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A Outline and Assumptions

Appendix B contains proofs of the supporting lemmata from the main paper. In Appendix C

we prove Theorem 4.1. Appendix D details the Identification Category Selection Type 2 [ICS-2]

p-value. Appendix E presents bootstrapped identification category robust critical values, with

asymptotic theory. Assumptions 3-5 are discussed in Appendix F in the context of a STAR

model.

Recall the model

yt = ζ ′0xt + β′0g(xt, π0) + εt = f(θ0, xt) + εt where xt ∈ Rkx and θ ≡ [ζ ′, β′, π′]
′
. (A.1)

The variable yt is a scalar, xt ∈ Rkx are covariates with finite kx ≥ 2, g : Rkx × Π → Rkβ is

a known function, and ζ0 ∈ Z, β0 ∈ B and π0 ∈ Π, where B, Z and Π are compact subsets of

Rkβ , Rkx and Rkπ respectively for finite kπ ≥ 1. The covariates xt include a constant term and

at least one stochastic regressor. Assume E[εt] = 0 and E[ε2t ] ∈ (0,∞) for some unique θ0 ∈ Θ

≡ Z × B × Π.

Let yt exist on the probability measure space (Ω,P ,F), where F ≡ σ(∪t∈ZFt) and Ft ≡ σ(yτ

: τ ≤ t). Assume Θ has the form {θ ≡ [β′, ζ ′, π′]′ : β ∈ B, ζ ∈ Z(β), π ∈ Π}, where B, Z(β) for

each β, and Π are compact subsets. Recall:

ψ ≡ [β′, ζ ′]
′ ∈ Ψ ≡ {(β, ζ) : β ∈ B, ζ ∈ Z(β)}.

The true parameter space Θ∗ = Ψ∗ × Π∗ = {θ ≡ [β′, ζ ′, π′]′ : β ∈ B∗, ζ ∈ Z∗(β), π ∈ Π∗} lies in

the interior of Θ, it contains θ0 ≡ [β′0, ζ
′
0, π

′
0]′ , and 0 ∈ B∗.

Recall the following definitions and constructions:

B(β) =

[
Ikψ 0kψ×2

02×kψ ‖β‖ × I2

]
, (A.2)

and

ω(β) ≡

{
β/ ‖β‖ if β 6= 0

1kβ/
∥∥1kβ

∥∥ if β = 0
,

and

dψ,t(π) ≡ [g(xt, π)′, x′t]
′

dθ,t(ω, π) ≡
[
g(xt, π)′, x′t, ω

′ ∂

∂π
g(xt, π)

]′
dθ,t ≡ dθ,t(ω0, π0)
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bψ(π, λ) = E [F (λ′W(xt)) dψ,t(π)]

bθ(ω, π, λ) ≡ E [F (λ′W(xt)) dθ,t(ω, π)]

bθ(λ) ≡ E [F (λ′W(xt)) dθ,t]

Hψ(π) ≡ E [dψ,t(π)dψ,t(π)′]

Hθ(ω, π) ≡ E
[
dθ,t(ω, π)d′θ,t(ω, π)

]
Hθ ≡ Hθ(ω0, π0) = E

[
dθ,td

′
θ,t

]
Kψ,t(π, λ) ≡ F (λ′W (xt))− bψ(π, λ)′H−1

ψ (π)dψ,t(π)

Kθ,t(λ) ≡ F (λ′W(xt))− bθ(λ)′H−1
θ dθ,t(βn/ ‖βn‖ , π0)

Kθ,t(λ; a,m) ≡
∑m

i=1
αiKθ,t(λi),

and

Gψ,n(θ) =
√
n

{
∂

∂ψ
Qn(θ)− E

[
∂

∂ψ
Qn(θ)

]}
(A.3)

= − 1√
n

n∑
t=1

{εt(θ)dψ,t(π)− E [εt(θ)dψ,t(π)]}

Gθ,n(θ) = B(βn)−1
√
n

{
∂

∂θ
Qn(θ)− E

[
∂

∂θ
Qn(θ)

]}
= − 1√

n

n∑
t=1

{εt(θ)dθ,t(ω(β), π)− E [εt(θ)dθ,t(ω(β), π)]} ,

and

Dψ(π) ≡ − ∂

∂β′0
E [εt(θ)dψ,t(π)] = −E [dψ,t(π)g(xt, π0)′] (A.4)

Hψ(π) ≡ E [dψ,t(π)dψ,t(π)′] ,

and

Ĥn =
1

n

n∑
t=1

dθ,t(ω(β̂n), π̂n)dθ,t(ω(β̂n), π̂n)′ where ω(β) ≡

{
β/ ‖β‖ if β 6= 0

1kβ/
∥∥1kβ

∥∥ if β = 0
(A.5)

Ĥψ,n(π) ≡ 1

n

n∑
t=1

dψ,t(π)dψ,t(π)′
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b̂θ,n(ω, π, λ) ≡ 1

n

n∑
t=1

F (λ′W(xt)) dθ,t(ω, π)

b̂ψ,n(π, λ) ≡ 1

n

n∑
t=1

F (λ′W(xt)) dψ,t(π) and bψ(π, λ) ≡ E [F (λ′W(xt)) dψ,t(π)]

v̂2
n(θ̂n, λ) ≡ 1

n

n∑
t=1

ε2t (θ̂n)
{
F (λ′W(xt))− b̂θ,n(ω(β̂n), π̂n, λ)′Ĥ−1

n dθ,t(ω(β̂n), π̂n)
}2

V̂n ≡
1

n

n∑
t=1

ε2t (θ̂n)dθ,t(ω(β̂n), π̂n)dθ,t(ω(β̂n), π̂n)

Σ̂n ≡ Ĥ−1
n V̂nĤ−1

n ,

and

Eψ,n(π; a, r) ≡ 1√
n

n∑
t=1

εt

m∑
i=1

αir
′dψ,t(πi)

Eθ,n(ω, π; a, r) ≡ 1√
n

n∑
t=1

εt

m∑
i=1

αir
′dθ,t(ωi, πi)

EGψ,n(λ; a, r) ≡ r1
1√
n

n∑
t=1

m∑
i=1

αi {εt(ψn, πi)Kψ,t(πi, λi)− E [εt(ψn, πi)Kψ,t(πi, λi)]}

+ r′2

m∑
i=1

αiGψ,n(ψn, πi).

Recall the statistic used to determine whether b is finite:

An ≡
(

1

kβ
nβ̂′nΣ̂−1

β,β,nβ̂n

)1/2

(A.6)

where Σ̂β,β,n is the upper (p + 1)× (p + 1) block of Σ̂n.

We use the following notation. [z] rounds z to the nearest integer. I(·) is the indicator

function: I(A) = 1 if A is true, otherwise I(A) = 0. an/bn ∼ c implies an/bn → c as n→∞. | · |
is the l1-matrix norm; || · || is the Euclidean norm; || · ||p is the Lp-norm. K > 0 is a finite constant

whose value may change from place to place. 0a×b is an a× b dimensional matrix of zeros. a.e.

denotes almost everywhere. ⇒∗ denotes weak convergence on l∞, the space of bounded functions

with sup-norm topology, in the sense of Hoffman-Jφrgensen (1984, 1991), cf. Dudley (1978) and

Pollard (1984, 1990).

Recall that by probability subadditivity, for stochastic measurable (A,B) ≥ 0 and any a ∈
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(0,∞):

P (A+ B > a) ≤ P (A > a/2) + P (B > a/2) . (A.7)

Assumption 1 (data generating process, test weight).

a. Identification:

(i) Under H0, E[εt|xt] = 0 a.s. and E[ε2t |xt] = σ2
0 a.s., a finite positive constant.

(ii) Under C(i, b): E[(yt − ζ ′0xt)dψ,t(π)] = 0 for unique ψ0 = [0′kβ , ζ
′
0]′ in the interior of

Ψ∗. Under C(ii, ω0): E[εt(θ0) × dθ,t(ω0, π0)] = 0 for unique θ0 = [β′0, ζ
′
0, π

′
0]′ in the interior of

Θ∗ = Ψ∗ × Π∗.

b. Memory and Moments: {εt, xt} are Lp-bounded for some p > 6, strictly stationary, and β-

mixing with mixing coefficients βl = O(l−qp(q−p)−ι) for some q > p and tiny ι > 0.

c. Response g(x, π) and Test Weight F (λ′W(x)):

(i) g(·, π) is Borel measurable for each π; g(·, π) is twice continuously differentiable in π ∈
Rkπ ; g(xt, π) is a non-degenerate random variable for each π ∈ Π.

(ii) F : R → R is analytic, non-polynomial, and W is one-to-one and bounded.

(iii) E[supπ∈Π |(∂/∂π)ig(xt, π)|6] < ∞ and E[supλ∈Λ |(∂/∂λ)jF (λ′W(xt))|6] < ∞ for i =

0, 1, 2 and j = 0, 1.

d. Long-Run Variances:

(i) Under C(i, b) with ||b|| < ∞ let lim infn→∞E[infα,r,θ (r′
∑m

i=1 αiGψ,n(θi))
2] > 0 and

lim supn→∞E[supα,r,θ (r′
∑m

i=1 αiGψ,n(θi))
2] < ∞.

(ii) Under C(ii, ω0) let lim infn→∞E[infα,r,θ (r′
∑m

i=1 αiGθ,n(θi))
2] > 0 and

lim supn→∞E[supα,r,θ (r′
∑m

i=1 αiGθ,n(θi))
2] < ∞.

(iii) E[infr,ω,π(r′dθ,t(ω, π))2] > 0 and E[supr,ω,π(r′dθ,t(ω, π))2] < ∞; E [infr,π(r′dψ,t(π))2] > 0

and E
[
supr,π(r′dψ,t(π))2

]
< ∞.

(iv) lim infn→∞ infa,r,π E[Eψ,n(π; a, r)2] > 0 and lim supn→∞ supa,r,π E[Eψ,n(π; a, r)2] < ∞;

and lim infn→∞ infa,r,ω,π E[Eθ,n(ω, π; a, r)2] > 0 and lim supn→∞ supa,r,ω,π E[Eθ,n(ω, π; a, r)2] <∞.

(v) Under C(i, b) with ||b|| < ∞, lim infn→∞E[supα,r,λ EGψ,n(λ; a, r)2] < ∞.

(vi) Under C(ii, ω0), E[supα,r,λ(1/
√
n
∑n

t=1 εtKθ,t(λ; a,m))2] < ∞ for each m.

e. True Parameter Space:

(i) Θ∗ ≡ {(β, ζ, π) : β ∈ B∗, ζ ∈ Z∗(β), π ∈ Π∗} is compact.

(ii) 0kβ ∈ int(B∗).

(iii) For some set Z∗0 and some δ > 0, Z∗(β) = Z∗0 ∀||β|| < δ.

f. Optimization Parameter Space:

(i) Θ ≡ {(β, ζ, π) : β ∈ B, ζ ∈ Z(β), π ∈ Π} and Θ∗ ⊂ int(Θ).
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(ii) (Θ,B,Π) are compact, and Z(β) is compact for each β. (iii) For some set Z0 and some

δ > 0, Z(β) = Z0 ∀||β|| < δ and Z∗0 ⊂ int(Z0).

Assumption 2 (identification of π). Let drift case C(i, b) hold with ||b|| < ∞. (a) Each sample

path of the process {ξψ(π, b) : π ∈ Π} in some set A(b) with P (A(b)) = 1 is minimized over Π

at a unique point π∗(b) that may depend on the sample path. (b) P (τβ(π∗(b), b) = 0) = 0.

Assumption 3 (non-degenerate scale on Λ-a.e.).

a. Let C(i, b) with ||b|| < ∞ hold. Then P (E[infπ∈Π{ε2t (ψ0, π)}|xt] > 0) = 1. There exists a

Borel measurable function µ : Rkx → R such that κt(ω, π) ≡ [µ(xt), dθ,t(ω, π)′]′ has nonsingular

E[κt(ω, π)κt(ω, π)′] uniformly on {ω ∈ Rkx : ω′ω = 1} × Π.

b. Let C(ii, ω0) hold. Then P (E[ε2t |xt] > 0) = 1. There exists a Borel measurable function µ :

Rkx → R such that κt ≡ [µ(xt), dθ,t]
′ has a nonsingular E[κtκ

′
t].

Recall

θ+ ∈ Θ+ ≡
{
θ+ ∈ Rkβ+kx+kπ+1 : θ+ = [‖β‖ , ω(β), ζ, π]′ : β ∈ B, ζ ∈ Z(β), π ∈ Π

}
,

and

εt(θ
+) ≡ yt − ζ ′xt − ||β||ω(β)′g(xt, π)

v2(θ+, λ) = E
[
ε2t (θ

+)
{
F (λ′W(xt))− bθ(ω, π, λ)′H−1

θ (π)dθ,t(π)
}2
]

and

εt(θ) ≡ yt − ζ ′xt − β′g(xt, π)

v2(θ, λ) = E
[
ε2t (θ)

{
F (λ′W(xt))− bθ(ω(β), π, λ)′H−1

θ (π)dθ,t(π)
}2
]
.

Assumption 4 (non-degenerate scale).

a. Let β be a scalar. Let infπ∈Π v
2((β0, ζ0, π), λ) > 0 ∀λ ∈ Λ under identification case C(i, b) with

|b| < ∞, and under C(ii, ω0) let v2(θ0, λ) > 0 ∀λ ∈ Λ.

b. Let β be a vector. Let inf
ω∈Rkβ :ω′ω=1,π∈Π

v2((||β0||, ω, ζ0, π), λ) > 0 ∀λ ∈ Λ under identification

case C(i, b) with ||b|| < ∞, and under C(ii, ω0) let v2(θ+
0 , λ) > 0 ∀λ ∈ Λ.

Assumption 5 (p-value). a. Fλ,h(c) is continuous a.e. on [0,∞), ∀h ∈ H. b. The ICS-1

threshold sequence {κn} satisfies κn → ∞ and κn = o(
√
n).

We exploit properties of the Vapnik-Červonenkis subgraph class of functions, denoted V(C).
The V(C) class is large: it contains indicator, monotonic and continuous functions; and V(C)
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mappings of V(C) functions are in V(C), including linear combinations, minima, maxima, prod-

ucts and indicator transforms. See, e.g., van der Vaart and Wellner (1996, Chap. 2.6) for a

compendium of V(C) properties.1 See Vapnik and Červonenkis (1971), Dudley (1978, Section

7) and van der Vaart and Wellner (1996, Section 2), and see Pollard (1984, Chap. II.4) for the

closely related polynomial discrimination class.

Assumption 6. The test weight {F (w) : w ∈ R} and distribution functions {Fn,λ(c) : λ ∈
Λ, c ∈ [0,∞)} and {F ∗n,λ,h(c) : λ ∈ Λ, c ∈ [0,∞)} belong to the V(C) class.

B Supporting Lemmata

All subsequent Gaussian processes have almost surely uniformly continuous and bounded sample

paths, hence in many cases we just say Gaussian process. Let ι(A) and ῑ(A) denote the minimum

and maximum eigenvalue of matrix A.

Lemma B.1. Under C(i, b) and Assumption 1, {Gψ,n(θ) : θ ∈ Θ} ⇒∗ {Gψ(θ) : θ ∈ Θ}, a zero

mean Gaussian process with almost surely uniformly continuous and bounded sample paths and

covariance E[Gψ(θ)Gψ(θ̃)′], ||E[Gψ(θ)Gψ(θ)′]|| < ∞.

Proof. Recall Θ is compact and therefore bounded. Weak convergences to a Gaussian

process with almost surely uniformly continuous and bounded sample paths therefore requires

convergence in finite dimensional distributions, and stochastic equicontinuity (see, e.g., Dudley,

1978; Pollard, 1990).

Let m ∈ N, α ∈ Rm and r ∈ Rkx+kβ be arbitrary, with α′α = 1 and r′r = 1. Under

Assumption 1.b,c
∑m

i=1 αiεt(θi)r
′dψ,t(θi) is, for any m-tuple {θ1, ..., θm} of points θi in Θ, strictly

stationary, Lp-bounded, p > 4, and β-mixing with coefficients βl = O(l−(pq/(q−p))−ι) for some ι

> 0 and q > p. Hence E[(
∑m

i=1 αir
′Gψ,n(θi))

2] = O(1) (McLeish, 1975, Theorem 1.6, Lemma

2.1). Long run variance Assumption 1.d(i) and Theorem 1.4 in Ibragimov (1962) therefore yield:∑m
i=1 αir

′Gψ,n(θi)
d→ N(0, limn→∞E[(

∑m
i=1 αir

′Gψ,n(θi))
2]). Convergence in finite dimensional

distributions now follows from the Cramér-Wold theorem.

Stochastic equicontinuity for r′Gψ,n(θ) holds if ∀(ε, η) > 0 there exists δ > 0 such that:

lim
n→∞

Pn(r, δ, η) = lim
n→∞

P

(
sup

θ,θ̃∈Θ:||θ−θ̃||≤δ

∣∣∣r′Gψ,n(θ)− r′Gψ,n(θ̃)
∣∣∣ > η

)
< ε. (B.8)

We adapt arguments developed in Arcones and Yu (1994, proof of Theorem 2.1 and Lemma

2.1) to prove (B.8). This requires the V(C) subgraph class of functions. By the implication of

1We exploit the facts that an indicator function of a V(C) index function is in V(C), and a continuous function
evaluated at a V(C) function is in V(C).
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probability subadditivity (A.7) and r′r = 1, it suffices to prove the claim for each element of

Gψ,n(θ) = [Gψ,n,i(θ)]
kx+kβ
i=1 .

Gψ,n,i(θ) lies in V(C) because it is continuous, hence the covering numbers satisfyN (ε,K, ||·||2)

< aε−b for all ε ∈ (0, 1) and some a, b > 0 (e.g. Lemma 7.13 in Dudley, 1978, and Lemma II.25

in Pollard, 1984). Furthermore, under Assumption 1.b,c each Gψ,n,i(θ) is Lr-bounded, r ≡ p/2

> 2, and β-mixing with coefficients βl = O(l−qp/(q−p)−ι), q > p > 6 and tiny ι > 0. By simple

algebra it follows βl = O(l−r/(r−2)) = O(l−p/(p−4)) because p/(p − 4) < qp/(q − p). Therefore

{Gψ,n,i(θ) : θ ∈ Θ} is stochastically equicontinuous by Lemma 2.1 in Arcones and Yu (1994, see

especially the argument following eq. (2.13)). QED

Lemma B.2. Under C(i, b) and Assumption 1, supπ∈Π ||Ĥψ,n(π) − Hψ(π)|| p→ 0, where ι(Hψ(π))

> 0 and ῑ(Hψ(π)) < ∞ for each π ∈ Π.

Proof. We have Ĥψ,n(π)
p→Hψ(π) pointwise under Assumption 1.b,c since dψ,t(κ) is station-

ary, L2-bounded, and ergodic by the β-mixing property. Further, ι(Hψ(π)) > 0 and ῑ(Hψ(π)) <

∞ for each π ∈ Π respectively follow from infr′r=1 E [(r′dψ,t(π))2] > 0 under Assumption 1.d(iii),

and ||Hψ(π)|| < ∞ under envelope bounds Assumption 1.c and compactness of Θ.

It remains to show Ĥψ,n(π) − Hψ(π) is stochastically equicontinuous. By the mean-value-

theorem and Cauchy-Schwartz inequality:

E

[
sup

π,π̃∈Π:||π−π̃||≤δ

∣∣∣Ĥψ,n(π)− Ĥψ,n(π̃)
∣∣∣]

≤ 2E

[
sup
π∈Π

∣∣∣∣ ∂∂πdψ,t(π)

∣∣∣∣ sup
π∈Π
|dψ,t(π)′|

]
× δ

≤ 2

(
E

[
sup
π∈Π

∣∣∣∣ ∂∂πg(xt, π)

∣∣∣∣2
])1/2(

E

[(
sup
π∈Π
|g(xt, π)|+ |xt|

)2
])1/2

× δ ≡ Kδ,

where K ≥ 0 is implicitly defined and δ > 0. The right hand side is bounded by L2-boundedness

of xt, supπ∈Π |g(xt, π)| and supπ∈Π |(∂/∂π)g(xt, π)| under Assumption 1.b,c. Hence K ∈ [0,∞).

Therefore, assuming K > 0, ∀(ε, η) > 0 there exists δ, 0 < δ < ε/K, such that by Markov’s

inequality:

lim
n→∞

P

(
sup

π,π̃∈Π:||π−π̃||≤δ

∣∣∣{Ĥψ,n(π)−Hψ(π)
}
−
{
Ĥψ,n(π̃)−Hψ(π̃)

}∣∣∣ > η

)
< ε. (B.9)

If K = 0 then ∀(ε, η) > 0 and any δ ∈ (0,∞) (B.9) holds. This yields stochastic equicontinuity,

completing the proof. QED
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Lemma B.3. Under C(ii, ω0) and Assumption 1, {Gθ,n(θ) : θ ∈ Θ} ⇒∗ {Gθ(θ) : θ ∈ Θ}, a zero

mean Gaussian process with almost surely uniformly continuous and bounded sample paths.

Proof. The arguments used to prove Lemma B.1 carry over verbatim, except long run vari-

ance Assumption 1.d(ii) is used in place of Assumption 1.d(i). QED.

Corollary B.4. Let θn ≡ [β′n, ζ
′
0, π

′
0]′ be the sequence of true values under local drift {βn}. Under

C(ii, ω0) and Assumption 1,
√
nB(βn)−1(∂/∂θ)Qn(θn)

d→ Gθ, a zero mean Gaussian law with a

finite, positive definite covariance E[GθG ′θ], and has a version that has almost surely uniformly

continuous and bounded sample paths. Moreover, E[GθG ′θ] = σ2E[dθ,td
′
θ,t] under H0.

Proof. By the definition of Gθ,n(θn):

√
nB(βn)−1 ∂

∂θ
Qn(θn) = Gθ,n(θn) +

√
nE [εt(θn)dθ,t (βn/ ‖βn‖ , π0)] .

Combine Lemma B.3, θn → θ0, the fact that θn is non-random, and continuity to yield Gθ,n(θn)
d→ Gθ ≡ Gθ(θ0). By identification Assumption 1.a(ii) and the fact that θn ≡ [β′n, ζ

′
0, π

′
0]′ is the

sequence of true values under local drift {βn}, it follows that E[εt(θn)dθ,t(βn/||βn||, π0)] = 0.

This proves
√
nB(βn)−1(∂/∂θ)Qn(θn)

d→ Gθ.
Finally, since θn ≡ [β′n, ζ

′
0, π

′
0]′ is the sequence of true values, under H0 note that

Gθ,n(θn) = − 1√
n

n∑
t=1

{εtdθ,t(ω(βn), π)− E [εt(θn)dθ,t(ω(βn), π)]}

= − 1√
n

n∑
t=1

εtdθ,t(ω(βn), π).

Hence, in view of stationarity:

E[Gθ,n(θn)Gθ,n(θn)′] = σ2E [dθ,t (βn/ ‖βn‖ , π0) dθ,t(βn/ ‖βn‖ , π0)]′ .

Since βn/||βn|| → ω0 and ||ω0|| = 1, under Assumption 1.b,c:

dt ≡ lim sup
n→∞

sup
r′r=1

(
r′
[
g(xt, π)′, x′t,

β′n
‖βn‖

∂

∂π
g(xt, π)

]′)2

exists and E[dt] < ∞. Dominated convergence now yields

E [dθ,t (βn/ ‖βn‖ , π0) dθ,t(βn/ ‖βn‖ , π0)]→ E[dθ,td
′
θ,t],

hence E[Gθ,n(θn)Gθ,n(θn)′] → σ2E[dθ,td
′
θ,t].This implies

√
nB(βn)−1(∂/∂θ)Qn(θn)

d→ Gθ, with

10



asymptotic variance σ2E[dθ,td
′
θ,t] as required. QED

Lemma B.5. Under C(ii, ω0) and Assumption 1, Ĥn
p→ Hθ, and ι(Hθ) > 0 and ῑ(Hθ) < ∞.

Proof. By the construction of Ĥn ≡ 1/n
∑n

t=1 dθ,t(ω(βn), π0)dθ,t(ω(βn), π0)′ andHθ ≡ E[dθ,td
′
θ,t],

and dθ,t(ω, π) ≡ [g(xt, π)′, x′t, ω
′(∂/∂π)g(xt, π)]′, after adding and subtracting like terms, we have

for any r = [r′β, r
′
x, r
′
π]′, rβ ∈ Rkβ , rx ∈ Rkx , rπ ∈ Rkπ :

r′
(
Ĥn −Hθ

)
r =

1

n

n∑
t=1

(
r′βg(xt, π0) + r′xxt + r′π

∂

∂π′
g(xt, π0)ω0

)2

−E

[(
r′βg(xt, π0) + r′xxt + r′π

∂

∂π′
g(xt, π0)ω0

)2
]

+
1

n

n∑
t=1

(
r′π

∂

∂π′
g(xt, π0)

(
βn
‖βn‖

− ω0

))2

+2
1

n

n∑
t=1

(
r′βg(xt, π0) + r′xxt + r′π

∂

∂π′
g(xt, π0)ω0

)
× r′π

∂

∂π′
g(xt, π0)

(
βn
‖βn‖

− ω0

)
.

The Assumption 1.b,c envelop moment and mixing properties imply each summand is a sum-

mation of stationary, ergodic and integrable random variables. Further βn/||βn|| − ω0 → 0 by

assumption. The ergodic theorem now yields r′(Ĥn − Hθ)r
p→ 0.

Finally, ι(Hθ) > 0 and ῑ(Hθ) < ∞ follow from Assumption 1.c,d(iii). QED

Define the augmented parameter, and its space:

θ+ ≡ [‖β‖ , ω′, ζ ′, π′]′

∈ Θ+ ≡
{
θ+ ∈ Rkx+kβ+kπ+1 : θ+ = [‖β‖ , ω(β), ζ, π]′ : β ∈ B, ζ ∈ Z(β), π ∈ Π

}
.

Define

εt(θ
+) ≡ yt − ζ ′xt − ‖β‖ |ω′g(xt, π),

and:

Ĥn(θ+) ≡ 1

n

n∑
t=1

dθ,t(ω (β) , π)dθ,t(ω (β) , π)′, V̂n(θ+) ≡ 1

n

n∑
t=1

ε2t (θ
+)dθ,t(ω (β) , π)dθ,t(ω (β) , π)′.

Hence Ĥn(θ̂+
n ) = Ĥn and V̂n(θ̂+

n ) = V̂n. Define

Hθ(θ
+) ≡ E [dθ,t(ω, π)dθ,t(ω, π)′] and V(θ+) ≡ E

[
ε2t (θ

+)dθ,t(ω, π)dθ,t(ω, π)′
]
.

11



In the interest of decreasing (some) notation we use the same argument θ+ for both Ĥn(θ+) and

V̂n(θ+), although Ĥn(θ+) only depends on (ω(β), π).

Lemma B.6. Under Assumption 1, supθ+∈Θ+: ||Ĥn(θ+) − Hθ(θ
+)|| p→ 0, supπ∈Π ||D̂ψ,n(π, π0)

− Dψ(π)|| p→ 0, and supθ+∈Θ+: ||V̂n(θ+) − V(θ+)|| p→ 0, where infθ+∈Θ+:ι(Hθ(θ
+)) > 0, ῑ(Hθ) <

∞, infθ+∈Θ+:ι(V(θ+)) > 0, and ῑ(Vθ) < ∞.

Proof. We prove the claim for V̂n(θ+), the proofs for Ĥn(θ+) and D̂ψ,n(π, π0) being sim-

ilar. Pointwise convergence follows from mixing (hence ergodicity) and moment properties in

Assumption 1.b,c.

Uniform convergence is proven if we show stochastic equicontinuity: ∀(ε, η) > 0 there exists

δ > 0 such that:

lim
n→∞

Pn(r, δ, η) (B.10)

= lim
n→∞

P

(
sup

θ+,θ̃+∈Θ+:||θ+−θ̃+||≤δ

∣∣∣{V̂n(θ+)− V(θ+)
}
−
{
V̂n(θ̃)− V(θ̃+)

}∣∣∣ > η

)
< ε.

First note that:

E

[
sup

θ+,θ̃+∈Θ+:||θ+−θ̃+||≤δ

∣∣∣V̂n(θ+)− V̂n(θ̃)
∣∣∣]

= sup
θ+,θ̃+∈Θ+:||θ+−θ̃+||≤δ

∣∣∣∣∣ 1n
n∑
t=1

{
ε2t (θ

+)dθ,t(ω, π)dθ,t(ω, π)′ − ε2t (θ̃+)dθ,t(ω̃, π̃)dθ,t(ω̃, π̃)′
}∣∣∣∣∣

≤ sup
θ+,θ̃+∈Θ+:||θ+−θ̃+||≤δ

∣∣∣∣∣ 1n
n∑
t=1

{
ε2t (θ

+)− ε2t (θ̃+)
}
dθ,t(ω, π)dθ,t(ω, π)′

∣∣∣∣∣
+ sup

θ+,θ̃+∈Θ+:||θ+−θ̃+||≤δ

∣∣∣∣∣ 1n
n∑
t=1

ε2t (θ̃
+) {dθ,t(ω, π)dθ,t(ω, π)′ − dθ,t(ω̃, π̃)dθ,t(ω̃, π̃)′}

∣∣∣∣∣ .
By the mean value theorem, and the moment properties of Assumption 1.b,c:

E

[
sup

θ+,θ̃+∈Θ+:||θ+−θ̃+||≤δ

∣∣∣∣∣ 1n
n∑
t=1

{
ε2t (θ

+)− ε2t (θ̃+)
}
dθ,t(ω, π)dθ,t(ω, π)′

∣∣∣∣∣
]

≤ 2E

[
sup
θ+∈Θ+

∣∣εt(θ+)
∣∣ sup
θ+∈Θ+

|dθ,t(ω, π)|3
]
× δ ≤ Kδ,

12



and

E

[
sup

θ+,θ̃+∈Θ+:||θ+−θ̃+||≤δ

∣∣∣∣∣ 1n
n∑
t=1

ε2t (θ̃
+) {dθ,t(ω, π)dθ,t(ω, π)′ − dθ,t(ω̃, π̃)dθ,t(ω̃, π̃)′}

∣∣∣∣∣
]

≤ 2E

[
sup
θ+∈Θ+

∣∣ε2t (θ+)
∣∣ sup
θ+∈Θ+

|dθ,t(ω, π)| sup
θ+∈Θ+

∣∣∣∣ ∂∂θ+
dθ,t(ω, π)

∣∣∣∣]× δ ≤ Kδ,

where ∣∣∣∣ ∂∂θ+
dθ,t(ω, π)

∣∣∣∣ ≤ 2×
∣∣∣∣ ∂∂πg(xt, π)

∣∣∣∣+ |ω| ×
∣∣∣∣ ∂2

∂π∂π′
g(xt, π)

∣∣∣∣ .
A similar set of steps shows

sup
θ+,θ̃+∈Θ+:||θ+−θ̃+||≤δ

∣∣∣Vn(θ+)− Vn(θ̃)
∣∣∣

= sup
θ+,θ̃+∈Θ+:||θ+−θ̃+||≤δ

∣∣∣E [ε2t (θ+)dθ,t(ω, π0)dθ,t(ω, π0)′
]
− E

[
ε2t (θ̃

+)dθ,t(ω̃, π̃)dθ,t(ω̃, π̃)′
]∣∣∣

≤ Kδ.

Now invoke Markov and Minkowski inequalities to yield:

lim
n→∞

P

(
sup

θ+,θ̃+∈Θ+:||θ+−θ̃+||≤δ

∣∣∣{V̂n(θ+)− V(θ+)
}
−
{
V̂n(θ̃)− V(θ̃+)

}∣∣∣ > η

)

≤ lim
n→∞

1

η
E

[
sup

θ+,θ̃+∈Θ+:||θ+−θ̃+||≤δ

∣∣∣V̂n(θ+)− V̂n(θ̃)
∣∣∣]

+ lim
n→∞

1

η
sup

θ+,θ̃+∈Θ+:||θ+−θ̃+||≤δ

∣∣∣{V(θ+)
}
− V(θ̃+)

∣∣∣
≤ Kδ.

This proves stochastic equicontinuity (B.10) for any δ such that 0 < δ < ε/K. QED

Define

an ≡

{ √
n if C(i, b) and ‖b‖ <∞
‖βn‖−1 if C(i, b) and ‖b‖ =∞

Recall

ψ0,n ≡
[
0′kβ , ζ

′
0

]′
,

hence Q0,n ≡ Qn(ψ0,n, π) does not depend on π. Define:

Zn(π) = −anĤ−1
ψ,n(π)

∂

∂ψ
Qn(ψ0,n, π).

13



Under C(i, b), Lemma B.2 yields that Ĥψ,n(π) is positive definite uniformly on Π, asymptotically

with probability approaching one. Write Qc
n(π) ≡ Qn(ψ̂n(π), π).

Lemma B.7. Let drift case C(i, b) and Assumption 1 hold.

a. In general an(ψ̂n(π) − ψ0,n) = Zn(π).

b. a2
n{Qc

n(π) − Q0,n} = −2−1Zn(π)′Ĥψ,n(π)Zn(π) where Q0,n ≡ Qn(ψ0,n, π).

Proof.

Claim a. By the definition of ψ̂n(π), 0 = 1/n
∑n

t=1 εt(ψ̂n(π), π)dψ,t(π). Now use (∂/∂ψ)Qn(ψ0,n, π)

= −1/n
∑n

t=1 εt(ψ0,n, π)dψ,t(π), Ĥψ,n(π) ≡ 1/n
∑n

t=1 dψ,t(π)dψ,t(π)′, and linearity of the first or-

der equation in ψ̂n(π), to yield the desired result.

Claim b. The equality x2 − y2 = (x − y)(x + y) and rudimentary algebra yield:

Qcn(π)−Q0,n = − 1

n

n∑
t=1

εt(ψ0,n, π)dψ,t(π)′ ×
(
ψ̂n(π)− ψ0,n

)
+

1

2

(
ψ̂n(π)− ψ0,n

)
× Ĥψ,n(π)×

(
ψ̂n(π)− ψ0,n

)
= − ∂

∂ψ
Qn(ψ0,n, π)′ ×

(
ψ̂n(π)− ψ0,n

)
+

1

2

(
ψ̂n(π)− ψ0,n

)
× Ĥψ,n(π)×

(
ψ̂n(π)− ψ0,n

)
.

Use (a) and the form of Zn(π) to deduce an(∂/∂ψ)Qn(ψ0,n, π)′Zn(π) = Zn(π)Ĥ−1
ψ,n(π)Zn(π)

hence:

a2
n {Qc

n(π)−Q0,n} = −an
∂

∂ψ
Qn(ψ0,n, π)′Zn(π) +

1

2
Zn(π)′Ĥψ,n(π)Zn(π)

= −1

2
Zn(π)× Ĥ−1

ψ,n(π)×Zn(π).

This proves the claim and completes the proof. QED

Define

ϑψ(π, ω0) ≡ −2−2ω′0Dψ(π)′H−1
ψ (π)Dψ(π)ω0

where

Dψ(π) = −E [dψ,t(π)g(xt, π0)′] .

Recall from the main paper:

ξψ(π, b) ≡ −1

2
{Gψ(ψ0,n, π) +Dψ(π)b}′H−1

ψ (π) {Gψ(ψ0,n, π) +Dψ(π)b} .

The following is a key result for characterizing the asymptotic properties of π̂n under weak

identification.
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Lemma B.8. Let drift case C(i, b) and Assumption 1 hold.

a. If ||b|| < ∞ then {n(Qc
n(π) − Q0,n) : π ∈ Π} ⇒∗ {ξψ(π, b) : π ∈ Π}.

b. If ||b|| = ∞ and βn/||βn|| → ω0 for some ω0 ∈ Rkβ , ||ω0|| = 1, then

sup
π∈Π

∣∣∣∣ 1

‖βn‖2 (Qc
n(π)−Q0,n)− ϑψ(π, ω0)

∣∣∣∣ p→ 0.

Proof.

Claim a. Recall

Gψ,n(θ) =
√
n

{
∂

∂ψ
Qn(θ) + E [εt(ψ0,n, π)dψ,t(π)]

}
.

By Lemma B.7.b and ||b|| < ∞:

n (Qc
n(π), π)−Q0,n) = −n1

2
Zn(π)′Ĥψ,n(π)Zn(π) = −1

2

√
n
∂

∂ψ
Qn(ψ0,n, π)′Ĥ−1

ψ,n(π)
√
n
∂

∂ψ
Qn(ψ0,n, π)

= −1

2

{
Gψ,n(ψ0,n, π)−

√
nE [εt(ψ0,n, π)dψ,t(π)]

}′ × Ĥ−1
ψ,n(π)

×
{
Gψ,n(ψ0,n, π)−

√
nE [εt(ψ0,n, π)dψ,t(π)]

}
.

Further, by (C.18) in the proof of Theorem 4.1 in Appendix C:

sup
π∈Π

∣∣√nE [εt(ψ0,n, π)dψ,t(π)] +Dψ(π)b
∣∣→ 0.

Now use Lemma B.1 for Gψ,n(ψ0,n, π), and Lemma B.2 for Ĥψ,n(π), to prove the claim.

Claim b. Lemma B.7.b and the definition of Zn(π) lead to:

a2
n{Qc

n(π)−Q0,n} = −1

2

1√
n ‖βn‖

{
Gψ,n(ψ0,n, π)−

√
nE [εt(ψ0,n, π)dψ,t(π)]

}′ Ĥ−1
ψ,n(π)

× 1√
n ‖βn‖

{
Gψ,n(ψ0,n, π)−

√
nE [εt(ψ0,n, π)dψ,t(π)]

}
.

By (C.17) in the proof of Theorem 4.1:

√
nE [εt(ψ0,n, π)dψ,t(π)] =

√
nE [{εt(ψ0,n, π)− εt(θn)} dψ,t(π)] = E

[√
nβ′ng(xt, π0)dψ,t(π)

]
,
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hence ||βn||−1E[εt(ψ0,n, π)dψ,t(π)] = E[||βn||−1β′ng(xt, π0)dψ,t(π)], and therefore

sup
π∈Π

∣∣∣∣ 1

‖βn‖
E [εt(ψ0,n, π)dψ,t(π)] +Dψ(π)ω0

∣∣∣∣→ 0.

By supposition
√
n||βn||| → ∞, hence Lemma B.1 with the continuous mapping theorem, and

Cramér’s Theorem, yield:

sup
π∈Π

∥∥∥∥ 1√
n ‖βn‖

Gψ,n(ψ0,n, π)

∥∥∥∥ ≤ 1

infπ∈Π

√
n ‖βn‖

sup
π∈Π
‖Gψ,n(ψ0,n, π)‖ p→ 0.

Lemma B.2 applied to Ĥψ,n(π), and the Slutsky theorem complete the proof. QED

Write εt(ψ, π) = yt − ζ ′xt − β′g(xt, π). Recall ψn is the (possibly drifting) true value of ψ =

[β′, ζ ′]′ under H0.

Lemma B.9. Let Assumption 1 hold.

a. Under C(i, b) with ||b|| < ∞:{
1√
n

n∑
t=1

{εt(ψn, π)Kψ,t(π, λ)− E [εt(ψn, π)Kψ,t(π, λ)]} : Π,Λ

}
⇒∗ {Zψ(π, λ) : Π,Λ} ,

a zero mean Gaussian process with covariance kernel E[Zψ(π, λ)Zψ(π̃, λ̃)]. Under H0,

sup
π∈Π,λ∈Λ

∣∣∣∣∣ 1√
n

n∑
t=1

{εt(ψn, π)Kψ,t(π, λ)− E [εt(ψn, π)Kψ,t(π, λ)]} − 1√
n

n∑
t=1

εtKψ,t(π, λ)

∣∣∣∣∣ p→ 0, (B.11)

and E[Zψ(π, λ)Zψ(π̃, λ̃)] = σ2E[Kψ,t(π, λ)Kψ,t(π̃, λ̃)].

b. Under C(i, ω0), {1/
√
n
∑n

t=1 εtKθ,t(λ) : λ ∈ Λ} ⇒∗ {Zθ : λ ∈ Λ}, a zero mean Gaussian

process with covariance E[Zθ(λ)Zθ (̃λ)] = E[ε2tKθ,t(λ)Kθ,t(λ̃)] where Kθ,t(λ) ≡ F (λ′W(xt)) −
bθ(λ)′H−1

θ dθ,t.

Proof. We only prove Claim (a). The proof for Claim (b) is nearly identical.

Π,Λ are compact and therefore bounded. Weak convergences to a Gaussian process with

almost surely uniformly continuous and bounded sample paths requires convergence in finite

dimensional distributions, and stochastic equicontinuity (see, e.g., Dudley, 1978; Pollard, 1990).

Write compactly χ ≡ [π′, λ′]′ ∈ X ≡ Π × Λ, and define:

Eψ,t(ψn, χ) ≡ εt(ψn, π)Kψ,t(π, λ)− E [εt(ψn, π)Kψ,t(π, λ)]
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Eψ,t(ψn, χ; a,m) ≡
m∑
i=1

αiEψ,t(ψn, χi)

where m ∈ N, a ∈ Rm satisfies a′a = 1, and {χ1, ..., χm} is an m-tuple of points χi = [π′i, λ
′
i]
′ ∈ X .

Under Assumption 1.b,c Eψ,t(ψn, χ; a,m) has a zero mean, and is strictly stationary, Lp-bounded,

p > 4, and β-mixing with coefficients βl = O(l−(pq/(q−p))−ι) for some ι > 0 and q > p. Hence

E[{1/
√
n
∑n

t=1 Eψ,t(ψn, χ; a,m)}2] = O(1) (McLeish, 1975, Theorem 1.6, Lemma 2.1). Long run

variance Assumption 1.d(v) coupled with Assumption 4 imply E[(
∑n

t=1 Eψ,t(ψn, χ; a,m))2]→∞.

Now invoke Theorem 1.4 in Ibragimov (1962) to yield:

1√
n

n∑
t=1

Eψ,t(ψn, χ; a,m)
d→ N

0, lim
n→∞

E

{ 1√
n

n∑
t=1

Eψ,t(ψn, χ; a,m)

}2
 ,

where limn→∞E[{1/
√
n
∑n

t=1 Eψ,t(ψn, χ; a,m)}}2] < ∞. Convergence in finite dimensional dis-

tributions now follows by the Cramér-Wold theorem.

Next, after adding and subtracting β′ng(xt, π0):

1√
n

n∑
t=1

Eψ,t(ψn, χ)

=
1√
n

n∑
t=1

{εtKψ,t(π, λ)− E [εtKψ,t(π, λ)]}

−
√
nβ′n

1

n

n∑
t=1

{xt {g(xt, π)− g(xt, π0)}Kψ,t(π, λ)− E [xt {g(xt, π)− g(xt, π0)}Kψ,t(π, λ)]}

= Zn(π, λ) + Xn(π, λ).

Under H0 and Assumption 1.a, E[εtKψ,t(π, λ)] = 0 and

E
[
Zn(π, λ)Zn(π̃, λ̃)

]
= E

[
ε2tKψ,t(π, λ)Kψ,t(π̃, λ̃)

]
= σ2E

[
Kψ,t(π, λ)Kψ,t(π̃, λ̃)

]
.

Further, supπ∈Π,λ∈Λ |Xn(π, λ)| p→ 0 by Lemma B.13. This proves (B.11).

Stochastic equicontinuity for Eψ,t(ψn, χ) holds if ∀(ε, η) > 0 there exists δ > 0 such that:

lim
n→∞

Pn(r, δ, η) = lim
n→∞

P

(
sup

χ,χ̃∈X :||χ−χ̃||≤δ
|Eψ,t(ψn, χ)− Eψ,t(ψn, χ̃)| > η

)
< ε. (B.12)

We again adapt arguments in Arcones and Yu (1994, proof of Theorem 2.1 and Lemma 2.1) in

order to verify (B.12). Eψ,t(ψn, χ) lies in the V-C subgraph class of functions V(C) because it is
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continuous, hence the covering numbers satisfyN (ε,K, ||·||2)< aε−b for all ε ∈ (0, 1) and some a, b

> 0 (e.g. Lemma 7.13 in Dudley, 1978, and Lemma II.25 in Pollard, 1984). Furthermore, under

Assumption 1.b,c and by multiple uses of Minkowski and Hölder’s inequalities, it is easily verified

that Eψ,t(ψn, χ) is Lr-bounded, r ≡ p/2 > 2, and β-mixing with coefficients βl = O(l−qp/(q−p)−ι),

q > p > 6 and tiny ι > 0. By simple algebra it follows βl = O(l−r/(r−2)) = O(l−p/(p−4)) because

p/(p − 4) < qp/(q − p). . Therefore {Eψ,t(ψn, χ) : χ ∈ X} is stochastically equicontinuous

Arcones and Yu (1994, Lemma 2.1, see especially eq. (2.13)). QED

Lemma B.10. Under Assumption 1, sup
ω∈Rkβ :||ω||=1,π∈Π,λ∈Λ

||b̂θ,n(ω, π, λ) − bθ(ω, π, λ)|| p→ 0

and supπ∈Π,λ∈Λ ||b̂ψ,n(π, λ) − bψ(π, λ)|| p→ 0.

Proof. Pointwise b̂ψ,n(π, λ)
p→ bψ(π, λ) follows from stationarity, ergodicity, and the As-

sumption 1 moment bounds. It remains to show stochastic equicontinuity: ∀(ε, η) > 0 there

exists δ > 0 such that:

lim
n→∞

Pn(r, δ, η) = lim
n→∞

P

(
sup

χ,χ̃∈X :||χ−χ̃||≤δ

∣∣∣{b̂ψ,n(χ)− bψ(χ)
}
−
{
b̂ψ,n(χ̃)− bψ(χ̃)

}∣∣∣ > η

)
< ε.

where χ = [λ′, π′]′ ∈ X = Λ × Π. There exists χ∗ ∈ X , ||χ − χ∗|| ≤ ||χ − χ̃||, such that:{
b̂ψ,n(χ)− bψ(χ)

}
−
{
b̂ψ,n(χ̃)− bψ(χ̃)

}
=

1

n

n∑
t=1

∂

∂χ
{(F (λ′∗W(xt))dψ,t(π∗)− E [F (λ′∗W(xt)) dψ,t(π∗)])}′ (χ− χ̃) .

The envelop moment bounds in Assumption 1 imply:

E

[
sup
χ∈X

∣∣∣∣ ∂∂χ {(F (λ′∗W(xt))dψ,t(π∗)− E [F (λ′∗W(xt)) dψ,t(π∗)])}
∣∣∣∣] ≤ K <∞.

Now invoke Markov’s inequality to deduce Pn(r, δ, η) ≤ η−1Kδ < ε for any 0 < δ < εη/K. QED

Define Θ+ ≡ {θ+ ∈ Rkx+kβ+kπ+1 : θ+ = [||β||, ω(β), ζ, π]′ : β ∈ B, ζ ∈ Z(β), π ∈ Π} and

εt(θ
+) ≡ yt − ζ ′xt − ‖β‖ω′g(xt, π) and Ĥn(ω, π) =

1

n

n∑
t=1

dθ,t(ω, π)dθ,t(ω, π)′

v̂2
n(θ+, λ) =

1

n

n∑
t=1

ε2t (θ
+)
{
F (λ′W(xt))− b̂θ,n(θ, ω, λ)′Ĥ−1

n (ω, π)dθ,t(ω, π)
}2

v2(θ+, λ) = E
[
ε2t (θ)

{
F (λ′W(xt))− bθ(θ, ω, λ)′H−1

θ (ω, π)dθ,t(ω, π)
}2
]
.
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Lemma B.11. Under Assumption 1, supθ+∈Θ+,λ∈Λ ||v̂2
n(θ+, λ)− v2(θ+, λ)|| p→ 0 and supθ∈Θ,λ∈Λ ||v̂2

n(θ, λ)−
v2(θ, λ)|| p→ 0.

Proof. We only prove supθ+∈Θ+,λ∈Λ ||v̂2
n(θ+, λ)− v2(θ+, λ)|| p→ 0; the proof of supθ∈Θ,λ∈Λ ||v̂2

n(θ, λ)−
v2(θ, λ)|| p→ 0 is similar.

Define

v2
n(θ+, λ) =

1

n

n∑
t=1

ε2t (θ)
{
F (λ′W(xt))− bθ(θ, ω, λ)′H−1

θ (ω, π)dθ,t(ω, π)
}2

Cn(θ+) ≡ 1

n

n∑
t=1

ε2t (θ
+)dθ,t(ω, π)

En(θ+, λ) ≡ 1

n

n∑
t=1

ε2t (θ
+)dθ,t(ω, π)F (λW(xt))

Then:

v̂2
n(θ+, λ)− v2

n(θ+, λ) = −
{
b̂θ,n(θ, ω, λ)′Ĥ−1

n (ω, π)− bθ(θ, ω, λ)′H−1
θ (ω, π)

}
×
{

2En(θ+, λ)−
(
b̂θ,n(θ, ω, λ)′Ĥ−1

n (ω, π) + bθ(θ, ω, λ)′H−1
θ (ω, π)

)
Cn(θ+)

}
.

By the same arguments used to prove Lemma B.6, Cn(θ+)
p→ E[ε2t (θ

+)dθ,t(ω, π)] uniformly on Θ+.

Further, En(θ+, λ)
p→ E[ε2t (θ

+)dθ,t(ω, π)F (λ′W(xt))] uniformly on Θ+ × Λ because (i) pointwise

convergence follows from the assumed moment and mixing properties, and (ii) En(θ+, λ) is

stochastically equicontinuous by arguments in the proof of Lemma B.10 after simple alterations.

Now apply Lemmas B.6 and B.10 to yield |v̂2
n(θ+, λ) − v2

n(θ+, λ)| p→ 0 uniformly on Θ+. Finally,

v2
n(θ+, λ)

p→ v2(θ+, λ) uniformly on Θ+ by the same arguments in the proof of Lemma B.10.

QED

Recall bθ(ω, π, λ) ≡ E[F (λ′W(xt)) dθ,t(ω, π)], and define

v2(λ) ≡ v2(ω0, π0, λ)

where:

v2(ω, π, λ) ≡ E
[
ε2t (ψ0, π)

{
F (λ′W(xt))− bθ(ω, π, λ)′H−1

θ (ω, π)dθ,t(ω, π)
}2
]
.

Lemma B.12. Let Assumptions 1.a(i) andAssumption 3 hold. Under C(i, b) with ||b|| < ∞, the
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following set has Lebesgue measure zero:{
λ ∈ Λ : inf

ω′ω=1,π∈Π
v2(ω, π, λ) = 0

}
.

Under C(ii, ω0), the set {λ ∈ Λ : v2(λ) = 0} has Lebesgue measure zero.

Proof. In view of E[ε2t |xt] = σ2
0 > 0 a.s. under Assumption 1.a(i), the proof under C(ii, ω0)

is identical to Bieren’s (1990, Lemma 2).

Consider weak identification cases C(i, b) with ||b|| < ∞. Assume

S∗ ≡
{
λ ∈ Λ : inf

ω′ω=1,π∈Π
v2(ω, π, λ) = 0

}
has positive Lebesgue measure, and take any λ ∈ S∗. Use P (E[infπ∈Π{ε2t (ψ0, π)}|xt] > 0) = 1

under Assumption 3 to deduce

F (λ′W(xt)) = bθ(ω, π, λ)′H−1
θ (ω, π)dθ,t(ω, π) a.s.

Now use the Assumption 3.b Borel function µ to yield that

E[µ(xt)F (λ′W(xt))] = E[µ(xt)dθ,t(ω, π)′]H−1
θ (ω, π)bθ(ω, π, λ).

Note bθ(ω, π, λ) ≡ E[dθ,t(ω, π)F (λ′W(xt))] hence

E [µ(xt)F (λ′W(xt))] = E [ξ(ω, π)′dθ,t(ω, π)× F (λ′W(xt))] ,

where ξ(ω, π) ≡ H−1
θ (ω, π)E [µ(xt)dθ,t(ω, π)]. This implies

E [{µ(xt)− ξ(ω, π)′dθ,t(ω, π)}F (λ′W(xt))] = 0. (B.13)

Since S∗ has positive Lebesgue measure, the equality in (B.13) applies for all λ in a subset with

positive Lebesgue measure. Thus µ(xt) = ξ(ω, π)′dθ,t(ω, π) a.s. by Theorem 2.3 in Stinchcombe

and White (1998). Hence E[κt(ω, π)κt(ω, π)′] is singular, where κt(ω, π) ≡ [µ(xt), dθ,t(ω, π)]′,

which contradicts Assumption 3.b(ii). QED

Define

Mt(π, λ) ≡ {g(xt, π0)− g(xt, π)}F (λ′W(xt)) and M̃t(π) ≡ {g(xt, π)− g(xt, π0)} dψ,t(π)′.
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Lemma B.13. Under Assumption 1:

sup
π∈Π,λ∈Λ

∣∣∣∣∣ 1n
n∑
t=1

εtF (λ′W(xt))− E[εtF (λ′W(xt))]

∣∣∣∣∣ p→ 0,

sup
π∈Π,λ∈Λ

∣∣∣∣∣ 1n
n∑
t=1

Mt(π, λ)− E[Mt(π, λ)]

∣∣∣∣∣ p→ 0 where sup
π∈Π,λ∈Λ

|E[Mt(π, λ)]| <∞

sup
π∈Π

∣∣∣∣∣ 1n
n∑
t=1

M̃t(π)− E[M̃t(π)]

∣∣∣∣∣ p→ 0 where sup
π∈Π

∣∣∣E[M̃t(π)]
∣∣∣ <∞.

Proof. In view of envelope moment bounds in Assumption 1.c, the argument is essentially

identical to the proof of Lemma B.10. QED.

C Proof of Theorem 4.1

Theorem 4.1. Let Assumptions 1 and 2 hold.

a. Under drift case C(i, b) with ||b|| < ∞, (
√
n(ψ̂n(π̂n)− ψn), π̂n)

d→ (τ(π∗(b), b), π∗(b)).

b. Under drift case C(ii, ω0),
√
nB(β̂n)(θ̂n − θn)

d→ −H−1
θ Gθ.

Proof.

Claim a.

Step 1: We first prove{√
n(ψ̂n(π)− ψn : Π

}
⇒∗ {τ(π, b) : Π} . (C.14)

Recall ψ0,n = [0′kβ , ζ
′
0]′. By Lemma B.7.a:

√
n
(
ψ̂n(π)− ψn

)
=
√
n
(
ψ̂n(π)− ψ0,n

)
+
√
n (ψ0,n − ψn) (C.15)

= −Ĥ−1
ψ,n(π)

√
n
∂

∂ψ
Qn(ψ0,n, π)−

[√
nβ′n, 0

′
kβ

]′
.

By the construction of Gψ,n(θ) in (A.3), we can write:

√
n
∂

∂ψ
Qn(ψ0,n, π) = Gψ,n(ψ0,n, π)−

√
nE [εt(ψ0,n, π)dψ,t(π)] . (C.16)

Assumption 1.a implies E[εt(θn)dψ,t(π)] = 0, hence:

√
nE [εt(ψ0,n, π)dψ,t(π)] =

√
nE [{εt(ψ0,n, π)− εt(θn)} dψ,t(π)] = E

[√
nβ′ng(xt, π0)dψ,t(π)

]
. (C.17)
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Therefore, by the definition of Dψ(π) in (A.4), and
√
nβn → b with ||b|| < ∞:

sup
π∈Π

∣∣√nE [εt(ψ0,n, π)dψ,t(π)] +Dψ(π)b
∣∣→ 0. (C.18)

By Lemma B.2 supπ∈Π ||Ĥψ,n(π) − Hψ(π)|| p→ 0, where Hψ(π) is bounded and positive definite

uniformly on Π. Now combine (C.15)-(C.18) to yield:

sup
π∈Π

∥∥∥∥√n(ψ̂n(π)− ψn
)
−
(
−H−1

ψ (π) {Gψ,n(ψ0,n, π) +Dψ(π)b} −
[
b, 0′kβ

]′)∥∥∥∥ p→ 0. (C.19)

Therefore (C.14) follows by application of Lemma B.1.

Step 2: Now turn to π̂n. Write Qc
n(π) ≡ Qn(ψ̂n(π), π). Let drift case C(i, b) hold with

||b|| <∞. By Lemma B.8.a {n(Qc
n(π), π) − Q0,n) : Π} ⇒∗ {ξψ(π, b) : Π}, hence by the mapping

theorem | arg minπ∈Π{n(Qc
n(π) − Q0,n)} − arg minπ∈Π{ξψ(π, b)}| p→ 0. Therefore π̂n

d→ π∗(b) =

arg minπ∈Π{ξψ(π, b)} by the mapping theorem and Assumption 2.

Step 3: The proof is complete by showing joint weak convergence for
√
n(ψ̂n(π) − ψn)

and π̂n.

First,
√
n(ψ̂n(π) − ψn) and π̂n are continuous functions of Gψ,n(ψ0,n, π) and Ĥψ,n(π). The

former follows from (C.15) and (C.16). In order to understand π̂n, define

ξψ,n(π, b) ≡ −1

2
{Gψ,n(ψ0,n, π) +Dψ(π)b}′ Ĥ−1

ψ,n(π) {Gψ,n(ψ0,n, π) +Dψ(π)b} .

By Lemmas B.1 and B.2 {ξψ,n(π, b) : Π} ⇒∗ {ξψ(π, b) : Π}. Hence, by Lemma B.8.a and the

mapping theorem ∣∣∣∣arg min
π∈Π

{n(Qc
n(π)−Q0,n)} − arg min

π∈Π
{ξψ,n(π, b)}

∣∣∣∣ p→ 0.

In view of the argument above, this implies∣∣∣∣π̂n − arg min
π∈Π

{ξψ,n(π, b)}
∣∣∣∣ p→ 0.

Hence π̂n can be expressed as a continuous function of Gψ,n(ψ0,n, π) and Ĥψ,n(π).

Second, Gψ,n(ψ0,n, π) and Ĥψ,n(π) converge jointly because the latter has a non-random limit

uniformly on Π (cf. Andrews and Cheng, 2012b, p. 25). Hence{√
n(ψ̂n(π)− ψn), π̂n : Π

}
⇒∗ {τ(π, b), π∗(b) : Π} .
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By the mapping theorem it therefore follows that:(√
nψ̂n(π̂n)− ψn), π̂n

)
⇒∗ (τ(π∗(b), b), π∗(b)) .

Finally, a subsequent proof requires uniform consistency

sup
π∈Π

∥∥∥ψ̂n(π)− ψn
∥∥∥ p→ 0. (C.20)

Note that

ψ̂n(π)− ψn = −Ĥ−1
ψ,n(π)

∂

∂ψ
Qn(ψ0,n, π)−

[
β′n, 0

′
kβ

]′
,

where supπ∈Π ||Ĥ−1
ψ,n(π) − H−1

ψ (π)|| p→ 0 and βn → 0. Moreover, by the Assumption 1.b,c,d(iii)

moment and envelope bounds and βn → 0:

sup
π∈Π

∥∥∥∥ ∂∂ψQn(ψ0,n, π)

∥∥∥∥ ≤ sup
π∈Π

∥∥∥∥ ∂∂ψQn(ψ0,n, π)− E [εt(ψ0,n, π)dψ,t(π)]

∥∥∥∥+ sup
π∈Π
‖E [β′ng(xt, π0)dψ,t(π)]‖

= sup
π∈Π

∥∥∥∥∥ 1

n

n∑
t=1

εt(ψ0,n, π)dψ,t(π)− E [εt(ψ0,n, π)dψ,t(π)]

∥∥∥∥∥+ op(1)

≡ En + op(1).

Finally, En
p→ 0 by the same arguments used to prove Lemmas B.2 and B.6. Therefore:

sup
π∈Π

∥∥∥ψ̂n(π)− ψn
∥∥∥ = sup

π∈Π

∥∥∥∥−Ĥ−1
ψ,n(π)

∂

∂ψ
Qn(ψ0,n, π)−

[
β′n, 0

′
kβ

]∥∥∥∥
≤ sup

π∈Π

∥∥∥−H−1
ψ (π)En −

[
β′n, 0

′
kβ

]∥∥∥+ op(1)
p→ 0.

This proves (C.20).

Claim b. Let drift case C(ii, ω0) hold, and define

Ĥn(ω, π) ≡ 1

n

n∑
t=1

dθ,t(ω, π)dθ,t(ω, π)′ and Hθ(ω, π) ≡ E [dθ,t(ω, π)dθ,t(ω, π)′] .

Recall B(β) defined in (A.2) and ω(β) defined in (A.5). By the first order condition (∂/∂θ)Qn(θ̂n)

= 0 and the mean value theorem there exists θ∗n, ||θ∗n− θn|| ≤ ||θ̂n− θn||, such that:

0 = B(βn)−1
√
n
∂

∂θ
Qn(θn) + B(βn)−1 ∂2

∂θ∂θ′
Qn(θ∗n)B(βn)−1 ×

√
nB(βn)

(
θ̂n − θn

)
= B(βn)−1

√
n
∂

∂θ
Qn(θn) + Ĥn(ω(β∗n), π∗n)

√
nB(βn)

(
θ̂n − θn

)
.
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The second equality follows from the constructions of B(β), (∂2/∂θ∂θ′)Qn(θ) and Ĥn(θ). Hence:

√
nB(βn)

(
θ̂n − θn

)
= Ĥ−1

n (ω(β∗n), π∗n)B(βn)−1
√
n
∂

∂θ
Qn(θn). (C.21)

Observe that ||θ∗n− θn|| ≤ ||θ̂n− θn||, and by the argument below:∥∥∥θ̂n − θn∥∥∥ p→ 0. (C.22)

Hence Ĥn(ω(β∗n), π∗n)
p→ Hθ by Lemma B.6 and continuity. Corollary B.4 now yields the result.

It remains to prove (C.22). Use (C.21) to yield:∥∥∥√nB(βn)
(
θ̂n − θn

)∥∥∥ ≤ sup
ω∈Rkβ :||ω||=1,π∈Π

∥∥∥Ĥ−1
n (ω, π)−H−1

θ (ω, π)
∥∥∥∥∥∥∥B(βn)−1

√
n
∂

∂θ
Qn(θn)

∥∥∥∥
+ sup

ω∈Rkβ :||ω||=1,π∈Π

∥∥H−1
θ (ω, π)

∥∥∥∥∥∥B(βn)−1
√
n
∂

∂θ
Qn(θn)

∥∥∥∥ .
By Lemma B.6 and the Slutsky Theorem

sup
ω∈Rkβ :||ω||=1,π∈Π

∥∥∥Ĥ−1
n (ω, π)−H−1

θ (ω, π)
∥∥∥ p→ 0,

where sup
ω∈Rkβ :||ω||=1,π∈Π

||H−1
θ (ω, π)|| < ∞ follows from the eigenvalue bounds in Lemma B.6.

Moreover, by Lemma B.3 and the mapping theorem

B(βn)−1
√
n
∂

∂θ
Qn(θn) = Op(1).

This proves
√
nB(βn)(θ̂n− θn) = Op(1), hence (C.22). QED.

D Identification Category Selection Type 2 P-Value

Operate under H0. Define F∞(c) ≡ P (T (λ) ≤ c) where {T (λ) : λ ∈ Λ} is the asymptotic

null chi-squared process under strong identification, and let Fλ,h(c) ≡ P (Tψ(λ, h) ≤ c) where

{Tψ(λ, h) : λ ∈ Λ} is the asymptotic null process under weak identification. The case specific

asymptotic p-values are

p∞n (λ) ≡ 1−F∞(Tn(λ)) = F̄∞(Tn(λ)) and pn(λ, h) ≡ 1−Fλ,h(Tn(λ)) = F̄λ,h(Tn(λ)).

The ICS-2 p-value is computed as follows. Let (∆1,∆2) ∈ [0, 1) and κ > 0 be user chosen
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numbers. Let s be a continuous function on [0,∞), such that s(x) ∈ [0, 1], s(x) is non-increasing

in x, s(0) = 1, and s(x) → 0 as x → ∞. Then, using An in (A.6):

p(ICS−2)
n (λ) =

{
pn,1(λ; ∆1) if An ≤ κ, pn,2(λ,∆1,∆2) if An > κ

where

pn,1(λ; ∆1) ≡ max

{
sup
h∈H
{pn(λ, h)}, p∞n (λ)

}
+ ∆1 (D.23)

pn,2(λ,∆1,∆2) ≡ p∞n (λ) + ∆2 + {pn,1(λ; ∆1)− p∞n (λ)−∆2} s(An − κ).

The construction allows for a smooth transition between identification cases, and allows for a

non-diverging threshold. The latter necessitates the tuning parameters (∆1,∆2) which promote

a correct asymptotic size. See also Andrews and Barwick (2012) for a related method.

See Andrews and Cheng (2012a, p. 2193) for details on determining appropriate choices

for (∆1,∆2, κ). In theory κ > 0 can be any value since the ICS-2 p-value p
(ICS−2)
n (λ) pro-

motes a test with correct asymptotic level. Andrews and Cheng (2012a, p. 2194) and Andrews

and Cheng (2013a, p. 50) choose κ for robust t-statistics by minimizing the False Coverage

Probability [FCP] for the corresponding robust confidence set.2 The CM test statistic is not

based on a parametric hypothesis, hence the FCP method does not apply. Instead, we may

choose ad hoc values like κ = 1 or κ = 1.5, based on finite sample experiments for various

models.3 Since our focus is an asymptotically valid method for computing pn(λ, h), and there-

fore {p(LF )
n (λ), p

(ICS−2)
n (λ), p

(ICS−2)
n (λ)}, we do not present here a theory based alternative to

minimizing the FCP in order to select κ for CM tests.

We choose (∆1,∆2) to ensure the asymptotic Null Rejection Probability [NRP] under weak

identification
√
n||βn|| → [0,∞) is not larger than α (Andrews and Cheng, 2012a, Section 5.3).

The NRP is

NRPn(∆1,∆2;λ, ) ≡ P (pn,1(λ; ∆1) ≤ α ∩ An ≤ κ) + P (pn,2(λ; ∆1,∆2) ≤ α ∩ An > κ) .

Note that An
d→ A(b) under weak identification, where A(b) is defined in Theorem 5.1.a. Under

strong identification and regularity conditions, An
p→ ∞ (Theorem 5.1.b).

2Consider the parametric hypothesis R(θ) = 0. The FCP of a confidence set for R(θ) is the probability that
the confidence set contains a value different from the true R(θn), where θn ≡ [β′n, ζ

′
0, π
′
0]′.

3Andrews and Cheng (2012a,b, 2013a,b) find that a wide range of values for κ lead to similar results for robust
Smooth Transition Autoregression model based t-tests, including κ = 1 and κ = 1.5, because ∆1 and ∆2 are
computed to ensure correct asymptotic size for any chosen κ.
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Define

p1(λ, h̃; ∆1) ≡ max

{
sup
h∈H

{
F̄λ,h(Tψ(λ, h̃))

}
, F̄∞(Tψ(λ, h̃))

}
+ ∆1 (D.24)

p2(λ, h̃; ∆1,∆2) ≡ F̄∞(Tψ(λ, h̃)) + ∆2 +
{
p1(λ)− F̄∞(Tψ(λ, h̃))−∆2

}
s (A(b)− κ) .

suph∈H operates on the distribution function F̄λ,h and not its argument Tψ(λ, h̃). This follows

from the definition pn,1(λ; ∆1) ≡ max{suph∈H{pn(λ, h)}, p∞n (λ)} + ∆1, and under weak identifi-

cation:

sup
h∈H
{pn(λ, h) : λ ∈ Λ} = sup

h∈H

{
F̄λ,h(Tn(λ)) : λ ∈ Λ

}
⇒∗ sup

h∈H

{
F̄λ,h(Tψ(λ, h̃)) : λ ∈ Λ

}
.

By Theorem 6.1 and the mapping theorem:

{pn,1(λ; ∆1) : λ ∈ Λ} ⇒∗
{
p1(λ, h̃; ∆1) : λ ∈ Λ

}
and

{pn,2(λ; ∆1,∆2) : λ ∈ Λ} ⇒∗
{
p2(λ, h̃; ∆1,∆2) : λ ∈ Λ

}
.

Joint convergence for (pn,1(λ; ∆1), pn,2(λ; ∆1,∆2),An) is straightforward to prove: see the

proof of Theorem 6.2. The asymptotic NRP under weak identification is therefore:

NRP (∆1,∆2;λ, h̃) ≡ P
(
p1(λ, h̃; ∆1) < α ∩ A(b) ≤ κ

)
(D.25)

+P
(
p2(λ, h̃; ∆1,∆2) < α ∩ A(b) > κ

)
.

The role (∆1,∆2) play are the same as in Andrews and Cheng (2012a, p. 2193). Let b̃sup be

such that

h̃sup ≡
[
b̃sup, γ̃sup

]
= arg sup

h̃∈H
sup
h∈H

{
F̄λ,h

(
Tψ(λ, h̃)

)}
,

and C ≥ 0 is some constant, e.g. C = 1. Define the set

H1 ≡
{
h = [b, γ] : h ∈ H, ‖b‖ ≤

∥∥∥b̃sup

∥∥∥+ C
}
,

and define

∆1 ≡ sup
h̃∈H1

∆1(h̃) where

{
∆1(h̃) ≥ 0 solves NRP (∆1(h̃), 0; h̃) = α

∆1(h̃) = 0 if NRP (0, 0; h̃) < α
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∆2 ≡ sup
h̃∈H1

∆2(h̃) where

{
∆2(h̃) ≥ 0 solves NRP (∆1,∆2(h̃); h̃) = α

∆1(h̃) = 0 if NRP (∆1, 0; h̃) < α
.

If NRP (∆1, 0; h̃) = α does not hold for any ∆1, then choose any ∆1 that satisfies NRP (∆1, 0; h̃)

≤ α. The following lemma shows the latter is always feasible (see the proof for examples). Thus,

NRP (∆1, 0; h̃) = α for some ∆1 holds when NRP (∆1, 0; h̃) is strictly decreasing and continuous

in ∆1, which generally holds in view of the construction of Tψ(λ, h̃). Similar derivations apply

to ∆2.

Lemma D.1. Let
√
n||βn|| → [0,∞), and assume Fλ,h(c) is continuous a.e. on [0,∞). There

always exists a (possibly non-unique) ∆1 such that suph̃∈HNRP (∆1, 0; h̃) ≤ α.

Define

AsySz(λ) = lim sup
n→∞

sup
γ∈Γ∗

Pγ
(
p(·)
n (λ) < α|H0

)
.

Theorem D.2. Let Assumptions 1-2, 4 and 5 hold. The ICS-2 p
(ICS−2)
n (λ) satisfies AsySz(λ)

≤ α.

Proof of Lemma D.1. By (D.25), the asymptotic Null Rejection Probability under
√
n||βn||

→ [0,∞) is

NRP (∆1,∆2; h̃) = P
(
p1(λ, h̃; ∆1) < α ∩ A(b) ≤ κ

)
+ P

(
p2(λ, h̃; ∆1,∆2) < α ∩ A(b) > κ

)
. (D.26)

Define p(LF )(λ, h̃) ≡ max{suph∈H{F̄λ,h(Tψ(λ, h̃))}, F̄∞(Tψ(λ, h̃))}. Note that

P
(
p1(λ, h̃; ∆1) < α ∩ A(b) ≤ κ

)
≤ P

(
p(LF )(λ, h̃) < α ∩ A(b) ≤ κ

)
(D.27)

≤ P

(
sup
h∈H

{
F̄λ,h(Tψ(λ, h̃))

}
< α ∩ A(b) ≤ κ

)
and

P
(
p2(λ, h̃; ∆1,∆2) < α ∩ A(b) > κ

)
= P

(
F̄∞(Tψ(λ, h̃)) + ∆2 +

{
p(LF )(λ, h̃) + ∆1 − F̄∞(Tψ(λ, h̃))−∆2

}
s (A(b)− κ) < α ∩ A(b) > κ

)
≤ P

(
F̄∞(Tψ(λ, h̃)) (1− s (A(b)− κ)) + p(LF )(λ, h̃)s (A(b)− κ) + ∆1s (A(b)− κ) < α ∩ A(b) > κ

)
.

Consider two examples:

∆1(h̃) =

(
max

{
sup
h∈H

{
F̄λ,h(Tψ(λ, h̃))

}
, F̄∞(Tψ(λ, h̃))

}
− F̄∞(Tψ(λ, h̃))

)
1− s (A(b)− κ)

s (A(b)− κ)
(D.28)
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∆1(h̃) = max

{
sup
h∈H

{
F̄λ,h(Tψ(λ, h̃))

}
, F̄∞(Tψ(λ, h̃))

}
(1− s (A(b)− κ))

s (A(b)− κ)
. (D.29)

Use ∆1(h̃) in (D.28) to yield

P
(
p2(λ, h̃; ∆1,∆2) < α ∩ A(b) > κ

)
≤ P

(
p(LF )(λ, h̃) < α ∩ A(b) > κ

)
≤ P

(
sup
h∈H

{
F̄λ,h(Tψ(λ, h̃))

}
< α ∩ A(b) > κ

)
,

hence

sup
h̃∈H

NRP (∆1(h̃), 0; h̃) ≤ sup
h̃∈H

P

(
sup
h∈H

{
F̄λ,h(Tψ(λ, h̃))

}
< α ∩ A(b) ≤ κ

)
+ sup

h̃∈H
P

(
sup
h∈H

{
F̄λ,h(Tψ(λ, h̃))

}
< α ∩ A(b) > κ

)
= sup

h̃∈H
P

(
sup
h∈H

{
F̄λ,h(Tψ(λ, h̃))

}
< α

)
≤ sup

h̃∈H
P
(
F̄λ,h̃(Tψ(λ, h̃)) < α

)
= α.

The final equality holds because F̄λ,h̃ is continuous by assumption, and Tψ(λ, h̃) is distributed

Fλ,h̃.
Finally, note that

P
(
p2(λ, h̃; ∆1,∆2) < α ∩ A(b) > κ

)
≤ P

(
F̄∞(Tψ(λ, h̃)) (1− s (A(b)− κ))

+p(LF )(λ, h̃)s (A(b)− κ) + ∆1s (A(b)− κ) < α ∩ A(b) > κ
)

≤ P
(
p(LF )(λ, h̃)s (A(b)− κ) + ∆1s (A(b)− κ) < α ∩ A(b) > κ

)
.

Then using ∆1(h̃) in (D.29):

P
(
p2(λ, h̃; ∆1,∆2) < α ∩ A(b) > κ

)
≤ P

(
p(LF )(λ, h̃) < α ∩ A(b) > κ

)
(D.30)

≤ P
(
F̄λ,h̃(Tψ(λ, h̃)) < α ∩ A(b) > κ

)
.

Combine (D.26), (D.27) and (D.30) to yield:

sup
h̃∈H

NRP (∆1(h̃), 0; h̃) ≤ sup
h̃∈H

P

(
sup
h∈H

{
F̄λ,h(Tψ(λ, h̃))

}
< α

)
= α.
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This completes the proof. QED.

Proof of Theorem D.2.

Step 1. Under C(i, b) with ||b|| < ∞, An
d→ A(b) where A(b) is defined in Theorem 5.1.a.

In Step 2 we show joint weak convergence under C(i, b)

{Tn(λ),An : Λ} ⇒∗ {Tψ(λ, h),A(b) : Λ}. (D.31)

Therefore, by the mapping theorem and Assumption 5:

{pn,1(λ; ∆1), pn,2(λ; ∆1,∆2),An : Λ} ⇒∗
{
p1(λ, h̃; ∆1), p2(λ, h̃; ∆1,∆2),A(b) : Λ

}
where

p1(λ, h̃; ∆1) = max

{
sup
h∈H

{
F̄λ,h(Tψ(λ, h̃))

}
, F̄∞(Tψ(λ, h̃))

}
+ ∆1 ≡ p(LF )(λ, h̃) + ∆1

p2(λ, h̃; ∆1,∆2) ≡ F̄∞(Tψ(λ, h̃)) + ∆2 +
{
p1 − F̄∞(Tψ(λ, h̃))−∆2

}
s (A(b)− κ) .

The asymptotic size AsySz(λ) is therefore

lim sup
n→∞

sup
γ∈Γ∗

Pγ
(
p(ICS−2)
n (λ) < α|H0

)
= sup

h̃∈H
P
(
p1(λ, h̃; ∆1) < α ∩ A(b) ≤ κ

)
+ sup

h̃∈H
P
(
p2(λ, h̃; ∆1,∆2) < α ∩ A(b) > κ|H0

)
= sup

h̃∈H
NRP (∆1,∆2;λ, h̃),

where NRP is the asymptotic Null Rejection Probability defined in (D.25). The tuning param-

eters (∆1,∆2) are chosen by supposition to ensure suph̃∈HNRP (∆1,∆2;λ, h̃) ≤ α, cf. Lemma

D.1.

Under C(ii, ω0) we have An
p→ ∞ by Theorem 5.1.b. Hence s(An− κ)

p→ 0 since the con-

tinuous function s(x) → 0 as x → ∞. Now apply Theorem 4.2.b and the mapping theorem to

yield {pn,2(λ; ∆1,∆2) : Λ} ⇒∗ {F̄∞(T (λ)) + ∆2 : Λ}. Since T (λ) is distributed F∞, it therefore

follows:

AsySz(λ) = lim sup
n→∞

sup
γ∈Γ∗

Pγ
(
p(ICS−2)
n < α|H0

)
= P

(
F̄∞(T (λ)) + ∆2 < α|H0

)
≤ P

(
F̄∞(T (λ)) < α|H0

)
= α.

Step 2 (joint convergence). It remains to prove (D.31). Recall Sβ ≡ [Ikβ : 0kx×kx ], and
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define:

ω(β̂n(π̂n)) =

√
nSβψ̂n(π̂n)∥∥∥√nSβψ̂n(π̂n)

∥∥∥ =

√
nSβ

(
ψ̂n(π̂n)− ψn

)
+
√
nβn∥∥∥√nSβ (ψ̂n(π̂n)− ψn

)
+
√
nβn

∥∥∥ ≡ ωn(π̂n),

hence ωn(π̂n) is a continuous function of
√
n(ψ̂n(π̂n) − ψn) and π̂n. By the argument leading to

(A.12) in the proof of Theorem 4.2 in the main paper:

sup
λ∈Λ

∣∣∣∣∣Tn(λ)− (Zn(π̂n, λ) +R(π̂n, λ))2

v2(ωn(π̂n), π̂n, λ)

∣∣∣∣∣ p→ 0.

Recall {Tn(λ) : Λ} ⇒∗ {Tψ(λ, h) : Λ} by Theorem 4.2.

By the proof of Theorem 5.1.a and the mapping theorem, ||Σ̂n − Σ̄(π∗(b), b)|| p→ 0, where

Σ̄(π, b) ≡ Σ(ω∗(π, b), π) = Σ (‖β0‖ , ω∗(π, b), ζ0, π) ,

and

Σ (‖β‖ , ω, ζ, π) = Σ(θ+) ≡ Hθ(θ
+)−1V(θ+)Hθ(θ

+)−1.

Therefore

An =

(
1

p+ 1
nβ̂′nΣ̂−1

β,β,nβ̂
′
n

)1/2

=

(
1

p+ 1

(
Sβ
√
n
(
ψ̂n − ψn

)
+
√
nβn

)′
Σ̄−1
β,β(π̂n, b)

(
Sβ
√
n
(
ψ̂n − ψn

)
+
√
nβn

))1/2

+ op(1),

where Σ̄β,β(π, b) is the upper (p + 1)× (p + 1) block of Σ̄(π, b). Further An
d→ A(b) by Theorem

5.1.a.

Therefore {Tn(λ),An : Λ} ⇒∗ {Tψ(λ, h),A(b) : Λ} if we prove joint weak convergence for

(Zn(π, λ),
√
n(ψ̂n(π) − ψn), π̂n) on Π × Λ. By the proof of Theorem 4.1.a,

√
n(ψ̂n(π) − ψn)

and π̂n are continuous functions of Gψ,n(ψ0,n, π) and Ĥψ,n(π), and Ĥψ,n(π) has a constant limit

in probability uniformly on Π by Lemma B.2. Joint weak convergence for (Zn(π, λ),
√
n(ψ̂n(π)

− ψn), π̂n) therefore follows from joint weak convergence for (Zn(π, λ),Gψ,n(ψ0,n, π)), which is

shown in Step 3 in the proof of Theorem 4.2. QED.
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E Robust Critical Values

We present bootstrapped identification category robust critical values. The idea is based on

(unobserved) robust Least Favorable, and type 1 and 2 identification category selection [ICS]

critical values presented in Andrews and Cheng (2012a).

E.1 Least Favorable and Identification Category Selection Critical

Values

Let {Tψ(λ, b) : λ ∈ Λ} denote the null limit process of Tn(λ) under weak identification
√
nβn →

b with ||b|| < ∞ (see Theorem 5.2). Recall that φ0 indexes all remaining (nuisance) parameters

such that the distribution of Wt ≡ [yt, yt−1, ..., yt−p]
′ is determined by:

γ0 ≡ (θ0, φ0) ∈ Γ∗ ≡ {θ ∈ Θ∗, φ ∈ Φ∗(θ)} . (E.32)

Assume Φ∗(θ) ⊂ Φ∗ ∀θ ∈ Θ∗, where Φ∗ is a compact metric space with some metric that induces

weak convergence of the bivariate distributions of (Wt,Wt+h) for all t and h ≥ 1.

Define the parametric set that characterizes data generating processes under weak identifi-

cation βn → β0 = 0, and
√
nβn → b with ||b|| < ∞:

h ≡ (γ0, b) ∈ H ≡ {h : γ0 ∈ Γ∗, and ‖b‖ <∞, with β0 = 0} . (E.33)

Now let {Tψ(λ, h) : λ ∈ Λ} denote the non-standard null limit process under weak identification.

Under strong identification the null limit law is χ2(1). Let c1−α(λ, h) and χ2
1−α respectively

be the 1 − α quantiles for Tψ(λ, h) and χ2(1). All subsequent critical values are functions of

c1−α(λ, h), hence in Appendix E.3 we discuss how to compute c1−α(λ, h) by bootstrap.

The following summarizes ideas developed in Andrews and Cheng (2012a, Section 5).

E.1.1 Least Favorable Critical Value

The Least favorable [LF] critical value is

c
(LF )
1−α (λ) ≡ max

{
sup
h∈H
{c1−α(λ, h)}, χ2

1−α

}
.

A better critical value in terms of power uses the fact that (ζ0, βn) are consistently estimated by

(ζ̂n, β̂n) under any degree of (non)identification. The plug-in LF critical value ĉ
(LF )
1−α (λ) uses Ĥ ≡

{h ∈ H : θ = [ζ̂ ′n, β̂
′
n, π

′]′} in place of H.
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In the present environment the null hypothesis is tested by using a sample version of E[εtF (λ′W(xt))].

Thus, so-called parametric null imposed critical values in Andrews and Cheng (2012a) for t-,

Quasi-Likelihood Ratio and Wald statistics do not play a role here.

E.1.2 Identification Category Selection Type 1

The LF critical value does not exploit data related information that may point toward a particular

identification case. The ICS procedure uses the sample to choose between
√
nβn → b when ||b||

< ∞ (weak and non-identification) and ||b|| = ∞ (semi-strong and strong identification).

Recall the statistic An in (A.6). Now let {κn} be a sequence of positive constants, with κn →
∞ and κn = o(n1/2). The case ||b|| <∞ is selected when An ≤ κn, else ||b|| =∞ is selected. Now

define the type 1 ICS [ICS-1] critical value: c
(ICS−1)
1−α,n (λ) = c

(LF )
1−α (λ) if An ≤ κn, else c

(ICS−1)
1−α,n (λ)

= χ2
1−α if An > κn.

c
(ICS−1)
1−α,n (λ) =

{
c

(LF )
1−α (λ) if An ≤ κn

χ2
1−α if An > κn

.

See the remark following Theorem 6.1, and Andrews and Cheng (2012a, p. 2191), for intuition

on c
(ICS−1)
1−α,n (λ). Briefly: only when

√
n||βn|| → ∞ faster than κn →∞ will the chi-squared based

critical value be chosen asymptotically with probability approaching one since then An/κn
p→

∞. Thus, a high bar must be passed in order for the strong identification case to be selected.

In every other case the LF value is chosen, which is always asymptotically correct.

E.1.3 Identification Category Selection Type 2

Let s : [0,∞) → [0, 1] be a continuous function, s(x) is non-increasing in x, s(0) = 1, and s(x)

→ 0 as x → ∞. An example is s(x) = exp{−cx} for some c > 0. Let (∆1,∆2) ≥ 0 and κ > 0

be user selected numbers. Define

c1(λ) = c
(LF )
1−α (λ) + ∆1

c2(λ) = χ2
1−α + ∆2 + (c

(LF )
1−α (λ)− χ2

1−α + ∆1 −∆2)s(An − κ).

The type 2 ICS [ICS-2] critical value is

c
(ICS−2)
1−α,n (λ) =

{
c1(λ) if An ≤ κ

c2(λ) if An > κ
.

The construction allows for a smooth transition between identification cases, and allows for a

non-diverging threshold. The latter necessitates the tuning parameters (∆1,∆2) which promote
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a correct asymptotic size. See also Andrews and Barwick (2012) for a related method.

See Andrews and Cheng (2012a, p. 2193) for details on determining appropriate choices for

(∆1,∆2, κ), and see Appendix D above.

E.2 Asymptotics for Robust Critical Values

Let c
(·)
1−α,n(λ) denote the LF, ICS-1 or ICS-2 plug-in robust critical value. Conditions leading to

critical value asymptotics follow, and are presented in Andrews and Cheng (2012a, Section 5)

and Andrews and Cheng (2013a, Section 5.5).

Assumption 7 (critical value). If c
(·)
1−α,n(λ) is (i) LF, (ii) ICS-1, or (iii) ICS-2, then assume

respectively that Andrews and Cheng’s (2012a) Assumption (i) LF, (ii) K and V3, or (iiii) Rob2

holds.

Let Fγ be the distribution function of Wt under some γ ∈ Γ∗, where Γ∗ is the true parameter

space in (E.32). Let Pγ denote probability under Fγ. For any critical value c
(·)
1−α,n(λ) and each

λ the asymptotic size of the test is the maximum rejection probability over γ such that the null

is true:

AsySz(λ) = lim sup
n→∞

sup
γ∈Γ∗

Pγ

(
Tn(λ) > c

(·)
1−α,n(λ)|H0

)
.

Proofs are presented in Appendix E.4.

Theorem E.1. Under Assumptions 1-2, 4 and 7 and H0, the LF, ICS-1 and ICS-2 c
(·)
1−α,n(λ)

satisfy AsySz(λ) = α.

E.3 Computation of c
(·)
1−α,n(λ)

Steps 1-4 of the wild bootstrap procedure outlined in Section 6.2 of the main paper carries over

verbatim.

Step 5 is as follows. Repeat Steps 1-4 M times resulting in a sequence of independent

draws {T̂ ∗ψ,n,j(λ, h)}Mj=1. Define order statistics T̂ ∗ψ,n,[1](λ, h) ≤ T̂ ∗ψ,n,[2](λ, h) ≤ · · · . The critical

value approximation is ĉ∗1−α,n,M(λ, h) ≡ T̂ ∗ψ,n,[(1−α)M](λ, h), which is consistent for the asymptotic

critical value c1−α(λ, h).

Theorem E.2. Let the true value σ2 ≡ E[ε2t ] ∈ S∗, where the true parameter space S∗ is a

compact subset of (0,∞). Let M = Mn → ∞ as n → ∞. Under Assumptions 1-2, 4 and 7,

ĉ∗1−α,n,Mn
(λ, h)

p→ c1−α(λ, h) for each h ∈ H and λ ∈ Λ.
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E.4 Proofs

Proof of Theorem E.1.

Step 1 (LF). The proof for the LF critical value c
(LF )
1−α = max{suph∈H{c1−α(λ, h)}, χ2

1−α} is

identical to arguments in Andrews and Cheng (2012b, Appendix B: proof of Theorem 5.1). We

verify the conditions of Lemma 2.1 in Andrews and Cheng (2012a) below. An application of

their Lemma 2.1 to the asymptotic size for Tψ(λ, h), and Theorem 4.2.a, yields

AsySz(λ) = max

{
sup
h∈H

P
(
Tψ(λ, h) > c

(LF )
1−α

)
, P
(
T (λ) > c

(LF )
1−α

)}
.

If c
(LF )
1−α = χ2

1−α then by the definition of c1−α(λ, h):

sup
h∈H

P
(
Tψ(λ, h) > c

(LF )
1−α

)
≤ sup

h∈H
P (Tψ(λ, h) > c1−α(λ, h)) = α,

hence AsySz(λ) is:

max

{
sup
h∈H

P
(
Tψ(λ, h) > χ2

1−α
)
, P
(
T (λ) > χ2

1−α
)}

= max

{
sup
h∈H

P
(
Tψ(λ, h) > χ2

1−α
)
, α

}
= α.

Conversely, if c
(LF )
1−α = suph∈H{c1−α(λ, h)} then

sup
h∈H

P
(
Tψ(λ, h) > c

(LF )
1−α

)
= sup

h∈H
P

(
Tψ(λ, h) > sup

h∈H
{c1−α(λ, h)}

)
= α,

and P (T (λ) > c
(LF )
1−α ) ≤ α hence again AsySz(λ) = α.

It remains to verify the conditions of Lemma 2.1 in Andrews and Cheng (2012a). We must

show their Assumption ACP holds, parts (i)-(iv). Recall {γn} is a sequence of true param-

eters γn ≡ (θn, φ0) under local drift which fully determine the joint distribution of the data

[yt, yt−1, ..., yt−p]
′. The limiting true value is γ0 ≡ (θ0, φ0). By Theorem 4.2, Pγn(Tn(λ) > c

(LF )
1−α )

→ P (Tψ(λ, h) > c
(LF )
1−α ) under C(i, b) with ||b|| < ∞, and Pγn(Tn(λ) > c

(LF )
1−α ) → P (T (λ) > c

(LF )
1−α )

under C(ii, ω0). Hence Assumption ACP.i,ii,iii hold. Assumption ACP.iv holds under true pa-

rameter space Assumption 1.e, because the latter is identically Assumption STAR4 in Andrews

and Cheng (2013a), cf. Andrews and Cheng (2013b, Section 15.7).

Step 2 (ICS-1, ICS-2). Theorem 5.1 implies the ICS statistic satisfies An = Op(1) under

C(i, b) with ||b|| < ∞. Under C(ii, ω0) we have An
p→ ∞, and if β0 6= 0 then κ−1

n An
p→ ∞ where

by supposition κn → ∞ and κn = o(
√
n). Now invoke Theorem 4.2 to deduce Pγn(Tn(λ) >

c
(ICS−1)
1−α,n (λ)) → P (Tψ(λ, h) > c

(LF )
1−α ) under C(i, b) with ||b|| < ∞, and Pγn(Tn(λ) > c

(ICS−1)
1−α,n ) →
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P (T (λ) > χ2
1−α) under C(ii, ω0) if β0 6= 0. Hence Assumption ACP.i,ii,iii in Andrews and Cheng

(2012a) hold. Their Assumption ACP.iv holds by Step 1. Arguments in Andrews and Cheng

(2012b, p. 56-58) now carry over to prove the ICS-1 and ICS-2 claims. QED.

Proof of Theorem E.2. By Step 1 in the proof of Theorem 6.2:

{
T̂ ∗ψ,n(λ, h) : λ ∈ Λ

}
⇒p

{(
Tψ(π∗(b), λ, b)

v̄(π∗(b), λ, b)

)2

: λ ∈ Λ

}
= {Tψ(λ, h) : λ ∈ Λ} , (E.34)

the Theorem 5.2 null limit process under weak identification.

Define quantile functions

F̂−1
n,λ(u|·) ≡ inf

{
c ≥ 0 : P (T̂ ∗ψ,n,1 ≤ c) ≥ u|·

}
F−1
n,λ(u) ≡ inf {c ≥ 0 : P (Tn(λ) ≤ c) ≥ u}
F−1
λ,h(u) ≡ inf {c ≥ 0 : P (Tψ(λ, h) ≤ c) ≥ u}

By Theorem 5.2.a, {Tn(λ) : Λ} ⇒∗ {Tψ(λ, h) : Λ} under H0 and C(i, b) with ||b|| < ∞. Weak

convergence implies convergence in finite dimensional distribution. By the construction of dis-

tribution convergence it therefore follows that F−1
n,λ(u) → F−1

λ,h(u).

Now operate conditionally on the sample Wn. By weak convergence in probability (E.34),

{T̂ ∗ψ,n,j(λ, h)}Mj=1 is a sequence of iid draws from {Tψ(λ, h) : Λ}, asymptotically with probability

approaching one with respect to the draw Wn ≡ {(yt, xt)}nt=1. Therefore Tn(λ) under C(i, b) with

||b|| < ∞, and T̂ ∗ψ,n,1(λ, h) have the same weak limits in probability under H0. Since Tn(λ), and

T̂ ∗ψ,n,j(λ, h) conditionally on Wn have the same weak limits in probability under H0, it follows

that (see Gine and Zinn, 1990, Section 3, eq’s (3.4) and (3.5))

sup
c≥0

∣∣∣P (T̂ ∗ψ,n,j(λ, h) ≤ c|Wn)− Fn,λ(c)
∣∣∣ p→ 0 ∀λ ∈ Λ.

Therefore, by construction of convergence of probability measures (see, e.g., Chapt. 21 in van der

Vaart, 1998):

sup
u∈[0,1]

∣∣∣F̂−1
n,λ(u|Wn)− F−1

n,λ(u)
∣∣∣ p→ 0 ∀λ ∈ Λ.

Moreover, by independence and Mn → ∞, the bootstrapped critical value ĉ∗1−α,n,Mn
(λ, h) ≡

T̂ ∗ψ,n,[(1−α)Mn](λ, h) is a central order statistic of a (conditionally) iid random variable, hence

pointwise on Λ: ∣∣∣ĉ∗1−α,n,Mn
(λ, h)− F̂−1

n,λ(1− α|Wn)
∣∣∣ p→ 0.
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See, e.g., Galambos (1987), for a classic treatment of order statistics. Now combine∣∣∣ĉ∗1−α,n,Mn
(λ, h)− F̂−1

n,λ(1− α|Wn)
∣∣∣ p→ 0∣∣∣F̂−1

n,λ(1− α|Wn)− F−1
n,λ(1− α)

∣∣∣ p→ 0

F−1
n,λ(1− α)→ F−1

λ,h(1− α)

to yield

|ĉ∗1−α,n,Mn
(λ, h)− F−1

λ,h(1− α)
p→ 0.

By definition c1−α(λ, h) = F−1
λ,h(1 − α) hence the proof is complete. QED.

F Example: STAR Model (Assumptions 3, 4, 5

We discuss Assumptions 3, 4 and 5 for a simple STAR model. The data generating properties in

Assumption 1 along with the minimization conditions for the process {ξψ(π, b) : π ∈ Π} under

Assumption 2 are treated at length in Andrews and Cheng (2013b, Section 7) and Andrews and

Cheng (2013b, Appendix E).

The model is a simplified Exponential STAR(1) for ease of exposition (cf. Terasvirta, 1994):

yt = β0yt−1 exp
{
−π0y

2
t−1

}
+ εt where π0 > 0, hence g(yt−1, π0) = yt−1 exp

{
−π0y

2
t−1

}
.

Assume yt is strictly stationary, E|yt|r < ∞ for some r > 6, and Ft ≡ σ(yτ : τ ≤ t) is strictly

increasing Ft ⊂ Ft+1 ∀t. εt has a (non-degenerate) continuous distribution on R ∀t, E[εt] = 0 and

π0 ∈ Π ⊂ (0,∞). Hence yt has a (non-degenerate) continuous distribution. Assume E[ε2t |yt−1]

= σ2
0 a.s. for some finite σ2

0 > 0.

Let the compact nuisance parameter space be Λ ⊂ R/0. We omit λ = 0 because F (0× yt−1)

= F (0) is a constant and cannot therefore reveal model misspecification (cf. Bierens, 1990;

Stinchcombe and White, 1998).

We first define some useful components:

dψ,t(π) ≡ g(yt−1, π0) = yt−1 exp
{
−πy2

t−1

}
dθ,t(ω, π) ≡

[
yt−1 exp

{
−πy2

t−1

}
,−ωy3

t−1 exp
{
−πy2

t−1

}]′
Dψ(π) ≡ −E

[
y2
t−1 exp

{
−2πy2

t−1

}]
= −Hψ(π)
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Hψ(π) ≡ E
[
y2
t−1 exp

{
−2πy2

t−1

}]
> 0 ∀π ∈ Π

Hθ(ω, π) ≡ E [dθ,t(ω, π)dθ,t(ω, π)′]

=

[
E
[
y2
t−1 exp

{
−2πy2

t−1

}]
−ωE

[
y4
t−1 exp

{
−2πy2

t−1

}]
−ωE

[
y4
t−1 exp

{
−2πy2

t−1

}]
ω2E

[
y6
t−1 exp

{
−2πy2

t−1

}] ]

bψ(π, λ) ≡ E
[
F (λW(yt−1)) yt−1 exp

{
−πy2

t−1

}]
bθ(ω, π, λ) ≡ E

[
F (λW(yt−1))

[
yt−1 exp

{
−πy2

t−1

}
,−ωy3

t−1 exp
{
−πy2

t−1

}]′]
Kψ,t(π, λ) ≡ F (λ′W (yt−1))− bψ(π, λ)′H−1

ψ (π)dψ,t(π)

Kθ,t(λ) ≡ F (λ′W(xt))− bθ(λ)′H−1
θ dθ,t(βn/ ‖βn‖ , π0)

Under the stated conditions:

inf
π∈Π
Hψ(π) > 0.

Now write Π = [πL, πH ] for some 0 < πL < πH < ∞. Similarly, for r = [r1, r2]′,

inf
r′r=1

inf
π∈Π

r′Hθ(ω, π)r > 0,

because under the stated conditions:

inf
r′r=1

inf
π∈Π

r′Hθ(ω, π)r = inf
r′r=1

inf
π∈Π

E
[(
r1yt−1 + r2y

3
t−1

)2
exp

{
−2πy2

t−1

}]
= inf

r′r=1
E
[
y2
t−1

(
r1 + r2y

2
t−1

)2
exp

{
−2πHy

2
t−1

}]
= 0

if and only if r1 + r2y
2
t−1 = 0 a.s. for some r′r = 1. The condition r1 + r2y

2
t−1 = 0 a.s. is ruled

out due to r′r = 1 and yt−1 having a non-degenerate continuous distribution on R.

F.1 Assumption 3

We tackle part (a); part (b) is similar. First, we have:

κt(ω, π) ≡ [µ(yt−1), yt−1 exp
{
−πy2

t−1

}
,−ωy3

t−1 exp
{
−πy2

t−1

}
]′ ∈ R5.
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Note that ω is a scalar because β is, hence ω2 = 1 implies ω ∈ [−1, 1]. It therefore suffices to

show that there exists a Borel measurable function µ : Rkx → R (recall kx = 1) such that:

inf
ω∈[−1,1],π∈Π

{
inf

r∈R5:r′r=1
E
[
(r′κt(ω, π))

2
]}

> 0.

Suppose the contrary holds. Then for every Borel measurable µ, there exist α ∈ R3, α′α =

1, and some π ∈ Π such that:

α1µ(yt) + α2yt exp
{
−πy2

t

}
+ α3y

3
t exp

{
−πy2

t

}
= 0 a.s. ∀t.

The key idea is to find a µ that leads to a contradiction of the primitive assumptions. Such µ

are easily found: consider µ(yt) = yt. Then

α1yt + α2yt exp
{
−πy2

t

}
+ α3y

3
t exp

{
−πy2

t

}
= 0 a.s. ∀t. (F.35)

For any fixed α ∈ R3, α′α = 1, and 0 < π < ∞, (F.35) can only hold if yt has a degenerate

distribution and Ft = Ft+1, which contradicts distribution nondegeneracy and Ft ⊂ Ft+1.

F.2 Assumption 4

We now discuss Assumption 4. The assumption cannot generally be verified, which is precisely

why is must be assumed (cf. Bierens, 1990, p. 1449). We do, however, present some refinements

revealing greater details behind test statistic variance degeneracy.

F.2.1 General Test Weight

We only discuss the simplest case: case (a) under strong identification C(ii, ω0). This gives the

basic intuition behind the requirement of the assumption. Write εt(θ)≡ yt − βyt−1 exp
{
−πy2

t−1

}
.

The assumption requires v2(θ0, λ) > 0 ∀λ ∈ Λ where

v2(θ, λ) = E
[
ε2t (θ)

{
F (λW(yt−1))− bθ(ω(β), π, λ)′H−1

θ (ω(β), π)dθ,t(ω(β), π)
}2
]
.

Define

v2(ω, π, λ) ≡ E
[
ε2t (ψ0, π)

{
F (λW(yt−1))− bθ(ω, π, λ)′H−1

θ (ω, π)dθ,t(ω, π)
}2
]
.

By Lemma B.12, under Assumptions 1.a(i) and 3 we know infω′ω=1,π∈Π v
2(ω, π, λ) = 0 only on

a subset S∗ ⊂ Λ with measure zero. See Bierens (1990, Lemma 2) for an original treatment of
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this property. Hence v2(θ0, λ) > 0 ∀λ ∈ Λ/S∗ where S∗ is countable. Further, Theorem 4 in Hill

(2008) extends to any valid F (·) considered here. Hence S∗ ⊆ S where S is the countable set on

which E[εtF (λW(yt−1))] = 0 under H1. That is, any λ such that v2(θ0, λ) = 0 actually has a

two-fold failure since also E[εtF (λW(yt−1))] fails to detect misspecification. Although we know

S∗ ⊆ S, this does not provide a context in which we can deduce S∗ = ∅ such that Assumption

4 holds. Generally the sets S∗ and S depend on the underlying joint distribution, but deriving

the exact contents of either set, let alone proving S∗ = ∅, is evidently not feasible. The only

way either set can be viewed is by simulation study (see, e.g., Bierens, 1990; Hill, 2013).

F.2.2 Vector Test Weight

We can go somewhat further by studying a specific class of vector test weights that never fail

to reveal model misspecification. Unfortunately, even here we cannot prove the appropriate

asymptotic variance is positive definite for all nuisance parameters λ ∈ Λ due to the vector

nature of the moment condition.

We first derive the vector test weight, and the appropriate asymptotic variance matrix for

the implied vector sample moment condition. We then show that although the vector test weight

reveals model misspecification for all λ ∈ Λ, the asymptotic variance need not be positive definite

for all λ ∈ Λ.

Moment Condition Define

ξ(+) ≡ arg sup
λ∈Λ

∂

∂λ
E[εtF (λW(yt−1))] and F ′(u) ≡ ∂

∂u
F (u).

Hill (2013) shows that by stacking the test weights

wt(λ) ≡
[
F (λW(yt−1)) , yt−1F

′ (ξ(+)W(yt−1)
)]′

,

a perfectly revealing test weight is achieved in the sense that:

under H1 : E [εtwt(λ)] 6= 0 a.s. ∀λ ∈ Λ/S where S = {0} or ∅.

We assume 0 /∈ Λ hence S is empty. A similar result applies if we use ξ(−) ≡ arg infλ∈Λ(∂/∂λ)E[εtF (λW(yt−1))],

or use both yt−1F
′ (ξ(+)W(yt−1)

)
] and yt−1F

′ (ξ(−)W(yt−1)
)
] in wt(λ). See Hill (2013, Section

2.2, Theorem A.1).
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Asymptotic Variance Matrix Using ideas in the main paper, it is straightforward to show

that the appropriate scale for the standardized sample vector moment condition

1√
n

n∑
t=1

εt(θ̂n)wt(λ) ∈ R2

is the matrix

V̂n(θ̂n, λ) ≡ 1

n

n∑
t=1

ε2t (θ̂n)
{
wt(λ)− b̂θ,n(ω(β̂n), π̂n, λ)′Ĥ−1

n dθ,t(ω(β̂n), π̂n)
}

×
{
wt(λ)− b̂θ,n(ω(β̂n), π̂n, λ)′Ĥ−1

n dθ,t(ω(β̂n), π̂n)
}′
,

where

b̂θ,n(ω, π, λ) ≡ 1

n

n∑
t=1

wt(λ)dθ,t(ω, π).

Notice the only differences with V̂n(θ̂n, λ) here and v̂2
n(θ̂n, λ) in the main paper are (i) V̂n(θ̂n, λ)

is a matrix; and (ii) b̂θ,n(ω, π, λ) is defined using wt(λ) instead of just F (λW(yt−1)).

Write compactly:

bθ(λ) = bθ(ω(β0), π0, λ), Hθ = Hθ(ω(β0), π0), dθ,t = dθ,t(ω(β0), π0).

The probability limit of V̂n(θ̂n, λ) is

V(θ0, λ) = E
[
ε2t
{
wt(λ)− bθ(λ)′H−1

θ dθ,t
}{

wt(λ)− bθ(λ)′H−1
θ dθ,t

}′]
.

Non-Positive Definiteness For fixed λ if r′λV(θ0, λ)rλ = 0 for some r′λrλ = 1, then:

r′λwt(λ) = r′λbθ(λ)′H−1
θ dθ,t a.s.

Now use E[εtdθ,t] = 0 under Assumption 1.a(ii) to yield:

E [εtr
′
λwt(λ)] = r′λbθ(λ)′H−1

θ E [εtdθ,t] = 0.

Therefore, for λ such that V(θ0, λ) is non-positive definite, a failed moment condition E[εtr
′
λwt(λ)]

= 0 occurs under H1 for some rλ despite E[εtwt(λ)] 6= 0 ∀λ. Unfortunately there is nothing that

precludes r′λV(θ0, λ)rλ = 0 for some λ and r′λrλ = 1: we cannot prove infr′r=1 r
′V(θ0, λ)r > 0 ∀λ

∈ Λ. Thus, since it is easily shown that r′wt(λ) for any r′r = 1 satisfies the required test weight

properties, we can only say E[εtr
′wt(λ)] 6= 0 under H1 ∀λ ∈ Λ/Sr where Sr has measure zero.
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This is a key shortcoming because a quadratic-type test statistic

Tn(λ) ≡

(
1√
n

n∑
t=1

εt(θ̂n)wt(λ)

)′
V̂−1
n (θ̂n, λ)

(
1√
n

n∑
t=1

εt(θ̂n)wt(λ)

)

is just the inner product of linearly combined sample moments:

Tn(λ) = n

(
Ân(θ̂n, λ)′

1

n

n∑
t=1

εt(θ̂n)wt(λ)

)′(
Ân(θ̂n, λ)′

1

n

n∑
t=1

εt(θ̂n)wt(λ)

)

where Ân(θ̂n, λ)Ân(θ̂n, λ)′ = V̂−1
n (θ̂n, λ) is assumed to exist a.s. for each n. If V(θ0, λ) is non-

positive definite at λ then E[εtr
′
λwt(λ)] = 0 for some λ ∈ Λ and rλ 6= 0, hence Ân(θ̂n, λ)′1/n

∑n
t=1 εt(θ̂n)wt(λ)

p→ 0 under H1 is possible even though 1/n
∑n

t=1 εt(θ̂n)wt(λ)
p9 0 ∀λ ∈ Λ under H1. Of course,

by non-positive definiteness, V̂−1
n (θ̂n, λ) does not have a probability limit and therefore Tn(λ)

does not have a non-degenerate limit distribution under H0.

Alternative Approach A better approach is therefore to by-pass standardization (and there-

fore standard asymptotics) altogether. One path is to use the test statistic

max
i=1,2

∣∣∣∣∣ 1√
n

n∑
t=1

εt(θ̂n)wi,t(λ)

∣∣∣∣∣ where wt(λ) = [w1,t(λ), w2,t(λ)]′,

or a standardize version of it. Under the null:{
max
i=1,2

∣∣∣∣∣ 1√
n

n∑
t=1

εt(θ̂n)wi,t(λ)

∣∣∣∣∣ : λ ∈ Λ

}
⇒∗

{
max
i=1,2
|Zi(λ)| : λ ∈ Λ

}

where {[Z1(λ),Z2(λ)] : λ ∈ Λ} is zero mean Gaussian process with almost surely bounded and

uniformly continuous sample paths. This limit process can be easily bootstrapped by multiplier

(wild) bootstrap. We leave this idea for future consideration.

F.3 Assumption 5

Only (a) needs discussion since under (b) the analyst sets the ICS-1 threshold sequence {κn} to

satisfy κn → ∞ and κn = o(
√
n).

Recall Fλ,h(c) ≡ P (Tψ(λ, h) ≤ c) where {Tψ(λ, h) : λ ∈ Λ} is the asymptotic null process

under weak identification. Under (a) we need Fλ,h(·) to be continuous a.e. on [0,∞), ∀h ∈ H.
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Using the notation of Section 4 in the main paper, recall

τβ(π, b) ≡ −SβH−1
ψ (π) {Gψ(π) +Dψ(π)b} where Sβ ≡ [1, 0] ,

and

Tψ(π, λ, b) ≡ Zψ(π, λ) + bψ(π, λ)′
{
H−1
ψ (π)Dψ(π)b+

[
b, 0′kβ

]′}
+bψ(π, λ)′H−1

ψ (π)E
[
dψ,t(π) {g(yt−1, π0)− g(yt−1, π)}′

]
b

+E
[
Kψ,t(π, λ) {g(yt−1, π0)− g(yt−1, π)}′

]
b

≡ Zψ(π, λ) +Wψ(π, λ),

say, and

v2(ω, π, λ) ≡ E
[
ε2t (ψ0, π)

{
F (λW(yt−1))− bθ(ω, π, λ)′H−1

θ (ω, π)dθ,t(ω, π)
}2
]

v̄2(π, λ, b) ≡ v2(ω∗(π, b), π, λ) where ω∗(π, b) ≡ τβ(π, b)/ ‖τβ(π, b)‖ .

Then

Tψ(π, λ, b) ≡
T2
ψ(π, λ, b)

v̄2(π, λ, b)
and Tψ(λ, b) ≡ Tψ(π∗(b), λ, b)

where

π∗(b) = arg inf
π∈Π

ξψ(π, b)

≡ arg inf
π∈Π

{
−1

2
{Gψ(π) +Dψ(π)b}′H−1

ψ (π) {Gψ(π) +Dψ(π)b}
}
.

F.3.1 Numerator T2
ψ(π, λ, b)

The only stochastic component of Tψ(π, λ, b) = Zψ(π, λ) + Wψ(π, λ) is Zψ(π, λ). Recall by

Lemma B.9 that Zψ(π, λ) is a limit process under H0{
1√
n

n∑
t=1

εtKψ,t(π, λ) : Π,Λ

}
⇒∗ {Zψ(π, λ) : Π,Λ}

where {Zψ(π, λ) : Π,Λ} is a zero mean Gaussian process with almost surely uniformly continuous,

and bounded, sample paths, and covariance kernel σ2
0E[Kψ,t(π, λ)Kψ,t(π̃, λ̃)]. In view of the
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remaining components in Tψ(π, λ, b), it follows easily that {Tψ(π, λ, b) : Π,Λ} is a Gaussian

process with continuous and bounded sample paths.

Next, stochastic π∗(b) = arg infπ∈Π ξψ(π, b) minimizes

ξψ(π, b) ≡ −1

2
{Gψ(π) +Dψ(π)b}′H−1

ψ (π) {Gψ(π) +Dψ(π)b} .

The only stochastic component here is Gψ(π). By Lemma B.1 and continuity,

Gψ,n(ψ0,n, π) ≡ − 1√
n

n∑
t=1

{εt(ψ0,n)dψ,t(π)− E [εt(ψ0,n)dψ,t(π)]}

satisfies

{Gψ,n(ψ0,n, π) : π ∈ Π} ⇒∗ {Gψ(π) : π ∈ Π}

a zero mean Gaussian process with almost surely uniformly continuous, and bounded, sample

paths. Therefore, given Hψ(π) ≡ E[y2
t−1 exp{−2πy2

t−1}] > 0 ∀π ∈ Π, −ξψ(π, b) is a non-central

chi-squared process with continuous and bounded sample path. By application of Lemma 8.5 in

Andrews and Cheng (2012b), π∗(b) exists. By compactness of Π and continuity of the sample

paths {ξψ(π, b) : π ∈ Π}, π∗(b) has a continuous distribution.

Finally, the convolution Zψ(π∗(b), λ) is generally difficult to characterize, even under our

simple ESTAR model, due to the complex relationship between Zψ(π, λ) and ξψ(π, b). However,

under the stated model, all other components of Tψ(π∗(b), λ, b) in Wψ(π∗(b), λ) will carry over

distribution continuity from π∗(b). Thus, under the necessary assumption that Zψ(π∗(b), λ) has

a continuous distribution function a.e. on R, then Tψ(π∗(b), λ, b) has a continuous distribution

function a.e. on R.

F.3.2 Denominator v̄2(π, λ, b)

Be the same arguments, {τβ(π, b) : π ∈ Π} is a Gaussian process with almost surely uniformly

continuous, and bounded, sample paths. Therefore v2(ω∗(π, b), π, λ) has a continuous distribu-

tion a.e. on R. By assumption v2(ω, π, λ) > 0 uniformly in (ω, π) for each λ ∈ Λ. Therefore

v̄2(π, λ, b) ≡ v2(ω∗(π, b), π, λ) > 0 a.s. uniformly in (b, π) for each λ ∈ Λ.

F.3.3 Tψ(λ, h)

Thus, if Zψ(π∗(b), λ) has a continuous distribution function a.e. on R, then Tψ(λ, b) has a

continuous distribution a.e. on R, for each b and λ. The same argument applies to the complete

set of nuisance parameters h containing b.
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Table 1: STAR Test Rejection Frequencies: Sample Size n = 100, σ = 1

H0: LSTAR H1-weak H1-strong
1% 5% 10% 1% 5% 10% 1% 5% 10%

Strong Identification: βn = .3

supremum .025 .094 .163 .147 .280 .365 .757 .872 .907
average .025 .078 .135 .087 .209 .289 .552 .726 .804
random .011 .052 .096 .053 .143 .232 .446 .635 .732
random LF .007 .015 .038 .013 .066 .141 .442 .553 .661
random ICS-1 .013 .050 .089 .028 .089 .170 .379 .593 .692
PVOTe .015 .065 .124 .101 .257 .335 .727 .859 .883
PVOT LF .007 .014 .052 .026 .121 .208 .552 .781 .817
PVOT ICS-1 .007 .043 .073 .042 .153 .237 .622 .815 .842

Weak Identification: βn = .3/
√
n

supremum .064 .155 .239 .337 .574 .681 .929 .978 .993
average .057 .146 .219 .215 .430 .554 .739 .888 .932
random .027 .083 .175 .164 .343 .474 .604 .810 .870
random LF .012 .042 .093 .060 .161 .308 .467 .685 .794
random ICS-1 .012 .046 .104 .116 .261 .382 .545 .749 .841
PVOT .038 .127 .196 .328 .542 .591 .893 .968 .950
PVOT LF .015 .049 .108 .108 .320 .398 .710 .911 .916
PVOT ICS-1 .014 .049 .107 .221 .435 .486 .830 .942 .932

Non-Identification: βn = β0 = 0

supremum .066 .164 .249 .358 .584 .696 .902 .970 .983
average .062 .148 .226 .233 .438 .548 .716 .872 .911
random .044 .107 .186 .184 .380 .505 .634 .793 .864
random LF .013 .046 .115 .069 .191 .327 .498 .725 .818
random ICS-1 .013 .047 .116 .137 .298 .481 .583 .769 .847
PVOT .049 .134 .190 .322 .554 .624 .890 .962 .957
PVOT LF .015 .061 .117 .122 .322 .415 .740 .911 .936
PVOT ICS-1 .015 .057 .116 .253 .464 .570 .847 .939 .954

Numerical values are rejection frequency at the given level. LSTAR is Logistic STAR. Empirical power

is not size-adjusted. supremum and average tests are based on a wild bootstrapped p-value. random:

Tn(λ) with randomly chosen λ on [1,5]. PVOT : p-value occupation time test. PVOT uses the chi-

squared distribution, LF is the least favorable p-value, and ICS-1 is the type 1 identification category

selection p-value with threshold κn = ln(ln(n)).
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Table 2: STAR Test Rejection Frequencies: Sample Size n = 250, σ = 1

H0: LSTAR H1-weak H1-strong
1% 5% 10% 1% 5% 10% 1% 5% 10%

Strong Identification: βn = .3

supremum .018 .088 .163 .359 .468 .551 .953 .984 .990
average .014 .077 .133 .262 .387 .468 .873 .949 .975
random .014 .064 .126 .165 .299 .396 .793 .912 .952
random LF .001 .010 .025 .067 .235 .368 .688 .888 .936
random ICS-1 .008 .031 .077 .076 .244 .375 .762 .902 .947
PVOT .016 .067 .125 .328 .437 .517 .952 .983 .991
PVOT LF .004 .020 .041 .132 .348 .417 .938 .972 .976
PVOT ICS-1 .011 .051 .108 .147 .370 .433 .947 .978 .985

Weak Identification: βn = .3/
√
n

supremum .051 .139 .224 .764 .922 .957 .992 1.00 1.00
average .046 .118 .215 .539 .779 .853 .969 .992 .998
random .027 .086 .169 .451 .695 .785 .911 .979 .993
random LF .018 .060 .097 .180 .481 .641 .851 .961 .980
random ICS-1 .018 .058 .098 .298 .633 .770 .926 .975 .991
PVOT .051 .122 .201 .740 .894 .934 1.00 1.00 1.00
PVOT LF .014 .061 .110 .380 .708 .805 .990 1.00 1.00
PVOT ICS-1 .015 .060 .111 .618 .848 .878 .999 1.00 1.00

Non-Identification: βn = β0 = 0

supremum .061 .152 .223 .751 .922 .956 1.00 1.00 1.00
average .054 .145 .200 .526 .765 .849 .975 .996 .999
random .036 .123 .184 .417 .696 .803 .025 .976 .988
random LF .008 .047 .108 .205 .504 .655 .838 .955 .973
random ICS-1 .008 .049 .109 .411 .653 .770 .923 .977 .989
PVOT .036 .145 .211 .732 .885 .930 1.00 1.00 1.00
PVOT LF .010 .058 .114 .373 .717 .806 .990 1.00 1.00
PVOT ICS-1 .010 .059 .116 .682 .853 .898 1.00 1.00 1.00

Numerical values are rejection frequency at the given level. LSTAR is Logistic STAR. Empirical power

is not size-adjusted. supremum and average tests are based on a wild bootstrapped p-value. random:

Tn(λ) with randomly chosen λ on [1,5]. PVOT : p-value occupation time test. PVOT uses the chi-

squared distribution, LF is the least favorable p-value, and ICS-1 is the type 1 identification category

selection p-value with threshold κn = ln(ln(n)).

47



Table 3: STAR Test Rejection Frequencies: Sample Size n = 500, σ = 1

H0: LSTAR H1-weak H1-strong
1% 5% 10% 1% 5% 10% 1% 5% 10%

Strong Identification: βn = .3

supremum .029 .069 .153 .441 .590 .676 .997 .999 .999
average .022 .055 .120 .382 .546 .624 .988 .996 .997
random .008 .049 .098 .328 .488 .598 .976 .999 .996
random LF .001 .018 .042 .227 .450 .565 .967 .989 .998
random ICS-1 .009 .046 .096 .230 .449 .565 .974 .990 .998
PVOT .014 .055 .115 .423 .568 .655 .996 .999 .999
PVOT LF .002 .023 .051 .311 .509 .618 .995 .998 1.00
PVOT ICS-1 .013 .058 .106 .314 .510 .618 .995 .998 1.00

Weak Identification: βn = .3/
√
n

supremum .044 .134 .184 .984 .998 1.00 1.00 1.00 1.00
average .029 .125 .176 .883 .968 /989 1.00 1.00 1.00
random .032 .096 .162 .817 .929 .970 .995 .998 .998
random LF .009 .051 .108 .519 .835 .914 .984 .996 .998
random ICS-1 .009 .051 .120 .785 .921 .954 .990 .998 1.00
PVOT .050 .118 .194 .981 .995 1.00 1.00 1.00 1.00
PVOT LF .012 .053 .109 .823 .965 .975 1.00 1.00 1.00
PVOT ICS-1 .012 .054 .109 .958 .987 .993 1.00 1.00 1.00

Non-Identification: βn = β0 = 0

supremum .051 .151 .196 .981 .998 .998 1.00 1.00 1.00
average .043 .136 .189 .886 .968 .984 1.00 1.00 1.00
random .047 .111 .177 .826 .938 .967 .997 1.00 1.00
random LF .006 .058 .110 .549 .859 .926 1.00 1.00 1.00
random ICS-1 .006 .058 .109 .827 .940 .973 1.00 1.00 1.00
PVOT .061 .148 .208 .977 .993 .996 1.00 1.00 1.00
PVOT LF .014 .058 .108 .853 .970 .989 1.00 1.00 1.00
PVOT ICS-1 .013 .057 .107 .978 .996 .998 1.00 1.00 1.00

Numerical values are rejection frequency at the given level. LSTAR is Logistic STAR. Empirical power

is not size-adjusted. supremum and average tests are based on a wild bootstrapped p-value. random:

Tn(λ) with randomly chosen λ on [1,5]. PVOT : p-value occupation time test. PVOT uses the chi-

squared distribution, LF is the least favorable p-value, and ICS-1 is the type 1 identification category

selection p-value with threshold κn = ln(ln(n)).
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