Γτ ; 2δ/λ), then Qτ (Γτ+∆)−Qτ (Γτ ) ≥ 1
4
f τ‖∆‖2

L2(PX);

(ii) If ∆ ∈ K(Γτ ; 2δ/λ), ‖∆‖∗ ≤ 4
√

rm
σmin(ΣX)

‖∆‖L2(PX) + 2δ/λ, where r = rank(Γτ ).

Proof for Lemma S.2.4. 1. Let Qτ,j(Γτ,∗j) = E[ρτ (Yij−X>
i Γτ,∗j)]. From Knight’s identity

(Knight; 1998), for any v, u ∈ R,

ρτ (u− v)− ρτ (u) = −vψτ (u) +

∫ v

0

(
1{u ≤ z} − 1{u ≤ 0}

)
dz. (S.2.25)

where ψτ (u)
def
= τ − 1(u ≤ 0). Putting u = Yij −X>

i Γτ,∗j in (S.2.25), and v = X>
i ∆∗j,

E[−vψτ (u)] = 0 for all j and i, by the definition of Γτ = arg minS E[Q̂τ (S)]. Therefore,

using the law of iterative expectation and mean value theorem, we have by (A3) that

Qτ,j(Γτ,∗j + ∆∗j)−Qτ,j(Γτ,∗j)

= E

[ ∫ X>i ∆∗j

0

FYj |Xi
(X>

i Γτ,∗j + z|Xi)− FYj |Xi
(X>

i Γτ,∗j|Xi)dz

]
= E

[ ∫ X>i ∆∗j

0

zfYj |Xi
(X>

i Γτ,∗j|Xi) +
z2

2
f ′Yj |Xi

(X>
i Γτ,∗j + z†|Xi)dz

]
≥ f τ

E
[
(X>

i ∆∗j)
2
]

4
+ f τ

E
[
(X>

i ∆∗j)
2
]

4
− 1

6
f̄ ′E[|X>

i ∆∗j|3] (S.2.26)

for z† ∈ [0, z]. Now, for ∆ ∈ K(Γτ ; 2δ/λ), the condition

‖∆‖L2(PX) ≤ 4ντ (δ) =
3

2

f τ

f̄ ′
inf

∆∈K(Γτ ;2δ/λ)
∆6=0

(∑m
j=1 E[|X>

i ∆∗j|2]
)3/2∑m

j=1 E[|X>
i ∆∗j|3]

implies

f τm−1

m∑
j=1

E
[
(X>

i ∆∗j)
2
]

4
≥ 1

6
f̄ ′m−1

m∑
j=1

E[|X>
i ∆∗j|3]
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Therefore,

Qτ (Γτ + ∆)−Qτ (Γτ ) ≥ f τm−1

m∑
j=1

E(X>
i ∆∗j)

2

4
=

1

4
f τ‖∆‖2

L2(PX).

2. By the decomposability of the nuclear norm, ∆ ∈ K(Γτ ; 2δ/λ) and (S.2.2) in Remark

S.2.1, we can estimate

‖∆‖∗ = ‖PΓτ (∆)‖∗ + ‖P⊥Γτ (∆)‖∗ ≤ 4‖PΓτ (∆)‖∗ + 2δ/λ ≤ 4
√
r‖PΓτ (∆)‖F + 2δ/λ

≤ 4

√
rm

σmin(ΣX)
‖∆‖L2(PX) + 2δ/λ.

Lemma S.2.5. Under Assumptions (A1)-(A3), recall that A(t) is defined in (S.2.11), then

for an arbitrary u > 1,

P
{
A(t) ≤ 8

√
2u(αrt+2m−1/2δ/λ)

√
(c2σmax(ΣX) +Bp)

√
logm+ log p

}
≥ 1−16(pm)1−u2−γn,

where αr = 4
√
r/σmin(ΣX) and r = rank(Γτ ).

Proof of Lemma S.2.5. To simplify notations, let

αr
def
= 4

√
r/σmin(ΣX) (S.2.27)

Let {εij}i≤n,j≤m be independent Rademacher random variables independent from Yij and Xi

for all i, j. Denote Pε and Eε as the conditional probability and the conditional expectation

with respect to {εij}i≤n,j≤m, given Yij and Xi. Denote

χτij(·)
def
= ρτ{Yij −X>

i Γτ,∗j − ·} − ρτ{Yij −X>
i Γτ,∗j}. (S.2.28)

χτij(·) is a contraction in the sense that χτij(0) = 0, and for all a, b ∈ R,∣∣χτij(a)− χτij(b)
∣∣ ≤ |a− b|. ∀i = 1, ..., n, j = 1, ...,m. (S.2.29)
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First, we note that for any ∆ satisfying ∆ ∈ K(Γτ ; 2δ/λ) and ‖∆‖L2(PX) ≤ t,

Var

(
Gn

(
m−1

m∑
j=1

χτij(X
>
i ∆∗j)

))

= Var

(
m−1

m∑
j=1

χτij(X
>
i ∆∗j)

)
≤ m−1

m∑
j=1

E
[
(χτij(X

>
i ∆∗j))

2
]

≤ m−1

m∑
j=1

E
[
(X>

i ∆∗j)
2
]
≤ t2, (S.2.30)

where the first equality and the second inequality follow from elementary computations and

i.i.d. assumption (A1), the third inequality is a result of (S.2.29), and the last inequality

applies (S.2.1) in Remark S.2.1.

To apply Lemma 2.3.7 of van der Vaart and Wellner (1996), we observe from Chebyshev’s

inequality that for any s > 0,

inf
‖∆‖L2(PX )≤t,∆∈K(Γτ ;2δ/λ)

P

(∣∣∣∣Gn

(
m−1

m∑
j=1

χτij(X
>
i ∆∗j)

)∣∣∣∣ < s

2

)

= 1− sup
‖∆‖L2(PX )≤t,∆∈K(Γτ ;2δ/λ)

P

(∣∣∣∣Gn

(
m−1

m∑
j=1

χτij(X
>
i ∆∗j)

)∣∣∣∣ ≥ s

2

)
≥ 1− 4

t2

s2
.

Taking s ≥
√

8t, we have

1

2
≤ inf
‖∆‖L2(PX )≤t,∆∈K(Γτ ;2δ/λ)

P

(∣∣∣∣Gn

(
m−1

m∑
j=1

χτij(X
>
i ∆∗j)

)∣∣∣∣ < s

2

)
.

Thus, applying Lemma 2.3.7 of van der Vaart and Wellner (1996), we have

P{A(t) > s} ≤ 4P

(
sup

‖∆‖L2(PX )≤t
∆∈K(Γτ ;2δ/λ)

∣∣∣∣n−1/2m−1

n∑
i=1

m∑
j=1

εijχ
τ
ij(X

>
i ∆∗j)

∣∣∣∣ > s

4

)
. (S.2.31)

Now we restrict the A(t) on the event Ω on which (3.1) in (A2) holds, with P(Ω) ≥ 1− γn.

Applying Markov’s inequality, for an arbitrary constant µ > 0, the right-hand side of (S.2.31)
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can be bounded by

P{A(t) > s|Ω}

≤ 4 exp

(
−µs

4

)
E

[
Eε

[
exp

{
µ sup
‖∆‖L2(PX )≤t
∆∈K(Γτ ;2δ/λ)

∣∣∣∣n−1/2m−1

n∑
i=1

m∑
j=1

εijχ
τ
ij(X

>
i ∆∗j)

∣∣∣∣}]∣∣∣∣Ω].
(S.2.32)

Now recall (S.2.29), the comparison theorem for Rademacher processes (Lemma 4.12 in

Ledoux and Talagrand (1991)) implies the right-hand side of (S.2.32) is bounded by

P{A(t) > s|Ω}

≤ 4 exp

(
−µs

4

)
E

[
Eε

[
exp

{
2µ sup

‖∆‖L2(PX )≤t
∆∈K(Γτ ;2δ/λ)

∣∣∣∣n−1/2m−1

n∑
i=1

m∑
j=1

εijX
>
i ∆∗j

∣∣∣∣}]∣∣∣∣Ω]. (S.2.33)

To obtain a bound for the right-hand side of (S.2.33), we note that∣∣∣∣ n∑
i=1

m∑
j=1

εijX
>
i ∆∗j

∣∣∣∣ =

∣∣∣∣tr([ n∑
i=1

εi1Xi

n∑
i=1

εi2Xi ...
n∑
i=1

εimXi

]>
∆
)∣∣∣∣

≤ ‖∆‖∗ sup
a∈Sp−1

∣∣∣∣ m∑
j=1

( n∑
i=1

εijX
>
i a
)2
∣∣∣∣1/2

≤ m1/2‖∆‖∗max
j≤m

∥∥∥∥ n∑
i=1

εijXi

∥∥∥∥, (S.2.34)

where the first inequality is from Hölder’s inequality, and the second inequality is elementary.

Now we apply random matrix theory to bound the right-hand side of (S.2.33). Using

matrix dilations (see, for example Section 2.6 of Tropp (2011)), we have∥∥∥∥ n∑
i=1

εijXi

∥∥∥∥ =

∥∥∥∥ n∑
i=1

εij

(
0p Xi

X>
i 0

)∥∥∥∥. (S.2.35)

Notice that the random matrix εij

(
0p Xi

X>
i 0

)
is self adjoint and symmetrically distributed
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conditional on Xi. We now obtain

Eε

[
exp

{
2µ sup

‖∆‖L2(PX )≤t
∆∈K(Γτ ;2δ/λ)

∣∣∣∣n−1/2m−1

n∑
i=1

m∑
j=1

εijX
>
i ∆∗j

∣∣∣∣}]

≤ Eε

[
exp

{
2µ(αrt+m−1/22δ/λ) max

j≤m

∥∥∥∥n−1/2

n∑
i=1

εijX
>
i

∥∥∥∥}]
≤ mmax

j≤m
Eε

[
exp

{
2µ(αrt+m−1/22δ/λ)

∥∥∥∥n−1/2

n∑
i=1

εij

(
0p Xi

X>
i 0

)∥∥∥∥}]
≤ m2(p+ 1) max

j≤m
exp

{
σmax

( n∑
i=1

log Eε

[
exp

{
2µ(αrt+m−1/22δ/λ)n−1/2εij

(
0p Xi

X>
i 0

)}])}
(S.2.36)

where the first inequality is from Lemma S.2.4(ii) and (S.2.34) and recall αr in (S.2.27), the

second inequality follows from (S.2.35), Lemma S.2.4 (ii) (∆ ∈ K(Γτ ; 2δ/λ)), and the fact

that

E[max
j≤m

exp(|Zj|)] ≤ mmax
j≤m

E[exp(|Zj|)], for any random variable Zj ∈ R.

The third inequality is by Theorem 3(ii) of Maurer and Pontil (2013) by the symmetric

distribution of εij, where for a self adjoint matrix A,

exp(A)
def
= I +

∞∑
j=1

Aj

j!

log(exp(A))
def
= A.

From equation (2.4) on page 399 of Tropp (2011), for any j and c > 0,

Eε

[
exp

{
c εij

(
0p Xi

X>
i 0

)}]
=

1

2

(
exp

{
c

(
0p Xi

X>
i 0

)}
+ exp

{
− c

(
0p Xi

X>
i 0

)})
4 exp

{
c2

2

(
XiX

>
i 0p

0 X>
i Xi

)}
,

where ”A 4 B” means the B − A is positive semidefinite for two matrices A,B. From

equation (2.8) on page 399 of Tropp (2011), the logarithm defined above preserves the order
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4. Hence, (S.2.36) is bounded by

2m(p+ 1) exp

{
2µ2(αrt+m−1/22δ/λ)2σmax

(
n−1

n∑
i=1

(
XiX

>
i 0p

0 X>
i Xi

))}
≤ 2m(p+ 1) exp

{
2µ2(αrt+m−1/22δ/λ)2(σmax(Σ̂X) +Bp)

}
, (S.2.37)

where the last inequality follows from a bound for the spectral norm for block matrices

in equation (2) of Theorem 1 in Bhatia and Kittaneh (1990) (with Shatten-∞ norm), and

Assumption (A2).

Putting (S.2.37) into (S.2.32), we obtain

P{A(t) > s|Ω} ≤ 8m(p+ 1) exp

(
−µs

4

)
E
[

exp
{

2µ2(αrt+m−1/22δ/λ)2(σmax(Σ̂X) +Bp)
}∣∣Ω]

≤ 8m(p+ 1) exp

(
−µs

4

)
exp

{
2µ2(αrt+m−1/22δ/λ)2(c2σmax(ΣX) +Bp)

}
.

(S.2.38)

Minimizing the expression (S.2.38) with respect to µ gives

P{A(t) > s|Ω} ≤ 8m(p+ 1) exp

{
− s2

128(αrt+m−1/22δ/λ)2(c2σmax(ΣX) +Bp)

}
. (S.2.39)

Taking

s = 8
√

2u(αrt+m−1/22δ/λ)
√

(c2σmax(ΣX) +Bp)
√

logm+ log p. (S.2.40)

Notice that s ≥
√

8t for large enough p,m, so the symmetrization (S.2.31) is valid. Recall

that P(Ω) ≥ 1− γn. The proof is then completed.

Remark S.2.6. The Lemma 2.3.7 of van der Vaart and Wellner (1996) and Lemma 4.12 of

Ledoux and Talagrand (1991) applied in the proof of Lemma S.2.5 require only independence

in the random variables (Yij,Xi), without needing identical distribution. The random matrix

theory applied in the proof may also be generalized to matrix martingales; see Section 7 of

Tropp (2011) for more details.

Remark S.2.7. It can be observed that Lemma S.2.5 is valid uniformly for any 0 < τ < 1.

S.2.4 Proof of Theorem 3.7

In this proof, we abbreviate σk(Γτ ), σk(Γ̂τ,δ), (Ṽτ )∗k and (Vτ )∗k, (Ũτ )∗k and (Uτ )∗k by σk,

σ̃k, Ṽ∗k and V∗k, Ũ∗k and U∗k.
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To prove (3.13), since Ψτ = Vτ and Ψ̂τ = Ṽτ , by Theorem 3 of Yu et al. (2015),

sin cos−1(|Ṽ>∗jV∗j|) ≤
2(2‖Γτ‖+ ‖Γ̂τ,δ − Γτ‖F)‖Γ̂τ,δ − Γτ‖F

min{σ2
j−1(Γτ )− σ2

j (Γτ ), σ2
j (Γτ )− σ2

j+1(Γτ )}
(S.2.41)

where by the fact that |Ṽ>∗jV∗j| ≤ 1,

sin cos−1(|Ṽ>∗jV∗j|) =
√

1− (Ṽ>∗jV∗j)
2 =

√
(1− Ṽ>∗jV∗j)(1 + Ṽ>∗jV∗j)

≥
√

(1− |Ṽ>∗jV∗j|)2 = 1−
∣∣Ṽ>∗jV∗j∣∣.

A similar bound like (3.13) also holds for Ũ∗j, by the discussion below Theorem 3 of Yu

et al. (2015).

For a proof for inequality (3.14), by direct calculation,∣∣f̂ τk (Xi)− f τk (Xi)
∣∣ =

∣∣σ̃kŨ>∗kXi − σkU>∗kXi

∣∣
≤
∥∥σ̃kŨ>∗k − σkU>∗k∥∥‖Xi‖

≤
(∣∣σ̃k − σk∣∣∥∥Ũ∗k∥∥+ σk

∥∥Ũ∗k −U∗k
∥∥)‖Xi‖

≤
(∣∣σ̃k − σk∣∣+ σk

√
(Ũ∗k −U∗k)>(Ũ∗k −U∗k)

)
‖Xi‖

≤
(∣∣σ̃k − σk∣∣+ σk

√
2(1− Ũ>∗kU∗k)

)
‖Xi‖ (S.2.42)

where we apply the fact that ‖Ũ∗k
∥∥ = 1. By assumption Ũ>∗kU∗k ≥ 0, Ũ>∗kU∗k = |Ũ>∗kU∗k|.

Apply Lemma 3.6 and the bound (S.2.41) with V being replaced by U to (S.2.42), then

(3.14) is proved. Thus, the proof for this theorem is completed.

S.3: Miscellaneous Technical Details

S.3.1 Detail on Remark 3.3

For (3.7) to hold, it is enough to have E[|X>
i ∆∗j|3] ≤ CE[|X>

i ∆∗j|2]3/2 for all j = 1, 2, ...,m,

where C > 0 is a constant independent of j, because

( m∑
j=1

E[|X>
i ∆∗j|2]3/2

)2/3

≤
m∑
j=1

E[|X>
i ∆∗j|2] (S.3.1)

by the inequality ‖a‖3/2 ≤ ‖a‖1 for an arbitrary a = (a1, a2, ..., am) with aj ≥ 0, ∀j. If

Xi is i.i.d. sampled from a log-concave density, then Theorem 5.22 of Lovász and Vempala

(2007) implies E[|X>
i ∆∗j|3] ≤ 33/2E[|X>

i ∆∗j|2]3/2 for any ∆. See also Design 1 on p.2 of the
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supplemental materials of Belloni and Chernozhukov (2011). This implies (3.7) as εn,τ,r is

small as n & Bpr(p+m)(log p+ logm).

S.3.2 Detail on Remark 3.5

We need some extra notations. Let V ⊂ Rm and U ⊂ Rp be two subspaces with dimension

r, let M = {∆ ∈ Rp×m : row space of ∆ ⊂ V , column space of ∆ ⊂ U}; M⊥
= {∆ ∈

Rp×m : row space of ∆ ⊂ V⊥, column space of ∆ ⊂ U⊥} (defined similarly as in Example 3

on page 542 of Negahban et al. (2012)). For any matrix S ∈ Rp×m,

PM(S) = PUSPV , P⊥M(S) = P>USP>V ,

where PV = VV>, P⊥V = Im×r − PV , V = [v1 ...vr], and {vj}rj=1 is a set of orthonormal

basis for V ; analogously, PU = UU>, P⊥U = Ip×r − PU , U = [u1 ...ur], and {uj}rj=1 is a set

of orthonormal basis for U . Moreover, for any S ∈ Rp×m, ‖S‖∗ = ‖PM(S)‖∗ + ‖P>M(S)‖∗.
It can be shown that when λ ≥ 2‖∇Q̂(Γτ )‖, the difference ∆̂ = Γ̂τ,δ − Γτ lies in the set

K(M, 4‖P⊥M(Γτ )‖+ 2δ′/λ)

def
=

{
∆ ∈ Rp×m : ‖P⊥M(∆)‖ ≤ 3‖PM(∆)‖+ 4‖P⊥M(Γτ )‖+

2δ′

λ

}
, (S.3.2)

where δ′ ≥ δ. Under this situation, the recovery property of Γ̂τ,δ can be shown via similar

argument as for Theorem 3.2 (possibly under more restrictive conditions), and we leave out

the details.

To show (S.3.2), we first note an inequality

‖Γ̂τ,δ‖∗ − ‖Γτ‖∗ ≤ 2‖P⊥M(Γτ )‖∗ + ‖PM(∆̂)‖∗ − ‖P⊥M(∆̂)‖∗, (S.3.3)

which can be shown by exactly the same argument for showing inequality (52) in Lemma

3 on page 27 in the supplementary material of Negahban et al. (2012), because the nuclear

norm is decomposable with respect to (M,M⊥
).

It can be seen that from similar argument as (S.2.24),

0 ≤ Q̂τ (Γτ )− Q̂τ (Γτ,T ) + λ‖Γτ‖∗ − λ‖Γτ,T‖∗ + δ

≤ ‖∇Q̂τ (Γτ )‖
(
‖PM(∆̂)‖∗ + ‖P⊥M(∆̂)‖∗

)
+ λ(2‖P⊥M(Γτ )‖∗ + ‖PM(∆̂)‖∗ − ‖P⊥M(∆̂)‖∗) + δ, (S.3.4)

where the second inequality is from (S.3.3). Rearrange expression (S.3.4) to get,

(λ− ‖∇Q̂τ (Γτ )‖)‖P⊥M(∆̂)‖∗ ≤ (λ+ ‖∇Q̂τ (Γτ )‖)‖PM(∆̂)‖∗ + 2λ‖P⊥M(Γτ )‖∗ + δ.
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By λ ≥ 2‖∇Q̂τ (Γτ )‖,

1

2
λ‖P⊥M(∆̂)‖∗ ≤

3

2
λ‖PM(∆̂)‖∗ + 2λ‖P⊥M(Γτ )‖∗ + δ.

S.3.3 Details for Generating matrices S1 and S2 in Section 4

Given (r1, r2), S1 and S2 are selected with the following procedure:

1. Generate vectors {a1, ...,ar1} and {b1, ..., br2}, where aj1 , bj2 ∈ Rp, and aj1k1 , bj2k2 ∼
U(0, 1) i.i.d. for j1 = 1, ..., r1, j2 = 1, ..., r2, k1, k2 = 1, ..., p;

2. Set the columns of S1 and S2 by (S1)∗j =
∑r1

k=1 αk,jak and (S2)∗j =
∑r2

k=1 βk,jbk for

j = 1, ...,m, where αk,j, βk,j are independent random variables in U [0, 1] for k = 1, ..., p

and j = 1, ...,m.

In our simulation, the first two nonzero singular values for S1 are (σ1(S1), σ2(S1)) =

(179.91, 26.51) and the remaining singular value is 0. For SSym2 , the first two nonzero singu-

lar values are (σ1(SSym2 ), σ2(SSym2 )) = (175.48, 25.74) and the rest is 0. For SSym2 , the first six

nonzero singular values are (σ1(SAsym2 ), ..., σ6(SAsym2 )) = (473.40, 29.87, 25.66, 23.89, 23.58, 22.16)

and the rest is 0.

S.4: Auxiliary Lemmas

Definition S.4.1. Let X = Rp×n with inner product 〈A,B〉 = tr(A>B) and ‖ · ‖ be the

induced norm. f : X → R a lower semicontinuous convex function. The proximity operator

of f , Sf : X → X :

Sf (Y)
def
= arg min

X∈X

{
f(X) +

1

2
‖X−Y‖2

}
,∀Y ∈ X .

Theorem S.4.2 (Theorem 2.1 of Cai et al. (2010)). Suppose the singular decomposition of

Y = UDV> ∈ Rp×m, where D is a p × m rectangular diagonal matrix and U and V are

unitary matrices. The proximity operator Sλ(·) associated with λ‖ · ‖∗ is

Sλ(Y)
def
= U(D− λIpm)+V>, (S.4.1)

where Ipm is the p×m rectangular identity matrix with diagonal elements equal to 1.

Lemma S.4.3 (Hoeffding’s Inequality, Proposition 5.10 of Vershynin (2012)). Let X1, ..., Xn

be independent centered sub-gaussian random variables, and let K = maxi ‖Xi‖ψ2. Then for
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every a = (a1, ..., an)> ∈ Rn and every t ≥ 0, we have

P

(∣∣∣∣ n∑
i=1

aiXi

∣∣∣∣ ≥ t

)
≤ e · exp

(
− C ′t2

K2‖a‖2
2

)
,

where C ′ > 0 is a universal constant.

Lemma S.4.4 (Hoeffding’s Inequality: classical form). Let X1, ..., Xn be independent random

variables such that Xi ∈ [ai, bi] almost surely, then

P

(∣∣∣∣ n∑
i=1

Xi

∣∣∣∣ ≥ t

)
≤ 2 exp

(
− 2t2∑n

i=1(bi − ai)2

)
.

S.5: Selecting the Matrix B in Section 4.3
The B in (4.3) is the coefficient estimator obtained by fitting a VAR(1) model (Lütkepohl;

2005) to the Xi in (5.1) and Σε is the sample covariance matrix from the residuals. Due to

the high dimensionality (460), the VAR model may be over-parameterized especially when

the order is high, and straightforwardly estimating the VAR may yield unreliable estimates.

Therefore, as suggested by multiple authors (e.g. Davis et al. (2016); Nicholson et al. (2017)

and the references therein), we estimate the VAR model with the `1 norm penalty, or Lasso

(Tibshirani; 1996), to alleviate the problem of over-parameterization. Henceforth, the VAR

model estimated with the Lasso penalty will be called Lasso-VAR. The computation can be

carried out with the R package BigVAR (Nicholson et al.; 2017). The Lasso tuning parameter

is selected optimally by the cross-validation procedure provided in the package.

To evaluate the adequacy of the VAR(1) model for the real data in (5.1) Table S.5.1

provides the 1-step-ahead mean square forecasting error (MSFE) of Lasso-VAR (see Eq. (12)

of Nicholson et al. (2017)) with different lags. As it requires excessive computational time and

resource for model estimation and cross-validation, the maximal order under consideration

here is three. Lasso-VAR(3) has the smallest MSFE, but the difference between the models

seems small, so we take Lasso-VAR(1). The MSFE of VAR with order selected by AIC or

BIC (Lütkepohl; 2005; Nicholson et al.; 2017) is 2805 with optimal order of both being 0,

which is higher than that of Lasso-VAR as shown in Table S.5.1.

For a simple diagnosis of Lasso-VAR(1), we check the autocorrelation and partial auto-

correlation function of each individual residual series. Autocorrelation and partial autocor-

relation functions of some series are significant. However, increasing the order of the VAR

model does not improve the situation. To our knowledge, we are not aware of any literature

on vector ARIMA models for high dimensional time series, which might provide a better fit

of our data. Fitting a very high dimensional VAR like ours is very subtle. As the Lasso-

VAR(1) has demonstrated competent forecasting performance as shown in Table S.5.1, we
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adopt Lasso-VAR(1). A full exploration of the time series structure of the data is left for

future research.

Order 1 2 3
Lasso-VAR MSFE 2364.82 2353.075 2341.046
% of active coef. 3.9 2.836 2.381
MSFE of VAR-AIC/BIC (optimal order = 0): 2805

Table S.5.1: The mean square forecasting error (MSFE) and the percentage of active coef-
ficients (total number of coefficients = 460× (1 + 460× order)) with different orders, where
“1” is from the intercept. For the matrix B, we do not include the intercept.

S.6: Additional Numerical Results: AR(1) Model
In this section, we consider the same data generating model as (4.1) in Section 4.1, but

now the regressor Xi follows an AR(1) model

Xi = 0.5Xi−1 + ui, (S.6.1)

where ui follows the multivariate U([0, 1]) distribution with covariance matrix Σ in which

Σij = 0.1 ∗ 0.8|i−j|. Because Yi is generated as (4.1), the true number of factors is 2 for

τ = 0.2 and 6 for τ = 0.8 as in the i.i.d. case. The computational setting is the same as the

i.i.d. case.

Figure S.6.1 shows the relative frequency of the estimated number of factors and the

estimated penalized validation loss when the regressors follow (S.6.1). It appears that the

presence of time dependency slightly decreases the recovery accuracy, but the pattern of the

penalized validation loss and the estimation performance of the number of factors remain

similar to the i.i.d. case in Section 4.2. However, for τ = 0.8, smaller κ and greater T than

than those for τ = 0.2 are selected to ensure estimation accuracy, which is due to the fact

that the true number of factors for τ = 0.8 is greater than that of τ = 0.2.
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Figure S.6.1: The histogram of the estimated number of factors and the plot for the penalized
validation loss computed by the average of 150 Monte Carlo repetitions, τ = 0.2 and 0.8.
Data are generated as (4.1), with AR(1) regressor Xi generated as in (S.6.1). The true
number of factors is 2 for τ = 0.2 and 6 for τ = 0.8. (κ, T ) = (6.66 ∗ 10−6, 3500) for τ = 0.2
and (κ, T ) = (8 ∗ 10−7, 4000) for τ = 0.8.
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