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A Derivations of equation (3.5)

We first write:

(T − p̄) · tr
(
Σ̃(p̄)−1Σ̂∗(w)

)
= tr

(
Σ̃(p̄)−1

T−1∑
t=p̄

ε̂∗t+1(w)ε̂∗t+1(w)′

)

=
T−1∑
t=p̄

tr

{
Σ̃(p̄)−1

(
p̄∑
p=1

w(p)ε̂t+1(p)

)(
p̄∑
p=1

w(p)ε̂t+1(p)

)′}

=
T−1∑
t=p̄

tr




σ̃11 σ̃12 · · · σ̃1K

σ̃21 σ̃22 · · · σ̃2K

...
...

. . .
...

σ̃K1 · · · · · · σ̃KK


︸ ︷︷ ︸

Σ̃(p̄)−1

w(1)


ε̂1,t+1(1)

ε̂2,t+1(1)
...

ε̂K,t+1(1)

+ · · ·+ w(p̄)


ε̂1,t+1(p̄)

ε̂2,t+1(p̄)
...

ε̂K,t+1(p̄)




w(1)


ε̂1,t+1(1)

ε̂2,t+1(1)
...

ε̂K,t+1(1)



′

+ · · ·+ w(p̄)


ε̂1,t+1(p̄)

ε̂2,t+1(p̄)
...

ε̂K,t+1(p̄)



′


=

T−1∑
t=p̄

p̄∑
i=1

p̄∑
j=1

w(i)w(j)

{
K∑
k=1

K∑
`=1

σ̃k`ε̂k,t+1(i)ε̂`,t+1(j)

}

≡
T−1∑
t=p̄

p̄∑
i=1

p̄∑
j=1

w(i)w(j)ε̃t+1,ij

= w′Ŝw.
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Let R̃ be the squared root of Σ̃(p̄)−1, i.e., Σ̃(p̄)−1 = R̃R̃. The matrix Ŝ can be alterna-

tively expressed in a compact form as:

Ŝ =
T−1∑
t=p̄

ε̃t+1ε̃
′
t+1, (A.1)

where

ε̃t+1 =


ε̂1,t+1(1) ε̂2,t+1(1) · · · ε̂K,t+1(1)

ε̂1,t+1(2) ε̂2,t+1(2) · · · ε̂K,t+1(2)
...

...
. . .

...

ε̂1,t+1(p̄) ε̂2,t+1(p̄) · · · ε̂K,t+1(p̄)

 R̃ ≡


ε̃1,t+1(1) ε̃2,t+1(1) · · · ε̃K,t+1(1)

ε̃1,t+1(2) ε̃2,t+1(2) · · · ε̃K,t+1(2)
...

...
. . .

...

ε̃1,t+1(p̄) ε̃2,t+1(p̄) · · · ε̃K,t+1(p̄)


is a p̄×K matrix.

Moreover, equation (3.5) can also be conveniently expressed as:

w′Ŝw = w′

(
T−1∑
t=p̄

ε̃t+1ε̃
′
t+1

)
w = w′ε̄′ε̄w, (A.2)

where

ε̄′ =


ε̃1,p̄+1(1) . . . ε̃1T (1) ε̃2,p̄+1(1) . . . ε̃2T (1) · · · ε̃K,p̄+1(1) . . . ε̃KT (1)

ε̃1,p̄+1(2) . . . ε̃1T (2) ε̃2,p̄+1(2) . . . ε̃2T (2) · · · ε̃K,p̄+1(2) . . . ε̃KT (2)
...

. . .
...

...
. . .

... · · · ...
. . .

...

ε̃1,p̄+1(p̄) . . . ε̃1T (p̄) ε̃2,p̄+1(p̄) . . . ε̃2T (p̄) · · · ε̃K,p̄+1(p̄) . . . ε̃KT (p̄)

 (A.3)

is a p̄×K(T − p̄) matrix.

In a special case of K = 1 (i.e., the univariate AR(p)), it is obvious to see that (T − p̄) ·
tr
(
Σ̃(p̄)−1Σ̂∗(w)

)
reduces to:

T−1∑
t=p̄

p̄∑
i=1

p̄∑
j=1

w(i)w(j)σ̃−2ε̂t+1(i)ε̂t+1(j) = σ̃−2w′ε̄′ε̄w,

where ε̂t+1(p) for t = p̄, . . . , T −1 and p = 1, . . . , p̄ are OLS residuals and σ̃2 is the estimated
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variance from the largest model, i.e.:

σ̃2 =
1

T − p̄

T−1∑
t=p̄

ε̂t+1(p̄)2,

and ε̄ defined in (A.3) reduces to:

ε̄ =


ε̂p̄+1(1) ε̂p̄+1(2) · · · ε̂p̄+1(p̄)

ε̂2(1) ε̂2(2) · · · ε̂2(p̄)
...

...
. . .

...

ε̂T (1) ε̂T (2) · · · ε̂T (p̄)

 ,

which is a (T − p̄)× p̄ matrix. The Mallows averaging criterion becomes:

CT (w) = σ̃−2w′ε̄′ε̄w + 2p′w. (A.4)

Since the constant σ̃−2 plays no practical role in model selection/averaging criterion,

multiplying (A.4) by σ̃2 gives another equivalent expression of (A.4):

CT (w) = w′ε̄′ε̄w + 2σ̃2p′w, (A.5)

which equals equation (13) in Hansen (2007, p.1180) or equation (16) in Hansen (2008,

p.344).

B Efficient Computation of CVT,h(w)

First note that ε̃t+h(p) defined in (4.4) in the main text is the min(t− p̄+ 1, h)-th row of

the `ht ×K removed leave-h-out residual matrix, denoted by ẽt:h(p).

A computationally convenient formula for ẽt:h(p) can be derived as follows:

ẽt:h(p) = Yt:h − Zt:h(p)Ψ̃h,t(p) = (I`ht −Pt:h(p))
−1 êt:h(p), (B.1)

where Yt:h and Zt:h(p) are `ht×K and `ht×m block matrices for the removed observations:

`ht, . . . , t, . . . ,
¯̀
ht in Y and Z(p), respectively, Pt:h(p) = Zt:h(p)(Zh(p)

′Zh(p))
−1Zt:h(p)

′, and

A3



êt:h(p) is the `ht×K block matrix of êh(p) for the removed observations. The second equality

in (B.1) follows from using the following formula for Ψ̃h,t(p):

Ψ̃h,t(p) = (Zh(p)
′Zh(p)− Zt:h(p)

′Zt:h(p))
−1

(Zh(p)
′Yh − Zt:h(p)

′Yt:h)

= Ψ̂h(p)− (Zh(p)
′Zh(p))

−1
Zt:h(p)

′
(
Yt:h − (I`ht −Pt:h(p))

−1 Zt:h(p) (Zh(p)
′Zh(p))

−1
Zh(p)

′Yh

+ (I`ht −Pt:h(p))
−1 Pt:h(p)Yt:h

)
. (B.2)

Formulae (B.1) and (B.2) are derived by directly applying the arguments in Racine (1997)

and Hansen (2010) to our VAR setting. The detailed derivations are omitted here and are

available upon request from the authors. Using (B.1), it is not necessary to actually fit

T − p̄− h+ 1 separate models when computing the CVT,h(w) criterion and as a result, the

computation of the CVT,h(w) criterion is of order O(T ) instead of O(T 2).

Let Ph(p) = Zh(p)(Zh(p)
′Zh(p))

−1Zh(p)
′ be the regular (T − p̄− h+ 1)× (T − p̄− h+ 1)

projection matrix to the subspace spanned by the columns of Zh(p). We next wish to

examine the relationship between Ph(p) and its leave-h-out version, denoted by P̃h(p). This

relationship will be used in several places in the proof for the asymptotic optimality of our

MCVAh procedure, as will be shown in Section C.4 in the Appendix. We first need to develop

some notation.

Denote by St:h the `ht × (T − p̄ − h + 1) selection matrix with a `ht × `ht block matrix

equal to I`ht and 0 elsewhere - namely, for a particular t, matrix St:h is used to extract the

block matrix corresponding to `ht removed observations. For example, êt:h(p) in (B.1) can

be taken from êh(p) by using êt:h(p) = St:hêh(p). We also denote by eht the `ht × 1 selection

vector with 1 in its min(t − p̄ + 1, h)-th element and 0 elsewhere. To be more explicit,

St:h =
(
0`ht×(`ht−p̄) I`ht 0`ht×(T−h−¯̀

ht)

)
if `ht− p̄ > 0; St:h =

(
I`ht 0`ht×(T−h−¯̀

ht)

)
if `ht− p̄ = 0;

and eht = (01×(min(t−p̄+1,h)−1), 1,01×(`ht−min(t−p̄+1,h)))
′.

Using the selection matrix St:h, ẽt:h(p) in (B.1) can be equivalently rewritten as: St:h(Yh−
P̃h(p)Yh) = (I`ht − Pt:h(p))

−1St:h(Yh − Ph(p)Yh). Cancelling out Yh on both sides of

the above equation and then rearranging yield St:hP̃h(p) = (I`ht − Pt:h(p))
−1St:h(Ph(p) −

IT−p̄−h+1) + St:h. Denote P̃t:h(p) = St:hP̃h(p) and Dt:h(p) = (I`ht −Pt:h(p))
−1St:h. Applying

the selection vector eht to P̃t:h(p) gives the (t − p̄ + 1)-th row of the leave-h-out projection
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matrix P̃h(p), i.e.:

e′htP̃t:h(p) = e′ht(Dt:h(p)(Ph(p)− IT−p̄−h+1) + St:h). (B.3)

Lastly, stacking (B.3) vertically over t = p̄, . . . , T −h results in P̃h(p), as stated in Lemma 1

below.

For the presentation of Lemma 1, we denote by Eh the (T − p̄− h+ 1)× `h matrix with

the (t− p̄+ 1)-th row that is formed by e′ht as its
∑t−1

i=p̄−1(`hi+ 1), . . . ,
∑t

i=p̄−1 `hi column row

subvector and 0 elsewhere, and with `h,p̄−1 set to 0. We also denote by Dh(p) and Sh the

`h × (T − p̄− h+ 1) matrices vertically stacking (I`ht −Pt:h(p))
−1St:h and St:h, respectively.

Lemma 1. (Shortcut formula) The leave-h-out estimates µ̃h(p) of µh based on the fitted

h-step VAR(p) model can be represented by µ̃h(p) = P̃h(p)Yh, where P̃h(p) is related to

Ph(p) as follows:

P̃h(p) = Eh (Dh(p)(Ph(p)− IT−p̄−h+1) + Sh) . (B.4)

Alternatively, (B.4) can also be expressed as:

P̃h(p) = D̃h(p)(Ph(p)− IT−p̄−h+1) + IT−p̄−h+1, (B.5)

where we use the fact that EhSh = IT−p̄−h+1 and denote D̃h(p) = EhDh(p).

Lemma 1 generalizes to h > 1 for the projection matrix based on leave-h-out cross-

validation. To see this, in an important special case when h = 1 (corresponding to leave-

one-out or Jackknife cross-validation), let qij(p) denote the (i, j)-th element of the one-

step projection matrix, denoted by P(p). In this particular case, we have `ht = 1 for all

t, `h = T − p̄, and the matrices Eh, Dh(p), and Sh in (B.4) become IT−p̄, the diagonal

matrix D(p) of dimension (T − p̄) with the i-th diagonal element equal to (1 − qii(p))
−1,

and IT−p̄, respectively. As a consequence, (B.4) reduces to equation (1.4) of Li (1987):

P̃(p) = D(p)(P(p)− IT−p̄) + IT−p̄.
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C Mathematical proof

C.1 Proof of Theorem 1

For each candidate VAR(p) model, recall P(p) = Z(p)(Z(p)′Z(p))−1Z(p)′ and P∗(w) =∑p̄
p=1w(p)P(p). We write and expand the sum of squared residuals as:

tr
(

(Y − µ̂∗(w))Σ̃(p̄)−1(Y − µ̂∗(w))′
)

= tr
(

(µ− µ̂∗(w) + e) Σ̃(p̄)−1 ((µ− µ̂∗(w) + e)
′
)

= vec((µ− µ̂∗(w) + e)′)′
(
IT−p̄ ⊗ Σ̃(p̄)−1

)
vec((µ− µ̂∗(w) + e)′)

= vec((µ− µ̂∗(w))′)′
(
IT−p̄ ⊗ Σ̃(p̄)−1

)
vec((µ− µ̂∗(w))′)

+ vec(e′)′
(
IT−p̄ ⊗ Σ̃(p̄)−1

)
vec(e′)

+ 2vec((µ− µ̂∗(w))′)′
(
IT−p̄ ⊗ Σ̃(p̄)−1

)
vec(e′), (C.1)

where vec and ⊗ denote a column stacking operator and Kronecker product, respectively,

and for the second equality we use the property that for conformable matrices A, B, and

C, tr(ABC) = vec(A′)′(I⊗B)vec(C). The first two terms on the right-hand side of equa-

tion (C.1) correspond to the in-sample squared error and error covariance, respectively, and

the latter term does not depend on the candidate model.

We next examine the third term on the right-hand side of equation (C.1). Rewriting

µ̂∗(w) = P∗(w)(µ+ e) and thus µ− µ̂∗(w) = (IT−p̄ −P∗(w))µ−P∗(w)e, we have:

2vec((µ− µ̂∗(w))′)′
(
IT−p̄ ⊗ Σ̃(p̄)−1

)
vec(e′)

= 2vec(((IT−p̄ −P∗(w))µ)′ − (P∗(w)e)′)′
(
IT−p̄ ⊗ Σ̃(p̄)−1

)
vec(e′)

= 2vec((µ′(IT−p̄ −P∗(w))′
(
IT−p̄ ⊗ Σ̃(p̄)−1

)
vec(e′)

− 2vec((e′P∗(w)′)′
(
IT−p̄ ⊗ Σ̃(p̄)−1

)
vec(e′)

= 2vec(µ′)′ ((IT−p̄ −P∗(w))′ ⊗ IK)
(
IT−p̄ ⊗ Σ̃(p̄)−1

)
vec(e′)

− 2vec(e′)′(P∗(w)′ ⊗ IK)
(
IT−p̄ ⊗ Σ̃(p̄)−1

)
vec(e′)

≡ r1T (w) + r2T (w), (C.2)
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where the third equality follows from the property that vec(AB) = (B′ ⊗ I)vec(A) for

conformable matrices A and B.

We first examine the term r1T (w). Note that p = pT is assumed to increase with the

sample size T . For each candidate model VAR(p), p = 1, . . . , p̄, we define:

ξ1T (p) ≡ 1√
T − p̄

vec(µ′)′ ((IT−p̄ −P(p))⊗ IK)
(
IT−p̄ ⊗ Σ̃(p̄)−1

)
vec(e′)

=
1√
T − p̄

vec(µ′)′
(

(IT−p̄ −P(p))⊗ Σ̃(p̄)−1
)

vec(e′), (C.3)

where ξ1T (p) satisfies ξ1T (p)/Γ1(p)1/2 d−→ N(0, 1) with Γ1(p) = plim ν(p)′ (IT−p̄ ⊗Σ)ν(p)/(T−
p̄), ν(p)′ ≡ vec(µ′)′

(
(IT−p̄ −P(p))⊗ Σ̃(p̄)−1

)
, and

d−→ denotes convergence in distribution.

This large sample result for (C.3) is an application of Proposition 15.1 of Lütkepohl (2005,

p.533). Equation (C.3) says that ξ1T (p)/Γ1(p)1/2 is a standard normal random variable.

Since the term r1T (w) in (C.2) can be expressed as 2
∑p̄

p=1w(p)ξ1T (p), r1T (w) is a weighted

sum of mean-zero normal random variables, implying E(r1T (w)) = 0.

We next move to evaluate the term r2T (w). We note that for each VAR(p) candidate

model:

vec(e′P(p)) = vec
(
e′Z(p) (Z(p)′Z(p))

−1
Z(p)′

)
=
(
Z(p) (Z(p)′Z(p))

−1 ⊗ IK

)
vec(e′Z(p))

= (Z(p)⊗ IK)
(

(Z(p)′Z(p))
−1 ⊗ IK

)
vec(e′Z(p)).

As a result, we write:

− 2vec((e′P(p))′
(
IT−p̄ ⊗ Σ̃(p̄)−1

)
vec(e′)

= −2vec(e′Z(p))′
(

(Z(p)′Z(p))
−1 ⊗ IK

)
(Z(p)′ ⊗ IK)

(
IT−p̄ ⊗ Σ̃(p̄)−1

)
vec(e′)

= −2vec(e′Z(p))′
(

(Z(p)′Z(p))
−1 ⊗ IK

)(
IKp ⊗ Σ̃(p̄)−1

)
(Z(p)′ ⊗ IK) vec(e′)

= −2vec(e′Z(p))′
(

(Z(p)′Z(p))⊗ Σ̃(p̄)
)−1

vec(e′Z(p)), (C.4)

where we use

((
Z(p)′Z(p)
T−p̄

)−1

⊗ IK

)(
IKp ⊗ Σ̃(p̄)−1

)
=
((

Z(p)′Z(p)
T−p̄

)
⊗ Σ̃(p̄)

)−1

.
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To evaluate (C.4), consider:

(
(Z(p)′Z(p))

−1 ⊗Σ1/2
)

vec (e′Z(p))

= (T − p̄)1/2

((
Z(p)′Z(p)

T − p̄

)−1/2

⊗Σ1/2

)
vec

(
(T − p̄)−1

T∑
t=p̄+1

εtz
′
t

)

= (T − p̄)1/2vec

(
(T − p̄)−1Σ1/2

(
T∑

t=p̄+1

εtzt(p)
′

)(
Z(p)′Z(p)

T − p̄

)−1/2
)
, (C.5)

where we recall that zt(p)
′ = (y′t−1, . . . ,y

′
t−p), t = p̄ + 1, . . . , T , is the (t− p̄)-th row of Z(p)

and e′ = (εp̄+1, . . . , εT ), and for the second equality we use the fact that vec(ABC) = (C′⊗
A)vec(B) for conformable matrices A, B, and C . Denote Γ2(p) = plim Z(p)′Z(p)/(T − p̄),
and let `(p) be a sequence of K2p × 1 vectors such that 0 < c1 ≤ `(p)′`(p) ≤ c2 < ∞ for

positive constants c1 and c2. We thus define:

sT = (T − p̄)1/2`(p)′vec

(
(T − p̄)−1Σ−1/2

(
T∑

t=p̄+1

εtzt(p)
′

)
Γ2(p)−1

)
,

and v2
T = Var(sT ) = `(p)′

(
IKp ⊗Σ−1/2

)
(IKp ⊗Σ)

(
IKp ⊗Σ−1/2

)
`(p) = `(p)′`(p). Under

Assumption 1, Theorem 3 of Lewis and Reinsel (1985) shows that as T →∞:

sT/vT
d−→ N(0, 1). (C.6)

Putting together the arguments in (C.5) and (C.6), it is obvious to derive the following

limiting distribution result that allows the lag order p to increase with the sample size:(
`(p)′vec(Σ−1/2e′Z(p))Γ2(p)−1/2

)
/
√
T − p̄

(`(p)′`(p))1/2
≡ `(p)′φT (p)

d−→ N(0, 1), (C.7)

where

φT (p) ≡ vec(Σ−1/2e′Z(p)Γ2(p)−1/2)/
√
T − p̄.

By the Cramér-Wold theorem, for any p ∈ {1, 2, . . . , p̄}, φT (p) then converges in distribu-

tion to a K2p-dimensional vector of multivariate standard normal random variables. Denote

ξ2T (p) ≡ φT (p)′φT (p). We thus have ξ2T (p)
d−→ χ2(K(p)), where χ2(K(p)) is a chi-squared
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distribution with degrees of freedom K(p) = K2p.

We now turn back to (C.4). Using the asymptotic normality results discussed above,

the consistency of Σ̃(p̄) (since the maximum lag order p̄ = p̄T increases with sample size),

and the fact that (C.4) (ignoring the constant −2 for a moment) is a quadratic form in

multivariate normal random variables, (C.4) is asymptotically equivalent to ξ2T (p), i.e., for

each p ∈ {1, 2, . . . , p̄}:

1√
T − p̄

vec(e′Z(p))′
((

Z(p)′Z(p)

T − p̄

)
⊗ Σ̃(p̄)

)−1
1√
T − p̄

vec(e′Z(p))− ξ2T (p) = op(1).

(C.8)

Denote ξ∗2T (w) ≡
∑p̄

p=1w(p)ξ2T (p). It then follows that E(ξ∗2T (w)) =
∑p̄

p=1w(p)E(ξ2T (p)) =∑p̄
p=1w(p)K(p). This further implies:

E(r2T (w)) = −2

p̄∑
p=1

w(p)K2p = −2K2p′w. (C.9)

Combining (C.1), (C.2), (C.3), and (C.9), we conclude thatE(CT (w)) = (T−p̄)E(LT (w)),

completing the proof.

C.2 Proof of Theorem 2

Similar to (C.1), we write and expand the sum of squared leave-h-out cross-validation

residuals as:

tr
(

(Yh − µ̃∗h(w))Σ̃h(p̄)
−1(Yh − µ̃∗h(w))′

)
= tr

(
(µh − µ̃

∗
h(w) + eh) Σ̃h(p̄)

−1 ((µh − µ̃
∗
h(w) + eh)

′
)

= vec((µh − µ̃
∗
h(w))′)′

(
IT−p̄−h+1 ⊗ Σ̃h(p̄)

−1
)

vec((µh − µ̃
∗
h(w))′)

+ vec(e′h)
′
(
IT−p̄−h+1 ⊗ Σ̃h(p̄)

−1
)

vec(e′h)

+ 2vec((µh − µ̃
∗
h(w))′)′

(
IT−p̄−h+1 ⊗ Σ̃h(p̄)

−1
)

vec(e′h), (C.10)

where the first term on the right-hand side of (C.10) corresponds the leave-h-out in-sample

squared error and the second term does not involve w. Writing µh − µ̃
∗
h(w) = µh −
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P̃∗h(w)(µh + eh) = (IT−p̄−h+1 − P̃∗h(w))µh − P̃∗h(w)eh, we further decompose the third term

on the right-hand side of (C.10) into:

2vec((µh − µ̃
∗
h(w))′)′

(
IT−p̄−h+1 ⊗ Σ̃h(p̄)

−1
)

vec(e′h)

= 2vec(µh
′)′
(

(IT−p̄−h+1 − P̃∗h(w))′ ⊗ IK

)(
IT−p̄−h+1 ⊗ Σ̃h(p̄)

−1
)

vec(e′h)

− 2vec(e′h)
′(P̃∗h(w)′ ⊗ IK)

(
IT−p̄−h+1 ⊗ Σ̃h(p̄)

−1
)

vec(e′h)

≡ r̃1Th(w) + r̃2Th(w). (C.11)

We now examine the r̃1Th(w) and r̃2Th(w) terms as follows. Using the similar arguments

to those used in the proof of Theorem 1, specifically (C.2) and (C.3), with µh, µ̃h, P̃∗h(w),

IT−p̄−h+1, Σ̃h(p̄), and eh in place of µ, µ̂, P∗(w), IT−p̄, Σ̃(p̄), and e, respectively, it can be

shown that, similar to the r1T (w) term in (C.2), r̃1Th(w) is a weighted sum of mean-zero

normal random variables, i.e., E(r̃1Th(w)) = 0 as T →∞.

Turning to the r̃2Th(w) term, we haveE(r̃2Th(w)) = E(tr(P̃∗h(w)ehe
′
h)) = tr(P̃∗h(w)E(ehe

′
h)) =

0 since for any given h ≥ 1 and a particular t, the (t− p̄ + 1)-th row of P̃∗h(w) has `ht zero

elements (corresponding to `ht − p̄+ 1, . . . , ¯̀
ht − p̄+ 1 columns) and non-zero elements else-

where. Conversely, the matrix E(ehe
′
h) has an exactly opposite non-zero/zero structure to

P̃∗h(w), and, as a result, the element-wise multiplication of the same rows of P̃∗h(w) and

E(ehe
′
h) is always zero and E(ehe

′
h) is symmetric. This completes the proof.

C.3 Proof of Theorem 3

In the sequel we use C to denote a generic positive constant that is independent of

the sample size and may be different in different places. Specifically, we begin with the

observation that:

C∗T (w) = LT (w) +K +
2

T − p̄
vec(µ′)′ ((IT−p̄ −P∗(w))′ ⊗ IK)

(
IT−p̄ ⊗Σ−1

)
vec(e′)

− 2

T − p̄
vec(e′)′(P∗(w)′ ⊗ IK)

(
IT−p̄ ⊗Σ−1

)
vec(e′) +

2K2p′w

T − p̄
. (C.12)

Based on (C.12), to prove (5.11) we need to verify the following two uniform convergence

A10



results of the form:

sup
w∈HT

∣∣vec(µ′)′ (P∗(w)⊗ IK)
(
IT−p̄ ⊗Σ−1

)
vec(e′)

∣∣ /VT (w) = op(1), (C.13)

sup
w∈HT

∣∣vec(e′)′(P∗(w)′ ⊗ IK)
(
IT−p̄ ⊗Σ−1

)
vec(e′)−K2p′w

∣∣ /VT (w) = op(1). (C.14)

To verify (C.13) and (C.14), we show the following statements:

Tλmax

((
Z
′
Z
)−1
)

= Op(1), (C.15)

T−1p̄−1vec(e′)′
(
Z Z

′ ⊗ IK

)
vec(e′) = Op(1), (C.16)

where λmax(A) denotes the maximum eigenvalue of a matrix A.

We now take (C.15). Denote Γ̂T (p̄) = (T − p̄)−1
∑T

t=p̄+1 zt(p̄)zt(p̄)
′ = (T − p̄)−1Z

′
Z and

Γ(p̄) = E(zT+1(p̄)zT+1(p̄)′) is a p̄K × p̄K matrix whose (i, j)-th (K ×K) block of elements

is Γi−j, i, j = 1, . . . , p̄ with Γj = E(yty
′
t+j). We also denote ‖A‖2

1 = λmax(A′A) as the

maximum eigenvalue of the matrix A′A and ‖A‖2
1 = λ2

max(A) if the matrix A is symmetric.

The following lemma places the moment bound on ‖Γ̂
−1

T (p̄)‖1.

Lemma 2. Suppose that either (1) Assumptions 1(a)-(b) and 2(b)-(d) or (2) Assump-

tions 1(a) and 2(b)-(c) and (e) are satisfied. Thus, E‖Γ̂
−1

T (p̄)‖1 = O(1) for sufficiently

large T .

Proof. The proof is similar to that of Theorem 2 of Ing and Wei (2003) in the context of

univariate autoregressions. To begin with, according to Lewis and Reinsel (1985, p.397), we

have:

E

(∥∥∥Γ̂T (p̄)− Γ(p̄)
∥∥∥2

1

)
≤ E

(∥∥∥Γ̂T (p̄)− Γ(p̄)
∥∥∥2
)
≤ C

p̄2K2

T − p̄
= C

p̄2

T − p̄
, (C.17)

where the first inequality holds by ‖A‖2
1 = λ2

max(A) ≤
∑m

`=1 λ
2
`(A) = ‖A‖2 for a m × m

symmetric matrix A with eigenvalues λ`, ` = 1, . . . ,m.

We next observe that:

∥∥∥Γ̂−1

T (p̄)− Γ−1(p̄)
∥∥∥

1
=
∥∥∥Γ̂−1

T (p̄)
(
Γ̂T (p̄)− Γ(p̄)

)
Γ−1(p̄)

∥∥∥
1

≤
∥∥∥Γ̂−1

T (p̄)
∥∥∥

1

∥∥∥Γ̂T (p̄)− Γ(p̄)
∥∥∥

1

∥∥Γ−1(p̄)
∥∥

1
, (C.18)
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almost surely for large T , and hence we can write for sufficiently large T and any θ > 0:

E
(∥∥∥Γ̂−1

T (p̄)− Γ−1(p̄)
∥∥∥

1

)
≤ p̄2+θE

(∥∥∥Γ̂T (p̄)− Γ(p̄)
∥∥∥

1

)
C

≤ C
p̄

(T − p̄)1/2
p̄2+θ

= C
p̄3+θ

(T − p̄)1/2

≤ C

(
p̄6+δ1

T − p̄

)1/2

, (C.19)

where the first inequality uses Assumption 2(c). As in the univariate case (see, e.g., Berk

(1974, p.491)), ‖Γ−1(p)‖1 is uniformly bounded by a positive constant for all 1 ≤ p ≤ p̄, as

stated in Lewis and Reinsel (1985, p.397), the second inequality follows from (C.17), and

the last inequality follows by setting 2θ ≤ δ1.

Based on (C.19), it is not hard to see E‖Γ̂
−1

T (p̄)‖1 ≤ C, provided that p̄6+δ1 = O(T ) and

E‖Γ−1(p̄)‖1 ≤ C. This completes the proof of the lemma under the first set of assumptions.

Using the similar arguments to those employed in Ing and Wei (2003, p.140), one can

show that the statement of the lemma still holds under the second set of assumptions. The

proof is omitted for brevity.

Using Lemma 2, we obtain:

E
∥∥∥Γ̂−1

T (p̄)
∥∥∥

1
≡ E

∥∥∥∥∥∥
(

Z
′
Z

T − p̄

)−1
∥∥∥∥∥∥

1

= E

λmax

( Z
′
Z

T − p̄

)−1
 <∞, (C.20)

where the second equality in (C.20) follows since the matrix Z
′
Z is symmetric. Thus, (C.15)

follows from combining (C.20) and Markov’s inequality. Next, note that vec(e′)′(Z Z
′ ⊗

IK)vec(e′) = tr(e′Z Z
′
e). We show (C.16) in the following lemma.

Lemma 3. Under assumptions that the second moment of εt exists for all t and that

E (|yi,t−`yj,t−`|) ≤ C for all i, j = 1, . . . , K, t and `, we have:

E

∥∥∥∥∥ 1√
T − p̄

T∑
t=p̄+1

εtzt(p̄)
′

∥∥∥∥∥
2

≡ 1

T − p̄
E
[
tr(e′Z Z

′
e)
]

= O(p̄T ).

A12



Proof. Recall that zt(p)
′ = (y′t−1, . . . ,y

′
t−p) and observe that:

E

∥∥∥∥∥ 1√
T − p̄

T∑
t=p̄+1

εtzt(p̄)
′

∥∥∥∥∥
2

≤
K∑
i=1

K∑
j=1

p̄∑
`=1

E

(T − p̄)−1

∣∣∣∣∣
T∑

t=p̄+1

εityj,t−`

∣∣∣∣∣
2
 . (C.21)

Since E(|εitεjt|) ≤ C for i, j = 1, . . . , K and all t, the summandE

[
(T − p̄)−1

∣∣∣∑T
t=p̄+1 εityj,t−`

∣∣∣2]
in (C.21) is bounded by:

CE

(
(T − p̄)−1

T∑
t=p̄+1

|yj,t−`yj′,t−`|

)
= C(T − p̄)−1

T∑
t=p̄+1

E (|yj,t−`yj′,t−`|) = O(1). (C.22)

Lastly, the lemma follows from combining (C.21), (C.22), and the condition that E (|yj,t−`yj′,t−`|) ≤
C for all j, j′, t and `, where the last condition follows from the assumption of

∑∞
j=0 ‖Φj‖ <

∞. This yields the desired result.

Equipped with (C.15) and (C.16), we first verify (C.13) by writing:

ξ∗T
−1
∣∣vec(µ′)′ (P∗(w)⊗ IK)

(
IT−p̄ ⊗Σ−1

)
vec(e′)

∣∣
= ξ∗T

−1
∣∣vec(µ′)′

(
P⊗ IK

)
(P∗(w)⊗ IK)

(
IT−p̄ ⊗Σ−1

)
vec(e′)

∣∣
≤ ξ∗T

−1
{

vec(µ′)′
(
P⊗ IK

) (
P⊗ IK

)
vec(µ′)vec(e′)′

(
IT−p̄ ⊗Σ−1

)
(P∗(w)⊗ IK)

(
IT−p̄ ⊗Σ−1

)
vec(e′)

}1/2

≤ ξ∗T
−1
{

vec(µ′)′
(
P⊗ IK

)
vec(µ′)vec(e′)′

(
IT−p̄ ⊗Σ−1

) (
P⊗ IK

) (
IT−p̄ ⊗Σ−1

)
vec(e′)

}1/2

=
{ [
p̄ξ∗T

−2vec(µ′)′
(
P⊗ IK

)
vec(µ′)

]︸ ︷︷ ︸
=op(1) by Assumption 2(a)

[
p̄−1vec(e′)′

(
IT−p̄ ⊗Σ−1

) (
P⊗ IK

) (
IT−p̄ ⊗Σ−1

)
vec(e′)

] }1/2

= op(1), (C.23)

where the first inequality follows from the Schwarz inequality, and the last equality holds
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since:

p̄−1vec(e′)′
(
IT−p̄ ⊗Σ−1

) (
P⊗ IK

) (
IT−p̄ ⊗Σ−1

)
vec(e′)

≤ Cp̄−1vec(e′)′
(
P⊗ IK

)
vec(e′)

≤ C Tλmax

((
Z
′
Z
)−1
)

︸ ︷︷ ︸
=Op(1) by (C.15)

T−1p̄−1vec(e′)′
(
Z Z

′ ⊗ IK

)
vec(e′)︸ ︷︷ ︸

=Op(1) by (C.16)

= Op(1). (C.24)

The second inequality in (C.24) follows from the fact that vec(e′)′
(
P⊗ IK

)
vec(e′) =

tr
(
e′Z(Z

′
Z)−1Z

′
e
)

= tr
(

(Z
′
Z)−1Z

′
ee′Z

)
and the trace inequality, whereby setting A =

(Z
′
Z)−1 and B = e′Z Z

′
e, we have tr(AB) ≤ λmax(A)tr(B) for squared matrices A and B

with A being symmetric and B ≥ 0.

We next move to (C.14). Using Assumption 2(a) and a similar argument to show (C.24),

we have:

ξ∗T
−1
∣∣vec(e′)′(P∗(w)′ ⊗ IK)

(
IT−p̄ ⊗Σ−1

)
vec(e′)−K2p′w

∣∣
≤ ξ∗T

−1vec(e′)′(P⊗ IK)
(
IT−p̄ ⊗Σ−1

)
vec(e′) + ξ∗T

−1K2p̄︸ ︷︷ ︸
=op(1)

by Assumption 2(a)

≤ ξ∗T
−1p̄︸ ︷︷ ︸

=op(1)

by Assumption 2(a)

Tλmax

((
Z
′
Z
)−1
)

︸ ︷︷ ︸
=Op(1) by (C.15)

T−1p̄−1vec(e′)′
(
Z Z

′ ⊗ IK

)
vec(e′)︸ ︷︷ ︸

=Op(1) by (C.16)

+op(1)

= op(1). (C.25)

The last thing to show is (5.10). The argument is essentially the same as the above. Recall

that µ̂∗(w) = P∗(w)Y and µ− µ̂∗(w) = A∗(w)µ−P∗(w)e. We first calculate:

LT (w) =
1

T − p̄
tr
(
Σ−1 (µ− µ̂∗(w))

′
(µ− µ̂∗(w))

)
=

1

T − p̄
[
tr
(
Σ−1µ′A∗(w)A∗(w)µ

)
− 2tr

(
Σ−1µ′A∗(w)P∗(w)e

)
+ tr

(
Σ−1e′P∗(w)P∗(w)e

)]
,

(C.26)
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and thus:

LT (w)− VT (w) = − 2

T − p̄
tr
(
Σ−1µ′A∗(w)P∗(w)e

)
+

1

T − p̄
{

tr
(
P∗(w)eΣ−1e′P∗(w)

)
− E

[
tr
(
P∗(w)eΣ−1e′P∗(w)

)]}
.

(C.27)

Take the first term on the right-hand side of (C.27). We calculate:

ξ∗T
−1tr

(
Σ−1µ′A∗(w)P∗(w)e

)
≤ ξ∗T

−1tr
(
Σ−1µ′P∗(w)e

)
+ ξ∗T

−1λmax(Σ−1)tr (µ′P∗(w)P∗(w)e)

≤ ξ∗T
−1λmax

(
Σ−1

)
tr (µ′P∗(w)e)

+ ξ∗T
−1λmax

(
Σ−1

)
λmax (P∗(w)) tr (µ′P∗(w)e)

≤ Cξ∗T
−1tr (µ′P∗(w)e)

= Cξ∗T
−1tr

(
µ′PP∗(w)e

)
= Cξ∗T

−1vec(Pµ′)′vec(P∗(w)e)

≤ Cξ∗T
−1
[
vec(Pµ′)′vec(Pµ′)

]1/2
[vec(P∗(w)e)′vec(P∗(w)e)]

1/2

= C
[
p̄ξ∗T

−2tr
(
µPµ′

)]1/2︸ ︷︷ ︸
=op(1) by Assumption 2(a)

[
p̄−1tr (e′P∗(w)P∗(w)e)

]1/2︸ ︷︷ ︸
=Op(1)

= op(1), (C.28)

where the first and second inequalities follow from the trace inequality, and the fourth

inequality follows from the Schwarz inequality. Using (C.15) and (C.16), the second part on

the right-hand side of the third equality in (C.28) holds since:

(
p̄−1tr (e′P∗(w)P∗(w)e)

)1/2 ≤
(
p̄−1λmax (P∗(w)) tr (e′P∗(w)e)

)1/2

= C
(
p̄−1tr (e′P∗(w)e)

)1/2

≤ C
(
p̄−1tr

(
e′Pe

))1/2

≤

Tλmax

((
Z
′
Z
)−1
)

︸ ︷︷ ︸
=Op(1) by (C.15)

T−1p̄−1tr
(
e′Z Z

′
e
)

︸ ︷︷ ︸
=Op(1) by (C.16)


1/2

= Op(1). (C.29)
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We next take the second term on the right-hand side of (C.27). Using (C.29) and As-

sumption 2(a), we have:

ξ∗T
−1
{

tr
(
P∗(w)eΣ−1e′P∗(w)

)
− E

[
tr
(
P∗(w)eΣ−1e′P∗(w)

)]}
≤ Cξ∗T

−1 tr (e′P∗(w)P∗(w)e)︸ ︷︷ ︸
=Op(p̄) by (C.29)

+Cξ∗T
−1O(p̄)

= Op

(
ξ∗T
−1p̄
)

+O
(
ξ∗T
−1p̄
)

= op(1), (C.30)

where the last equality follows from Assumption 2(a).

C.4 Proof of Theorem 4

As discussed in (5.13)-(5.15) in the text, to prove (5.12), it suffices to show (5.14) and

(5.15), where (5.14) is implied by (5.13). First take (5.13). Based on the following decom-

position of CV ∗T,h(w):

CV ∗T,h(w) ≡ CVT,h(w)/(T − p̄− h+ 1)

= L̃T,h(w) +K

+
2

T − p̄− h+ 1
vec(µh

′)′
(

(IT−p̄−h+1 − P̃∗h(w))′ ⊗ IK

) (
IT−p̄−h+1 ⊗Σ−1

h

)
vec(e′h)

− 2

T − p̄− h+ 1
vec(e′h)

′(P̃∗h(w)′ ⊗ IK)
(
IT−p̄−h+1 ⊗Σ−1

h

)
vec(e′h)

+
2

T − p̄− h+ 1
vec((µh − µ̃

∗
h(w))′)′

(
IT−p̄−h+1 ⊗Σ−1

h

)
vec(e′h), (C.31)

to establish the first condition in (5.13), it is sufficient to show the following uniform con-

vergence results:

sup
w∈HT

∣∣∣vec(µ′h)
′
(
P̃∗h(w)′ ⊗ IK

) (
IT−p̄−h+1 ⊗Σ−1

h

)
vec(e′h)

∣∣∣ /VT,h(w) = op(1), (C.32)

sup
w∈HT

∣∣∣vec(e′h)
′(P̃∗h(w)′ ⊗ IK)

(
IT−p̄−h+1 ⊗Σ−1

h

)
vec(e′h)

∣∣∣ /VT,h(w) = op(1), (C.33)

sup
w∈HT

∣∣vec((µh − µ̃
∗
h(w))′)′

(
IT−p̄−h+1 ⊗Σ−1

h

)
vec(e′h)

∣∣ /VT,h(w) = op(1), (C.34)
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where we have replaced ṼT,h(w) with VT,h(w) in the denominator of (C.32)-(C.34) under the

condition: supw∈HT
|ṼT,h(w)/VT,h(w)− 1| p−→ 0, which will be established in (C.39) below.

Under Assumption 3(a), (C.32) and (C.33) can be shown to hold by using similar argu-

ments to those in (C.23), (C.24), and (C.25) under the conditions (C.15) and (C.16) with ξ∗T ,

Z, e, µ, P, IT−p̄, and Σ−1 replaced by ξ∗T,h, Zh, eh, µh, Ph, IT−p̄−h+1, and Σ−1
h , respectively.

Next turn to (C.34). Using µ̃∗h(w) = P̃∗h(w)(µh + eh) and ignoring the term that does not

involve w, we only need to show:

sup
w∈HT

∣∣∣vec((µ′hP̃
∗
h(w)′)′

(
IT−p̄−h+1 ⊗Σ−1

h

)
vec(e′h)

∣∣∣ /VT,h(w) = op(1), (C.35)

and

sup
w∈HT

∣∣∣vec((e′hP̃
∗
h(w)′)′

(
IT−p̄−h+1 ⊗Σ−1

h

)
vec(e′h)

∣∣∣ /VT,h(w) = op(1). (C.36)

Take (C.35). Using Lemma 1, we rewrite P̃h(p) = D̃h(p)(Ph(p)−IT−p̄−h+1)+IT−p̄−h+1 as

P̃h(p) = Ph(p)+Th(p)−Qh(p), where Qh(p) = D̃h(p)− IT−p̄−h+1 and Th(p) = Qh(p)Ph(p).

As a result, we have P̃∗h(w) =
∑p̄

p=1w(p)P̃h(p) = P∗h(w) + T∗h(w)−Q∗h(w), where T∗h(w) =∑p̄
p=1 w(p)Th(p) and Q∗h(w) is defined analogously. Using this, we rewrite the left-hand side

of (C.35) as:

∣∣∣vec((µ′hP̃
∗
h(w)′)′

(
IT−p̄−h+1 ⊗Σ−1

h

)
vec(e′h)

∣∣∣ /VT,h(w)

≤
∣∣vec((µ′hP

∗
h(w)′)′

(
IT−p̄−h+1 ⊗Σ−1

h

)
vec(e′h)

∣∣ /VT,h(w)

+
∣∣vec((µ′hT

∗
h(w)′)′

(
IT−p̄−h+1 ⊗Σ−1

h

)
vec(e′h)

∣∣ /VT,h(w)

+
∣∣vec((µ′hQ

∗
h(w)′)′

(
IT−p̄−h+1 ⊗Σ−1

h

)
vec(e′h)

∣∣ /VT,h(w)

≤ op(1) + Cξ∗−1
T,h q

∗
htr(µhe

′
h)

= op(1) + C(p̄ξ∗−1
T,h )(p̄−1Tq∗h)(T

−1tr(µhe
′
h))

= op(1), (C.37)

where the second inequality in (C.37) follows from using the identical arguments to those in

(C.23) with ξ∗T , µ, P∗(w), P, IT−p̄, Σ, and e replaced by ξ∗T,h, µh, P∗h(w), Ph, IT−p̄−h+1, Σh,

and eh, respectively, and under Assumption 3(a); the last equality follows from Assumption 3
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and from tr(µhe
′
h) =

∑T−h
t=p̄

∑K
k=1 µ

h
ktεk,t+h = Op(T ) under the conditions E(|εitεjt|) = O(1)

for i, j = 1, . . . , K and E(|yj,t−`yj′,t−`|) = O(1) for all j, j′, t, and `.

Turning to (C.36), once again using P̃h(p) = Ph(p) + Th(p)−Qh(p), we can write:

sup
w∈HT

∣∣∣vec((e′hP̃
∗
h(w)′)′

(
IT−p̄−h+1 ⊗Σ−1

h

)
vec(e′h)

∣∣∣ /VT,h(w)

≤ sup
w∈HT

∣∣vec((e′hP
∗
h(w)′)′

(
IT−p̄−h+1 ⊗Σ−1

h

)
vec(e′h)

∣∣ /VT,h(w)

+ sup
w∈HT

∣∣vec((e′h(T
∗
h(w)−Q∗h(w))′)′

(
IT−p̄−h+1 ⊗Σ−1

h

)
vec(e′h)

∣∣ /VT,h(w)

≤ op(1) + ξ∗−1
T,h sup

w∈HT

p̄∑
p=1

w(p)
∣∣vec((e′h(Th(p)−Qh(p))

′)′
(
IT−p̄−h+1 ⊗Σ−1

h

)
vec(e′h)

∣∣
≤ op(1) + Cξ∗−1

T,h q
∗
htr(ehe

′
h) = op(1) + C(p̄ξ∗−1

T,h )(p̄−1Tq∗h)(T
−1tr(ehe

′
h))

= op(1), (C.38)

where the second inequality follows from the arguments showing (C.24) with e, P, IT−p̄,

and Σ replaced by eh, Ph, IT−p̄−h+1, and Σh, respectively, under suitable conditions stated

in Assumption 3, and the last equality is satisfied by Assumption 3 and by the fact that

tr(ehe
′
h) = Op(T ) under once again E(|εitεjt|) = O(1) for i, j = 1, . . . , K.

It now remains to establish supw∈HT
|L̃T,h(w)/LT,h(w) − 1| p−→ 0 as T → ∞. To prove

this, we first show:

sup
w∈HT

∣∣∣∣∣ ṼT,h(w)

VT,h(w)
− 1

∣∣∣∣∣→ 0 (C.39)

almost surely as T → ∞. Define Ã∗h(w) = IT−p̄−h+1 − P̃∗h(w). Using µh − µ̃
∗
h(w) =

Ã∗h(w)µh− P̃∗h(w)eh, the leave-h-out risk ṼT,h(w) for averaging h-step forecasts is given by:

ṼT,h(w) = E(L̃T,h(w))

=
1

T − p̄− h+ 1
E
[
tr
(
Σ−1
h (µh − µ̃

∗
h(w))′(µh − µ̃

∗
h(w))

)]
=

1

T − p̄− h+ 1
tr
(
Ã∗h(w)µhΣ

−1
h µ

′
hÃ
∗
h(w)′

)
+ E

[
tr
(
P̃∗h(w)ehΣ

−1
h e′hP̃

∗
h(w)′

)]
.

(C.40)

Based on (C.40), it is seen that VT,h(w) is equal to ṼT,h(w) with Ã∗h(w) and P̃∗h(w)

A18



replaced by A∗h(w) and P∗h(w), respectively. As a consequence, it is sufficient to establish

that for any pair of candidate models i and j, the following conditions hold:

tr
(
Ãh(i)µhΣ

−1
h µ

′
hÃh(j)

′
)

= tr
(
Ah(i)µhΣ

−1
h µ

′
hAh(j)

′) (1 + o(1)), (C.41)

E
[
tr
(
P̃h(i)ehΣ

−1
h e′hP̃h(j)

′
)]

= E
[
tr
(
Ph(i)ehΣ

−1
h e′hPh(j)

′)] (1 + o(1)), (C.42)

where the o(1) terms are uniform in 1 ≤ i, j ≤ p̄. Using Ãh(i) = IT−p̄−h+1 − P̃h(i) =

Ah(i)−Th(i) + Qh(i) = Ah(i) + Qh(i)Ah(i), it can be shown that Ãh(i) = Ah(i)(1 + o(1))

since Qh(i) = o(1) under Assumption 3(b). This establishes (C.41). Next take (C.42). Using

P̃h(p) = D̃h(p)(Ph(p)− IT−p̄−h+1) + IT−p̄−h+1 implied by (B.4) in Lemma 1, we have:

E
[
tr
(
P̃h(i)ehΣ

−1
h e′hP̃h(j)

′
)]

= tr
(
P̃h(j)

′(D̃h(i)(Ph(i)− IT−p̄−h+1) + IT−p̄−h+1)E(ehΣ
−1
h e′h)

)
= tr

(
P̃h(j)

′D̃h(i)Ph(i)E(ehΣ
−1
h e′h)

)
− tr

(
P̃h(j)

′D̃h(i)E(ehΣ
−1
h e′h)

)
+ tr

(
P̃h(j)

′E(ehΣ
−1
h e′h)

)
= tr

(
P̃h(j)

′D̃h(i)Ph(i)E(ehΣ
−1
h e′h)

)
(1 + o(1))

=
[
tr
(

(Ph(j)− IT−p̄−h+1)D̃h(j)
′Ph(i)E(ehΣ

−1
h e′h)

)
+ tr

(
Ph(i)E(ehΣ

−1
h e′h)

) ]
(1 + o(1))

= tr
(
Ph(i)E(ehΣ

−1
h e′h)Ph(j)

)
(1 + o(1)), (C.43)

where the third equality follows from tr
(
P̃h(j)

′D̃h(i)E(ehΣ
−1
h e′h)

)
= tr

(
P̃h(j)

′E(ehΣ
−1
h e′h)

)
(1+

o(1)) under Assumption 3(b) and from tr
(
P̃h(j)

′E(ehΣ
−1
h e′h)

)
= 0 by the diagonal elements

of P̃h(j)
′E(ehΣ

−1
h e′h) being zero (using the similar arguments to those used in showing

E(r̃2hT (w)) = 0 in (C.11)), and the last equality holds by Assumption 3(b) again. This

establishes (C.42) and thus, combined with (C.41), yields (C.39).

Second, it is straightforward to show supw∈HT
|LT,h(w)/VT,h(w)− 1| p−→ 0 as T →∞ by

following the identical arguments to those in (C.26)-(C.30) with LT (w), VT (w), µ, µ̂∗(w), Σ,

A∗(w), P∗(w), P, Z, e, and ξ∗T replaced by LT,h(w), VT,h(w), µh, µ̂
∗
h(w), Σh, A∗h(w), P∗h(w),

Ph, Zh, eh, and ξ∗T,h, respectively. Next, to show supw∈HT
|L̃T,h(w)/ṼT,h(w) − 1| p−→ 0 as
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T →∞, we first write:

L̃T,h(w)− ṼT,h(w) = − 2

T − p̄− h+ 1
tr
(
Σ−1
h µ

′
hÃ
∗
h(w)′P̃∗h(w)eh

)
+

1

T − p̄− h+ 1

{
tr
(
P̃∗h(w)ehΣ

−1
h e′hP̃

∗
h(w)′

)
− E

[
tr
(
P̃∗h(w)ehΣ

−1
h e′hP̃

∗
h(w)′

)]}
.

(C.44)

Using (C.39) and similar arguments to those for proving (C.41)-(C.42), it is not hard to

show (L̃T,h(w) − ṼT,h(w))/ṼT,h(w) = (LT,h(w) − VT,h(w))/VT,h(w)(1 + o(1)), establishing

the second condition in (5.13): supw∈HT
|L̃T,h(w)/ṼT,h(w)−1| p−→ 0 as T →∞. Combining

these above conditions implies

sup
w∈HT

∣∣∣∣∣ L̃T,h(w)

LT,h(w)
− 1

∣∣∣∣∣ ≤ sup
w∈HT

∣∣∣∣∣ L̃T,h(w)

ṼT,h(w)

∣∣∣∣∣ sup
w∈HT

∣∣∣∣∣ ṼT,h(w)

VT,h(w)

∣∣∣∣∣ sup
w∈HT

∣∣∣∣VT,h(w)

LT,h(w)

∣∣∣∣− 1
p−→ 0 (C.45)

as T →∞, establishing (5.15). Putting together (C.32)-(C.34), (C.39), and (C.45) completes

the proof.

D Non-optimality of MMMA under serial correlation

in the direct multi-step forecasting scheme

Seeing the asymptotic non-optimality of our MMMA for h > 1 can be done through

its invalidity (in terms of asymptotic biasedness) under serial correlation. To begin with,

we first recall that when h > 1, the serial correlation problem arises due to the fact that

the h-step error εt+h in (4.1) follows a moving average process of order h − 1. Let Ωh =

E(vec(eh)vec(eh)
′), where eh = (εp̄+h, . . . , εT )′. Analogous to the MMMA criterion CT (w)

defined in (3.4) in the manuscript, we consider the following h-step version of the MMMA

criterion:

CT,h(w) = (T − p̄− h+ 1) · tr
(˜̃Σh(p̄)

−1Σ̂
∗
h(w)

)
+ 2K2p′w, (3.4’)
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where

˜̃Σh(p̄) =
1

T − p̄− h+ 1−Kp̄

T−h∑
t=p̄

ε̂t+h(p̄)ε̂t+h(p̄)
′,

Σ̂
∗
h(w) =

1

T − p̄− h+ 1

T−h∑
t=p̄

ε̂∗t+h(w)ε̂∗t+h(w)′.

Using similar decomposition arguments to those used in (C.1)-(C.4) in the online supple-

mentary material (pages A5-A7), we define the h-step counterparts of r2T (w) (defined in

(C.2) and (C.4)) and rewrite them respectively as:

r2Th(w) = −2vec(e′h)
′(P∗h(w)′ ⊗ IK)

(
IT−p̄−h+1 ⊗ ˜̃Σh(p̄)

−1
)

vec(e′h)

and

−2vec(e′hZh(p))
′
(

(Zh(p)
′Zh(p))

−1 ⊗ IK

)(
IKp ⊗ ˜̃Σh(p̄)

−1
)

(Zh(p)
′ ⊗ IK) vec(e′h), (C.4’)

where P∗h(w) =
∑p̄

p=1 w(p)Ph(p) with Ph(p) = Zh(p)(Zh(p)
′Zh(p))

−1Z′h(p), and Zh(p) is

defined in the text. To examine (C.4’), it is not difficult to show under serial correlation

that the asymptotic variance of sTh, defined as

sTh = (T − p̄− h+ 1)−1/2`(p)′vec
(
Σ
−1/2
h e′hZh(p)Γ2h(p)

−1/2
)

≡ `(p)′φTh(p), (D.1)

is given by:

v2
Th = Var(sTh) = `(p)′(Γ2h(p)

−1/2 ⊗Σ
−1/2
h )Λh(p)(Γ2h(p)

−1/2 ⊗Σ
−1/2
h )`(p), (D.2)

where `(p) is a sequence of K2p × 1 vectors such that 0 < c1 ≤ `(p)′`(p) ≤ c2 < ∞ for

positive constants c1 and c2, Γ2h(p) = plim (Zh(p)
′Zh(p)) /(T − p̄− h+ 1), and:

Λh(p) = plim
[
(T − p̄− h+ 1)−1 (Zh(p)

′ ⊗ IK) Ωh (Zh(p)⊗ IK)
]
. (D.3)

Equations (D.2) and (D.3) together imply that for multi-step forecasting, φTh(p) does
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not converge in distribution to a K2p-dimensional vector of multivariate standard normal

random variables; i.e., (Γ2h(p)
−1/2 ⊗Σ

−1/2
h )Λh(p)(Γ2h(p)

−1/2 ⊗Σ
−1/2
h ) in (D.2) is not equal

to Ik2p in the presence of serial correlation. As a consequence, the term (C.4’) (ignoring the

constant -2) does not take a quadratic form in multivariate standard normal random vari-

ables, meaning that in general, E(r2Th(w)) 6= −2K2p′w. This finding reveals the asymptotic

non-unbiasedness and, hence, non-optimality of CT,h(w) under serial correlation, which in-

validates the use of the CT,h(w) criterion for direct multi-step forecast averaging.

E Additional simulation results

E.1 Sensitivity analysis to the maximum lag order p̄

Through the simulation experiments, this subsection examines the variability in the trace

of the weighted MSFE as the value of p̄ varies. Specifically, we report in Table A1 and Fig-

ure A1 (for T = 100) the sample variance of weighted MSFEs computed from the competing

methods over the considered pre-specified maximum lag orders p̄ = 3, 4, . . . , 15. The simula-

tion results reveal that relative to other competing methods, our MMMA(I) and MCVAh(D)

methods are not very sensitive to the choice of p̄ in most cases.

E.2 Estimation effects of Σ̃(p̄)−1 (Σ̃h(p̄)
−1) on the forecast perfor-

mance of MMMA (MCVAh)

As an anonymous referee points out, due to the use of the transformation matrices Σ̃(p̄)−1

and Σ̃h(p̄)
−1 in our averaging criteria (3.4) and (4.5), respectively, another source of estima-

tion error may be introduced into our forecast averaging methods. To empirically examine

this issue, we compare the forecast accuracy of the MMMA and MCVAh approaches using

W = Σ̃h(p̄)
−1 and Σh(p̄)

−1 for weighting the associated sum of squared residual matrices,

where these two transformation matrices correspond to the feasibly standardized and in-

feasibly standardized versions of our VAR forecast averaging approaches. Specifically, the

MMMA and MCVAh criteria using the general matrix W for transformation are of the
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following form:

GCT (w; W) = (T − p̄) · tr
(
WΣ̂(w)

)
+ 2K2p′w, (E.1)

GCVT,h(w; W) = (T − p̄− h+ 1) · tr
(
WΣ̃h(w)

)
. (E.2)

For a fair comparison, we compare the forecast performance based on the sum of the

actual h-step MSFEs:

M̂SFEh(W) = =
1

2500

2500∑
r=1

[
tr

((
y

(r)
T+h − ŷ

(r)
T+h|T (W)

)(
y

(r)
T+h − ŷ

(r)
T+h|T (W)

)′)]
,

where ŷ
(r)
T+h|T (W) is the combined h-step ahead forecast, with the combination weights com-

puted by minimizing GCT (w; W) for iterative forecast averaging or GCVT,h(w; W) for direct

forecast averaging, and the superscript “(r)” indicates the r-th simulation repetition.

We consider the error covariance matrix given by

Σ =

1.00 ρ

ρ 4.00

 ,
where the covariance parameter ρ measures the degree of correlation between the two re-

sponse variables in our DGP. We set ρ = 0.8, 1.2, and 1.8.

Table A2 reports the forecast performance of the MMMA and MCVAh methods using the

considered transformation matrices W for p̄ = 5, 10, 15, where we normalize M̂SFEh(Σ̃h(p̄)
−1) =

1. It appears from Table A2 that the estimation error of Σ̃h(p̄) does not considerably impact

the forecast performance of our MMMA and MACVh methods; specifically, the performance

of MMMA using W = Σ̃(p̄)−1 is nearly identical to that of the infeasible MMMA using

W = Σ(p̄)−1 in almost all sample sizes, forecast horizons, covariance ρ’s, and maximum

lag orders considered. On the other hand, the performance of the feasible MCVAh using

W = Σ̃(p̄)−1 is slightly worse than the infeasible MCVAh using W = Σ−1
h under the small

sample size of T = 100. We also find that, as expected, the inferior performance of the fea-

sible MCVAh using W = Σ̃h(p̄)
−1 relative to its infeasible version using W = Σ−1

h becomes

prominent as the covariance ρ increases and that increasing the sample size usually leads to

improvements in the feasible MCVAh, with its performance nearly identical to that of the
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infeasible MCVAh in most cases when T = 200 and T = 500.

E.3 Two more DGPs

This section additionally considers two DGPs. The first DGP is directly from Lewis and

Reinsel (1985), who consider the bivariate ARMA(1,1) model of the form:

DGP A1: yt −Φyt−1 = εt − θεt−1

with:

Φ =

1.2 −0.5

0.6 0.3

 , θ =

−0.6 0.3

0.3 0.6

 , Σ =

1.00 0.50

0.50 1.25

 .
The second DGP is a medium-scaled VAR(5) process of seven dimensions considered in

Hansen (2016):

DGP A2: yt −
5∑
i=1

Φiyt−i = εt,

where the coefficient matrices are Φ1 = (a + b)I7 + c17, Φ2 = −(ab + d)I7 − (a + b)c17,

Φ3 = (a + b)dI7 + (ab + d)c17, Φ4 = −abdI7 − (a + b)cd17, Φ5 = abcd17 with (a, b, c, d) =

(0.5, 0.3, 0.1, 0.3), Σ is a diagonal matrix with diagonal elements 0.0272, and I7 and 17 are

the 7 × 7 identity matrix and 7 × 7 matrix of ones, respectively. Under this design, we are

interested in examining the effect of model specification, in the sense of whether or not the

true DGP is contained as one of the candidate models, on forecast accuracy of our averaging

methods.

The maximum lag order for DGP A2 is set to p̄ = 3, 4, . . . , 8 due to consideration of the

degree of freedom. The simulation results under DGPs A1 and A2 for T = 100 and T = 200

(displayed in Figure A7) are summarized as follows.

For DGP A1 (i.e., bivariate ARMA(1,1)), the panels in the first two rows of Figure A7

present relative MSFEs at forecast horizons up to h = 12, which can be viewed as an exten-

sion of Table 1 of Lewis and Reinsel (1985) by adding data-driven selection and averaging

methods for the lag order determination. To save space, only the results using the maximum

lag length p̄ = 3, 5, 10, and 15 are reported. The first finding is that the relative MSFEs of

MCVAh(D) are seen to be generally greater than those of MMMA(I) except for h = 1, and
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the former deteriorates as the forecast horizon h lengthens and p̄ increases. For example,

when T = 100 and p̄ = 10, MMMA(I) improves upon MCVAh by 4.6%, 6.7%, and 8.5% for

h = 4, 8, and 12, respectively. These figures are 6.1%, 9.0%, and 11.8% when p̄ increases

to 15. This may be expected due to the fact that fewer observations are available for es-

timation at longer forecast horizons, making inefficiency of the direct multi-step forecast

methods more prominent. The quantitatively similar pattern can also be seen when OLS(D)

and OLS(I) are compared. Second, when restricting the attention to the iterative multi-

step methods, AIC(I), Stein(I), and HQ(I) perform notably worse than the other methods:

AIC(I) is dominated by SAIC(I), and MMMA(I) always outperforms Stein(I) and HQ(I).

Further improvement of MMMA(I) upon Stein(I) can be seen as p̄ increases. Third, BIC(I)

and SBIC(I) seem sensitive to p̄: SBIC(I) performs better than BIC(I) when p̄ = 3 and 5,

and the reverse can be seen when p̄ = 10 and 15. Fourth, MMMA(I) are comparable to

SAIC(I), SBIC(I), and EQ(I) when p̄ is small, whereas the outperformance of MMMA(I)

is noticeable when p̄ is sufficiently large, say p̄ ≥ 10. For instance, when T = 100 and

p̄ = 15, MMMA(I) improves upon SAIC(I), SBIC(I), and EQ(I) by respectively 3.8%, 1.6%,

and 3.7% for h = 1; 7.4%, 5.2%, and 7.1% for h = 4; 5.7%, 4.1%, and 5.5% for h = 8; and

4.2%, 2.9%, and 4.0% for h = 12. In sum, under DGP A1 where misspecification is not so

severe that DGP could be well approximated by finite-order VARs, MMMA(I) is superior to

MCVAh(D), particularly at longer lead times. In addition, overall MMMA(I) presents better

performance than other competing iterative multi-step forecasting methods in most cases.

The advantage of MMMA(I) is even more prominent when sufficient long VAR candidates

are fitted.

Under the pure VAR(5) process of dimension 7 (DGP A2), the relative MSFEs are shown

in the panels of the last two rows of Figure A7. We only report the forecast performance

based on p̄ = 3, 5, and 8, corresponding to the cases of under-order, correct-order, and over-

order fitting with respect to the largest candidate model. We find that, similar to DGP

A1, overall MMMA(I) performs well in most of the cases considered here, and the relative

performance of MMMA(I) improves as p̄ increases. A few exceptions can be seen, such as

Stein(I) slightly performs better than MMMA(I) for h ≥ 8 when T = 100 and p̄ = 3, but the

outperformance of Stein(I) over MMMA(I) shrinks when either the sample size or maximum

lag order increases. For example, the improvement of Stein(I) upon MMMA(I) shrinks to

h = 11 and 12 in the case of T = 200 and p̄ = 3. We also note that MMMA(I) is inferior
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to MCVAh(D) only when h = 1. Moreover, for p̄ = 3 where all candidate models are under-

specified, BIC(I) outperforms AIC(I) in most cases, and BIC(I) is seen to clearly uniformly

dominate AIC(I) when T = 100 and p̄ = 5 and 8. This is consistent with the well-known

property that BIC is consistent in model selection, in the sense of choosing the true model

with probability approaching one. On the other hand, in the cases of correct specification

(p̄ = 5) and over specification (p̄ = 8) where in both cases the true DGP is contained in

the set of candidate models, MMMA(I), BIC(I), and SBIC(I) appear to outperform other

methods and are comparable to each other. Among these best three, MMMA(I), followed

by BIC(I), tends to dominate for h ≤ 8, and MMMA(I) and SBIC(I) show very similar

performances for h > 8.

F Empirical illustration

A common interest among economists is analyzing the relationship among economic data

series, which partly explains the popularity of the VAR model advanced by Sims (1980) in

theoretical studies and empirical applications. For empirical illustration, this section applies

our iterative and direct multi-step VAR forecast averaging methods to forecast the U.S.

macroeconomic time series.

Our empirical example uses the quarterly U.S. dataset constructed by Stock and Watson

(2009). Following Giannone, Lenza, and Primiceri (2015), we consider a small-scale three-

variable VAR that is a prototypical monetary VAR consisting of three endogenous variables:

GDP (Y), the GDP deflator (P), and the federal funds rate (FF). In this empirical applica-

tion, the variables Y and P are transformed by log differencing, while the FF series enters

the model in a first-differencing form.

The dataset contains the quarterly observations ranging from 1959:Q1 to 2008:Q4. We

use T = 100 observations for estimation. We perform the forecast exercise as follows. Using

the first T = 100 observations (t = 1, . . . , 100 from 1959:Q2-1984:Q1), VAR coefficients are

estimated and forecasts are computed by using the iterative or direct methods for all the

horizons up to h = 12 quarters ahead. We then employ the recursive forecast scheme (using

expanding estimation windows) for forecast updates. This forecasting procedure is repeated

until the sample is exhausted. The first h-step-ahead forecast is for time 1984:Q2+h − 1

for h = 1, . . . , 12. The last forecast at horizon h is for time 2006:Q1+h − 1, based on the
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estimation sample 1959:Q2 to 2005:Q4. This procedure produces 88 point forecasts for each

pair of 3 variables and 12 forecast horizons. The alternative VAR lag selection and averaging

methods to be compared are the same as those considered in the simulation section.

Out-of-sample forecast performance is evaluated using the averages of sample MSFEs

over the full forecasting evaluation period. Specifically, the sample MSFE for the h-step

ahead forecast of each of the three variables i =Y, P, and FF using data available up to time

t for estimation is

M̂SFE
i

h(p̄;M) =
1

t1 − h− t0 + 1

t1−h∑
t=t0

(̂
it+h|t(p̄;M)− it+h

)2

, (F.1)

where t0 and t1 are set to 1984:Q1 and 2005:Q4, respectively, and ît+h|t(p̄;M) is the h-step

ahead forecast of variable i computed by iterative or direct VAR forecast selection/averaging

method M with the maximum lag length p̄. We also compute an aggregate version of the

sample weighted MSFEs by Σ̃h(p̄)
−1 based on (5.2) for the whole VAR system as

M̂SFE
A

h (p̄;M) =
1

t1 − h− t0 + 1

t1−h∑
t=t0

tr
(
Σ̃ht(p̄)

−1
(
yt+h − ŷt+h|t(p̄;M)

) (
yt+h − ŷt+h|t(p̄;M)

)′)
,

(F.2)

where yt+h = (Yt+h,Pt+h,FFt+h)
′, ŷt+h|t(p̄;M) = (Ŷt+h|t(p̄;M), P̂t+h|t(p̄;M), F̂Ft+h|t(p̄;M))′,

Σ̃ht(p̄) is the residual covariance matrix Σ̃h(p̄) estimated using the expanding window up to

time t, and the superscript “A” refers to the aggregate of MSFEs for the VAR system.

Figure A8 summarizes the relative MSFEs of h-step-ahead point forecasts of the individ-

ual Y, P, and FF series and those for the VAR system of our MMMA, MCVAh and other

competing methods,1 all relative to OLS(I). The individual and aggregated MSFEs are com-

puted from formulae (F.1) and (F.2), respectively. We also report the resulting maximum

regret normalized by OLS(I), present only the results for p̄ = 5, 10, and 15 for brevity, and

discuss several findings that emerge from Figure A8 as follows.

We note overall that MMMA(I) and MCVAh(D) perform reasonably well, particularly

when incorporating VARs that fit long p̄ lags into the candidate models. More specifically,

when p̄ = 5 (the first-row panels in Figure A8), MMMA(I) is preferred to MCVAh(D) and

1We do not report the results for SAIC(I) and SBIC(I) because their performances vary dramatically in
our application.
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Stein(I) in forecasting Y at most horizons and in forecasting FF at horizons h ≤ 7; on the

other hand, Stein(I) makes a substantial improvement upon MMMA(I) and MCVAh(D) for

the P series under all horizons. As p̄ increases to 10 and 15 (the second- and third-row panels,

respectively, in Figure A8), however, the performances of both MMMA(I) and MCVAh(D)

improve and are better than Stein(I) under many horizons, while the advantage of Stein(I)

in forecasting P can be seen at horizon h ≥ 7 when p̄ = 10. On the other hand, it can

be seen from Figure A8 that BIC(I), HQ(I), and EQ(I) also perform well in many cases.

In particular, BIC(I) is preferred to AIC(I) uniformly across all horizons and all variables

when p̄ = 15. AIC(I) does a great job of predicting the P series when p̄ = 5, but on the

contrary, BIC(I) has good performance in forecasting the P series when p̄ is set to be modest

to long, say, p̄ ≥ 10. Moreover, HQ(I) is particularly good at forecasting Y at long horizons.

EQ(I) performs quite well in forecasting P when p̄ is sufficiently long, say, p̄ > 5. We also

notice that the iterative forecasts using the fixed lag order p̄, i.e., OLS(I), nearly uniformly

dominate their direct counterpart OLS(D) across all horizons, all maximum lag orders, and

all variables. Moreover, also as expected, OLS(D) gets markedly worse as the lag length

increases, which is in line with the previous finding that the robustness of the long-lagged

direct forecast tends to be outweighed by its efficiency loss.

We next discuss the comparison between the proposed iterative MMMA(I) and direct

MCVAh(D) methods. First of all, MMMA(I) often tends to have smaller relative MSFEs

than MCVAh(D) in forecasting Y, particularly when p̄ ≤ 9, while MCVAh(D) appears to

dominate MMMA(I) for the Y series when p̄ > 9.

For the P series, MCVAh(D) tends to improve upon MMMA(I) based on low-order candi-

date VARs, particularly at longer horizons, with the improvements ranging from 2.0% (h = 1)

to 7.1% (h = 4) when p̄ = 5, for instance. The advantage of MCVAh(D) over MMMA(I)

in forecasting P becomes less prominent when averaging forecasts from higher-order VAR

candidates. For example, when p̄ = 10 is specified, the improvements of MCVAh(D) in fore-

casting P are approximately 0.1% ∼ 6.0%. This finding is consistent with Marcellino, Stock,

and Watson (2006), where the authors pointed out that for the series measuring wages,

prices, and money, there could be a large moving average root or long lags in the optimal

linear predictor.

Moreover, when forecasting the FF series, MMMA(I) is more desirable than MCVAh(D)

by a substantial margin at most horizons, while MMMA(I) and MCVAh(D) perform similarly
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only for short (h = 1) and long (h = 11, 12) horizons. For example, MMMA(I) improves

upon MCVAh(D) by 9.0% ∼ 38.6% (h = 2 ∼ 10) when p̄ = 10. If the attention is restricted

to the aggregated MSFEs (i.e., the panels labeled A in Figure A8), then MMMA(I) and

MCVAh(D) are competitive to each other at short to modest horizons, say, h ≤ 4 and

p̄ = 10, while MCVAh(D) tends to dominate MMMA(I) at longer horizons for p̄ = 5 and

p̄ = 10.

As far as the normalized maximum regret is concerned, it is clear to see that MMMA(I)

performs quite well in forecasting Y and FF series, while MCVAh(D) has prominent forecast

advantages for the P series. In terms of the aggregated normalized maximum regret for the

VAR system (displayed at the bottom-right corner in Figure A8), MMMA(I) improves upon

MCVAh(D) for h = 4 ∼ 10, and MCVAh(D) tends to dominate MMMA(I) at short and long

horizons.
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Table A1: Relative variability in weighted MSFEs over different p̄’s

h MMMA(I) MCVAh(D) OLS(D) Stein(I) OLS(I) AIC(I) BIC(I) HQ(I) SAIC(I) SBIC(I) EQ(I)

α = 0 T = 100
1 0.018 0.022 1.000 0.861 1.000 0.033 0.018 0.018 0.093 0.065 0.099
4 0.032 0.074 1.469 0.902 1.000 0.058 0.028 0.029 0.141 0.105 0.148
8 0.067 0.195 2.348 0.846 1.000 0.097 0.062 0.063 0.170 0.138 0.177
12 0.128 0.373 3.832 0.853 1.000 0.149 0.117 0.118 0.218 0.190 0.223

average 0.071 0.200 2.408 0.854 1.000 0.095 0.065 0.066 0.171 0.139 0.177
α = 2

1 0.113 0.091 1.000 0.902 1.000 0.427 0.108 0.109 0.194 0.169 0.196
4 0.088 0.136 1.594 0.892 1.000 0.369 0.081 0.082 0.164 0.136 0.165
8 0.075 0.217 3.049 0.856 1.000 0.378 0.066 0.066 0.131 0.106 0.130
12 0.112 0.325 4.008 0.868 1.000 0.316 0.100 0.101 0.195 0.168 0.195

average 0.090 0.212 2.657 0.863 1.000 0.348 0.081 0.083 0.160 0.133 0.160
α = 5

1 0.600 0.394 1.000 1.449 1.000 0.963 2.865 1.220 1.148 1.336 1.327
4 0.628 0.427 1.607 0.980 1.000 0.918 1.275 0.919 0.563 0.592 0.584
8 0.233 0.721 4.691 0.721 1.000 0.535 0.503 0.437 0.160 0.158 0.157
12 0.102 0.241 3.474 0.837 1.000 0.775 0.084 0.426 0.147 0.120 0.131

average 0.364 0.469 3.047 0.890 1.000 0.755 0.884 0.666 0.380 0.399 0.398
α = 10

1 0.659 0.548 1.000 2.471 1.000 0.976 5.424 0.943 2.832 3.633 4.004
4 1.684 0.461 1.093 1.354 1.000 1.407 2.858 1.904 1.313 1.460 1.442
8 1.543 1.355 4.446 0.701 1.000 1.091 1.887 1.394 0.465 0.478 0.473
12 0.109 0.219 3.121 0.804 1.000 0.732 0.240 0.589 0.117 0.092 0.094

average 1.167 0.688 2.532 1.124 1.000 1.087 2.282 1.326 0.943 1.072 1.095

α = 0 T = 200
1 0.044 0.050 1.000 0.897 1.000 0.048 0.040 0.043 0.154 0.131 0.160
4 0.162 0.180 1.177 0.937 1.000 0.169 0.166 0.164 0.242 0.223 0.247
8 0.122 0.175 1.940 0.911 1.000 0.124 0.127 0.125 0.190 0.174 0.194
12 0.116 0.252 3.282 0.836 1.000 0.116 0.106 0.108 0.193 0.180 0.197

average 0.129 0.173 1.701 0.904 1.000 0.129 0.127 0.127 0.205 0.189 0.210
α = 2

1 0.293 0.238 1.000 1.049 1.000 0.387 0.292 0.298 0.372 0.357 0.375
4 0.270 0.305 1.269 1.092 1.000 0.411 0.266 0.273 0.345 0.331 0.347
8 0.181 0.266 2.078 0.928 1.000 0.225 0.182 0.185 0.230 0.216 0.232
12 0.084 0.201 2.729 0.858 1.000 0.117 0.076 0.077 0.160 0.144 0.162

average 0.194 0.260 1.794 0.973 1.000 0.264 0.193 0.197 0.267 0.254 0.270
α = 5

1 0.991 0.646 1.000 3.131 1.000 0.941 7.362 1.994 3.070 3.391 3.353
4 0.935 0.351 0.806 1.395 1.000 1.044 2.115 1.064 0.894 0.934 0.922
8 2.307 0.811 4.136 1.123 1.000 1.653 1.397 1.343 0.917 0.871 0.864
12 0.116 0.201 2.223 0.834 1.000 0.708 0.102 0.393 0.149 0.138 0.145

average 1.095 0.431 1.776 1.468 1.000 1.068 2.345 1.161 1.038 1.090 1.076
α = 10

1 0.834 0.778 1.000 5.321 1.000 0.861 1.624 0.964 9.151 10.961 12.611
4 2.522 0.245 0.429 1.730 1.000 1.583 4.698 3.487 1.898 2.051 2.067
8 2.763 0.174 0.389 1.122 1.000 1.858 3.155 3.094 0.791 0.676 0.582
12 0.136 0.216 1.530 0.741 1.000 0.708 0.400 0.458 0.118 0.116 0.117

average 2.357 0.249 0.529 1.519 1.000 1.622 3.418 2.870 1.589 1.681 1.727
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Table A1: Relative variability in weighted MSFEs over different p̄’s (cont’d)

h MMMA(I) MCVAh(D) OLS(D) Stein(I) OLS(I) AIC(I) BIC(I) HQ(I) SAIC(I) SBIC(I) EQ(I)

α = 0 T = 500
1 0.438 0.450 1.000 0.999 1.000 0.478 0.433 0.437 0.565 0.556 0.567
4 0.728 0.775 0.985 0.922 1.000 0.746 0.710 0.714 0.720 0.721 0.720
8 0.839 0.843 1.259 0.978 1.000 0.813 0.821 0.818 0.832 0.829 0.832
12 0.389 0.530 2.098 0.845 1.000 0.343 0.354 0.354 0.450 0.442 0.452

average 0.590 0.615 1.204 0.947 1.000 0.592 0.584 0.586 0.633 0.628 0.634
α = 2

1 0.688 0.591 1.000 1.208 1.000 0.784 0.682 0.685 0.781 0.777 0.783
4 0.621 0.674 1.081 0.948 1.000 0.662 0.614 0.616 0.614 0.613 0.614
8 0.774 0.673 1.527 0.915 1.000 0.700 0.776 0.770 0.690 0.690 0.690
12 0.337 0.514 2.829 0.809 1.000 0.311 0.326 0.328 0.391 0.386 0.392

average 0.638 0.597 1.411 0.947 1.000 0.640 0.641 0.641 0.627 0.625 0.628
α = 5

1 0.975 0.870 1.000 2.876 1.000 0.905 5.640 1.376 2.894 3.020 3.010
4 1.068 0.425 0.609 1.164 1.000 1.106 1.532 1.025 0.754 0.763 0.758
8 1.293 0.934 1.908 0.812 1.000 1.165 1.408 1.088 0.746 0.747 0.745
12 0.193 0.330 1.722 0.683 1.000 0.477 0.178 0.332 0.237 0.231 0.236

average 1.119 0.535 1.113 1.244 1.000 1.120 1.990 1.048 1.013 1.033 1.029
α = 10

1 1.032 0.953 1.000 10.507 1.000 0.964 1.192 1.081 13.678 14.891 16.817
4 1.645 0.090 0.122 1.363 1.000 1.096 3.412 2.482 1.136 1.158 1.148
8 1.946 0.202 0.274 0.994 1.000 1.349 2.964 2.424 0.442 0.396 0.340
12 0.264 0.350 1.239 0.819 1.000 0.766 0.375 0.469 0.242 0.238 0.240

average 1.798 0.135 0.216 1.463 1.000 1.242 3.090 2.420 1.210 1.233 1.258

Notes: (1) The DGP is a drifting bivariate ARMA(1,10) with the parameter α measuring the degree of local
misspecification; see Section 6 in the manuscript for details; (2) Entries are the sample variances of weighted
MSFEs computed from a specific method using 13 pre-specified maximum lag orders: p̄ = 3, . . . , 15 with
OLS(I) normalized to unity. “average” refers to the averages of the sample variances over forecast horizons
h = 1, 2, . . . , 12; (3) “I” and “D” in parentheses refer to iterative and direct multi-step forecasts, respectively.
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Figure A1: Sensitivity of weighted MSFEs of competing methods to the choice of p̄ for h = 1, 4, 8, 12 (T = 100)
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Table A2: Estimation effects on the relative multi-step forecast perfor-
mance of MMMA and MCVAh (p̄ = 5, 10, 15)

W = Σ̃h(p̄)−1 W = Σ−1
h

Reference T = 100 T = 200 T = 500
h MCVAh MMMA MCVAh MMMA MCVAh MMMA MCVAh MMMA

ρ = 0.8 p̄ = 5
1 1.000 1.000 0.999 1.000 1.000 1.000 1.000 1.000
4 1.000 1.000 0.999 1.000 1.000 1.000 1.000 1.000
8 1.000 1.000 0.998 1.000 1.000 1.000 1.000 1.000
12 1.000 1.000 1.000 1.000 0.999 1.000 1.000 1.000

ρ = 1.2
1 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
4 1.000 1.000 0.997 1.000 1.000 1.000 1.000 1.000
8 1.000 1.000 0.998 1.000 1.000 1.000 1.000 1.000
12 1.000 1.000 0.998 1.000 1.000 1.000 1.000 1.000

ρ = 1.8
1 1.000 1.000 0.996 1.000 1.000 1.000 1.000 1.000
4 1.000 1.000 0.992 0.998 0.999 1.000 1.000 1.000
8 1.000 1.000 0.984 0.998 0.999 1.000 1.000 1.000
12 1.000 1.000 0.978 1.000 0.997 1.000 1.000 1.000

ρ = 0.8 p̄ = 10
1 1.000 1.000 0.997 0.999 1.000 1.000 1.000 1.000
4 1.000 1.000 0.996 0.999 0.999 1.000 1.000 1.000
8 1.000 1.000 0.991 1.000 0.999 1.000 1.000 1.000
12 1.000 1.000 0.989 1.000 0.999 1.000 1.000 1.000

ρ = 1.2
1 1.000 1.000 0.999 1.000 1.000 1.000 1.000 1.000
4 1.000 1.000 0.995 1.000 1.000 1.000 1.000 1.000
8 1.000 1.000 0.990 1.000 0.999 1.000 1.000 1.000
12 1.000 1.000 0.990 1.000 0.998 1.000 1.000 1.000

ρ = 1.8
1 1.000 1.000 0.999 0.999 1.000 1.000 1.000 1.000
4 1.000 1.000 0.998 1.000 0.999 1.000 1.000 1.000
8 1.000 1.000 0.991 1.000 1.000 1.000 1.000 1.000
12 1.000 1.000 0.987 1.000 0.999 1.000 1.000 1.000

ρ = 0.8 p̄ = 15
1 1.000 1.000 0.997 1.000 1.000 1.000 1.000 1.000
4 1.000 1.000 0.988 0.999 0.999 1.000 1.000 1.000
8 1.000 1.000 0.983 1.000 0.999 1.000 0.999 1.000
12 1.000 1.000 0.977 1.000 0.997 1.000 1.000 1.000

ρ = 1.2
1 1.000 1.000 0.997 0.999 1.000 1.000 1.000 1.000
4 1.000 1.000 0.991 1.001 1.000 1.000 1.000 1.000
8 1.000 1.000 0.979 1.000 0.999 1.000 1.000 1.000
12 1.000 1.000 0.981 1.000 0.998 1.000 1.000 1.000

ρ = 1.8
1 1.000 1.000 0.996 1.000 1.000 1.000 1.000 1.000
4 1.000 1.000 0.992 0.998 0.999 1.000 1.000 1.000
8 1.000 1.000 0.984 0.998 0.999 1.000 1.000 1.000
12 1.000 1.000 0.978 1.000 0.997 1.000 1.000 1.000

Note: Entries less than one indicate superior performance relative to the proposed
MMMA and MCVAh using W = Σ̃(p̄)−1 and W = Σ̃h(p̄)−1, respectively.
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Figure A2: Multi-step forecast performance under bivariate drifting ARMA(1,10): T = 200
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Figure A3: Multi-step forecast performance under bivariate drifting ARMA(1,10): T = 500
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ŵ

α=0, h=1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

α=0, h=4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

α=0, h=8

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

α=0, h=12

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

ŵ
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ŵ

Lag

α=10, h=1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Lag

α=10, h=4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Lag

α=10, h=8

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Lag

α=10, h=12

MCVAh(D) : p = 3
MMMA(I) : p = 3

MCVAh(D) : p = 5
MMMA(I) : p = 5

MCVAh(D) : p = 10
MMMA(I) : p = 10

MCVAh(D) : p = 15
MMMA(I) : p = 15

Note: For each of the values of α considered, MMMA(I) uses the same weights obtained from one-step-ahead forecast averaging
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Figure A4: Weight estimates obtained from MCVAh(D) and MMMA(I) based on p̄ = 3, 5, 10, 15 (T = 100)
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Note: For each of the values of α considered, MMMA(I) uses the same weights obtained from one-step-ahead forecast averaging
across forecast horizons.

Figure A5: Weight estimates obtained from MCVAh(D) and MMMA(I) based on p̄ = 3, 5, 10, 15 (T = 200)
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ŵ

α=2, h=1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

α=2, h=4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

α=2, h=8

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

α=2, h=12

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

ŵ
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Note: For each of the values of α considered, MMMA(I) uses the same weights obtained from one-step-ahead forecast averaging
across forecast horizons.

Figure A6: Weight estimates obtained from MCVAh(D) and MMMA(I) based on p̄ = 3, 5, 10, 15 (T = 500)
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Figure A7: Multi-step forecast performance for DGPs A1-A2
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Note: (1) The MSFEs for Y (GDP), P (the GDP deflator), and FF (the federal funds rate) are computed from (F.1), while the MSFEs for A are
the aggregated weighted MSFEs computed from (F.2). All is relative to OLS(I); (2) Normalized maximum regret is taken over 13 pre-specified
maximum lag orders: p̄ = 3, . . . , 15, with OLS(I) normalized to unity; (3) “I” and “D” in parentheses refer to iterative and direct multi-step forecasts,
respectively.

Figure A8: Empirical results: forecast performance (measured by relative MSFEs and normalized maximum regret) of
MMMA(I), MCVAh(D), and competing methods based on three-variable VARs (with p̄ = 5, 10, 15)
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