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1 Propositions and Lemmas

Proposition 1. Minimizing Equation (3) is equivalent to minimizing

o=y ) (L e e

with respect to 6, where

n Ajg
0) = ;KixJ; [1{U(Xi)(€i — o) +dig <z} - Ho(X)(ej — ) + dip < 0} |dz. (A1)

Proposition 2. Under Assumptions 1 to 6, we have L, (0) = %QTSnQ +(WHTo + 0p(1).
Proposition 3. Under Assumptions 1 to 6, we have
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Lemma 1. Under Assumptions 1 to 6, we have
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Lemma 2. Under Assumptions 1 to 6, we have

1 n
WZKizx = 1/of(3c)+op(/\2+thr

ZKZ (X7 —x) = hvy Ve f(

2 3
nhP+1 | Ah+h” + N )

1
K2(XE - %) (X —x)T = Op(12 412 )
nhP+2 Z x°) x) = vaf(x)+ Op| A"+ h” + Nri

Lemma 3. Under Assumptions 1 to 6, we have

Var(W,1X) 5 f(x)2 = Q.

Based on the definition of d;, in Section 2, let d;; = Z;Zl{ng # le.}.

Lemma 4. Under Assumptions 1 to 6, foralli,j=1,---,nand k=1,---,9, we have

, Crif (X = X{) +s.0. if dj; =
E(ﬂ]"k|Xi,X]'): . ! . l c c ifd:: =
Coik + Caik(X; = X[) +s.0. ifdjj =

where Cy; i, Cyik, and Cs;  are functions of X; and are defined in the proof of this lemma.
Lemma 5. Under Assumptions 1 to 6, foralli,j=1,---,n,and k,m=1,---,q, we have

E (151 X1 X;) = (1 =TT+ Caiom (X = X7) + 0. if dji =
PR Csikm* C6i,km(X; —Xic) +s.0. if dji =

where Cy; 1, Csikm, and Cg; g, are functions of (X, , 7,,) and are defined in the proof of this
lemma.

The following two lemmas use the U-statistics H-decomposition with variable kernels to
calculate the expectations of Sk, and S;,. See Appendix B in Racine and Li (2004) for an
intuitive explanation of H-decomposition.

Lemma 6. Under Assumptions 1 to 6, for all k,m=1,---,9, we have
Sigm =A% A=A WPA+ AL, AP+ AL, (nh)7!
1,km 1,km 2,km 3,km 4,km n
+ AL o h®+ Ay WA+ AY L RPAC 4 Ay o+ 5.0,
A’(’

Lkm?” “22,km’
Lemma 7. Under Assumptions 1 to 6, forall k=1,---,4, we have

where the coefficients A A% o and Ay are defined in the proof of this lemma.

. h? . A
l,k% +B2,k% +S.0

where the coefficients B] , and B’, , are defined in the proof of this lemma.

S)k=B

Lemma 8. Under Assumptions 1 to 6, the leading term in the 0,(1) term in Equation (A.6) has
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order O, (h+A+ F) Omitting this term in Equation (8) does not affect the asymptotic results

in Theorem 2.

2 Proofs

Proof of Proposition 1. We write Y; —aj —b(X] —x) = 0(X;)(&; —cx) +d;  — A; x in order to use the
identity in Knight (1998), Kai, Li, and Zou (2010). By the identity in Knight (1998), minimiz-
ing Equation (3) is equivalent to minimizing

L(6) = Z{K i[prk((f(xi)(ei =)+ i~ Agg )= pry (01X (e — i) + di,k)]}

i=1 k=1
n q

= Z{Kix Z[Ai,k[l{o(xl)(ez - Ck) + dl k< 0} B Tk]
i=1 k=1

k=1 i= k=1 i=1 =1
|
Proof of Proposition 2. Write L,(0) as
ixTik T = - Kin(X7 - C)’ﬁ,k] y 0 q 0
Z (Z W] (k;,l: W +k;IE£[Bn,k( )lX]"‘k;Rn,k( ),
where R, x(0) = B, x(0) —E.[B,, x(0)|X]. Using F,(cx + z) — Fo(cx) = zf (cx) + 0(z), we have
aks Bik —dik
ZIES[Bn k(9)|X] = ZZszJ E|He <+ O'(X'I) b= e <k
k=1 k=1 i=1 '
1. & Aik z di,k
:I;;(KL a(x,)ff(c"_o-(xi)) ( )ldz)
q n Azk d
- g fol - 2 ) |+ 0, (1)
;;[ 20(X;) (k (x>) P
9 n A'zk
=) ) |Kigg i felen) |+ (1) = 567S,0-4.0,(1) (A3)
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We now prove that R, 1(6) = 0,(1). It is sufficient to show that Var,[B, 1 (60)|X] = 0,(1). In fact,

Var B, x(0)1X] = ZVW’S[(K,'X LAM (1{g,~ < a%é) + U(;i)} 1{5, <cp— Gi;é‘i)})dzﬂx]
< ;IEE[(KI-,C LAW (l{si <cp— (:(l;’é) + U&i)}_ 1{6,- <cp— ojgé) })dz)le]
<3 e i ) ofe-

= (ZKzzxAlzk) = 0p(1).

|

Proof of Proposition 3. From Lemma 2, we have

P fx) . _ fX)| St Siz
Sy — —=S=—+ . A4
" o) T o) Sa Sz A-4)
Together with Propositions 1 and 2, we have
1

L0 =50 weye +0,(1). (A.5)

2 o(x)

Since the convex function L, (6)—(W,;)'6 converges in probability to the convex function 5 L flx ox )9 S0,

it follows from the convexity lemma (Pollard (1991)) that, for any compact set ©, the quadrat1c
approximation to L,(0) holds uniformly for 6 in any compact set, which leads to

é:—ms—lw;wpu). (A.6)

f(x)
By the Cramér-Wold theorem, it is easy to see that the central limit theorem for W,|X holds:

W, |X —IE[W,|X] d
Var(W,|X)

5 MVN(0,I4,)-

Note that

Cov(ni ki) = Cov(l{e; < ¢} — 11, He; S cpr} = tpr) = Cov(1{e; < o}, He; < cp))
=E[1{e; <cp} x He; S cpd] =T T = T AT = T - Ty = T

Cov(nir,nj k) = Cov(l{e; < cp} — 1, Hej S cp} — ) = Cov(Ue; < o}, ey < cpr})
= lE[l{ei < Ck} X l{é‘]‘ < Ck’}]_Tk T =T Ty — T Ty = 0, if i ij.

Further, fork=1,---,q,
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E[wxX] =

n
ZIE[szm dlX] = \/_ Y KiElilX]=0,
i=1

Var(W,|X) — f(x)X

d
Therefore, W,|X — MVN(O,f(x)):). Moreover, we have

|d1k|
Var(wi, —wiklX) = prr] ZKZxVar Nk = ikl X) < ZK [ ( l)) F(ck)] =0,(1),

q
Var(why, —wy|X) = hP” ZKZ (X7 —x°) TVar| Z ik = Mi )1 X]
k=1

|dz k|

) P(ck)] = 0,(1).

2!

(Ck +

ZKix(Xf—x )X —x°) mkax[

<
- nhp+2 —

Thus Var(W,; — W,|X) = 0,(1). By the Slutsky’s theorem, conditioning on X, we have W;|X —

(1)
]E(W;|X)iMVN(o, flx 2) Therefore,

6+ %s—lm(w;p() 4 MVN( , C;z((xx))s—lzs—l).

Proof of Theorem 1. e,y denotes the g x 1 vector of ones. S~!is a diagonal matrix

-1

fle) 0 - 0 0
0 flea) -+ 0 0
s = : : : :
0 0 - fle,) 0

0 0 0 VZIp ZZ:1 f(ck)

By the definition of 6 and uy, we have a; = \/ZI(W + g(x) + o (x)ck.

ZIE i X)

1 ¢ o(x) _ .
:g(X)-l-E;G(X)Ck_mele(s D1 E(WT,IX),

B(g(IX) = g(x)+ ) oty >

k=1
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where W, are the first q elements of W;; and (S7!);; is the upper-left g x g block matrix of S~1.
Therefore,

1< ~ .
Bias(§(x)|X) = 5;a<x>ck——q V%)((X)eqxl(s U E(W,IX)
1y 1 o(x) & .9 di
= 3 79 g ) 25 L el g )R]

q . 9 . .
%kzﬂik) s~ i) el =4 o iy oo )

Therefore,

qnhP f (x) =" £ f(cx)
:_#%i&xx[—O_&i)(1+0p(1))]
B _#% ] K. x [_ g(Xz)—g(x;(—)égw(Xf—xC)]
[t s LY s ’f)iff;i?_g(x”]“ +0p(1)
when using |
B K0 (X0 | = 5 LK (X0 i = O] Pldi = 0) + o TBLK;ri/0 (X))o = 1]- Pl = 1)

1 A
= h_pIE[Wixri/U( |d1x = 0] P( ix = 0 IE[Werl/O( i |dix = 1] 'P(dix = 1)

- ¢ x) Xic_c ¢ x)_ o(x) - c_ ¢ x\AX/hP
Fxs W )[g(x ) = g() = B X] ¥ (X, x) X/

f Focs, shw( X S X6 ) - () - BRI X))o (X, )X/

- hzw voi+r Y L s

o(x¢,%4)
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c ~d)

LG A U R .

- g(x)] 2
20) o (e, ) +o(h“+ ).

-1 -1
—€ (S N )lleqxl'i'op(w)

q
VoTkk/ 1
) oot o

Proof of Theorem 2. From Lemmas 6 and 7 and the fact that B} , and B}, are both zero mean
O,(1) random variables, we conclude that orders in Sy x,, dominate those in S, x and the lead-
ing term in cross-validation becomes Equation (16). Define

9 4 9. 4 9.4
Ar = q_2 Z ZAl km’ Ay = q—Z Z ZA;_,km’ A3 = q—Z Z ZAE km?
k=1m=1 k=1m=1 k=1m=1
9. 4 q q
Ag=q7) ) Ay Bi=297") B, By=29') B3,
k=1 m=1 k=1 k=1

Hence, Equation (11) can be written as
4 2 2 -1 K A
CV(hA)=A1h* —Ayh“ A+ AzA° + Ay(nhP)™ + Bj—=+ B,— +s.0.,

v
and the leading terms of CV/(h, 1) are collected in CV} in Equation (16).

From Equation (16), we have

CVo= A h* = Ayh? A+ A3 A% + Ag(nhP) ™!
2

2
Ay o A3 )4, Ag
=A -—=h A ——= "+ —.
3(A 24, )+( VA )t T e

. e A +4 A
CV, is minimized when Ay = g}sh% and hg = 3

= In(A,_AY(44y) Hence,

ho =C1 Tl_l/(p+4), /\0 = C21’l_2/(p+4), (A7)

where

A2A4 1/(p+4)

©2= [2A3<A1 ~ AZ/(443))

s

_ [ A, :|1/(}7+4)
P A - A2/(44)
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To prove the rate of convergence of /1 and A, we rewrite

AK2 — -1/2\2 AK2 — ~1/2\2
Cv(h,A):,%(A_%) _As(%)

24, 24,
+ A h* + Ag(nhP) ™ + By %/,
A,h? — By 1/2\? A2 A, B?
= A, (A— %) + (Al - 72)h4 +(AyBy + By )n V2 + ﬁ - 72 -1 (A.8)
Minimizing CV(h, A) w.r.t. (h, A) in Equation (A.8) gives
. A ]',\12 -B -1/2
j=f2t —hat (A.9)
24,
A . pA
4(Ay - AY/2)i% + 2(A3By + By)n V2 h - % - 0. (A.10)
n

Let i = ho + hy, where hy is o(hg) since (fl—ho)/ho =o(1) and CV(h,A) = CVy(h,A) + o(CVp).

Substitute i = hg + hy, (hg + hy)P*4 = hg+4 +(p+ 4)hg+3h1 +s.0., and Equation (A.7) into Equa-
tion (A.10) to have

4(A; — A3/(4A3)) (p+ 4)hb " hy +2(A;B2/(2A3) + By)n™ V2 +5.0.= 0,

which gives
A,By/(2A35) + By)n= 1213
hlz( 2 2/(23)+ n 2. (A1)
2(A; —A3/(4A35))(p +4)h,

Replacing h; with h- hy in Equation (A.11) gives

h—hy  (A3B2/(2A3)+B))

_ nP/RP+4) = O (n7P/(2p+4)), (A.12
ho  2(A; - AY/(4A3))(p + 4)c? ! |

For A, substitute /i = hy + h; and A = %hg into Equation (A.9) to obtain

A= Ay(hg+h1)%/(2A3) - n72By/(243)
= /\0 + 2h0h1A2/(2A3) + h%Az/(zA:),) — h_l/sz/(2A3) (A13)
=g +0,(n?), (A.14)

where the last line in Equation (A.14) follows hyh; = O(n~'/2), which can be verified by multi-
plying both sides of Equation (A.11) by h,. |

Proof of Corollary 1. There are two ways to establish the asymptotic normality results, by stochas-
tic equicontinuity (Hall, Racine, and Li, 2004, Ichimura, 2000) or by Taylor expansion (Li and
Racine, 2004, Racine and Li, 2004). Because we consider nonparametric regression, we fol-
low the Taylor expansion proof strategy of Li and Racine (2004), Racine and Li (2004), which
mainly deals with nonparametric regression, to show our result. Define g(x) in the same man-
ner as §;, 1(x) but with hy and A replacing jrand A. It is shown in the proof of Theorem 2 that
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hg O(n p+4)) and Ay = O( (p+4)) respectively. Assumption 3 holds with hy and Ay and

therefore, by Theorem 1, we have

'_nhp[g' M_/\ Z f(x¢, %4 [g(x x4y - g(x)]liN(o,mvoRl(q)],

o (x€, %) f(x)
(A.15)
From Theorem 2, we have /% = h%[l + Op(n‘p/(”+4))] =hl+ op(n—Z/(P+4)), A=2(1+0,(n1?2)) =

—-2/(p+4 11,1 h-hy\ _ 1 .
/\0+0p(n (p+ )), and = h_§+ﬁop( hoo)_h_g(l’Lop(l))‘ From Equation (9), we see

’f,k Xi—x° d d
1 w( i )Lj(xi,x )

q
8 i(x) - g(x) = __ox y h

I G aky Mik X7 —x© vd
) ”hgqf(x)zzf(ck)w( h )LA(XI"")”-O-: (A.16)

__ o) NENT T g (KX
- nhgqf(x)z‘lf(ck) LAO(X"X)W( h )+SO

By Taylor expansion, we have W(#) = W(X"E_xc ) + W( X"Ch;XC )( hhho ) +5.0., where W(X OXE ) =

aw(xcof)
hy- ——L

50 and s.o0. stands for “smaller order term.” Therefore, we have
q c c. 1
A ‘ ) W )
ra(x)—g(x) = g(x)— -L X-,x -W +5s.0.
83,100 = g(x) = g(x) ~ g(x) nhgq f ;Z (X ) W= = (5

(A.17)

It is easy to see that W (v) contains terms of dW (v)/dvy - vy, k=1,--- ,p- Because W(:) is a sym-
metric function by Assumption 4, we know that W (v)/dvy are odd functions and dW (v)/dvy -
v,k =1,---,p are symmetric functions. Thus W(v) is a symmetric function and can be taken

. .= —{ X¢—x¢ =
as a second-order kernel function. Define Kj, ;. = L/\O(Xid,xd) . W(’h—ox) We can take Kj, ;. as
a kernel function similar to Kj,. With similar argument in the proof of Theorem 1, we can

show that —7> zk . ?:lj%fho,ix:o (h2+/\0+\/n_) Thus, g, 3(x) - g(x):op(h§+A0+

). fl—ho _ 72/(p+4))
= 0y|n .
\/nhg) ( ho ) p(

Since
/nhg .Op(n—Z/(p+4)) _ op(nl/Z—p/Z(p+4)—2/(p+4)) = 0,(1),

replacing g(x), hg and Aq by g, i(x), h and A in Equation (A.15) only introduces an 0p(1) term
and thus we prove the corollary. |
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Proof of Lemma 1. We derive the expectation and variance for each of the three terms. For the

first term, we have

[ — Zle/a ] E(Kiy/0(X;)

= o K/ (Xl = 0)- Pldi = 0)+ B(Kia/o (X0 = 1) Pldse = 1)(1 + OV

= 1[ (sz/cr( i)ldix =0)- P(dix=0)+/\1E(Wix/0(X')|dix=1)-P(dix=1)-(1+0(/\))]

Jf X£, x?) W l; )dXC/hp+/\ Z Jf X¢, ,;d h )dXz'C/hp'(1+O(/\))

%,d; =1
f x¢ + hz,x% f(xc+hz,56d) _& )
o(x + hz, xd Widzed ) JWWWMHO(A))_G(x)+o(h +4)

%,d; =1

and

Var[nleKimxo] o VarlKdo(Xi) = —[B(K2/0%(X;) + O(??)|

~#[1E<I<2 2(Xldie = 0)+ P(dy = 0) + B(K2/0(Xi e = 1) P(diy = 1)+ O(1?)|

= nh2p
1
= _nth [IE(W.z/UZ(Xi)ldix = 0)-P(diy = 0) + A’E(W2/02(X)ldix = 1)- P(djx = 1) + O(th)]
e s o 0] = L S 1)
nh,, jf = JAXE/ + O+ ) - s+ o)
Thus
_ X) 2 1 )
o ZK,X/ D=2 O (A n2 —)
For the second term, we have
1 v« K 1 K
IE X XC _ c ] — IEI: 11X XC _ c ]
[nhP” ;'O'(Xi)( i =x) hp+1 O'(Xi)( i —x)

~ L[m[ X 2y = 0] Pldy = 0) + m[%(xi ~x )i = 1| Pldi = 1)|

Tl (X))
Wlx & c_ ,C R ] L ]
= il [ [0( X;) XO)diy = O] P(dix =0)+ /UE[G(XZ-)(Xi xX)Ndix =1{-P(dix =1)
(ch’ d xt C /1P 2 1 f x¢+ hz, x4
J o(XE, xd h )( x)dX:/hP + O(Ah*) ] 7 pr xc+hz,xd W(z)hzdz + O(Ah)

_ Ve f (%) 3
=hy, o(x) +O(Ah+ k)

and
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Var[nhi“ 2 GI:ii)(Xf—xc)] = nh21P+2 Var| If;éci)(xf— )]
bl -1
nthP+2 [IE[( o“gig) )Z(X’F XX = ) iz = O] P(dix=0)
n Azm[(%)z(xf X)X~ x) | = 1) P(diy = 1] " o<h2p+4)]
= #Uf(x;,ﬂ)W(%)(X{ —x°)(XE = x)TAXE/MP + O(Ah? + hz”“‘)]
w1
P P 25200 " (nhp)

Thus

1 v+ 0 . Ve f(x) ( 5 )
—EK,-XX-— X))=h O, | Ah+h )
) L (X; =x)/0(X;) = hyy () +Op| Ah+h° + N

For the third term, we have

n

1 Kix c c c c 1 K, c c T
E[nhp+2;G(Xi)(Xi—x)(Xl-—x) = e Bl (6 =) (X =)

= L (= )X )l = 0] Pldi = 0

2T e(X)
+]E[GI(<X1)(XC =X XE =5 Wy = 1] P(di = 1)(1 + OV
- 23 Bl (X5 =X =TIy = 0] Pldis = 0)
+ B[ Wix )(XC—x )X~ x)T|d;e = 1] P(dye = 1)(1 +O(/\))]
= ff Xx d - v Joxe = )¢ - x) Tax /e
/\ Y fff; xz = x)(Xf—xC)(Xf—xC)Tde/hp
i d =1

pyzfi ;+O(A+h2)

and

1 n Kix c c 1 Kix c c c T
Vm[nhl“z ;G(Xi)(xi —* )(X —x%) ] nh2p+4 Vﬂi’[a(xi)(Xi —X )(Xi -x)"]
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e Bl ) x5 =200 )T @ x5 =20 )T+ O )|

nh2P+4 G( ;
_ 1 Wix 2 c c c c\T c c c o\Tyq. _ . -
—nh2p+4[1E<(G(Xl)) (X = x)(XE = x)T @ (X = x)(XE = x)T|diy = 0) - P(diy = 0)
W [ C [ C C
FA IE((O(XI)) (XS~ ) (XS~ 2)T @ (XE — x)(XE = x) |y = 1) P(dlx_l)]+o( )

j )(Xf —x)(XE = x)T @ (X -«

1

)(XE—xO)TdxXe/nP

C

20 ) (- ) (XE - x)T @ (X6 - x)(XE - x)TdX/hP ] + O &
n

kP

Finally, we have

ZK,x €)(XE - x¢ )Tzlpy2%+op(/\+h2+

1
e

nhp+2

Proof of Lemma 2. To prove the first result, we have

[nhp ZK ] —IE(KZ ) hP[ (K2 i, = 0) P(d;, = 0) +]E(KZ%C|diX - 1)-P(dix - 1)]

ff(Xf,x) ( )dXC/hP+/\2 Z ff (x¢, % w2 h )dxc/hp

%4,d; =1

vof (x) + O(A% + h?)

and

n

Var[n;lp Zfo] = 7Va (K ) h2P ——[E(K) + O(h?P)]

i=1

}Lp[ S =0 Pl =0) By =3) P(dix:1>+0<hzf’>]
C /1P 4 c ~d 4 -x c p]
nhP Jf )dX/h A ddzljfx W= )dX/h +o( )

1 1
= — | K*widvr) +O(W)‘

Therefore,

1 v 2 2,12 1
— E K7 = O,[A°+h }
e L S=vof(x)+ p( +h”+ nhP)
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Next,

2 c 1 2 c
[nhp+1 ZK (X —x° ] o ELKE (XF —x)]

1
N [IE[WZ(XC —x)|diy = 0]- P(djy = 0) + AZE[W2(XE —x°)|dj = 1]- P(djy = 1)
X __ A€
= % Jf(Xf:xd)Wz(l—x)(Xf _ xC)Xmc/hp
C —
Z Jf XC =d W2 Tx)(XC_x)dXC/hp_hvzvxcf )+ 0 /\2]’l+h3)
#,d; =1
and
1
Var[ TS ZKZ Xc—x ] o3 Var[K2 (Xc—x )]
1
= o [BIK(X] = x)(X] = x) ]+ O]
1
~ s | BUWA (X = X)X =) Tldi = 0)- P(dy, = 0)
* A4IE(W‘4 (X} =x) X} _xc)Tldix =1)-P(djy =1)+ O(hz”ﬂ)]
C
nhP+2 f fX h )(Xc —x)(X{ - x)TdX{/hP
- 2
%4,d; =1 n
_ T 4
= vv' K*(v)dvf(x ( )
Therefore, _nhi”l Y K2 (XE—x6) = hva Ve f(x (/\2h A \/_7) Finally, for the last result,
we have
[nhw XKZ (X5 =X =) | = o BIRA — (XS )]
hp+2 [IE[W2 XC —x )(XZC —xC)Tldix =0]-P(d;, = 0)

£ AZE[W2(XE —x)(XE —x)T\diy = 1] P(dyy = 1)]
XC —x€
_1 f f(Xf,xd)Wz(lTx)(Xf x)(XE — 26T AXE /P

1 Xi—x*
soa Y Jf(Xf,fd)Wz(—’ X6 )X =) TAXE I = Lyvaf (x) + O 4 )
#,d; =1
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and

1
Var[ prE; ZKZ (X —x)(XF —x° )T] thJAVar[K2 (X6 —xO)(XE—x9)T]

h21p+4 [BK (XS = x)(XF = x)T @ (XF = x) (X[ —x) 7]+ O(h*P*)]
1
T ph2p+4 [IE(Wz%c(XzC _xc)(XiC _xc)T ® (ch —xc)(XiC —xC)T|dix =0)-P(d;, =0)

; /\41E(W-4 (XE - x)(XE —xf)T ® (X —x)(XE —x)T|d;y = 1) P(dy = 1)] ; o(%)

—X
J.f S = )X - )T @ (XS X)X — 2)T X/

hp+4

)(c__ c
w2ty Jf (X6, w4 Tx)(xc—x )(Xf—xC)T®(Xf—x“)(Xf—xC)Tde/hp]+O(%)
%,dg =1

wl® vaW4(v)dvf(x) + 0(%).

= uhb
Thus # Y K2 (XS —xO)(XE—x6)T = Lvof (x)+ Op(/\2 +h?+ \/n;ﬁ) ]
Proof of Lemma 3.
Var(wy|X) = E[w? |X]-0 = ZK (71X
1 & 2 P
= ZKikak = Tvof (x)k=1,---,q,
i=1
9
Var(wy1)X) = Elwy w] 1X] - p+2 ZIE(K2 (XE = x)(X¢ —xc)T(Zni,k)2|X)
k=1
q , q
nhP+2 ZKZ (X7 —x°) X-C—xC)T Z Tk — Lyvaof (x) Z Tik's
kk'=1 kk'=1
Cov(wry, wiplX) = Blwi- wip|X]-0= — ZK (111X

1 & P
= W ZKl%chk' — TkkaOf(X),k * k,,
i=1

n

q
1
Cov(wig, wa1lX) = E[wg - wp | X] = TS ZKz’Zx(XiC_xC) ZIE[ﬂi,kﬂi,k’pq
i1 k=1

n

q
1 p
= —nhp+1 ZKIZX(XIC —XC) ZTkkr — 0.

i=1 k’=1
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Proof of Lemma 4. Given the definition of 17]“.‘  we have

. , djx
IE[nj’lei,Xj]:IE I é]'SCk—O_(Xj) —7

d',k

Ck—#x]‘)
- [ -

Next, we analyze the term —d; ;/0(X;).

When d]-l- =0, for d]-,k, we have
dji = [0 (X5, X{) - 0 (X))]
+8(X5, Xf1) - g(Xi) - B(Xi) T (XS - Xf)
= c|o’(X)T (XS = X{) + Dy |+ Dy,
where Dy is defined as

D, = o(%(x; - X)) o”(Xi)(XS —Xf)).

Note that we will substitute IE(q;rlei,Xj) into IE(h‘p WjiLjiiq;lei) in Equation (A.23), and the
order of D; becomes h*v? in integration, which is equivalent to an O(h?) term if we define
v = (X£ = X{)/h. Similarly, we have Dy = O($(X¢ = X{)TB/(X;)(X§ = X{)) O((X - X{)?), and it
will become a smaller order term when combined with the kernel function W. Hereafter, we
denote all such terms as s.o. for notational simplicity.

For 1/0(X;), we have

1 1 1 1 , . .
7)) = oE x) 0% o2(x) DG X e

In this case, it will be sufficient to keep the first term ﬁ only and we have

dj,k
o(X;)

fler) = Crip(Xj = X{) +5s.0.,

where
Crik = —f(cp)cka’ (X;) /o (X))
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When dl-]- =1, we have

dig=cy [a(xf,xf) +0'(XEXT(XE = XE) - o(X;) + s.o.]

+ (X5, X0) + BXE, X T(XF - X) — g(Xi) — BX) T (XS - Xf)
= e[ o (X5, X = o(X3)] + (XE, X)) - g(X;) + 5.0,
+ oo’ (X5, X + BxE, XN = BX) T (XS - X5).
Next,

1 1 o' (X, X{)T
o(Xj) " o(X5, X4 o2(XE,XY)
1 a(X;) —a(Xf,X]d) o—’(Xf,Xf)T

= + - (X¢ = X{) +s.0. (A.18)
o(X;) o(xf,xf)a(xi) az(Xf,X]’.’l) It

(X]? - X{) +s.0.

It can be shown that the second term in Equation (A.18) is of order A and the third term
in Equation (A.18) is of order & in IE(h‘P WjiL]'iq]’flei), both of which can be omitted so that
1/0(X;) = 1/0(X;) +s.0. and

dir
- G(]X‘)f(ck) = Caip + Caip(X§ = X{) +5.0,, (A.19)
]
where
Caig = —flen) [ex (0 (X5, X)) = 0(X)) + 8(XF, X{) - g(Xi) | /o (X)),
Caie = —f (ci) [exo”(XE, XD + BXEXT = B(X)T |/0(X)).
|
Proof of Lemma 5. In taking expectations of W;,k’ﬁ,m' we assume C — % < Cpy— ad(]—);';) The
d; dim .
results for the case of ¢, — #;/) >Cp— #X]) will be the same.
dix d;
* ot - , B , " WX X
E[Uj,krlj,mlxiixj]_m[l (e] < Gk O'(X]'))l(g] <Cm G(Xj))lxvx]]
dj,k d],m
-t,E|1 €j < Ck— T){]) |XZ',X]' -1 E|1 Ej < Cp— TX]) |Xi,Xj + T Ty
dj dim
=(1-1)E|1{¢j < - er) 1Xi, Xij |~ B|1{e; <cp— ij) 1Xi, X | + Tk T (A.20)

Similar to Lemma 4, we analyze [E [q;kq;'lei,Xj] under two cases: dj; = 0and d;; = 1. Lemma 4
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implies
Cli’m(X]?—XiC)-I-S.O. if d]l =0,

E(n: |X;,X;)= A.21
(X5 ;) {sz + Caim(XE = X() +s0. ifdji=1, (A.21)
where Cy; ,,, Ci m, and Cs; 5, are defined similarly to Cy;, Cy; x, and Cs; x in Lemma 4.

Using both Lemma 4 and Equation (A.21), we obtain the following two results. When
dj; = 0, Equation (A.20) becomes

IE[n]f’kq;lei,Xj] =(1- Tm)(Ch-,k(X]? -X5)+ Tk) - Tk (Cu,m(Xf - X))+ Tm) + Tk Tpyy + 5.0.
= (1 - Tm)Tk + C4i,km(X; - ch) + s.0.,
where
Caijm = (1 =1)Ciik = % Crim-

When d;; = 1, Equation (A.20) becomes

B [177 17l X, X;] = (1= ) (Cat e + Cai( X§ = XE) + )
- T (Czi’m + C3i,m(X]? -X{)+ Tm) + T T,y + S.0.

= CSi,km + C6i,km(X]€ - XIC) +s.0.,
where

CSi,km = (1 - Tm)Tk + (1 - Tm)C2i,k - TkCZi,m
C6i,km = (1 - Tm)c3i,k - TkCSi,m-

Proof of Lemma 6. Rewrite Sy, as

n

1 n o n o n 1 n
_ 2YA7..T .. Tt * - 2707272 % *
Stkm = mZZZ%‘ WiiLji Wi Liitgj i 1 + 3h2P ZZ%‘ WiiL3itt kM m
i=1 j=1 I=1 i=1 j=1
i#j#l

= Sl,km,a + Sl,km,b'

The first term S g, , can be written as

Il
—_
-
Il
—_
—
Il
—_

where H;,(X¢, X6, X¢) is a symmetrized version of ¥>W;;L;;W);L;;#% 1 and is given b

i
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Hla(XiC:X]q:X ) (h 2P 7/1 ji ]lelelr/] krll m+h VJ'ZWijLilelejr];kWZm

+h Pyt WiiLji Wit Lin; 175 ,)-

We first calculate the expectation of the following term:
B [Hyo(XE, X, XP)| = B{y B[P WL |X;]- B[R P WLy, X} (A.22)
The calculation of IE [h‘l WjiLji’?;,k|Xz‘] will suffice.
E[W P Wi L (|X; ] = B[R P W3 (X, dj; = 0] P(dj; = 01X;)
+ IE[h‘ijiq;’lei,dji = 1] : p(d]l = 1|Xl)/\ X (1 + O(/\))
=Ciik J- h™P Wji(X]‘f —Xf)f(X]‘f,Xfl)dX]?

#ACoik ) | FPWif(XSIXD)AXS x P(dgi = 1) x (1+ O(1))

Xd,dg=1
+ACsi k Z fh‘PW] (X = XE)f (XEIRN)AXE x P(dg; = 1) x (1+O(A))
X4,dgi=1
_chkfw hv  F(X)ho + = h2 Terx v+o(h2)]dv
+ACyi g Z Jw [f (X6, XY + v f'(XE,X4) + o(h ]dvx 1+0(}))
Xd,dg=1
+ AhCy; i z va )[F(XE XD +hvf (X, X + o(h)] dv x (1 + O(1))
X4,dgi=1
= Ay h? + O(h*) = Ay k A+ O(AR?), (A.23)
where
Atix=Crixpaf(X
A21k—_C21k Z fXC Xd
Xd,d;=1
Similarly,
E [P Wiyt [Xi] = Ajuh® + O(h*) = Agi A+ O(AR?),
where

Ajim=Crimpaf (X

A2i,m: C21m Z fXC Xd
X, dg=1
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Substitute the results for both [E [h‘p Wjiij]’f k|Xi] and [E [h‘p WliLliW7m|Xi] into Equation (A.22)
to get

E[Hio(X{, X5, XP)| = A7, bt = A% P A+ A3 A2+ A5 g O+ A5 B+ A P02 4 5.0,
where
A;,km = IE[VizAli,kAli,m];
Aykm =B [Viz (ArikAim + Ali,mAZi,k)]l
A; km — =E [A2i,kA2i,m] .

The expressions for A1 m? A;km, and Ag,km are omitted as they are associated with terms of

smaller order and are not used in the proof.

Next, consider Sy .-

1 1
S1kmb = ) ZHlb (X7, XC

where Hj;, is a symmetrized version of h=2Py? szl-L]Zi 17; kq; , and it takes the following form:

2 2 “2p 2212k
Hyp (X}, X5) = (h p%W L]1’7]k’7]m+h Py; WijLijWi,kﬂi,m)-

N =

We utilize Lemma 5 to calculate the expectation of IE [Hlb(Xf,X]?)].

B[Huy (X5, X)] = B[y B [h 2P WELE o, |
and

E[h2PWELEs g7 1% = B[P W Zq]kq]m|Xl,d],_0] d;; = 0|X;)
+ B[R Wit g7 X, dji = 1] P(dj; = 11X;)A ><(1+O(/\2))

= (1—rm)rkhpjh PW?f (XS, X)d XS
+hP C4i,km J WP W]21 (X]C - ch)f(X]C, X]d)dX]C

+A2 ) | BPW2{Csi o+ Coigom( X5 = X)L (XEIRD)AXE x P(dgi = 1) x (1+0(A?))
Xd’dfi

= (1-1,)th™P j W2(@) [ £(Xi) + f'(Xi)hw + O(h?) | dv
+C4i,kme2(v)v )+ f(X)hv + O(h?) ]dv+O (A?)

=(1- Tm)Tkh_pf(X,-)jWZ(v)dv +5.0.
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Hence,
E[Hyy(X{, X5)] = Al h P
where
Appm = (1 =) 0o E [)/izf(Xi)].
Similarly, we can show IE[Hl b |X ] O(h™P). Hence, by the H-decomposition, we have

S1kmb = Tl_lIE[Hw(Xf;Xf)]
n

+2n! Z{IE [Hi(XEXOIX; ] - E[Hip(XE, X9} + 5.0
i=1
= A} 1y (nhP) L+ 07 2O((nh?) 1),

Combining the results for Sk, , and Sy k. 5, We have

Stm = Al ph® = Ay P A+ A% A2+ A (b)) Ay S+ A BAA+ AY L A% + s.0.

Proof of Lemma 7. Write

Syp=n" ZZHQ (X£, X5),

i=1 j=1
j#i

where
Hy(X{, Xf) = (h P& WLt} i + W PS;W i]-q;kej).

Using Equation (A.23) and the independence between ¢; and ’7;,k' we have
(6P WL} il Xi| = ;6B [P Wi L X
= 6;¢; (A1 xh” = Agi kA + O(H*) + O(AR?))
= Blll"khz + BlZi,k/\ + O(h4) + O(/\hz),

where By = 0;¢;A1j and By x = 0;¢;A,; k. Using the H-decomposition similar to that for
S1kmp in Lemma 6 and the fact that E[Hy(X{, X¢)| = 0, we have

S 2 En By b2+ 2 En BiyxA+ B ” VB A
2k =T 11,k — 12,k S.0. = 1,k 2,k S.o.,
n i=1 n i=1 \/ﬁ \/E

where

and both B} | and B} ; are O,(1). [
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Proof of Lemma 8. The 0,(1) term in Equation (A.6) results from four different sources through-
out the derivation:

1. In the proof of Proposition 2, the use of F(cx + z) — F(cx) = zf(cx) + 0(z) gives a smaller
order term o(z) that contributes to the 0,(1) term in Equation (A.6).

2. In the proof of Proposition 2, a Taylor series approximation is applied in the second-to-
last equality in Equation (A.3),

fulex - T;Q = fle) = f (e 5+ o)

yielding an o0, (1) term.

3. The term R, x(0) adds another 0,(1) term in the proof of Proposition 2.

pl

4. Finally, the use of Equation (A.4) in L,(0) in the proof of Proposition 3 gives another
0p(1) term.

We first analyze the leading term of each of the above four 0,(1) terms and show that, when
combined, the 0,(1) term in Equation (A.6) is O,(h+ A + \/T)

p =1 so0 that both X7 and v are scalars. The result remains the same for the general case when
p > 1. Consider source 1. The second equality in Equation (A.3) can be written as

< ¢ Ai d; 1, d; 2
;IES[Bn,k(Q)lX] = ;;(Kuﬁ @fe(ck - T;Z)) +5fe (Ck - T)?J)UZZ(XZ') + O(Zz)le),

To simplify notations, assume

where the leading term of the 0,(1) term is Zk »3 ( leo ’k% t(ck — o ’;l))#;i)dz). Let
fe.i fé(ck ) X )dz) and %{ = % A further analysis shows
9 A;
Zi(Kz’xJ‘ . %fg,z ZZ; )
k=1 i=1 0 o7(Xi)
q . ’
= %Z ” K;,{;i Ak
i o)
_ 1 li(“k )| 7 i e 1(,’;{“(Mk+vTx) Loy 10’*ﬁ'(uk+vTaz 2T (uk)
nh? 6 (= a7 Lt 07? S +vT )R Y gm oy + v T 36) %557
q
11 T\[Op(1) Op(h ))( )
= — Uy, vV +0,(1
Vnhp 6 Z( k )(Op(h) Op(1) P
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where the probability orders are obtained by a method similar to Lemma 1. Hence the third-
to-last equality in Equation (A.3) can be rewritten as

q
) EdBucO)X]= ZZ;" ”‘f“ 0| =) (A24)

Consider source 2, where an additional 0,(1) term is generated while approximating f, in
Equation (A.24). Rewrite Equation (A.24) as

ilE (B (6)IX]—ii%[f(c T P ' (L)
- elPnk —k:1 - 2G(Xi) e\Ck e\tk O'(Xl % ,—nhp
1. & KixAl'z,k fg’(Ck) 1
:;Xﬁ[fg<ck>—m(ck<a<xi>—a<x>>+n>+ - +op(W)
1 leA kfé d leA kckfe Ck 1
/ C_ € o) ,
kZZ +kZ s -5+ 0y |

D2 e f!
where Zzzl Y Ig’czc’;’;;&ff)(ck)a’(x)(Xf —x°) is the leading term of the 0,(1) term from source 2

and we can further show that

d szA kckfs(ck) , c c
ZZ—% oy X =x)

k=1

2
= chﬂ(ck)(uk:VT)(%;((};)) gp((:z)))(ik) = Op(h),

p

where the probability orders are obtained by a method similar to that in Lemma 1.

Combined with Equation (A.24), Equation (A.3) can be rewritten as

ZIES[Bn,k(Q)IX]:%GT(SH+OP(h))6’+O (\/;T) (A.25)

Consider source 3. To explicitly see the probability order of R, x(0), it is helpful to work
with B, x(0) first. Assume A;; > 0 in Equation (A.1). The symmetric case A;; < 0 gives the
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same result.

q q n Ai,k dlk dlk z
ZBn,k(Q) = ZZKi"f PrOb(Ck_—a(Xi) <& <k (X)) + G(Xi))dz

k=1 k=1 i=1 0
q9 n Ak g , "
- K; Flop——% +—)—P (c - ik )]dz
kai:1 ZXJ; [ 6( o) ey A\t e(x))
1
= 5678,0+0,(1)

where the last line follows from the proof in Equation (A.3). We conclude that ZZ:] B, x and
Zzzl E,[B,,x(0)IX] have the same probability order and the leading term of the 0,(1) term in

source 3 can also be characterized by O,(h) and O (\/7) in Equation (A.25).

Consider source 4. S,, is defined in Section 2. Using Lemma 1, it is easy to see the leading

terms of the 0,(1) term in each of the block matrices in Equation (A.4) is O (h2 + A+ ﬁ),

2
O (h+ F) and Op(h“+ A+ \/7) Hence, we conclude that the overall leading term is O, (h +
A+

VnhP )
Given the above analysis for the leading terms from four sources, Equation (A.5) can be
written as

L) = Wer(s, Op(h+A+

«T
2 o() )10+ W, 0+ 0,(

1 1
VnhP P VnhP

where the O, (h) term from source 2 is combined with the leading term from source 4. Let

), (A.26)

=Op(h+ A+ )-

1
Vnh?P
The first order condition of Equation (A.26) w.r.t. 0 gives

6,=-2s+Dylw:. (A.27)

We note that

(S+D) ! =8 =S D(Ipsp+S” 1D) s!

—s5lo S‘lD(Iq+p ~(s'D)' +(s'D)’ —---)5—1

=S1-571Ds 1 +0,(1),

pl
where the second equality follows from the fact that D — 0 as n — oo and the sum of the
absolute value of each row in S™'D will be less than 1 as n — co. Thus the eigenvalues of S™' D
are all less than 1 in absolute value and it justifies the expansion in the second equality. This
result allows us to write Equation (A.27) as

6, ~ - I g1y, T g1 pgtyye (A.28)

f(x) "f)
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Compared with Equation (A.6), Equation (A.28) includes the leading term of the 0,(1) term.
Given Equation (A.28), Equation (8) can be written as

=== (S7"),, Wi+ o(x) (s'Ds™)

e Wi, (A.29)

11

where (S‘lDS_l)11 is the upper-left g x g block matrix in S7'DS~! and it is Op(h+ A+ \/iﬁ)
The remaining analysis essentially repeats that in Section 3 with an extra term on the r.h.s. of
Equation (A.29). For example, both ¢(x) in Equation (9) and ¢ ;(X;) in Equation (10) can be
updated as

—

1 o
g(x) - —nhpq

¥) & Kixﬁzk 1 o) r *
(x);; Flex) qux 3 (S7IDS7!), Wi, +g(x), (A.30)

~~

4(x)=— 1 o*x)i Kjiﬁ;,k 1 o*(x)
- nhPq f(x) 4 fle) e F ()

j#i

—

’[\4=

T(s7'DSTY), Wi, i+glx),  (A31)

~~

where Wy, _; denotes the variable obtained by excluding X;. Define

1 o(x) 1. & Kjiﬁ;,k
G =T , A.32
b g <x>;; 7 (432
j=i
Gy = — 1 ix)ﬁ(s—lps—l) W; (A.33)
Nt [0 T

Substitute Equation (A.31) into Equation (12) and we have

n

cvl(h,A)zn—IZ(G1 i+ Gy )+ 2on” Za )(G1i + Gy i)

i=

:%ic; 4= ZGI Gyt ZG S+ Zo- )€iG1_j

+— Za 1)€iGo (A.34)

= G1+G2+G3+G4+G5, (A.35)

where terms G1 to G5 are defined in the order of the terms in the second equality. Both G1
and G4 are already analyzed in Equation (12). We will focus on G2, G3, and G5. We will show
that the orders of G2, G3, and G5 are smaller than those of G1 and G4. Hence omitting the
0,(1) term in writing Equation (8) does not affect the cross-validation result.

Consider G3. Recall S is O(1) while D is O,(h+ A + —=—) so that (S’IDS’I)11 is also O, (h+

\/T
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TP n3h2pz7/” (s,

1Zl 1 Kliﬂ;,1’71*,1 }1:1 Z?:lKjiKliW;,lﬁzq
]:tl I# jei i .
x : : - (s7'ps™ )11 Iy (A.36)
Z] pya 1KJzKll’7]q’711 Z] 121 -1 Klz”ﬁ,qﬂf,q
j#i = j#i

Proof of the probability orders for terms in Equation (A.36) follows exactly the same steps for
T
S1 km in Equation (15) except for the multiplication of (S‘lDS‘l)11 and (S‘IDS‘I)“. Con-
sequently, G3’s contribution to CV;(h, A) is the result in Lemma 6 multiplied by a factor of
1 \2
Op(h+ A+ W) .

Using a similar argument and by noting that G, _; is equivalent to G; _; multiplied by an
Op(h+ A+ \/T) term , we can show G2’s contribution to CVj(h, 1) is less than the result in

Lemma 6 multiplied by a factor of O,(h+ A + \/7) Similarly, G5’s effect on CV;(h, 1) is less

than the result in Lemma 7 multiplied by a factor of O,(h+ A + W)'

To summarize, in writing Equation (8), we omit the 0,(1) in Equation (A.6), the leading
term of which is added back in Equation (A.28) and Equation (A.29). The impact of the second
term on the r.h.s. of Equation (A.29) on the cross-validation exercise is summarized by G2,
G3, and G5 in Equation (A.34). We show that the probability orders of G1 and G4 dominate
those of G2, G3, and G5 in Equation (A.34), which justifies the omission of the 0,(1) term in
Equation (8). [

3 Figures for other distributions

Similar to Figures 1 and 2, we include the results for the Laplace and two mixture normal
distributions in Figures 1 to 3. Next, similar to Figures 3 and 4, we attach figures for the
Laplace and two mixture normal distributions in Figures 4 to 6.
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Figure 1: DGP 2 Laplace distribution coverage results. Shaded interval: asymptotic 95% con-

fidence interval, averaged over 1000 replications; solid line: g(x). X4 = 0 in the left panel and
X4 =1 in the right panel.
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Figure 2: DGP 2 0.95N(0,1) + 0.05N(0,9) distribution coverage results. Shaded interval:

asymptotic 95% confidence interval, averaged over 1000 replications; solid line: g(x). X4 = 0
in the left panel and X¢ = 1 in the right panel.
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Figure 3: DGP 2 0.95N(0,1) + 0.05M(0,100) distribution coverage results. Shaded interval:

asymptotic 95% confidence interval, averaged over 1000 replications; solid line: g(x). X4 = 0
in the left panel and X? = 1 in the right panel.
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Figure 4: DGP 2 Laplace distribution results. Dashed lines: bootstrap 95% confidence interval;

shaded interval: asymptotic 95% confidence interval; solid line: g(x). X = 0 in the left panel
and X4 = 1 in the right panel.
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Figure 5: DGP 2 0.95N(0,1) + 0.05N (0, 9) distribution results. Dashed lines: bootstrap 95%

confidence interval; shaded interval: asymptotic 95% confidence interval; solid line: g(x).
X4 = 0 in the left panel and X¢ =1 in the right panel.
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Figure 6: DGP 2 0.95N(0,1) + 0.05N(0,100) distribution results. Dashed lines: bootstrap

95% confidence interval; shaded interval: asymptotic 95% confidence interval; solid line: g(x).
X% = 0 in the left panel and X =1 in the right panel.
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