Supplementary Material to
 "Inference in Dynamic, Nonparametric Models of Production: Central Limit Theorems for Malmquist Indices"

Alois Kneip Léopold Simar Paul W. Wilson*

April 2020

[^0]
Contents

A Empirical Applications in the Literature 1
B Inference Based on Arithmetic Means of Logs 2
C Additional Results, Proofs and Technical Details 6
C. 1 Additional Results 6
C. 2 Proof of Lemma 3.1 7
C. 3 Proof of Lemma 3.2 8
C. 4 Some Background Material used in Proof of Theorem 3.1 8
C. 5 Proof of Theorem 3.1 9
C. 6 Proof of Theorem 3.2 19
C. 7 Proof of Theorem 3.3 20
C. 8 Proof of Theorem 3.4 21
C. 9 Proof of Theorem 3.6 22
C. 10 Proof of Lemma 3.3 22
C. 11 Proof of Theorem 3.7 22
C. 12 Proof of Theorem B. 1 23
C. 13 Proof of Theorem B. 2 23
C. 14 Proof of Theorem C. 1 23
D Additional Simulation Results 24

List of Tables

$\begin{array}{lll}\text { D. } 1 & \text { Rejection Rates for Test for Productivity Change using Logs (Two-sided Test) } & 25 \\ \text { D } 1 \text { Rejection Rates for Test for Productivity Change using Loos (continued) } & 26\end{array}$
D. 1 Rejection Rates for Test for Productivity Change using Logs (continued) . . 26
D. $2 \begin{aligned} & \text { Rejection Rates for Test for Productivity Change using Geometric Mean } \\ & \text { (Two-sided Test) . } 27\end{aligned}$
D. 2 Rejection Rates for Test for Productivity Change using Geometric Mean (con-
tinued) . 28
D. 3 Rejection Rates for Test for Productivity Change using Logs (Two-sided Test) 29
D. 3 Rejection Rates for Test for Productivity Change using Logs (continued) . . 30
D. 4 Rejection Rates for Test for Productivity Change using Geometric Mean
(Two-sided Test, Recentered Intervals when $\kappa<1 / 2$) 31
D. 4 Rejection Rates for Test for Productivity Change using Geometric Mean (continued)
D. 5 Rejection Rates for Test for Productivity Change using Logs (Two-sided Test, $\quad 33$
D. 5 Rejection Rates for Test for Productivity Change using Logs (continued) . . 34

A Empirical Applications in the Literature

As noted in Section 1, Malmquist indices have been widely applied to measure changes in productivity over time. Areas of empirical application in the literature include development economics (e.g., Thirtle et al., 2003; Kaur, 2015; Li et al., 2015; Wijesiri and Meoli, 2015), regional science and urban economics (e.g., Tengyun et al., 2009; Sun et al., 2012; Yasunaga, 2014), environmental economics (e.g, Kortelainen, 2008; Zhou et al., 2010; Macpherson et al., 2013; Sueyoshi and Goto, 2013; Lin and Fei, 2015; Molinos-Senante et al., 2016), transportation and logistics (e.g., Murillo-Melchor, 1999; Estache et al., 2004; Gitto and Mancuso, 2012; Egilmez and McAvoy, 2013; De Nicola et al., 2013; Ahn and Min, 2014), Shi and Xiao, 2015; macroeconomic growth (e.g., Färe et al., 1994 and 1997; Ray and Desli, 1997; Kumar and Russell, 2002; Krüger, 2003), natural resources (e.g., Hoff, 2006; Oliveira et al., 2009; Pyo and Kim, 2010; Kao, 2010; Korkmaz, 2011; Elhendy and Alkahtani, 2012), health economics (e.g., Burgess Jr. and Wilson, 1995; Giuffrida, 1999; Sommersguter-Reichmann, 2000; Staat, 2003; Kontodimopoulos and Niakas, 2006; Ozcan and Luke, 2011; Roh et al., 2011), energy economics (e.g., Yaisawarng and Klein, 1994; Price and Weyman-Jones, 1996; Yang and Pollitt, 2012; Sözen and Alp, 2013; Morfeldt and Silveira, 2014; Wu et al., 2014; Woo et al., 2015; Wu et al., 2015), economics of education (e.g, Rayeni et al., 2010; Ouellette and Vierstraete, 2010); Essid et al., 2014), agricultural economics (e.g., Ball et al., 2004); Bhushan, 2005; Coelli and Rao, 2005), and economics of innovation (e.g., Zheng, 2015). Malmquist indices are also used to examine specific industries, including computers and electronics (e.g, Chen and Ali, 2004; Chen and Ali, 2004; Liu and Wang, 2008; Chen et al., 2011; Lee et al., 2014), construction (e.g., Xue et al., 2008; Park et al., 2015), oil (e.g., Sueyoshi and Goto, 2015), textiles and clothing (e.g., Kapelko and Lansink, 2015), insurance and finance (e.g., Nektarios and Barros, 2010; Barros et al., 2005; Cummins and Rubio-Misas, 2006), manufacturing (e.g., Chavas and Cox, 1990; Weber and Domazlicky, 2001; Shestalova, 2003; Sowlati and Vahid, 2006), retail trade (e.g., Barros and Alves, 2004; Vaz and Camanho, 2012), chemicals (e.g., Ray and Ray, 2012; Han et al., 2014), biotechnology (e.g., Wang and Chang, 2012), accounting firms (e.g., Chang et al., 2009; Wang and Zhang, 2012), banking (e.g., Gilbert and Wilson, 1998; Wheelock and Wilson, 1999; Chen et al., 2007; Lin et al., 2007; Olgu and Weyman-Jones, 2008; Portela and Thanassoulis, 2010; Sharma and Gupta,

2010; Hadad et al., 2011), government services (e.g., Fuentes and Lillo-Bañuls, 2014), and pharmaceuticals (e.g., Yan and Yang, 2013; Song and Zhang, 2013). Many other examples can be found in the economics literature.

B Inference Based on Arithmetic Means of Logs

Much of the discussion here is analogous to the development in Section 4. Theorem 3.6 from Section 3.3 provides the basis for making inference about productivity change while working with arithmetic means of logs of estimated Malmquist indices. Recall from Section 4 that $\sigma_{\mathcal{M}}^{2}=\operatorname{VAR}\left(\log \mathcal{M}_{i}\right)=E\left(\left(\log \mathcal{M}_{i}-E\left(\log \mathcal{M}_{i}\right)\right)^{2}\right)$ where the expectations are over (X, Y) in both periods 1 and 2 . Recall also that in the definition of $\mu_{\mathcal{M}}$ in (3.24) the expectation is also with respect to (X, Y) in both periods 1 and 2. Assume again that $\sigma_{\mathcal{M}}^{2}$ is finite.

As noted in Section 3.3 just after Lemma 3.3, it is clear from (3.34) that $\widehat{\mu}_{\mathcal{M}, n}$ is a consistent estimator of $\mu_{\mathcal{M}}$, but with a bias of $C_{\mathcal{M}} n^{-\kappa}$ since $E\left(\mu_{\mathcal{M}, n}\right)=\mu_{\mathcal{M}}+C_{\mathcal{M}} n^{-\kappa}$. If $\kappa>1 / 2$, then the bias term as well as the remainder term $\xi_{n, \kappa}$ are dominated by the factor \sqrt{n} and therefore can be ignored. Hence when $\kappa>1 / 2$, a $(1-\alpha) \times 100$-percent confidence interval for $\widehat{\mu}_{\mathcal{M}, n}$ is estimated by

$$
\begin{equation*}
\left[\widehat{\mu}_{\mathcal{M}, n} \pm z_{1-\frac{\alpha}{2}} \frac{\widehat{\sigma}_{\mathcal{M}, n}}{\sqrt{n}}\right], \tag{B.1}
\end{equation*}
$$

where $z_{1-\frac{\alpha}{2}}$ is the corresponding quantile of the standard normal distribution function. Under the conditions of Theorem 3.6, provided $\kappa>1 / 2$ (i.e., $p+q \leq 2$), the interval in (B.1) has asymptotically correct coverage. But if $\kappa=1 / 2$, the bias in (3.34) is constant, and if $\kappa<1 / 2$, the bias tends to infinity as $n \rightarrow \infty$.

Suppose $\kappa \leq 1 / 2$, and again let $n_{\kappa}=\min \left(\left\lfloor n^{2 \kappa}\right\rfloor, n\right)$, where $\lfloor a\rfloor$ denotes the largest integer less than or equal to a as in Section 4. Assume that the observations in \mathcal{X}_{n} are randomly sorted (the algorithm described by Daraio et al., 2018, Appendix D can be used to randomly sort the observations while allowing results to be replicated by other researchers using the same data and the same sorting algorithm). Let

$$
\begin{equation*}
\widehat{\mu}_{\mathcal{M}, n_{\kappa}}:=n_{\kappa}^{-1} \sum_{i=1}^{n_{\kappa}} \log \widehat{\mathcal{M}}_{i} \tag{B.2}
\end{equation*}
$$

where the estimates $\widehat{\mathcal{M}}_{i}$ are computed using $n\left(\right.$ not $\left.n_{\kappa}\right)$ observations; i.e., the 4 estimates
comprising $\widehat{\mathcal{M}}_{i}$ are each computed using all of the available observations in each period. The next result establishes the properties of this estimator.

Theorem B.1. Under the conditions of Theorem 3.6, for cases where $\kappa \leq 1 / 2$,

$$
\begin{equation*}
n^{\kappa}\left(\widehat{\mu}_{\mathcal{M}, n_{\kappa}}-\mu_{\mathcal{M}}-C_{\mathcal{M}} n^{-\kappa}-\xi_{n, \kappa}\right) \xrightarrow{d} \mathcal{N}\left(0, \sigma_{\mathcal{M}}^{2}\right) \tag{B.3}
\end{equation*}
$$

as $n \rightarrow \infty$, where $\xi_{n, \kappa}=O\left(n^{-\frac{3}{p+q+1}}(\log n)^{\frac{3}{p+q+1}}\right)$.
The bias term $C_{\mathcal{M}} n^{-\kappa}$ remains in (B.3), but it is now multiplied by the factor n^{κ} and hence is constant instead of exploding to infinity as before when $\kappa<1 / 2$. In order to estimate the bias, a generalized jackknife estimator similar to the one described in Section 4 can be used, taking care to split the data into sub-samples appropriately for the two periods in which firms are observed.

As in Section 4 , let $Z_{i}^{t}=\left(X_{i}^{t}, Y_{i}^{t}\right), t \in\{1,2\}$ so that the sample can be described by $\mathcal{X}_{n}=\left\{\left(Z_{i}^{1}, Z_{i}^{2}\right)\right\}_{i=1}^{n}$. Similar to Section 4 , split \mathcal{X}_{n} randomly into two sub-samples $\mathcal{X}_{m_{1}}^{(1)}$ and $\mathcal{X}_{m_{2}}^{(2)}$ of sizes $m_{1}=\lfloor n / 2\rfloor$ and $m_{2}=n-\lfloor n / 2\rfloor$ (respectively). Define

$$
\begin{equation*}
\widehat{\mu}_{\mathcal{M}, m_{j}}^{(j)}:=m_{j}^{-1} \sum_{\left(Z_{i}^{1}, Z_{i}^{2}\right) \in \mathcal{X}_{m_{j}}^{(j)}} \log \widehat{\mathcal{M}}_{i}\left(\mathcal{X}_{m_{j}}^{(j)}\right) \tag{B.4}
\end{equation*}
$$

for $j \in\{1,2\}$, where the notation $\widehat{\mathcal{M}}_{i}\left(\mathcal{X}_{m_{j}}^{(j)}\right)$ indicates that the four estimates comprising the estimated Malmquist index $\widehat{\mathcal{M}}_{i}$ are each computed for observation i in the j th sub-sample using only the observations in the j th sub-sample $\mathcal{X}_{m_{j}}^{(j)}$. Then set

$$
\begin{equation*}
\widehat{\mu}_{\mathcal{M}, n / 2}^{*}=\frac{1}{2}\left(\widehat{\mu}_{\mathcal{M}, m_{1}}^{(1)}+\widehat{\mu}_{\mathcal{M}, m_{2}}^{(2)}\right) . \tag{B.5}
\end{equation*}
$$

By following arguments similar to those in Kneip et al. (2015, Section 4) it is easy to show that

$$
\begin{equation*}
\widetilde{B}_{n, \kappa}=\left(2^{\kappa}-1\right)^{-1}\left(\widehat{\mu}_{\mathcal{M}, n / 2}^{*}-\widehat{\mu}_{\mathcal{M}, n}\right)=C_{\mathcal{M}} n^{-\kappa}+\xi_{n, \kappa}^{*}+o_{p}\left(n^{-1 / 2}\right) \tag{B.6}
\end{equation*}
$$

where $\xi_{n, \kappa}^{*}$ is of the same order as $\xi_{n, \kappa}$ appearing in (3.34), provides an estimator of the bias $C_{\mathcal{M}} n^{-\kappa}$.

As in Section 4, note that there are $\binom{n}{n / 2}$ possible splits of the original n observations. To reduce the variance of the bias estimate in (B.6), the sample can be split $K \ll\binom{n}{n / 2}$ times
while randomly shuffling the observations before each split, and computing $\widetilde{B}_{n, \kappa, k}$ using (B.6) for $k=1, \ldots, K$. Then

$$
\begin{equation*}
\widehat{B}_{n, \kappa}=K^{-1} \sum_{k=1}^{K} \widetilde{B}_{n, \kappa} \tag{B.7}
\end{equation*}
$$

gives a generalized jackknife estimate of the bias $C_{\mathcal{M}} n^{-\kappa}$. Averaging in (B.7) reduces the variance by a factor of K^{-1} relative to the bias in (B.6).

Combining Theorem 3.6 and (B.7) leads to the following result.
Theorem B.2. Under the conditions of Theorem 3.6, for cases where $\kappa \geq 2 / 5$,

$$
\begin{equation*}
\sqrt{n}\left(\widehat{\mu}_{\mathcal{M}, n}-\widehat{B}_{n, \kappa}-\mu_{\mathcal{M}}+\xi_{n, \kappa}\right) \xrightarrow{d} \mathcal{N}\left(0, \sigma_{\mathcal{M}}^{2}\right) \tag{B.8}
\end{equation*}
$$

as $n \rightarrow \infty$.
Similar to the discussion in Section 4, the interplay between the root- n scaling factor and the remainder term $\xi_{n, \kappa}$ ensures that the result in Theorem B. 8 holds for $\kappa \geq 2 / 5$, and hence for $(p+q) \leq 4$. However, it is important to note that Theorem B. 2 does not hold in cases where $\kappa<2 / 5$. In such cases, the remainder term $\xi_{n, \kappa}$, when multiplied by \sqrt{n}, diverges toward infinity. Alternatively, combining Theorem B. 1 and (B.7) yields the following result.

Theorem B.3. Under the conditions of Theorem 3.6, for cases where $\kappa<1 / 2$,

$$
\begin{equation*}
n^{\kappa}\left(\widehat{\mu}_{\mathcal{M}, n_{\kappa}}-\widehat{B}_{n, \kappa}-\mu_{\mathcal{M}}-\xi_{n, \kappa}\right) \xrightarrow{d} \mathcal{N}\left(0, \sigma_{\mathcal{M}}^{2}\right) \tag{B.9}
\end{equation*}
$$

as $n \rightarrow \infty$.

Note that in all cases (i.e., for all values of κ), $\xi_{n, \kappa}=o\left(n^{-\kappa}\right)$ and hence $n^{\kappa} \xi_{n, \kappa}=o(1)$. Therefore the remainder term can be neglected.

Whenever $\kappa \geq 2 / 5$ and hence $(p+q) \leq 4$, Theorem B. 2 can be used to construct an asymptotically correct $(1-\alpha)$ confidence interval for $\mu_{\mathcal{M}}$ given by

$$
\begin{equation*}
\left[\widehat{\mu}_{\mathcal{M}, n}-\widehat{B}_{n, \kappa} \pm z_{1-\frac{\alpha}{2}} \frac{\widehat{\sigma}_{\mathcal{M}, n}}{\sqrt{n}}\right], \tag{B.10}
\end{equation*}
$$

where as in (B.1) $z_{1-\frac{\alpha}{2}}$ represents the $\left(1-\frac{\alpha}{2}\right)$ quantile of the standard normal distribution function.

Alternatively, in cases where $\kappa<1 / 2$ and hence $(p+q) \geq 4$, Theorem B. 3 permits construction of the asymptotically correct $(1-\alpha)$ confidence interval

$$
\begin{equation*}
\left[\widehat{\mu}_{\mathcal{M}, n_{\kappa}}-\widehat{B}_{n, \kappa} \pm z_{1-\frac{\alpha}{2}} \frac{\widehat{\sigma}_{\mathcal{M}, n}}{n^{\kappa}}\right] \tag{B.11}
\end{equation*}
$$

for $\mu_{\mathcal{M}}$. This interval is centered on $\widehat{\mu}_{\mathcal{M}, n_{\kappa}}-\widehat{B}_{n, \kappa}$, and $\widehat{\mu}_{\mathcal{M}, n_{\kappa}}$ computed from a random subset of estimates $\widehat{\mathcal{M}}_{i}$ (where each estimate $\widehat{\mathcal{M}}_{i}$ is computed using all of the sample observations in \mathcal{X}_{n}). While this may seem arbitrary, note that any confidence interval for $\mu_{\mathcal{M}}$ is arbitrary since any asymmetric confidence interval for $\mu_{\mathcal{M}}$ can be constructed simply by using different quantiles of the $\mathcal{N}(0,1)$ distribution to establish the bounds. The main point is always to achieve a high level of coverage without making the confidence interval too wide to be informative.

In cases where $\kappa<1 / 2$, the randomness of the interval in (B.11) due to centering on a mean over a subsample of size $n_{\kappa}<n$ can be eliminated by averaging the center of (B.11) over all possible draws (without replacement) of subsamples of size n_{κ}. This yields an interval

$$
\begin{equation*}
\left[\widehat{\mu}_{\mathcal{M}, n}-\widehat{B}_{n, \kappa} \pm z_{1-\frac{\alpha}{2}} \frac{\widehat{\sigma}_{\mathcal{M}, n}}{n^{\kappa}}\right] \tag{B.12}
\end{equation*}
$$

centered on $\widehat{\mu}_{\mathcal{M}, n}-\widehat{B}_{n, \kappa}$. The only difference between the intervals in (B.11) and (B.12) is the centering value. Both intervals have the same length and hence are equally informative. But the interval in (B.12) should be more accurate (i.e., should have higher coverage in finite samples) because the estimator $\widehat{\mu}_{\mathcal{M}, n}$ uses more information than the estimator $\widehat{\mu}_{\mathcal{M}, n_{\kappa}}$. Therefore, for $\kappa<1 / 2, n_{\kappa}<n$ and hence the interval in (B.12) contains the true value $\mu_{\mathcal{M}}$ with probability greater than $(1-\alpha)$. Due to the results given above, it is clear that the coverage of the interval in (B.12) converges to 1 as $n \rightarrow \infty$.

Note that when $(p+q)=4$, either Theorems B. 2 or B. 3 can be used to provide different but asymptotically correct confidence intervals for $\mu_{\mathcal{M}}$. The interval in (B.10) uses the scaling factor \sqrt{n} and hence neglects the term $\sqrt{n} \xi_{n, \kappa}=O\left(n^{-1 / 10}\right)$ in Theorem B.2. By contrast, the interval in (B.11) uses the scaling factor n^{κ} and hence neglects the term $n^{\kappa} \xi_{n, \kappa}=O\left(n^{-1 / 5}\right)$ in Theorem B.3. Therefore one should expect (B.11) to provide a better approximation in finite samples than (B.10) when $(p+q)=4$.

The null hypothesis of no change in productivity versus change in productivity between periods 1 and 2 can be tested by computing the appropriate interval for $\mu_{\mathcal{M}}$. Under the
null, $\mu_{\mathcal{M}}=0$, while under the alternative hypothesis, $\mu_{\mathcal{M}} \neq 0$. Hence the null is rejected whenever the estimated confidence interval does not include zero.

The intervals given so far in (B.1), (B.10) and (B.11) are for $\mu_{\mathcal{M}}$ defined in (3.24). Theorem 3.7 and Remark 3.2 ensure that these intervals can be used to make inference about the geometric mean $E\left(M_{n}\right)$ where M_{n} is defined by (2.10). In particular, asymptotically valid intervals for $E\left(M_{n}\right)$ are obtained by taking exponentials of the bounds of the appropriate interval for $\mu_{\mathcal{M}}$.

C Additional Results, Proofs and Technical Details

C. 1 Additional Results

As noted just after Theorem 3.5, the bias in (3.30) will be zero if the distributions in each period are identical, the numbers of observations n_{1}, n_{2} available for estimation in each period are the same, and the joint density f_{12} introduced in Assumption 3.2(iii) is symmetric in its arguments. This leads to the following result.

Theorem C.1. Assume Assumptions 2.1-2.7, 3.1 and 3.2 hold. In addition, assume that (i) $f:=f^{1}=f^{2}$ (and hence $\left.\mathcal{D}:=\mathcal{D}^{1}=\mathcal{D}^{2}\right)$; (ii) $n=n_{1}=n_{2}$; and (iii) $f_{12}\left((x, y),\left(x^{*}, y^{*}\right)\right)=$ $f_{12}\left(\left(x^{*}, y^{*}\right),(x, y)\right)$ for all $(x, y),\left(x^{*}, y^{*}\right) \in \mathcal{D}$. Then

$$
\begin{equation*}
E\left(\widehat{\mu}_{\mathcal{M}, n}-\mu_{\mathcal{M}}\right)=0 \tag{C.1}
\end{equation*}
$$

and as $n \rightarrow \infty$,

$$
\begin{equation*}
V A R\left(\widehat{\mu}_{\mathcal{M}, n}-\mu_{\mathcal{M}}\right)=\frac{1}{n} V A R\left(\log \mathcal{M}_{i}\right)+o\left(n^{-1}\right) \tag{C.2}
\end{equation*}
$$

A proof is given below in Section C.14.
Remark C.1. Note that (C.1) holds for all n as seen in the proof that appears below in Section C.14, and is a consequence of a somewhat trivial fact: If (a) there are two samples with identical data generating processes, and (b) for both samples the same type of estimator is applied, then all resulting biases are identical (and hence cancel out when subtracting). In our context there only exists the difficulty that the roles of $\left(X_{i}^{1}, Y_{i}^{1}\right)$ and $\left(X_{i}^{2}, Y_{i}^{2}\right)$ are different in $\log \widehat{\gamma}_{C}^{2}\left(X_{i}^{1}, Y_{i}^{1} \mid \mathcal{X}_{n_{2}}^{2}\right)$ and $\log \widehat{\gamma}_{C}^{1}\left(X_{i}^{2}, Y_{i}^{2} \mid \mathcal{X}_{n_{1}}^{1}\right)$, which is resolved by the additional assumption (iii) of "symmetry" on the joint density.

Remark C.2. Section 3.1 of Kneip et al. (2016) overlooks the point raised in Remark C.1. Indeed the results in Section 3.1 of Kneip et al. (2016) are incomplete (but not false; the results provide bad approximations in the case of identical distributions). In Kneip et al. (2016, Section 3.1) if $n_{1}=n_{2}$ and if both samples possess identical distributions then the biases cancel out, and in the notation of Kneip et al. (2016) $E\left(\widehat{\mu}_{1, n_{1}}-\widehat{\mu}_{2, n_{2}}\right)=0$.

Remark C.3. It is possible to achieve (C.1) while only requiring $f^{1}=f^{2}$ (i.e., without assuming $n_{1}=n_{2}$ and symmetry of the joint density). This is possible by modifying the estimator and using

$$
\begin{aligned}
\log \widetilde{\mathcal{M}}_{i}= & \frac{1}{2}\left(\log \widehat{\gamma}_{C}^{1}\left(X_{i}^{2}, Y_{i}^{2} \mid \mathcal{X}_{n_{1},-i}^{1}\right)+\log \widehat{\gamma}_{C}^{2}\left(X_{i}^{2}, Y_{i}^{2} \mid \mathcal{X}_{n_{2},-i}^{2}\right)\right. \\
& \left.-\log \widehat{\gamma}_{C}^{1}\left(X_{i}^{1}, Y_{i}^{1} \mid \mathcal{X}_{n_{1},-i}^{1}\right)-\log \widehat{\gamma}_{C}^{2}\left(X_{i}^{1}, Y_{i}^{1} \mid \mathcal{X}_{n_{2},-i}^{2}\right)\right)
\end{aligned}
$$

where $\mathcal{X}_{n_{s},-i}^{s}$ is the reduced sample of size $(n-1)$ obtained by eliminating the i th observation $\left(X_{i}^{s}, Y_{i}^{s}\right), s=0,1$. In other words, for any $i=1, \ldots, n$ the estimates $\widehat{\gamma}$ are constructed without taking into account the i-th observation. In this case everything is symmetric, and for identical distributions arguments similar to those used above lead to

$$
\begin{equation*}
E\left(\log \widehat{\gamma}_{C}^{1}\left(X_{i}^{1}, Y_{i}^{1} \mid \mathcal{X}_{n_{1},-i}^{1}\right)\right)=E\left(\log \widehat{\gamma}_{C}^{1}\left(X_{i}^{2}, Y_{i}^{2} \mid \mathcal{X}_{n_{1},-i}^{1}\right)\right) \tag{C.3}
\end{equation*}
$$

and

$$
\begin{equation*}
E\left(\log \widehat{\gamma}_{C}^{2}\left(X_{i}^{1}, Y_{i}^{1} \mid \mathcal{X}_{n_{2},-i}^{2}\right)\right)=E\left(\log \widehat{\gamma}_{C}^{2}\left(X_{i}^{2}, Y_{i}^{2} \mid \mathcal{X}_{n_{2},-i}^{2}\right)\right) \tag{C.4}
\end{equation*}
$$

independent of n_{1} and n_{2}. Hence $E\left(\log \widetilde{\mathcal{M}}_{i}\right)=0$.
Remark C.4. Tests based on Theorem C. 1 are tests of $f^{1}=f^{2}$ rather than of $\mu_{\mathcal{M}}:=$ $E\left(\log \mathcal{M}_{i}\right)=0$. Note that the true mean $\mu_{\mathcal{M}}$ may be zero even if $f^{1} \neq f^{2}$. But if $f^{1} \neq f^{2}$ then biases do not cancel out in general, and one is back to (3.30). Since for large $(p+q)$ bias dominates variance, the test will (asymptotically) reject the null hypotheses even if $\mu_{\mathcal{M}}=0$ if bias is not accounted for.

C. 2 Proof of Lemma 3.1

Consider rays $\mathcal{L}_{1}=\mathcal{L}(x, y)$ and $\mathcal{L}_{2}=\mathcal{L}(x, \lambda(x, y \mid \mathcal{C}(\Psi)) y) \subset \mathcal{C}^{\partial}(\Psi)$.
Since $(\theta(x, y \mid \mathcal{C}(\Psi)) x, y) \in \mathcal{L}_{2}$ and $(x, \lambda(x, y \mid \mathcal{C}(\Psi)) y) \in \mathcal{L}_{2}, \frac{\lambda(x, y \mid \mathcal{C}(\Psi))\|y\|}{\|x\|}=\frac{\|y\|}{\theta(x, y \mid \mathcal{C}(\Psi))\|x\| \|}$ and hence $\lambda(x, y \mid \mathcal{C}(\Psi))^{-1}=\theta(x, y \mid \mathcal{C}(\Psi))$. In addition, $\left(\gamma_{C}(x, y \mid \mathcal{C}(\Psi)) x, \gamma_{C}(x, y \mid\right.$ $\left.\mathcal{C}(\Psi))^{-1} y\right) \in \mathcal{L}_{2}$. Therefore $\frac{\gamma_{C}(x, y \mid \mathcal{C}(\Psi))^{-1}\|y\|}{\gamma_{C}(x, y \mid \mathcal{C}(\Psi))\|x\|}=\frac{\|y\|}{\theta(x, y \mathcal{C}(\Psi))\|x\|}$. Result (i) follows immediately.

To prove (ii), consider two points $(x, y) \in \mathcal{L}_{1}$ and $(\widetilde{x}, \widetilde{y}) \in \mathcal{L}_{1}$. Clearly, $(x, \lambda(x, y \mid$ $\mathcal{C}(\Psi) y) \in \mathcal{L}_{2}$ and $\left(\widetilde{,} \lambda(\widetilde{x}, \widetilde{y} \mid \mathcal{C}(\Psi) \widetilde{y}) \in \mathcal{L}_{2}\right.$. It follows that $\frac{\lambda(x, y \mid \mathcal{C}(\Psi)\|y\|}{\|x\|}=\frac{\lambda(\widetilde{x}, \tilde{y} \mid \mathcal{C}(\Psi)\|\widetilde{y}\|}{\|\widetilde{x}\|}$. Hence $\lambda\left(x, y \left\lvert\, \mathcal{C}(\Psi)=\lambda\left(\widetilde{x}, \widetilde{y} \mid \mathcal{C}(\Psi)\right.\right.$ since $\frac{\|y\|}{\|x\|}=\frac{\|\widetilde{y}\|}{\|\widetilde{x}\|}$, establishing (ii). Results (iii) and (iv) follow \right. from (i) and (ii).

C. 3 Proof of Lemma 3.2

The results follow from the proof of Lemma 3.1 after replacing $\mathcal{C}(\Psi)$ with $\mathcal{C}(\widehat{\Psi}))$.

C. 4 Some Background Material used in Proof of Theorem 3.1

The proof of Theorem 3.1 that follows relies on the structural analysis used in the proof of Theorem 3.1 in Kneip et al. (2015). Let us first recall some of the notation used there.

Consider an arbitrary point $(x, y) \in \mathcal{D}$. Let $\mathcal{V}(x)$ denote the $(p-1)$-dimensional linear space of all vectors $z \in \mathbb{R}^{p}$ such that $z^{T} x=0$. Any input vector X_{i} adopts a unique decomposition of the form $X_{i}=\gamma_{i} \frac{x}{\|x\|}+Z_{i}$ for some $Z_{i} \in \mathcal{V}(x)$ and $\gamma_{i}=\frac{x^{T} X_{i}}{\|x\|}$, where $\|\cdot\|$ denotes the Euclidean norm. Let $\Psi^{*}(x)$ denote the set of all $(z, y) \in \mathcal{V}(x) \times \mathbb{R}^{q}$ with $\left(\gamma \frac{x}{\|x\|}+z, y\right) \in \mathcal{D}$ for some $\gamma>0$. Note that the point of interest $(x, y) \in \Psi$ has coordinates $(0, y)$ in $\Psi^{*}(x)$.

The maintained assumptions imply that for any $(z, y) \in \Psi^{*}(x)$, there exists $\gamma>0$ such that $\left(\gamma \frac{x}{\|x\|}+z, y\right) \in \Psi$. The efficient boundary of Ψ can therefore be described by the function $g_{x}(z, y):=\inf \left\{\gamma \left\lvert\,\left(\gamma \frac{x}{\|x\|}+z, y\right) \in \Psi\right.\right\}$ defined for any $(z, y) \in \Psi^{*}(x)$. Furthermore, with only a small abuse of notation, one may extend the definition of g_{x} to all (v, y) with $\left(v-\frac{x^{T} v}{\|x\|^{2}} x, y\right) \in \Psi^{*}(x)$ by taking $g_{x}(v, y)=g_{x}\left(v-\frac{x^{T} v}{\|x\|^{2}} x, y\right)$.

Properties of g_{x} are discussed in Kneip et al. (2008). In particular, under the assumptions of the theorem, g_{x} is a three times continuously differentiable, strictly convex function, and there exists a constant $C_{1}>0$ such that $w^{T} g_{x}^{\prime \prime}(0, y) w \geq C_{1}$ for all $w \in \mathcal{V}(x) \times \mathbb{R}^{q}$ with $\|w\|=1$ and all $x \in \mathbb{R}^{q}$ with $(x, y) \in \mathcal{D}$. Moreover, $g_{x}^{\prime \prime}(0, y)$ changes continuously in x. In the following we will additionally use $g_{x ; z z}^{\prime \prime}(\widetilde{z}, \widetilde{y})$ to denote the $(p-1) \times(p-1)$-matrix of partial derivatives with respect to the z-coordinates at a point $(\widetilde{z}, \widetilde{y})$, while $g_{x ; y y}^{\prime \prime}(\widetilde{z}, \widetilde{y})$ will denote the $q \times q$-matrix of partial derivatives with respect to the y-coordinates.

The decomposition described above establishes a new coordinate system in which each observation $\left(X_{i}, Y_{i}\right)$ can be equivalently represented by the corresponding vector $\left(\theta_{i}, Z_{i}, Y_{i}\right)$,
where $\theta_{i}:=\theta\left(X_{i}, Y_{i}\right)$. Any point $(x, a y)$ of interest has coordinates $(\theta(x, a y), 0, a y)$ in this system.

Different from Kneip et al. (2015) we will need an additional decomposition of the variable Y_{i} given by

$$
\begin{equation*}
Y_{i}=\alpha_{i} y+V_{i} \quad \text { for some } V_{i} \in \mathbb{R}^{q}, V_{i}^{t} y=0, \text { and } \alpha_{i}=\frac{y^{T} Y_{i}}{\|y\|^{2}} . \tag{C.5}
\end{equation*}
$$

This establishes another coordinate system with $\left(Z_{i}, V_{i}\right) \in \mathcal{V}(x, y)$, where $\mathcal{V}(x, y)$ denotes the $(p-1) \times(q-1)$-dimensional linear space of all vectors $z \in \mathbb{R}^{p}$ and $v \in \mathbb{R}^{p}$ such that $z^{T} x=0$ and $v^{T} y=0$. Instead of using $\left(\theta_{i}, Z_{i}, Y_{i}\right)$, each observation $\left(X_{i}, Y_{i}\right)$ can be equivalently represented by the corresponding vector $\left(\theta_{i}, Z_{i}, \alpha_{i}, V_{i}\right)$, where $\theta_{i}:=\theta\left(X_{i}, Y_{i}\right)$. Any point $(x, a y)$ of interest has coordinates $(\theta(x, a y), 0, a y, 0)$ in this new system.

Let $z_{x}^{(1)}, \ldots, z_{x}^{(p-1)}$ and $v_{y}^{(1)}, \ldots, v_{y}^{(q-1)}$ be orthonormal bases of Z_{i} and V_{i}. Clearly, the $z_{x}^{(j)}$ and $v_{y}^{(j)}$ can be chosen as continuous functions of x and y, respectively. Every vector Z_{i} can be expressed in the form $Z_{i}=\mathbf{Z}_{x} \zeta_{i}$, where \mathbf{Z}_{x} is the $p \times(p-1)$ matrix with columns $z_{x}^{(j)}, j=1, \ldots, p-1$, and $\zeta_{i} \in \mathbb{R}^{p-1}$. Similarly, every vector V_{i} can be expressed in the form $V_{i}=\mathbf{V}_{y} v_{i}$, where \mathbf{V}_{y} is the $q \times(q-1)$ matrix with columns $v_{y}^{(j)}, j=1, \ldots, q-1$, and $v_{i} \in \mathbb{R}^{q-1}$.

Since $\theta_{i}=\theta\left(X_{i}, Y_{i}\right), Z_{i}=X_{i}-\frac{x^{T} X_{i}}{\|x\|^{2}} x, \alpha_{i}=\frac{y^{T} Y_{i}}{\|y\|^{2}}$, and $V_{i}=Y_{i}-\frac{y^{T} Y_{i}}{\|y\|^{2}} y$ are smooth functions of $\left(X_{i}, Y_{i}\right)$, the joint density f of $\left(X_{i}, Y_{i}\right)$ translates into a density $\tilde{f}_{x, y}$ on $(0,1] \times$ $\mathbb{R}^{p-1} \times \mathbb{R} \times \mathbb{R}^{q-1}$ of $\left(\theta_{i}, \zeta_{i}, \alpha_{i}, v_{i}\right)$. Let $\widetilde{\mathcal{D}}$ denote the support of this density. Since f is continuously differentiable, $\widetilde{f}_{x, y}(\theta, \zeta, \alpha, v)$ is also continuously differentiable on $(\theta, \zeta, \alpha, v) \in$ $\widetilde{\mathcal{D}}$. Furthermore, compactness of \mathcal{D}^{*}, as well as $f(\theta(x, y) x, y)>0$ for all $(x, y) \in \mathcal{D}$, imply that there exists a constant $c_{\mathrm{inf}}>0$ such that

$$
\begin{equation*}
\widetilde{f}_{x, y}(\theta, \zeta, \alpha, v) \geq c_{\mathrm{inf}} \tag{C.6}
\end{equation*}
$$

whenever $\left(\mathbf{Z}_{x} \zeta, \alpha y+\mathbf{V}_{y} v\right) \in \Psi^{*}(x)$ and $(x, y) \in \mathcal{D}$.

C. 5 Proof of Theorem 3.1

Consider an arbitrary point $(x, y) \in \mathcal{D}$ and recall the notation introduced above. First note that $g_{x}(0, a y)=\|x\| \theta(x, a y)$ and hence

$$
\begin{equation*}
\theta_{\mathrm{C}}(x, y)=\frac{1}{\|x\|} \cdot \min _{a>0}\left\{\frac{g_{x}(0, a y)}{a} \left\lvert\,\left(\frac{g_{x}(0, a y)}{\|x\|} x, a y\right) \in \Psi\right.\right\} . \tag{C.7}
\end{equation*}
$$

Assumption 3.1 together with strict convexity of g_{x} therefore imply that $a_{m i n}^{x, y} \in \mathbb{R}_{+}$is uniquely defined and $\left(\theta\left(x, a_{\text {min }}^{x, y} y\right) x, a_{\text {min }}^{x, y} y\right) \in \mathcal{D}$. Taking derivatives yields

$$
\begin{equation*}
\left.\frac{\partial}{\partial a} \frac{g_{x}(0, a y)}{a}\right|_{a=a_{m i n}^{x, y}}=0, \quad A_{x, y}:=\left.\frac{\partial^{2}}{\partial a^{2}} \frac{g_{x}(0, a y)}{a}\right|_{a=a_{m i n}^{x, y}}=\frac{y^{T} g_{x ; y y}^{\prime \prime}\left(0, a_{\min }^{x, y} y\right) y}{a_{\min }^{x, y}}>0 . \tag{C.8}
\end{equation*}
$$

Since by assumption g_{x} is at least three times continuously differentiable, Taylor expansions lead to

$$
\begin{equation*}
\left|\frac{g_{x}(0, a y)}{a}-\frac{g_{x}\left(0, a_{m i n}^{x, y} y\right)}{a_{m i n}^{x, y}}-\frac{A_{x, y}}{2}\left(a-a_{m i n}^{x, y}\right)^{2}\right| \leq D\left|a-a_{m i n}^{x, y}\right|^{3} \tag{C.9}
\end{equation*}
$$

for some $D>0$ and all a with $(\theta(x, a y) x, a y) \in \mathcal{D}$. Since $\left.\mathcal{D}^{*}=\{\theta(\widetilde{x}, \widetilde{y}) \widetilde{x}, \widetilde{y}) \mid(\widetilde{x}, \widetilde{y}) \in \mathcal{D}\right\}$ is compact, D can be chosen independent of $a>0$ and $(x, y) \in \mathcal{D}$.

Let $\kappa=\frac{2}{p+q+1}$. Since by Assumption 3.1 no relevant point lies in the "observable boundary" for sufficiently large n, it follows from (A.6) and (A.9) in the proof of Theorem 3.1 in Kneip et al. (2015) that for any $a>0$ with $\left|a-a_{\text {min }}^{x, y}\right|<\delta$ there exists some $0<D_{1}, D_{2}<\infty$, which can be chosen independent of (x, y), such that

$$
\begin{equation*}
\operatorname{Pr}\left(\left|\|x\| \widehat{\theta}_{\mathrm{VRS}}\left(x, a y \mid \mathcal{X}_{n}\right)-\|x\| \theta(x, a y)\right| \geq D_{1} n^{-\kappa}(\log n)^{\kappa}\right) \leq D_{2} n^{-2} \tag{C.10}
\end{equation*}
$$

On the other hand, by (C.9) there exists a $0<d_{1}<\infty$ such that

$$
\begin{align*}
& \frac{g_{x}\left(0,\left(a_{\text {min }}^{x, y}-d_{1} n^{-\frac{\kappa}{2}}(\log n)^{\frac{\kappa}{2}}\right) y\right)}{a_{\text {min }}^{x, y}-d_{1} n^{-\frac{\kappa}{2}}(\log n)^{\frac{\kappa}{2}}}-\frac{g_{x}\left(0, a_{\text {min }}^{x, y} y\right)}{a_{\text {min }}^{x, y}} \geq 3 D_{1} n^{-\kappa}(\log n)^{\kappa}, \\
& \frac{g_{x}\left(0,\left(a_{m i n}^{x, y}+d_{1} n^{-\frac{\kappa}{2}}(\log n)^{\frac{\kappa}{2}}\right) y\right)}{a_{\text {min }}^{x, y}+d_{1} n^{-\frac{\kappa}{2}}(\log n)^{\frac{\kappa}{2}}}-\frac{g_{x}\left(0, a_{m \text { min }}^{x, y} y\right)}{a_{\text {min }}^{x, y}} \geq 3 D_{1} n^{-\kappa}(\log n)^{\kappa} . \tag{C.11}
\end{align*}
$$

Since necessarily $\inf _{(x, y) \in \mathcal{D}} A_{x, y}>0, d_{1}$ can be chosen independent of $(x, y) \in \mathcal{D}$. Inequalities (C.9) and (C.10) now imply that with probability converging to 1 we obtain

$$
\begin{equation*}
\|x\| \frac{\widehat{\theta}_{\mathrm{VRS}}\left(x, a y \mid \mathcal{X}_{n}\right)}{a}>\|x\| \frac{\widehat{\theta}_{\mathrm{VRS}}\left(x, a_{m i n}^{x, y} y \mid \mathcal{X}_{n}\right)}{a_{m i n}^{x, y}} \tag{C.12}
\end{equation*}
$$

for $a=a_{\text {min }}^{x, y}-d_{1} n^{-\frac{\kappa}{2}}(\log n)^{\frac{\kappa}{2}}$ as well as for $a=a_{\text {min }}^{x, y}+d_{1} n^{-\frac{\kappa}{2}}(\log n)^{\frac{\kappa}{2}}$. But convexity then additionally implies that (C.12) also holds for all $a \leq a_{\text {min }}^{x, y}-d_{1} n^{-\frac{\kappa}{2}}(\log n)^{\frac{\kappa}{2}}$ and $a \geq$ $a_{\text {min }}^{x, y}+d_{1} n^{-\frac{\kappa}{2}}(\log n)^{\frac{\kappa}{2}}$. More precisely, there exists a constant $0<D_{3}<\infty$, which can be chosen independent of (x, y), such that

$$
\begin{equation*}
1-\operatorname{Pr}\left(\widehat{\theta}_{\mathrm{C}}\left(x, y \mid \mathcal{X}_{n}\right)=\min _{a_{m i n}^{x, y}-d_{1} n^{-\frac{\kappa}{2}}(\log n)^{\frac{\kappa}{2}} \leq a \leq a_{m i n}^{x, y}+d_{1} n^{-\frac{\kappa}{2}}(\log n)^{\frac{\kappa}{2}}} \frac{\widehat{\theta}_{\mathrm{VRS}}\left(x, a y \mid \mathcal{X}_{n}\right)}{a}\right) \leq D_{3} n^{-2} \tag{C.13}
\end{equation*}
$$

Recall that $Y_{i}=\alpha_{i} y+V_{i}$. Representation (A.15) of the VRS-DEA estimator in the proof of Theorem 3.1 in Kneip et al. (2015) tells us that

$$
\begin{gather*}
\frac{\widehat{\theta}_{\mathrm{VRS}}\left(x, y \mid \mathcal{X}_{n}\right)}{a}=\min \left\{\left.\sum_{i=1}^{n} \omega_{i} \frac{g_{x}\left(\theta_{i} Z_{i}, \alpha_{i} y+V_{i}\right)}{a\|x\| \theta_{i}} \right\rvert\, \boldsymbol{i}_{n}^{T} \boldsymbol{\omega}=1, \boldsymbol{Z} \boldsymbol{\omega}=0\right. \\
\left.\boldsymbol{V} \boldsymbol{\omega}=0, \boldsymbol{\alpha}^{T} \boldsymbol{\omega}=a, \boldsymbol{\omega} \in \mathbb{R}_{+}^{n}\right\} \\
=\theta_{\mathrm{C}}(x, y) \times \min \left\{\left.\sum_{i=1}^{n} \omega_{i} \frac{a_{\min }^{x, y} g_{x}\left(\theta_{i} Z_{i}, \alpha_{i} y+V_{i}\right)}{a g_{x}\left(0, a_{\text {min }}^{x, y} y\right) \theta_{i}} \right\rvert\, \boldsymbol{i}_{n}^{T} \boldsymbol{\omega}=1, \boldsymbol{Z} \boldsymbol{\omega}=0\right. \\
\left.\boldsymbol{V} \boldsymbol{\omega}=0, \boldsymbol{\alpha} \boldsymbol{\omega}=a, \boldsymbol{\omega} \in \mathbb{R}_{+}^{n}\right\} \tag{C.14}
\end{gather*}
$$

where $\boldsymbol{i}_{n}=(1,1, \ldots, 1)^{T} \in \mathbb{R}^{n}, \omega_{i}$ represents the i th element of $\boldsymbol{\omega}, \theta_{i}=\theta\left(X_{i}, Y_{i}\right), Z_{i}=$ $X_{i}-\frac{\boldsymbol{x}^{T} X_{i}}{\|\boldsymbol{x}\|^{2}} \boldsymbol{x}$ is a $(p \times 1)$ vector and $\boldsymbol{Z}=\left(Z_{1}, \ldots, Z_{n}\right)$ is a $(p \times n)$ matrix, $\boldsymbol{V}=\left(V_{1}, \ldots, V_{n}\right)$ is a $((q-1) \times n)$ matrix, and $\boldsymbol{\alpha}^{T}=\left(\alpha_{1}, \ldots, \alpha_{n}\right)$.

An essential step of the proof now consists in the localization argument developed in Kneip et al. (2008) and reconsidered in Kneip et al. (2015) which states that VRS-DEA estimators are asymptotically determined by local information. In Kneip et al. (2008, 2015) the argument relies on using the coordinates $\left(\theta_{i}, Z_{i}, Y_{i}\right)$, but a generalization to the coordinates $\left(\theta_{i}, Z_{i}, \alpha_{i}, V_{i}\right)$ is immediate. For any $h>0$, define the set

$$
\begin{gather*}
C\left(x, a_{m i n}^{x, y} y ; h\right)=\left\{(\widetilde{\theta}, \widetilde{z}, \widetilde{\alpha}, \widetilde{v}) \in(0,1] \times \mathbb{R}^{p-1} \times \mathbb{R}_{+} \times \mathbb{R}^{q-1}\left|1-\widetilde{\theta} \leq h^{2},\left|\widetilde{\alpha}-a_{m i n}^{x, y}\right| \leq h,\right.\right. \\
\left.\widetilde{z}=\sum_{j} \zeta_{j} z_{x}^{(j)},\left|\zeta_{j}\right| \leq h \forall j=1, \ldots, p-1, \widetilde{v}=\sum_{r} v_{r} v_{y}^{(r)},\left|v_{r}\right| \leq h \forall r=1, \ldots, q\right\}, \tag{C.15}
\end{gather*}
$$

and let $\mathcal{X}_{n}\left(x, a_{m i n}^{x, y} y ; h\right):=\left\{\left(X_{i}, Y_{i}\right) \in \mathcal{X}_{n} \mid\left(\theta_{i}, Z_{i}, \alpha_{i}, V_{i}\right) \in C\left(x, a_{m i n}^{x, y} y ; h\right)\right\}$.
In the following it will be necessary to distinguish between points (x, y) lying in the interior and on the observable boundary of \mathcal{D}. For $(x, y) \in \mathcal{D}$ let

$$
\begin{align*}
\Psi^{* \partial}(x, y)= & \left\{(\widetilde{z}, \widetilde{v}) \in \mathcal{V}(x, y) \left\lvert\,\left(g_{x}\left(\widetilde{z}, a_{\min }^{x, y} y+\widetilde{v}\right) \frac{x}{\|x\|}+\widetilde{z}, a_{\min }^{x, y} y+\widetilde{v}\right) \in \mathcal{D}^{*}\right.\right. \text { while for any } \\
& \epsilon>0 \text { there is some }(z, v) \in \mathbb{R}^{p-1} \times \mathbb{R}^{q-1} \text { with }\|\widetilde{z}-z\|<\epsilon \text { and }\|\widetilde{v}-v\|<\epsilon \\
& \text { such that } \left.\left(g_{x}\left(z, a_{\min }^{x, y} y+v\right) \frac{x}{\|x\|}+z, a_{\min }^{x, y} y+v\right) \notin \mathcal{D}^{*}\right\} \tag{C.16}
\end{align*}
$$

denote the boundary of possible vectors (z, v), where of course $\Psi^{* \partial}(x, y)=\emptyset$ if $\min p, q=1$.

Then define the observable boundary as

$$
\begin{align*}
\mathcal{W}(h):=\{(x, y) \in \mathcal{D} \mid & \min \left\{\min _{j=1, \ldots, p-1}\left|\zeta_{j}\right|, \min _{r=1, \ldots, q-1}\left|v_{r}\right|\right\} \leq h \\
& \text { for some } \left.(\widetilde{z}, \widetilde{v}) \in \Psi^{* \partial}(x, y) \text { with } \widetilde{z}=\sum_{j} \zeta_{j} z_{x}^{(j)}, \widetilde{v}=\sum_{r} v_{r} v_{y}^{(r)}\right\} . \tag{C.17}
\end{align*}
$$

If $p \leq 1$ and $q \leq 1$, then $\mathcal{W}(h)=\emptyset$; but for $p+q>2$, compactness of \mathcal{D}^{*} implies that for any $h>0$ the observable boundary $\mathcal{W}(h)$ is nonempty. ${ }^{1}$

Recall the constant d_{1} in (C.12) and choose some constant $b \geq 4(p+q)\left(1+d_{1}\right)$. Then set

$$
\begin{equation*}
\nu_{n}:=b\left(\frac{\log n}{n \widetilde{f}_{x, y}\left(1,0, a_{m i n}^{x, y}, 0\right)}\right)^{\frac{1}{p+q+1}} \tag{C.18}
\end{equation*}
$$

as well as

$$
\begin{equation*}
\nu_{n}^{*}:=b\left(\frac{\log n}{c_{\mathrm{inf}} n}\right)^{\frac{1}{p+q+1}} \tag{C.19}
\end{equation*}
$$

Case(i): We first consider the case where (x, y) is in the interior of \mathcal{D} in the sense that $(x, y) \notin \mathcal{W}\left(\nu_{n}^{*}\right)$. In this case, by Assumption 3.1 we have $C\left(x, a_{m i n}^{x, y} y ; \nu_{n}\right) \subset \mathcal{D}$ for all sufficiently large n.

Following the arguments in Kneip et al. $(2008,2015)$ one can construct $k=2(p+q-1)$ hypercubes $B_{s} \subset \mathbb{R}^{p-1} \times \mathbb{R}^{p}, s=1, \ldots, k$, of side lengths $\frac{\nu_{n}}{2(p-1)+2 q}$ and centered at values $\left(z_{j}, y_{j}\right)$ determined in the following way: $z_{j}=\sum_{s} \zeta_{s} z_{x}^{(s)}, y_{j}=\left(\alpha+a_{m i n}^{x, y}\right) y+\sum_{r} v_{r} v_{y}^{(r)}$, where for each $j=1, \ldots, 2(p+q-1)$ exactly one of the coordinates $\left(\zeta_{1}, \ldots, \zeta_{p-1}, \alpha, v_{1}, \ldots, v_{q-1}\right)$ equals $\nu_{n} \cdot \frac{2(p-1)+2 q-1}{2(p-1)+2 q}$ or $-\nu_{n} \cdot \frac{2(p-1)+2 q-1}{2(p-1)+2 q}$, while all others are identically zero. By definition of ν_{n}, the probability that there exist at least k observations $\left(\theta_{i_{1}}, Z_{i_{1}}, Y_{i_{1}}\right), \ldots,\left(\theta_{i_{k}}, Z_{i_{k}}, Y_{i_{k}}\right)$ with $\theta_{i_{j}} \geq 1-\nu_{n}^{2}$ and $\left(Z_{i_{j}}, Y_{i_{j}}\right) \in B_{j}, j=1, \ldots, k$, is of order $1-n^{-2}$ as $n \rightarrow \infty$.

On the other hand, if such a set of k observations exists, then by construction for any $a \in\left[a_{\text {min }}^{x, y}-d_{1} n^{-\frac{\kappa}{2}}(\log n)^{\frac{\kappa}{2}}, a_{\text {min }}^{x, y}+d_{1} n^{-\frac{\kappa}{2}}(\log n)^{\frac{\kappa}{2}}\right]$ the point $(0, a y)$ is in the interior of the convex hull of $\left(Z_{i_{j}}, Y_{i_{j}}\right), j=1, \ldots, k$. If n is sufficiently large, by the strict convexity of g_{x} the arguments in the proof of Theorem 1 of Kneip et al. (2008)

[^1]can then be used to show then for any other observation $\left(\theta_{i}, Z_{i}, Y_{i}\right)$ with $\left.\left(\theta_{i}, Z_{i}, Y_{i}\right)\right) \notin$ $C\left(x, a_{\min }^{x, y} y ; \nu_{n}\right)$ and any vector $\boldsymbol{\omega} \in \mathbb{R}_{+}^{n}$ with $\omega_{i}>0$, satisfying the constraints in (C.14) for $a \in\left[a_{\text {min }}^{x, y}-d_{1} n^{-\frac{\kappa}{2}}(\log n)^{\frac{\kappa}{2}}, a_{\text {min }}^{x, y}+d_{1} n^{-\frac{\kappa}{2}}(\log n)^{\frac{\kappa}{2}}\right]$, there exists another vector $\boldsymbol{\omega}^{*} \in \mathbb{R}_{+}^{n}$ with $\omega_{i}^{*}=0$ and $\omega_{i_{j}}^{*} \geq 0, j=1, \ldots, k$, such that $\sum_{i=1}^{n} \omega_{i} \frac{g_{x}\left(\theta_{i} Z_{i}, Y_{i}\right)}{\theta_{i}}>\sum_{i=1}^{n} \omega_{i}^{*} \frac{g_{x}\left(\theta_{i} Z_{i}, Y_{i}\right)}{\theta_{i}}$. This implies that for arbitrary $a \in\left[a_{\text {min }}^{x, y}-d_{1} n^{-\frac{\kappa}{2}}(\log n)^{\frac{\kappa}{2}}, a_{\text {min }}^{x, y}+d_{1} n^{-\frac{\kappa}{2}}(\log n)^{\frac{\kappa}{2}}\right]$ the minimum in (C.14) is achieved by assigning zero weight $\omega_{i}=0$ to each observation with $\left(\theta_{i}, Z_{i}, Y_{i}\right) \notin$ $C\left(x, a_{m i n}^{x, y} y ; \nu_{n}\right)$. This then leads to $\widehat{\theta}_{\mathrm{VRS}}\left(x, a y \mid \mathcal{X}_{n}\right)=\widehat{\theta}_{\mathrm{VRS}}\left(x, a y \mid \mathcal{X}_{n}\left(x, a_{m i n}^{x, y} y ; \nu_{n}\right)\right)$, where $\widehat{\theta}_{\mathrm{VRS}}\left(x, a y \mid \mathcal{X}_{n}\left(x, a_{m i n}^{x, y} y ; \nu_{n}\right)\right)$ denotes the VRS-DEA estimator only based on the subset of all observations in $\mathcal{X}_{n}\left(x, a_{\text {min }}^{x, y} y ; \nu_{n}\right)$.

Therefore, there exists a $D_{4} \in(0, \infty)$, which can be chosen independent of $(x, y) \in \mathcal{D}$ with $(x, y) \notin \mathcal{W}\left(\nu_{n}^{*}\right)$, such that for all sufficiently large n,
$\operatorname{Pr}\left(\widehat{\theta}_{\mathrm{C}}\left(x, y \mid \mathcal{X}_{n}\right)=\min _{a_{\text {min }}^{x, y}-d_{1}\left(\frac{\log n}{n}\right)^{\frac{\kappa}{2}} \leq a \leq a_{\text {min }}^{x, y}+d_{1}\left(\frac{\log n}{n}\right)^{\frac{\kappa}{2}}} \frac{\widehat{\theta}_{\mathrm{VRS}}\left(x, a y \mid \mathcal{X}_{n}\left(x, a_{\text {min }}^{x, y} y ; \nu_{n}\right)\right)}{a}\right) \geq 1-D_{4} n^{-2}$

Now consider the sums in (C.14) with respect to the (random) number $K_{n} \leq$ $\# \mathcal{X}_{n}\left(x, a_{\text {min }}^{x, y} y ; \nu_{n}\right)$ of all observations with coordinates $\left(\theta_{i_{j}}, Z_{i_{j}}, \alpha_{i_{j}}, V_{i_{j}}\right) \in C\left(x, a_{\text {min }}^{x, y} y ; \nu_{n}\right)$. Furthermore, for some $a \in\left[a_{\text {min }}^{x, y}-d_{1} n^{-\frac{\kappa}{2}}(\log n)^{\frac{\kappa}{2}}, a_{\text {min }}^{x, y}+d_{1} n^{-\frac{\kappa}{2}}(\log n)^{\frac{\kappa}{2}}\right]$ consider arbitrary weight vectors $\boldsymbol{\omega}=\left(\omega_{1}, \ldots, \omega_{K_{n}}\right)^{T} \in \mathbb{R}_{+}^{K_{n}}$ such that $\sum_{j=1}^{K_{n}} \omega_{j}=1, \sum_{j=1}^{K_{n}} \omega_{j} Z_{i_{j}}=0$, $\sum_{j=1}^{K_{n}} \omega_{j} \alpha_{i_{j}}=a$, and $\sum_{j=1}^{K_{n}} \omega_{j} V_{i_{j}}=0$. Let $\theta_{i_{j}}^{*}:=1-\theta_{i_{j}}, G(a y):=g_{x}^{\prime \prime}(0, a y)$, and note that $\sum_{j=1}^{K_{n}} \omega_{j}\left(\alpha_{i_{j}}-a_{\text {min }}^{x, y}\right)^{2}=\sum_{j=1}^{K_{n}} \omega_{j}\left(\alpha_{i_{j}}-a\right)^{2}+\left(a-a_{\text {min }}^{x, y}\right)^{2}$. It then follows from Taylor expansions of g_{x} as well as from (C.9) that for some $0 \leq R_{n}, R_{n}^{*}<\infty$

$$
\begin{align*}
& \sum_{j=1}^{K_{n}} \omega_{j} \frac{g_{x}\left(\theta_{i_{j}} Z_{i_{j}}, \alpha_{i_{j}} y+V_{i_{j}}\right)}{a \theta_{i_{j}}}=\frac{g_{x}(0, a y)}{a}+\frac{1}{a} \sum_{j=1}^{K_{n}} \omega_{j}\left[\binom{Z_{i_{j}}}{V_{i_{j}}}^{T} \frac{G(a y)}{2}\binom{Z_{i_{j}}}{V_{i_{j}}}\right. \\
& \left.\quad+\binom{0}{\left(a_{i_{j}}-a\right) y}^{T} G(a y)\binom{Z_{i_{j}}}{V_{i_{j}}}+\left(\alpha_{i_{j}}-a\right)^{2} \frac{y^{T} g_{x ; y y}^{\prime \prime}(0, a y) y}{2}+\theta_{i_{j}}^{*}\right]+R_{n} \nu_{n}^{3} \\
& =\frac{g_{x}\left(0, a_{m i n}^{x, y} y\right)}{a_{m i n}^{x, y}} \\
& \quad+\frac{1}{a_{\text {min }}^{x, y}} \underbrace{\sum_{j=1}^{K_{n}} \omega_{j}\left[\binom{Z_{i_{j}}}{\left(\alpha_{i_{j}}-a_{m i n}^{x, y}\right) y+V_{i_{j}}}^{T} \frac{G\left(a_{\min }^{x, y}\right.}{2}\binom{Z_{i_{j}}}{\left(\alpha_{i_{j}}-a_{m i n}^{x, y}\right) y+V_{i_{j}}}+\theta_{i_{j}}^{*}\right]}_{=: \tau\left(\left(\theta_{i_{1}}^{*}, Z_{i_{1}}, \alpha_{i_{1}}, V_{i_{1}}\right), \ldots,\left(\theta_{i_{K_{n}}}^{*}, Z_{i_{K_{n}}}, \alpha_{i_{K_{n}}}, V_{i_{K_{n}}}\right) ; \omega\right)}+R_{n}^{*} \nu_{n}^{3} \tag{C.21}
\end{align*}
$$

By our assumptions there exists a constant $D_{5}<\infty$ such that $R_{n}^{*}<D_{5}$ for all possible K_{n}, all possible sets $\left\{\left(\theta_{i_{j}}, Z_{i_{j}}, \alpha_{i_{j}}, V_{i_{j}}\right)\right\} \subset C\left(x, a_{\text {min }}^{x, y} y ; \nu_{n}\right)$, all a and all $(x, y) \in \mathcal{D}$ with $(x, y) \notin \mathcal{W}\left(\nu_{n}^{*}\right)$.

The result in (C.21) shows that $\widehat{\theta}_{\mathrm{C}}\left(x, y \mid \mathcal{X}_{n}\right)$ is essentially determined by minimizing $\tau(\cdot)$ over all possible $\boldsymbol{\omega}$ with $\sum_{j=1}^{K_{n}} \omega_{i} Z_{i_{j}}=0$ and $\sum_{j=1}^{K_{n}} \omega_{j} V_{i_{j}}=0$, independent of the corresponding value of $\sum_{j=1}^{K_{n}} \omega_{j} \alpha_{i_{j}}=a$ (even cases with $a \notin\left[a_{\text {min }}^{x, y}-d_{1} n^{-\frac{\kappa}{2}}(\log n)^{\frac{\kappa}{2}}, a_{m i n}^{x, y}+d_{1} n^{-\frac{\kappa}{2}}(\log n)^{\frac{\kappa}{2}}\right]$ need not be excluded since due to (C.9) they cannot constitute an optimal solution with probability tending to 1). Recall that $\theta_{i_{j}}^{*}:=1-\theta_{i_{j}}$, and let

$$
\begin{align*}
& T_{K_{n}}\left(\left(\theta_{i_{1}}^{*}, Z_{i_{1}}, \alpha_{i_{1}}, V_{i_{1}}\right), \ldots,\left(\theta_{i_{K_{n}}}^{*}, Z_{i_{K_{n}}}, \alpha_{i_{K_{n}}}, V_{i_{K_{n}}}\right)\right) \\
& =\min \left\{\tau\left(\left(\theta_{i_{1}}^{*}, Z_{i_{1}}, \alpha_{i_{1}}, V_{i_{1}}\right), \ldots,\left(\theta_{i_{K_{n}}}^{*}, Z_{i_{K_{n}}}, \alpha_{i_{K_{n}}}, V_{i_{K_{n}}}\right) ; \boldsymbol{\omega}\right) \mid\right. \\
& \left.\quad \boldsymbol{i}_{K_{n}}^{T} \boldsymbol{\omega}=1, \sum_{j=1}^{K_{n}} \omega_{j} Z_{i_{j}}=\sum_{j=1}^{K_{n}} \omega_{j} V_{i_{j}}=0\right\} \tag{C.22}
\end{align*}
$$

When combining these arguments with (C.14) and (C.20) one can conclude that there are constants $0<D_{6}, D_{7}<\infty$ such that with probability at least $1-D_{6} n^{-2}$

$$
\begin{equation*}
\left|\widehat{\theta}_{\mathrm{C}}\left(x, y \mid \mathcal{X}_{n}\right)-\theta_{\mathrm{C}}(x, y)\left(1+\frac{T_{K_{n}}\left(\left(\theta_{i_{1}}^{*}, Z_{i_{1}}, \alpha_{i_{1}}, V_{i_{1}}\right), \ldots,\left(\theta_{i_{K_{n}}}^{*}, Z_{i_{K_{n}}}, \alpha_{i_{K_{n}}}, V_{i_{K_{n}}}\right)\right)}{g_{x}\left(0, a_{\min }^{x, y} y\right)}\right)\right| \leq D_{7} \nu_{n}^{3} \tag{C.23}
\end{equation*}
$$

Here, D_{6} and D_{7} can be chosen independent of $(x, y) \in \mathcal{D}$ with $(x, y) \notin \mathcal{W}\left(\nu_{n}^{*}\right)$. Since necessarily, $\tau\left(\left(\theta_{i_{1} *} * Z_{i_{1}}, \alpha_{i_{1}}, V_{i_{1}}\right), \ldots,\left(\theta_{i_{K_{n}}}^{*}, Z_{i_{K_{n}}}, \alpha_{i_{K_{n}}}, V_{i_{K_{n}}}\right) ; \boldsymbol{\omega}\right) \leq D_{8} \nu_{n}^{2}$, (C.23) immediately implies that for some constant $D_{8}<\infty$ and all $\beta>0$

$$
\begin{equation*}
E\left(\left|\widehat{\theta}_{\mathrm{C}}\left(x, y \mid \mathcal{X}_{n}\right)-\theta(x, y)\right|^{\beta}\right) \leq D_{8} \max \left\{n^{-\frac{2 \beta}{p+q+1}}(\log n)^{\frac{2 \beta}{p+q+1}}, n^{-2}\right\} \forall(x, y) \in \mathcal{D} \backslash \mathcal{W}\left(\nu_{n}^{*}\right) \tag{C.24}
\end{equation*}
$$

More precise results are to be obtained from the distribution of $T_{K_{n}}$. When translating the results of Kneip et al. (2008, (2015)) into the alternative (θ, ζ, α, v)coordinate system it turns out that the asymptotic behavior the VRS-DEA estimator $\widehat{\theta}\left(x, a_{\text {min }}^{x, y} y \mid \mathcal{X}_{n}\right)$ of $\theta\left(x, a_{m i n}^{x, y} y\right)$ is determined by a similar random variable $T_{K_{n}}^{D E A}\left(\left(\theta_{i_{1}}^{*}, Z_{i_{1}}, \alpha_{i_{1}}, V_{i_{1}}\right), \ldots,\left(\theta_{i_{K_{n}}}^{*}, Z_{i_{K_{n}}}, \alpha_{i_{K_{n}}}, V_{i_{K_{n}}}\right)\right)$ defined by minimizing $\tau\left(\left(\theta_{i_{1}}^{*}, Z_{i_{1}}, \alpha_{i_{1}}, V_{i_{1}}\right), \ldots,\left(\theta_{i_{K_{n}}}^{*}, Z_{i_{K_{n}}}, \alpha_{i_{K_{n}}}, V_{i_{K_{n}}}\right) ; \boldsymbol{\omega}\right)$ with respect to all weight sequences with $\boldsymbol{i}_{K_{n}}^{T} \boldsymbol{\omega}=1, \sum_{j=1}^{K_{n}} \omega_{j} Z_{i_{j}}=\sum_{j=1}^{K_{n}} \omega_{j} V_{i_{j}}=0$, and $\sum_{j=1}^{K_{n}} \omega_{j} \alpha_{i_{j}}=a_{\text {min }}^{x, y}$. Therefore, the only
difference between $T_{K_{n}}$ and $T_{K_{n}}^{D E A}$ consists in the fact that (C.22) does not incorporate the additional constraint $\sum_{j=1}^{K_{n}} \omega_{j} \alpha_{i_{j}}=a_{m i n}^{x, y}$. But all arguments developed for analyzing $T_{K_{n}}^{D E A}$ readily generalize to $T_{K_{n}}$.

Obviously, the observations $\left(\theta_{i_{j}}^{*}, \zeta_{i_{j}}, \alpha_{i_{j}}, v_{i_{j}}\right)$ are independent. The conditional distribution of $\left(\theta_{i_{j}}^{*}, \zeta_{i_{j}}, \alpha_{i_{j}}, v_{i_{j}}\right)$ given $\left(X_{i_{j}}, Y_{i_{j}}\right) \in \mathcal{X}_{n}\left(x, a_{\min }^{x, y} y ; \nu_{n}\right)$ converges to a uniform distribution. Also note that for all (x, y) in the interior of \mathcal{D} we necessarily have $(x, y) \notin \mathcal{W}\left(\nu_{n}^{*}\right)$ for all sufficiently large n. For deriving the asymptotic distribution of $T_{K_{n}}$ we rely on the construction presented in Kneip et al. (2008). Let $\left(\widetilde{\theta}_{1}, \widetilde{\zeta}_{1}, \widetilde{\alpha}_{1}, \widetilde{v}_{1}\right), \ldots,\left(\widetilde{\theta}_{k}, \widetilde{\zeta}_{k}, \widetilde{\alpha}_{k}, \widetilde{v}_{k}\right)$ denote iid random variables uniformly distributed on $[0,1] \times[-1,1]^{p-1} \times\left[a_{\text {min }}^{x, y}-1, a_{\text {min }}^{x, y}+1\right] \times[-1,1]^{q-1}$, and set $\widetilde{Z}_{i}=\sum_{j} \widetilde{\zeta}_{i j} z_{x}^{(j)}, \widetilde{V}_{i}=\sum_{r} \widetilde{v}_{i r} v_{y}^{(r)}, i=1, \ldots, k$. Then for any integer k and $\gamma>0$ define the following event $\mathcal{U}[\gamma, k]$: there exists a weight vector $\boldsymbol{\omega} \in \mathbb{R}_{+}^{k}$ with $\boldsymbol{i}_{k}^{T} \boldsymbol{\omega}=1$ and $\sum_{j=1}^{k} \omega_{j} \widetilde{Z}_{j}=\sum_{j=1}^{k} \omega_{j} \widetilde{V}_{j}=0$ such that

$$
\begin{equation*}
\frac{\tau\left(\left(\widetilde{\theta}_{1}, \widetilde{Z}_{1}, \widetilde{\alpha}_{1}, \widetilde{V}_{1}\right), \ldots,\left(\widetilde{\theta}_{k}, \widetilde{Z}_{k}, \widetilde{\alpha}_{k}, \widetilde{V}_{k}\right) ; \boldsymbol{\omega}\right)}{g_{x}\left(0, a_{\min }^{x, y} y\right)} \leq \gamma \tag{C.25}
\end{equation*}
$$

Applying the same type of arguments as those used in the proof of Theorem 2 of Kneip et al. (2008) it can then be derived that for any $\gamma>0$

$$
\begin{align*}
& \lim _{n \rightarrow \infty} \operatorname{Pr}\left(n^{\kappa}\left(\frac{\widehat{\theta}_{\mathrm{C}}\left(x, y \mid \mathcal{X}_{n}\right)-\theta_{\mathrm{C}}(x, y)}{\theta_{\mathrm{C}}(x, y)}\right) \leq \gamma\right) \\
& =\lim _{n \rightarrow \infty} \operatorname{Pr}\left(n^{\kappa} \frac{T_{K_{n}}\left(\left(\theta_{i_{1}}^{*}, Z_{i_{1}}, \alpha_{i_{1}}, V_{i_{1}}\right), \ldots,\left(\theta_{i_{K_{n}}}^{*}, Z_{i_{K_{n}}}, \alpha_{i_{K_{n}}}, V_{i_{K_{n}}}\right)\right)}{g_{x}\left(0, a_{\min }^{x, y} y\right)} \leq \gamma\right)=F_{x, y}(\gamma) \tag{C.26}
\end{align*}
$$

where $F_{x, y}$ is a continuous distribution function with $F_{x, y}(0)=0$ and

$$
\begin{equation*}
F_{x, y}(\gamma)=\lim _{k \rightarrow \infty} \operatorname{Pr}\left(\mathcal{U}\left[\gamma \frac{\widetilde{f}_{x, y}\left(1,0, a_{m i n}^{x, y}, 0\right)^{\frac{2}{p+q+1}}}{k^{\frac{2}{p+q+1}}}, k\right]\right) \tag{C.27}
\end{equation*}
$$

This proves (3.12). Analysis of expectations now relies on the techniques developed in Kneip et al. (2015).

Let $\widetilde{\nu}_{n}:=\left(\frac{n}{\widetilde{f}_{x, y}\left(1,0, a_{m i n}^{x, y}, 0\right)}\right)^{\frac{1}{p+q+1}}, \widetilde{Z}_{j}^{(n)}=\mathbf{Z}_{x} \widetilde{\zeta}_{j}^{(n)}, \widetilde{V}_{j}^{(n)}=\mathbf{V}_{y} \widetilde{v}_{j}^{(n)}$ and let $\left(\widetilde{\theta}_{j}^{(n)}, \widetilde{\zeta}_{j}^{(n)}, \widetilde{\alpha}_{j}^{(n)}, \widetilde{v}_{j}^{(n)}\right)$, $j=1, \ldots, n$, denote iid random variables with a uniform distribution on $\left[0, \widetilde{\nu}_{n}^{2}\right] \times$ $\left[-\widetilde{\nu}_{n}, \widetilde{\nu}_{n}\right]^{p-1} \times\left[a_{\text {min }}^{x, y}-\widetilde{\nu}_{n}, a_{\text {min }}^{x, y}+\widetilde{\nu}_{n}\right] \times\left[-\widetilde{\nu}_{n}, \widetilde{\nu}_{n}\right]^{p-1}$. Similar to $T_{K_{n}}$ one can then define the r.v. $T_{n}\left(\left(\widetilde{\theta}_{1}^{(n)}, \widetilde{Z}_{1}^{(n)}, \widetilde{\alpha}_{1}^{(n)}, \widetilde{V}_{1}^{(n)}\right), \ldots,\left(\widetilde{\theta}_{n}^{(n)}, \widetilde{Z}_{n}^{(n)}, \widetilde{\alpha}_{n}^{(n)}, \widetilde{V}_{n}^{(n)}\right)\right)$ by minimizing (C.22) with respect to the set of observations $\left\{\left(\widetilde{\theta}_{j}^{(n)}, \widetilde{\zeta}_{j}^{(n)}, \widetilde{\alpha}_{j}^{(n)}, \widetilde{v}_{j}^{(n)}\right)\right\}$ instead of $\left\{\left(\theta_{i_{j}}^{*}, Z_{i_{j}}, \alpha_{i_{j}}, V_{i_{j}}\right)\right\}$.

In a straightforward generalization of the arguments leading to relations (A.13)-(A.18) in the proof of Theorem 3.1 of Kneip et al. (2015) it can then be shown that the asymptotic distributions of $n^{\kappa} T_{K_{n}}\left(\left(\theta_{i_{1}}^{*}, Z_{i_{1}}, \alpha_{i_{1}}, V_{i_{1}}\right), \ldots,\left(\theta_{i_{K_{n}}}^{*}, Z_{i_{K_{n}}}, \alpha_{i_{K_{n}}}, V_{i_{K_{n}}}\right)\right)$ and of $T_{n}\left(\left(\widetilde{\theta}_{1}^{(n)}, \widetilde{Z}_{1}^{(n)}, \widetilde{\alpha}_{1}^{(n)}, \widetilde{V}_{1}^{(n)}\right), \ldots,\left(\widetilde{\theta}_{n}^{(n)}, \widetilde{Z}_{n}^{(n)}, \widetilde{\alpha}_{n}^{(n)}, \widetilde{V}_{n}^{(n)}\right)\right)$ coincide, and that all moments of $T_{n}\left(\left(\widetilde{\theta}_{1}^{(n)}, \widetilde{Z}_{1}^{(n)}, \widetilde{\alpha}_{1}^{(n)}, \widetilde{V}_{1}^{(n)}\right), \ldots,\left(\widetilde{\theta}_{n}^{(n)}, \widetilde{Z}_{n}^{(n)}, \widetilde{\alpha}_{n}^{(n)}, \widetilde{V}_{n}^{(n)}\right)\right)$ converge rapidly to finite, fixed values as $n \rightarrow \infty$. Additionally using (C.23), we obtain the following generalization of relations (A.16)-(A.18) in the proof of Theorem 3.1 of Kneip et al. (2015):

$$
\begin{equation*}
\left|E\left(\widehat{\theta}_{\mathrm{C}}\left(x, y \mid \mathcal{X}_{n}\right)-\theta_{\mathrm{C}}(x, y)\right)-\theta_{\mathrm{C}}(x, y) n^{-\frac{2}{p+q+1}} \frac{\widetilde{C}_{g_{x}^{\prime \prime}, \tilde{f}_{x, y}\left(1,0, a_{m i n}^{x, y}, 0\right)}}{g_{x}\left(0, a_{m i n}^{x, y} y\right)}\right| \leq D_{9} n^{-\frac{3}{p^{3}+q+1}}(\log n)^{\frac{3}{p+q+1}} \tag{C.28}
\end{equation*}
$$

for all $(x, y) \in \mathcal{D}$ with $(x, y) \notin \mathcal{W}\left(\nu_{n}^{*}\right)$. and some $D_{9} \in(0, \infty)$, where

$$
\begin{equation*}
\widetilde{C}_{g_{x}^{\prime \prime}, \widetilde{f}_{x, y}\left(1,0, a_{m i n}^{x, y}, 0\right)}:=\lim _{n \rightarrow \infty} E\left[T_{n}\left(\left(\widetilde{\theta}_{1}, \widetilde{Z}_{1}, \widetilde{\alpha}_{1}^{(n)}, \widetilde{V}_{1}^{(n)}\right), \ldots,\left(\widetilde{\theta}_{n}, \widetilde{Z}_{n}, \widetilde{\alpha}_{n}^{(n)}, \widetilde{V}_{n}^{(n)}\right)\right)\right] \tag{C.29}
\end{equation*}
$$

only depends upon $g_{x}^{\prime \prime}$ and $\widetilde{f}_{x, y}\left(1,0, a_{m i n}^{x, y}, 0\right)$ and changes continuously in $(x, y) \in \mathcal{D}$. Furthermore, there exists some $D_{10} \in(0, \infty)$ such that

$$
\begin{equation*}
E\left(\left|\widehat{\theta}_{\mathrm{C}}\left(x, y \mid \mathcal{X}_{n}\right)-\theta_{\mathrm{C}}(x, y)\right|^{2}\right) \leq D_{10} n^{-\frac{4}{p+q+1}} \tag{C.30}
\end{equation*}
$$

for all $(x, y) \in \mathcal{D}$ with $(x, y) \notin \mathcal{W}\left(\nu_{n}^{*}\right)$.
Case (ii): For a further analysis of expectations we additionally have to consider the alternative case where $(x, y) \in \mathcal{W}\left(\nu_{n}^{*}\right)$. We again rely on arguments similar to those used in the proof of Theorem 3.1 of Kneip et al. (2015).

In this case, the problem arises that some of the sets B_{j} used in the above construction surpass the boundary and are no longer in \mathcal{D}. As a consequence, one cannot exclude that $\widehat{\theta}_{\mathrm{C}}\left(x, y \mid \mathcal{X}_{n}\right)$ is influenced by an observation with $\theta_{i} \leq 1-\nu_{n}^{2}$. But let

$$
\begin{equation*}
\mathcal{H}_{n}\left(x, y ; \nu_{n}\right):=\left\{\left(X_{i}, Y_{i}\right) \in \mathcal{X}_{n} \mid\left(1, Z_{i}, a_{\text {min }}^{x, y}, V_{i}\right) \in C\left(x, a_{\text {min }}^{x, y} y ;, \nu_{n}\right)\right\} \tag{C.31}
\end{equation*}
$$

By a straightforward generalization of the arguments in the proof of Theorem 3.1 of Kneip et al. (2015) it follows that

$$
\begin{equation*}
\left|1-\operatorname{Pr}\left(\widehat{\theta}_{\mathrm{C}}\left(x, y \mid \mathcal{X}_{n}\right)=\widehat{\theta}_{\mathrm{C}}\left(x, y \mid \mathcal{H}_{n}\left(x, y ; \nu_{n}\right)\right)\right)\right| \leq D_{11} n^{-2} \tag{C.32}
\end{equation*}
$$

for all $(x, y) \in \mathcal{D}$, some $D_{11} \in(0, \infty)$, and all sufficiently large n.

Recall that boundary problems arise only if $p+q>2$. In such cases, for $r=1, \ldots, p-1$, define

$$
\begin{equation*}
v_{r ; x, y}:=\min _{\substack{\left(\zeta, v \in \mathbb{R}^{p-1} \times \mathbb{R}^{q-1},\left(\sum_{j=1}^{p-1} \zeta_{j} z_{x}^{()}, v\right) \in \Psi^{* \partial}(x, y)\right.}}\left\{\nu_{n},\left|\zeta_{r}\right|\right\} . \tag{C.33}
\end{equation*}
$$

Similarly, for $r=1, \ldots, q-1$, define $v_{p-1+r ; x, y}$ by replacing $\left|\zeta_{r}\right|$ with $\left|v_{r}\right|$ in (C.33). These $v_{r ; x, y}$ can be viewed as measuring a "distance" from (x, y) to the boundary, with $v_{r ; x, y} \leq \nu_{n}$.

If $\prod_{r=1}^{p+q-2} v_{r ; x, y} \geq \nu_{n}^{p+q+1}$, i.e. (x, y) is not too near the boundary, an upper bound for $\widehat{\theta}_{\mathrm{C}}\left(x, y \mid \mathcal{X}_{n}\right)$ can then be obtained by relying on the observations with $1-\theta_{i} \leq$ $\left(\frac{\nu^{p+q+1}}{\prod_{r=1}^{p+q-2} v_{r ; x, y}}\right)^{2 / 3}$ and $\left|\alpha_{i}-\alpha_{m i n}^{x, y}\right| \leq\left(\frac{\nu_{n}^{p+q+1}}{\prod_{r=1}^{p+q-2} v_{r ; x, y}}\right)^{1 / 3}$. Arguments similar to those used above then show that for all $(x, y) \in \mathcal{W}\left(\nu_{n}^{*}\right)$ with $\prod_{r=1}^{p+q-2} v_{r ; x, y} \geq \nu_{n}^{p+q+1}$, we have for $\alpha \in\{1,2\}$

$$
\begin{equation*}
E\left(\left|\widehat{\theta}_{\mathrm{C}}\left(x, y \mid \mathcal{X}_{n}\right)-\theta_{\mathrm{C}}(x, y)\right|^{\alpha}\right) \leq D_{12}^{\alpha}\left(\frac{\nu_{n}^{p+q+1}}{\prod_{r=1}^{p+q-2} v_{r ; x, y}}\right)^{2 \alpha / 3} \tag{C.34}
\end{equation*}
$$

for some constant $D_{12} \in(0, \infty)$, and for all sufficiently large n.
Now the moments of $\widehat{\theta}_{\mathrm{C}}\left(X_{i}, Y_{i} \mid \mathcal{X}_{n}\right)$ can be analyzed in a way similar to Kneip et al. (2015). Let $\mathcal{X}_{n,-i}$ denote the sample of size $n-1$ obtained by eliminating the i-th observation $\left(X_{i}, Y_{i}\right)$. When relying on $\mathcal{X}_{n,-i}$, it is clear that all constants in the above inequalities can be chosen independently of (x, y) and thus also apply for the (random) coordinate system induced by the specific choice $(x, y)=\left(X_{i}, Y_{i}\right)$. Obviously,

$$
\begin{equation*}
\widehat{\theta}_{\mathrm{C}}\left(X_{i}, Y_{i} \mid \mathcal{X}_{n}\right)=\min \left\{\widehat{\theta}_{\mathrm{C}}\left(X_{i}, Y_{i} \mid \mathcal{X}_{n,-i}\right), 1\right\} \tag{C.35}
\end{equation*}
$$

Since $\left(X_{i}, Y_{i}\right)$ is independent of $\mathcal{X}_{n,-i},(\mathrm{C} .24)$ and (C.35) imply that

$$
\begin{equation*}
E\left(\widehat{\theta}_{\mathrm{C}}\left(X_{i}, Y_{i} \mid \mathcal{X}_{n}\right)-\theta_{\mathrm{C}}\left(X_{i}, Y_{i}\right) \mid\left(X_{i}, Y_{i}\right) \notin \mathcal{W}\left(\nu_{n}^{*}\right)\right)=C_{0} n^{-\frac{2}{p+q+1}}+O\left(n^{-\frac{3}{p+q+1}}(\log n)^{\frac{3}{p+q+1}}\right) \tag{С.36}
\end{equation*}
$$

for some $C_{0} \in(0, \infty)$. If $p=1$ and $q \leq 1$, then assertion (3.13) follows directly from (C.36), since in this case there is no boundary problem due to $\mathcal{W}\left(\nu_{n}^{*}\right)=\emptyset$.

In order to quantify the influence of boundary effects for $p+q>2$, let $\mathcal{W}_{n, 1}:=$ $\left\{(x, y) \in \mathcal{D} \mid \nu_{n}^{p+q-2}>\prod_{r=1}^{p+q-1} v_{r ; x, y} \geq \nu_{n}^{p+q+1}\right\}$ contain points in $\mathcal{W}\left(\nu_{n}^{*}\right)$ but not too near the boundary, and let $\mathcal{W}_{n, 2}:=\left\{(x, y) \in \mathcal{D} \mid \prod_{r=1}^{p+q-2} v_{r ; x, y}<\nu_{n}^{p+q+1}\right\}$ contain the other points of $\mathcal{W}\left(\nu_{n}^{*}\right)$ very near the boundary where only the trivial upper bound $\mid \widehat{\theta}_{\mathrm{C}}\left(X_{i}, Y_{i} \mid\right.$ $\left.\mathcal{X}_{n}\right)-\theta\left(X_{i}, Y_{i}\right) \mid \leq 1$ can be used. For points in $\mathcal{W}_{n, 1}$, note that for all $r=1, \ldots, p+q-2$,
$\nu_{n}^{4} \leq v_{r ; x, y} \leq \nu_{n}$. Fortunately, the boundary is "smaller" than in the DEA-case, and its influence is less pronounced. Note that

$$
\begin{align*}
E\left(\widehat{\theta}_{\mathrm{C}}\left(X_{i}, Y_{i} \mid \mathcal{X}_{n}\right)-\theta\left(X_{i}, Y_{i}\right)\right)= & E\left(\widehat{\theta}_{\mathrm{C}}\left(X_{i}, Y_{i} \mid \mathcal{X}_{n}\right)-\theta_{\mathrm{C}}\left(X_{i}, Y_{i}\right) \mid\left(X_{i}, Y_{i}\right) \notin \mathcal{W}\left(\nu_{n}^{*}\right)\right) \\
& \left.\times \operatorname{Pr}\left(\left(X_{i}, Y_{i}\right)\right) \notin \mathcal{W}\left(\nu_{n}^{*}\right)\right) \\
& +\sum_{s=1}^{2} E\left(\widehat{\theta}_{\mathrm{C}}\left(X_{i}, Y_{i} \mid \mathcal{X}_{n}\right)-\theta\left(X_{i}, Y_{i}\right) \mid\left(X_{i}, Y_{i}\right) \in \mathcal{W}_{n, s}\right) \\
& \times \operatorname{Pr}\left(\left(X_{i}, Y_{i}\right) \in \mathcal{W}_{n, s}\right) \tag{C.37}
\end{align*}
$$

When relying on (C.34), straightforward calculations similar to those in Kneip et al. (2015) yield that with for some constants $D_{13}, D_{14}<\infty$,

$$
\begin{align*}
E\left(\widehat { \theta } _ { \mathrm { C } } \left(X_{i}, Y_{i} \mid\right.\right. & \left.\left.\mathcal{X}_{n}\right)-\theta\left(X_{i}, Y_{i}\right) \mid\left(X_{i}, Y_{i}\right) \in \mathcal{W}_{n, 1}\right) \cdot \operatorname{Pr}\left(\left(X_{i}, Y_{i}\right) \in \mathcal{W}_{n, 1}\right) \\
& \leq D_{13} \int_{\mathcal{W}_{n, 1}}\left(\frac{\nu_{n}^{p+q+1}}{\prod_{r=1}^{p+q-2} v_{r ; x, y}}\right)^{2 / 3} f(x, y) d x d y \\
& \leq D_{14} \sum_{r=1}^{p+q-2} \int_{\mathcal{B} v_{r}^{2 / x, y}} \frac{\nu_{n}^{8 / 3}}{2 / 3} d x d y+O_{p}\left(n^{-\frac{4}{p+q+1}}(\log n)^{\frac{4}{p+q+1}}\right) \\
& =O_{p}\left(n^{-\frac{4}{p+q+1}}(\log n)^{\frac{4}{p+q+1}}\right) \tag{C.38}
\end{align*}
$$

where $\mathcal{B}:=\{(x, y) \in \mathcal{D} \mid$
$\left.\nu_{n}>v_{r, x, y} \geq \nu_{n}^{4}\right\}$ In addition, $\operatorname{Pr}\left(\left(X_{i}, Y_{i}\right) \in \mathcal{W}_{n, 2}\right)=O\left(n^{-\frac{4}{p+q+1}}(\log n)^{\frac{4}{p+q+1}}\right)$. Together with (C.36), this leads to (3.13). ${ }^{2}$

Recall (C.28) and (C.30). Assertion (3.14) follows from the fact that (C.34) implies the existence of constants $D_{15}, D_{16}<\infty$ such that

$$
\begin{gather*}
\operatorname{VAR}\left(\widehat{\theta}_{\mathrm{C}}\left(X_{i}, Y_{i} \mid \mathcal{X}_{n}\right)-\theta_{\mathrm{C}}\left(X_{i}, Y_{i}\right)\right) \leq D_{15} n^{-\frac{4}{p+q+1}} \times \operatorname{Pr}\left(\left(X_{i}, Y_{i}\right) \notin \mathcal{W}\left(\nu_{n}^{*}\right)\right) \\
+D_{16}^{2} \int_{\mathcal{W}_{n, 1}}\left(\left(\frac{\nu_{n}^{p+q+1}}{\prod_{r=1}^{p+2-2} v_{r ; x, y}}\right)^{4 / 3}\right) f(x, y) d x d y+\operatorname{Pr}\left(\left(X_{i}, Y_{i}\right) \in \mathcal{W}_{n, 2}\right) \\
=O\left(n^{-\frac{4}{p+q+1}}+n^{-\frac{4}{p+q+1}}(\log n)^{\frac{4}{p+q+1}}\right) \tag{C.39}
\end{gather*}
$$

It remains to prove (3.15). Estimators $\widehat{\theta}_{\mathrm{C}}\left(X_{i}, Y_{i} \mid \mathcal{X}_{n}\right)$ exhibit stronger correlations than the original VRS-DEA estimators $\widehat{\theta}_{\mathrm{VRS}}\left(X_{i}, Y_{i} \mid \mathcal{X}_{n}\right)$. The reason is that by (C.20), for any

[^2]$b>0$ the estimators $\widehat{\theta}_{\mathrm{C}}\left(x, y \mid \mathcal{X}_{n}\right)$ and $\widehat{\theta}_{\mathrm{C}}\left(x, b y \mid \mathcal{X}_{n}\right)$ depend on the same local observations in $\mathcal{X}_{n}\left(x, a_{m i n}^{x, y} y ; \nu_{n}\right)$, while for sufficiently large b, DEA estimators $\widehat{\theta}_{\text {DEA }}\left(x, y \mid \mathcal{X}_{n}\right)$ and $\widehat{\theta}_{\text {DEA }}\left(x, b y \mid \mathcal{X}_{n}\right)$ will be asymptotically uncorrelated.

However, for all $i, j \in 1, \ldots, n, i \neq j$, it follows from (C.32) that $\widehat{\theta}_{\mathrm{C}}\left(X_{i}, Y_{i} \mid \mathcal{X}_{n}\right)-$ $\theta\left(X_{i}, Y_{i}\right)$ and $\widehat{\theta}_{\mathrm{C}}\left(X_{j}, Y_{j} \mid \mathcal{X}_{n}\right)-\theta\left(X_{j}, Y_{j}\right)$ are asymptotically uncorrelated if $\mathcal{H}_{n}\left(X_{i}, Y_{i} ; \nu_{n}\right) \cap$ $\mathcal{H}_{n}\left(X_{j}, Y_{j} ; \nu_{n}\right)=\emptyset$. Since all observations are iid, the Cauchy-Schwarz inequality yields

$$
\begin{align*}
& \left|\operatorname{COV}\left(\widehat{\theta}_{\mathrm{C}}\left(X_{i}, Y_{i} \mid \mathcal{X}_{n}\right)-\theta_{\mathrm{C}}\left(X_{i}, Y_{i}\right), \widehat{\theta}_{\mathrm{C}}\left(X_{j}, Y_{j} \mid \mathcal{X}_{n}\right)-\theta_{\mathrm{C}}\left(X_{j}, Y_{j}\right)\right)\right| \\
& \quad \leq \operatorname{Pr}\left(\mathcal{H}_{n}\left(X_{i}, Y_{i} ; \nu_{n}\right) \cap \mathcal{H}_{n}\left(X_{j}, Y_{j} ; \nu_{n}\right) \neq \emptyset\right) \\
& \quad \times \operatorname{VAR}\left(\widehat{\theta}_{\mathrm{C}}\left(X_{i}, Y_{i} \mid \mathcal{X}_{n}\right)-\theta_{\mathrm{C}}\left(X_{i}, Y_{i}\right)\right)+O\left(n^{-2}\right) \tag{C.40}
\end{align*}
$$

Relation (3.14) as well as

$$
\begin{equation*}
\operatorname{Pr}\left(\mathcal{H}_{n}\left(X_{i}, Y_{i} ; \nu_{n}\right) \cap \mathcal{H}_{n}\left(X_{j}, Y_{j} ; \nu_{n}\right) \neq \emptyset\right)=O\left(n^{-\frac{p+q-2}{p+q+1}}(\log n)^{\frac{p+q-2}{p+q+1}}\right) \tag{C.41}
\end{equation*}
$$

now lead to assertion (3.15), completing the proof of the theorem.

C. 6 Proof of Theorem 3.2

The transformation defined by the respective function Γ is monotonic and differentiable with nonzero derivatives on \mathbb{R}_{+}. Therefore, (3.16) follows via the delta method.

By Assumption 3.1 (iii) $\Gamma\left(\theta_{\mathrm{C}}\left(X_{i}, Y_{i}\right)\right)$ as well as its derivatives $\Gamma^{\prime}\left(\theta_{\mathrm{C}}\left(X_{i}, Y_{i}\right)\right)$ and $\Gamma^{\prime \prime}\left(\theta_{\mathrm{C}}\left(X_{i}, Y_{i}\right)\right)$ are uniformly bounded for all $\left(X_{i}, Y_{i}\right) \in \mathcal{D}$. It thus follows from a Taylor expansion and (3.14) that

$$
\begin{align*}
E\left(\Gamma\left(\widehat{\theta}_{\mathrm{C}}\left(X_{i}, Y_{i} \mid \mathcal{X}_{n}\right)\right)-\Gamma\left(\theta_{\mathrm{C}}\left(X_{i}, Y_{i}\right)\right)\right)= & E\left(\Gamma^{\prime}\left(\theta_{\mathrm{C}}\left(X_{i}, Y_{i}\right)\right)\left[\widehat{\theta}_{\mathrm{C}}\left(X_{i}, Y_{i} \mid \mathcal{X}_{n}\right)-\theta_{\mathrm{C}}\left(X_{i}, Y_{i}\right)\right]\right) \\
& +O\left(n^{-\frac{4}{p+q+1}}(\log n)^{\frac{4}{p+q+1}}\right) . \tag{C.42}
\end{align*}
$$

Recall that (C.35) states that $\widehat{\theta}_{\mathrm{C}}\left(X_{i}, Y_{i} \mid \mathcal{X}_{n}\right)=\min \left\{\widehat{\theta}_{\mathrm{C}}\left(X_{i}, Y_{i} \mid \mathcal{X}_{n,-i}\right), 1\right\}$. Moreover, the arguments developed in the proof of Theorem 3.1 imply that

$$
\begin{equation*}
\operatorname{Pr}\left(\left\{\widehat{\theta}_{\mathrm{C}}\left(X_{i}, Y_{i} \mid \mathcal{X}_{n}\right)=1\right\} \cap\left\{\left(X_{i}, Y_{i}\right) \notin \mathcal{W}\left(\nu_{n}^{*}\right)\right\}\right)=O\left(n^{-\frac{3}{p+q+1}}(\log n)^{\frac{3}{p+q+1}}\right) \tag{C.43}
\end{equation*}
$$

where the boundary $\mathcal{W}\left(\nu_{n}^{*}\right)$ is defined as in the proof of Theorem 3.1. Since $\Gamma^{\prime}\left(\theta_{\mathrm{C}}\left(X_{i}, Y_{i}\right)>0\right.$,
it follows from (C.42), (C.28), and (C.29) that similar to (C.36) we have

$$
\begin{gather*}
E\left(\Gamma\left(\widehat{\theta}_{\mathrm{C}}\left(X_{i}, Y_{i} \mid \mathcal{X}_{n}\right)\right)-\Gamma\left(\theta_{\mathrm{C}}\left(X_{i}, Y_{i}\right)\right) \mid\left(X_{i}, Y_{i}\right) \notin \mathcal{W}\left(\nu_{n}^{*}\right)\right)= \\
C_{0}^{\Gamma} n^{-\frac{2}{p+q+1}}+O\left(n^{-\frac{3}{p+q+1}}(\log n)^{\frac{3}{p+q+1}}\right) \tag{С.44}
\end{gather*}
$$

for some $0<C_{0}^{\Gamma}<\infty$. An immediate generalization of (C.37) yields

$$
\begin{align*}
& E\left(\Gamma\left(\widehat{\theta}_{\mathrm{C}}\left(X_{i}, Y_{i} \mid \mathcal{X}_{n}\right)\right)-\Gamma\left(\theta_{\mathrm{C}}\left(X_{i}, Y_{i}\right)\right)\right)= \\
& \quad E\left(\Gamma\left(\widehat{\theta}_{\mathrm{C}}\left(X_{i}, Y_{i} \mid \mathcal{X}_{n}\right)\right)-\Gamma\left(\theta_{\mathrm{C}}\left(X_{i}, Y_{i}\right)\right) \mid\left(X_{i}, Y_{i}\right) \notin \mathcal{W}\left(\nu_{n}^{*}\right)\right) \cdot \operatorname{Pr}\left(\left(X_{i}, Y_{i}\right) \notin \mathcal{W}\left(\nu_{n}^{*}\right)\right) \\
& \quad+\sum_{s=1}^{2} E\left(\Gamma\left(\widehat{\theta}_{\mathrm{C}}\left(X_{i}, Y_{i} \mid \mathcal{X}_{n}\right)\right)-\Gamma\left(\theta_{\mathrm{C}}\left(X_{i}, Y_{i}\right)\right) \mid\left(X_{i}, Y_{i}\right) \in \mathcal{W}_{n, s}\right) \cdot \operatorname{Pr}\left(\left(X_{i}, Y_{i}\right) \in \mathcal{W}_{n, s}\right) . \tag{С.45}
\end{align*}
$$

With $0<M_{1}:=\sup _{(x, y) \in \mathcal{D}} \Gamma^{\prime}\left(\theta_{\mathrm{C}}(x, y)\right)<\infty$ a Taylor expansion leads to

$$
\begin{align*}
& E\left(\Gamma\left(\hat{\theta}_{\mathrm{C}}\left(X_{i}, Y_{i} \mid \mathcal{X}_{n}\right)\right)-\Gamma\left(\theta_{\mathrm{C}}\left(X_{i}, Y_{i}\right)\right) \mid\left(X_{i}, Y_{i}\right) \in \mathcal{W}_{n, 1}\right) \cdot \operatorname{Pr}\left(\left(X_{i}, Y_{i}\right) \in \mathcal{W}_{n, 1}\right) \\
& \quad \leq M_{1} E\left(\widehat{\theta}_{\mathrm{C}}\left(X_{i}, Y_{i} \mid \mathcal{X}_{n}\right)-\theta_{\mathrm{C}}\left(X_{i}, Y_{i}\right) \mid\left(X_{i}, Y_{i}\right) \in \mathcal{W}_{n, 1}\right) \cdot \operatorname{Pr}\left(\left(X_{i}, Y_{i}\right) \in \mathcal{W}_{n, 1}\right) \tag{C.46}
\end{align*}
$$

and Assertion (3.17) then is an immediate consequence of (C.44), (C.38), and $\operatorname{Pr}\left(\left(X_{i}, Y_{i}\right) \in\right.$ $\left.\mathcal{W}_{n, 2}\right)=O\left(n^{-\frac{4}{p+q+1}}(\log n)^{\frac{4}{p+q+1}}\right)$. Similarly, (C.39) implies

$$
\begin{align*}
E\left(\left[\Gamma\left(\widehat{\theta}_{\mathrm{C}}\left(X_{i}, Y_{i} \mid \mathcal{X}_{n}\right)\right)-\Gamma\left(\theta_{\mathrm{C}}\left(X_{i}, Y_{i}\right)\right)\right]^{2}\right) & \leq M_{1}^{2} E\left(\left[\widehat{\theta}_{\mathrm{C}}\left(X_{i}, Y_{i} \mid \mathcal{X}_{n}\right)-\theta_{\mathrm{C}}\left(X_{i}, Y_{i}\right)\right]^{2}\right) \\
& =O\left(n^{-\frac{4}{p+q+1}}(\log n)^{\frac{4}{p+q+1}}\right) \tag{C.47}
\end{align*}
$$

which proves Assertion (3.18). Analogous to (C.40) and (C.41) Assertion (3.19) finally follows from the fact that $\Gamma\left(\widehat{\theta}_{\mathrm{C}}\left(X_{i}, Y_{i} \mid \mathcal{X}_{n}\right)\right)-\Gamma\left(\theta_{\mathrm{C}}\left(X_{i}, Y_{i}\right)\right)$ and $\Gamma\left(\widehat{\theta}_{\mathrm{C}}\left(X_{j}, Y_{j} \mid \mathcal{X}_{n}\right)\right)-\Gamma\left(\theta_{\mathrm{C}}\left(X_{j}, Y_{j}\right)\right)$ are asymptotically uncorrelated if $\mathcal{H}_{n}\left(X_{i}, Y_{i} ; \nu_{n}\right) \cap \mathcal{H}_{n}\left(X_{j}, Y_{j} ; \nu_{n}\right)=\emptyset$.

C. 7 Proof of Theorem 3.3

Note that Theorem 3.2 holds for both $\left(x^{1}, y^{1}\right)$ and $\left(x^{2}, y^{2}\right)$ due to Assumption 3.2. The log transformation in Theorem 3.2 is monotonic, differentiable, and invertible. Hence the result follows via the delta method.

C. 8 Proof of Theorem 3.4

For $t=s$ Assertion (3.27) follows from (3.17). Now consider the case $t \neq s$. Following the notation introduced in (3.4) let

$$
\left(\breve{X}_{i}^{t}, \breve{Y}_{i}^{t}\right):=\left(\tilde{g}_{x}\left(\alpha_{\min }^{X_{i}^{t}, Y_{i}^{t}} \frac{Y_{i}^{t}}{\left\|Y_{i}^{t}\right\|}\right) \frac{X_{i}^{t}}{\left\|X_{i}^{t}\right\|}, \alpha_{\min }^{X_{i}^{t}, Y_{i}^{t}} \frac{Y_{i}^{t}}{\left\|Y_{i}^{t}\right\|}\right)
$$

Since $\mathcal{D}_{\text {norm }}^{1}=\mathcal{D}_{\text {norm }}^{2}$ we have $\left(\breve{X}_{i}^{t}, \breve{Y}_{i}^{t}\right) \in \mathcal{D}^{s}$. Then (3.10) implies that

$$
\begin{align*}
\log \widehat{\gamma}_{C}^{s}\left(X_{i}^{t}, Y_{i}^{t} \mid \mathcal{X}_{n_{s}}^{s}\right)-\log \gamma_{C}^{s}\left(X_{i}^{t}, Y_{i}^{t}\right) & =\log \widehat{\gamma}_{C}^{s}\left(\breve{X}_{i}^{t}, \breve{Y}_{i}^{t} \mid \mathcal{X}_{n_{s}}^{s}\right)-\log \gamma_{C}^{s}\left(\breve{X}_{i}^{t}, \breve{Y}_{i}^{t}\right) \\
& =\Gamma\left(\widehat{\theta}_{\mathrm{C}}^{s}\left(\breve{X}_{i}^{t}, \breve{Y}_{i}^{t} \mid \mathcal{X}_{n_{s}}^{s}\right)\right)-\Gamma\left(\theta_{\mathrm{C}}^{s}\left(\breve{X}_{i}^{t}, \breve{Y}_{i}^{t}\right)\right) \tag{C.48}
\end{align*}
$$

where $\Gamma(\theta)=\log \theta^{1 / 2}$ for all $\theta>0$. Recall the arguments developed in the proofs of Theorems 3.1 and 3.2 and the definitions of the boundaries $\mathcal{W}\left(\nu_{n_{s}}^{*}\right) \equiv \mathcal{W}^{s}\left(\nu_{n_{s}}^{*}\right), \mathcal{W}_{n_{s}, 1} \equiv \mathcal{W}_{n_{s}, 1}^{s}$ as well as $\mathcal{W}_{n_{2}, 2} \equiv \mathcal{W}_{n_{s}, 2}^{s}$. If $\left(\widehat{\theta}_{\mathrm{C}}^{s}\left(\breve{X}_{i}^{s}, \breve{Y}_{i}^{s} \mid \mathcal{X}_{n_{s}}^{s}\right) \neq 1\right.$, then obviously $\widehat{\theta}_{\mathrm{C}}^{s}\left(\breve{X}_{i}^{t}, \breve{Y}_{i}^{t} \mid \mathcal{X}_{n_{s}}^{s}\right)=\widehat{\theta}_{\mathrm{C}}^{s}\left(\breve{X}_{i}^{t}, \breve{Y}_{i}^{t} \mid\right.$ $\mathcal{X}_{n_{s},-i}^{s}$, where again $\mathcal{X}_{n_{s},-i}$ denote the sample of size $n-1$ obtained by eliminating the i-th observation $\left(X_{i}, Y_{i}\right)$. Moreover, the arguments developed in the proof of Theorem 3.1 imply that $\left.\operatorname{Pr}\left(\left\{\widehat{\theta}_{\mathrm{C}}^{s}\left(\breve{X}_{i}^{s}, \breve{Y}_{i}^{s} \mid \mathcal{X}_{n_{s}}^{s}\right)=1\right\}\right\}\right)=O\left(n_{s}^{-\frac{3}{p+q+1}}\left(\log n_{s}\right)^{\frac{3}{p+q+1}}\right)$. Hence,

$$
\begin{align*}
E & \left(\Gamma\left(\widehat{\theta}_{\mathrm{C}}^{s}\left(\breve{X}_{i}^{t}, \breve{Y}_{i}^{t} \mid \mathcal{X}_{n_{s}}^{s}\right)\right)-\Gamma\left(\theta_{\mathrm{C}}^{s}\left(\breve{X}_{i}^{t}, \breve{Y}_{i}^{t}\right)\right)\right) \\
= & E\left(\Gamma\left(\widehat{\theta}_{\mathrm{C}}^{s}\left(\breve{X}_{i}^{t}, \breve{Y}_{i}^{t} \mid \mathcal{X}_{n_{s},-i}^{s}\right)\right)-\Gamma\left(\theta_{\mathrm{C}}^{s}\left(\breve{X}_{i}^{t}, \breve{Y}_{i}^{t}\right)\right) \mid\left(\breve{X}_{i}^{t}, \breve{Y}_{i}^{t}\right) \notin \mathcal{W}^{s}\left(\nu_{n_{s}}^{*}\right)\right) \cdot \operatorname{Pr}\left(\left(\breve{X}_{i}^{t}, \breve{Y}_{i}^{t}\right) \notin \mathcal{W}^{s}\left(\nu_{n_{s}}^{*}\right)\right) \\
& +\sum_{l=1}^{2} E\left(\Gamma\left(\widehat{\theta}_{\mathrm{C}}^{s}\left(\breve{X}_{i}^{t}, \breve{Y}_{i}^{t} \mid \mathcal{X}_{n_{s},-i}^{s}\right)\right)-\Gamma\left(\theta_{\mathrm{C}}^{s}\left(\breve{X}_{i}^{t}, \breve{Y}_{i}^{t}\right)\right) \mid\left(\breve{X}_{i}^{t}, \breve{Y}_{i}^{t}\right) \in \mathcal{W}_{n_{s}, l}^{s}\right) \cdot \operatorname{Pr}\left(\left(\breve{X}_{i}^{t}, \breve{Y}_{i}^{t}\right) \in \mathcal{W}_{n_{s}, l}^{s}\right) \\
& +O\left(n_{s}^{-\frac{3}{p+q+1}}\left(\log n_{s}\right)^{\frac{3}{p+q+1}}\right) \tag{С.49}
\end{align*}
$$

Note that $\left(\breve{X}_{i}^{t}, \breve{Y}_{i}^{t}\right)$ is independent of $\mathcal{X}_{n_{s},-i}^{s}$, and that by definition of our coordinate system $\left(\breve{X}_{i}^{t}, Y_{i}^{t}\right) \notin \mathcal{W}^{s}\left(\nu_{n_{s}}^{*}\right)$ if and only if $\left(X_{i}^{t}, Y_{i}^{t}\right) \notin \mathcal{W}^{s}\left(\nu_{n_{s}}^{*}\right)$, as well as $\left(\breve{X}_{i}^{t}, Y_{i}^{t}\right) \in \mathcal{W}_{n_{s}, l}^{s}$ if and only if $\left(X_{i}^{t}, Y_{i}^{t}\right) \in \mathcal{W}_{n_{s}, l}^{s}$ for $l=1,2$. As $n_{s} \rightarrow \infty$, our assumptions on the densities f^{1} and f^{2} the probabilities of these events are of the same order of magnitude as those obtained when analyzing $\left(X_{i}^{s}, Y_{i}^{s}\right)$. Therefore, (3.27) follows from $\operatorname{Pr}\left(\left(\breve{X}_{i}^{t}, \breve{Y}_{i}^{t}\right) \in \mathcal{W}_{n_{s}, 2}^{s}\right)=$ $O\left(n_{s}^{-\frac{4}{p+q+1}}\left(\log n_{s}\right)^{\frac{4}{p+q+1}}\right)$ and arguments similar to (C.44) and (C.46).

In an analogous manner straightforward generalizations of the arguments in the proof of Theorem 3.1 lead to $E\left(\left[\widehat{\theta}_{\mathrm{C}}^{s}\left(\breve{X}_{i}^{t}, \breve{Y}_{i}^{t} \mid \mathcal{X}_{n_{s}}^{s}\right)-\theta_{\mathrm{C}}^{s}\left(X_{i}^{t}, Y_{i}^{t}\right)\right]^{2}\right)=O\left(n_{s}^{-\frac{4}{p+q+1}}\left(\log n_{s}\right)^{\frac{4}{p+q+1}}\right)$, and
(3.28) is obtained by an argument similar to (C.47). Finally, (3.29) can be derived from straightforward generalizations of (C.40) and (C.41).

C. 9 Proof of Theorem 3.6

Using (3.24), (3.26) and the definition of \mathcal{R}_{n} in the first part of (3.33), the left-hand side of (3.32) can be written as

$$
\begin{align*}
& \sqrt{n}\left(\widehat{\mu}_{\mathcal{M}, n}-\mu_{\mathcal{M}}-\mathcal{R}_{n}\right)= \\
& \quad \frac{\sqrt{n}}{n} \sum_{i=1}^{n}\left(\log \widehat{\mathcal{M}}_{i}-\log \mathcal{M}_{i}-E\left(\log \widehat{\mathcal{M}}_{i}\right)+\mu_{\mathcal{M}}\right)+\frac{\sqrt{n}}{n} \sum_{i=1}^{n}\left(\log \mathcal{M}_{i}-\mu_{\mathcal{M}}\right) . \tag{C.50}
\end{align*}
$$

Since (3.28) and (3.29) imply $\frac{\sqrt{n}}{n} \sum_{i=1}^{n}\left(\log \widehat{\mathcal{M}}_{i}-\log \mathcal{M}_{i}-E\left(\log \widehat{\mathcal{M}}_{i}\right)+\mu_{\mathcal{M}}\right) \xrightarrow{p} 0$, the assertion is now an immediate consequence of standard CLTs.

C. 10 Proof of Lemma 3.3

The proof is straightforward:

$$
\begin{aligned}
\widehat{\sigma}_{\mathcal{M}, n}^{2} & =n^{-1} \sum_{i=1}^{n}\left(\log \widehat{\mathcal{M}}_{i}-\widehat{\mu}_{\mathcal{M}, n}\right)^{2} \\
& \xrightarrow{p} E\left[\left(\log \widehat{\mathcal{M}}_{i}\right)^{2}\right]-\mu_{\mathcal{M}}^{2} \\
& =\operatorname{VAR}\left(\log \mathcal{M}_{i}\right)+\left[E\left(\log \mathcal{M}_{i}\right)\right]^{2}-\mu_{\mathcal{M}}^{2} \\
& =\sigma_{\mathcal{M}}^{2}
\end{aligned}
$$

since $\left[E\left(\log \mathcal{M}_{i}\right)\right]^{2}-\mu_{\mathcal{M}}^{2}=0$.

C. 11 Proof of Theorem 3.7

The result follows from straightforward arguments based on the delta method: Indeed, a Taylor expansion yields

$$
\begin{equation*}
\sqrt{n}\left(\exp \left(\widehat{\mu}_{\mathcal{M}, n}\right)-\exp \left(\mu_{\mathcal{M}}+\mathcal{R}_{n}\right)\right)=\exp \left(\mu_{\mathcal{M}}+\mathcal{R}_{n}\right) \cdot \sqrt{n}\left(\widehat{\mu}_{\mathcal{M}, n}-\mu_{\mathcal{M}}-\mathcal{R}_{n}\right)+O_{P}\left(\frac{1}{\sqrt{n}}\right) \tag{C.51}
\end{equation*}
$$

Since $R_{n}=O\left(n^{-\frac{2}{p+q+1}}\right)$, the desired result follows from a further Taylor expansion of $\exp \left(\mu_{\mathcal{M}}+\mathcal{R}_{n}\right)$ and Theorem 3.6.

C. 12 Proof of Theorem B. 1

The result follows directly from Theorem 3.6 after noting that the big- O remainder term in (3.33) is $o\left(n^{-\kappa}\right)$ and noting that $n^{\kappa} o\left(n^{-\kappa}\right)=o(1)$. Since $\widehat{\mu}_{\mathcal{M}, n}$ in (3.32) has been replaced with $\widehat{\mu}_{\mathcal{M}, n_{\kappa}}$ in (B.3), the scale factor needed to stabilize variance is n^{κ}.

C. 13 Proof of Theorem B. 2

The result follows after substituting $\widehat{B}_{n, \kappa}$ for the bias term in (3.33). For $(p+q)=4$ we have $\kappa=2 / 5$. The remainder term is $O\left(n^{-3 \kappa / 2}\right)$ ignoring the $(\log n)$ term which does not affect the rate. Then $\sqrt{n} O\left(n^{-3 \kappa / 2}\right)=O\left(n^{-1 / 10}\right)$.

C. 14 Proof of Theorem C. 1

We only have to show (C.1). First note that the additional assumptions (i)-(iii) imply $\mu_{\mathcal{M}}=0$. Since for both samples $s=1,2$ the same algorithm is employed to determine $\log \widehat{\gamma}_{C}^{s}\left(x, y \mid \mathcal{X}_{n}^{s}\right)$, there exists a measurable function G such that $\log \widehat{\gamma}_{C}^{s}\left(x, y \mid \mathcal{X}_{n}^{s}\right)=$ $G\left((x, y) ;\left(X_{1}^{s}, Y_{1}^{s}\right), \ldots,\left(X_{n}^{s}, Y_{n}^{s}\right)\right)$. Since by (i) and (ii) the distributions in each period are identical, we necessarily have

$$
\begin{aligned}
E\left(\log \widehat{\gamma}_{C}^{1}\left(X_{i}^{1}, Y_{i}^{1} \mid \mathcal{X}_{n}^{1}\right)\right) & =E\left(G\left(\left(X_{i}^{1}, Y_{i}^{1}\right) ;\left(X_{1}^{1}, Y_{1}^{1}\right), \ldots,\left(X_{n}^{1}, Y_{n}^{1}\right)\right)\right) \\
& =E\left(G\left(\left(X_{i}^{2}, Y_{i}^{2}\right) ;\left(X_{1}^{2}, Y_{1}^{2}\right), \ldots,\left(X_{n}^{2}, Y_{n}^{2}\right)\right)\right) \\
& =E\left(\log \widehat{\gamma}_{C}^{2}\left(X_{i}^{2}, Y_{i}^{2} \mid \mathcal{X}_{n}^{2}\right)\right) .
\end{aligned}
$$

for all $i=1, \ldots, n$. When additionally using c) we furthermore obtain

$$
\begin{aligned}
& E\left(\log \widehat{\gamma}_{C}^{1}\left(X_{i}^{2}, Y_{i}^{2} \mid \mathcal{X}_{n}^{1}\right)\right)=E\left(G\left(\left(X_{i}^{2}, Y_{i}^{2}\right) ;\left(X_{1}^{1}, Y_{1}^{1}\right), \ldots,\left(X_{n}^{1}, Y_{n}^{1}\right)\right)\right) \\
& =\int E\left(G\left(\left(x^{2}, y^{2}\right) ;\left(X_{1}^{1}, Y_{1}^{1}\right), \ldots,\left(x^{1}, y^{1}\right), \ldots,\left(X_{n}^{1}, Y_{n}^{1}\right)\right)\right) f_{12}\left(x^{1}, y^{1}, x^{2}, y^{2}\right) d x^{1} \ldots d y^{2} \\
& =\int E\left(G\left(\left(x^{2}, y^{2}\right) ;\left(X_{1}^{1}, Y_{1}^{1}\right), \ldots,\left(x^{1}, y^{1}\right), \ldots,\left(X_{n}^{1}, Y_{n}^{1}\right)\right)\right) f_{12}\left(x^{2}, y^{2}, x^{1}, y^{1}\right) d x^{1} \ldots d y^{2} \\
& =\int E\left(G\left(\left(x^{1}, y^{1}\right) ;\left(X_{1}^{2}, Y_{1}^{2}\right), \ldots,\left(x^{2}, y^{2}\right), \ldots,\left(X_{n}^{2}, Y_{n}^{2}\right)\right)\right) f_{12}\left(x^{1}, y^{1}, x^{2}, y^{2}\right) d x^{1} \ldots d y^{2} \\
& =E\left(G\left(\left(X_{i}^{1}, Y_{i}^{1}\right) ;\left(X_{1}^{2}, Y_{1}^{2}\right), \ldots,\left(X_{n}^{2}, Y_{n}^{2}\right)\right)\right)=E\left(\log \widehat{\gamma}_{C}^{2}\left(X_{i}^{1}, Y_{i}^{1} \mid \mathcal{X}_{n}^{2}\right)\right) .
\end{aligned}
$$

By definition of $\log \widehat{\mathcal{M}}_{i}$ this implies that $E\left(\widehat{\mu}_{\mathcal{M}, n}\right)=E\left(\log \widehat{\mathcal{M}}_{i}\right)=0$.

D Additional Simulation Results

The simulation results in Tables D.1-D. 5 are obtained from the data-generating process described in Section 6.1, and have the same layout as Table 1 in the main paper.

Table D. 1 reports rejection rates for (two-sided) tests of no change versus change in productivity using logs of estimated Malmquist indices. For $q=1$ and $p \in\{1,2,3\}$, results are from tests based on Theorem B. 2 and intervals computed using (B.10). Results for $p \in\{4,5\}$ are based on Theorem B. 3 and intervals computed from (B.11). See Section 6.2 in the main paper for discussion.

As discussed in Section 6.2 in the main paper, Tables D.2-D. 3 are analogous to Tables 1 and D.1, and are identical for $q=1$ and $p \in\{1,2,4, ; 5\}$. But for Tables D.2-D.3, the reported rejection rates for $p=3, q=1$ are obtained using subsamples of size n_{κ} based on Theorems 4.3 and B.3, respectively.

Also as discussed in Section 6.2 in the main paper, Tables D.4-D. 5 report rejection rates using the re-centered interval in (4.13) when working with untransformed indices (for the results in Table D.4), and the re-centered interval in (B.12) when working with logged indices (for the results in Table D.5). Again, see Section 6.2 in the main paper for discussion.
Table D.1: Rejection Rates for Test for Productivity Change using Logs (Two-sided Test)

n	β	- \quad = $1, q=1-$			- \quad = $2, q=1-$			- \quad = $3, q=1$ -			- $p=4, q=1-$			- \quad = $5, q=1-$		
		. 10	. 05	. 01	. 10	05	. 01	. 10	. 05	. 01	. 10	. 05	. 01	. 10	05	01
25	0.000	0.116	0.058	0.012	0.124	0.063	0.014	0.130	0.068	0.016	0.123	0.064	0.014	0.126	0.069	0.016
	0.005	0.183	0.108	0.030	0.194	0.115	0.034	0.204	0.125	0.039	0.148	0.084	0.021	0.143	0.082	0.021
	0.010	0.354	0.245	0.099	0.373	0.264	0.111	0.389	0.278	0.122	0.214	0.137	0.045	0.192	0.123	0.040
	0.015	0.566	0.445	0.233	0.594	0.473	0.257	0.609	0.490	0.274	0.313	0.219	0.090	0.268	0.185	0.074
	0.020	0.756	0.650	0.419	0.782	0.681	0.453	0.795	0.698	0.474	0.429	0.325	0.158	0.362	0.266	0.124
	0.030	0.954	0.914	0.774	0.965	0.931	0.806	0.970	0.939	0.821	0.658	0.554	0.350	0.565	0.458	0.271
	0.040	0.996	0.989	0.946	0.997	0.992	0.959	0.998	0.994	0.963	0.822	0.743	0.561	0.736	0.641	0.448
	0.050	1.000	0.999	0.990	1.000	1.000	0.993	1.000	1.000	0.994	0.915	0.864	0.729	0.853	0.781	0.614
50	0.000	0.109	0.053	0.010	0.114	0.057	0.011	0.117	0.059	0.012	0.112	0.059	0.013	0.112	0.062	0.015
	0.005	0.231	0.143	0.043	0.241	0.151	0.048	0.250	0.158	0.051	0.147	0.085	0.023	0.135	0.079	0.023
	0.010	0.513	0.387	0.182	0.539	0.413	0.200	0.555	0.429	0.213	0.244	0.159	0.056	0.200	0.129	0.046
	0.015	0.789	0.684	0.442	0.814	0.717	0.480	0.827	0.734	0.502	0.379	0.274	0.120	0.298	0.208	0.088
	0.020	0.939	0.890	0.722	0.952	0.911	0.760	0.958	0.920	0.780	0.531	0.415	0.219	0.417	0.310	0.151
	0.030	0.999	0.996	0.976	0.999	0.998	0.983	1.000	0.998	0.986	0.791	0.694	0.483	0.660	0.547	0.338
	0.040	1.000	1.000	0.999	1.000	1.000	1.000	1.000	1.000	1.000	0.929	0.876	0.726	0.840	0.753	0.554
	0.050	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	0.979	0.956	0.874	0.935	0.883	0.737
100	0.000	0.104	0.051	0.010	0.109	0.055	0.010	0.113	0.058	0.011	0.105	0.055	0.012	0.106	0.058	0.015
	0.005	0.331	0.222	0.080	0.351	0.239	0.090	0.362	0.251	0.095	0.159	0.094	0.028	0.138	0.082	0.025
	0.010	0.751	0.638	0.389	0.776	0.672	0.424	0.789	0.688	0.445	0.299	0.202	0.079	0.224	0.147	0.056
	0.015	0.961	0.925	0.788	0.970	0.942	0.823	0.974	0.948	0.839	0.488	0.369	0.179	0.352	0.249	0.111
	0.020	0.998	0.994	0.968	0.999	0.996	0.978	0.999	0.997	0.982	0.678	0.560	0.330	0.502	0.381	0.195
	0.030	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	0.921	0.858	0.679	0.779	0.669	0.438
	0.040	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	0.988	0.971	0.896	0.932	0.871	0.696
	0.050	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	0.999	0.996	0.974	0.984	0.962	0.870

Table D.1: Rejection Rates for Test for Productivity Change using Logs (continued)

n	β	- \quad = $1, q=1$ -			$-p=2, q=1 \quad-$			$\begin{gathered} -p=3, q=1- \\ .05 \end{gathered}$			- $p=4, q=1-$			$-p=5, q=1-$		
		. 10	. 05	. 01	. 10						. 10	. 05		$\text { . } 10$. 05	$.01$
250	0.000	0.102	0.051	0.010	0.107	0.053	0.010	0.108	0.055	0.011	0.104	0.054	0.012	0.102	0.055	0.014
	0.005	0.592	0.464	0.234	0.617	0.493	0.258	0.633	0.507	0.273	0.201	0.125	0.041	0.159	0.096	0.031
	0.010	0.977	0.953	0.851	0.983	0.963	0.878	0.985	0.968	0.892	0.437	0.320	0.144	0.306	0.208	0.085
	0.015	1.000	1.000	0.997	1.000	1.000	0.998	1.000	1.000	0.999	0.703	0.582	0.344	0.505	0.380	0.187
	0.020	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	0.889	0.811	0.597	0.705	0.581	0.342
	0.030	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	0.994	0.985	0.932	0.943	0.889	0.709
	0.040	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	0.995	0.995	0.986	0.930
	0.050	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	0.999	0.990
500	0.000	0.102	0.051	0.010	0.103	0.051	0.010	0.107	0.055	0.011	0.101	0.052	0.012	0.101	0.053	0.013
	0.005	0.842	0.753	0.522	0.862	0.779	0.558	0.871	0.793	0.580	0.256	0.167	0.060	0.185	0.114	0.039
	0.010	1.000	0.999	0.995	1.000	1.000	0.997	1.000	1.000	0.998	0.591	0.464	0.242	0.393	0.279	0.122
	0.015	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	0.868	0.782	0.556	0.647	0.519	0.286
	0.020	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	0.977	0.950	0.836	0.850	0.753	0.514
	0.030	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	0.996	0.990	0.975	0.893
	0.040	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	0.999	0.993
	0.050	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
1000	0.000	0.102	0.051	0.010	0.102	0.051	0.010	0.106	0.054	0.011	0.101	0.051	0.011	0.100	0.051	0.012
	0.005	0.982	0.962	0.875	0.986	0.971	0.899	0.988	0.975	0.911	0.341	0.234	0.093	0.228	0.145	0.051
	0.010	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	0.767	0.657	0.411	0.521	0.394	0.192
	0.015	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	0.969	0.936	0.807	0.806	0.699	0.454
	0.020	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	0.999	0.996	0.975	0.954	0.907	0.740
	0.030	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	0.998	0.986
	0.040	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
	0.050	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000

Table D.2: Rejection Rates for Test for Productivity Change using Geometric Mean (Two-sided Test)

n	β	$-p=1, q=1-$			- \quad = $2, q=1$ -			- $p=3, q=1-$			- \quad = $4, q=1-$			- $p=5, q=1-$		
		. 10	. 05	. 01	. 10	. 05	. 01	. 10	. 05	. 01	. 10	. 05	. 01	. 10	. 05	. 01
25	0.000	0.118	0.061	0.014	0.126	0.066	0.016	0.125	0.064	0.013	0.125	0.066	0.014	0.127	0.070	0.017
	0.005	0.150	0.080	0.018	0.157	0.086	0.021	0.144	0.078	0.018	0.138	0.078	0.020	0.136	0.081	0.024
	0.010	0.295	0.188	0.062	0.307	0.200	0.070	0.229	0.144	0.046	0.191	0.121	0.040	0.175	0.114	0.040
	0.015	0.497	0.364	0.161	0.515	0.384	0.178	0.354	0.248	0.101	0.272	0.187	0.074	0.236	0.164	0.068
	0.020	0.692	0.562	0.314	0.712	0.586	0.341	0.494	0.376	0.185	0.369	0.271	0.125	0.312	0.226	0.105
	0.030	0.926	0.859	0.655	0.936	0.876	0.686	0.734	0.627	0.407	0.567	0.458	0.265	0.477	0.376	0.209
	0.040	0.988	0.968	0.873	0.990	0.972	0.888	0.874	0.803	0.620	0.723	0.628	0.426	0.626	0.523	0.335
	0.050	0.998	0.992	0.956	0.997	0.991	0.958	0.938	0.896	0.767	0.826	0.748	0.571	0.738	0.646	0.458
50	0.000	0.110	0.055	0.011	0.115	0.059	0.012	0.112	0.057	0.011	0.113	0.060	0.013	0.112	0.062	0.016
	0.005	0.198	0.114	0.027	0.205	0.118	0.030	0.155	0.088	0.023	0.139	0.082	0.024	0.130	0.079	0.027
	0.010	0.465	0.330	0.130	0.484	0.350	0.143	0.290	0.193	0.069	0.221	0.144	0.052	0.186	0.122	0.048
	0.015	0.750	0.625	0.355	0.772	0.653	0.386	0.470	0.350	0.161	0.335	0.239	0.103	0.266	0.186	0.082
	0.020	0.921	0.852	0.631	0.934	0.873	0.670	0.650	0.528	0.298	0.467	0.353	0.177	0.363	0.266	0.129
	0.030	0.998	0.992	0.948	0.998	0.994	0.958	0.885	0.811	0.611	0.705	0.595	0.376	0.567	0.453	0.262
	0.040	1.000	1.000	0.994	1.000	1.000	0.995	0.966	0.934	0.825	0.858	0.777	0.582	0.735	0.628	0.419
	0.050	1.000	1.000	0.999	1.000	1.000	0.998	0.988	0.974	0.920	0.933	0.882	0.737	0.846	0.760	0.567
100	0.000	0.105	0.052	0.010	0.110	0.055	0.011	0.107	0.054	0.011	0.106	0.056	0.013	0.106	0.059	0.016
	0.005	0.302	0.192	0.059	0.316	0.205	0.066	0.193	0.117	0.034	0.152	0.091	0.030	0.135	0.083	0.030
	0.010	0.723	0.596	0.326	0.747	0.627	0.358	0.413	0.296	0.125	0.274	0.185	0.074	0.210	0.140	0.058
	0.015	0.953	0.908	0.735	0.963	0.925	0.771	0.661	0.538	0.303	0.440	0.325	0.154	0.317	0.224	0.103
	0.020	0.997	0.992	0.952	0.998	0.994	0.964	0.847	0.755	0.527	0.612	0.488	0.270	0.442	0.329	0.166
	0.030	1.000	1.000	1.000	1.000	1.000	1.000	0.982	0.959	0.864	0.864	0.774	0.557	0.688	0.564	0.340
	0.040	1.000	1.000	1.000	1.000	1.000	1.000	0.998	0.994	0.970	0.963	0.922	0.784	0.856	0.762	0.541
	0.050	1.000	1.000	1.000	1.000	1.000	1.000	1.000	0.999	0.991	0.990	0.975	0.904	0.941	0.883	0.710

Table D.2: Rejection Rates for Test for Productivity Change using Geometric Mean (continued)

n	β	- \quad = 1, $q=1$ -			$\text { - } p=2, q=1 \quad-$			$-p=3, q=1-$			- $p=4, q=1-$			$-p=5, q=1-$		
		. 10	. 05	. 01	. 10						. 10			$\text { . } 10$. 05	$.01$
250	0.000	0.103	0.051	0.010	0.107	0.054	0.011	0.103	0.052	0.011	0.104	0.054	0.013	0.102	0.055	0.014
	0.005	0.572	0.438	0.204	0.594	0.463	0.225	0.288	0.190	0.068	0.194	0.122	0.043	0.156	0.097	0.035
	0.010	0.974	0.946	0.826	0.980	0.957	0.854	0.661	0.535	0.296	0.407	0.294	0.131	0.286	0.196	0.083
	0.015	1.000	1.000	0.996	1.000	1.000	0.998	0.914	0.846	0.644	0.655	0.527	0.296	0.459	0.340	0.165
	0.020	1.000	1.000	1.000	1.000	1.000	1.000	0.989	0.972	0.890	0.845	0.747	0.508	0.640	0.510	0.285
	0.030	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	0.996	0.985	0.963	0.859	0.895	0.808	0.580
	0.040	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	0.999	0.997	0.976	0.981	0.952	0.822
	0.050	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	0.997	0.998	0.991	0.942
500	0.000	0.102	0.051	0.010	0.103	0.052	0.010	0.102	0.052	0.010	0.101	0.052	0.012	0.100	0.054	0.014
	0.005	0.833	0.738	0.494	0.852	0.764	0.528	0.418	0.300	0.126	0.247	0.162	0.060	0.181	0.114	0.042
	0.010	1.000	0.999	0.994	1.000	1.000	0.996	0.867	0.782	0.554	0.558	0.429	0.218	0.368	0.261	0.117
	0.015	1.000	1.000	1.000	1.000	1.000	1.000	0.992	0.980	0.914	0.833	0.732	0.489	0.599	0.468	0.249
	0.020	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	0.995	0.962	0.920	0.762	0.798	0.683	0.433
	0.030	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	0.998	0.983	0.976	0.942	0.797
	0.040	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	0.999	0.996	0.962
	0.050	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	0.996
1000	0.000	0.102	0.051	0.010	0.102	0.051	0.010	0.101	0.051	0.011	0.101	0.051	0.011	0.100	0.052	0.012
	0.005	0.981	0.960	0.865	0.985	0.969	0.889	0.604	0.478	0.250	0.329	0.226	0.091	0.223	0.144	0.054
	0.010	1.000	1.000	1.000	1.000	1.000	1.000	0.979	0.955	0.850	0.738	0.620	0.373	0.490	0.366	0.177
	0.015	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	0.996	0.956	0.911	0.749	0.763	0.645	0.396
	0.020	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	0.997	0.992	0.950	0.928	0.861	0.653
	0.030	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	0.998	0.994	0.956
	0.040	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	0.998
	0.050	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000

Table D.3: Rejection Rates for Test for Productivity Change using Logs (Two-sided Test)

n	β	- $p=1, q=1-$			- $p=2, q=1$ -			- $p=3, q=1$ -			- $p=4, q=1$ -			- \quad = $5, q=1$ -		
		. 10	. 05	. 01	. 10	. 05	. 01	. 10	. 05	. 01	. 10	. 05	. 01	. 10	. 05	. 01
25	0.000	0.116	0.058	0.012	0.124	0.063	0.014	0.123	0.062	0.012	0.123	0.064	0.014	0.126	0.069	0.016
	0.005	0.183	0.108	0.030	0.194	0.115	0.034	0.163	0.092	0.024	0.148	0.084	0.021	0.143	0.082	0.021
	0.010	0.354	0.245	0.099	0.373	0.264	0.111	0.269	0.177	0.063	0.214	0.137	0.045	0.192	0.123	0.040
	0.015	0.566	0.445	0.233	0.594	0.473	0.257	0.414	0.305	0.138	0.313	0.219	0.090	0.268	0.185	0.074
	0.020	0.756	0.650	0.419	0.782	0.681	0.453	0.570	0.455	0.251	0.429	0.325	0.158	0.362	0.266	0.124
	0.030	0.954	0.914	0.774	0.965	0.931	0.806	0.815	0.731	0.528	0.658	0.554	0.350	0.565	0.458	0.271
	0.040	0.996	0.989	0.946	0.997	0.992	0.959	0.935	0.892	0.761	0.822	0.743	0.561	0.736	0.641	0.448
	0.050	1.000	0.999	0.990	1.000	1.000	0.993	0.979	0.960	0.892	0.915	0.864	0.729	0.853	0.781	0.614
50	0.000	0.109	0.053	0.010	0.114	0.057	0.011	0.111	0.056	0.011	0.112	0.059	0.013	0.112	0.062	0.015
	0.005	0.231	0.143	0.043	0.241	0.151	0.048	0.171	0.100	0.027	0.147	0.085	0.023	0.135	0.079	0.023
	0.010	0.513	0.387	0.182	0.539	0.413	0.200	0.326	0.224	0.085	0.244	0.159	0.056	0.200	0.129	0.046
	0.015	0.789	0.684	0.442	0.814	0.717	0.480	0.527	0.407	0.204	0.379	0.274	0.120	0.298	0.208	0.088
	0.020	0.939	0.890	0.722	0.952	0.911	0.760	0.716	0.606	0.376	0.531	0.415	0.219	0.417	0.310	0.151
	0.030	0.999	0.996	0.976	0.999	0.998	0.983	0.933	0.882	0.730	0.791	0.694	0.483	0.660	0.547	0.338
	0.040	1.000	1.000	0.999	1.000	1.000	1.000	0.988	0.975	0.917	0.929	0.876	0.726	0.840	0.753	0.554
	0.050	1.000	1.000	1.000	1.000	1.000	1.000	0.998	0.994	0.976	0.979	0.956	0.874	0.935	0.883	0.737
100	0.000	0.104	0.051	0.010	0.109	0.055	0.010	0.106	0.054	0.011	0.105	0.055	0.012	0.106	0.058	0.015
	0.005	0.331	0.222	0.080	0.351	0.239	0.090	0.209	0.128	0.039	0.159	0.094	0.028	0.138	0.082	0.025
	0.010	0.751	0.638	0.389	0.776	0.672	0.424	0.451	0.332	0.149	0.299	0.202	0.079	0.224	0.147	0.056
	0.015	0.961	0.925	0.788	0.970	0.942	0.823	0.711	0.598	0.363	0.488	0.369	0.179	0.352	0.249	0.111
	0.020	0.998	0.994	0.968	0.999	0.996	0.978	0.889	0.817	0.617	0.678	0.560	0.330	0.502	0.381	0.195
	0.030	1.000	1.000	1.000	1.000	1.000	1.000	0.993	0.982	0.930	0.921	0.858	0.679	0.779	0.669	0.438
	0.040	1.000	1.000	1.000	1.000	1.000	1.000	1.000	0.999	0.992	0.988	0.971	0.896	0.932	0.871	0.696
	0.050	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	0.999	0.999	0.996	0.974	0.984	0.962	0.870

Table D.3: Rejection Rates for Test for Productivity Change using Logs (continued)

n	β	- \quad = $1, q=1$ -			- $p=2, q=1-$			$-p=3, q=1-$			- $p=4, q=1-$			$-p=5, q=1-$		
		. 10	. 05	. 01	. 10						. 10			$\text { . } 10$. 05	$.01$
250	0.000	0.102	0.051	0.010	0.107	0.053	0.010	0.103	0.052	0.010	0.104	0.054	0.012	0.102	0.055	0.014
	0.005	0.592	0.464	0.234	0.617	0.493	0.258	0.305	0.203	0.074	0.201	0.125	0.041	0.159	0.096	0.031
	0.010	0.977	0.953	0.851	0.983	0.963	0.878	0.695	0.576	0.337	0.437	0.320	0.144	0.306	0.208	0.085
	0.015	1.000	1.000	0.997	1.000	1.000	0.998	0.936	0.882	0.711	0.703	0.582	0.344	0.505	0.380	0.187
	0.020	1.000	1.000	1.000	1.000	1.000	1.000	0.994	0.984	0.933	0.889	0.811	0.597	0.705	0.581	0.342
	0.030	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	0.999	0.994	0.985	0.932	0.943	0.889	0.709
	0.040	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	0.995	0.995	0.986	0.930
	0.050	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	0.999	0.990
500	0.000	0.102	0.051	0.010	0.103	0.051	0.010	0.102	0.051	0.010	0.101	0.052	0.012	0.101	0.053	0.013
	0.005	0.842	0.753	0.522	0.862	0.779	0.558	0.435	0.316	0.136	0.256	0.167	0.060	0.185	0.114	0.039
	0.010	1.000	0.999	0.995	1.000	1.000	0.997	0.887	0.812	0.602	0.591	0.464	0.242	0.393	0.279	0.122
	0.015	1.000	1.000	1.000	1.000	1.000	1.000	0.995	0.987	0.942	0.868	0.782	0.556	0.647	0.519	0.286
	0.020	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	0.998	0.977	0.950	0.836	0.850	0.753	0.514
	0.030	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	0.996	0.990	0.975	0.893
	0.040	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	0.999	0.993
	0.050	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
1000	0.000	0.102	0.051	0.010	0.102	0.051	0.010	0.102	0.051	0.011	0.101	0.051	0.011	0.100	0.051	0.012
	0.005	0.982	0.962	0.875	0.986	0.971	0.899	0.622	0.498	0.267	0.341	0.234	0.093	0.228	0.145	0.051
	0.010	1.000	1.000	1.000	1.000	1.000	1.000	0.984	0.965	0.879	0.767	0.657	0.411	0.521	0.394	0.192
	0.015	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	0.998	0.969	0.936	0.807	0.806	0.699	0.454
	0.020	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	0.999	0.996	0.975	0.954	0.907	0.740
	0.030	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	0.998	0.986
	0.040	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
	0.050	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000

Table D.4: Rejection Rates for Test for Productivity Change using Geometric Mean (Two-sided Test, Recentered Intervals when $\kappa<1 / 2$)

n	β	- $\quad p=1, q=1-$			$-p=2, q=1 \text { - }$			$-p=3, q=1 \text { - }$			- $p=4, q=1-$			- $p=5, q=1-$		
		. 10	. 05	. 01	. 10	. 05	. 01	. 10	. 05	. 01	. 10	. 05	. 01	. 10	. 05	. 01
25	0.000	0.118	0.061	0.014	0.126	0.066	0.016	0.036	0.013	0.001	0.009	0.002	0.000	0.004	0.001	0.000
	0.005	0.150	0.080	0.018	0.157	0.086	0.021	0.047	0.017	0.002	0.012	0.003	0.000	0.005	0.001	0.000
	0.010	0.295	0.188	0.062	0.307	0.200	0.070	0.128	0.060	0.011	0.044	0.015	0.001	0.022	0.006	0.001
	0.015	0.497	0.364	0.161	0.515	0.384	0.178	0.276	0.157	0.041	0.124	0.053	0.008	0.069	0.025	0.003
	0.020	0.692	0.562	0.314	0.712	0.587	0.341	0.465	0.307	0.108	0.257	0.132	0.028	0.160	0.071	0.011
	0.030	0.926	0.859	0.655	0.936	0.876	0.686	0.791	0.645	0.354	0.583	0.396	0.146	0.438	0.262	0.075
	0.040	0.988	0.968	0.873	0.989	0.972	0.888	0.937	0.859	0.626	0.816	0.664	0.354	0.698	0.512	0.218
	0.050	0.998	0.992	0.955	0.997	0.991	0.958	0.977	0.942	0.803	0.917	0.826	0.566	0.845	0.710	0.404
50	0.000	0.110	0.055	0.011	0.115	0.059	0.012	0.018	0.005	0.000	0.003	0.000	0.000	0.000	0.000	0.000
	0.005	0.198	0.113	0.027	0.205	0.118	0.030	0.041	0.012	0.001	0.006	0.001	0.000	0.001	0.000	0.000
	0.010	0.465	0.330	0.130	0.484	0.350	0.143	0.177	0.077	0.009	0.048	0.012	0.000	0.013	0.002	0.000
	0.015	0.750	0.625	0.355	0.772	0.653	0.386	0.444	0.257	0.057	0.186	0.068	0.006	0.071	0.017	0.001
	0.020	0.921	0.852	0.631	0.934	0.873	0.670	0.723	0.529	0.193	0.428	0.217	0.034	0.220	0.079	0.006
	0.030	0.998	0.992	0.948	0.998	0.994	0.959	0.970	0.908	0.642	0.853	0.667	0.267	0.665	0.411	0.093
	0.040	1.000	1.000	0.994	1.000	1.000	0.995	0.996	0.984	0.899	0.969	0.905	0.622	0.901	0.750	0.347
	0.050	1.000	1.000	0.999	1.000	1.000	0.998	0.999	0.995	0.964	0.989	0.965	0.831	0.963	0.896	0.619
100	0.000	0.105	0.052	0.010	0.110	0.055	0.011	0.010	0.002	0.000	0.001	0.000	0.000	0.000	0.000	0.000
	0.005	0.302	0.192	0.059	0.316	0.205	0.066	0.061	0.018	0.001	0.005	0.000	0.000	0.000	0.000	0.000
	0.010	0.723	0.596	0.326	0.747	0.627	0.358	0.351	0.173	0.022	0.080	0.017	0.000	0.009	0.001	0.000
	0.015	0.953	0.908	0.735	0.963	0.925	0.771	0.767	0.563	0.178	0.380	0.150	0.009	0.100	0.017	0.000
	0.020	0.997	0.991	0.952	0.998	0.994	0.964	0.963	0.884	0.535	0.765	0.488	0.086	0.390	0.129	0.005
	0.030	1.000	1.000	1.000	1.000	1.000	1.000	1.000	0.997	0.959	0.990	0.947	0.624	0.911	0.701	0.177
	0.040	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	0.995	0.999	0.993	0.922	0.987	0.942	0.622
	0.050	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	0.999	1.000	0.998	0.977	0.996	0.983	0.861

Table D.4: Rejection Rates for Test for Productivity Change using Geometric Mean (continued)

n	β	- $\quad p=1, q=1-$			- $\quad p=2, q=1$ -			- \quad = $=3, q=1$ -			- $p=4, q=1-$			- \quad = $5, q=1$ -		
		. 10	. 05	. 01	. 10	. 05	. 01	. 10	. 05	. 01	. 10	. 05	. 01	. 10	. 05	. 01
250	0.000	0.103	0.051	0.010	0.107	0.054	0.011	0.005	0.001	0.000	0.000	0.000	0.000	0.000	0.000	0.000
	0.005	0.572	0.438	0.204	0.594	0.463	0.225	0.151	0.050	0.002	0.008	0.001	0.000	0.000	0.000	0.000
	0.010	0.974	0.946	0.826	0.980	0.957	0.854	0.789	0.574	0.154	0.279	0.071	0.001	0.027	0.001	0.000
	0.015	1.000	1.000	0.996	1.000	1.000	0.998	0.995	0.975	0.765	0.879	0.605	0.075	0.424	0.096	0.000
	0.020	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	0.989	0.997	0.967	0.552	0.916	0.604	0.038
	0.030	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	0.990	0.999	0.991	0.769
	0.040	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	0.999	1.000	0.999	0.979
	0.050	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	0.997
500	0.000	0.102	0.051	0.010	0.103	0.052	0.010	0.003	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
	0.005	0.833	0.738	0.494	0.852	0.764	0.528	0.347	0.152	0.011	0.020	0.001	0.000	0.000	0.000	0.000
	0.010	1.000	0.999	0.993	1.000	0.999	0.996	0.986	0.941	0.616	0.697	0.314	0.008	0.106	0.005	0.000
	0.015	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	0.997	0.999	0.976	0.500	0.887	0.445	0.004
	0.020	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	0.983	0.999	0.976	0.323
	0.030	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	0.992
	0.040	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
	0.050	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
1000	0.000	0.102	0.051	0.010	0.102	0.051	0.010	0.001	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
	0.005	0.981	0.960	0.865	0.985	0.969	0.889	0.711	0.458	0.077	0.073	0.005	0.000	0.000	0.000	0.000
	0.010	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	0.987	0.987	0.869	0.142	0.515	0.064	0.000
	0.015	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	0.991	1.000	0.973	0.139
	0.020	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	0.970
	0.030	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
	0.040	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
	0.050	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000

n	β	- \quad = $1, q=1-$			- \quad = $2, q=1$ -			- $p=3, q=1$ -			- $p=4, q=1-$			- \quad = $5, q=1$ -		
		. 10	. 05	. 01	. 10	. 05	. 01	. 10	. 05	. 01	. 10	. 05	. 01	. 10	. 05	. 01
25	0.000	0.116	0.058	0.012	0.124	0.063	0.014	0.032	0.011	0.001	0.007	0.002	0.000	0.003	0.001	0.000
	0.005	0.183	0.107	0.030	0.195	0.115	0.034	0.070	0.029	0.004	0.021	0.006	0.000	0.010	0.002	0.000
	0.010	0.354	0.245	0.099	0.373	0.264	0.111	0.186	0.098	0.021	0.076	0.029	0.003	0.040	0.013	0.001
	0.015	0.567	0.445	0.233	0.594	0.473	0.257	0.371	0.234	0.075	0.196	0.094	0.017	0.119	0.048	0.007
	0.020	0.756	0.649	0.419	0.782	0.681	0.453	0.584	0.424	0.182	0.373	0.217	0.057	0.255	0.128	0.025
	0.030	0.954	0.914	0.774	0.965	0.931	0.807	0.887	0.783	0.516	0.740	0.566	0.264	0.612	0.417	0.153
	0.040	0.996	0.989	0.946	0.997	0.992	0.959	0.983	0.950	0.803	0.931	0.836	0.562	0.864	0.720	0.400
	0.050	1.000	0.999	0.990	1.000	0.999	0.993	0.998	0.990	0.935	0.984	0.949	0.791	0.960	0.891	0.652
50	0.000	0.109	0.053	0.010	0.114	0.057	0.011	0.016	0.004	0.000	0.002	0.000	0.000	0.000	0.000	0.000
	0.005	0.231	0.143	0.043	0.241	0.151	0.048	0.062	0.023	0.002	0.013	0.003	0.000	0.003	0.000	0.000
	0.010	0.513	0.387	0.182	0.539	0.413	0.200	0.242	0.121	0.020	0.083	0.025	0.001	0.027	0.005	0.000
	0.015	0.789	0.684	0.442	0.814	0.717	0.480	0.541	0.355	0.107	0.278	0.124	0.015	0.128	0.040	0.002
	0.020	0.939	0.890	0.722	0.952	0.911	0.760	0.808	0.652	0.311	0.566	0.342	0.078	0.349	0.155	0.018
	0.030	0.999	0.996	0.975	0.999	0.998	0.983	0.989	0.962	0.802	0.937	0.824	0.459	0.825	0.615	0.214
	0.040	1.000	1.000	0.999	1.000	1.000	0.999	1.000	0.998	0.971	0.995	0.974	0.832	0.975	0.909	0.607
	0.050	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	0.994	0.999	0.995	0.955	0.995	0.978	0.857
100	0.000	0.104	0.051	0.010	0.109	0.055	0.010	0.010	0.002	0.000	0.000	0.000	0.000	0.000	0.000	0.000
	0.005	0.331	0.223	0.080	0.351	0.239	0.090	0.086	0.030	0.002	0.011	0.001	0.000	0.001	0.000	0.000
	0.010	0.751	0.638	0.389	0.776	0.672	0.424	0.422	0.239	0.044	0.130	0.035	0.001	0.022	0.002	0.000
	0.015	0.961	0.925	0.788	0.970	0.942	0.823	0.824	0.660	0.280	0.498	0.246	0.027	0.182	0.044	0.001
	0.020	0.998	0.994	0.968	0.999	0.996	0.978	0.979	0.932	0.680	0.858	0.646	0.189	0.559	0.254	0.019
	0.030	1.000	1.000	1.000	1.000	1.000	1.000	1.000	0.999	0.988	0.998	0.985	0.825	0.972	0.873	0.400
	0.040	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	0.999	1.000	0.999	0.983	0.998	0.988	0.865
	0.050	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	0.997	1.000	0.998	0.972

Table D.5: Rejection Rates for Test for Productivity Change using Logs (continued)

n	β	- \quad = 1, $q=1$ -			$-p=2, q=1 \quad-$			$\begin{gathered} -p=3, q=1- \\ .05 \end{gathered}$			- $p=4, q=1-$			$-p=5, q=1-$		
		. 10	. 05	. 01	. 10						. 10	. 05		$\text { . } 10$. 05	$.01$
250	0.000	0.102	0.051	0.010	0.107	0.053	0.011	0.005	0.001	0.000	0.000	0.000	0.000	0.000	0.000	0.000
	0.005	0.592	0.464	0.234	0.617	0.493	0.258	0.183	0.070	0.005	0.014	0.001	0.000	0.000	0.000	0.000
	0.010	0.977	0.953	0.851	0.983	0.963	0.878	0.826	0.643	0.226	0.366	0.122	0.003	0.057	0.005	0.000
	0.015	1.000	1.000	0.997	1.000	1.000	0.998	0.997	0.984	0.846	0.926	0.729	0.167	0.577	0.201	0.003
	0.020	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	0.996	0.999	0.988	0.750	0.966	0.788	0.136
	0.030	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	0.998	1.000	0.998	0.936
	0.040	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	0.997
	0.050	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
500	0.000	0.102	0.051	0.010	0.103	0.051	0.010	0.002	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
	0.005	0.842	0.753	0.522	0.862	0.779	0.558	0.385	0.185	0.019	0.030	0.003	0.000	0.000	0.000	0.000
	0.010	1.000	0.999	0.995	1.000	1.000	0.997	0.989	0.956	0.696	0.767	0.421	0.023	0.183	0.017	0.000
	0.015	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	0.999	0.999	0.989	0.685	0.945	0.640	0.024
	0.020	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	0.996	1.000	0.994	0.622
	0.030	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	0.999
	0.040	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
	0.050	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
1000	0.000	0.102	0.051	0.010	0.102	0.051	0.010	0.001	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
	0.005	0.982	0.962	0.875	0.986	0.971	0.899	0.738	0.500	0.104	0.099	0.010	0.000	0.000	0.000	0.000
	0.010	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	0.992	0.992	0.915	0.254	0.644	0.141	0.000
	0.015	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	0.998	1.000	0.992	0.365
	0.020	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	0.996
	0.030	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
	0.040	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
	0.050	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000

References

Ahn, Y.-H. and H. Min (2014), Evaluating the multi-period operating efficiency of international airports using data envelopment analysis and the Malmquist productivity index, Journal of Air Transport Management 39, 12-22.

Ball, V. E., C. A. K. Lovell, H. Luu, and R. Nehring (2004), Incorporating environmental impacts in the measurement of agricultural productivity growth, Journal of Agricultural and Resource Economics 29, 436-460.

Barros, C. P. and C. Alves (2004), An empirical analysis of productivity growth in a Portuguese retail chain using Malmquist productivity index, Journal of Retailing and Consumer Services 11, 269-278.

Barros, C. P., N. Barroso, and M. R. Borges (2005), Evaluating the efficiency and productivity of insurance companies with a Malmquist index: A case study for Portugal, Geneva Papers on Risk and Insurance: Issues and Practice 30, 244-267.

Bhushan, S. (2005), Total factor productivity growth of wheat in India: A Malmquist approach, Indian Journal of Agricultural Economics 60, 32-48.

Burgess Jr., J. F. and P. W. Wilson (1995), Decomposing hospital productivity changes 1985-1988: A nonparametric Malmquist approach, Journal of Productivity Analysis 6, 343-363.

Chang, H., H. L. Choy, W. W. Cooper, and T. W. Ruefli (2009), Using Malmquist indexes to measure changes in the productivity and efficiency of US accounting firms before and after the Sarbanes-Oxley Act, Omega 37, 951-960.

Chavas, J.-P. and T. L. Cox (1990), A non-parametric analysis of productivity: The case of US and Japanese manufacturing, American Economic Review 80, 450-64.

Chen, P. C., M. M. Yu, C. C. Chang, and S. H. Hsu (2007), Productivity change in Taiwan's farmers' credit unions: A nonparametric risk-adjusted Malmquist approach, Agricultural Economics 36, 221-231.

Chen, X., X. Wang, D. D. Wu, and Z. Zhang (2011), Analysing firm performance in Chinese IT industry: DEA Malmquist productivity measure, International Journal of Information Technology and Management 10, 3-23.

Chen, Y. and A. I. Ali (2004), DEA Malmquist productivity measure: New insights with an application to computer industry, European Journal of Operational Research 159, 239-249.

Coelli, T. J. and D. S. P. Rao (2005), Total factor productivity growth in agriculture: A Malmquist index analysis of 93 countries, 1980-2000, Agricultural Economics 32 (Suppl. 1), 115-134.

Cummins, J. D. and M. Rubio-Misas (2006), Deregulation, consolidation, and efficiency: Evidence from the Spanish insurance industry, Journal of Money, Credit and Banking 38, 323-355.

Daraio, C., L. Simar, and P. W. Wilson (2018), Central limit theorems for conditional efficiency measures and tests of the 'separability condition' in non-parametric, two-stage models of production, The Econometrics Journal 21, 170-191.

De Nicola, A., S. Gitto, and P. Mancuso (2013), Airport quality and productivity changes: A Malmquist index decomposition assessment, Transportation Research Part E: Logistics and Transportation Review 58, 67-65.

Egilmez, G. and D. McAvoy (2013), Benchmarking road safety of U.S. states: A DEA-based Malmquist productivity index approach, Accident Analysis \& Prevention 53, 55-64.

Elhendy, A. M. and S. H. Alkahtani (2012), Efficiency and productivity change estimation of traditional fishery sector at the Arabian Gulf: The Malmquist productivity index approach, Journal of Animal and Plant Sciences 22, 300-308.

Essid, H., P. Ouellette, and S. Vigeant (2014), Productivity, efficiency, and technical change of Tunisian schools: A bootstrapped Malmquist approach with quasi-fixed inputs, Omega 42, 88-97.

Estache, A., B. T. de la Fé, and L. Trujillo (2004), Sources of efficiency gains in port reform: A DEA decomposition of a Malmquist TFP index for Mexico, Utilities Policy 12, 221230.

Färe, R., S. Grosskopf, and M. Norris (1997), Productivity growth, technical progress, and efficiency change in industrialized countries: Reply., American Economic Review 87, 1040-1043.

Färe, R., S. Grosskopf, M. Norris, and Z. Zhang (1994), Productivity growth, technical progress, and efficiency change in industrialized countries, American Economic Review 84, 66-83.

Fuentes, R. and A. Lillo-Bañuls (2014), Smoothed bootstrap Malmquist index based on DEA model to compute productivity of tax offices, Expert Systems with Applications 42, 2442-2450.

Gilbert, A. and P. W. Wilson (1998), Effects of deregulation on the productivity of Korean banks, Journal of Economics and Business 50, 133-155.

Gitto, S. and P. Mancuso (2012), Bootstrapping the Malmquist indexes for Italian airports, International Journal of Production Economics 135, 403-411.

Giuffrida, A. (1999), Productivity and efficiency changes in primary care: A Malmquist index approach, Health Care Management Science 2, 11-26.

Hadad, M. D., M. J. B. Hall, K. A. Kenjegaliev, W. Santoso, and R. Simper (2011), Productivity changes and risk management in Indonesian banking: A Malmquist analysis, Applied Financial Economics 21, 847-861.

Han, Y., Z. Geng, X. Gu, and Z. Wang (2014), Performance analysis of China ethylene plants by measuring Malmquist production efficiency based on an improved data envelopment analysis cross-model, Industrial and Engineering Chemistry Research 54, 272-284.

Hoff, A. (2006), Bootstrapping Malmquist indices for Danish seiners in the North Sea and Skagerrak, Journal of Applied Statistics 33, 891-907.

Kao, C. (2010), Malmquist productivity index based on common-weights DEA: The case of Taiwan forests after reorganization, Omega 38, 484-491.

Kapelko, M. and A. O. Lansink (2015), An international comparison of productivity change in the textile and clothing industry: a bootstrapped Malmquist index approach, Empirical Economics 48, 1499-1523.

Kaur, T. P. (2015), Externalities, infrastructure growth and industrial performance in India: An application of Malmquist productivity index, International Journal of Applied Business and Economic Research 13, 1133-1157.

Kneip, A., L. Simar, and P. W. Wilson (2008), Asymptotics and consistent bootstraps for DEA estimators in non-parametric frontier models, Econometric Theory 24, 1663-1697.

- (2015), When bias kills the variance: Central limit theorems for DEA and FDH efficiency scores, Econometric Theory 31, 394-422.
- (2016), Testing hypotheses in nonparametric models of production, Journal of Business and Economic Statistics 34, 435-456.

Kontodimopoulos, N. and D. Niakas (2006), A 12-year analysis of Malmquist total factor productivity in dialysis facilities, Journal of Medical Systems 30, 333-342.

Korkmaz, M. (2011), Productivity changes of forest enterprises in Turkey: A non-parametric Malmquist approach, African Journal of Agricultural Research 6, 6189-6196.

Kortelainen, M. (2008), Dynamic environmental performance analysis: A Malmquist index approach, Ecological Economics 64, 701-715.

Krüger, J. J. (2003), The global trends of total factor productivity: Evidence from the nonparametric Malmquist index approach, Oxford Economic Papers 55, 265-286.

Kumar, S. and R. Russell (2002), Technological change, technological catch-up, and capital deepening: Relative contributions to growth and convergence, American Economic Review 92, 527-548.

Lee, A. H. I., H. Y. Kang, and C. Y. Lin (2014), A performance evaluation model using FAHP/DEA and the Malmquist productivity index to assess the photovoltaics industry in Taiwan, Journal of Testing and Evaluation 42, 211-228.

Li, J., J. Zhang, L. Gong, and P. Miao (2015), Research on the total factor productivity and decomposition of Chinese coastal marine economy: Based on DEA-Malmquist index, Journal of Coastal Research , 283-289.

Lin, B. and R. Fei (2015), Regional differences of CO_{2} emissions performance in china's agricultural sector: A Malmquist index approach, European Journal of Agronomy 70, 33-40.

Lin, Y. H., G. J. Y. Hsu, and C. Hsiao (2007), Measuring efficiency of domestic banks in Taiwan: Application of data envelopment analysis and Malmquist index, Applied Economics Letters 14, 821-827.

Liu, F. H. F. and P. H. Wang (2008), DEA Malmquist productivity measure: Taiwanese semiconductor companies, International Journal of Production Economics 112, 367379.

Macpherson, A. J., P. P. Principe, and M. Mehaffey (2013), Using Malmquist indices to evaluate environmental impacts of alternative land development scenarios, Ecological Indicators 34, 296-303.

Molinos-Senante, M., F. Hernández-Sancho, M. Mocholí-Arce, and R. Sala-Garrido (2016), Productivity growth of wastewater treatment plants - accounting for environmental impacts: a Malmquist-Luenberger index approach, Urban Water Journal 13, 476-485.

Morfeldt, J. and S. Silveira (2014), Capturing energy efficiency in European iron and steel production-comparing specific energy consumption and Malmquist productivity index, Energy Efficiency 7, 955-972.

Murillo-Melchor, C. (1999), An analysis of technical efficiency and productivity changes in Spanish airports using the Malmquist index, International Journal of Transport Economics 26, 271-292.

Nektarios, M. and C. P. Barros (2010), A Malmquist index for the Greek insurance industry, Geneva Papers on Risk and Insurance: Issues and Practice 35, 309-324.

Olgu, O. and T. G. Weyman-Jones (2008), Parametric and nonparametric Malmquist productivity decomposition: A case study of European commercial banks, International Journal of Business Performance Management 10, 344-365.

Oliveira, M. M., M. B. Gaspar, J. P. Paixão, and A. S. Camanho (2009), Productivity change of the artisanal fishing fleet in Portugal: A Malmquist index analysis, Fisheries Research 95, 189-197.

Ouellette, P. and V. Vierstraete (2010), Malmquist indexes with quasi-fixed inputs: An application to school districts in Québec, Annals of Operations Research 173, 57-76.

Ozcan, Y. A. and R. D. Luke (2011), Health care delivery restructuring and productivity change: Assessing the Veterans Integrated Service Networks (VISNs) using the Malmquist approach, Medical Care Research and Review 68, 20S-35S.

Park, J. L., S. K. Yoo, J. H. Kim, J. J. Kim, and J. S. Lee (2015), Comparing the efficiency and productivity of construction firms in China, Japan, and Korea using DEA and DEA-based Malmquist, Journal of Asian Architecture and Building Engineering 14, 57-64.

Portela, M. C. A. S. and E. Thanassoulis (2010), Malmquist-type indices in the presence of negative data: An application to bank branches, Journal of Banking and Finance 34, 1472-1483.

Price, C. W. and T. Weyman-Jones (1996), Malmquist indices of productivity change in the UK gas industry before and after privatization, Applied Economics 28, 29-39.

Pyo, H. and J. C. Kim (2010), Productivity analysis in fisheries processed wholesale products using Malmquist productivity index, Ocean and Polar Research 32, 387-396.

Ray, S. and I. A. Ray (2012), Malmquist indices of productivity change in India's chemical industry: A subsector-level analysis, International Journal of Economic Policy in Emerging Economies 5, 16-36.

Ray, S. C. and E. Desli (1997), Productivity growth, technical progress, and efficiency change in industrialized countries: Comment, American Economic Review 87, 1033-1039.

Rayeni, M. M., G. Vardanyan, and F. H. Saljooghi (2010), The measurement of productivity growth in the academic departments using Malmquist productivity index, Journal of Applied Sciences 10, 2875-2880.

Roh, C. Y., M. J. Moon, and C. Park (2011), Measuring economic performance of Colorado community hospitals using the Malmquist productivity change index, International Review of Public Administration 16, 91-111.

Sharma, S. and S. Gupta (2010), Malmquist productivity and efficiency analysis for banking industry in India, International Journal of Business Excellence 3, 65-76.

Shestalova, V. (2003), Sequential Malmquist indices of productivity growth: An application to OECD industrial activities, Journal of Productivity Analysis 19, 211-226.

Shi, W. L. and M. Xiao (2015), Empirical analysis of logistics park efficiency based on Malmquist productivity index model, Metallurgical and Mining Industry 7, 176-183.

Sommersguter-Reichmann, M. (2000), The impact of the Austrian hospital financing reform on hospital productivity: Empirical evidence on efficiency and technology changes using a non-parametric input-based Malmquist approach, Health Care Management Science 3, 309-321.

Song, H. and R. Zhang (2013), R \& D efficiency appraisal of pharmaceutical industry based on DEA-Malmquist, Journal of Chemical and Pharmaceutical Research 5, 195-199.

Sowlati, T. and S. Vahid (2006), Malmquist productivity index of the manufacturing sector in Canada from 1994 to 2002, with a focus on the wood manufacturing sector, Scandinavian Journal of Forest Research 21, 424-433.

Sözen, A. and I. Alp (2013), Malmquist total factor productivity index approach to modelling Turkey's performance of energy consumption, Energy Sources, Part B: Economics, Planning and Policy 8, 398-411.

Staat, M. (2003), The efficiency of treatment strategies of general practitioners: A Malmquist index approach, European Journal of Health Economics 4, 232-238.

Sueyoshi, T. and M. Goto (2013), DEA environmental assessment in a time horizon: Malmquist index on fuel mix, electricity and CO_{2} of industrial nations, Energy Economics 40, 370-382.

- (2015), DEA environmental assessment in time horizon: Radial approach for Malmquist index measurement on petroleum companies, Energy Economics 51, 329-345.

Sun, W., Y. Li, D. Wang, and J. Fan (2012), The efficiencies and their changes of China's resources-based cities employing DEA and Malmquist index models, Journal of Geographical Sciences 22, 509-520.

Tengyun, G., X. Yong, and W. Zhiqiang (2009), The analyses of metropolitan efficiencies and their changes in China based on DEA and Malmquist index models, Acta Geographica Sinica 64, 408-416.

Thirtle, C., J. Piesse, A. Lusigi, and K. Suhariyanto (2003), Multi-factor agricultural productivity, efficiency and convergence in Botswana, 1981-1996, Journal of Development Economics 71, 605-624.

Vaz, C. B. and A. S. Camanho (2012), Performance comparison of retailing stores using a Malmquist-type index, Journal of the Operational Research Society 63, 631-645.

Wang, J. Y. L., C. H. and Y. H. Chang (2012), Measuring productivity in the biotechnology industry using the global Malmquist index, Applied Economics Letters 19, 807-812.
Wang, Y. and Y. Zhang (2012), Research on efficiency and efficiency dynamic change of China accounting firms based on DEA-Malmquist index model, Advances in Information Sciences and Service Sciences 4, 182-192.

Weber, W. L. and B. Domazlicky (2001), Productivity growth and pollution in state manufacturing, The Review of Economics and Statistics 83, 195-199.

Wheelock, D. C. and P. W. Wilson (1999), Technical progress, inefficiency, and productivity change in U. S. banking, 1984-1993, Journal of Money, Credit, and Banking 31, 212234.

Wijesiri, M. and M. Meoli (2015), Productivity change of microfinance institutions in kenya: A bootstrap Malmquist approach, Journal of Retailing and Consumer Services 25, 115121.

Woo, C., Y. Chung, D. Chun, H. Seo, and S. Hong (2015), The static and dynamic environmental efficiency of renewable energy: A Malmquist index analysis of OECD countries, Renewable and Sustainable Energy Reviews 47, 367-376.
Wu, A. H., Y. Y. Cao, and B. Liu (2014), Energy efficiency evaluation for regions in China: An application of DEA and Malmquist indices, Energy Efficiency 7, 429-439.
Wu, J., Q. Zhu, P. Yin, and M. Song (2015), Measuring energy and environmental performance for regions in China by using DEA-based Malmquist indices, Operational Research 17, 715-735.

Xue, X., Q. Shen, Y. Wang, and J. Lu (2008), Measuring the productivity of the construction industry in China by using DEA-based Malmquist productivity indices, Journal of Construction Engineering and Management 134, 64-71.
Yaisawarng, S. and J. D. Klein (1994), The effects of sulfur dioxide controls on productivity change in the U.S. electric power industry, The Review of Economics and Statistics 76, 447-460.

Yan, H. and Y. Yang (2013), Evaluate innovational productivity of China pharmaceutical manufacturing industry based on DEA-Malmquist index approach, Journal of Chemical and Pharmaceutical Research 5, 265-269.

Yang, H. and M. Pollitt (2012), Incorporating undesirable outputs into Malmquist TFP indices with an unbalanced data panel of Chinese power plants, Applied Economics Letters 19, 277-283.

Yasunaga, N. (2014), Growth analysis of rural businesses in hilly and mountainous areas: Malmquist productivity index approach, Studies in Regional Science 43, 357-372.

Zheng, J. (2015), Knowledge production function and Malmquist index regression equations as a dynamic system, Economics of Innovation and New Technology 24, 5-21.
Zhou, P., B. W. Ang, and J. Y. Han (2010), Total factor carbon emission performance: A Malmquist index analysis, Energy Economics 32, 194-201.

[^0]: *Kneip: Institut für Finanzmarktökonomie und Statistik, Fachbereich Wirtschaftswissenschaften, Universität Bonn, Bonn, Germany; email: akneip@uni-bonn.de.

 Simar: Institut de Statistique, Biostatistique, et Sciences Actuarielles, Université Catholique de Louvain-la-Neuve, Louvain-la-Neuve, Belgium; email: leopold.simar@uclouvain.be.

 Wilson: Department of Economics and School of Computing, Clemson University, Clemson, South Carolina, USA; email: pww@clemson.edu.

 Technical support from the Cyber Infrastructure Technology Integration group at Clemson University are gratefully acknowledged. Any remaining errors are solely our responsibility.

[^1]: ${ }^{1}$ Note that there is an error in Appendix A of Kneip et al. (2015). The concept of the boundary $\Psi^{* \partial}(x)$ used here is correct (as well as the arguments relying on $\Psi^{* 2}(x)$). But the definition in formula (A.4) of Kneip et al. (2015) does not provide the proper boundary, and it should be replaced by an analog of C.16. The proof of Theorem 3.1 in Kneip et al. (2015) still holds after this change.

[^2]: 2 Note that a typographical error appears in Appendix A of Kneip et al. (2015). The quantity $E\left(\widehat{\theta}_{\operatorname{VRS}}\left(X_{i}, Y_{i} \mid \mathcal{X}_{n}\right)-\theta\left(X_{i}, Y_{i}\right) \mid\left(X_{i}, Y_{i}\right) \in \mathcal{W}_{n, 1}\right)$ in formula (A.24) should be replaced by $E\left(\widehat{\theta}_{\mathrm{VRS}}\left(X_{i}, Y_{i} \mid \mathcal{X}_{n}\right)-\theta\left(X_{i}, Y_{i}\right) \mid\left(X_{i}, Y_{i}\right) \in \mathcal{W}_{n, 1}\right) \cdot \operatorname{Pr}\left(\left(X_{i}, Y_{i}\right) \in \mathcal{W}_{n, 1}\right)$.

