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Abstract

This Online Supplementary Material contains the proofs of Lemmas in the main paper. Sup-

plementary material also includes additional simulation results.

Section A contains useful lemmas used in the main paper. Section B contains the proofs of the

main supporting lemmas used in the proofs of Theorems 3.1 and 4.1. Section C reports additional

simulation results in addition to the model considered in the main paper.

Appendix A Preliminaries and Useful Lemmas

We use standard notations for the empirical process theory used in the proof of Theorem 4.1 in the

main paper. Given measurable space (S,S), let F as a class of measurable functions f : S → R. For

any probability measure Q on (S,S), we define N(ε,F , L2(Q)) as covering numbers, which is the

minimal number of the L2(Q) balls of radius ε to cover F with L2(Q) norms ||f ||Q,2 = (
∫
|f |2dQ)1/2.

The uniform entropy numbers relative to the L2(Q) norms are defined as supQ logN(ε||F ||Q,2,F ,
L2(Q)) where the supremum is over all discrete probability measures with an envelope function F .

For α > 0, we define ||Xi||ψα = inf{C > 0 : E[ψα(|Xi|/C)] ≤ 1} with ψα(x) = exp(xα) − 1. For

α ∈ [1,∞), || · ||ψα is an Orlicz norm, but for α ∈ (0, 1), || · ||ψα is a quasi-norm. We define F as a

VC type with envelope F if there are constants A, v > 0 such that

sup
Q
N(ε||F ||Q,2,F , L2(Q)) ≤ (A/ε)v

for all 0 < ε ≤ 1. For notational convenience, we avoid discussing nonmeasurability issues and

outer expectations, see van der Vaart and Wellner (1996) for the related issues. Throughout the

proofs, we denote c, C > 0 as universal constants that do not depend on n.
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To provide bounds in Lemma 1 and 2 in the main paper (Lemma B.2 and B.3), we first introduce

matrix Bernstein inequality from Theorem 6.1.1 in Tropp (2015).

Lemma A.1. Consider a finite sequence {Si} of independent, random matrices with common

dimension d1 × d2. Assume that ESi = 0, ||Si|| ≤ L for each i. Let Z =
∑

i Si, and define

v(Z) = max{||E(ZZ ′)||, ||E(Z ′Z)||}. Then,

P (||Z|| ≥ t) ≤ (d1 + d2) exp(
−t2/2

v(Z)Lt/3
), ∀t ≥ 0,

E||Z|| ≤
√

2v(Z) log(d1 + d2) +
1

3
L log(d1 + d2).

The following coupling inequality is used in the proof of Theorem 3.1 in the main paper. See

Theorem 4.1 and Corollary 4.1 in Chernozhukov, Chetverikov, and Kato (2014a).

Lemma A.2. Let X1, ..., Xn be independent random vectors in Rp with mean zero and finite ab-

solute third moments, that is, E[Xij ] = 0, E[|Xij |3] < ∞ for all 1 ≤ i ≤ n and 1 ≤ j ≤ p.

Consider the statistic Z = max1≤j≤p
∑n

i=1Xij. Let Y1, ..., Yn be independent random vectors in

Rp with Yi ∼ N(0, E[XiX
′
i]), 1 ≤ i ≤ n. Then for every δ > 0, there exists a random variable

Z̃ = max1≤j≤p
∑n

i=1 Yij such that

P (|Z − Z̃| > 16δ) . δ−2{D1 + δ−1(D2 +D3) log(p ∨ n)} log(p ∨ n) + n−1 log n

where

D1 = E
[

max
1≤j,l≤p

|
n∑
i=1

(XijXil − E[XijXil])|
]
, D2 = E

[
max
1≤j≤p

n∑
i=1

|Xij |3
]
,

D3 =

n∑
i=1

E
[

max
1≤j≤p

|Xij |31
(

max
1≤j≤p

|Xij | > δ/ log(p ∨ n)
)]
.

The following maximal inequalities are used in the proof of Theorem 3.1 and 4.1 in the main

paper. See also Lemmas 1, 8 and 9 in Chernozhukov, Chetverikov, and Kato (2015).

Lemma A.3. Let X1, ..., Xn be independent centered random vectors in Rp with p ≥ 2. Then,

there exists a universal constant C > 0 such that

E
[

max
1≤j,k≤p

| 1
n

n∑
i=1

(XijXik − E[XijXik])|
]

≤ C
[√ log p

n
max
1≤j≤p

(
1

n

n∑
i=1

E[X4
ij ])

1/2 +
log p

n
(E[ max

1≤i≤n
max
1≤j≤p

X4
ij ])

1/2
]
.

Lemma A.4. Let X1, ..., Xn be independent random vectors in Rp with p ≥ 2. Define M ≡
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max1≤i≤n max1≤j≤p |Xij | and σ2 ≡ max1≤j≤p
∑n

i=1E[X2
ij ]. Then,

E
[

max
1≤j≤p

|
n∑
i=1

(Xij − E[Xij ])|
]
. (σ

√
log p+

√
E[M2] log p).

Lemma A.5. Let X1, ..., Xn be independent random vectors in Rp with p ≥ 2 such that Xij ≥ 0

for all 1 ≤ i ≤ n and 1 ≤ j ≤ p. Then,

E
[

max
1≤j≤p

n∑
i=1

Xij

]
. max

1≤j≤p
E[

n∑
i=1

Xij ] + E[ max
1≤i≤n

max
1≤j≤p

Xij ] log p.

The following inequalities are Lemma C.1 in Chernozhukov, Chetverikov, and Kato (2017) and

the Gaussian deviation inequality in Lemma 7 in Chernozhukov, Chetverikov, and Kato (2015).

Lemma A.6. Let X be a nonnegative random variable such that P (X > x) ≤ A exp(−x/B) for

all x ≥ 0 and for some constants A,B > 0. Then for every t > 0,

E[X31(X > t)] ≤ 6A(t+B)3 exp(−t/B).

Lemma A.7. Let (Y1, ..., Yp)
′ be centered Gaussian random vectors in Rp with max1≤j≤pE[Y 2

j ] ≤
σ2 for some σ2 > 0. Then for every r > 0,

P ( max
1≤j≤p

Yj ≥ E[ max
1≤j≤p

Yj ] + r) ≤ e−r2/(2σ2).

The following is the anti-concentration inequality of the maximum of Gaussian random vectors

from Theorem 3 in Chernozhukov, Chetverikov, and Kato (2015).

Lemma A.8. Let (Y1, ..., Yp)
′ be centered Gaussian random vectors in Rp with σ2j ≡ E[Y 2

j ] > 0 for

all 1 ≤ j ≤ p. Let σ ≡ min1≤j≤p σj , σ ≡ max1≤j≤p σj, and ap ≡ E[max1≤j≤p(Yj/σj)]. (i) If the

variances are all equal (i.e., σ = σ = σ), then for every ε > 0,

sup
x∈R

P (| max
1≤j≤p

Yj − x| ≤ ε) ≤ 4ε(ap + 1)/σ.

(ii) If the variances are not equal (σ < σ), then for every ε > 0,

sup
x∈R

P (| max
1≤j≤p

Yj − x| ≤ ε) ≤ Cε{ap +
√

1 ∨ log(σ/ε)},

where C > 0 depends only on σ and σ.

The following lemmas are coupling inequalities for the supremum of the empirical process and

the multiplier bootstrap process in Theorems 2.1 and 2.2 of Chernozhukov, Chetverikov, and Kato

(2016).
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Lemma A.9. For a class of measurable functions F , let B : F → R be a given functional, and for

η > 0, let NB(η) be the minimal integer N such that there exists f1, · · · , fN ∈ F with the property

that for every f ∈ F , there exists 1 ≤ j ≤ N with |B(f) − B(fj)| < η. Suppose that the following

assumptions hold; (a) there exists a countable subset G of F such that for any f ∈ F , there exists

a sequence gm ∈ G with gm → f pointwise and B(gm)→ B(f); (b) F is VC type with a measurable

envelope F and constants A ≥ e and v ≥ 1; (c) there exist constants b ≥ σ > 0, q ∈ [4,∞)

such that supf∈F E[|f(X)|k] ≤ σ2bk−2 for k = 2, 3, 4, and ||F ||P,q ≤ b. Suppose that K3
n ≤ n with

Kn = logNB(η)+v(log n∨ log(Ab/σ)), and let Z = supf∈F (B(f)+n−1/2
∑n

i=1(f(Xi)−E[f(Xi)])).

Then for every γ ∈ (0, 1), there exists a random variable Z̃
d
= supf∈F (B(f) +GP f) with a centered

Gaussian process GP indexed by F with covariance function E[GP (f)GP (g)] = Cov(f(X), g(X)),

f, g ∈ F such that

P
(
|Z − Z̃| > C1(η + δn)

)
≤ C2(γ + n−1)

where C1, C2 are positive constants that depend only on q, and

δn =
bKn

γ1/qn1/2−1/q
+

(bσ2K2
n)1/3

γ1/3n1/6
.

Lemma A.10. Suppose assumptions (a)-(c) in Lemma A.9 are satisfied and in addition suppose

that Kn ≤ n. Let Ze = supf∈F (B(f) + n−1/2
∑n

i=1 ei(f(Xi) − E[f(Xi)])) where e1, ..., en are

independent standard Gaussian random variables independent of X = {X1, ..., Xn}. Then for every

γ ∈ (0, 1), there exists a random variable Z̃e
d|X
= supf∈F (B(f) + GP f) with a centered Gaussian

process GP defined in Lemma A.9 such that

P
(
|Ze − Z̃e| > C1(η + δn)

)
≤ C2(γ + n−1)

where C1, C2 are positive constants that depend only on q, and

δn =
bKn

γ1+1/qn1/2−1/q
+

(bσ2K
3/2
n )1/2

γ1+1/qn1/4
.

Lemma A.11. Let V,W be real-valued random variables such that P (|V −W | > r1) ≤ r2 for some

constants r1, r2 > 0. Then we have

sup
t∈R
|P (V ≤ t)− P (W ≤ t)| ≤ sup

t∈R
P (|W − t| ≤ r1) + r2.

The following is the maximal inequality for uniformly bounded classes of functions derived

in Giné and Koltchinskii (2006) and Chernozhukov, Chetverikov, and Kato (2014a). See also

Proposition 6.1 in Belloni, Chernozhukov, Chetverikov, and Kato (2015).

Lemma A.12. Let X1, ..., Xn be i.i.d random variables taking values in a measurable space (S,S)

with common distribution P , defined on the underlying n-fold product probability space. Let F be

a suitably measurable class of functions mapping S to R with a measurable envelope F . Let σ2 be
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a constant such that supf∈F var(f) ≤ σ2 ≤ ||F ||2P,2. Suppose that there exist constants A > e2 and

V ≥ 2 such that supQ logN(ε||F ||Q,2,F , L2(Q)) ≤ (A/ε)V for all 0 < ε ≤ 1. Then,

E
[

sup
f∈F
|
n∑
i=1

f(Xi)− E[f(Xi)]|
]
. C

[√
nσ2V log

A||F ||P,2
σ

+ V ||F ||∞ log
A||F ||P,2

σ

]
.

Lemma A.13. Let (ε1, X1), ..., (εn, Xn) be i.i.d. random vectors, defined on an underlying n-fold

product probability space in Rd+1 with E[εi|Xi] = 0 and σ2 = supx∈X E[ε2i |Xi] <∞ where X denotes

the support of X1. Let F be a class of functions on Rd such that E[f(X1)
2] = 1 and ||f ||∞ ≤ b for

all f ∈ F . Let G = {(ε, x) 7→ εf(x) : f ∈ F}. Suppose that there exist constants A > e2 and V ≥ 2

such that supQN(ε||G||Q,2,G, L2(Q)) ≤ (A/ε)V for all 0 < ε ≤ 1 for the envelope G(ε, x) = |ε|b. If

for some q > 2, E[|ε1|q] <∞, then

E
[

sup
f∈F
|
n∑
i=1

εif(Xi)|
]
. C

[
(σ +

√
E[|ε1|q])

√
nV log(Ab) + V bq/(q−2) log(Ab)

]
.

The following lemma is the anti-concentration for the Separable Gaussian process, which can

be found in Theorem 2.1 in Chernozhukov, Chetverikov, and Kato (2014b). See also Lemma B.1

in Chernozhukov, Chetverikov, and Kato (2014b).

Lemma A.14. Let Y = {Y (t) : t ∈ T} be a separable Gaussian process indexed by a semimetric

space T such that E[Y (t)] = 0 and E[Y (t)2] = 1 for all t ∈ T . Assume that supt∈T |Y (t)| <∞a.s.
Then E[supt∈T Y (t)] <∞ and

sup
x∈R

P
(∣∣ sup

t∈T
Y (t)− x

∣∣ ≤ ε) ≤ 4ε(E[sup
t∈T

Y (t)] + 1)

for all ε ≥ 0.

Lemma A.15. Let Y = {Y (t) : t ∈ T} be a separable, centered Gaussian process such that

E[Y (t)2] ≤ 1 for all t ∈ T . Let c(α) denote the (1− α)−quantile of supt∈T |Y (t)| and assume that

E[supt∈T |Y (t)|] < ∞. Then c(α) ≤ E[supt∈T |Y (t)|] +
√

2| logα| and c(α) ≤ M(supt∈T |Y (t)|) +√
2| logα| where M(supt∈T |Y (t)|) is the median of supt∈T |Y (t)|.

Appendix B Supporting Lemmas

We first recall notations used in the main paper for Theorems 3.1 and 4.1. Let the data zi = (εi,

xi) be i.i.d. random vectors defined on the probability space (Z = E × X ,A, P ) with common

probability distribution P ≡ Pε,x. We think of (ε1, x1), · · · (εn, xn) as the coordinates of the infinite

product probability space. For any sequence {K = Kn : n ≥ 1} ∈
∏∞
n=1Kn under Assumption 2.1,

define the orthonormalized vector of basis functions

P̃ (K,x) ≡ Q−1/2K P (K,x) = E[PKiP
′
Ki]
−1/2P (K,x), P̃Ki = P̃ (K,xi), P̃

K = [P̃K1, · · · , P̃Kn]′,
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and observe that

ĝn(K,x) = P̃ (K,x)′(P̃K
′
P̃K)−1P̃K

′
Y, Vn(K,x) = P̃ (K,x)′Ω̃K P̃ (K,x), Ω̃K = E(P̃KiP̃

′
Kiε

2
i ).

We define pseudo true value βK such that yi = P̃ ′KiβK + εKi, E[P̃KiεKi] = 0 where εKi = rKi + εi,

rn(K,x) = g0(x) − P̃ (K,x)′βK , rKi = rn(K,xi), and rK ≡ (rK1, · · · rKn)′. We also define Q̂K ≡
1
n P̃

K′P̃K , σ2 ≡ infxE[ε2i |xi = x], σ̄2 ≡ supxE[ε2i |xi = x].

We first provide the coupling inequalities used in the proof of Theorem 3.1 in the main paper.

Lemma B.1. Suppose that Assumptions 2.1, 3.1, and 3.2 hold. Let tn(K,x) = n−1/2
∑n

i=1 P̃ (K,

x)′P̃Kiεi/Vn(K,x)1/2 and let Zi = (Zi1, ..., Zip)
′ ∼ N(0, 1nΣn) be a p × 1 Gaussian random vector

provided Σn exists and is a finite positive definite matrix with (j, l) elements defined as Σn(j, l) =

E[tn(Kj , x)tn(Kl, x))], p = |Kn|. Then, there exists a sequence of random variables max1≤j≤p
∑n

i=1 |Zij |
such that

P (| max
1≤j≤p

|tn(Kj , x)| − max
1≤j≤p

n∑
i=1

|Zij || > 16δ) .
log(p ∨ n)

δ2
D1 +

log2(p ∨ n)

δ3n3/2
(D2 +D3) +

log n

n

where under the case (a) in Assumption 3.2 (ii), we have

D1 .

√
(maxK ζK)2 log p

n
+

(maxK ζK)2 log p

n1−2/q
, D2 . nmax

K
ζK + (max

K
ζK)3n3/q log p,

D3 .
(maxK ζK)q logq−3(p ∨ n)

nq/2−5/2δq−3

while under the case (b), we have

D1 .

√
(maxK ζK)2 log p

n
+

(maxK ζK)2 log2(pn) log p

n
, D2 . nmax

K
ζK + (max

K
ζK)3 log3(pn) log p,

D3 . 12n(δ
√
n/ log(p ∨ n) + C max

K
ζK log p)3 exp(− δ

√
n

C maxK ζK log p log(p ∨ n)
).

Proof. First consider

tn ≡ (tn(K1, x), · · · , tn(Kp, x))′ =
1√
n

n∑
i=1

ξi

where ξi = (ξi1, ξi2, · · · , ξip)′ ∈ Rp with ξij =
P̃ (Kj ,x)

′P̃Kjiεi

Vn(Kj ,x)1/2
. Applying Lemma A.2 to the p dimen-

sional random vectors { 1√
n
ξi}ni=1, for any δ > 0, there exists a random variable max1≤j≤p

∑n
i=1 Zij

with independent random vectors {Zi}ni=1 ∈ Rp, Zi ∼ N(0, 1nE[ξiξ
′
i]), 1 ≤ i ≤ n, such that

P (| max
1≤j≤p

|tn(Kj , x)| − max
1≤j≤p

n∑
i=1

|Zij || > 16δ) .
log(p ∨ n)

δ2
D1 +

log2(p ∨ n)

δ3n3/2
(D2 +D3) +

log n

n
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where

D1 = E
[

max
1≤j,l≤p

| 1
n

n∑
i=1

(ξijξil − E[ξijξil])|
]
, D2 = E

[
max
1≤j≤p

n∑
i=1

|ξij |3
]
,

D3 =
n∑
i=1

E
[

max
1≤j≤p

|ξij |31
(

max
1≤j≤p

|ξij | > δ
√
n/ log(p ∨ n)

)]
.

Next, we consider D1, D2, D3 in either case (a) or (b).

(Case (a)) By Lemma A.3, we have

D1 .

√
log p

n
max
1≤j≤p

(
1

n

n∑
i=1

E[ξ4ij ])
1/2 +

log p

n
(E[ max

1≤i≤n
max
1≤j≤p

ξ4ij ])
1/2.

Also, E[max1≤i≤n |εi|4|X = x] . n4/q where X = (x1, · · · , xn)′ by Assumption supxE[|εi|q|xi =

x] . 1. Hence,

E[ max
1≤i≤n

max
1≤j≤p

ξ4ij ] . (max
K

ζK)4n4/q

since max1≤i≤n max1≤j≤p |
P̃ (Kj ,x)

′P̃Kji

Vn(Kj ,x)1/2
| ≤ maxK ζK . Next,

max
1≤j≤p

(
1

n

n∑
i=1

E[ξ4ij ]) = max
1≤j≤p

1

n

n∑
i=1

E[|
P̃ (Kj , x)′P̃Kji

Vn(Kj , x)1/2
|4E[|εi|4|xi = x]] . (max

K
ζK)2

since n−1
∑n

i=1E[|P̃ (Kj , x)′P̃Kji/Vn(Kj , x)1/2|2] . 1, for all 1 ≤ j ≤ p, and by Assumption

E[|εi|4|xi = x]] . 1. Thus,

D1 .

√
(maxK ζK)2 log p

n
+

(maxK ζK)2 log p

n1−2/q
.

Similarly, we use Lemma A.5 to bound D2,

D2 . max
1≤j≤p

E[
n∑
i=1

|ξij |3] + E[ max
1≤i≤n

max
1≤j≤p

|ξij |3] log p . nmax
K

ζK + (max
K

ζK)3n3/q log p.

Note that for any real-valued random variable Z and any t > 0, we have E[|Z|31(|Z| > t)] ≤
E[|Z|3(|Z|/t)q−31(|Z| > t)] ≤ t3−qE[|Z|q]. Thus,

E
[

max
1≤j≤p

|ξij |31
(

max
1≤j≤p

|ξij | > δ
√
n/ log(p ∨ n)

)]
≤ logq−3(p ∨ n)

nq/2−3/2δq−3
E[ max

1≤j≤p
|ξij |q] ≤

(maxK ζK)q logq−3(p ∨ n)

nq/2−3/2δq−3
.

(case (b)) By Lemma A.4, we have

D1 . n
−1(σ

√
log p+

√
E[M2] log p)
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where σ2 = max1≤j,l≤p
∑n

i=1E[(ξijξil−E[ξijξil])
2], and M = max1≤i≤n max1≤j,l≤p |ξijξil−E[ξijξil]|.

By Hölder’s inequality and Assumption E[ε2i |Xi = x] <∞,

σ2 ≤ max
1≤j,l≤p

n∑
i=1

E[|ξijξil|2] ≤ n(max
K

ζK)2.

Observe that there exists a constant C > 0,

|| max
1≤i≤n

max
1≤j,l≤p

|ξijξil − E[ξijξil]|||ψ1/2
≤ C(|| max

1≤i≤n
max

1≤j,l≤p
|ξijξil|||ψ1/2

+ max
1≤i≤n

max
1≤j,l≤p

E[|ξijξil|])

≤ C(|| max
1≤i≤n

max
1≤j≤p

|ξij | ||2ψ1
+ max

1≤i≤n
max

1≤j,l≤p
E[|ξijξil|])

because || · ||ψ1/2
is a quasi-norm and ||max1≤i≤n,1≤j,l≤p |ξijξil|||ψ1/2

= ||max1≤i≤n,1≤j≤p |ξij |2||ψ1/2
.

By Lemma 2.2.2 in van der Vaart and Wellner (1996), we have

|| max
1≤i≤n

max
1≤j≤p

|ξij | ||ψ1 . log(pn) max
1≤i≤n

max
1≤j≤p

||ξij ||ψ1 . (max
K

ζK) log(pn)

since |
P̃ (Kj ,x)

′P̃Kji

Vn(Kj ,x)1/2
| ≤ maxK ζK for all 1 ≤ i ≤ n, 1 ≤ j ≤ p, and Assumption supxE[exp(|εi|/C)|Xi =

x] ≤ 2. Using the inequalities for Lp and the Orlicz norm, E|X|2 ≤ 2!||X||2ψ1
for a random variable

X with p ≥ 1, we have
√
E[M2] . (maxK ζK)2 log2(pn). Thus,

D1 .

√
(maxK ζK)2 log p

n
+

(maxK ζK)2 log2(pn) log p

n
.

Further, by Lemma A.5 and using similar calculations above gives

D2 . nmax
K

ζK + E[ max
1≤i≤n

max
1≤j≤p

|ξij |3] log p . nmax
K

ζK + (max
K

ζK)3 log3(pn) log p.

Using the Markov’s inequality, for every t > 0,

P
(

max
j
|ξij | > t

)
= P

(
exp(max

j
|ξij |/C max

K
ζK log p) > exp(t/C max

K
ζK log p)

)
≤ 2 exp

(
− t

C maxK ζK log p

)
since ||max1≤j≤p |ξij |||ψ1 ≤ C log pmax1≤j≤p |||ξij |||ψ1 ≤ C(maxK ζK) log p for some constant C >

0. Combined with Lemma A.6 we have

E
[

max
1≤j≤p

|ξij |31
(

max
1≤j≤p

|ξij | > δ
√
n/ log(p ∨ n)

)]
≤ 12(δ

√
n/ log(p ∨ n) + C max

K
ζK log p)3 exp(− δ

√
n

C maxK ζK log p log(p ∨ n)
).

�

Next, we provide useful lemmas which will be used in the proof of Theorem 3.1 and 4.1. The
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versions of proofs of Lemma B.2 and B.3 with Kn = {K} are available in the literature, such as

Belloni et al. (2015) and Chen and Christensen (2015), among many others. Note that different

rate conditions of K = Kn such as those in Newey (1997) can be used here, but lead to different

bounds (B.1)-(B.2).

Lemma B.2. Suppose that Assumptions 2.1, 3.1, and 3.2 hold, then ||Q̂K−IK || = Op(
√
λ2Kζ

2
K logK/n)

for any K ∈ Kn, and the following holds

max
K∈Kn

|R1(K,x)| = Op( max
K∈Kn

√
λ2Kζ

2
K logK log p

n
(1 + `KcK

√
K)), (B.1)

max
K∈Kn

|R2(K,x)| = Op( max
K∈Kn

(`KcK)
√

log p), (B.2)

where R1(K,x) ≡
√

1
nVn(K,x)

P̃ (K,x)′(Q̂−1K −IK)P̃K
′
(ε+rK), R2(K,x) ≡

√
1

nVn(K,x)
P̃ (K,x)′P̃K

′
rK .

Proof. We first define Si = 1
n(P̃KiP̃

′
Ki−E(P̃KiP̃

′
Ki)). Note that ESi = 0, ||Si|| ≤ L = 1

n(λ2Kζ
2
K+1),

and v(Z) = 1
n ||E(P̃KiP̃

′
KiP̃KiP̃

′
Ki)−E(P̃KiP̃

′
Ki)E(P̃KiP̃

′
Ki)|| ≤

1
n(λ2Kζ

2
K +1) by definition of λK , ζK

and E(P̃KiP̃
′
Ki) = IK . By Lemma A.1, we have

E||Q̂K − IK || = E||
∑
i

1

n
(P̃KiP̃

′
Ki − IK)|| ≤ C(

√
λ2Kζ

2
K log(K)/n+ λ2Kζ

2
K log(K)/n),

and ||Q̂K − IK || = OP (
√
λ2Kζ

2
K log(K)/n) by the Markov inequality. For (B.1), we first look

at the terms
√

1
nVn(K,x)

P̃ (K,x)′
(
Q̂−1K − IK

)
P̃K

′
ε. For any K ∈ Kn, conditional on the sample

Xn = [x1, · · · , xn], this term has mean zero and variance,

1

nVn(K,x)
P̃ (K,x)′

(
Q̂−1K − IK

)
P̃K

′
E(εε′|X)P̃K

(
Q̂−1K − IK

)
P̃ (K,x)

≤ σ̄2

Vn(K,x)
P̃ (K,x)′

(
Q̂−1K − IK

)
Q̂K

(
Q̂−1K − IK

)
P̃ (K,x)

≤ σ̄2P̃K(x)
′
P̃K(x)

Vn(K)
λmax(Q̂−1K )||

(
Q̂K − IK

)
||2 = OP (λ2Kζ

2
K log(K)/n)

where the first and the second inequality uses Vn(K,x) ≤ σ̄2P̃ (K,x)
′
P̃ (K,x), Vn(K,x) ≥ σ2P̃ (K,

x)
′
P̃ (K,x) by Assumption 3.2(ii), and λmax(Q̂−1K ) = (λmax(Q̂K))−1 = Op(1) since all eigenvalues

of Q̂K are bounded away from zero as |λmin(Q̂K)−1| ≤ ||Q̂K−IK || = op(1) and Assumption 3.1(ii)

and rate conditions. By using || P̃ (K,x)

Vn(K,x)1/2
|| � 1 and ||Q̂−1K || = Op(1),

|

√
1

nVn(K,x)
P̃ (K,x)′

(
Q̂−1K − IK

)
P̃K

′
ε| ≤ C||Q̂−1K || · ||

(
Q̂K − IK

)
|| · || 1√

n

n∑
i=1

P̃Kiεi||

= Op(

√
λ2Kζ

2
KK log(K)

n
)
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where || 1√
n

∑n
i=1 P̃Kiεi|| = Op(

√
K) since E[|| 1√

n

∑n
i=1 P̃Kiεi]||2] = E[

∑K
j=1 P̃

2
Ki,jε

2
i ] . E[||P̃Ki||2] =

K.

By applying Lemma A.4, we have

E
[

max
K∈Kn

|

√
1

nVn(K,x)
P̃ (K,x)′

(
Q̂−1K − IK

)
P̃K

′
ε|
∣∣X]

.P max
K∈Kn

√
λ2Kζ

2
KK log(K)

n

log p√
n

+ max
K∈Kn

√
λ2Kζ

2
K log(K)

n

√
log p . max

K∈Kn

√
λ2Kζ

2
K log(K)

n

√
log p

where the last inequality uses
√

maxK K log p/n = o(1).

Next, consider the terms
√

1
nVn(K,x)

P̃ (K,x)′
(
Q̂−1K − IK

)
P̃K

′
rK . Observe that E[P̃KirKi] = 0,

|| 1√
n

∑n
i=1 P̃KirKi|| = Op(`KcK

√
K) since

E[|| 1√
n

n∑
i=1

P̃KirKi]||2] = E[

K∑
j=1

P̃ 2
jir

2
Ki] ≤ `2Kc2KE[||P̃Ki||2] = `2Kc

2
KK. (B.3)

By using (B.3), || P̃ (K,x)

Vn(K,x)1/2
|| � 1 and ||Q̂−1K || = Op(1), we have

|

√
1

nVn(K,x)
P̃ (K,x)′

(
Q̂−1K − IK

)
P̃K

′
rK | ≤ C||Q̂−1K || · ||

(
Q̂K − IK

)
|| · || 1√

n

n∑
i=1

P̃KirKi||

= Op(

√
λ2Kζ

2
K log(K)

n
`KcK

√
K).

Similarly,

E
[

max
K∈Kn

|

√
1

nVn(K,x)
P̃ (K,x)′

(
Q̂−1K − IK

)
P̃K

′
rK |
]
.P max

K∈Kn

√
λ2Kζ

2
KK log(K)

n
`KcK

√
log p

by Lemma A.4 and (B.1) follows by Chebyshev’s inequality. Lastly, we consider (B.2).

E[(

√
1

nVn(K,x)
P̃ (K,x)′P̃K

′
rK)2] = E[(

P̃ (K,x)′P̃Ki
Vn(K,x)1/2

rKi)
2] ≤ (cK`K)2

since E[( P̃ (K,x)′P̃Ki
Vn(K,x)1/2

)2] � 1 by Assumption 3.2(ii) and E(rKi)
2 ≤ (`KcK)2 by Assumption 3.1(ii).

Furthermore, | P̃ (K,x)′P̃KirKi
Vn(K,x)1/2

| ≤ maxK∈Kn(`KcK)ζK . Again, by Lemma A.4,

E[ max
K∈Kn

R2(K,x)] . max
K

(`KcK)ζK
log p√
n

+ max
K

(`KcK)
√

log p . max
K

(`KcK)
√

log p

where the last inequality uses
√

maxK ζ2K log p/n = o(1). Thus, (B.2) follows and this completes

the proof. �
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Lemma B.3. Suppose that Assumptions 2.1, 3.1 and 4.1 hold, then the following holds

sup
K∈Kn,x∈X

|R1(K,x)| = Op( max
K∈Kn

√
λ2Kζ

2
K logK log n

n
(n1/q + `KcK

√
K)), (B.4)

sup
K∈Kn,x∈X

|R2(K,x)| = Op( max
K∈Kn

(`KcK)
√

log n), (B.5)

where R1(K,x), R2(K,x) are defined in Lemma B.2.

Proof. The proof follows from the same arguments to those used in Lemma 4.2 in Belloni et al.

(2015) using the maximal inequalities (Lemmas A.12 and A.13). To provide the bounds in (B.4)

and (B.5), we use similar calculations on |R1(K,x)|, |R2(K,x)| uniformly in K ∈ Kn in the proof

of Lemma B.2, and use similar derivations as in the proof of Theorem 4.1 in the main paper such

that the class of functions Fn = {fn,K,x : (K,x) ∈ Kn×X} is a VC type with the envelope function

Fn(ε, t) ≡ C|ε|maxK ζK ∨ 1, where

fn,K,x(ε, t) =
P̃ (K,x)′P̃ (K, t)ε

Vn(K,x)1/2
, (ε, t) ∈ E × X . (B.6)

for given n ≥ 1, K ∈ Kn, x ∈ X because |fn,K,x − fn,K′,x′ | ≤ |ε|AmaxK ζKLn(||x− x′||+ |K −K ′|)
for all x, x′ ∈ X ,K,K ′ ∈ Kn where Ln = ζL1 ∨ ζL2 under Assumption 4.1. This completes the

proof of the Lemma. �

Appendix C Additional Simulations

Section C reports additional simulation results in addition to the model considered in the main

paper. The main specification we consider is:

yi = g(xi) + εi,

xi = Φ(x∗i ),

(
x∗i
εi

)
∼ N

((
0

0

)
,

(
1 0

0 σ2(x∗i )

))

where Φ(·) is the standard normal cumulative distribution function needed to ensure compact

support, and σ2(x∗i ) = (
1+2x∗i

2 )2. As in the main paper, we investigate the following three functions

for g(x): g1(x) = ln(|6x − 3| + 1)sgn(x − 1/2), g2(x) = sin(7πx/2)
1+2x2(sgn(x)+1)

, and g3(x) = x − 1/2 +

5φ(10(x− 1/2)), where φ(·) is the standard normal probability density function, and sgn(·) is the

sign function. We generate 2000 simulation replications for each design.

We calculate a pointwise coverage rate (COV) and the average length (AL) of various 95%

nominal CIs, as well as analogous uniform CBs for the grid points of x on the support X = [0.05,

0.95]. To be specific, we consider (1) the standard CI with K̂cv ∈ Kn selected to minimize leave-

one-out cross-validation; (2) robust CI with K̂cv using the critical value ĉ1−α(x); (3) robust CI

using K̂cv+ = K̂cv + 2 and analogous uniform inference results. The critical values, ĉ1−α(x) and

11



ĉ1−α are constructed using Monte Carlo methods and weighted bootstrap methods, respectively.

1000 additional Monte Carlo or bootstrap replications are performed on each simulation iteration

to calculate critical values.

In the main paper, we report the results for quadratic splines with evenly placed knots where the

number of knots K are selected among Kn = [K,K] by setting K = 2n1/5 and K = 2n1/3 rounded

up to the nearest integer with a sample size n = 200. Table 1 reports a homoskedastic error case.

Specifically, we set σ2(x∗i ) = 1. In Tables 2-3, we consider different sample sizes n ∈ {100, 500}.
Table 4 reports results for polynomial regressions with K = n1/5 and K = n1/3. The simulation

results are qualitatively similar to the results in the main paper, except for poor coverage property

of the polynomial regressions at particular points.

Finally, Table 5 explores the following bivariate specification as in Cattaneo and Farrell (2013)

with bivariate and non-normal regressors:

yi = (1− (4x1i − 2)2)2(sin(5x2i)/5) + εi,

where εi ∼ N(0, 1), and x1i, x2i are independently distributed as Beta(α, β) distributions truncated

to [0.05, 0.95]. We consider quadratic splines with the basis {1, x1, x21, x2, x22, x1x2,max(x1− τ1, 0)2,

...,max(x1 − τK , 0)2,max(x2 − τ1, 0)2, ...,max(x2 − τK , 0)2}, and the total 2K + 6 number of series

terms with K ∈ Kn = [2n1/5, 2n1/3]. We consider the following cases: (1) α = β = 1 (uniform); (2)

α = β = 1/2 (mass at the boundary). For this bivariate specification, we generate 1000 simulated

data sets with n = 200.
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Table 1: Coverage and Length of Nominal 95% CIs and CBs - Splines (homoskedastic)

Pointwise Uniform

x = 0.2 x = 0.5 x = 0.8 x = 0.9

COV AL COV AL COV AL COV AL COV AL

Model 1: g1(x) = ln(|6x− 3|+ 1)sgn(x− 1/2)
Standard 0.90 0.70 0.90 0.65 0.91 0.70 0.93 0.85 0.41 0.74

Robust (K̂cv) 0.95 0.86 0.96 0.83 0.96 0.85 0.96 0.98 0.96 1.39

Robust (K̂cv+) 0.97 1.05 0.97 0.93 0.97 1.05 0.96 1.07 0.97 1.55

Model 2: g2(x) = sin(7πx/2)/[1 + 2x2(sgn(x) + 1)]
Standard 0.89 0.71 0.90 0.66 0.91 0.71 0.93 0.85 0.38 0.74

Robust (K̂cv) 0.94 0.87 0.96 0.84 0.96 0.86 0.96 0.99 0.96 1.39

Robust (K̂cv+) 0.97 1.05 0.96 0.94 0.97 1.05 0.96 1.07 0.97 1.55

Model 3: g3(x) = x− 1/2 + 5φ(10(x− 1/2))
Standard 0.90 0.76 0.81 0.72 0.91 0.76 0.93 0.88 0.27 0.76

Robust (K̂cv) 0.95 0.93 0.90 0.92 0.95 0.93 0.95 1.02 0.93 1.43

Robust (K̂cv+) 0.97 1.03 0.96 1.03 0.97 1.03 0.96 1.05 0.96 1.59

Notes: “Pointwise” reports coverage (COV) and average length (AL) of (1) the standard

95% CI with K̂cv ∈ Kn; (2) robust CI with K̂cv; (3) robust CI with K̂cv+. “Uniform” reports

analogous uniform inference results for confidence bands. K̂cv is selected to minimize leave-
one-out cross-validation and K̂cv+ = K̂cv + 2. Using quadratic spline regressions with evenly
placed knots, and the number of knots K ∈ Kn = [2n1/3, 2n1/5], n = 200.
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Table 2: Coverage and Length of Nominal 95% CIs and CBs - Splines (n = 100)

Pointwise Uniform

x = 0.2 x = 0.5 x = 0.8 x = 0.9

COV AL COV AL COV AL COV AL COV AL

Model 1: g1(x) = ln(|6x− 3|+ 1)sgn(x− 1/2)
Standard 0.90 0.50 0.93 0.55 0.89 1.36 0.85 1.81 0.32 0.90

Robust (K̂cv) 0.96 0.65 0.97 0.66 0.94 1.62 0.90 2.12 0.92 1.78

Robust (K̂cv+) 0.97 0.57 0.96 0.72 0.95 1.79 0.91 2.71 0.93 1.92

Model 2: g2(x) = sin(7πx/2)/[1 + 2x2(sgn(x) + 1)]
Standard 0.87 0.50 0.92 0.55 0.89 1.35 0.86 1.82 0.15 0.90

Robust (K̂cv) 0.93 0.65 0.96 0.67 0.94 1.61 0.90 2.13 0.91 1.78

Robust (K̂cv+) 0.96 0.57 0.96 0.73 0.95 1.79 0.92 2.71 0.93 1.91

Model 3: g3(x) = x− 1/2 + 5φ(10(x− 1/2))
Standard 0.90 0.51 0.90 0.55 0.89 1.36 0.85 1.81 0.28 0.90

Robust (K̂cv) 0.95 0.65 0.95 0.66 0.94 1.62 0.90 2.12 0.92 1.79

Robust (K̂cv+) 0.96 0.56 0.95 0.73 0.95 1.78 0.91 2.71 0.92 1.92

Notes: “Pointwise” reports coverage (COV) and average length (AL) of (1) the standard

95% CI with K̂cv ∈ Kn; (2) robust CI with K̂cv; (3) robust CI with K̂cv+. “Uniform” reports

analogous uniform inference results for confidence bands. K̂cv is selected to minimize leave-
one-out cross-validation and K̂cv+ = K̂cv + 2. Using quadratic spline regressions with evenly
placed knots, and the number of knots K ∈ Kn = [2n1/3, 2n1/5], n = 100.
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Table 3: Coverage and Length of Nominal 95% CIs and CBs - Splines (n = 500)

Pointwise Uniform

x = 0.2 x = 0.5 x = 0.8 x = 0.9

COV AL COV AL COV AL COV AL COV AL

Model 1: g1(x) = ln(|6x− 3|+ 1)sgn(x− 1/2)
Standard 0.93 0.19 0.94 0.28 0.93 0.69 0.93 1.10 0.39 0.47

Robust (K̂cv) 0.98 0.27 0.98 0.37 0.98 0.87 0.97 1.37 0.99 0.90

Robust (K̂cv+) 0.99 0.38 0.98 0.40 0.98 1.00 0.97 1.46 0.99 0.97

Model 2: g2(x) = sin(7πx/2)/[1 + 2x2(sgn(x) + 1)]
Standard 0.92 0.19 0.95 0.27 0.91 0.69 0.94 1.10 0.39 0.47

Robust (K̂cv) 0.98 0.27 0.99 0.36 0.95 0.87 0.97 1.36 0.99 0.90

Robust (K̂cv+) 0.99 0.38 0.99 0.39 0.98 1.01 0.98 1.45 0.98 0.96

Model 3: g3(x) = x− 1/2 + 5φ(10(x− 1/2))
Standard 0.91 0.19 0.94 0.27 0.90 0.69 0.93 1.10 0.23 0.47

Robust (K̂cv) 0.98 0.27 0.99 0.36 0.96 0.87 0.97 1.36 0.97 0.90

Robust (K̂cv+) 0.99 0.38 0.98 0.39 0.98 1.01 0.98 1.45 0.97 0.97

Notes: “Pointwise” reports coverage (COV) and average length (AL) of (1) the standard

95% CI with K̂cv ∈ Kn; (2) robust CI with K̂cv; (3) robust CI with K̂cv+. “Uniform” reports

analogous uniform inference results for confidence bands. K̂cv is selected to minimize leave-
one-out cross-validation and K̂cv+ = K̂cv + 2. Using quadratic spline regressions with evenly
placed knots, and the number of knots K ∈ Kn = [2n1/3, 2n1/5], n = 500.
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Table 4: Coverage and Length of Nominal 95% CIs and CBs - Polynomial

Pointwise Uniform

x = 0.2 x = 0.5 x = 0.8 x = 0.9

COV AL COV AL COV AL COV AL COV AL

Model 1: g1(x) = ln(|6x− 3|+ 1)sgn(x− 1/2)
Standard 0.91 0.35 0.93 0.34 0.91 0.69 0.92 1.09 0.27 0.55

Robust (K̂cv) 0.95 0.40 0.95 0.38 0.95 0.80 0.94 1.21 0.93 0.98

Robust (K̂cv+) 0.96 0.42 0.95 0.40 0.96 0.99 0.95 1.22 0.97 1.09

Model 2: g2(x) = sin(7πx/2)/[1 + 2x2(sgn(x) + 1)]
Standard 0.64 0.37 0.86 0.36 0.88 0.85 0.91 1.12 0.21 0.61

Robust (K̂cv) 0.70 0.42 0.89 0.40 0.93 0.99 0.93 1.24 0.70 1.09

Robust (K̂cv+) 0.77 0.43 0.95 0.40 0.96 1.04 0.94 1.25 0.84 1.12

Model 3: g3(x) = x− 1/2 + 5φ(10(x− 1/2))
Standard 0.84 0.39 0.00 0.40 0.88 0.83 0.82 1.10 0.00 0.62

Robust (K̂cv) 0.87 0.44 0.00 1.00 0.93 0.96 0.87 1.22 0.00 1.11

Robust (K̂cv+) 0.94 0.45 0.00 1.02 0.96 1.07 0.88 1.28 0.00 1.17

Notes: “Pointwise” reports coverage (COV) and average length (AL) of (1) the standard

95% CI with K̂cv ∈ Kn; (2) robust CI with K̂cv; (3) robust CI with K̂cv+. “Uniform” reports

analogous uniform inference results for confidence bands. K̂cv is selected to minimize leave-
one-out cross-validation and K̂cv+ = K̂cv + 2. Using polynomial regressions with the order of
polynomial K ∈ Kn = [n1/5, n1/3], n = 200.

16



Table 5: Coverage and Length of Nominal 95% CIs and CBs - Multivariate

Pointwise Uniform

(x1, x2) = (0.5, 0.5) (x1, x2) = (0.1, 0.5) (x1, x2) = (0.1, 0.1)

COV AL COV AL COV AL COV AL

Model : g(x1, x2) = (1− (4x1 − 2)2)2(sin(5x2)/5), x1i, x2i ∼ Beta(0.5, 0.5)
Standard 0.85 1.09 0.91 1.09 0.84 1.18 0.00 1.17

Robust (K̂cv) 0.94 1.40 0.96 1.33 0.91 1.39 0.82 2.39

Robust (K̂cv+) 0.94 1.61 0.95 1.60 0.93 1.67 0.86 2.78

Model : g(x1, x2) = (1− (4x1 − 2)2)2(sin(5x2)/5), x1i, x2i ∼ Beta(1, 1)
Standard 0.91 0.84 0.89 1.07 0.86 1.41 0.02 1.03

Robust (K̂cv) 0.97 1.08 0.95 1.30 0.92 1.70 0.92 2.12

Robust (K̂cv+) 0.98 1.24 0.96 1.65 0.93 2.11 0.93 2.51

Notes: “Pointwise” reports coverage (COV) and average length (AL) of (1) the standard 95% CI with

K̂cv ∈ Kn; (2) robust CI with K̂cv; (3) robust CI with K̂cv+. “Uniform” reports analogous uniform

inference results for confidence bands. K̂cv is selected to minimize leave-one-out cross-validation and
K̂cv+ = K̂cv + 2. Using quadratic spline regressions with evenly placed knots.
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