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A Outline and Assumptions

Appendix B contains proofs of the supporting lemmata from the main paper. In Appendix C
we prove Theorem 4.1. Appendix D details the Identification Category Selection Type 2 [ICS-2]
p-value. Appendix E presents bootstrapped identification category robust critical values, with
asymptotic theory. Assumptions 3-5 are discussed in Appendix F in the context of a STAR

model.

Recall the model
yr = Qe + Bog(we, o) + € = (6o, 2¢) + € where x; € R* and 0 = [C’,ﬁ',w’]/. (A.1)

The variable v, is a scalar, z; € R* are covariates with finite k, > 2, g : R¥ x II — R*s is
a known function, and {y € Z, By € B and my € II, where B, Z and Il are compact subsets of
R, R* and R*" respectively for finite &, > 1. The covariates z; include a constant term and
at least one stochastic regressor. Assume Ele;] = 0 and Ele?] € (0,00) for some unique 6, € ©
=Z x B xIL

Let y; exist on the probability measure space (2, P, F), where F = 0(UezFy) and Fy = o (y,
: 7 < t). Assume O has the form {# = [§', (', 7] : 5 € B,( € Z(B),n € 11}, where B, Z(j3) for

each 3, and Il are compact subsets. Recall:

v=[8,¢T ev={(8,):BeB, e Z(B)}

The true parameter space ©* = U* x I1* = {0 = [/, (', 7] : B € B*,{ € Z*(B),n € IT*} lies in
the interior of ©, it contains 0y = [}, {;, 7]’ , and 0 € B*.

Recall the following definitions and constructions:

I Ok x2
B = v v A2
® [0 HBHsz]’ (22)
and
_ ) BBl if B#0
°"<5>‘{ o/ L)l 5=0 "
and

dy () = [g(y, ), x;]/

!/

d@,t<waﬂ-) = [g(xtaﬁ)/’xgaw/ (xtuﬂ->

%9

d@,t = da,t (WO, 7T0)



and

and

and

Hwn

Gyn(0)

g&,n(e)

de ) Tn)dg ¢ (w (By), )" where w(j3) = {

[ (AW (x)) dype()]
E[F (XNW(z)) dos(w, )]

Kop(m, A) = F (NW (22)) = by (m, \)H, () dy ()
Kot(\) = F (NW(1)) = bo(A)Hy 'do 1(Ba/ |Bnll o)
Koa(ha,m) = 3" aikou (V).

Dy(r) = —a%éE €1(0)dy ()] = — E [dy(m)g (e, m0)'

Hoy(m) = Eldya(m)dy o (7)'],

BB

= —de ) dy (7

1’%/ HlkﬁH it =0

(A.3)
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200 N = 230, {F (W (1)) b)) B () 7o) Y

t=1
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B, (mar) = =Y ij '
w5 QT =— et' a1 dy 1 (7;)
t=1 =1
Banliomar) = =30 3 cur'd
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]
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1 .. . 1/2
A, = <—nﬁ,’lz/g}ﬁ’n n) (A.6)

where 355, is the upper (p + 1) x (p + 1) block of %,.

We use the following notation. [z] rounds z to the nearest integer. I(-) is the indicator
function: I(A) = 1 if A is true, otherwise I(A) = 0. a,,/b,, ~ ¢ implies a,, /b, — c asn — oo. ||
is the [;-matrix norm; ||-|| is the Euclidean norm; ||-||, is the L,-norm. K > 0 is a finite constant
whose value may change from place to place. 0,4 is an a X b dimensional matrix of zeros. a.e.
denotes almost everywhere. =* denotes weak convergence on [, the space of bounded functions
with sup-norm topology, in the sense of Hoffman-J¢rgensen (1984, 1991), cf. Dudley (1978) and
Pollard (1984, 1990).

Recall that by probability subadditivity, for stochastic measurable (A,B) > 0 and any a €



(0, 00):
P(A+B>a)<P(A>a/2)+P(B>a/2). (A7)

Assumption 1 (data generating process, test weight).

a. Identification:

(i) Under Hy, Ele|r] = 0 a.s. and E[é?|x;] = 02 a.s., a finite positive constant.

(i7) Under C(i,b): E[(y: — Gome)dyy(m)] = 0 for unique vo = [0}, ¢l in the interior of
U*. Under C(it,wp): Ele(0y) X dpi(wo,m)] = 0 for unique 6y = [, (), m) in the interior of
O = U* x II*.

b. Memory and Moments: {e;, z:} are L,-bounded for some p > 6, strictly stationary, and [3-

mizing with mizing coefficients B = O(I7®P)=) for some q > p and tiny v > 0.

c. Response g(z, ) and Test Weight F(AMW(x)):

(7) g(-,m) is Borel measurable for each w; g(-,m) is twice continuously differentiable in m €
R¥=: g(xy, ) is a non-degenerate random variable for each w € II.

(ii) F : R — R is analytic, non-polynomial, and VW is one-to-one and bounded.

(ii1) Elsup,ey [(0/07) gz, m)|%] < 00 and E[supyep [(0/ON F(NW(2,))[%] < oo for i =
0,1,2 and 7 =0, 1.

d. Long-Run Variances:

(i) Under C(i,b) with ||b|| < oo let liminf, o Elinfa,g (r' > i @iGyn(0:))?] > 0 and
limsup,, ., Elsup, .o (' >0 @:iGyn(6:))?] < oco.

(ii)  Under C(it,wp) let liminf, .o Elinf,, o ("> " 0:Gon(6:))?*] > 0 and
limsup,, ., Elsup,, .o (r' > @:iGon(6))?] < oco.

(#41) E[inf,,~(r'dgs(w,m))*] > 0 and E[sup,., . (r'dg(w,7))?] < 0o; E [inf, - (r'dy(7))?] > 0
and E [sup, . (r'dy(m))?] < oo.

() liminf, o info, E[Ey,(7;a,7)%] > 0 and limsup,_, . sup,, . E[Ey (7 a,7)?] < oo;
and lim inf,,_, o inf, ;. ~ E[Eg,(w, 75 a,7)?] > 0 and limsup,,_,, sup,, ., - E[Eg,(w, 75 a,7)?] < oo.

(v) Under C(i,b) with ||b|| < oo, liminf, o Elsup, ., €y (A a,r)?] < co.

(vi) Under C(ii,wp), E[sup, ,»(1/v/n > 0 €Kor(A;a,m))?] < oo for each m.

e. True Parameter Space:
(1) © ={(5,(,m) : B € B (e ZB), m € I[I*} is compact.
(it) O, € int(B*).
(1ii) For some set Z§ and some 6 > 0, Z*(5) = Z§ V||B]| < 9.

f- Optimization Parameter Space:

(1) @ ={(5,(,7): € B, e Z(P), n €11} and OF C int(O).



(17) (O, B,1I) are compact, and Z(3) is compact for each (5. (iii) For some set Zy and some
d >0, Z2(8) =20 V||Bl| <6 and Z§ C int(Z2).

Assumption 2 (identification of 7). Let drift case C(i,b) hold with ||b|| < co. (a) Each sample
path of the process {£y(m,b) : m € 11} in some set A(b) with P(A(b)) = 1 is minimized over II
at a unique point 7 (b) that may depend on the sample path. (b) P(13(7*(b),b) = 0) = 0.

Assumption 3 (non-degenerate scale on A-a.e.).

a. Let C(i,b) with ||b]| < oo hold. Then P(E[inf en{€’(¢o, ™)} z:] > 0) = 1. There exists a
Borel measurable function p : R* — R such that ky(w, 7) = [p(zy), dor(w, m)']) has nonsingular
Elk¢(w, )k (w, )] uniformly on {w € R* : w'w = 1} x IL.

b. Let C(ii,wg) hold. Then P(E[e?|z;] > 0) = 1. There exists a Borel measurable function i :
RF — R such that ky = [p(4), dgs)' has a nonsingular E[kk}).

Recall
6 € ©F = {9+ e RF bttt = [|I6]|,w(B), ¢, ] : B € B.¢ € Z(8),w € 1T},
and

e(07) = ye — (wy — ||Bl|lw(B) gz, )
V(0 \) = E [e§(9+> {F (XW(x2)) — by(w, T, A)’H;l(w)dg,t@r)}ﬂ

and

€t<9) =Y — Cll’t - 5/9(%77)
v2(0,\) = E [ef(e) {F (N W(x1)) — by(w(B), T, A)’?—Lgl(w)dat(w)}ﬂ .

Assumption 4 (non-degenerate scale).

a. Let 8 be a scalar. Let inf e v3((Bo, Co, m), A) > 0 VA € A under identification case C(i,b) with
|b| < oo, and under C(ii,wy) let v*(6p, A) > 0 VA € A.

b. Let § be a vector. Letinf _pry 0 0*((|Boll, w, Co, ), A) > 0 VA € A under identification
case C(i,b) with ||b]| < oo, and under C(ii,wy) let v2(6F,)\) > 0 VA € A.

Assumption 5 (p-value). a. Fyu(c) is continuous a.e. on [0,00), Vh € $. b. The ICS-1
threshold sequence {k,} satisfies k, — oo and K, = o(y/n).

We exploit properties of the Vapnik-Cervonenkis subgraph class of functions, denoted V(C).

The V(C) class is large: it contains indicator, monotonic and continuous functions; and V(C)
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mappings of V(C) functions are in V(C), including linear combinations, minima, maxima, prod-
ucts and indicator transforms. See, e.g., van der Vaart and Wellner (1996, Chap. 2.6) for a
compendium of V(C) properties.! See Vapnik and Cervonenkis (1971), Dudley (1978, Section
7) and van der Vaart and Wellner (1996, Section 2), and see Pollard (1984, Chap. 11.4) for the

closely related polynomial discrimination class.

Assumption 6. The test weight {F(w) : w € R} and distribution functions {F,x(c) : X €
A,ce€[0,00)} and {F};,,(c) : A € A,c € [0,00)} belong to the V(C) class.

B Supporting Lemmata

All subsequent Gaussian processes have almost surely uniformly continuous and bounded sample
paths, hence in many cases we just say Gaussian process. Let t(A) and 7(A) denote the minimum

and maximum eigenvalue of matrix A.

Lemma B.1. Under C(i,b) and Assumption 1, {Gy,(0) : 0 € ©} =* {Gx(0) : 0 € O}, a zero
mean Gaussian process with almost surely uniformly continuous and bounded sample paths and
covariance E[Gy(0)Gy (0], || E[Gy(0)Gy(0)]]] < oo.

Proof. Recall © is compact and therefore bounded. Weak convergences to a Gaussian
process with almost surely uniformly continuous and bounded sample paths therefore requires
convergence in finite dimensional distributions, and stochastic equicontinuity (see, e.g., Dudley,
1978; Pollard, 1990).

Let m € N, @« € R™ and r € R*¥** be arbitrary, with o/ = 1 and 7 = 1. Under
Assumption 1.b,c Y 7", a;e(0;)r'dy +(6;) is, for any m-tuple {0, ..., 0,,} of points 6; in O, strictly
stationary, L,-bounded, p > 4, and S-mixing with coefficients 8, = O(1=/(4=P)=t) for some ¢
> 0 and ¢ > p. Hence E[(D.7", ai'Gyn(6:))?] = O(1) (McLeish, 1975, Theorem 1.6, Lemma
2.1). Long run variance Assumption 1.d(i) and Theorem 1.4 in Ibragimov (1962) therefore yield:
S i’ Gyon(6;) 2 N(0, limy, e E[>-" air’Gyn(6:))?]). Convergence in finite dimensional
distributions now follows from the Cramér-Wold theorem.

Stochastic equicontinuity for 1'Gy ,,(6) holds if V(e, ) > 0 there exists 6 > 0 such that:

lim P, (r,0,n) = lim P sup ‘r’gw(@) — r’gw(é)‘ >n) <e. (B.8)
o oo 0,0c0:||0—0]|<6s

We adapt arguments developed in Arcones and Yu (1994, proof of Theorem 2.1 and Lemma

2.1) to prove (B.8). This requires the V(C) subgraph class of functions. By the implication of

1We exploit the facts that an indicator function of a V(C) index function is in V(C), and a continuous function
evaluated at a V(C) function is in V(C).



probability subadditivity (A.7) and r'r = 1, it suffices to prove the claim for each element of
Gin(60) = G iO)):21".

Gy n.i(0) lies in V(C) because it is continuous, hence the covering numbers satisfy N (e, K, ||-||2)
< ae b forall e € (0,1) and some a,b > 0 (e.g. Lemma 7.13 in Dudley, 1978, and Lemma I1.25
in Pollard, 1984). Furthermore, under Assumption 1.b,c each Gy, ;(0) is L,-bounded, r = p/2
> 2, and (-mixing with coefficients 3 = O(I~%®/(@P)=) ¢ > p > 6 and tiny ¢ > 0. By simple
algebra it follows 8, = O(I7"/"=2) = O(I=?/®=%)) because p/(p — 4) < qp/(q — p). Therefore
{Gyni(0) : 6 € O} is stochastically equicontinuous by Lemma 2.1 in Arcones and Yu (1994, see
especially the argument following eq. (2.13)). QED

Lemma B.2. Under C(i,b) and Assumption 1, sup,cy ||7/-Z¢,n(7r) — Hy(m)]| 20, where t(Hy (7))
> 0 and t(Hy(m)) < oo for each m € 11.

Proof. We have ﬁw,n(ﬂ) 2 A, () pointwise under Assumption 1.b,c since d,, (k) is station-
ary, Lo-bounded, and ergodic by the -mixing property. Further, ¢((H, (7)) > 0 and o(Hy (7)) <
oo for each 7 € II respectively follow from inf,/.—1 E [(r'dy(7))?] > 0 under Assumption 1.d(iii),
and ||Hy(7)|| < oo under envelope bounds Assumption 1.c and compactness of ©.

It remains to show ﬁw,n(ﬂ) — Hy(m) is stochastically equicontinuous. By the mean-value-

|

theorem and Cauchy-Schwartz inequality:

~

B Hopun () = Hopn(7)

sup
m,wEIL||m—7||<d

<2F {sup gdw’t(w) sup|d¢,,t(7r)'|} X &
mell on mell
9 9 1/2 9 1/2
S 2 (E sup _g(l’bﬂ-) ]) (E (Sup |g('rt77r)| + |xt|) ]) X 5 = ]C(Sa
mell on mell

where IC > 0 is implicitly defined and 6 > 0. The right hand side is bounded by Ls-boundedness
of xy, sup,cr |g(ze, )| and sup,.cp [(9/07)g(xs, m)| under Assumption 1.b,c. Hence K € [0, 00).
Therefore, assuming K > 0, V(e,n) > 0 there exists 4, 0 < § < €¢/K, such that by Markov’s
inequality:

n—oo m,wElL:||m—7|| <6

lim P ( sup Hﬁwm(ﬂ) . ”Hw(w)} . {ﬁ¢7n<fr) . ’Hw(fr)}‘ > n) <e (B.9)

If K = 0 then V(e,n) > 0 and any ¢ € (0,00) (B.9) holds. This yields stochastic equicontinuity,
completing the proof. QED



Lemma B.3. Under C(ii,wy) and Assumption 1, {Gp,(0) : 0 € ©} =* {Gy(0) : 0 € O}, a zero

mean Gaussian process with almost surely uniformly continuous and bounded sample paths.

Proof. The arguments used to prove Lemma B.1 carry over verbatim, except long run vari-

ance Assumption 1.d(ii) is used in place of Assumption 1.d(i). QED.

Corollary B.4. Let 0,, = [, ¢}, m,|" be the sequence of true values under local drift {$,}. Under
C(ii,wo) and Assumption 1, /nB(3,)"(0/00)Q,(6,) % Gy, a zero mean Gaussian law with a
finite, positive definite covariance E[GaGyl, and has a version that has almost surely uniformly

continuous and bounded sample paths. Moreover, E[GyGy| = 0*Eldgdy | under Hy.

Proof. By the definition of Gy ,,(6,):

V() Qu00) = Go00) + VB (60 (50 15l 70).

Combine Lemma B.3, 6,, — 6, the fact that 6,, is non-random, and continuity to yield Gy, (6,,)
% Gy = Go(6p). By identification Assumption 1.a(ii) and the fact that 6, = [B], (), mp]’ is the
sequence of true values under local drift {3,}, it follows that Ele:(6,,)do+(5,/|15nl]s m0)] = 0.
This proves v/inB(3,)"1(8/00)Q,(6,) % Go.

Finally, since 6,, =[5}, {, 7]’ is the sequence of true values, under Hy note that
1 n
Goal0,) = === 3 {eudouo(). ) = B [0 5,). )
t=1

= —% Z Etde,t(w<5n)v W)'

Hence, in view of stationarity:

E(Go.n(00)Go.n(00)'] = 0°E [dg (Ba/ [1Bull s 70) do,e(Ba/ [|Bull s 70)]-

Since f,,/||5n|| = wo and ||wo|| = 1, under Assumption 1.b,c:

2

. / ! / ;L a '
oy = timsup sup (1 [oCow )ty Lot )

n—oo r/r=1

exists and E[0;] < oco. Dominated convergence now yields
E{do. (Bn/ 18l s 70) do.1(Bn/ 15nll s m0)] = Eldosdp,],
hence E[Gyn(0n)Gon(0n)] — 0°Eldgsdy,]. This implies /n%B(6,)~"(9/00)Qn(6,) 4 Gy, with
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asymptotic variance o®E|dp,dp | as required. Q€D

Lemma B.5. Under C(ii,wy) and Assumption 1, H, D Ho, and L(Hg) > 0 and t(Hy) < 0.

Proof. By the construction of H, = 1/n Y2 doy(w(Bn), mo)do (W (Bn), mo) and Hg = Eldg,dy ],
and dp¢(w, ™) = [g(xy, m)’, 2}, W' (0/0m) g(xy, m)]', after adding and subtracting like terms, we have
for any r = [y, 1, 1%), rg € R¥, ry € RFe € RF:

x) '

1 (4 9 ?
r (Hn - ’Hg) ro= - Z (rﬁg Ty, M) + Ta + Tﬂa p (xt,ﬂo)wo)

t=1

-K

a 2
rﬁg(xh 7‘-0) + T 2Lt + rrra / (a:ta 7TO)(""}O

I ~(, 0 Bn ?
52 (gt (g7 -))
0 , 0 .
+2— Z (rﬁg Ty, To) + T2 +7‘,Ta - (th,’/To)wO) XTho (4, o) (ﬁ — w0> .

The Assumption 1.b,c envelop moment and mixing properties imply each summand is a sum-
mation of stationary, ergodic and integrable random variables. Further 3,/||5,|| — wo — 0 by
assumption. The ergodic theorem now yields r'(H, — Ho)r 2 0.

Finally, t(Hg) > 0 and 7(Hy) < oo follow from Assumption 1.c,d(iii). QED

Define the augmented parameter, and its space:

ot = [I8]l, . ¢ 7
e OF = {0 e REAotetl 0" — [||8]],w(B), ¢ ] - Be B, e Z(B), 7 I},

Define
e(07) =y — (e — 8] | g (e, ),

and:

n

H(67) = 3 doa(w (8) m)daa(w () ), V(67 =

t=1 t=1

3

(0 )dgs(w (B) ,m)dgs(w (B), 7).

S|

A~

Hence Hy,(67) = H, and V,(6)) = V,. Define
Ho(07) = E [dgs(w, m)dgs(w, )] and V(6F) = E [ (0 )dp(w, m)dg(w, )] .

11



In the interest of decreasing (some) notation we use the same argument 6+ for both #,(6+) and
Va(61), although H,(6*) only depends on (w(8), 7).

Lemma B.6. Under Assumption 1, Supg:ceo+. Hﬁ (0F) — Ho(0)|| = 0, sup,py ||D¢,n(7r o)
— Dy(m)|| & 0, and supgsce+. |[Va(01) — V(O)|| 2 0, where infgrco+.L(Ho(67)) > 0, T(Hg) <
00, infgree+t(V(OT)) > 0, and 1(V,) < oo

Proof. We prove the claim for V,(67), the proofs for H,(6+) and Dy.n(m, ) being sim-
ilar. Pointwise convergence follows from mixing (hence ergodicity) and moment properties in
Assumption 1.b,c.

Uniform convergence is proven if we show stochastic equicontinuity: V(e,n) > 0 there exists
0 > 0 such that:

lim P, (r,0,n) (B.10)
= lim P sup Va(0F) = V(O b — V() = V(1) | > 1
oo <e+7é+ee+:|e+—é+|§5 { } { H
< €.
First note that:
E sup lA}n(e—i—) - f}n(e)‘
0+,0+cO+:||o+—61||<s

1
= sup —
o+ 0+eot|lor—0+|<s | " V=

<  sup %Zn:

o+ 6+eoto+—g+||<s | ™ 2]

{07 )doa(w, m)doa(w, ) — (0" )do (@, 7)o@, 7Y |
{

2(07) — € €+)}d97t(w,ﬁ)d97t(w,ﬂ)'

3

1 ~ - ~ =y
EZE (0% {dos(w, T)dg s (w, ) — dg (&, 7)dg (0, 7)'} .

|

<2F [ sup |e,(67)| sup |d97t(w,7r)|3] x 0 < K9,

0+tecoe+ 0+teoe+

+ sup
0+,0+co+:||0+—6+||<6

By the mean value theorem, and the moment properties of Assumption 1.b,c:

% Zi: {E?(9+) - Etz(é+)} d97t<w7 7T)d9’t(w’ W)/

E sup

0+,0+€o+:||o+—6+||<s

12



and

n

1
—Ze 0+ {dp1(w, m)dg (w, m)" — do(0, T)dg (0, )

n
t=1

E sup

0+,0+co+:||o+—6+||<s

I

<28 | sup 0] sup oo, )] sup | daul w)] 5< K
ftco+ gtco+ 89+
where
0 o) < 2 | Lgtanm)| + 0] x | =2 g, m)
g+ N T = £ X G g\ T TR G g I T

A similar set of steps shows

V(6% = V.(0)

sup
0+ 0+cot:||o+—0+||<s

= sup E [e(6%)dy1(w, mo)dgs(w, m) ] — E [6?(§+)d0,t(a}77~r)d0,t(@aﬁ-)/]

0+,0+cot:||o+—0+(|<s

< K.

Now invoke Markov and Minkowski inequalities to yield:

lim P sup {\A/n(9+) — V(9+)} — {]}n(é) — V(9~+)H >
oo 0+,0+eo+:||o+—a+||<s
1 ~ ~ ~
< lim —F sup Vo (07) — Vn(Q)‘
n—o0 1] 0+.,6tcot:||gt—6+(|<s
1 ~
+ lim — sup ‘ V() } - V(9+)‘
O] g+ Gteot:||ot—6+||<s
< K.

This proves stochastic equicontinuity (B.10) for any ¢ such that 0 < § < ¢/K. QED

Define
v if C(4,b) and ||b]| < o0
ap = — . .
187" if C(i,b) and [|b]| =

Recall
wO,n = |: kﬂaco] )
hence Qo = Qn (Y0, ) does not depend on 7. Define:

Zu(m) = —anHy (1) 0 Qulthoms ).

g
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Under C(i,b), Lemma B.2 yields that ﬁ¢,n(w) is positive definite uniformly on II, asymptotically
with probability approaching one. Write Q¢ () = Q (¢, (), 7).

Lemma B.7. Let drift case C(i,b) and Assumption 1 hold.

a. In general a,(Vn(7) — Yon) = Zn(m).

b. a2{Q5(m) — Qon} = =271 Zu(m) Hy n(7) Z0(m) where Qon = Qu(tom, T)-
Proof.

Claim a. By the definition of ¢, (), 0 = 1/n Yoy €(Un (1), m)dy 4 (). Now use (8/9%)Qn (1o, )
= —=1/n>"  &(on, T)dy(1), Hyn(m) = 1/nd"0  dpi(m)dy(m), and linearity of the first or-
der equation in &n(ﬂ), to yield the desired result.

Claim b. The equality 22 — y? = (z — y)(z + y) and rudimentary algebra yield:

Qn(m) = Qo = —% Zﬁt(¢0,n7ﬂ)d¢,t(ﬂ)/ X (@n(ﬂ) — wo,n>
=1

+% (zﬁn(ﬂ) - wo,n) X Hyu () X @"(”) - wov”)

=~ Qelt ) ¢ (fulm) = o) + 5 () = ) x () x () = ).

Use (a) and the form of Z,(7) to deduce a,(0/0¢)Qn(VYon, ) Z, (1) = Zn<7T)7/'Z;7ln<7T)Zn<7T)
hence:

Q) ~ Qnn} =~z Qulbons W Zalr) + 5 2ol () Z0()

1 N
= —§Zn(7T) X H;ln(ﬂ') X Z, (7).
This proves the claim and completes the proof. QED

Define
Dy (T, w0) = —2_2w6D¢(7T),H;1(W)Dw(ﬂ')wo

where
Dw(ﬁ) =—F [dw,t(ﬁ)g(ﬁt, m)'] .

Recall from the main paper:

64(m0) = —5 {Gu(Wo,m) + Dulmb Hy (1) {Gu (Yo, m) + Du(mb}

The following is a key result for characterizing the asymptotic properties of 7, under weak

identification.

14



Lemma B.8. Let drift case C(i,b) and Assumption 1 hold.
a. If ||b]] < oo then {n(Q%(m) — Qon) : m € I} =* {&(m,b) : m € I1}.

b. If ||b]| = oo and B,/||Bn|| = wo for some wy € R* | ||wol| = 1, then

sup |[— (Q5(7) — Qo.n) — Iy (7, wp)| = 0.
mell ||ﬁn||
Proof.
Claim a. Recall
G (6) = Vi { 3Qul0) + Eleltn m)eulm)] .
By Lemma B.7.b and ||b|| < oo:
c 1 147 1 0 147—1 0
n (Qn(,/T)’ 7T) - Qﬂm) = _n§Zn<7r) Hw,n(ﬂ—)zn(ﬂ—) = _éﬁ%Qn(wO,nv 7T) H%n(W)\/ﬁ%Qn(wO,m 7T)

= =5 {Gunlon ™) = VRE o dyaml} x Hy ()
X { G0, ™) — VRE [6(thon, T)dy ()]} -

Further, by (C.18) in the proof of Theorem 4.1 in Appendix C:

sup | V1 E [6 (Yo, 7)dy ()] + Dy (m)b| — 0.

well

Now use Lemma B.1 for Gy ,,(¢o.n, 7), and Lemma B.2 for ﬁ¢7n(w), to prove the claim.
Claim b. Lemma B.7.b and the definition of Z,,(7) lead to:

az{@%( ) Qﬂn} | {gwn ¢Ona ) \/ﬁE [Et(@bo,m dwt } Hwn

S RTEd
N TAR

y (C.17) in the proof of Theorem 4.1:

Vo, ™) — VNE [€(Yo,n, T)dy e ()]} -

VIE [e (o, m)dy ()] = VnE [{e(o,n, ™) — €(0n)} dye(m)] = E [V, g(ae, mo)dy,e(7)]

15



hence |||~ Eler(on, T)dy.(m)] = Ell|Ball ™ B.9(xt, m0)dys+(7)], and therefore

sup
mell

IIBnII E [6(to,0, )y ()] + Dy ()| = 0.

By supposition /n||3,||| = oo, hence Lemma B.1 with the continuous mapping theorem, and
Cramér’s Theorem, yield:

(o, )| 0.

sup
mell

gw n(qv/}O ny )

RIA] < o /A S 1

Lemma B.2 applied to ﬁwm(w), and the Slutsky theorem complete the proof. QED

Write (¢, ) =y, — ('xy — 5'g(xy, ). Recall 1, is the (possibly drifting) true value of ¢ =
(8, ("] under Hy.

Lemma B.9. Let Assumption 1 hold.
a. Under C(i,b) with ||b|| < oco:

1 < \
{ﬁ > e, (1, X) = B et 1)Ky a(m, N)]} H,A} =" {3u(m,A) - 1L A},
t=1
a zero mean Gaussian process with covariance kernel E[3,(m, \)34(7, \)]. Under Hy,

20, (B.11)

sup
mell,AeA

1 « 1 —
NG ; {et(Wn, m)Cy i (m, A) = B [e1(thn, T)KCy (7, M)} — 7 ; €ty t(m, A)

and E[3,(m,\)34(7, N)] = 02E[K (7, N Ky (7, N)].

b. Under C(i,wp), {1/v/nd 1 eor(A) : A € A} =* {39 : X € A}, a zero mean Gaussian
process with covariance E[39(A\)39(\)] = E[EKe (AN Ko (V)] where Koi(N) = F (N W(xy)) —
bo(\)'H, ' do.s.

Proof. We only prove Claim (a). The proof for Claim (b) is nearly identical.

II, A are compact and therefore bounded. Weak convergences to a Gaussian process with
almost surely uniformly continuous and bounded sample paths requires convergence in finite
dimensional distributions, and stochastic equicontinuity (see, e.g., Dudley, 1978; Pollard, 1990).

Write compactly x = [7/, '] € X =11 x A, and define:

&p,t(@/’na X) = €(Yn, W)’Cz/;,t(ﬂ, A) = E [e(1n, W)/Czp,t(ﬂa )]

16



Slﬁ:t(wm X; a, m) = Z &igw,t (¢n: Xz)

i=1

where m € N, a € R™ satisfies a’'a = 1, and {x1, ..., X, } is an m-tuple of points y; = [7}, \}]' € X.

(2B

Under Assumption 1.b,c &y 4(¥n, X; @, m) has a zero mean, and is strictly stationary, L,-bounded,
p > 4, and B-mixing with coefficients 3, = O(I=®%/(@=P)=*) for some + > 0 and ¢ > p. Hence
E{1/v/n Y0 Epi(¥n, x;a,m)}?] = O(1) (McLeish, 1975, Theorem 1.6, Lemma 2.1). Long run
variance Assumption 1.d(v) coupled with Assumption 4 imply E[(3>7; Ept(¥n, X; a,m))?] — co.
Now invoke Theorem 1.4 in Ibragimov (1962) to yield:

2
IR d . 1<
NG tz;gw,t(@/]m x;a,m) — N O’nlggoE {% ;&N(wn, X; a,m)} :

where lim, o E[{1/v/nY 1 Ept(¥n, x;a,m)}}?] < oo. Convergence in finite dimensional dis-
tributions now follows by the Cramér-Wold theorem.

Next, after adding and subtracting g, g(z, m):

% i Eyt (Y, X)
- Z {(elCaalm, ) = B [eCa(m M)}
VB S o gt m) 0 Koa(m. N) = B Lo a(ar,m) = gl m0)} Kol W)
= 3.(m, \) —if:;n(ﬂ, A).
Under Hy and Assumption La, E[e/Cy(m, A)] = 0 and
E [3n<7r, A)3n(7~r,x)} —E [e?/@,,t(ﬂ, MKy (7, X)] _—y [icw,t(w,x)/cw,t(ﬁ, X)} .

Further, sup, ¢ aea |Xn(m, A)| % 0 by Lemma B.13. This proves (B.11).
Stochastic equicontinuity for €y (1, x) holds if V(e,n7) > 0 there exists ¢ > 0 such that:

lim P,(r,0,n) = lim P ( sup 1Ept (Vns X) — Ept(Un, X)| > n) <e. (B.12)

n—oo n—o0 Xv)ZEX:HX_)ZHS(S

We again adapt arguments in Arcones and Yu (1994, proof of Theorem 2.1 and Lemma 2.1) in
order to verify (B.12). &y (¢, x) lies in the V-C subgraph class of functions V(C) because it is
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continuous, hence the covering numbers satisfy N (¢, K, ||-||2) < ae = for all € € (0, 1) and some a, b
> 0 (e.g. Lemma 7.13 in Dudley, 1978, and Lemma I1.25 in Pollard, 1984). Furthermore, under
Assumption 1.b,c and by multiple uses of Minkowski and Holder’s inequalities, it is easily verified
that &4 (1n, x) is L-bounded, r = p/2 > 2, and S-mixing with coefficients 3, = O(I~%/(4=P)=¢),
q > p > 6 and tiny ¢ > 0. By simple algebra it follows 3, = O(I""/("=2) = O(I7?/?*=4)) because
p/(p — 4) < qp/(q — p). . Therefore {Ey(Yn, x) : x € X'} is stochastically equicontinuous
Arcones and Yu (1994, Lemma 2.1, see especially eq. (2.13)). QED

Lemma B.10. Under Assumption 1, SUP, (w,m,A) — bg(w,m, N 50

8 jwl|=1 remrca |Bon
and Supeniaen [[0yn(m, A) = by(m, A)|| 5 0.

Proof. Pointwise Ew’n(ﬂ, A) B by(m, A) follows from stationarity, ergodicity, and the As-
sumption 1 moment bounds. It remains to show stochastic equicontinuity: V(e,n) > 0 there
exists > 0 such that:

lim Py (r,6,n) = lim P ( sup Hf’w,n(x) - bw(X)} - {Ew,n(fc) - bw(fc)}’ > ?7) <e

e e \eXEXHIx—xII<6
where y = [N, 7] € X = A x II. There exists x. € X, ||x — x«|| < |Ix — xl|, such that:

{80000 = 0,00} ~ {Bun(0) ~ bu(0) |

= > S AE OV @)a(m) — B F W) dem )Y (1= 1)

n
t=1

The envelop moment bounds in Assumption 1 imply:

B [sup | - AFOW@0)sa(r) = B IF (W) ()| < K <

Now invoke Markov’s inequality to deduce P, (r,d,n7) < n~'K§ < e for any 0 < § < en/K. QED

Define ©+ = {#* € Reethsthatl . g+ = [||8]|,w(8),C,7] : B € B, ¢ € Z(B), 7 € I} and

/ / 77 1 /
(07 =y, — 'z — ||8]|W'g(xs, 7)) and H,(w,7) = - ng,t(w, 7)dg (w, )
=1

n

Q2(0%,\) = %Zef(m) [P (NW()) = 8.0, 0 A (0, 7)o, w)}2

t=1

(0, \) = E [62(9) {F (NW(a1)) — by(0, 00, N Hy  (w, m) g (w0, w)}ﬂ .
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Lemma B.11. Under Assumption 1, supg: co+ ren |[02(07, A)— v2(6F, A)[| 5 0 and suppee rep |[02(0, A)—
v?(0,\)]] 5 0

Proof.  We only prove supg:co+ rep |[02(6F, A)— v2(6F, A)[| = 0; the proof of supgee ren |[02(60, A)—
v2(0,\)|] 2 0 is similar.
Define
2+ 1 s / 1n -1 2
B070) = £ 30 0) (FOWG) = bol0,00. )y (0 ). 7))
=1
1 n
Cn(07) = - > (0 )dgy(w, )
=1
1 n
E(0T,)) = - & (07 dg 4 (w, m)F (AW (ay))
=1
Then:
02040 = 02(0%,0) = = {Bun(0,0, ), (w,7) = bo6,0, 0 Hy (w0, ) |

{25 (0%, )) — (Egm(e,w,)\)’?:[\;l(w,w)+bg(9,w,)\)’7{;1(w,7r))Cn((9+)}.

By the same arguments used to prove Lemma B.6, C,(8%) & E[€2(8%)dy(w, 7)] uniformly on ©+.
Further, £,(07,\) & E[e2(0)dg(w, 7) F(NW(,))] uniformly on ©F x A because (i) pointwise
convergence follows from the assumed moment and mixing properties, and (ii) &,(60%,\) is
stochastically equicontinuous by arguments in the proof of Lemma B.10 after simple alterations.
Now apply Lemmas B.6 and B.10 to yield [62(4*, ) — v2(67, \)| & 0 uniformly on ©*. Finally,
v2(6%,2) B 2(*, \) uniformly on ©F by the same arguments in the proof of Lemma B.10.
QED

Recall by(w, 7, \) = E[F (NW(x,)) do(w, )], and define
V(N) = v (wp, w0, A)
where:
V3w, T \) = [gt (tho, ™) {F (XYW(x2)) — by(w, 7, A) Hy ™ (w, 7)dp 4 (@, w)}z} .

Lemma B.12. Let Assumptions 1.a(i) andAssumption 3 hold. Under C(i,b) with ||b|| < oo, the
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following set has Lebesque measure zero:

{)\EA: inf v2(w,7r,)\):0}.

w'w=1,mell
Under C(ii,wy), the set {\ € A :v*(\) = 0} has Lebesque measure zero.

Proof. In view of E[e?|z;] = 02 > 0 a.s. under Assumption 1.a(i), the proof under C(ii, wp)
is identical to Bieren’s (1990, Lemma 2).

Consider weak identification cases C(i,b) with ||b]| < co. Assume

St = {)\EA: inf v2(w,7r,)\):0}

w/'w=1,7rell

has positive Lebesgue measure, and take any A € S*. Use P(E[inf cn{€? (¢, ™)} z:] > 0) = 1

under Assumption 3 to deduce

FO\W(z;)) = bg(w, 7, \)H, H(w, 7)dg s (w, T) a.s.
Now use the Assumption 3.b Borel function p to yield that

Elpu(z) FINW(2y))] = Elp(,)do s (w, 7)1 Hg  (w, 7)o (w, 7, ).
Note by(w, T, \) = Eldg(w,7)F (NW(z;))] hence
Ep(z) F(AW(2y))] = E [€(w, m)dop(w, m) X F(AW(24))],

where ¢(w,m) = H, ' (w, ) E [p(w)dg+(w, 7)]. This implies

E [{u(z:) — {(w, m)'dg o (w, ™) } F(AW(24))] = 0. (B.13)

Since S* has positive Lebesgue measure, the equality in (B.13) applies for all A in a subset with
positive Lebesgue measure. Thus p(z;) = {(w, ) dp¢(w, ) a.s. by Theorem 2.3 in Stinchcombe
and White (1998). Hence E[xi(w,m)k(w, )] is singular, where ri(w,m) = [u(xr), dgs(w, 7)),
which contradicts Assumption 3.b(ii). QED

Define

Mu(m, N) = {g(@1, m0) = glae, 1)} FOW(2,) and My(m) = {g(xe, 7) — g(wi,m0)} dya(m)'.
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Lemma B.13. Under Assumption 1:

sup %Z (W () — E[etF(XW(aﬁt))]‘ 2,

meLNeA |1 4=

20 where  sup | E[My(m, N)]| < oo

sup %Z My(m,\) — E[M(m, )]

rellLAeA rellLAeA
I - - -
sup |— Y M,(m) — ElM,(m)]| 2 0 where sup E[Mt(ﬂ')]‘ < 00.
mell |V well
Proof. In view of envelope moment bounds in Assumption 1.c, the argument is essentially

identical to the proof of Lemma B.10. Q&D.

C Proof of Theorem 4.1

Theorem 4.1. Let Assumptions 1 and 2 hold.

a. Under drift case C(i,b) with ||b]| < 00, (v/A(Un(Fn)— 1), 7n) > (7(7(b),b), 7(b)).
b. Under drift case C(ii,wo), vAB(B3,)(6, — 6,) 5 —H;'Gy.

Proof.

Claim a.

Step 1: We first prove
{\/ﬁ(gﬁn(w) — H} =* {r(m,b) : II}. (C.14)
Recall 4o, = [0},. (o). By Lemma B.7.a:
\/ﬁ (Q/Ajn(w) - ¢n> = \/ﬁ <¢n(7r) - wO,n> + \/ﬁ (1/}0,71 - %) (0'15)
~ 0 /
= AT mVig Qo) — [V, 0]

By the construction of Gy ,,(0) in (A.3), we can write:

0
\/E%Qn(wo,m ) = Gyn(Pon, T) — VnE (€t (Yo.n, T)dy 1 ()] . (C.16)
Assumption 1.a implies Ele;(6,,)dy(7)] = 0, hence:

VIE [e4(to.0, T)dy ()] = VRE [{€(Von, T) — €(0n)} dy o (m)] = E [V/nB,g(z, mo)dy(m)] . (C.17)
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Therefore, by the definition of Dy () in (A.4), and /nB, — b with ||| < oo:

sup |V E [6(to,n, 7)dyt ()] + Dy (m)b| — 0. (C.18)

mell

By Lemma B.2 sup, ||ﬁ¢n(7r) — Hy(m)]] 2 0, where H,(7) is bounded and positive definite
uniformly on II. Now combine (C.15)-(C.18) to yield:

sup 50, (C19)

mell

Vi (Galm) = ) - ("H;l(w) (G (o) + Dy(m)b) = |1, OZJ) ’

Therefore (C.14) follows by application of Lemma B.1.

Step 2: Now turn to 7,. Write Q¢ (7) = Q, (U, (), 7). Let drift case C(4,b) hold with
[|b]| < co. By Lemma B.8.a {n(QS(7), 7) — Qon) : [I} =* {&y(, b) I1}, hence by the mapping
theorem | arg min, . {n(Q% (1) — Qu.)} — argmin, . {&(m,b)}| = 0. Therefore 7, 4o *(b) =
arg minen{&y(m, b)} by the mapping theorem and Assumption 2.

Step 3: The proof is complete by showing joint weak convergence for /n (1, () — ¥,,)
and 7,.

First, v/n(Un (1) — 1b,) and #, are continuous functions of Gy (¥, 7) and 7/'[\11,7n(7T). The
former follows from (C.15) and (C.16). In order to understand 7, define

6 (7,0) = — 5 1Gun(Wo,m) + DylmbY Fgh(m) (G (o, ) + D)t}

By Lemmas B.1 and B.2 {£,(m,b) : II} =* {{,(m,b) : II}. Hence, by Lemma B.8.a and the

mapping theorem

mell

arg min {n(Q5,(7) — Qon)} — arg mln {&yn(m,b) }‘ — 0.

In view of the argument above, this implies

7, — argmin {&y (7, b) }‘ 20.
mell

Hence 7, can be expressed as a continuous function of Gy ,, (1o, 7) and 7:l\w7n(7r).
Second, Gy (%00, ™) and 7-Al¢,n(7r) converge jointly because the latter has a non-random limit
uniformly on IT (c¢f. Andrews and Cheng, 2012b, p. 25). Hence

{Vi(a(m) = ). 70 2 T = {r(m, ), 7 (b) < 11}
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By the mapping theorem it therefore follows that:

(Vi (Fa) = ). Fn ) =" (7(2" (6),0), 7 (8))

Finally, a subsequent proof requires uniform consistency

o (7) = ¥ (C.20)
mell
Note that /
wn(’ﬁ) _wn = _qu,ln( ) an(¢0na ) [5;17 ;gﬁ] 5
where sup,cq ||7:l\1;1n(7r) ( )| & 0 and B, — 0. Moreover, by the Assumption 1.b,c,d(iii)
moment and envelope bounds and 3, — O:
sup Qn(%n, ™) < sup Qn(%n, ) = E e (o0, T)dy (7)) ‘ +sup || E [8,9(xt, mo)dy.+ ()] |
mell 3w mell ?M mell
= sup||- LS W () = B el )] + 0,(1)
e =1
= €,+0,(1).

Finally, €, 2 0 by the same arguments used to prove Lemmas B.2 and B.6. Therefore:

l[Jn (71—) - ¢n

sup
well

= Ssup
mell

_f,Q ()ann(/wOTM ) — [627025}

sup H—H; (m)€&, — {ﬁ;,ogﬁ]

mell

IN

[ +o,(1) 0.

This proves (C.20).
Claim b. Let drift case C(ii,wp) hold, and define

77 1 . / /
Holw,m) =~ > " dyy(w, m)dgs(w, m) and Ho(w,m) = E [do(w, 7)dgs(w, )]
t=1

Recall B(3) defined in (A.2) and w(8) defined in (A.5). By the first order condition (8/90)Q,,(6,,)
— 0 and the mean value theorem there exists 0%, |[0%— 60,|| < ||0,— 6,|], such that:

0 = B(3) V@) + B e QOB X VIS5, (6, - 6,)

= B() V@) + 55, VB () (B~ 0n)
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The second equality follows from the constructions of B(3), (92/0006')Q,(0) and H,,(#). Hence:

2 77— * * — 0
VAB(8a) (0 = 00 ) = F (5, m)B(5) Vi Qn(00). (C.21)
Observe that ||6*— 6,|| < ||0,— 6,], and by the argument below:

0, — 0, || 2 0. (C.22)

Hence ﬁn(w(ﬁ,’;) ) % Hy by Lemma B.6 and continuity. Corollary B.4 now yields the result.

rin

It remains to prove (C.22). Use (C.21) to yield:

|vaB(82) (6 - 00)

IR (o R T  CCARNZReN TS

wER®B:||w||=1,rell

+ sup | H " (w, 7| H%(ﬁn)l\/ﬁ%@l(en)

wERB||w||=1,r€ll

By Lemma B.6 and the Slutsky Theorem

sup Hﬁ;l(w,ﬂ)—"i-lgl(w,ﬂ)H 50,
wER®B:||jw||=1,rell

where sup, _grs g e [|[H, " (w,7)|| < oo follows from the eigenvalue bounds in Lemma B.6.
Moreover, by Lemma B.3 and the mapping theorem

%(ﬂn)l\/ﬁ%Qn(en) = Op(l)'

This proves v/nB(8,)(0n— 6,) = O,(1), hence (C.22). QED.

D Identification Category Selection Type 2 P-Value

Operate under Hy. Define Fo(c) = P(T(\) < ¢) where {T(\) : A € A} is the asymptotic
null chi-squared process under strong identification, and let F) ;(c) = P(Ty(\, h) < ¢) where
{Ty(A\, k) : X € A} is the asymptotic null process under weak identification. The case specific

asymptotic p-values are
pr(N) =1 = Foo(Ta(N) = Foo(Ta(N) and pu(A h) =1 = Fap(Ta(N)) = Fan(Ta(N)-

The ICS-2 p-value is computed as follows. Let (A, Ay) € [0,1) and £ > 0 be user chosen
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numbers. Let s be a continuous function on [0, 00), such that s(z) € [0, 1], s(z) is non-increasing
in z, s(0) =1, and s(z) — 0 as + — oco. Then, using A, in (A.6):

pSLICS—Q)()\) = { pn,l(A7 Al) if An S K, pn,?(/\7A17 AQ) if An > K

where

Pra(A;Ap) = max {ilég{pn(/\, h)},pflo()\)} + Ay (D.23)
Pn2(A AL Ag) = prX(A) + Ag + {pn1 (N Ar) — i’ (A) — Ag} s(Ay, — k).

The construction allows for a smooth transition between identification cases, and allows for a
non-diverging threshold. The latter necessitates the tuning parameters (A, Ay) which promote
a correct asymptotic size. See also Andrews and Barwick (2012) for a related method.

See Andrews and Cheng (2012a, p. 2193) for details on determining appropriate choices
for (A1, As, k). In theory xk > 0 can be any value since the ICS-2 p-value ngS_Q)()\) pro-
motes a test with correct asymptotic level. Andrews and Cheng (2012a, p. 2194) and Andrews
and Cheng (2013a, p. 50) choose k for robust t-statistics by minimizing the False Coverage
Probability [FCP] for the corresponding robust confidence set.? The CM test statistic is not
based on a parametric hypothesis, hence the FCP method does not apply. Instead, we may
choose ad hoc values like Kk = 1 or kK = 1.5, based on finite sample experiments for various
models.? Since our focus is an asymptotically valid method for computing p, (), h), and there-
fore {p%LF)(/\),ngS_Q)(/\),pgcs_m(/\)}, we do not present here a theory based alternative to
minimizing the FCP in order to select x for CM tests.

We choose (A1, Ay) to ensure the asymptotic Null Rejection Probability [NRP] under weak
identification \/n||8,|| — [0,00) is not larger than a (Andrews and Cheng, 2012a, Section 5.3).
The NRP is

NRPn(Al,AQ,/\,) = P(pn,l()\a A1> S OémAn S :‘i) + P(pn’g()\;Al,A2> S (0% ﬂAn > H) .

Note that A, % A(b) under weak identification, where A(b) is defined in Theorem 5.1.a. Under

strong identification and regularity conditions, A,, = oo (Theorem 5.1.b).

2Consider the parametric hypothesis R(6) = 0. The FCP of a confidence set for R(f) is the probability that
the confidence set contains a value different from the true R(6,), where 8,, = [81,, ¢}, 7o) -

3 Andrews and Cheng (2012a,b, 2013a,b) find that a wide range of values for & lead to similar results for robust
Smooth Transition Autoregression model based t-tests, including k = 1 and kK = 1.5, because A; and A, are
computed to ensure correct asymptotic size for any chosen &.
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pi(A b Ay) = max {sup {J‘EA,h(%(/\, ﬁ))} s Foo (T (N, B))} + A (D.24)

PaA i Ar, Ag) = ool T B) + 25 + {p1(0) = Fucl TuA 1) = Ao } s (A®) = k).

SUPpes, Operates on the distribution function Fyj and not its argument 7y (), h). This follows
from the definition p,, 1(A; A1) = max{sup,cs{pn(X 2)}, 050 (A)} + Ay, and under weak identifi-

cation:

sup {pn (A, h) : A € A} = sup {Fan(Tn(N)) : A € A} =" sup {.7:',\7;1(7;()\, h):\e A} :
hes hes hesH

By Theorem 6.1 and the mapping theorem:
i A s A€ A} =" {p( B Ay s A€ A
and
[N A1, A2) 1 A € A} =" {pa(A b Ay, Ag) s A€ A}

Joint convergence for (p,1(A; A1), pra(A; A1, Ag), A,) is straightforward to prove: see the
proof of Theorem 6.2. The asymptotic NRP under weak identification is therefore:

NRP(AL A5 MR) = P (pl()\, i A) < anAb) < Fv> (D.25)

+P (pg()\, h: Ay, Ay) < anA(b) > /1) .

The role (A1, Ay) play are the same as in Andrews and Cheng (2012a, p. 2193). Let Bsup be
such that

Bsup = |:Z~)sup7 f?sup] = argsup sup {f)\,h (7:/)(/\7 B))} )
hep heH

and C' > 0 is some constant, e.g. C' = 1. Define the set

bsup

su={h=[n]hesn, b<

+ C} ,
and define

Ay (h) > 0 solves NRP(Ay(h),0;h) = a
Ai(h) =0if NRP(0,0;h) < a

Ay = sup Aq(h) where {

hes
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Ay, = sup Ay(h) where {

hes

Ay(h) > 0 solves NRP(Ay, Ay(h); h) = «
Ay(h) =0 if NRP(Ay,0;h) < a '

If NRP(Aq,0; iL) = « does not hold for any Ay, then choose any A; that satisfies NRP (A4, 0; ﬁ)
< a. The following lemma shows the latter is always feasible (see the proof for examples). Thus,
NRP(A4,0; h) = o for some Ay holds when NRP(Ay,0; h) is strictly decreasing and continuous
in Ay, which generally holds in view of the construction of Ty(), h). Similar derivations apply
to A,.

Lemma D.1. Let \/n||B,|| — [0,00), and assume Fy p(c) is continuous a.e. on [0,00). There
always exists a (possibly non-unique) Ay such that supj.q NRP(Ay, 0; l~1) < a.

Define
AsySz(\) = limsup sup P, (p{)(\) < a|Hy) .

n—oo ~yel*

Theorem D.2. Let Assumptions 1-2, 4 and 5 hold. The ICS-2 p,SICS‘”(A) satisfies AsySz(X)
< .

Proof of Lemma D.1. By (D.25), the asymptotic Null Rejection Probability under \/n||3,||
— [0,00) is

NRP(A1, Ag:h) = P (pl()\, i A < anA®b) < H) +P (m(x, Ry Ar, Ag) < anA(b) > /-;) . (D.26)
Define p ) (A, h) = max{sup,cg{ Fan(To (N, 7))}, Foo Ty (N, 7)) }. Note that
P (pl()\, Ay < an A®b) < K> < P <p(LF)()\, h) < anA®b) < H) (D.27)

< P (Sup {ﬁmm(x, ﬁ))} <anA®b) < /@)

hen

and

P (m(A, By A1, As) < anA®b) > /@)

Consider two examples:

£1(0) = (o {sup { BT D} Ful T = FulTo i) ) 52 (D29
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A1 (h) = max {;SEE {R,hm(A, f}))} s Foo(Ty (A, iz))} ( ;(‘jé)(b) ;)””)). (D.29)

Use Aq(h) in (D.28) to yield
P <p2()\,ﬁ; Ay, Ag) <anA(b) > m) < P (p(LF)()\, h) < anAb) > /<J>

< P (sup {Ahm(m ﬁ))} <anA®b) > H> :

hesH

hence

sup NRP(A,(h),0;h) < supP <Sup {fAh(ﬁ(A,ﬁ))} <anA@D) < KJ)
hes hefH heh

+sup P (sup {.7:",\7;1(7;()\, iL))} <anA) > li)

hesH hes

= supP (sup {]:",\,h(ﬁ()\jz))} < a) <supP (]:")\7;1(7;(/\,%) < a> = a.
hes hes hes

The final equality holds because .7:")\75 is continuous by assumption, and 7Ty (A, h) is distributed
Fri
Finally, note that
P <p2(>\, 71, Al, Ag) < an A(b) > Ii)
< P (Fol T ) (1= 5 (A(B) = )
P ED (O R)s (AB) — k) + Ars (AD) — k) < anAb) > /{)
<P (p(LF)()\, R)s (A(D) — k&) + As (AD) — k) < a N A(b) > n) .

Then using A;(h) in (D.29):

IN

P (pg()\, By Ay, As) < an A(b) > m> P (p(LF)()\, ) < anA®b) > ,{) (D.30)

IN

P (fmmu, h) < anAb) > H) .

Combine (D.26), (D.27) and (D.30) to yield:

sup NRP(Ay(h),0;h) < sup P (sup {_7:}’;1(7;,(/\, B))} < a) = .
hes heH hesH
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This completes the proof. QED.

Proof of Theorem D.2.
Step 1. Under C(i,b) with ||b|| < oo, A, KN A(b) where A(b) is defined in Theorem 5.1.a.

In Step 2 we show joint weak convergence under C(i, b)
{T.(N), A, - A} =" {Typ(A\, h), A(b) - A} (D.31)
Therefore, by the mapping theorem and Assumption 5:
{pn;()\; Al),pn,z(k; AlaAZ)v-An : A} =" {pl(/\v B;A1>7p2()‘7 iL; A1>A2)7"4(b) : A}
where

i\ B Ar) = max {sup (BT ) L Pl T ﬁ))} + A = pEO O R) + A
he$

pa(A b Ar, Ag) = Foo T R)) + B + {1 = FuclTu\ 1)) = Ao f s (A(D) = ).
The asymptotic size AsySz(\) is therefore

lim sup sup P, (p(ICS_Q)()\) < a|Hy)

n
n—oo ~el'*

=sup P <p1()\, h:Ay) < an A(b) < /i) +sup P (pg()\, h: Ay, A) < an A(b) > H’H@)
hes hes

= sup NRP(Aq, Ag; A, B),
hen

where N RP is the asymptotic Null Rejection Probability defined in (D.25). The tuning param-
eters (A1, Ag) are chosen by supposition to ensure supjc, NRP(A1, Ag; A, B) < a, cf. Lemma
D.1.

Under C(i4,wy) we have A, & co by Theorem 5.1.b. Hence s(A,— x) % 0 since the con-
tinuous function s(x) — 0 as © — oo. Now apply Theorem 4.2.b and the mapping theorem to
yield {pn2(X; A1, Ag) : A} =* {Fo(T(N) + Ay : A}. Since T () is distributed Fo, it therefore

follows:

AsySz(A) = limsup sup P, (ngS_Q) < a|H0)

n—oo yel™

= P (Fu(TN) + Ay < alHy) < P (FooT(N) < a|Hy) = av.
Step 2 (joint convergence). It remains to prove (D.31). Recall Sg = [Ii, : Og,xk,], and
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define:

X nSathn (7 VS (Un(tn) = v ) + /0B,
w(ﬁn(ﬁ'n» = \/_Sﬁd)n( n> ’ ( > = wn(ﬁ'n>7

|VasSstn(ra) H\/_Sa( i) = ) + Vi

hence w,(#,) is a continuous function of \/n(th,(7,) — ¥,) and #,. By the argument leading to

(A.12) in the proof of Theorem 4.2 in the main paper:

(3n(Fn, A) + R(Fn, N))°
V2(wWn (7)), Ty A)

Ta(A) — 20.

sup
AEA

Recall {7,(\) : A} =* {Ty(\, h) : A} by Theorem 4.2.
By the proof of Theorem 5.1.a and the mapping theorem, |3, — S(7*(b),b)|| & 0, where

i(ﬂ->b) = E(W*(ﬂ-’ b)77T> =X (HBOH 7W*(7r>b)a C077T)>

and

S BN, w, ¢, m) =3(07) = Ho(07) V(0T ) Ho(07)
Therefore

1 1/2
_ Al =1 A
An - <p+1n nzﬁ,b’,n n>

— <L (36\/5 (1/; ) + \/_6n> 55 5(7n, b) (Sﬂ\/ﬁ @n - %) + ﬁ&))m + op(1),

where Y5 5(, b) is the upper (p + 1) X (p + 1) block of 3(7, b). Further A, 4 A(b) by Theorem
5.1.a.

Therefore {7,()\), A, : A} =* {Ty(\, h), A(b) : A} if we prove joint weak convergence for
(3n(m, A), Vt(hn(7) — ), 7n) on II x A. By the proof of Theorem 4.1.a, v/n(thn(7) — )
and 7, are continuous functions of Gy, (o, 7) and 7—AL¢,n(7r), and ﬁwvn(ﬂ) has a constant limit
in probability uniformly on IT by Lemma B.2. Joint weak convergence for (3, (m, A), v/72 (¢ ()
— ), 7,) therefore follows from joint weak convergence for (3,,(m, A), Gy.n(¥on, 7)), which is
shown in Step 3 in the proof of Theorem 4.2. QED.
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E Robust Critical Values

We present bootstrapped identification category robust critical values. The idea is based on
(unobserved) robust Least Favorable, and type 1 and 2 identification category selection [ICS]

critical values presented in Andrews and Cheng (2012a).

E.1 Least Favorable and Identification Category Selection Critical
Values
Let {Ty(A,b) : A € A} denote the null limit process of 7,(\) under weak identification /nf3, —

b with ||b]| < oo (see Theorem 5.2). Recall that ¢, indexes all remaining (nuisance) parameters

such that the distribution of Wy = [y, y¢—1, ..., y1—p)" is determined by:
Yo = (6o, ) €T ={0 € ©", ¢ € *(0)} . (E.32)

Assume ®*(0) C &* VO € ©*, where ®* is a compact metric space with some metric that induces
weak convergence of the bivariate distributions of (W;, W;,;) for all t and h > 1.

Define the parametric set that characterizes data generating processes under weak identifi-
cation 8, — fp = 0, and /nf, — b with ||b|| < oc:

h=(v,b) €H={h:v €l and ||b]| < oo, with 5y = 0}. (E.33)

Now let {7y (A, h) : A € A} denote the non-standard null limit process under weak identification.
Under strong identification the null limit law is x*(1). Let ¢; (A, k) and x?_,, respectively
be the 1 — a quantiles for 7;(\, h) and x?(1). All subsequent critical values are functions of
¢1—a(A, h), hence in Appendix E.3 we discuss how to compute ¢;_,(A, k) by bootstrap.

The following summarizes ideas developed in Andrews and Cheng (2012a, Section 5).

E.1.1 Least Favorable Critical Value

The Least favorable [LF] critical value is

A" () = max {Sup{cla<)‘a h)}, X%a} :
heH

A better critical value in terms of power uses the fact that ({y, 5,) are consistently estimated by
(én, Bn) under any degree of (non)identification. The plug-in LF critical value égL_?()\) uses 9 =
{he$:0=IC, 3, 7]} in place of §.
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In the present environment the null hypothesis is tested by using a sample version of Ele, F'(NW(z;))].
Thus, so-called parametric null imposed critical values in Andrews and Cheng (2012a) for t-,

Quasi-Likelihood Ratio and Wald statistics do not play a role here.

E.1.2 Identification Category Selection Type 1

The LF critical value does not exploit data related information that may point toward a particular
identification case. The ICS procedure uses the sample to choose between y/n/3, — b when |||
< oo (weak and non-identification) and ||b|| = oo (semi-strong and strong identification).

Recall the statistic A,, in (A.6). Now let {x, } be a sequence of positive constants, with x,, —
oo and K, = o(n'/?). The case ||b|| < oo is selected when A,, < k,, else ||b]| = oo is selected. Now
define the type 1 ICS [ICS-1] critical value: cgl_i“?gl)()\) = ch_I;)()\) if A, < kp, else cgf_i?;”(A)
=X it A, > K,

(051 (3) = { A A<,
o X3, if A, > K,

See the remark following Theorem 6.1, and Andrews and Cheng (2012a, p. 2191), for intuition
(ICS_I)(/\). Briefly: only when /n||8,|| — oo faster than k,, — oo will the chi-squared based

l—a,n

critical value be chosen asymptotically with probability approaching one since then A, /k, N

on c

0o. Thus, a high bar must be passed in order for the strong identification case to be selected.

In every other case the LF value is chosen, which is always asymptotically correct.

E.1.3 Identification Category Selection Type 2

Let s : [0,00) — [0,1] be a continuous function, s(z) is non-increasing in z, s(0) = 1, and s(x)
— 0 as ¢ — oo. An example is s(x) = exp{—cz} for some ¢ > 0. Let (A1,Ay) > 0and kK > 0

be user selected numbers. Define

a(\) = 0) + A,
es(N) = X2+ Ao+ (00 =2+ A = Ag)s(A, — k).

The type 2 ICS [ICS-2] critical value is

AICS=2) 3y c1(N) %f A, <k ‘
ca(N) it A, >k

The construction allows for a smooth transition between identification cases, and allows for a

non-diverging threshold. The latter necessitates the tuning parameters (A, Ay) which promote
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a correct asymptotic size. See also Andrews and Barwick (2012) for a related method.
See Andrews and Cheng (2012a, p. 2193) for details on determining appropriate choices for
(A1, Ay, k), and see Appendix D above.

E.2 Asymptotics for Robust Critical Values

Let CQa,nO‘) denote the LF, ICS-1 or ICS-2 plug-in robust critical value. Conditions leading to

critical value asymptotics follow, and are presented in Andrews and Cheng (2012a, Section 5)
and Andrews and Cheng (2013a, Section 5.5).

Assumption 7 (critical value). If nga,n()\) is (i) LF, (i1) ICS-1, or (iii) ICS-2, then assume
respectively that Andrews and Cheng’s (2012a) Assumption (i) LF, (ii) K and V3, or (iiii) Rob2
holds.

Let F, be the distribution function of W, under some v € I'*, where I'* is the true parameter
space in (E.32). Let P, denote probability under F,. For any critical value c(zam()\) and each

A the asymptotic size of the test is the maximum rejection probability over v such that the null

1s true:

AsySz(\) = limsup sup P, (’7;()\) > cgzam(}\)\Ho) .

n—oo yel™

Proofs are presented in Appendix E.4.

Theorem E.1. Under Assumptions 1-2, 4 and 7 and Hy, the LF, ICS-1 and ICS-2 cgzavn()\)
satisfy AsySz(\) = a.

E.3 Computation of c!’ (N

—a,n

Steps 1-4 of the wild bootstrap procedure outlined in Section 6.2 of the main paper carries over
verbatim.

Step 5 is as follows. Repeat Steps 1-4 M times resulting in a sequence of independent
draws {If:;,n,j(A’ h)},. Define order statistics 7;‘,”7[1](/\, h) < 72*%[2](/\, h) < ---. The critical

value approximation is é]_,, , (A h) = ﬁ,n,[(ka) (A h), which is consistent for the asymptotic

critical value ¢;_o (A, h).

Theorem E.2. Let the true value 0® = E[e¢?] € &*, where the true parameter space &* is a

compact subset of (0,00). Let M = M,, — 00 as n — oo. Under Assumptions 1-2, 4 and 7,
& amnt, A R) B ci_o(A\ h) for each h € $ and X € A.
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E.4 Proofs

Proof of Theorem E.1.

Step 1 (LF). The proof for the LF critical value ¢{") = max{sup,cs{ci—a(\, h)}, X7_o} is
identical to arguments in Andrews and Cheng (2012b, Appendix B: proof of Theorem 5.1). We
verify the conditions of Lemma 2.1 in Andrews and Cheng (2012a) below. An application of

their Lemma 2.1 to the asymptotic size for 7,(A, h), and Theorem 4.2.a, yields

AsySz(\) = max {supP (7:/,()\, h) > ch?> , P (T()\) > ch_?>} .

hefH

If {“F) = y2__ then by the definition of ¢;_4(X, h):

sup P (7;,()\ h) > cl a)> <sup P (Ty(A, h) > c1-a(A, h)) =
hes he$

hence AsySz(\) is

max {supP (To(A\B) > Xi_a) . P (T(N) > X%—a)} = max {supP (To(A\, B) > Xi_4) ,a} =a.
hes hes

Conversely, if cgff;) = SUPjegiCi—a(A, h)} then

sup P (’7;,()\, h) > c&i?) = supP (7:/,()\ h) > sup {ci—a(A, h)}) a,
hesn hes
and P(T(\) > chI;)) < a hence again AsySz(\) = a.

It remains to verify the conditions of Lemma 2.1 in Andrews and Cheng (2012a). We must
show their Assumption ACP holds, parts (i)-(iv). Recall {~,} is a sequence of true param-
eters v, = (0n, ¢o) under local drift which fully determine the joint distribution of the data
[Yt, Yt—1, -, Yi—p)'. The limiting true value is vo = (6o, ). By Theorem 4.2, P, (T,(\) > chI;))
— P(Ty(A\ k) > ™)) under C(i,b) with ||b|| < oo, and P, (To(A) > 2 — P(T(A) > {5y
under C(ii,wp). Hence Assumption ACP.iii,iii hold. Assumption ACP.iv holds under true pa-
rameter space Assumption 1.e, because the latter is identically Assumption STAR4 in Andrews

and Cheng (2013a), cf. Andrews and Cheng (2013b, Section 15.7).

Step 2 (ICS-1, ICS-2). Theorem 5.1 implies the ICS statistic satisfies A,, = O,(1) under
C(i,b) with ||b|| < co. Under C(ii,wp) we have A, = oo, and if By # 0 then x;' A, 2 co where
by supposition x, — oo and k, = o(y/n). Now invoke Theorem 4.2 to deduce P, (T,(\) >
A5 N) = P(Ty(A h) > APF)) under C(4,b) with [|b]] < oo, and P, (To(A) > /951y -

a,n a,n
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P(T(\) > x?_,,) under C(ii,wy) if By # 0. Hence Assumption ACP.i,ii,iii in Andrews and Cheng
(2012a) hold. Their Assumption ACP.iv holds by Step 1. Arguments in Andrews and Cheng
(2012b, p. 56-58) now carry over to prove the ICS-1 and ICS-2 claims. QED.

Proof of Theorem E.2. By Step 1 in the proof of Theorem 6.2:

. _ o) (T (), 00\ B ,
{ W(/\,h).)\eA}: {(m) .AeA}_m(A,h).AeA}, (E.34)

the Theorem 5.2 null limit process under weak identification.

Define quantile functions

A

L ni <
Fn_i(u) =inf{c>0: P(T,(\) <c¢)>u}
*i(u) =inf{c>0: P(Ty(\, h) <c)

N

inf{cZO:P(AJ’ <c¢) Zu|}

\_/

A%

uj

By Theorem 5.2.a, {T,(\) : A} =* {T,(\ k) : A} under Hy and C(7,b) with ||b|| < co. Weak
convergence implies convergence in finite dimensional distribution. By the construction of dis-
tribution convergence it therefore follows that F,- y(u) = F N Hu).

Now operate conditionally on the sample 20,,. By weak convergence in probability (E.34),
{7:;‘” J(A )} is a sequence of iid draws from {7y (X, ) : A}, asymptotically with probability
approaching one with respect to the draw 20,, = {(y, z¢)}}—,. Therefore 7, () under C(i,b) with
||b]| < oo, and 7:;"”71()\, h) have the same weak limits in probability under Hy. Since 7,()\), and
7:;“7n’j()\, h) conditionally on 20,, have the same weak limits in probability under Hy, it follows
that (see Gine and Zinn, 1990, Section 3, eq’s (3.4) and (3.5))

5 0VAeA.

sup
c>0

P(Tj (N ) < c|20,) = Foa(c)

Therefore, by construction of convergence of probability measures (see, e.g., Chapt. 21 in van der
Vaart, 1998):

sup ‘F (u|20,,) — F,~ ()—>OV)\EA

u€(0,1]

Moreover, by independence and M, — oo, the bootstrapped critical value ¢_, , 1. (A, h) =
7;*”17[(1_0[) M, (A h) is a central order statistic of a (conditionally) iid random variable, hence

pointwise on A:

g{—a,n,Mn(/\? h) - Fn_,)l\(l - a|Qﬁn) — 0
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See, e.g., Galambos (1987), for a classic treatment of order statistics. Now combine

éifa,n,./\/ln<)\7 h) - Fr;)l\(l - oz|Qﬂn) A 0
FA(1—al2,) - Fi(1—a)| 50

Fn_,)l\(l—a) —>F):,{(1—oz)

to yield
’éi—a,n,/\/{n (>\7 h) - F)\_JlL<1 - a) £> 0.

By definition ¢;_(\, h) = F/\_,ll(l — «) hence the proof is complete. QED.

F Example: STAR Model (Assumptions 3, 4, 5

We discuss Assumptions 3, 4 and 5 for a simple STAR model. The data generating properties in
Assumption 1 along with the minimization conditions for the process {£,(m,b) : 7 € II} under
Assumption 2 are treated at length in Andrews and Cheng (2013b, Section 7) and Andrews and
Cheng (2013b, Appendix E).

The model is a simplified Exponential STAR(1) for ease of exposition (cf. Terasvirta, 1994):

Yr = BoYi_1 €xXp {—ﬂoyf_l} + €¢; where m9 > 0, hence g(y;—1,m0) = Y¢—1 €Xp {—7T0yt2_1} )

Assume y; is strictly stationary, Ely,|” < oo for some r > 6, and F; = o(y, : 7 < t) is strictly
increasing F; C Fy11 Vt. € has a (non-degenerate) continuous distribution on R V¢, Ele;] = 0 and
7o € 11 C (0,00). Hence y; has a (non-degenerate) continuous distribution. Assume E[e?|y; 1]
= 02 a.s. for some finite o3 > 0.

Let the compact nuisance parameter space be A C R/0. We omit A = 0 because F/(0 X y;_1)
= F(0) is a constant and cannot therefore reveal model misspecification (cf. Bierens, 1990;
Stinchcombe and White, 1998).

We first define some useful components:

dy+(7) = g(Ye—1,T0) = Y1 €Xp {—Wyfq}
doi(w,m) = [yr_1exp {—my?, }, —wyd | exp {—my?,}]

Dy(m) = —FE [y;_exp {—2my; 1 }] = —Hy(7)
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Hy(r) = E [y; yexp{—2my; }] >0Vrell

Ho(w, m) = E [dot(w, 7)dg s (w, )]

E[yf yexp{—=2my} }| —wE [y} exp{—2my} ,}]
—wk [y?—l exXp {_27Ty152—1}] w’E [95—1 exXp {—27Tyt2—1H

by(m,\) =F [F (MV(yi—1)) Yr—1 €xp {—Wyf_l}}
bo(w, ™, \) = B [F OW(g-0)) [o1 exp {7921}, oy, exp {2, })]
Kpi(m,X) = F NW (yr-1)) = by (m, \) Hy (m)dy o ()

Kot(N) = F (N W(ar)) — bo(A)Hg do.t(Bn/ l|Ball , o)

Under the stated conditions:
inf H,(m) > 0.

mell

Now write II = |7y, my] for some 0 < 7, < 7y < oo. Similarly, for r = [ry,)’,

inf inf r'Hy(w,n)r > 0,
r'r=1mell

because under the stated conditions:

. . . . 3 2 2
O A T L VSRR )
. 2
= T;P:fl E [yf_l (7”1 + rayf_l) exp {—27TH,%2—1}]
= 0

if and only if r1 + roy? | = 0 a.s. for some r'r = 1. The condition r; + roy? | = 0 a.s. is ruled

out due to r'r = 1 and y;_; having a non-degenerate continuous distribution on R.

F.1 Assumption 3

We tackle part (a); part (b) is similar. First, we have:

ke(w, ) = (i), yeorexp {—7y; 1}, —wy;_  exp {—7y;_, }]' € R®.
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Note that w is a scalar because 3 is, hence w? = 1 implies w € [—1,1]. It therefore suffices to

show that there exists a Borel measurable function p : R¥ — R (recall k, = 1) such that:

inf { inf E[(r'm(w,w)ﬂ}w.

w€[—1,1],7€Il | reR%:r/r=1

Suppose the contrary holds. Then for every Borel measurable p, there exist o € R?, o/a =
1, and some 7 € II such that:

o pi(ye) + ooy exp {—7y; } + azy; exp {—7y; } =0 a.s. Vi

The key idea is to find a p that leads to a contradiction of the primitive assumptions. Such p

are easily found: consider p(y;) = y;. Then
arys + oy exp {—7y; } + azy; exp {—7y; } =0 a.s. Vt. (F.35)

For any fixed a € R?, o/a = 1, and 0 < 7 < oo, (F.35) can only hold if y; has a degenerate
distribution and F; = F;11, which contradicts distribution nondegeneracy and F; C Fii1.

F.2 Assumption 4

We now discuss Assumption 4. The assumption cannot generally be verified, which is precisely
why is must be assumed (cf. Bierens, 1990, p. 1449). We do, however, present some refinements

revealing greater details behind test statistic variance degeneracy.

F.2.1 General Test Weight

We only discuss the simplest case: case (a) under strong identification C(ii,wp). This gives the
basic intuition behind the requirement of the assumption. Write €,(0) =y, — By;—1 exp {—7ryt2_1 }
The assumption requires v?(6p, A) > 0 VA € A where

v2(0,0) = B [€2(0) {F (AW(yi1)) = by(w(B), m, ) Hy " ((8), m)doa(w(8),m) }]
Define
V(w,m\) = E [ef(wo,w) {F OW (1)) — bg(w, 7, N My (w, 7)d o (w, w)}Q] .

By Lemma B.12, under Assumptions 1.a(i) and 3 we know inf,,—1 rer v*(w, 7, A) = 0 only on

a subset S* C A with measure zero. See Bierens (1990, Lemma 2) for an original treatment of
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this property. Hence v*(fy, A\) > 0 YA € A/S* where S* is countable. Further, Theorem 4 in Hill
(2008) extends to any valid F(-) considered here. Hence S* C S where S is the countable set on
which Ele,F (AW(y;—1))] = 0 under H;. That is, any A such that v?(6y, \) = 0 actually has a
two-fold failure since also E[e;F' (AW(y;—1))] fails to detect misspecification. Although we know
S* C 9, this does not provide a context in which we can deduce S* = @ such that Assumption
4 holds. Generally the sets S* and S depend on the underlying joint distribution, but deriving
the exact contents of either set, let alone proving S* = &, is evidently not feasible. The only

way either set can be viewed is by simulation study (see, e.g., Bierens, 1990; Hill, 2013).

F.2.2 Vector Test Weight

We can go somewhat further by studying a specific class of vector test weights that never fail
to reveal model misspecification. Unfortunately, even here we cannot prove the appropriate
asymptotic variance is positive definite for all nuisance parameters A € A due to the vector
nature of the moment condition.

We first derive the vector test weight, and the appropriate asymptotic variance matrix for
the implied vector sample moment condition. We then show that although the vector test weight
reveals model misspecification for all A € A, the asymptotic variance need not be positive definite
for all A € A.

Moment Condition Define

0 3,
¢ = aris/tlp 8)\E[etF()\W(yt,1))] and F'(u) = 8uF<u)

Hill (2013) shows that by stacking the test weights

/

wi(\) = [F (MV(Yi-1)) s yer B (f(+)W(?/t—1))] )
a perfectly revealing test weight is achieved in the sense that:
under H; : F [eawy(N)] # 0 a.s. YA € A/S where S = {0} or @.
We assume 0 ¢ A hence S is empty. A similar result applies if we use £(7) = arginfyex (0/0N) E[e, F(AW (y1—1))]

or use both y,_1F’ (§(+)W(yt_1))] and vy, F” (5(_)W(yt_1))] in wy(A). See Hill (2013, Section
2.2, Theorem A.1).
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Asymptotic Variance Matrix Using ideas in the main paper, it is straightforward to show

that the appropriate scale for the standardized sample vector moment condition

\/_Zet €R2

is the matrix
Vall, ) = =37 @ 00) {weA) = Bon(@(Ba), s A o (0(Ba), 7o) |

% {0 0) = BB s AV o), )}

where

bgnw71’>\ ——Zwt Ydpt(w, ).

~

Notice the only differences with V,(6,, A) here and ©2(6,,, ) in the main paper are (i) V,(0,, \)
is a matrix; and (ii) by, (w, T, \) is defined using wy(\) instead of just F (AW (y_1)).
Write compactly:

bo(N) = bo(w(Bo), m0, ), Ho = Ho(w(bo), m0), dos = dot(w(Bo),m0)-
The probability limit of V,(6,, A) is
V(0. \) = B [ {w(N) — bo(\) My g} {we(N) — bV My g, Y]
Non-Positive Definiteness For fixed \ if r\V(6y, \)ry = 0 for some {7\ = 1, then:
rhwg(A) = ribg(N)H, ' dp s a.s.
Now use Ele;dp] = 0 under Assumption 1.a(ii) to yield:
E [e;r\wi(N)] = 3bg(N) Hy ' E [edp] = 0.

Therefore, for A such that V(6p, A) is non-positive definite, a failed moment condition Ele;r\w:(\)]
= 0 occurs under H; for some 7, despite E[e;w:(A)] # 0 VA. Unfortunately there is nothing that
precludes AV (0y, A)ry = 0 for some A and ryry = 1: we cannot prove inf,/._; 7'V(6y, \)r > 0 VA
€ A. Thus, since it is easily shown that r’w;(\) for any r'r = 1 satisfies the required test weight

properties, we can only say Ele;r'wi ()] # 0 under H; YA € A/S, where S, has measure zero.
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This is a key shortcoming because a quadratic-type test statistic

T.(\) = (% Zq(én)w)) Vo (0, )) (% Za(én)wtm)

is just the inner product of linearly combined sample moments:

N /
T(A) =n (ﬁn@m NG )3 et<én>wt<x>) (ﬁn«in, N
where A, (6, \) A (0, \) = V1(0,, ) is assumed to exist a.s. for each n. If V(6p, A) is non-

positive definite at A then Ee;r\w:(A)] = 0 for some A € A and 7 # 0, hence A0, N1 /1 S e (B)wi (N
% 0 under H is possible even though 1/n Y"1, e(0,)w;(\) % 0 VA € A under Hy. Of course,

by non-positive definiteness, f/; l(én, A) does not have a probability limit and therefore 7, (\)

does not have a non-degenerate limit distribution under Hj.

Alternative Approach A better approach is therefore to by-pass standardization (and there-

fore standard asymptotics) altogether. One path is to use the test statistic

max
i=1,2

where w;(A) = [wy (), wa(N)]',

% > e(On)wia(N)

or a standardize version of it. Under the null:

n

1 n . '

where {[Z1()), Z2(A\)] : A € A} is zero mean Gaussian process with almost surely bounded and
uniformly continuous sample paths. This limit process can be easily bootstrapped by multiplier

(wild) bootstrap. We leave this idea for future consideration.

F.3 Assumption 5

Only (a) needs discussion since under (b) the analyst sets the ICS-1 threshold sequence {x,} to
satisfy k, — oo and k, = o(y/n).
Recall Fy ,(c) = P(Tp(A h) < ¢) where {Ty(A, h) : A € A} is the asymptotic null process

under weak identification. Under (a) we need Fy (-) to be continuous a.e. on [0,00), Yh € .
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Using the notation of Section 4 in the main paper, recall

and

say, and

Then

where

3(m,b) = =SgH " (1) {Gy(m) + Dy ()b} where Sg = [1,0],

Ty(m, A, b) 3yu(mA) + by (m, A {H;l(w)Dw(W)b + [b, O;B},}

+b¢(ﬂ-’ )\)//H;l(ﬂ)E [dwvt(ﬂ-) {g<yt717 7TO) - g(yt71, W)}/] b
+E [Kwyt(ﬂv >‘) {g(yt—la 71'0) - g(yt_l, W)}/} b

3 (m, A) + Wy(m, ),

V(w,m\) = E [ef(%,w) {F OW(yi_1)) — by(w, T, A)'H;l(w,w)dg,t(w,w)ﬂ

v?(m, A\, b) = v*(w* (7, b), 7, A) where w*(7,b) = 75(7,b)/ ||75(7, )] -

$w<ﬂ-7 )‘7b)
Ty(m, A, 0) = 2rb) and Ty (A, b) = Ty(7" (), A, b)

7*(b) = arginf&y(m,b)

mell

angint { =3 (G0(m) + D(mb) 5 (7) 1Go() + Dot} |

mell

F.3.1 Numerator T (7, \,b)

The only stochastic component of Ty (m, A\,b) = 34(m, A) + Wy(m, A) is 3,(m, ). Recall by
Lemma B.9 that 3,(m, A\) is a limit process under H,

{%Zetmm,m : H,A} = {3u(m,\) T A}

where {34 (7, A) : I, A} is a zero mean Gaussian process with almost surely uniformly continuous,

and bounded, sample paths, and covariance kernel o3 E[Ky,(m, \)Ky (7, N)]. In view of the
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remaining components in T, (m, A, b), it follows easily that {Zy(m, A\, 0) : II, A} is a Gaussian
process with continuous and bounded sample paths.

Next, stochastic 7*(b) = arginf . &, (7m, b) minimizes

64(m8) = —3 {Gu(m) + Dy(mb) Hy ' () {Gu(m) + Do(m)b}.

The only stochastic component here is Gy (7). By Lemma B.1 and continuity,

G (o) = —% S {e(Won)dusa (1) — E [ex(tio,) ()]}

satisfies

{Gyn(Wop,m) e ll} =" {Gy(m): m € II}

a zero mean Gaussian process with almost surely uniformly continuous, and bounded, sample
paths. Therefore, given H,(7) = Ely7_, exp{—27y?_,}] > 0 Vr € II, =&, (7, b) is a non-central
chi-squared process with continuous and bounded sample path. By application of Lemma 8.5 in
Andrews and Cheng (2012b), 7*(b) exists. By compactness of I and continuity of the sample
paths {&,(m,b) : m € 11}, 7*(b) has a continuous distribution.

Finally, the convolution 3,(7*(b), \) is generally difficult to characterize, even under our
simple ESTAR model, due to the complex relationship between 3, (m, A) and &, (7, b). However,
under the stated model, all other components of Ty (7*(b), A, b) in Wy, (7*(b), A) will carry over
distribution continuity from 7*(b). Thus, under the necessary assumption that 3, (7*(b), A) has
a continuous distribution function a.e. on R, then T, (7*(b), A,b) has a continuous distribution

function a.e. on R.

F.3.2 Denominator #%(m, \,b)

Be the same arguments, {73(m,b) : 7 € II} is a Gaussian process with almost surely uniformly
continuous, and bounded, sample paths. Therefore v?(w*(m,b), 7, A) has a continuous distribu-
tion a.e. on R. By assumption v*(w,m, A) > 0 uniformly in (w,7) for each A € A. Therefore
%(m, \, b) = v¥(w*(m,b), 7, \) > 0 a.s. uniformly in (b, 7) for each A € A.

F.3.3 T,(\h)

Thus, if 34(7*(b), A) has a continuous distribution function a.e. on R, then Ty(A,b) has a
continuous distribution a.e. on R, for each b and A\. The same argument applies to the complete

set of nuisance parameters h containing b.
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Table 1: STAR Test Rejection Frequencies: Sample Size n = 100, 0 = 1

Hy: LSTAR Hi-weak H-strong
1% 5% 10% 1% 5% 10% 1% 5% 10%
\ Strong Identification: 3, = .3

supremum 025 .094 .163 A47 280 .365 57 872 907
average 025 .078 135 087 .209 .289 b52 726 804
random 011 052  .096 053  .143 232 446 635 732

random LF .007 .015 .038 .013 .066 .141 442 553 .661
random ICS-1 | .013 .050 .089 .028 .089 .170 379 593 .692
PVOT*® 015 .065 .124 101 257 335 27859 .883
PVOT LF .007 .014 .052 .026 .121 .208 .552 .781 .817
PVOT ICS-1 | .007 .043 .073 .042 .153 .237 .622 815 .842

| Weak Identification: 3, =.3/v/n

supremum 064 155 .239 337 574 681 929 978 993
average 057 146 .219 215 430 554 739 888 932
random 027 .083 175 164 343 474 .604 .810 .870

random LF 012 .042 .093 .060 .161 .308 467 .685 .794
random ICS-1 | .012 .046 .104 116 .261 .382 545 .749 .841
PVOT 038 127 196 328 542 591 893 968  .950
PVOT LF .015 .049 .108 108 .320 .398 710 911 .916
PVOT ICS-1 |.014 .049 .107 221 .435 .486 830 .942 .932

\ Non-Identification: 5, = By =0

supremuin 066 .164 .249 358 584 .696 902 970 .983
average 062 148 .226 233 438 .548 716 872 911
random .044 107  .186 184 380  .505 634 793 864

random LF .013 .046 .115 .069 .191 .327 498 725 .818
random ICS-1 | .013 .047 .116 137  .298 481 583 .769 .847
PVOT 049 134 190 322 554 624 890 962 .957
PVOT LF .015 .061 .117 122 .322 415 740 911 .936
PVOT ICS-1 | .015 .057 .116 .253 .464 .570 847 .939 .954

Numerical values are rejection frequency at the given level. LSTAR is Logistic STAR. Empirical power
is not size-adjusted. supremum and average tests are based on a wild bootstrapped p-value. random:
Tn(A) with randomly chosen A on [1,5]. PVOT: p-value occupation time test. PVOT uses the chi-
squared distribution, LF is the least favorable p-value, and ICS-1 is the type 1 identification category
selection p-value with threshold x,, = In(In(n)).
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Table 2: STAR Test Rejection Frequencies: Sample Size n = 250, 0 = 1

Hy: LSTAR Hi-weak H-strong
1% 5%  10% 1% 5%  10% 1% 5%  10%

\ Strong Identification: 3, = .3

supremum 018 .088 .163 359 468 551 953 984 .990
average 014 077 133 262 387  .468 873 .949 975
random 014 .064 .126 165 299 .396 793 912 952

random LF .001 .010 .025 067 .235 .368 .688 .888 .936
random ICS-1 | .008 .031 .077 076 .244 .375 762 .902  .947
PVOT 016 .067 .125 328 437 517 992 983 991
PVOT LF .004 .020 .041 132 .348 417 938 972 .976
PVOT ICS-1 |.011 .051 .108 147 .370 .433 947 978 .985

| Weak Identification: 3, =.3/y/n

supremum 051 139 224 764 922 957 992 1.00 1.00
average 046 118 215 b39 779 853 969 992 998
random 027 .086 .169 451 695 785 911 979  .993

random LF .018 .060 .097 180 .481 .641 851 .961 .980
random ICS-1 | .018 .058 .098 298 .633 .770 926 975 .991
PVOT 051 122 201 740 .894 934 1.00 1.00 1.00
PVOT LF .014 .061 .110 380 .708 .805 990 1.00 1.00
PVOT ICS-1 |.015 .060 .111 .618 .848 .878 999 1.00 1.00

\ Non-Identification: 5, = By =0

supremuin 061 152 .223 51922 956 1.00 1.00 1.00
average 054 145  .200 D26 765 .849 975 996 .999
random 036 123 184 417 696 .803 025 976  .988

random LF .008 .047 .108 .205 .504 .655 838 .955 .973
random ICS-1 | .008 .049 .109 411 .653 .770 923 977 .989
PVOT 036 145 211 732 885 .930 1.00 1.00 1.00
PVOT LF .010 .058 .114 373 717 .806 990 1.00 1.00
PVOT ICS-1 |.010 .059 .116 .682 .853 .898 1.00 1.00 1.00

Numerical values are rejection frequency at the given level. LSTAR is Logistic STAR. Empirical power
is not size-adjusted. supremum and average tests are based on a wild bootstrapped p-value. random:
Tn(A) with randomly chosen A on [1,5]. PVOT: p-value occupation time test. PVOT uses the chi-
squared distribution, LF is the least favorable p-value, and ICS-1 is the type 1 identification category
selection p-value with threshold x,, = In(In(n)).
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Table 3: STAR Test Rejection Frequencies: Sample Size n = 500, 0 = 1

Hy: LSTAR Hi-weak H-strong
1% 5% 10% 1% 5% 10% 1% 5% 10%
\ Strong Identification: 3, = .3

supremum 029 .069 .153 441 590  .676 997 999  .999
average 022 .055 .120 382 546 .624 988 .996 997
random 008 .049 .098 328 488  .598 976 999  .996

random LF .001 .018 .042 227 .450 .565 967 .989 .998
random ICS-1 | .009 .046 .096 230 .449 .565 974 .990 .998
PVOT 014 .055 .115 423 568  .655 996 999 .999
PVOT LF .002 .023 .051 311 .509 .618 995 .998 1.00
PVOT ICS-1 | .013 .058 .106 314 510 .618 995 .998 1.00

| Weak Identification: 3, =.3/y/n

supremum 044 134 184 984 998  1.00 1.00 1.00 1.00
average 029 125 176 883 .968 /989 1.00 1.00 1.00
random 032 .096 .162 817 929 970 995 998 .998

random LF .009 .051 .108 .519 .835 .914 984 .996 .998
random ICS-1 | .009 .051 .120 785 .921 .954 990 .998 1.00
PVOT 050 118  .194 981 995 1.00 1.00 1.00 1.00
PVOT LF .012 .053 .109 823 .965 .975 1.00 1.00 1.00
PVOT ICS-1 |.012 .054 .109 958 987 .993 1.00 1.00 1.00

\ Non-Identification: 5, = By =0

supremuin 051 151  .196 981 998 .998 1.00 1.00 1.00
average 043 136  .189 886 968 984 1.00 1.00 1.00
random 047 111 177 826 938  .967 997  1.00 1.00

random LF .006 .058 .110 .549 .859 .926 1.00 1.00 1.00
random ICS-1 | .006 .058 .109 827 .940 .973 1.00 1.00 1.00
PVOT 061 148  .208 977 993 .996 1.00 1.00 1.00
PVOT LF .014 .058 .108 853 .970 .989 1.00 1.00 1.00
PVOT ICS-1 |.013 .057 .107 978 .996 .998 1.00 1.00 1.00

Numerical values are rejection frequency at the given level. LSTAR is Logistic STAR. Empirical power
is not size-adjusted. supremum and average tests are based on a wild bootstrapped p-value. random:
Tn(A) with randomly chosen A on [1,5]. PVOT: p-value occupation time test. PVOT uses the chi-
squared distribution, LF is the least favorable p-value, and ICS-1 is the type 1 identification category
selection p-value with threshold x,, = In(In(n)).
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