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A Empirical Applications in the Literature

As noted in Section 1, Malmquist indices have been widely applied to measure changes in

productivity over time. Areas of empirical application in the literature include development

economics (e.g., Thirtle et al., 2003; Kaur, 2015; Li et al., 2015; Wijesiri and Meoli, 2015),

regional science and urban economics (e.g., Tengyun et al., 2009; Sun et al., 2012; Yasunaga,

2014), environmental economics (e.g, Kortelainen, 2008; Zhou et al., 2010; Macpherson

et al., 2013; Sueyoshi and Goto, 2013; Lin and Fei, 2015; Molinos-Senante et al., 2016),

transportation and logistics (e.g., Murillo-Melchor, 1999; Estache et al., 2004; Gitto and

Mancuso, 2012; Egilmez and McAvoy, 2013; De Nicola et al., 2013; Ahn and Min, 2014), Shi

and Xiao, 2015; macroeconomic growth (e.g., Färe et al., 1994 and 1997; Ray and Desli, 1997;

Kumar and Russell, 2002; Krüger, 2003), natural resources (e.g., Hoff, 2006; Oliveira et al.,

2009; Pyo and Kim, 2010; Kao, 2010; Korkmaz, 2011; Elhendy and Alkahtani, 2012), health

economics (e.g., Burgess Jr. and Wilson, 1995; Giuffrida, 1999; Sommersguter-Reichmann,

2000; Staat, 2003; Kontodimopoulos and Niakas, 2006; Ozcan and Luke, 2011; Roh et al.,

2011), energy economics (e.g., Yaisawarng and Klein, 1994; Price and Weyman-Jones, 1996;

Yang and Pollitt, 2012; Sözen and Alp, 2013; Morfeldt and Silveira, 2014; Wu et al., 2014;

Woo et al., 2015; Wu et al., 2015), economics of education (e.g, Rayeni et al., 2010; Ouellette

and Vierstraete, 2010); Essid et al., 2014), agricultural economics (e.g., Ball et al., 2004);

Bhushan, 2005; Coelli and Rao, 2005), and economics of innovation (e.g., Zheng, 2015).

Malmquist indices are also used to examine specific industries, including computers and

electronics (e.g, Chen and Ali, 2004; Chen and Ali, 2004; Liu and Wang, 2008; Chen et al.,

2011; Lee et al., 2014), construction (e.g., Xue et al., 2008; Park et al., 2015), oil (e.g.,

Sueyoshi and Goto, 2015), textiles and clothing (e.g., Kapelko and Lansink, 2015), insurance

and finance (e.g., Nektarios and Barros, 2010; Barros et al., 2005; Cummins and Rubio-Misas,

2006), manufacturing (e.g., Chavas and Cox, 1990; Weber and Domazlicky, 2001; Shestalova,

2003; Sowlati and Vahid, 2006), retail trade (e.g., Barros and Alves, 2004; Vaz and Camanho,

2012), chemicals (e.g., Ray and Ray, 2012; Han et al., 2014), biotechnology (e.g., Wang and

Chang, 2012), accounting firms (e.g., Chang et al., 2009; Wang and Zhang, 2012), banking

(e.g., Gilbert and Wilson, 1998; Wheelock and Wilson, 1999; Chen et al., 2007; Lin et al.,

2007; Olgu and Weyman-Jones, 2008; Portela and Thanassoulis, 2010; Sharma and Gupta,
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2010; Hadad et al., 2011), government services (e.g., Fuentes and Lillo-Bañuls, 2014), and

pharmaceuticals (e.g., Yan and Yang, 2013; Song and Zhang, 2013). Many other examples

can be found in the economics literature.

B Inference Based on Arithmetic Means of Logs

Much of the discussion here is analogous to the development in Section 4. Theorem 3.6 from

Section 3.3 provides the basis for making inference about productivity change while working

with arithmetic means of logs of estimated Malmquist indices. Recall from Section 4 that

σ2
M = VAR(logMi) = E ((logMi − E(logMi))

2) where the expectations are over (X, Y )

in both periods 1 and 2. Recall also that in the definition of µM in (3.24) the expectation is

also with respect to (X, Y ) in both periods 1 and 2. Assume again that σ2
M is finite.

As noted in Section 3.3 just after Lemma 3.3, it is clear from (3.34) that µ̂M,n is a

consistent estimator of µM, but with a bias of CMn
−κ since E (µM,n) = µM + CMn

−κ. If

κ > 1/2, then the bias term as well as the remainder term ξn,κ are dominated by the factor
√
n and therefore can be ignored. Hence when κ > 1/2, a (1− α)× 100-percent confidence

interval for µ̂M,n is estimated by [
µ̂M,n ± z1−α

2

σ̂M,n√
n

]
, (B.1)

where z1−α
2

is the corresponding quantile of the standard normal distribution function. Under

the conditions of Theorem 3.6, provided κ > 1/2 (i.e., p + q ≤ 2), the interval in (B.1) has

asymptotically correct coverage. But if κ = 1/2, the bias in (3.34) is constant, and if κ < 1/2,

the bias tends to infinity as n→∞.

Suppose κ ≤ 1/2, and again let nκ = min (bn2κc, n), where bac denotes the largest

integer less than or equal to a as in Section 4. Assume that the observations in Xn are

randomly sorted (the algorithm described by Daraio et al., 2018, Appendix D can be used to

randomly sort the observations while allowing results to be replicated by other researchers

using the same data and the same sorting algorithm). Let

µ̂M,nκ := n−1
κ

nκ∑
i=1

log M̂i (B.2)

where the estimates M̂i are computed using n (not nκ) observations; i.e., the 4 estimates
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comprising M̂i are each computed using all of the available observations in each period. The

next result establishes the properties of this estimator.

Theorem B.1. Under the conditions of Theorem 3.6, for cases where κ ≤ 1/2,

nκ
(
µ̂M,nκ − µM − CMn−κ − ξn,κ

) d−→ N
(
0, σ2

M
)

(B.3)

as n→∞, where ξn,κ = O
(
n−

3
p+q+1 (log n)

3
p+q+1

)
.

The bias term CMn
−κ remains in (B.3), but it is now multiplied by the factor nκ and

hence is constant instead of exploding to infinity as before when κ < 1/2. In order to

estimate the bias, a generalized jackknife estimator similar to the one described in Section 4

can be used, taking care to split the data into sub-samples appropriately for the two periods

in which firms are observed.

As in Section 4, let Zt
i = (X t

i , Y
t
i ), t ∈ {1, 2} so that the sample can be described by

Xn = {(Z1
i , Z

2
i )}ni=1. Similar to Section 4, split Xn randomly into two sub-samples X (1)

m1 and

X (2)
m2 of sizes m1 = bn/2c and m2 = n− bn/2c (respectively). Define

µ̂
(j)
M,mj

:= m−1
j

∑
(Z1
i ,Z

2
i )∈X (j)

mj

log M̂i(X (j)
mj

) (B.4)

for j ∈ {1, 2}, where the notation M̂i(X (j)
mj ) indicates that the four estimates comprising the

estimated Malmquist index M̂i are each computed for observation i in the jth sub-sample

using only the observations in the jth sub-sample X (j)
mj . Then set

µ̂∗M,n/2 =
1

2

(
µ̂

(1)
M,m1

+ µ̂
(2)
M,m2

)
. (B.5)

By following arguments similar to those in Kneip et al. (2015, Section 4) it is easy to show

that

B̃n,κ = (2κ − 1)−1 (µ̂∗M,n/2 − µ̂M,n

)
= CMn

−κ + ξ∗n,κ + op
(
n−1/2

)
, (B.6)

where ξ∗n,κ is of the same order as ξn,κ appearing in (3.34), provides an estimator of the bias

CMn
−κ.

As in Section 4, note that there are
(
n
n/2

)
possible splits of the original n observations. To

reduce the variance of the bias estimate in (B.6), the sample can be split K <<
(
n
n/2

)
times
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while randomly shuffling the observations before each split, and computing B̃n,κ,k using (B.6)

for k = 1, . . . , K. Then

B̂n,κ = K−1

K∑
k=1

B̃n,κ (B.7)

gives a generalized jackknife estimate of the bias CMn
−κ. Averaging in (B.7) reduces the

variance by a factor of K−1 relative to the bias in (B.6).

Combining Theorem 3.6 and (B.7) leads to the following result.

Theorem B.2. Under the conditions of Theorem 3.6, for cases where κ ≥ 2/5,

√
n
(
µ̂M,n − B̂n,κ − µM + ξn,κ

)
d−→ N

(
0, σ2

M
)

(B.8)

as n→∞.

Similar to the discussion in Section 4, the interplay between the root-n scaling factor and

the remainder term ξn,κ ensures that the result in Theorem B.8 holds for κ ≥ 2/5, and hence

for (p + q) ≤ 4. However, it is important to note that Theorem B.2 does not hold in cases

where κ < 2/5. In such cases, the remainder term ξn,κ, when multiplied by
√
n, diverges

toward infinity. Alternatively, combining Theorem B.1 and (B.7) yields the following result.

Theorem B.3. Under the conditions of Theorem 3.6, for cases where κ < 1/2,

nκ
(
µ̂M,nκ − B̂n,κ − µM − ξn,κ

)
d−→ N

(
0, σ2

M
)

(B.9)

as n→∞.

Note that in all cases (i.e., for all values of κ), ξn,κ = o(n−κ) and hence nκξn,κ = o(1).

Therefore the remainder term can be neglected.

Whenever κ ≥ 2/5 and hence (p + q) ≤ 4, Theorem B.2 can be used to construct an

asymptotically correct (1− α) confidence interval for µM given by[
µ̂M,n − B̂n,κ ± z1−α

2

σ̂M,n√
n

]
, (B.10)

where as in (B.1) z1−α
2

represents the
(
1− α

2

)
quantile of the standard normal distribution

function.
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Alternatively, in cases where κ < 1/2 and hence (p + q) ≥ 4, Theorem B.3 permits

construction of the asymptotically correct (1− α) confidence interval[
µ̂M,nκ − B̂n,κ ± z1−α

2

σ̂M,n

nκ

]
(B.11)

for µM. This interval is centered on µ̂M,nκ−B̂n,κ, and µ̂M,nκ computed from a random subset

of estimates M̂i (where each estimate M̂i is computed using all of the sample observations

in Xn). While this may seem arbitrary, note that any confidence interval for µM is arbitrary

since any asymmetric confidence interval for µM can be constructed simply by using different

quantiles of the N (0, 1) distribution to establish the bounds. The main point is always to

achieve a high level of coverage without making the confidence interval too wide to be

informative.

In cases where κ < 1/2, the randomness of the interval in (B.11) due to centering on a

mean over a subsample of size nκ < n can be eliminated by averaging the center of (B.11)

over all possible draws (without replacement) of subsamples of size nκ. This yields an interval[
µ̂M,n − B̂n,κ ± z1−α

2

σ̂M,n

nκ

]
(B.12)

centered on µ̂M,n − B̂n,κ. The only difference between the intervals in (B.11) and (B.12) is

the centering value. Both intervals have the same length and hence are equally informative.

But the interval in (B.12) should be more accurate (i.e., should have higher coverage in

finite samples) because the estimator µ̂M,n uses more information than the estimator µ̂M,nκ .

Therefore, for κ < 1/2, nκ < n and hence the interval in (B.12) contains the true value µM

with probability greater than (1 − α). Due to the results given above, it is clear that the

coverage of the interval in (B.12) converges to 1 as n→∞.

Note that when (p+ q) = 4, either Theorems B.2 or B.3 can be used to provide different

but asymptotically correct confidence intervals for µM. The interval in (B.10) uses the scaling

factor
√
n and hence neglects the term

√
nξn,κ = O

(
n−1/10

)
in Theorem B.2. By contrast, the

interval in (B.11) uses the scaling factor nκ and hence neglects the term nκξn,κ = O
(
n−1/5

)
in Theorem B.3. Therefore one should expect (B.11) to provide a better approximation in

finite samples than (B.10) when (p+ q) = 4.

The null hypothesis of no change in productivity versus change in productivity between

periods 1 and 2 can be tested by computing the appropriate interval for µM. Under the
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null, µM = 0, while under the alternative hypothesis, µM 6= 0. Hence the null is rejected

whenever the estimated confidence interval does not include zero.

The intervals given so far in (B.1), (B.10) and (B.11) are for µM defined in (3.24).

Theorem 3.7 and Remark 3.2 ensure that these intervals can be used to make inference about

the geometric mean E(Mn) where Mn is defined by (2.10). In particular, asymptotically valid

intervals for E(Mn) are obtained by taking exponentials of the bounds of the appropriate

interval for µM.

C Additional Results, Proofs and Technical Details

C.1 Additional Results

As noted just after Theorem 3.5, the bias in (3.30) will be zero if the distributions in each

period are identical, the numbers of observations n1, n2 available for estimation in each

period are the same, and the joint density f12 introduced in Assumption 3.2(iii) is symmetric

in its arguments. This leads to the following result.

Theorem C.1. Assume Assumptions 2.1–2.7, 3.1 and 3.2 hold. In addition, assume that (i)

f := f 1 = f 2 (and hence D := D1 = D2); (ii) n = n1 = n2; and (iii) f12((x, y), (x∗, y∗)) =

f12((x∗, y∗), (x, y)) for all (x, y), (x∗, y∗) ∈ D. Then

E (µ̂M,n − µM) = 0 (C.1)

and as n→∞,

VAR (µ̂M,n − µM) =
1

n
VAR(logMi) + o(n−1). (C.2)

A proof is given below in Section C.14.

Remark C.1. Note that (C.1) holds for all n as seen in the proof that appears below in

Section C.14, and is a consequence of a somewhat trivial fact: If (a) there are two samples

with identical data generating processes, and (b) for both samples the same type of estimator

is applied, then all resulting biases are identical (and hence cancel out when subtracting).

In our context there only exists the difficulty that the roles of (X1
i , Y

1
i ) and (X2

i , Y
2
i ) are

different in log γ̂2
C(X1

i , Y
1
i | X 2

n2
) and log γ̂1

C(X2
i , Y

2
i | X 1

n1
), which is resolved by the additional

assumption (iii) of “symmetry” on the joint density.
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Remark C.2. Section 3.1 of Kneip et al. (2016) overlooks the point raised in Remark C.1.

Indeed the results in Section 3.1 of Kneip et al. (2016) are incomplete (but not false; the

results provide bad approximations in the case of identical distributions). In Kneip et al.

(2016, Section 3.1) if n1 = n2 and if both samples possess identical distributions then the

biases cancel out, and in the notation of Kneip et al. (2016) E(µ̂1,n1 − µ̂2,n2) = 0.

Remark C.3. It is possible to achieve (C.1) while only requiring f 1 = f 2 (i.e., without

assuming n1 = n2 and symmetry of the joint density). This is possible by modifying the

estimator and using

log M̃i =
1

2
(log γ̂1

C(X2
i , Y

2
i | X 1

n1,−i) + log γ̂2
C(X2

i , Y
2
i | X 2

n2,−i)

− log γ̂1
C(X1

i , Y
1
i | X 1

n1,−i)− log γ̂2
C(X1

i , Y
1
i | X 2

n2,−i)),

where X s
ns,−i is the reduced sample of size (n− 1) obtained by eliminating the ith observation

(Xs
i , Y

s
i ), s = 0, 1. In other words, for any i = 1, . . . , n the estimates γ̂ are constructed

without taking into account the i-th observation. In this case everything is symmetric, and

for identical distributions arguments similar to those used above lead to

E
(
log γ̂1

C(X1
i , Y

1
i | X 1

n1,−i)
)

= E
(
log γ̂1

C(X2
i , Y

2
i | X 1

n1,−i)
)

(C.3)

and

E
(
log γ̂2

C(X1
i , Y

1
i | X 2

n2,−i)
)

= E
(
log γ̂2

C(X2
i , Y

2
i | X 2

n2,−i)
)

(C.4)

independent of n1 and n2. Hence E
(

log M̃i

)
= 0.

Remark C.4. Tests based on Theorem C.1 are tests of f 1 = f 2 rather than of µM :=

E (logMi) = 0. Note that the true mean µM may be zero even if f 1 6= f 2. But if f 1 6= f 2

then biases do not cancel out in general, and one is back to (3.30). Since for large (p+q) bias

dominates variance, the test will (asymptotically) reject the null hypotheses even if µM = 0

if bias is not accounted for.

C.2 Proof of Lemma 3.1

Consider rays L1 = L(x, y) and L2 = L(x, λ(x, y | C(Ψ))y) ⊂ C∂(Ψ).

Since (θ(x, y | C(Ψ))x, y) ∈ L2 and (x, λ(x, y | C(Ψ))y) ∈ L2, λ(x,y|C(Ψ))‖y‖
‖x‖ = ‖y‖

θ(x,y|C(Ψ))‖x‖|

and hence λ(x, y | C(Ψ))−1 = θ(x, y | C(Ψ)). In addition, (γC(x, y | C(Ψ))x, γC(x, y |
C(Ψ))−1y) ∈ L2. Therefore γC(x,y|C(Ψ))−1‖y‖

γC(x,y|C(Ψ))‖x‖ = ‖y‖
θ(x,y|C(Ψ))‖x‖ . Result (i) follows immediately.
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To prove (ii), consider two points (x, y) ∈ L1 and (x̃, ỹ) ∈ L1. Clearly, (x, λ(x, y |
C(Ψ)y) ∈ L2 and (̃, λ(x̃, ỹ | C(Ψ)ỹ) ∈ L2. It follows that λ(x,y|C(Ψ)‖y‖

‖x‖ = λ(x̃,ỹ|C(Ψ)‖ỹ‖
‖x̃‖ . Hence

λ(x, y | C(Ψ) = λ(x̃, ỹ | C(Ψ) since ‖y‖‖x‖ = ‖ỹ‖
‖x̃‖ , establishing (ii). Results (iii) and (iv) follow

from (i) and (ii).

C.3 Proof of Lemma 3.2

The results follow from the proof of Lemma 3.1 after replacing C(Ψ) with C(Ψ̂)).

C.4 Some Background Material used in Proof of Theorem 3.1

The proof of Theorem 3.1 that follows relies on the structural analysis used in the proof of

Theorem 3.1 in Kneip et al. (2015). Let us first recall some of the notation used there.

Consider an arbitrary point (x, y) ∈ D. Let V(x) denote the (p − 1)-dimensional linear

space of all vectors z ∈ Rp such that zTx = 0. Any input vector Xi adopts a unique

decomposition of the form Xi = γi
x
‖x‖ + Zi for some Zi ∈ V(x) and γi = xTXi

‖x‖ , where

‖ · ‖ denotes the Euclidean norm. Let Ψ∗(x) denote the set of all (z, y) ∈ V(x) × Rq with

(γ x
‖x‖ + z, y) ∈ D for some γ > 0. Note that the point of interest (x, y) ∈ Ψ has coordinates

(0, y) in Ψ∗(x).

The maintained assumptions imply that for any (z, y) ∈ Ψ∗(x), there exists γ > 0

such that (γ x
‖x‖ + z, y) ∈ Ψ. The efficient boundary of Ψ can therefore be described by the

function gx(z, y) := inf
{
γ |
(
γ x
‖x‖ + z, y

)
∈ Ψ

}
defined for any (z, y) ∈ Ψ∗(x). Furthermore,

with only a small abuse of notation, one may extend the definition of gx to all (v, y) with(
v − xT v

‖x‖2x, y
)
∈ Ψ∗(x) by taking gx(v, y) = gx

(
v − xT v

‖x‖2x, y
)

.

Properties of gx are discussed in Kneip et al. (2008). In particular, under the assumptions

of the theorem, gx is a three times continuously differentiable, strictly convex function, and

there exists a constant C1 > 0 such that wTg′′x(0, y)w ≥ C1 for all w ∈ V(x) × Rq with

‖w‖ = 1 and all x ∈ Rq with (x, y) ∈ D. Moreover, g′′x(0, y) changes continuously in x. In

the following we will additionally use g′′x;zz(z̃, ỹ) to denote the (p − 1) × (p − 1)-matrix of

partial derivatives with respect to the z-coordinates at a point (z̃, ỹ), while g′′x;yy(z̃, ỹ) will

denote the q × q-matrix of partial derivatives with respect to the y-coordinates.

The decomposition described above establishes a new coordinate system in which each

observation (Xi, Yi) can be equivalently represented by the corresponding vector (θi, Zi, Yi),

8



where θi := θ(Xi, Yi). Any point (x, ay) of interest has coordinates (θ(x, ay), 0, ay) in this

system.

Different from Kneip et al. (2015) we will need an additional decomposition of the variable

Yi given by

Yi = αiy + Vi for some Vi ∈ Rq, V t
i y = 0, and αi =

yTYi
‖y‖2

. (C.5)

This establishes another coordinate system with (Zi, Vi) ∈ V(x, y), where V(x, y) denotes the

(p− 1)× (q− 1)-dimensional linear space of all vectors z ∈ Rp and v ∈ Rp such that zTx = 0

and vTy = 0. Instead of using (θi, Zi, Yi), each observation (Xi, Yi) can be equivalently

represented by the corresponding vector (θi, Zi, αi, Vi), where θi := θ(Xi, Yi). Any point

(x, ay) of interest has coordinates (θ(x, ay), 0, ay, 0) in this new system.

Let z
(1)
x , . . . , z

(p−1)
x and v

(1)
y , . . . , v

(q−1)
y be orthonormal bases of Zi and Vi. Clearly, the

z
(j)
x and v

(j)
y can be chosen as continuous functions of x and y, respectively. Every vector Zi

can be expressed in the form Zi = Zxζi, where Zx is the p × (p − 1) matrix with columns

z
(j)
x , j = 1, . . . , p − 1, and ζi ∈ Rp−1. Similarly, every vector Vi can be expressed in the

form Vi = Vyvi, where Vy is the q× (q− 1) matrix with columns v
(j)
y , j = 1, . . . , q− 1, and

vi ∈ Rq−1.

Since θi = θ(Xi, Yi), Zi = Xi − xTXi
‖x‖2 x, αi = yTYi

‖y‖2 , and Vi = Yi − yTYi
‖y‖2 y are smooth

functions of (Xi, Yi), the joint density f of (Xi, Yi) translates into a density f̃x,y on (0, 1] ×
Rp−1 × R × Rq−1 of (θi, ζi, αi, vi). Let D̃ denote the support of this density. Since f is

continuously differentiable, f̃x,y(θ, ζ, α, v) is also continuously differentiable on (θ, ζ, α, v) ∈
D̃. Furthermore, compactness of D∗, as well as f(θ(x, y)x, y) > 0 for all (x, y) ∈ D, imply

that there exists a constant cinf > 0 such that

f̃x,y(θ, ζ, α, v) ≥ cinf (C.6)

whenever (Zxζ, αy + Vyv) ∈ Ψ∗(x) and (x, y) ∈ D.

C.5 Proof of Theorem 3.1

Consider an arbitrary point (x, y) ∈ D and recall the notation introduced above. First note

that gx(0, ay) = ‖x‖θ(x, ay) and hence

θC(x, y) =
1

‖x‖
·min
a>0

{
gx(0, ay)

a
| (gx(0, ay)

‖x‖
x, ay) ∈ Ψ

}
. (C.7)
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Assumption 3.1 together with strict convexity of gx therefore imply that ax,ymin ∈ R+ is

uniquely defined and (θ(x, ax,yminy)x, ax,yminy) ∈ D. Taking derivatives yields

∂

∂a

gx(0, ay)

a

∣∣∣∣
a=ax,ymin

= 0, Ax,y :=
∂2

∂a2

gx(0, ay)

a

∣∣∣∣
a=ax,ymin

=
yTg′′x;yy(0, a

x,y
miny)y

ax,ymin
> 0. (C.8)

Since by assumption gx is at least three times continuously differentiable, Taylor expansions

lead to ∣∣∣∣gx(0, ay)

a
− gx(0, a

x,y
miny)

ax,ymin
− Ax,y

2
(a− ax,ymin)2

∣∣∣∣ ≤ D|a− ax,ymin|3 (C.9)

for some D > 0 and all a with (θ(x, ay)x, ay) ∈ D. Since D∗ = {θ(x̃, ỹ)x̃, ỹ)|(x̃, ỹ) ∈ D} is

compact, D can be chosen independent of a > 0 and (x, y) ∈ D.

Let κ = 2
p+q+1

. Since by Assumption 3.1 no relevant point lies in the “observable bound-

ary” for sufficiently large n, it follows from (A.6) and (A.9) in the proof of Theorem 3.1 in

Kneip et al. (2015) that for any a > 0 with |a−ax,ymin| < δ there exists some 0 < D1, D2 <∞,

which can be chosen independent of (x, y), such that

Pr
(∣∣∣‖x‖θ̂VRS(x, ay | Xn)− ‖x‖θ(x, ay)

∣∣∣ ≥ D1n
−κ(log n)κ

)
≤ D2n

−2 (C.10)

On the other hand, by (C.9) there exists a 0 < d1 <∞ such that

gx(0, (a
x,y
min − d1n

−κ
2 (log n)

κ
2 )y)

ax,ymin − d1n
−κ

2 (log n)
κ
2

− gx(0, a
x,y
miny)

ax,ymin
≥ 3D1n

−κ(log n)κ,

gx(0, (a
x,y
min + d1n

−κ
2 (log n)

κ
2 )y)

ax,ymin + d1n
−κ

2 (log n)
κ
2

− gx(0, a
x,y
miny)

ax,ymin
≥ 3D1n

−κ(log n)κ. (C.11)

Since necessarily inf(x,y)∈D Ax,y > 0, d1 can be chosen independent of (x, y) ∈ D. Inequalities

(C.9) and (C.10) now imply that with probability converging to 1 we obtain

‖x‖ θ̂VRS(x, ay | Xn)

a
> ‖x‖ θ̂VRS(x, ax,yminy | Xn)

ax,ymin
(C.12)

for a = ax,ymin − d1n
−κ

2 (log n)
κ
2 as well as for a = ax,ymin + d1n

−κ
2 (log n)

κ
2 . But convexity

then additionally implies that (C.12) also holds for all a ≤ ax,ymin − d1n
−κ

2 (log n)
κ
2 and a ≥

ax,ymin + d1n
−κ

2 (log n)
κ
2 . More precisely, there exists a constant 0 < D3 < ∞, which can be

chosen independent of (x, y), such that

1− Pr

(
θ̂C(x, y | Xn) = min

ax,ymin−d1n
−κ2 (logn)

κ
2 ≤a≤ax,ymin+d1n

−κ2 (logn)
κ
2

θ̂VRS(x, ay | Xn)

a

)
≤ D3n

−2.

(C.13)
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Recall that Yi = αiy+Vi. Representation (A.15) of the VRS-DEA estimator in the proof

of Theorem 3.1 in Kneip et al. (2015) tells us that

θ̂VRS(x, y | Xn)

a
= min

{ n∑
i=1

ωi
gx(θiZi, αiy + Vi)

a‖x‖θi
| iTnω = 1, Zω = 0,

V ω = 0,αTω = a,ω ∈ Rn
+

}
= θC(x, y)×min

{ n∑
i=1

ωi
ax,ymingx(θiZi, αiy + Vi)

agx(0, a
x,y
miny)θi

| iTnω = 1, Zω = 0,

V ω = 0,αω = a,ω ∈ Rn
+

}
(C.14)

where in = (1, 1, . . . , 1)T ∈ Rn, ωi represents the ith element of ω, θi = θ(Xi, Yi), Zi =

Xi−
xTXi

||x||2
x is a (p×1) vector and Z = (Z1, . . . , Zn) is a (p×n) matrix, V = (V1, . . . , Vn)

is a ((q − 1)× n) matrix, and αT = (α1, . . . , αn).

An essential step of the proof now consists in the localization argument developed in

Kneip et al. (2008) and reconsidered in Kneip et al. (2015) which states that VRS-DEA

estimators are asymptotically determined by local information. In Kneip et al. (2008,

2015) the argument relies on using the coordinates (θi, Zi, Yi), but a generalization to the

coordinates (θi, Zi, αi, Vi) is immediate. For any h > 0, define the set

C(x, ax,yminy;h) =
{

(θ̃, z̃, α̃, ṽ) ∈ (0, 1]× Rp−1 × R+ × Rq−1 | 1− θ̃ ≤ h2, |α̃− ax,ymin| ≤ h,

z̃ =
∑
j

ζjz
(j)
x , |ζj| ≤ h ∀ j = 1, . . . , p− 1, ṽ =

∑
r

vrv
(r)
y , |vr| ≤ h ∀ r = 1, . . . , q

}
,

(C.15)

and let Xn(x, ax,yminy;h) := {(Xi, Yi) ∈ Xn | (θi, Zi, αi, Vi) ∈ C(x, ax,yminy;h)}.
In the following it will be necessary to distinguish between points (x, y) lying in the

interior and on the observable boundary of D. For (x, y) ∈ D let

Ψ∗∂(x, y) =

{
(z̃, ṽ) ∈ V(x, y) | (gx(z̃, ax,yminy + ṽ)

x

||x||
+ z̃, ax,yminy + ṽ) ∈ D∗ while for any

ε > 0 there is some (z, v) ∈ Rp−1 × Rq−1 with ‖z̃ − z‖ < ε and ‖ṽ − v‖ < ε

such that (gx(z, a
x,y
miny + v)

x

||x||
+ z, ax,yminy + v) /∈ D∗

}
(C.16)

denote the boundary of possible vectors (z, v), where of course Ψ∗∂(x, y) = ∅ if min p, q = 1.
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Then define the observable boundary as

W(h) :=

{
(x, y) ∈ D |min

{
min

j=1, ..., p−1
|ζj|, min

r=1, ..., q−1
|vr|
}
≤ h

for some (z̃, ṽ) ∈ Ψ∗∂(x, y) with z̃ =
∑
j

ζjz
(j)
x , ṽ =

∑
r

vrv
(r)
y

}
.

(C.17)

If p ≤ 1 and q ≤ 1, then W(h) = ∅; but for p + q > 2, compactness of D∗ implies that for

any h > 0 the observable boundary W(h) is nonempty.1

Recall the constant d1 in (C.12) and choose some constant b ≥ 4(p+ q)(1 +d1). Then set

νn := b

(
log n

nf̃x,y(1, 0, a
x,y
min, 0)

) 1
p+q+1

(C.18)

as well as

ν∗n := b

(
log n

cinfn

) 1
p+q+1

. (C.19)

Case(i): We first consider the case where (x, y) is in the interior of D in the sense

that (x, y) /∈ W(ν∗n). In this case, by Assumption 3.1 we have C(x, ax,yminy; νn) ⊂ D for all

sufficiently large n.

Following the arguments in Kneip et al. (2008, 2015) one can construct k = 2(p+ q− 1)

hypercubes Bs ⊂ Rp−1 × Rp, s = 1, . . . , k, of side lengths νn
2(p−1)+2q

and centered at values

(zj, yj) determined in the following way: zj =
∑

s ζsz
(s)
x , yj = (α+ ax,ymin)y+

∑
r vrv

(r)
y , where

for each j = 1, . . . , 2(p+ q− 1) exactly one of the coordinates (ζ1, . . . , ζp−1, α, v1, . . . , vq−1)

equals νn · 2(p−1)+2q−1
2(p−1)+2q

or −νn · 2(p−1)+2q−1
2(p−1)+2q

, while all others are identically zero. By definition

of νn, the probability that there exist at least k observations (θi1 , Zi1 , Yi1), . . . , (θik , Zik , Yik)

with θij ≥ 1− ν2
n and (Zij , Yij) ∈ Bj, j = 1, . . . , k, is of order 1− n−2 as n→∞.

On the other hand, if such a set of k observations exists, then by construction for

any a ∈ [ax,ymin − d1n
−κ

2 (log n)
κ
2 , ax,ymin + d1n

−κ
2 (log n)

κ
2 ] the point (0, ay) is in the inte-

rior of the convex hull of (Zij , Yij), j = 1, . . . , k. If n is sufficiently large, by the

strict convexity of gx the arguments in the proof of Theorem 1 of Kneip et al. (2008)

1 Note that there is an error in Appendix A of Kneip et al. (2015). The concept of the boundary Ψ∗∂(x)
used here is correct (as well as the arguments relying on Ψ∗∂(x)). But the definition in formula (A.4) of
Kneip et al. (2015) does not provide the proper boundary, and it should be replaced by an analog of C.16.
The proof of Theorem 3.1 in Kneip et al. (2015) still holds after this change.
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can then be used to show then for any other observation (θi, Zi, Yi) with (θi, Zi, Yi)) /∈
C(x, ax,yminy; νn) and any vector ω ∈ Rn

+ with ωi > 0, satisfying the constraints in (C.14) for

a ∈ [ax,ymin − d1n
−κ

2 (log n)
κ
2 , ax,ymin + d1n

−κ
2 (log n)

κ
2 ], there exists another vector ω∗ ∈ Rn

+ with

ω∗i = 0 and ω∗ij ≥ 0, j = 1, . . . , k, such that
∑n

i=1 ωi
gx(θiZi,Yi)

θi
>
∑n

i=1 ω
∗
i
gx(θiZi,Yi)

θi
. This

implies that for arbitrary a ∈ [ax,ymin − d1n
−κ

2 (log n)
κ
2 , ax,ymin + d1n

−κ
2 (log n)

κ
2 ] the minimum in

(C.14) is achieved by assigning zero weight ωi = 0 to each observation with (θi, Zi, Yi) /∈
C(x, ax,yminy; νn). This then leads to θ̂VRS(x, ay | Xn) = θ̂VRS(x, ay | Xn(x, ax,yminy; νn)), where

θ̂VRS(x, ay | Xn(x, ax,yminy; νn)) denotes the VRS-DEA estimator only based on the subset of

all observations in Xn(x, ax,yminy; νn).

Therefore, there exists a D4 ∈ (0,∞), which can be chosen independent of (x, y) ∈ D
with (x, y) /∈ W(ν∗n), such that for all sufficiently large n,

Pr

(
θ̂C(x, y | Xn) = min

ax,ymin−d1( logn
n

)
κ
2 ≤a≤ax,ymin+d1( logn

n
)
κ
2

θ̂VRS(x, ay | Xn(x, ax,yminy; νn))

a

)
≥ 1−D4n

−2

(C.20)

Now consider the sums in (C.14) with respect to the (random) number Kn ≤
#Xn(x, ax,yminy; νn) of all observations with coordinates (θij , Zij , αij , Vij) ∈ C(x, ax,yminy; νn).

Furthermore, for some a ∈ [ax,ymin − d1n
−κ

2 (log n)
κ
2 , ax,ymin + d1n

−κ
2 (log n)

κ
2 ] consider arbitrary

weight vectors ω = (ω1, . . . , ωKn)T ∈ RKn
+ such that

∑Kn
j=1 ωj = 1,

∑Kn
j=1 ωjZij = 0,∑Kn

j=1 ωjαij = a, and
∑Kn

j=1 ωjVij = 0. Let θ∗ij := 1 − θij , G(ay) := g′′x(0, ay), and note

that
∑Kn

j=1 ωj(αij − a
x,y
min)2 =

∑Kn
j=1 ωj(αij − a)2 + (a − ax,ymin)2. It then follows from Taylor

expansions of gx as well as from (C.9) that for some 0 ≤ Rn, R
∗
n <∞

Kn∑
j=1

ωj
gx(θijZij , αijy + Vij)

aθij
=
gx(0, ay)

a
+

1

a

Kn∑
j=1

ωj

[(
Zij
Vij

)T
G(ay)

2

(
Zij
Vij

)

+

(
0

(aij − a)y

)T
G(ay)

(
Zij
Vij

)
+ (αij − a)2

yTg′′x;yy(0, ay)y

2
+ θ∗ij

]
+Rnν

3
n

=
gx(0, a

x,y
miny)

ax,ymin

+
1

ax,ymin

Kn∑
j=1

ωj

[(
Zij

(αij − a
x,y
min)y + Vij

)T
G(ax,ymin)

2

(
Zij

(αij − a
x,y
min)y + Vij

)
+ θ∗ij

]
︸ ︷︷ ︸

=:τ((θ∗i1
,Zi1 ,αi1 ,Vi1 ),...,(θ∗iKn

,ZiKn
,αiKn

,ViKn
);ω)

+R∗nν
3
n

(C.21)
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By our assumptions there exists a constant D5 < ∞ such that R∗n < D5 for all possible

Kn, all possible sets {(θij , Zij , αij , Vij)} ⊂ C(x, ax,yminy; νn), all a and all (x, y) ∈ D with

(x, y) /∈ W(ν∗n).

The result in (C.21) shows that θ̂C(x, y | Xn) is essentially determined by minimizing τ(·)
over all possible ω with

∑Kn
j=1 ωiZij = 0 and

∑Kn
j=1 ωjVij = 0, independent of the correspond-

ing value of
∑Kn

j=1 ωjαij = a (even cases with a 6∈ [ax,ymin−d1n
−κ

2 (log n)
κ
2 , ax,ymin+d1n

−κ
2 (log n)

κ
2 ]

need not be excluded since due to (C.9) they cannot constitute an optimal solution with

probability tending to 1). Recall that θ∗ij := 1− θij , and let

TKn

(
(θ∗i1 , Zi1 , αi1 , Vi1), . . . , (θ

∗
iKn
, ZiKn , αiKn , ViKn )

)
= min

{
τ((θ∗i1 , Zi1 , αi1 , Vi1), . . . , (θ

∗
iKn
, ZiKn , αiKn , ViKn );ω) |

iTKnω = 1,
Kn∑
j=1

ωjZij =
Kn∑
j=1

ωjVij = 0
}

(C.22)

When combining these arguments with (C.14) and (C.20) one can conclude that there are

constants 0 < D6, D7 <∞ such that with probability at least 1−D6n
−2∣∣∣∣∣∣θ̂C(x, y | Xn)− θC(x, y)

1 +
TKn

(
(θ∗i1 , Zi1 , αi1 , Vi1), . . . , (θ

∗
iKn
, ZiKn , αiKn , ViKn )

)
gx(0, a

x,y
miny)

∣∣∣∣∣∣ ≤ D7ν
3
n

(C.23)

Here, D6 and D7 can be chosen independent of (x, y) ∈ D with (x, y) /∈ W(ν∗n). Since

necessarily, τ((θi1∗, Zi1 , αi1 , Vi1), . . . , (θ∗iKn , ZiKn , αiKn , ViKn );ω) ≤ D8ν
2
n, (C.23) immediately

implies that for some constant D8 <∞ and all β > 0

E

(∣∣∣θ̂C(x, y | Xn)− θ(x, y)
∣∣∣β) ≤ D8 max{n−

2β
p+q+1 (log n)

2β
p+q+1 , n−2} ∀ (x, y) ∈ D\W(ν∗n).

(C.24)

More precise results are to be obtained from the distribution of TKn . When trans-

lating the results of Kneip et al. (2008, (2015)) into the alternative (θ, ζ, α, v)-

coordinate system it turns out that the asymptotic behavior the VRS-DEA esti-

mator θ̂(x, ax,yminy | Xn) of θ(x, ax,yminy) is determined by a similar random variable

TDEAKn

(
(θ∗i1 , Zi1 , αi1 , Vi1), . . . , (θ

∗
iKn
, ZiKn , αiKn , ViKn )

)
defined by minimizing

τ((θ∗i1 , Zi1 , αi1 , Vi1), . . . , (θ
∗
iKn
, ZiKn , αiKn , ViKn );ω) with respect to all weight sequences with

iTKnω = 1,
∑Kn

j=1 ωjZij =
∑Kn

j=1 ωjVij = 0, and
∑Kn

j=1 ωjαij = ax,ymin. Therefore, the only
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difference between TKn and TDEAKn
consists in the fact that (C.22) does not incorporate the

additional constraint
∑Kn

j=1 ωjαij = ax,ymin. But all arguments developed for analyzing TDEAKn

readily generalize to TKn .

Obviously, the observations (θ∗ij , ζij , αij , vij) are independent. The conditional distribu-

tion of (θ∗ij , ζij , αij , vij) given (Xij , Yij) ∈ Xn(x, ax,yminy; νn) converges to a uniform distribution.

Also note that for all (x, y) in the interior of D we necessarily have (x, y) /∈ W(ν∗n) for all

sufficiently large n. For deriving the asymptotic distribution of TKn we rely on the construc-

tion presented in Kneip et al. (2008). Let (θ̃1, ζ̃1, α̃1, ṽ1), . . . , (θ̃k, ζ̃k, α̃k, ṽk) denote iid

random variables uniformly distributed on [0, 1]× [−1, 1]p−1× [ax,ymin−1, ax,ymin+1]× [−1, 1]q−1,

and set Z̃i =
∑

j ζ̃ijz
(j)
x , Ṽi =

∑
r ṽirv

(r)
y , i = 1, . . . , k. Then for any integer k and γ > 0

define the following event U [γ, k]: there exists a weight vector ω ∈ Rk
+ with iTkω = 1 and∑k

j=1 ωjZ̃j =
∑k

j=1 ωjṼj = 0 such that

τ((θ̃1, Z̃1, α̃1, Ṽ1), . . . , (θ̃k, Z̃k, α̃k, Ṽk);ω)

gx(0, a
x,y
miny)

≤ γ. (C.25)

Applying the same type of arguments as those used in the proof of Theorem 2 of Kneip et al.

(2008) it can then be derived that for any γ > 0

lim
n→∞

Pr

(
nκ
( θ̂C(x, y | Xn)− θC(x, y)

θC(x, y)

)
≤ γ

)

= lim
n→∞

Pr

(
nκ
TKn((θ∗i1 , Zi1 , αi1 , Vi1), . . . , (θ

∗
iKn
, ZiKn , αiKn , ViKn ))

gx(0, a
x,y
miny)

≤ γ

)
= Fx,y(γ) (C.26)

where Fx,y is a continuous distribution function with Fx,y(0) = 0 and

Fx,y(γ) = lim
k→∞

Pr

(
U
[
γ
f̃x,y(1, 0, a

x,y
min, 0)

2
p+q+1

k
2

p+q+1

, k

])
(C.27)

This proves (3.12). Analysis of expectations now relies on the techniques developed in Kneip

et al. (2015).

Let ν̃n :=
(

n

f̃x,y(1,0,ax,ymin,0)

) 1
p+q+1

, Z̃
(n)
j = Zxζ̃

(n)
j , Ṽ

(n)
j = Vyṽ

(n)
j and let (θ̃

(n)
j , ζ̃

(n)
j , α̃

(n)
j , ṽ

(n)
j ),

j = 1, . . . , n, denote iid random variables with a uniform distribution on [0, ν̃2
n] ×

[−ν̃n, ν̃n]p−1 × [ax,ymin − ν̃n, a
x,y
min + ν̃n] × [−ν̃n, ν̃n]p−1. Similar to TKn one can then define

the r.v. Tn

(
(θ̃

(n)
1 , Z̃

(n)
1 , α̃

(n)
1 , Ṽ

(n)
1 ), . . . , (θ̃

(n)
n , Z̃

(n)
n , α̃

(n)
n , Ṽ

(n)
n )

)
by minimizing (C.22) with

respect to the set of observations {(θ̃(n)
j , ζ̃

(n)
j , α̃

(n)
j , ṽ

(n)
j )} instead of {(θ∗ij , Zij , αij , Vij)}.
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In a straightforward generalization of the arguments leading to relations (A.13)–(A.18)

in the proof of Theorem 3.1 of Kneip et al. (2015) it can then be shown that the

asymptotic distributions of nκTKn

(
(θ∗i1 , Zi1 , αi1 , Vi1), . . . , (θ

∗
iKn
, ZiKn , αiKn , ViKn )

)
and of

Tn

(
(θ̃

(n)
1 , Z̃

(n)
1 , α̃

(n)
1 , Ṽ

(n)
1 ), . . . , (θ̃

(n)
n , Z̃

(n)
n , α̃

(n)
n , Ṽ

(n)
n )

)
coincide, and that all moments of

Tn

(
(θ̃

(n)
1 , Z̃

(n)
1 , α̃

(n)
1 , Ṽ

(n)
1 ), . . . , (θ̃

(n)
n , Z̃

(n)
n , α̃

(n)
n , Ṽ

(n)
n )

)
converge rapidly to finite, fixed val-

ues as n→∞. Additionally using (C.23), we obtain the following generalization of relations

(A.16)–(A.18) in the proof of Theorem 3.1 of Kneip et al. (2015):

∣∣∣E (θ̂C(x, y | Xn)− θC(x, y)
)
− θC(x, y)n−

2
p+q+1

C̃g′′x ,f̃x,y(1,0,ax,ymin,0)

gx(0, a
x,y
miny)

∣∣∣ ≤ D9n
− 3
p+q+1 (log n)

3
p+q+1

(C.28)

for all (x, y) ∈ D with (x, y) /∈ W(ν∗n). and some D9 ∈ (0,∞), where

C̃g′′x ,f̃x,y(1,0,ax,ymin,0) := lim
n→∞

E
[
Tn

(
(θ̃1, Z̃1, α̃

(n)
1 , Ṽ

(n)
1 ), . . . , (θ̃n, Z̃n, α̃

(n)
n , Ṽ (n)

n )
)]

(C.29)

only depends upon g′′x and f̃x,y(1, 0, a
x,y
min, 0) and changes continuously in (x, y) ∈ D. Fur-

thermore, there exists some D10 ∈ (0,∞) such that

E
(∣∣θ̂C(x, y | Xn)− θC(x, y)

∣∣2) ≤ D10n
− 4
p+q+1 (C.30)

for all (x, y) ∈ D with (x, y) /∈ W(ν∗n).

Case (ii): For a further analysis of expectations we additionally have to consider the

alternative case where (x, y) ∈ W(ν∗n). We again rely on arguments similar to those used in

the proof of Theorem 3.1 of Kneip et al. (2015).

In this case, the problem arises that some of the sets Bj used in the above construction

surpass the boundary and are no longer in D. As a consequence, one cannot exclude that

θ̂C(x, y | Xn) is influenced by an observation with θi ≤ 1− ν2
n. But let

Hn(x, y; νn) := {(Xi, Yi) ∈ Xn | (1, Zi, ax,ymin, Vi) ∈ C(x, ax,yminy; , νn)} (C.31)

By a straightforward generalization of the arguments in the proof of Theorem 3.1 of Kneip

et al. (2015) it follows that∣∣1− Pr
(
θ̂C(x, y | Xn) = θ̂C(x, y | Hn(x, y; νn))

) ∣∣ ≤ D11n
−2 (C.32)

for all (x, y) ∈ D, some D11 ∈ (0,∞), and all sufficiently large n.
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Recall that boundary problems arise only if p+q > 2. In such cases, for r = 1, . . . , p−1,

define

vr;x,y := min
(ζ,v)∈Rp−1×Rq−1,

(
∑p−1
j=1 ζjz

(j)
x ,v)∈Ψ∗∂(x,y)

{νn, |ζr|} . (C.33)

Similarly, for r = 1, . . . , q − 1, define vp−1+r;x,y by replacing |ζr| with |vr| in (C.33). These

vr;x,y can be viewed as measuring a “distance” from (x, y) to the boundary, with vr;x,y ≤ νn.

If
∏p+q−2

r=1 vr;x,y ≥ νp+q+1
n , i.e. (x, y) is not too near the boundary, an upper bound

for θ̂C(x, y | Xn) can then be obtained by relying on the observations with 1 − θi ≤(
νp+q+1
n∏p+q−2

r=1 vr;x,y

)2/3

and |αi−αx,ymin| ≤
(

νp+q+1
n∏p+q−2

r=1 vr;x,y

)1/3

. Arguments similar to those used above

then show that for all (x, y) ∈ W(ν∗n) with
∏p+q−2

r=1 vr;x,y ≥ νp+q+1
n , we have for α ∈ {1, 2}

E
(∣∣θ̂C(x, y | Xn)− θC(x, y)

∣∣α) ≤ Dα
12

(
νp+q+1
n∏p+q−2

r=1 vr;x,y

)2α/3

, (C.34)

for some constant D12 ∈ (0,∞), and for all sufficiently large n.

Now the moments of θ̂C(Xi, Yi | Xn) can be analyzed in a way similar to Kneip et al.

(2015). Let Xn,−i denote the sample of size n−1 obtained by eliminating the i-th observation

(Xi, Yi). When relying on Xn,−i, it is clear that all constants in the above inequalities can

be chosen independently of (x, y) and thus also apply for the (random) coordinate system

induced by the specific choice (x, y) = (Xi, Yi). Obviously,

θ̂C(Xi, Yi | Xn) = min
{
θ̂C(Xi, Yi | Xn,−i), 1

}
. (C.35)

Since (Xi, Yi) is independent of Xn,−i, (C.24) and (C.35) imply that

E
(
θ̂C(Xi, Yi | Xn)− θC(Xi, Yi) | (Xi, Yi) /∈ W(ν∗n)

)
= C0n

− 2
p+q+1 +O

(
n−

3
p+q+1 (log n)

3
p+q+1

)
(C.36)

for some C0 ∈ (0,∞). If p = 1 and q ≤ 1, then assertion (3.13) follows directly from (C.36),

since in this case there is no boundary problem due to W(ν∗n) = ∅.
In order to quantify the influence of boundary effects for p + q > 2, let Wn,1 :={

(x, y) ∈ D | νp+q−2
n >

∏p+q−1
r=1 vr;x,y ≥ νp+q+1

n

}
contain points in W(ν∗n) but not too near

the boundary, and let Wn,2 :=
{

(x, y) ∈ D |
∏p+q−2

r=1 vr;x,y < νp+q+1
n

}
contain the other

points of W(ν∗n) very near the boundary where only the trivial upper bound |θ̂C(Xi, Yi |
Xn)− θ(Xi, Yi)| ≤ 1 can be used. For points in Wn,1, note that for all r = 1, . . . , p + q − 2,
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ν4
n ≤ vr;x,y ≤ νn. Fortunately, the boundary is “smaller” than in the DEA-case, and its

influence is less pronounced. Note that

E
(
θ̂C(Xi, Yi | Xn)− θ(Xi, Yi)

)
=E

(
θ̂C(Xi, Yi | Xn)− θC(Xi, Yi) | (Xi, Yi) /∈ W(ν∗n)

)
× Pr((Xi, Yi)) /∈ W(ν∗n))

+
2∑
s=1

E
(
θ̂C(Xi, Yi | Xn)− θ(Xi, Yi) | (Xi, Yi) ∈ Wn,s

)
× Pr((Xi, Yi) ∈ Wn,s). (C.37)

When relying on (C.34), straightforward calculations similar to those in Kneip et al.

(2015) yield that with for some constants D13, D14 <∞,

E
(
θ̂C(Xi, Yi | Xn)− θ(Xi, Yi) | (Xi, Yi) ∈ Wn,1

)
· Pr((Xi, Yi) ∈ Wn,1)

≤ D13

∫
Wn,1

(
νp+q+1
n∏p+q−2

r=1 vr;x,y
)2/3f(x, y)dxdy

≤ D14

p+q−2∑
r=1

∫
B

ν
8/3
n

v
2/3
r;x,y

dx dy +Op

(
n−

4
p+q+1 (log n)

4
p+q+1

)
= Op

(
n−

4
p+q+1 (log n)

4
p+q+1

)
, (C.38)

where B := {(x, y) ∈ D |
νn > vr,x,y ≥ ν4

n} In addition, Pr((Xi, Yi) ∈ Wn,2) = O
(
n−

4
p+q+1 (log n)

4
p+q+1

)
. Together with

(C.36), this leads to (3.13).2

Recall (C.28) and (C.30). Assertion (3.14) follows from the fact that (C.34) implies the

existence of constants D15, D16 <∞ such that

VAR
(
θ̂C(Xi, Yi | Xn)− θC(Xi, Yi)

)
≤ D15n

− 4
p+q+1 × Pr ((Xi, Yi) /∈ W(ν∗n))

+D2
16

∫
Wn,1

(
(

νp+q+1
n∏p+q−2

r=1 vr;x,y
)4/3

)
f(x, y) dx dy + Pr ((Xi, Yi) ∈ Wn,2)

= O
(
n−

4
p+q+1 + n−

4
p+q+1 (log n)

4
p+q+1

)
. (C.39)

It remains to prove (3.15). Estimators θ̂C(Xi, Yi | Xn) exhibit stronger correlations than

the original VRS-DEA estimators θ̂VRS(Xi, Yi | Xn). The reason is that by (C.20), for any

2 Note that a typographical error appears in Appendix A of Kneip et al. (2015). The

quantity E
(
θ̂VRS(Xi, Yi | Xn)− θ(Xi, Yi) | (Xi, Yi) ∈ Wn,1

)
in formula (A.24) should be replaced by

E
(
θ̂VRS(Xi, Yi | Xn)− θ(Xi, Yi) | (Xi, Yi) ∈ Wn,1

)
· Pr((Xi, Yi) ∈ Wn,1).
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b > 0 the estimators θ̂C(x, y | Xn) and θ̂C(x, by | Xn) depend on the same local observa-

tions in Xn(x, ax,yminy; νn), while for sufficiently large b, DEA estimators θ̂DEA(x, y | Xn) and

θ̂DEA(x, by | Xn) will be asymptotically uncorrelated.

However, for all i, j ∈ 1, . . . , n, i 6= j, it follows from (C.32) that θ̂C(Xi, Yi | Xn) −
θ(Xi, Yi) and θ̂C(Xj, Yj | Xn)− θ(Xj, Yj) are asymptotically uncorrelated if Hn(Xi, Yi; νn) ∩
Hn(Xj, Yj; νn) = ∅. Since all observations are iid, the Cauchy-Schwarz inequality yields∣∣COV

(
θ̂C(Xi, Yi | Xn)− θC(Xi, Yi), θ̂C(Xj, Yj | Xn)− θC(Xj, Yj)

) ∣∣
≤ Pr (Hn(Xi, Yi; νn) ∩Hn(Xj, Yj; νn) 6= ∅)

× VAR
(
θ̂C(Xi, Yi | Xn)− θC(Xi, Yi)

)
+O

(
n−2
)
. (C.40)

Relation (3.14) as well as

Pr (Hn(Xi, Yi; νn) ∩Hn(Xj, Yj; νn) 6= ∅) = O
(
n−

p+q−2
p+q+1 (log n)

p+q−2
p+q+1

)
(C.41)

now lead to assertion (3.15), completing the proof of the theorem.

C.6 Proof of Theorem 3.2

The transformation defined by the respective function Γ is monotonic and differentiable with

nonzero derivatives on R+. Therefore, (3.16) follows via the delta method.

By Assumption 3.1 (iii) Γ(θC(Xi, Yi)) as well as its derivatives Γ′(θC(Xi, Yi)) and

Γ
′′
(θC(Xi, Yi)) are uniformly bounded for all (Xi, Yi) ∈ D. It thus follows from a Taylor

expansion and (3.14) that

E
(

Γ(θ̂C(Xi, Yi | Xn))− Γ(θC(Xi, Yi))
)

= E
(

Γ′(θC(Xi, Yi))[θ̂C(Xi, Yi | Xn)− θC(Xi, Yi)]
)

+O
(
n−

4
p+q+1 (log n)

4
p+q+1

)
. (C.42)

Recall that (C.35) states that θ̂C(Xi, Yi | Xn) = min
{
θ̂C(Xi, Yi | Xn,−i), 1

}
. Moreover, the

arguments developed in the proof of Theorem 3.1 imply that

Pr
(
{θ̂C(Xi, Yi | Xn) = 1} ∩ {(Xi, Yi) /∈ W(ν∗n)}

)
= O

(
n−

3
p+q+1 (log n)

3
p+q+1

)
, (C.43)

where the boundaryW(ν∗n) is defined as in the proof of Theorem 3.1. Since Γ′(θC(Xi, Yi) > 0,
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it follows from (C.42), (C.28), and (C.29) that similar to (C.36) we have

E
(

Γ(θ̂C(Xi, Yi | Xn))− Γ(θC(Xi, Yi)) | (Xi, Yi) /∈ W(ν∗n)
)

=

CΓ
0 n
− 2
p+q+1 +O

(
n−

3
p+q+1 (log n)

3
p+q+1

)
(C.44)

for some 0 < CΓ
0 <∞. An immediate generalization of (C.37) yields

E
(

Γ(θ̂C(Xi, Yi | Xn))− Γ(θC(Xi, Yi))
)

=

E
(

Γ(θ̂C(Xi, Yi | Xn))− Γ(θC(Xi, Yi)) | (Xi, Yi) /∈ W(ν∗n)
)
· Pr((Xi, Yi) /∈ W(ν∗n))

+
2∑
s=1

E
(

Γ(θ̂C(Xi, Yi | Xn))− Γ(θC(Xi, Yi)) | (Xi, Yi) ∈ Wn,s

)
· Pr((Xi, Yi) ∈ Wn,s).

(C.45)

With 0 < M1 := sup(x,y)∈D Γ′(θC(x, y)) <∞ a Taylor expansion leads to

E
(

Γ(θ̂C(Xi, Yi | Xn))− Γ(θC(Xi, Yi)) | (Xi, Yi) ∈ Wn,1

)
· Pr((Xi, Yi) ∈ Wn,1)

≤M1E
(
θ̂C(Xi, Yi | Xn)− θC(Xi, Yi) | (Xi, Yi) ∈ Wn,1

)
· Pr((Xi, Yi) ∈ Wn,1),

(C.46)

and Assertion (3.17) then is an immediate consequence of (C.44), (C.38), and Pr((Xi, Yi) ∈
Wn,2) = O

(
n−

4
p+q+1 (log n)

4
p+q+1

)
. Similarly, (C.39) implies

E
(

[Γ(θ̂C(Xi, Yi | Xn))− Γ(θC(Xi, Yi))]
2
)
≤M2

1E
(

[θ̂C(Xi, Yi | Xn)− θC(Xi, Yi)]
2
)

= O
(
n−

4
p+q+1 (log n)

4
p+q+1

)
, (C.47)

which proves Assertion (3.18). Analogous to (C.40) and (C.41) Assertion (3.19) finally follows

from the fact that Γ(θ̂C(Xi, Yi | Xn))− Γ(θC(Xi, Yi)) and Γ(θ̂C(Xj, Yj | Xn))− Γ(θC(Xj, Yj))

are asymptotically uncorrelated if Hn(Xi, Yi; νn) ∩Hn(Xj, Yj; νn) = ∅.

C.7 Proof of Theorem 3.3

Note that Theorem 3.2 holds for both (x1, y1) and (x2, y2) due to Assumption 3.2. The log

transformation in Theorem 3.2 is monotonic, differentiable, and invertible. Hence the result

follows via the delta method.
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C.8 Proof of Theorem 3.4

For t = s Assertion (3.27) follows from (3.17). Now consider the case t 6= s. Following the

notation introduced in (3.4) let

(X̆ t
i , Y̆

t
i ) := (g̃x(α

Xt
i ,Y

t
i

min

Y t
i

‖Y t
i ‖

)
X t
i

‖X t
i‖
, α

Xt
i ,Y

t
i

min

Y t
i

‖Y t
i ‖

)

Since D1
norm = D2

norm we have (X̆ t
i , Y̆

t
i ) ∈ Ds. Then (3.10) implies that

log γ̂sC(X t
i , Y

t
i | X s

ns)− log γsC(X t
i , Y

t
i ) = log γ̂sC(X̆ t

i , Y̆
t
i | X s

ns)− log γsC(X̆ t
i , Y̆

t
i )

= Γ(θ̂sC(X̆ t
i , Y̆

t
i | X s

ns))− Γ(θsC(X̆ t
i , Y̆

t
i )), (C.48)

where Γ(θ) = log θ1/2 for all θ > 0. Recall the arguments developed in the proofs of Theorems

3.1 and 3.2 and the definitions of the boundaries W(ν∗ns) ≡ W
s(ν∗ns), Wns,1 ≡ Ws

ns,1 as well

as Wn2,2 ≡ Ws
ns,2. If (θ̂sC(X̆s

i , Y̆
s
i | X s

ns) 6= 1, then obviously θ̂sC(X̆ t
i , Y̆

t
i | X s

ns) = θ̂sC(X̆ t
i , Y̆

t
i |

X s
ns,−i), where again Xns,−i denote the sample of size n− 1 obtained by eliminating the i-th

observation (Xi, Yi). Moreover, the arguments developed in the proof of Theorem 3.1 imply

that Pr
(
{θ̂sC(X̆s

i , Y̆
s
i | X s

ns) = 1}}
)

= O

(
n
− 3
p+q+1

s (log ns)
3

p+q+1

)
. Hence,

E
(

Γ(θ̂sC(X̆ t
i , Y̆

t
i | X s

ns))− Γ(θsC(X̆ t
i , Y̆

t
i ))
)

= E
(

Γ(θ̂sC(X̆ t
i , Y̆

t
i | X s

ns,−i))− Γ(θsC(X̆ t
i , Y̆

t
i )) | (X̆ t

i , Y̆
t
i ) /∈ Ws(ν∗ns)

)
· Pr((X̆ t

i , Y̆
t
i ) /∈ Ws(ν∗ns))

+
2∑
l=1

E
(

Γ(θ̂sC(X̆ t
i , Y̆

t
i | X s

ns,−i))− Γ(θsC(X̆ t
i , Y̆

t
i )) | (X̆ t

i , Y̆
t
i ) ∈ Ws

ns,l

)
· Pr((X̆ t

i , Y̆
t
i ) ∈ Ws

ns,l)

+O

(
n
− 3
p+q+1

s (log ns)
3

p+q+1

)
(C.49)

Note that (X̆ t
i , Y̆

t
i ) is independent of X s

ns,−i, and that by definition of our coordinate sys-

tem (X̆ t
i , Y̆

t
i ) /∈ Ws(ν∗ns) if and only if (X t

i , Y
t
i ) /∈ Ws(ν∗ns), as well as (X̆ t

i , Y̆
t
i ) ∈ Ws

ns,l
if

and only if (X t
i , Y

t
i ) ∈ Ws

ns,l
for l = 1, 2. As ns → ∞, our assumptions on the densities

f 1 and f 2 the probabilities of these events are of the same order of magnitude as those

obtained when analyzing (Xs
i , Y

s
i ). Therefore, (3.27) follows from Pr((X̆ t

i , Y̆
t
i ) ∈ Ws

ns,2) =

O

(
n
− 4
p+q+1

s (log ns)
4

p+q+1

)
and arguments similar to (C.44) and (C.46).

In an analogous manner straightforward generalizations of the arguments in the proof of

Theorem 3.1 lead to E
(

[θ̂sC(X̆ t
i , Y̆

t
i | X s

ns)− θ
s
C(X t

i , Y
t
i )]2
)

= O

(
n
− 4
p+q+1

s (log ns)
4

p+q+1

)
, and
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(3.28) is obtained by an argument similar to (C.47). Finally, (3.29) can be derived from

straightforward generalizations of (C.40) and (C.41).

C.9 Proof of Theorem 3.6

Using (3.24), (3.26) and the definition of Rn in the first part of (3.33), the left-hand side of

(3.32) can be written as

√
n(µ̂M,n − µM −Rn) =

√
n

n

n∑
i=1

(log M̂i − logMi − E(log M̂i) + µM) +

√
n

n

n∑
i=1

(logMi − µM). (C.50)

Since (3.28) and (3.29) imply
√
n
n

∑n
i=1(log M̂i − logMi − E(log M̂i) + µM)

p−→ 0, the as-

sertion is now an immediate consequence of standard CLTs.

C.10 Proof of Lemma 3.3

The proof is straightforward:

σ̂2
M,n = n−1

n∑
i=1

(
log M̂i − µ̂M,n

)2

p−→ E

[(
log M̂i

)2
]
− µ2

M

= VAR (logMi) + [E(logMi)]
2 − µ2

M

= σ2
M

since [E(logMi)]
2 − µ2

M = 0.

C.11 Proof of Theorem 3.7

The result follows from straightforward arguments based on the delta method: Indeed, a

Taylor expansion yields

√
n (exp(µ̂M,n)− exp(µM +Rn)) = exp(µM +Rn) ·

√
n (µ̂M,n − µM −Rn) +OP (

1√
n

).

(C.51)

Since Rn = O
(
n−

2
p+q+1

)
, the desired result follows from a further Taylor expansion of

exp(µM +Rn) and Theorem 3.6.
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C.12 Proof of Theorem B.1

The result follows directly from Theorem 3.6 after noting that the big-O remainder term in

(3.33) is o (n−κ) and noting that nκo (n−κ) = o(1). Since µ̂M,n in (3.32) has been replaced

with µ̂M,nκ in (B.3), the scale factor needed to stabilize variance is nκ.

C.13 Proof of Theorem B.2

The result follows after substituting B̂n,κ for the bias term in (3.33). For (p+ q) = 4 we have

κ = 2/5. The remainder term is O
(
n−3κ/2

)
ignoring the (log n) term which does not affect

the rate. Then
√
nO
(
n−3κ/2

)
= O

(
n−1/10

)
.

C.14 Proof of Theorem C.1

We only have to show (C.1). First note that the additional assumptions (i)–(iii) imply

µM = 0. Since for both samples s = 1, 2 the same algorithm is employed to determine

log γ̂sC(x, y | X s
n), there exists a measurable function G such that log γ̂sC(x, y | X s

n) =

G((x, y); (Xs
1 , Y

s
1 ), . . . , (Xs

n, Y
s
n )). Since by (i) and (ii) the distributions in each period are

identical, we necessarily have

E
(
log γ̂1

C(X1
i , Y

1
i | X 1

n)
)

= E
(
G((X1

i , Y
1
i ); (X1

1 , Y
1

1 ), . . . , (X1
n, Y

1
n ))
)

= E
(
G((X2

i , Y
2
i ); (X2

1 , Y
2

1 ), . . . , (X2
n, Y

2
n ))
)

= E
(
log γ̂2

C(X2
i , Y

2
i | X 2

n)
)
.

for all i = 1, . . . , n. When additionally using c) we furthermore obtain

E
(
log γ̂1

C(X2
i , Y

2
i | X 1

n)
)

= E
(
G((X2

i , Y
2
i ); (X1

1 , Y
1

1 ), . . . , (X1
n, Y

1
n ))
)

=

∫
E
(
G((x2, y2); (X1

1 , Y
1

1 ), . . . , (x1, y1), . . . , (X1
n, Y

1
n ))
)
f12(x1, y1, x2, y2)dx1 . . . dy2

=

∫
E
(
G((x2, y2); (X1

1 , Y
1

1 ), . . . , (x1, y1), . . . , (X1
n, Y

1
n ))
)
f12(x2, y2, x1, y1)dx1 . . . dy2

=

∫
E
(
G((x1, y1); (X2

1 , Y
2

1 ), . . . , (x2, y2), . . . , (X2
n, Y

2
n ))
)
f12(x1, y1, x2, y2)dx1 . . . dy2

= E
(
G((X1

i , Y
1
i ); (X2

1 , Y
2

1 ), . . . , (X2
n, Y

2
n ))
)

= E
(
log γ̂2

C(X1
i , Y

1
i | X 2

n)
)
.

By definition of logM̂i this implies that E (µ̂M,n) = E
(

log M̂i

)
= 0.
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D Additional Simulation Results

The simulation results in Tables D.1–D.5 are obtained from the data-generating process

described in Section 6.1, and have the same layout as Table 1 in the main paper.

Table D.1 reports rejection rates for (two-sided) tests of no change versus change in

productivity using logs of estimated Malmquist indices. For q = 1 and p ∈ {1, 2, 3},
results are from tests based on Theorem B.2 and intervals computed using (B.10). Results

for p ∈ {4, 5} are based on Theorem B.3 and intervals computed from (B.11). See Section

6.2 in the main paper for discussion.

As discussed in Section 6.2 in the main paper, Tables D.2–D.3 are analogous to Tables

1 and D.1, and are identical for q = 1 and p ∈ {1, 2, 4, ; 5}. But for Tables D.2–D.3, the

reported rejection rates for p = 3, q = 1 are obtained using subsamples of size nκ based on

Theorems 4.3 and B.3, respectively.

Also as discussed in Section 6.2 in the main paper, Tables D.4–D.5 report rejection rates

using the re-centered interval in (4.13) when working with untransformed indices (for the

results in Table D.4), and the re-centered interval in (B.12) when working with logged indices

(for the results in Table D.5). Again, see Section 6.2 in the main paper for discussion.
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