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A Derivations of equation (3.5)
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Let R be the squared root of 3(p)~!, i.e., (p)~! = RR. The matrix S can be alterna-

tively expressed in a compact form as:

T-1
S = gt+1g:t+1> (A1)
t=p
where
Erpr(1) Exppa(1) -+ Exega(1) Enp1(l) E2041(1) -+ Egepa(1)
- Er11(2) E2641(2) -0 Exen(2)| = |E1en1(2) E2411(2) 0 ERera(2)
Et+1 = R=
E1001(P) E201(P) - Ekena(D)) E1001(P) E2011(P) - Eke(D))

is a p X K matrix.

Moreover, equation (3.5) can also be conveniently expressed as:

T-1
wSw = w’ (Z EtH’é;H) w = weg'ew, (A.2)
t=p
where
Zon(1) oo Er(1) Bapa(D) o Er(D) o Epa(l) ... Err(])
., E15+1(2) .. ar(2) E2pm(2) ... Er(2) - Expi1(2) ... Err(2)
T S T
Eipr1(D) oo () Eapn(D) .. Sxr(D) - Expn(P) .. EkT(D)

is a p x K(T — p) matrix.
In a special case of K =1 (i.e., the univariate AR(p)), it is obvious to see that (7' — p) -
tr (i(ﬁ)_li*(w)> reduces to:
-1 p p
S 3 WG () = 7w ew,
¢

=p i=1 j=1

where &,41(p) fort =p,...,T—1and p=1,...,p are OLS residuals and &? is the estimated
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variance from the largest model, i.e.:

- 1 ~
7 = T_ p 2= i1(P)",
t=p
and € defined in (A.3) reduces to:
er1(l) E1(2) -+ Ga(D)
- &) &2 - &b
L er(l)  Er(2) er(p) |

which is a (T'— p) x p matrix. The Mallows averaging criterion becomes:
Cr(w) = *weew + 2p'w. (A.4)

Since the constant =2 plays no practical role in model selection/averaging criterion,

multiplying (A.4) by 62 gives another equivalent expression of (A.4):
Cr(w) = we'ew + 25°p'w, (A.5)

which equals equation (13) in Hansen (2007, p.1180) or equation (16) in Hansen (2008,
p.344).

B Efficient Computation of C'Vy,(w)

First note that €,,(p) defined in (4.4) in the main text is the min(¢ — p+ 1, h)-th row of
the ¢, x K removed leave-h-out residual matrix, denoted by €;.,(p).

A computationally convenient formula for €, (p) can be derived as follows:

Et:h<p) =Yy, — Zt:h(p){flh,t(p) = (Ieht - Pt:h(p))_l /ét:h(p>7 (B-l)

where Y., and Zy.;(p) are £, x K and £5; x m block matrices for the removed observations:

Ligy ooty Uy in Y and Z(p), respectively, Puy(p) = Zen(p)(Zn(p) Z1(p))~ Zs.s(p)’, and
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€:.n(p) is the 5 x K block matrix of €,(p) for the removed observations. The second equality

in (B.1) follows from using the following formula for {Ivlhjt(p):

\AI}hJ(p) = (Zh(p)/Zh(p) - Zt:h(p)lzt:h(p))_l (Zh(p),Yh - Zt:h(p)lYt:h)
= U,,(p) — (Zn(p)'Zn(p)) " Zt:h(P)'(Yt:h — (I, = Pen(0) ™! Zen(p) (Za(0) Zn(p)) ™ Z0(p) Y

+ (L, = Pea(p)) " Pra(p) Yo ). (B.2)

Formulae (B.1) and (B.2) are derived by directly applying the arguments in Racine (1997)
and Hansen (2010) to our VAR setting. The detailed derivations are omitted here and are
available upon request from the authors. Using (B.1), it is not necessary to actually fit
T — p — h + 1 separate models when computing the CVz;,(w) criterion and as a result, the
computation of the CVz(w) criterion is of order O(T') instead of O(T?).

Let Py (p) = Zn(p)(Z1,(p) Zi(p)) " Z1(p) be the regular (T —p—h+1) x (T —p—h+1)
projection matrix to the subspace spanned by the columns of Zj(p). We next wish to
examine the relationship between Py (p) and its leave-h-out version, denoted by Pj,(p). This
relationship will be used in several places in the proof for the asymptotic optimality of our
MCVA,, procedure, as will be shown in Section C.4 in the Appendix. We first need to develop
some notation.

Denote by S;.;, the £ x (T'— p — h + 1) selection matrix with a ¢, x £, block matrix
equal to I,,, and O elsewhere - namely, for a particular ¢, matrix S, is used to extract the
block matrix corresponding to ¢, removed observations. For example, €.;(p) in (B.1) can
be taken from €, (p) by using €.,(p) = Se.nen(p). We also denote by ey, the €5, X 1 selection
vector with 1 in its min(f — p + 1, h)-th element and 0 elsewhere. To be more explicit,
Stn = <0€htX(£hfﬁ) Ly, Oéhtx(Tfhtht)) it £, —p > 0; Spp, = (Ieht OehtX(T,h,ght)) if ¢,, —p=0;
and eps = (015 (min(t—p+1,8)—1) 1) O1x (¢, —min(t—p+1,1))) -

Using the selection matrix Sy.p,, €,.,(p) in (B.1) can be equivalently rewritten as: Sy, (Y, —
P,(p)Y,) = (Ir,, — Pen(p)) *Sen(Yy — Pu(p)Yy). Cancelling out Yy, on both sides of
the above equation and then rearranging yield St:hf’h(p) = (I, — Pun(p)) 'Sun(Pr(p) —
Ir—5-nt1) + Sen. Denote lgt:h(p) = St;hlgh(p) and Dy.p,(p) = (I,, — Pen(p)) " 'Ses. Applying
the selection vector ep; to f’t;h(p) gives the (t — p + 1)-th row of the leave-h-out projection
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matrix P, (p), i.e.:

ehPun(p) = € (D) (Pr(p) = Ir—pns1) + Sen). (B.3)

Lastly, stacking (B.3) vertically over ¢t = p,...,T — h results in lsh(p), as stated in Lemma 1
below.

For the presentation of Lemma 1, we denote by Ej, the (T'—p — h + 1) X £;, matrix with
the (t —p+ 1)-th row that is formed by e}, as its Zﬁ;;_l(ﬁhi +1),..., Zzzﬁ_l (p; column row

subvector and 0 elsewhere, and with ¢ ;1 set to 0. We also denote by Dy (p) and S;, the
Uy, x (T — p — h+ 1) matrices vertically stacking (Ir,, — Pyn(p)) " 'Sis and Sy, respectively.

Lemma 1. (Shortcut formula) The leave-h-out estimates p,(p) of wp,, based on the fitted
h-step VAR(p) model can be represented by p,(p) = f’h(p)Yh, where f’h(p) is related to
Pn(p) as follows:

Pi(p) = En (Du(p)(Pi(p) = Tr—pni1) + Si). (B.4)

Alternatively, (B.4) can also be expressed as:

f’h<p) = f)h(p>(Ph(p) —Ir_pn1) FIrponya, (B.5)

where we use the fact that E;Sy = Ir_5_pi1 and denote f)h(p) =E;Dy(p).

Lemma 1 generalizes to h > 1 for the projection matrix based on leave-h-out cross-
validation. To see this, in an important special case when h = 1 (corresponding to leave-
one-out or Jackknife cross-validation), let ¢;;(p) denote the (i,j)-th element of the one-
step projection matrix, denoted by P(p). In this particular case, we have ¢;; = 1 for all
t, ¢, = T — p, and the matrices Ej,, Dy(p), and Sj, in (B.4) become Ir_;, the diagonal
matrix D(p) of dimension (7" — p) with the i-th diagonal element equal to (1 — g(p))~},
and Ip_j, respectively. As a consequence, (B.4) reduces to equation (1.4) of Li (1987):

P(p) = D(p)(P(p) — Ir_p) + Ir_p.
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C Mathematical proof

C.1 Proof of Theorem 1

For each candidate VAR(p) model, recall P(p) = Z(p)(Z(p)'Z(p)) *Z(p) and P*(w)

5:1 w(p)P(p). We write and expand the sum of squared residuals as:

tr (Y = @ (w)S(0) (Y = 5 (w)))
= tr (= ' (w) + &) () (- ' (w) +e))
“(w) +e)) (Trp @ B(p) ) vec( (1 — 5" (W) +e))
W)Y (Trp® S(p)") vee((p — (W)
+ vee(e') (Tr—y @ 3(p) ") vee(e)

+ avee((— (W) (Tr 5@ S(5)7") vec(e),

= vec((p —
= vec((p —

(C.1)

where vec and ® denote a column stacking operator and Kronecker product, respectively,

and for the second equality we use the property that for conformable matrices A, B, and

C, tr(ABC) = vec(A’) (I ® B)vec(C). The first two terms on the right-hand side of equa-

tion (C.1) correspond to the in-sample squared error and error covariance, respectively, and

the latter term does not depend on the candidate model.

We next examine the third term on the right-hand side of equation (C.1). Rewriting

A~k

2vee((p — 5" (w)))' (Tr— @ S(p) ") vec(e)
— 2vec(((Tr—p — P*(w))) — (P*(w)e)') (Tr—y & 3(p) ) vec(e)
— 2vec((p (Tr—5 = P*(W))' (Tr 5 ® £(p) ") vee(e)
— vec((e'P*(w)) (IT_,; ® i:(p)—l) vec(e')
= 2vec() (T — P*(w))' @ Tc) (Tr @ 5(p) ") vee(e)
— vec(e') (P*(w)' ® Ix) (IT_,; ® i(p)—l) vec(e')

= T’lT(W) + ’I"QT(W),
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where the third equality follows from the property that vec(AB) = (B’ ® I)vec(A) for
conformable matrices A and B.
We first examine the term ri7(w). Note that p = pr is assumed to increase with the

sample size T. For each candidate model VAR(p),p = 1,...,p, we define:

611(r) = —gvecw) (T = P(p) @) (Tr-5 © (7)) vee(e)
= Tl_ ]5"6001/)/ ((ITfﬁ —P(p) ® i(ﬁ)’l) vec(€'), (C.3)

where &7 (p) satisfies & 7(p)/T'1(p)/> = N(0,1) with T'y(p) = plim v(p)’ (Ir—; ® ) v(p)/(T—
D), v(p) = vec(p') ((IT_I; -Pp)) ® i(p)_l), and —5 denotes convergence in distribution.
This large sample result for (C.3) is an application of Proposition 15.1 of Liitkepohl (2005,
p.533). Equation (C.3) says that &¢(p)/T'1(p)*/? is a standard normal random variable.
Since the term 7m7(w) in (C.2) can be expressed as 2 Zgzl w(p)éir(p), rir(w) is a weighted
sum of mean-zero normal random variables, implying E(ri7(w)) = 0.

We next move to evaluate the term rop(w). We note that for each VAR(p) candidate

model:

vee(©'P(p)) = vee (€'Z(p) (Z(p) Z(p) " Z(p)')
= (2(0) () 20)) " © Tc) vec('Z(p))
= (Z(p) @ 1) ((Z() 2(p)) ™ @ L) vee(e'Z(p).

As a result, we write:

— 2vec((e€'P(p)) (IT—ﬁ ® i(ﬁ)_l) vec(e')

— vec(€'Z(p))’ ((Z(p)'Z(p)) ®IK)( (p) ©1Ix) (IT_p®§(ﬁ)‘1) vec(e')
= —2vec(e'Z(p))’ ((Z(p)/ (p) " ® IK) ( K @ (P ) (Z(p) ® L) vec(e)
— —2vec(e'Z(p))’ ((Z( )Z(p)) ® X(p ))_lvec(e Z(p)), (C.4)

where we use ((Z(z})lzp(p))_l ® IK) (IKp ® 2(15)_1) = (<Z(},1)—)'1Zﬁ(p)> ® i(ﬁ)>_1'
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To evaluate (C.4), consider:

((Z(p)’Z(p))f1 ® EW) vec (€'Z(p))

—\1/2 Z(p)'Z(p) e 1/2 -1 - /
= (T -p)Y ((T——p> @ XV ) vec ((T — D) t:EﬁH stzt>
T , ~1/2
= (T — p)*vec ((T p) izt ( g stzt(p)’> (—Z(ﬁ)_zz()p)) ) : (C.5)

t=p+1

where we recall that z;(p)" = (y;_y,- ..,y )t =p+1,...,T, is the (t — p)-th row of Z(p)
and € = (€p4+1,...,er), and for the second equality we use the fact that vec(ABC) = (C'®
A)vec(B) for conformable matrices A, B, and C . Denote I'y(p) = plim Z(p)'Z(p) /(T — p),
and let £(p) be a sequence of K?p x 1 vectors such that 0 < ¢; < £(p)'l(p) < ¢y < oo for

positive constants ¢; and ¢;. We thus define:

7= (T — p)"/*((p)'vec ((T p)ytET? ( > stzt(p)/> Fz(p)‘1> ,

t=p+1

and v3 = Var(sy) = {(p) (IKP ® 2_1/2> (Ix, ® %) <IKp ® 2_1/2) l(p) = L(p)'4(p). Under
Assumption 1, Theorem 3 of Lewis and Reinsel (1985) shows that as T — oo:

ST/UT i> N(O, ].) (06)

Putting together the arguments in (C.5) and (C.6), it is obvious to derive the following

limiting distribution result that allows the lag order p to increase with the sample size:

(¢p)'vee(= 22 (p) Ta(p) /2) VT =5
(Cp)em))”

/

= ((p)pr(p) -5 N(0,1),  (C.7T)

where
br(p) = vee(S™2eZ(p)Ta(p) /%) /\/T — p.

By the Cramér-Wold theorem, for any p € {1,2,...,p}, ¢(p) then converges in distribu-

tion to a K?p-dimensional vector of multivariate standard normal random variables. Denote

Eor(p) = dr(p) dr(p). We thus have Ep(p) LN X2(K(p)), where x*(K(p)) is a chi-squared
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distribution with degrees of freedom K (p) = K?p.

We now turn back to (C.4). Using the asymptotic normality results discussed above,
the consistency of i(ﬁ) (since the maximum lag order p = pr increases with sample size),
and the fact that (C.4) (ignoring the constant —2 for a moment) is a quadratic form in
multivariate normal random variables, (C.4) is asymptotically equivalent to &1 (p), i.e., for

each p € {1,2,...,p}:

vtz (222D o 515

vec(e'Z(p)) — &ar(p) = op(1).
(C.8)

Denote §5r(w) = Y0 w(p)ar(p). It then follows that E(§5r(w)) = z w(p)E(&xr(p)) =
ﬁ _,w(p)K(p). This further implies:

w(p = —2K’p'w. (C.9)

Mw

E T2T -2
p=1

Combining (C.1), (C.2), (C.3), and (C.9), we conclude that E(Cr(w)) = (T'—p)E(Lr(w)),
completing the proof.

C.2 Proof of Theorem 2

Similar to (C.1), we write and expand the sum of squared leave-h-out cross-validation

residuals as:

tr (Y5 — B (W) S(B)™ (Ya — iz (w))')
= tr (s, — 751 () + ) Sa(p) ™ (1, — i (w) + 1))
= vee( (= Fin (W)Y (Tr g @ ()" vee( (g — iz (w))
+ vec(ef)' (Tr—p 1 @ Zn(p) ) vec(e)

o+ 2vee((y, — 5, (w))) (Trp-nsr @ Sn(p) ") vee(e}), (C.10)

where the first term on the right-hand side of (C.10) corresponds the leave-h-out in-sample

squared error and the second term does not involve w. Writing p, — (W) = wy, —
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f’,’;(w)(ph +ep) = r—pony1 — ISZ(W))uh - f’fl(w)eh, we further decompose the third term
on the right-hand side of (C.10) into:

2vee((y, = 5,(w))") (Tr-p-nir © Ba(p)™") vec(e})
— 2vec(py) (Tr—pnir = PrW))Y @) (Trponar @ Sn(p)™") vee(e,)
— 2vec(e,) (Pi(w) ® Ik) (IT_,a_hH ® ih(@‘l) vec(e},)

= Tira(W) + Tarn(w). (C.11)

We now examine the 717, (W) and 7oz, (W) terms as follows. Using the similar arguments
to those used in the proof of Theorem 1, specifically (C.2) and (C.3), with w,, @, f’Z(W),
| R ih(ﬁ), and ey, in place of p, @, P*(w), Ir_;, f](ﬁ), and e, respectively, it can be
shown that, similar to the r17(w) term in (C.2), 7(W) is a weighted sum of mean-zero
normal random variables, i.e., E(7114(w)) =0 as T — oc.

Turning to the For, (W) term, we have E (7o, (w)) = E(tr(Pf(w)ene,)) = tr(Pr(w)E(ene))) =
0 since for any given h > 1 and a particular ¢, the (t — p+ 1)-th row of P}(w) has (4 zero
elements (corresponding to £,, —p+1,..., 0y — p+ 1 columns) and non-zero elements else-
where. Conversely, the matrix F(epe}) has an exactly opposite non-zero/zero structure to
P;(w), and, as a result, the element-wise multiplication of the same rows of P}(w) and

E(ene),) is always zero and E(epe),) is symmetric. This completes the proof.

C.3 Proof of Theorem 3

In the sequel we use C' to denote a generic positive constant that is independent of
the sample size and may be different in different places. Specifically, we begin with the

observation that:

2 veclp!) ((Irp — P*(w)) @ Tie) (Tr_p & 57 vec(e)

Ci(w) = Ly(w) + K + 7—

2 vec(e') (P*(w) @ Ig) (Ir—; @ £7") vec(e') + 2K2—p’j?v (C.12)

T—p T—p

Based on (C.12), to prove (5.11) we need to verify the following two uniform convergence
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results of the form:

WS:_?E) [vee(p) (P*(w) @ 1) (Ir—p ® 7") vec(€)| /Vr(w) = 0,(1), (C.13)
WS;E) [vec(e')' (P*(w) @ I) (Ir—p ® ") vec(e') — K*p'w| /Vp(w) = 0,(1). (C.14)

To verify (C.13) and (C.14), we show the following statements:

T A <(Z’Z>_l) = 0,(1), (C.15)

=15 tvec(e )(zz ®IK) vec(e') = 0,(1), (C.16)

where Apax(A) denotes the maximum eigenvalue of a matrix A.

We now take (C.15). Denote fT(p) =(T—-p)! ZtT:ml z:(p)z:(p) = (T —p)~ 1Z'Z and
I'(p) = E(z7+1(p)zr+1(p)’) is a pK x pK matrix whose (7, j)-th (K x K) block of elements
is Ty_j, 4,5 = 1,...,p with T; = E(y.y;,;). We also denote [|Al]} = Anax(A’A) as the
maximum eigenvalue of the matrix A’A and ||A||3 = /\fnax(A) if the matrix A is symmetric.

The following lemma places the moment bound on ||FT D)l

Lemma 2. Suppose that either (1) Assumptions 1(a)-(b) and 2(b)-(d) or (2) Assump-
tions 1(a) and 2(b)-(c) and (e) are satisfied. Thus, E||f;1(]§)||1 = O(1) for sufficiently
large T

Proof. The proof is similar to that of Theorem 2 of Ing and Wei (2003) in the context of
univariate autoregressions. To begin with, according to Lewis and Reinsel (1985, p.397), we

have:

 ([[fx) - )

j) <E (HfT(p) ol ) 2K2 OTﬁ_Qﬁ, (C.17)

where the first inequality holds by ||A[? = A2

max

(A) < ST A (A) = ||A])? for am x m
symmetric matrix A with eigenvalues Ay, £ =1,...,m.

We next observe that:

|52 @ -t =[5 @) (B - 1)) T )

A—1

1

<|[F7' @), [Fre) - 1@ [T )

(C.18)
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almost surely for large T', and hence we can write for sufficiently large 7" and any 6 > 0:

)¢

~—1

([t @) -1 w)

) <0 (||Fr(z) - 1)

p 216
=CT e’

53+0
p

(T —p)/?

p6+61 1/2
< .
o[ o

=C

where the first inequality uses Assumption 2(c). As in the univariate case (see, e.g., Berk
(1974, p.491)), |IT~*(p)||1 is uniformly bounded by a positive constant for all 1 < p < p, as
stated in Lewis and Reinsel (1985, p.397), the second inequality follows from (C.17), and
the last inequality follows by setting 20 < ¢;.

Based on (C.19), it is not hard to see EHf;l(ﬁ)Hl < O, provided that p®*% = O(T) and
E|T~Y(p)|, < C. This completes the proof of the lemma under the first set of assumptions.

Using the similar arguments to those employed in Ing and Wei (2003, p.140), one can
show that the statement of the lemma still holds under the second set of assumptions. The

proof is omitted for brevity. O

Using Lemma 2, we obtain:

— -1 —— —1

-1 77 77

EHI‘ 5 H - g 22 — E e | [ 2 , .20

r (P) . T—p T—5 < 00 ( )
1

where the second equality in (C.20) follows since the matrix Z'7 is symmetric. Thus, (C.15)

follows from combining (C.20) and Markov’s inequality. Next, note that vec(e')(ZZ ®
Iy )vec(e') = tr(€ZZ'e). We show (C.16) in the following lemma.

Lemma 3. Under assumptions that the second moment of €, exists for all t and that

E(|yi1—eyji—e|) < C foralli,j=1,...,K, t and ¢, we have:

2

E = LE [tr(e’zz/e)} = O(pr).

T—p

T
1

— Z e1z(p)’

VI —p t=p+1
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Proof. Recall that z;(p)’ = (y;_;,-..,y;_,) and observe that:

K T 2
T < E tYjt— (C.21)
t§1 €12+(D 121]21 2 t:pZH5tyyt ¢

2
Since E(|eyeje|) < Cfori,j =1,..., K and all ¢, the summand E [(T —p) ! ‘ZtT o1 CitYjt g‘ ]
in (C.21) is bounded by:

CE( Z [ él) C(T=p)" Y Ellyje-eypei) =0(1). (C22)

t=p+1

Lastly, the lemma follows from combining (C.21), (C.22), and the condition that E (|y; ey, 1—e|)

C for all 7, 7/, t and ¢, where the last condition follows from the assumption of E‘]}O o 125 <
oo. This yields the desired result.

[
Equipped with (C.15) and (C.16), we first verify (C.13) by writing

1 vec() (P*(w) © Ti) (Trp © 571) vec(e))|

=& Hvee(w) (P @ 1) (P*(w) ® Ig) (Ir—; ® =7") vec(e)]

< 6 {veclp) (P o L) (P& Ti) e eel) (Tr_p &' 5) (P
< & {vee(p!) (P @ Ig) vee(p)vee(e') (Ir_p @ 7)) (P @ Ix) (Ir—

— {\[pg}”vec(u’)’ (P ®Ix) vec(p' )} [p'vec(e') Ir; @) (P ®

—~
=o0p(1) by Assumption 2(a)

(W) @TIx) (Iry @ 571 vee(e) }
DY ) vec(e’)}1/2

L) (I © 57) vee(e)] }

= 0,(1), (C.23)

where the first inequality follows from the Schwarz inequality, and the last equality holds
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since:

pvec(€) Ir; @ 71 (P Ig) (Ir—p @ 1) vec(€')
< Cpvec(€') (P ® Ig) vec(e')

< C'TAmax ((2/2) > T 'p tvec(e') (ZZ ® IK> vec(e)

N J/ —~
-~

=0,(1) by (C.15) =0,(1) by (C.16)

= 0,(1). (C.24)

The second inequality in (C.24) follows from the fact that vec(e')’ (P ® Ix) vec(e') =
tr (e Z(Z Z)*1Z e> = tr ((Z Z)*IZ ee Z) and the trace inequality, whereby setting A =
(ZZ)™" and B = €ZZ'e, we have tr(AB) < Apax(A)tr(B) for squared matrices A and B
with A being symmetric and B > 0.

We next move to (C.14). Using Assumption 2(a) and a similar argument to show (C.24),

we have:

571 vee(e) (P*(w) @ 1) (Ir—p ® 1) vec(e') — K*p'w|
<& vee(@)PIg) (Irp @ 27" ) vec(e) + & 'K?p
——

=op(1)
by Assumption 2(a)

< i:l_pz T A nax <(2’2> )T P vec(e') <ZZ ®IK> vec(e /z+op(1)

=op(1) \ ~ v ~ -
by Assumption 2(a) =0,(1) by (C.15) =0p(1) by (C.16)

= 0,(1). (C.25)

The last thing to show is (5.10). The argument is essentially the same as the above. Recall

that p"(w) = P*(w)Y and p — " (w) = A*(w)u — P*(w)e. We first calculate:

Lr(w) = 7t (27 (= () (= ()

= ﬁ [tr (7" W AT (W) A (w)p) — 2tr (7' W/ A" (wW)P*(w)e) + tr (37 'e'P*(w)P*(w)e)]

(C.26)
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and thus:

Ly(w) — Vr(w) = —

2_ 25tr (='W A (w)P*(w)e)
+ L_p [tr (P*(w)eS ' e'P*(w)) — E [tr (P*(w)eZ'eP*(w))]}.

(C.27)

Take the first term on the right-hand side of (C.27). We calculate:

&M (BT AN (WP (w)e) < &7 (BT P (We) + & Aax(Z7 1)t (WP (W) P (w)e)
<G A (371 tr (WP (w)e)
+ € Amax (Z71) Amax (P*(W)) tr (/P (w)e)
< C& e (WP (w)e)
= O r (WPP* (w)e)
= & 'vec(Pp/)'vec(P* (w)e)
< Cg ! [vee(Pp!) vec(Pp')] " [vec(P* (w)e) vec(P* (w)e)]

e = 12 1 . 1/2
= C [pg; 2t (uPp)]"” [t (P (w)P* (w)e)]
=op(1) by A;srumption 2(a) 7Op( )
= 017(1)7 (028)

where the first and second inequalities follow from the trace inequality, and the fourth
inequality follows from the Schwarz inequality. Using (C.15) and (C.16), the second part on
the right-hand side of the third equality in (C.28) holds since:

AN
)
[
|
-
>
g
®
X
—
Yo
*
—
2
N—
—+
~
—~
m\
w
*
—
N—
®
N~——
N—
—
~
[N}

(p~"tr (€P*(w)P*(w)e)) " <

IN

—~0,(1) by (C.15) —0,(1) by (C.16)

C
C

1/2
(mmx ((z’z) 1) T (ZZe)
Op(1). (C.29)
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We next take the second term on the right-hand side of (C.27). Using (C.29) and As-

sumption 2(a), we have:

& H{tr (P*(w)eS 'eP*(w)) — E [tr (P*(w)eX 'eP*(w))]}
< 0 r (PH(w)PH(w)e) +CE& 1 0(p)

/

—0,(p) by (C.29)
=0, (&7 'p) +0(&7'D)
= OP(1)7 (C30)

where the last equality follows from Assumption 2(a).

C.4 Proof of Theorem 4

As discussed in (5.13)-(5.15) in the text, to prove (5.12), it suffices to show (5.14) and
(5.15), where (5.14) is implied by (5.13). First take (5.13). Based on the following decom-
position of C'V7 ), (w):

CVin(w)=CVpp(w) /(T —p—h+1)

= Lyp(w) + K
+ ﬁvec(ﬂhl)/ ((IT—ﬁ7h+1 —Pi(w)) ® IK) (Ir—pns1 @ B;, 1) vec(ef,)
- ﬁvec(e%)’(f’i(w)/ ® 1) (Ir—pon+1 @ ;") vec(e},)
b el — (W) (T © 7 veelef), (©.3)

to establish the first condition in (5.13), it is sufficient to show the following uniform con-

vergence results:

sup vec(py,) (f’;ﬁb(w)' ® IK) (Ir—pons1 ® ;1) Vec(eﬁl)‘ JVrn(w) = 0,(1), (C.32)
sup [vec(el (B &) (Tr-pois © 55) veelel)| [Vealw) = (1), ()
s [y~ )Y (g1 @ 357) veele)| Vi (w) = 0, (1), (C34)
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where we have replaced \7T,h(w) with V7, (w) in the denominator of (C.32)-(C.34) under the
condition: supy,cs.. ’VTyh(W)/VTﬁ(W) — 1| % 0, which will be established in (C.39) below.

Under Assumption 3(a), (C.32) and (C.33) can be shown to hold by using similar argu-
ments to those in (C.23), (C.24), and (C.25) under the conditions (C.15) and (C.16) with &},
Z, e u, P, Ir_5, and >~ ! replaced by s Zn, en, wy,, P, Ir_5_pt1, and E,:l, respectively.
Next turn to (C.34). Using fi(w) = P;(w)(my, + €5) and ignoring the term that does not

involve w, we only need to show:

oup. [vecl (s B0 (Ir-p 1 © ;) veelel)| /Via(w) = (1), (C.35)
WEHT
and
sup vec((e}, Pt (w)") (Ir—pops1 @ 53, 1) Vec(e%)‘ JVrn(w) = o0,(1). (C.36)
weHT

Take (C.35). Using Lemma 1, we rewrite f’h(p) = f)h(p)(Ph(p) —Ir—pon+1) +Ir_ppi1 as

P,(p) = Pu(p) + Tu(p) — Qu(p), where Qu(p) = Dy(p) —Tr_pp11 and Th(p) = Qu(p)Pi(p)-
As a result, we have ISZ(W) = 5:1 w(p)Ph(p) = P;(w)+ T (w) — Qj(w), where T} (w) =
5_1 w(p)Th(p) and Q;(w) is defined analogously. Using this, we rewrite the left-hand side

of (C.35) as

(W)
p-ni1 ® Iy 1) vee(er)| [V (w)
) (Tr—pnt1 @ ;") vec(er)| /Viu(w)
+ |vee((ph, Qi (W) (Ip—pni1 ® ;") vee(el)| /Vra(w)
< 0p(1) + C&) aptr(pnes,)
= 0p(1) + C(p&7, ) (B Tap) (T~ tx(paye),)
= 0,(1), (C.37)

vee( (i PA(W)) (Tr-ponin @ B3") vee(e})
< [vec (4P (w))' (Lr-

+ |vec((py, T (w

/

where the second inequality in (C.37) follows from using the identical arguments to those in
(C23) with 5;’7 K, P*(W)a Fa IT*?? Ea and e replaced by 5;“,}17 2% PZ(W)v Fha IT*ﬁ*thlv X,

and ey, respectively, and under Assumption 3(a); the last equality follows from Assumption 3
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and from tr(p,e),) = tT:_ﬁh S e in = O,(T) under the conditions E(|eye;]) = O(1)
fori,j=1,..., K and E(|y;—eyj +—e|) = O(1) for all j, 5', ¢, and £.
Turning to (C.36), once again using Pj,(p) = Pp(p) + Th(p) — Qulp), we can write:

su}{) V€C(<€%]§Z(W)/)/ (IT,ﬁ,hH ® E,:l) Vec(eﬁl)’ SV (w)
weHT
< su?ﬁ) }Vec (e, Py (w)") (IT,ﬁ,hH ® E,:l) Vec(e%)| JVrn(w)
weEHT

+ sup |vec((e},(Th(W) — Qi(W))') (Ir—p-ns1 ® 3,7 vec(e))| /Vrn(w)

weHT

< 0p(1) + &, sup Z ) [vec((e}(Ta(p) = Qu(p)))' (Ir—p-n+1 ® X, ") vec(e})|

WEHT

<o,(1)+ C’ﬁ};z gitr(eney,) = op(1) + C’(ﬁf};})(ﬁ’quZ)(Tfltr(ehe’h))
= op(1), (C.38)

where the second inequality follows from the arguments showing (C.24) with e, P, Iy,
and X replaced by ey, Py, Ir_ 5 ny1, and 3, respectively, under suitable conditions stated
in Assumption 3, and the last equality is satisfied by Assumption 3 and by the fact that
tr(epe),) = O,(T) under once again E(|eyej|) = O(1) fori,j=1,..., K.

It now remains to establish supy,cq,. |Ly(w)/Lyp(w) — 1] 25 0 as T — oo. To prove

this, we first show:

VT,h(W)

—1
VT,h(W)

sup
weHT

0 (C.39)

almost surely as T — oco. Define Af(w) = Ir—5ony1 — P;(w). Using p, — i (w) =
A (W), — Pr(W)en, the leave-h-out risk Vi, (w) for averaging h-step forecasts is given by:

VT,h(W) = E@T,h(“’))
— e B L (55 = ) (e — B ()]

= mtr (AZ(W>Mh2i71/"';1;‘z<W)/> +FE [tr (f’;(w)ehzglegf’;(w)’)} .

(C.40)

Based on (C.40), it is seen that Vi, (w) is equal to Vi,(w) with Af(w) and P} (w)
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replaced by Aj(w) and Pj(w), respectively. As a consequence, it is sufficient to establish

that for any pair of candidate models i and j, the following conditions hold:

tr (A S5 1 A0 (7)) = tr (A S5 1 ARG (14 (1), (C.41)

E[tr <Ph (i)enS; ehPh()>]:E[ (Py(i)en Sy ey Pu())] (1+ o(1)), (C.42)

where the o(1) terms are uniform in 1 < 4,5 < p. Using :&h(z) = Ir_pni1 — f’h(z) =
A(i) — Th(i) + Qu(i) = Apn(i) + Qu(i)An(i), it can be shown that A, (i) = Ay (i)(1 + o(1))
since Qp(2) = o(1) under Assumption 3(b). This establishes (C.41). Next take (C.42). Using
P.(p) = Dy(p)(Pr(p) — It p+1) + Ir_p_psq implied by (B.4) in Lemma 1, we have:

B [tr (Pa(i)enS; e Pu(i)) | = tr (Pai) (Da(i) (Pa(i) = Lr—pones) + Tr—pnin) Elen Sy ) )
= tr Py (i) Da(i)Pa(i) Elen 37 "e;) ) — tr (i) Dali) E(en; eh))
+tr (Pu(j) ElenS; e}
~tr (Phu)'Dh( P (i) E(er;"e}) ) (1+ (1))
= [tr ((Pa(j) = Tr 5t DA() L) B (1T e})
+tr (Ph(z)E(ehE e})) | (1+o(1))

= tr (Pu(i) E(en; e)Pa() (1 + o(1), (C.43)

where the third equality follows from tr (ﬁh(j)’ﬁh(i)E(ehE,jle’h)) =tr (lgh(j)’E(ehZ,:le’}L)> (14
0(1)) under Assumption 3(b) and from tr (f’h(j)’E(ehEgle%D = 0 by the diagonal elements
of f’h(j)’E(ehE;Ie%) being zero (using the similar arguments to those used in showing
E(ropr(w)) = 0 in (C.11)), and the last equality holds by Assumption 3(b) again. This
establishes (C.42) and thus, combined with (C.41), yields (C.39).

Second, it is straightforward to show supy,eqy, |Lra(W)/Vrp(w) — 1| = 0 as T' — oo by
following the identical arguments to those in (C.26)-(C.30) with Ly(w), Vp(w), p, p*(w), X,
A*(w), P*(w), P, Z, e, and & replaced by Ly (W), Vrn (W), y, tin (W), Zp, As(w), Ph(w),

Py, Zy, e, and &, respectively. Next, to show supy,eq, |ET7h(W)/‘7T7h(W) — 1 %5 0 as
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T — oo, we first write:
2 —1..7 A % 1%
T hii" <Eh ppAL(W) Ph(W)eh>
1 _ _ _ _
tE = {tr (P;(w)ehzglegp;;(w)') ~E [tr (P;(w)ehzglegpz(w)'ﬂ } .

T—p—
(C.44)

Lrp(w) — Vip(w) = —

Using (C.39) and similar arguments to those for proving (C.41)-(C.42), it is not hard to
show (Lyp(w) — Ve (W) / Ve (w) = (Lyp(w) = Vi(w)) [V (w)(1 + o(1)), establishing
the second condition in (5.13): supy,cy.,. | Ly (W) /Vie(w) —1] =25 0 as T — co. Combining

these above conditions implies

ﬁ}ﬁ(“ﬂ
V&ﬁ(“ﬂ

ZTﬁ(“O

_ V&ﬁ(“ﬁ
Ly p(w)  weHr

LTﬁ<“0

?T,h(W)
V%ﬁ(“ﬂ

sup
wEHT

‘—1 250 (C.45)

wEHT wEHT

as T'— oo, establishing (5.15). Putting together (C.32)-(C.34), (C.39), and (C.45) completes
the proof.

D Non-optimality of MMMA under serial correlation
in the direct multi-step forecasting scheme

Seeing the asymptotic non-optimality of our MMMA for A > 1 can be done through
its invalidity (in terms of asymptotic biasedness) under serial correlation. To begin with,
we first recall that when h > 1, the serial correlation problem arises due to the fact that
the h-step error € in (4.1) follows a moving average process of order h — 1. Let ), =
E(vec(ey)vec(er)), where e, = (€544, - .-, €r). Analogous to the MMMA criterion Cr(w)
defined in (3.4) in the manuscript, we consider the following h-step version of the MMMA

criterion:

Crn(w) = (T —p—h+1)-tr (Eh(p)—1§;(w)) +2K%p'w, (3.4
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where

Eh(ﬁ):T— —h+1— Z€t+h P)Ewtn(P
1 T—h
2, (w) = T—p—h+1 Errn(W)E (W)

Using similar decomposition arguments to those used in (C.1)-(C.4) in the online supple-
mentary material (pages A5-AT7), we define the h-step counterparts of rop(w) (defined in
(C.2) and (C.4)) and rewrite them respectively as:

rorn(W) = —2vec(e,) (Pi(w) ® Ig) (IT 1 @ S(P) )Vec(eh)
and
~2vee(el Zu(p)) ((Za(p) Zn(p) " @1 ) (Liy ® S(p) ™) (Za(p) @ L) veel(ef),  (C.4)

where Pj(w) = Y0 w(p)Ppu(p) with Py(p) = Zn(p)(Zu(p)'Zn(p)) " Z},(p), and Zy(p) is
defined in the text. To examine (C.4"), it is not difficult to show under serial correlation

that the asymptotic variance of s, defined as

stn = (T —p— h + 1)7Y2(p) vec (2 el 2, (p )th(p)_l/Q)

= U(p) Pru(p), (D.1)
is given by:
vin = Var(spn) = £(p) (Do (p) /> @ 2;%) A (p) (Tan(p) ™ @ %) 0(p), (D.2)

where £(p) is a sequence of K?p x 1 vectors such that 0 < ¢; < £(p)'l(p) < ¢y < oo for
positive constants ¢; and ¢, Ty (p) = plim (Z(p)' Zn(p)) /(T —p — h + 1), and:

Aw(p) = plim [(T' = p— h+ 1) (Zu(p)' @ Ix) Qi (Zn(p) © 1x)] . (D.3)

Equations (D.2) and (D.3) together imply that for multi-step forecasting, ¢, (p) does
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not converge in distribution to a K?p-dimensional vector of multivariate standard normal
random variables; i.c., (T (p) /2 @ 35, /%) An(p) (Tan(p) /2 © X, /%) in (D.2) is not equal
to Iz, in the presence of serial correlation. As a consequence, the term (C.4") (ignoring the
constant -2) does not take a quadratic form in multivariate standard normal random vari-
ables, meaning that in general, E(ro7,(w)) # —2K?p’w. This finding reveals the asymptotic
non-unbiasedness and, hence, non-optimality of C7;,(w) under serial correlation, which in-

validates the use of the Cp (W) criterion for direct multi-step forecast averaging.

E Additional simulation results

E.1 Sensitivity analysis to the maximum lag order p

Through the simulation experiments, this subsection examines the variability in the trace
of the weighted MSFE as the value of p varies. Specifically, we report in Table A1 and Fig-
ure Al (for T'= 100) the sample variance of weighted MSFEs computed from the competing
methods over the considered pre-specified maximum lag orders p = 3,4, ...,15. The simula-
tion results reveal that relative to other competing methods, our MMMA (I) and MCVA,,(D)

methods are not very sensitive to the choice of p in most cases.

E.2 Estimation effects of X(p)~! (£,(p)~") on the forecast perfor-
mance of MMMA (MCVA))

As an anonymous referee points out, due to the use of the transformation matrices i(ﬁ)_l
and X, ()" in our averaging criteria (3.4) and (4.5), respectively, another source of estima-
tion error may be introduced into our forecast averaging methods. To empirically examine
this issue, we compare the forecast accuracy of the MMMA and MCVA,, approaches using
W = 3,(p)~* and ,,(p)* for weighting the associated sum of squared residual matrices,
where these two transformation matrices correspond to the feasibly standardized and in-
feasibly standardized versions of our VAR forecast averaging approaches. Specifically, the

MMMA and MCVA,, criteria using the general matrix W for transformation are of the
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following form:

GCr(w; W) = (T = p) - tr (WS(w)) + 2Kp'w, (E.1)

GOVin(W; W) = (T —p—h+1)-tr (wf:h(w)) . (E.2)

For a fair comparison, we compare the forecast performance based on the sum of the

actual h-step MSFEs:

2500

AT 1 r ~(r r ~(r !
VSFB(W) = = 3253 o (382 =58 W) (342 =5rW)) )|
r=1

(r)

T +h|T(W) is the combined h-step ahead forecast, with the combination weights com-

where y
puted by minimizing GCr(w; W) for iterative forecast averaging or GCVrp,(w; W) for direct
forecast averaging, and the superscript “(r)” indicates the r-th simulation repetition.

We consider the error covariance matrix given by

1.00
Y- P
o 400

Y

where the covariance parameter p measures the degree of correlation between the two re-
sponse variables in our DGP. We set p = 0.8,1.2, and 1.8.

Table A2 reports the forecast performance of the MMMA and MCVA,, methods using the
considered transformation matrices W for p = 5, 10, 15, where we normalize M/SF\Eh(flh(ﬁ)*l)
1. It appears from Table A2 that the estimation error of f]h(ﬁ) does not considerably impact
the forecast performance of our MMMA and MACV,, methods; specifically, the performance
of MMMA using W = i(ﬁ)_l is nearly identical to that of the infeasible MMMA using
W = X(p)~! in almost all sample sizes, forecast horizons, covariance p’s, and maximum
lag orders considered. On the other hand, the performance of the feasible MCVA,, using
W = i(ﬁ)_l is slightly worse than the infeasible MCVA,, using W = 3, under the small
sample size of T'= 100. We also find that, as expected, the inferior performance of the fea-
sible MCVA,, using W = ih(ﬁ)*l relative to its infeasible version using W = 2,;1 becomes
prominent as the covariance p increases and that increasing the sample size usually leads to

improvements in the feasible MCVA},, with its performance nearly identical to that of the
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infeasible MCVA}, in most cases when 7' = 200 and 7" = 500.

E.3 Two more DGPs

This section additionally considers two DGPs. The first DGP is directly from Lewis and
Reinsel (1985), who consider the bivariate ARMA(1,1) model of the form:

DGP Al: y;,— ®y; 1 =¢;, —Og;_,

with:

1.2 —0.5 —0.6 0.3 1.00 0.50
@ = , 0= , o=
0.6 0.3 0.3 0.6 0.50 1.25

The second DGP is a medium-scaled VAR(5) process of seven dimensions considered in

Hansen (2016): i
DGP A2: y, — Z Dy i = €&,

i=1
where the coefficient matrices are ®; = (a + b)I; + 17, 3 = —(ab + d)I; — (a + b)cly,
®3 = (a+ b)dl; + (ab+ d)cly, @4 = —abdl; — (a + b)edl,, ®5 = abedl; with (a,b, ¢, d) =
(0.5,0.3,0.1,0.3), ¥ is a diagonal matrix with diagonal elements 0.0272, and I; and 1; are
the 7 x 7 identity matrix and 7 x 7 matrix of ones, respectively. Under this design, we are
interested in examining the effect of model specification, in the sense of whether or not the
true DGP is contained as one of the candidate models, on forecast accuracy of our averaging
methods.

The maximum lag order for DGP A2 is set to p = 3,4, ...,8 due to consideration of the
degree of freedom. The simulation results under DGPs A1 and A2 for T'= 100 and 7" = 200
(displayed in Figure A7) are summarized as follows.

For DGP Al (i.e., bivariate ARMA(1,1)), the panels in the first two rows of Figure A7
present relative MSFEs at forecast horizons up to A = 12, which can be viewed as an exten-
sion of Table 1 of Lewis and Reinsel (1985) by adding data-driven selection and averaging
methods for the lag order determination. To save space, only the results using the maximum
lag length p = 3,5,10, and 15 are reported. The first finding is that the relative MSFEs of
MCVA(D) are seen to be generally greater than those of MMMA(I) except for h = 1, and
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the former deteriorates as the forecast horizon h lengthens and p increases. For example,
when 7' = 100 and p = 10, MMMA(I) improves upon MCVA,, by 4.6%, 6.7%, and 8.5% for
h = 4,8, and 12, respectively. These figures are 6.1%, 9.0%, and 11.8% when p increases
to 15. This may be expected due to the fact that fewer observations are available for es-
timation at longer forecast horizons, making inefficiency of the direct multi-step forecast
methods more prominent. The quantitatively similar pattern can also be seen when OLS(D)
and OLS(I) are compared. Second, when restricting the attention to the iterative multi-
step methods, AIC(I), Stein(I), and HQ(I) perform notably worse than the other methods:
AIC(I) is dominated by SAIC(I), and MMMA(I) always outperforms Stein(I) and HQ(I).
Further improvement of MMMA (I) upon Stein(I) can be seen as p increases. Third, BIC(I)
and SBIC(I) seem sensitive to p: SBIC(I) performs better than BIC(I) when p = 3 and 5,
and the reverse can be seen when p = 10 and 15. Fourth, MMMA(I) are comparable to
SAIC(I), SBIC(I), and EQ(I) when p is small, whereas the outperformance of MMMA(I)
is noticeable when p is sufficiently large, say p > 10. For instance, when 7" = 100 and
p = 15, MMMA(I) improves upon SAIC(I), SBIC(I), and EQ(I) by respectively 3.8%, 1.6%,
and 3.7% for h = 1; 7.4%,5.2%, and 7.1% for h = 4; 5.7%,4.1%, and 5.5% for h = 8; and
4.2%,2.9%, and 4.0% for h = 12. In sum, under DGP A1l where misspecification is not so
severe that DGP could be well approximated by finite-order VARs, MMMA(I) is superior to
MCVA} (D), particularly at longer lead times. In addition, overall MMMA (I) presents better
performance than other competing iterative multi-step forecasting methods in most cases.
The advantage of MMMA(I) is even more prominent when sufficient long VAR candidates
are fitted.

Under the pure VAR(5) process of dimension 7 (DGP A2), the relative MSFEs are shown
in the panels of the last two rows of Figure A7. We only report the forecast performance
based on p = 3,5, and 8, corresponding to the cases of under-order, correct-order, and over-
order fitting with respect to the largest candidate model. We find that, similar to DGP
A1, overall MMMA(I) performs well in most of the cases considered here, and the relative
performance of MMMA(I) improves as p increases. A few exceptions can be seen, such as
Stein(I) slightly performs better than MMMA(I) for A > 8 when 7" = 100 and p = 3, but the
outperformance of Stein(I) over MMMA(I) shrinks when either the sample size or maximum
lag order increases. For example, the improvement of Stein(I) upon MMMA(I) shrinks to

h = 11 and 12 in the case of T' = 200 and p = 3. We also note that MMMA(I) is inferior
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to MCVA},(D) only when h = 1. Moreover, for p = 3 where all candidate models are under-
specified, BIC(I) outperforms AIC(I) in most cases, and BIC(I) is seen to clearly uniformly
dominate AIC(I) when 7" = 100 and p = 5 and 8. This is consistent with the well-known
property that BIC is consistent in model selection, in the sense of choosing the true model
with probability approaching one. On the other hand, in the cases of correct specification
(p = 5) and over specification (p = 8) where in both cases the true DGP is contained in
the set of candidate models, MMMA(I), BIC(I), and SBIC(I) appear to outperform other
methods and are comparable to each other. Among these best three, MMMA(I), followed
by BIC(I), tends to dominate for h < 8, and MMMA(I) and SBIC(I) show very similar

performances for h > 8.

F Empirical illustration

A common interest among economists is analyzing the relationship among economic data
series, which partly explains the popularity of the VAR model advanced by Sims (1980) in
theoretical studies and empirical applications. For empirical illustration, this section applies
our iterative and direct multi-step VAR forecast averaging methods to forecast the U.S.
macroeconomic time series.

Our empirical example uses the quarterly U.S. dataset constructed by Stock and Watson
(2009). Following Giannone, Lenza, and Primiceri (2015), we consider a small-scale three-
variable VAR that is a prototypical monetary VAR consisting of three endogenous variables:
GDP (Y), the GDP deflator (P), and the federal funds rate (FF). In this empirical applica-
tion, the variables Y and P are transformed by log differencing, while the FF series enters
the model in a first-differencing form.

The dataset contains the quarterly observations ranging from 1959:Q1 to 2008:Q4. We
use T' = 100 observations for estimation. We perform the forecast exercise as follows. Using
the first 7 = 100 observations (¢t = 1,...,100 from 1959:QQ2-1984:Q1), VAR coefficients are
estimated and forecasts are computed by using the iterative or direct methods for all the
horizons up to h = 12 quarters ahead. We then employ the recursive forecast scheme (using
expanding estimation windows) for forecast updates. This forecasting procedure is repeated
until the sample is exhausted. The first h-step-ahead forecast is for time 1984:Q2+h — 1
for h = 1,...,12. The last forecast at horizon h is for time 2006:Q1+h — 1, based on the

A26



estimation sample 1959:Q2 to 2005:Q4. This procedure produces 88 point forecasts for each
pair of 3 variables and 12 forecast horizons. The alternative VAR lag selection and averaging
methods to be compared are the same as those considered in the simulation section.
Out-of-sample forecast performance is evaluated using the averages of sample MSFEs
over the full forecasting evaluation period. Specifically, the sample MSFE for the h-step
ahead forecast of each of the three variables ¢+ =Y, P, and FF using data available up to time

t for estimation is

_— 1 _ 1 tl_h - _ . 2
MSFE, (p; M) = P tzt: <2t+h\t(p§ M) — lt+h> ) (F.1)
=to

where ty and t; are set to 1984:Q1 and 2005:Q4, respectively, and Z%‘t(ﬁ; M) is the h-step
ahead forecast of variable i computed by iterative or direct VAR forecast selection/averaging

method M with the maximum lag length p. We also compute an aggregate version of the

sample weighted MSFEs by ,,(p) ! based on (5.2) for the whole VAR system as

t1—h

: Z tr (iht(ﬁ)il (Vern = Ferne (D M) (Yern = Fran (B3 M))/> ’

_—— A
NISFE, (p; M) =
(B M) h—h—ty+ 14

(F.2)

where yiin = (Yean, Pegn, FF ), Yernpe(p; M) = <?t+h|t(ﬁ; M), §t+h|t(ﬁ§ M), ﬁT?t+h|t(17§ M)),
3:(p) is the residual covariance matrix 3, () estimated using the expanding window up to
time ¢, and the superscript “A” refers to the aggregate of MSFEs for the VAR system.

Figure A8 summarizes the relative MSFEs of h-step-ahead point forecasts of the individ-
ual Y, P, and FF series and those for the VAR system of our MMMA, MCVA,, and other
competing methods,! all relative to OLS(I). The individual and aggregated MSFEs are com-
puted from formulae (F.1) and (F.2), respectively. We also report the resulting maximum
regret normalized by OLS(I), present only the results for p = 5,10, and 15 for brevity, and
discuss several findings that emerge from Figure A8 as follows.

We note overall that MMMA(I) and MCVA, (D) perform reasonably well, particularly
when incorporating VARs that fit long p lags into the candidate models. More specifically,
when p = 5 (the first-row panels in Figure A8), MMMA(I) is preferred to MCVA, (D) and

'We do not report the results for SAIC(I) and SBIC(I) because their performances vary dramatically in
our application.
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Stein(I) in forecasting Y at most horizons and in forecasting FF at horizons h < 7; on the
other hand, Stein(I) makes a substantial improvement upon MMMA(I) and MCVA (D) for
the P series under all horizons. As p increases to 10 and 15 (the second- and third-row panels,
respectively, in Figure A8), however, the performances of both MMMA(I) and MCVA(D)
improve and are better than Stein(I) under many horizons, while the advantage of Stein(I)
in forecasting P can be seen at horizon h > 7 when p = 10. On the other hand, it can
be seen from Figure A8 that BIC(I), HQ(I), and EQ(I) also perform well in many cases.
In particular, BIC(I) is preferred to AIC(I) uniformly across all horizons and all variables
when p = 15. AIC(I) does a great job of predicting the P series when p = 5, but on the
contrary, BIC(I) has good performance in forecasting the P series when p is set to be modest
to long, say, p > 10. Moreover, HQ(I) is particularly good at forecasting Y at long horizons.
EQ(I) performs quite well in forecasting P when p is sufficiently long, say, p > 5. We also
notice that the iterative forecasts using the fixed lag order p, i.e., OLS(I), nearly uniformly
dominate their direct counterpart OLS(D) across all horizons, all maximum lag orders, and
all variables. Moreover, also as expected, OLS(D) gets markedly worse as the lag length
increases, which is in line with the previous finding that the robustness of the long-lagged
direct forecast tends to be outweighed by its efficiency loss.

We next discuss the comparison between the proposed iterative MMMA(I) and direct
MCVA(D) methods. First of all, MMMA(I) often tends to have smaller relative MSFEs
than MCVA (D) in forecasting Y, particularly when p < 9, while MCVA,(D) appears to
dominate MMMA(I) for the Y series when p > 9.

For the P series, MCVA,,(D) tends to improve upon MMMA (I) based on low-order candi-
date VARs, particularly at longer horizons, with the improvements ranging from 2.0% (h = 1)
to 7.1% (h = 4) when p = 5, for instance. The advantage of MCVA, (D) over MMMA(I)
in forecasting P becomes less prominent when averaging forecasts from higher-order VAR
candidates. For example, when p = 10 is specified, the improvements of MCVA, (D) in fore-
casting P are approximately 0.1% ~ 6.0%. This finding is consistent with Marcellino, Stock,
and Watson (2006), where the authors pointed out that for the series measuring wages,
prices, and money, there could be a large moving average root or long lags in the optimal
linear predictor.

Moreover, when forecasting the FF series, MMMA(I) is more desirable than MCVA (D)
by a substantial margin at most horizons, while MMMA(I) and MCVA,(D) perform similarly
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only for short (h = 1) and long (h = 11,12) horizons. For example, MMMA(I) improves
upon MCVA, (D) by 9.0% ~ 38.6% (h = 2 ~ 10) when p = 10. If the attention is restricted
to the aggregated MSFEs (i.e., the panels labeled A in Figure A8), then MMMA(I) and
MCVA, (D) are competitive to each other at short to modest horizons, say, h < 4 and
p = 10, while MCVA, (D) tends to dominate MMMA(I) at longer horizons for p = 5 and
p = 10.

As far as the normalized maximum regret is concerned, it is clear to see that MMMA(I)
performs quite well in forecasting Y and FF series, while MCVA,(D) has prominent forecast
advantages for the P series. In terms of the aggregated normalized maximum regret for the
VAR system (displayed at the bottom-right corner in Figure A8), MMMA(I) improves upon
MCVA(D) for h = 4 ~ 10, and MCVA,(D) tends to dominate MMMA(I) at short and long

horizons.
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Table Al: Relative variability in weighted MSFEs over different p’s

h MMMA(I) MCVAL(D) OLS(D) Stein(I) OLS(I) AIC(I) BIC(I) HQ(I) SAIC(I) SBIC(I) EQ(I)
a=0 T =100
1 0.018 0.022 1.000 0.861 1.000 0.033 0.018 0.018 0.093 0.065 0.099
4 0.032 0.074 1.469 0.902 1.000 0.058 0.028 0.029 0.141 0.105 0.148
8 0.067 0.195 2.348 0.846 1.000 0.097 0.062 0.063 0.170 0.138 0.177
12 0.128 0.373 3.832  0.853 1.000 0.149 0.117 0.118 0.218 0.190 0.223
average 0.071 0.200 2.408 0.854 1.000 0.095 0.065 0.066 0.171 0.139 0.177
a=2
1 0.113 0.091 1.000 0.902 1.000 0.427 0.108 0.109 0.194 0.169 0.196
4 0.088 0.136 1.594 0.892 1.000 0.369 0.081 0.082 0.164 0.136 0.165
8 0.075 0.217 3.049 0.856 1.000 0.378 0.066 0.066 0.131 0.106 0.130
12 0.112 0.325 4.008 0.868 1.000 0.316 0.100 0.101 0.195 0.168 0.195
average 0.090 0.212 2.657 0.863 1.000 0.348 0.081 0.083 0.160 0.133 0.160
a=25
1 0.600 0.394 1.000 1.449 1.000 0.963 2.865 1.220 1.148 1.336 1.327
4 0.628 0.427 1.607 0.980 1.000 0.918 1.275 0.919 0.563 0.592 0.584
8 0.233 0.721 4.691 0.721 1.000 0.535 0.503 0.437 0.160 0.158 0.157
12 0.102 0.241 3.474 0.837 1.000 0.775 0.084 0.426 0.147 0.120 0.131
average 0.364 0.469 3.047 0.890 1.000 0.755 0.884 0.666 0.380 0.399 0.398
a=10
1 0.659 0.548 1.000 2471 1.000 0.976 5.424 0.943 2.832 3.633 4.004
4 1.684 0.461 1.093 1.354 1.000 1.407 2.858 1.904 1.313 1.460 1.442
8 1.543 1.355 4.446 0.701 1.000 1.091 1.887 1.394 0.465 0.478 0.473
12 0.109 0.219 3.121  0.804 1.000 0.732 0.240 0.589 0.117  0.092 0.094
average 1.167 0.688 2.532 1.124 1.000 1.087 2.282 1.326 0.943 1.072 1.095
a=0 T =200
1 0.044 0.050 1.000 0.897 1.000 0.048 0.040 0.043 0.154 0.131 0.160
4 0.162 0.180 1.177 0.937 1.000 0.169 0.166 0.164 0.242 0.223 0.247
8 0.122 0.175 1.940 0.911 1.000 0.124 0.127 0.125 0.190 0.174 0.194
12 0.116 0.252 3.282 0.836 1.000 0.116 0.106 0.108 0.193  0.180 0.197
average 0.129 0.173 1.701  0.904 1.000 0.129 0.127 0.127 0.205 0.189 0.210
a=2
1 0.293 0.238 1.000 1.049 1.000 0.387 0.292 0.298 0.372 0.357 0.375
4 0.270 0.305 1.269 1.092 1.000 0.411 0.266 0.273 0.345 0.331 0.347
8 0.181 0.266 2.078 0.928 1.000 0.225 0.182 0.185 0.230 0.216 0.232
12 0.084 0.201 2.729 0.858 1.000 0.117 0.076 0.077 0.160 0.144 0.162
average 0.194 0.260 1.794 0.973 1.000 0.264 0.193 0.197 0.267 0.254 0.270
a=3>5
1 0.991 0.646 1.000 3.131 1.000 0.941 7.362 1.994 3.070 3.391 3.353
4 0.935 0.351 0.806 1.395 1.000 1.044 2.115 1.064 0.894 0.934 0.922
8 2.307 0.811 4136 1.123 1.000 1.653 1.397 1.343 0.917 0.871 0.864
12 0.116 0.201 2.223 0.834 1.000 0.708 0.102 0.393 0.149 0.138 0.145
average 1.095 0.431 1.776  1.468 1.000 1.068 2.345 1.161 1.038  1.090 1.076
a=10
1 0.834 0.778 1.000 5.321 1.000 0.861 1.624 0.964 9.151 10.961 12.611
4 2.522 0.245 0.429 1.730 1.000 1.583 4.698 3.487 1.898  2.051 2.067
8 2.763 0.174 0.389 1.122 1.000 1.858 3.155 3.094 0.791 0.676 0.582
12 0.136 0.216 1.530 0.741 1.000 0.708 0.400 0.458 0.118 0.116 0.117
average 2.357 0.249 0.529 1.519 1.000 1.622 3.418 2.870 1.589 1.681 1.727
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Table Al: Relative variability in weighted MSFEs over different p’s (cont’d)

h MMMA(I) MCVA,(D) OLS(D)  Stein(I) OLS(I) AIC(I) BIC(I) HQUI) SAIC(I)  SBIC(I) EQ(I)
a=0 T =500
1 0.438 0.450 1.000 0.999 1.000 0.478 0.433 0.437 0.565 0.556 0.567
4 0.728 0.775 0.985 0.922 1.000 0.746 0.710 0.714 0.720 0.721 0.720
8 0.839 0.843 1.259 0978 1.000 0.813 0.821 0.818 0.832 0.829 0.832
12 0.389 0.530 2.098 0.845 1.000 0.343 0.354 0.354 0.450 0.442 0.452
average 0.590 0.615 1.204 0947 1.000 0.592 0.584 0.586 0.633 0.628 0.634
a=2
1 0.688 0.591 1.000 1.208 1.000 0.784 0.682 0.685 0.781 0.777 0.783
4 0.621 0.674 1.081 0.948 1.000 0.662 0.614 0.616 0.614 0.613 0.614
8 0.774 0.673 1.527 0915 1.000 0.700 0.776 0.770 0.690 0.690 0.690
12 0.337 0.514 2.829 0.809 1.000 0.311 0.326 0.328 0.391 0.386 0.392
average 0.638 0.597 1.411  0.947 1.000 0.640 0.641 0.641 0.627 0.625 0.628
a=25
1 0.975 0.870 1.000 2.876 1.000 0.905 5.640 1.376 2.894 3.020 3.010
4 1.068 0.425 0.609 1.164 1.000 1.106 1.532 1.025 0.754 0.763 0.758
8 1.293 0.934 1.908 0.812 1.000 1.165 1.408 1.088 0.746 0.747  0.745
12 0.193 0.330 1.722  0.683 1.000 0.477 0.178 0.332 0.237 0.231 0.236
average 1.119 0.535 1.113 1.244 1.000 1.120 1.990 1.048 1.013 1.033 1.029
a=10
1 1.032 0.953 1.000 10.507 1.000 0.964 1.192 1.081 13.678 14.891 16.817
4 1.645 0.090 0.122 1.363 1.000 1.096 3.412 2482 1.136 1.158 1.148
8 1.946 0.202 0.274 0.994 1.000 1.349 2.964 2.424 0.442 0.396 0.340
12 0.264 0.350 1.239 0.819 1.000 0.766 0.375 0.469 0.242 0.238 0.240
average 1.798 0.135 0.216  1.463 1.000 1.242 3.090 2.420 1.210 1.233 1.258

Notes: (1) The DGP is a drifting bivariate ARMA(1,10) with the parameter o measuring the degree of local
misspecification; see Section 6 in the manuscript for details; (2) Entries are the sample variances of weighted
MSFEs computed from a specific method using 13 pre-specified maximum lag orders: p = 3,...,15 with
OLS(I) normalized to unity. “average” refers to the averages of the sample variances over forecast horizons
h=1,2,...,12; (3) “I” and “D” in parentheses refer to iterative and direct multi-step forecasts, respectively.
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Table A2: Estimation effects on the relative multi-step forecast perfor-
mance of MMMA and MCVA,, (p = 5, 10, 15)

W =5, (p) ! w=x;"
Reference T =100 T =200 T =500

h MCVA,, MMMA MCVA,, MMMA MCVA,, MMMA MCVAh MMMA
p=0.38 p=>5

1 1.000  1.000 0.999 1.000 1.000 1.000 1.000  1.000

4 1.000  1.000 0.999 1.000 1.000 1.000 1.000  1.000

8 1.000  1.000 0.998 1.000 1.000  1.000 1.000  1.000

12 1.000  1.000 1.000  1.000 0.999 1.000 1.000  1.000
p=12

1 1.000  1.000 1.000  1.000 1.000 1.000 1.000  1.000

4 1.000  1.000 0.997  1.000 1.000  1.000 1.000  1.000

8 1.000  1.000 0.998 1.000 1.000  1.000 1.000  1.000

12 1.000  1.000 0.998 1.000 1.000  1.000 1.000  1.000
p=18

1 1.000  1.000 0.996 1.000 1.000  1.000 1.000  1.000

4 1.000  1.000 0.992  0.998 0.999 1.000 1.000  1.000

8 1.000  1.000 0.984 0.998 0.999 1.000 1.000  1.000

12 1.000  1.000 0.978  1.000 0.997  1.000 1.000  1.000
p=0.8 p=10

1 1.000  1.000 0.997 0.999 1.000 1.000 1.000  1.000

4 1.000  1.000 0.996  0.999 0.999 1.000 1.000  1.000

8 1.000  1.000 0.991  1.000 0.999 1.000 1.000  1.000

12 1.000  1.000 0.989  1.000 0.999 1.000 1.000  1.000
p=12

1 1.000  1.000 0.999 1.000 1.000 1.000 1.000  1.000

4 1.000  1.000 0.995 1.000 1.000  1.000 1.000  1.000

8 1.000  1.000 0.990 1.000 0.999 1.000 1.000  1.000

12 1.000  1.000 0.990 1.000 0.998 1.000 1.000  1.000
p=18

1 1.000  1.000 0.999 0.999 1.000  1.000 1.000  1.000

4 1.000  1.000 0.998 1.000 0.999 1.000 1.000  1.000

8 1.000  1.000 0.991  1.000 1.000 1.000 1.000  1.000

12 1.000  1.000 0.987  1.000 0.999 1.000 1.000  1.000
p=08 p=15

1 1.000  1.000 0.997 1.000 1.000 1.000 1.000  1.000

4 1.000  1.000 0.988  0.999 0.999 1.000 1.000  1.000

8 1.000  1.000 0.983 1.000 0.999 1.000 0.999 1.000

12 1.000  1.000 0.977 1.000 0.997  1.000 1.000  1.000
p=12

1 1.000  1.000 0.997  0.999 1.000 1.000 1.000  1.000

4 1.000  1.000 0.991 1.001 1.000  1.000 1.000  1.000

8 1.000  1.000 0.979 1.000 0.999 1.000 1.000  1.000

12 1.000  1.000 0.981  1.000 0.998 1.000 1.000  1.000
p=18

1 1.000  1.000 0.996 1.000 1.000  1.000 1.000  1.000

4 1.000  1.000 0.992  0.998 0.999 1.000 1.000  1.000

8 1.000  1.000 0.984 0.998 0.999 1.000 1.000  1.000

12 1.000  1.000 0.978  1.000 0.997  1.000 1.000  1.000

Note: Entries less than one indicate superior performance relative to the proposed
MMMA and MCVA,, using W = X(p)~! and W = 2, (p) !, respectively.
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Figure A2: Multi-step forecast performance under bivariate drifting ARMA(1,10): 7' = 200
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Figure A3: Multi-step forecast performance under bivariate drifting ARMA(1,10): T'= 500
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Figure A4: Weight estimates obtained from MCVA, (D) and MMMA(I) based on p = 3,5, 10,15 (7" = 100)



LEV

1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2

W

2
Weyh an

0.1
0.0

1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2

’
Weyy and W

A

0.1
0.0

1.0
0.9
0.8
0.7

A
w

0.6

d

0.5

Wegh an

0.4

)

0.3
0.2
0.1
0.0

1.0
0.9
0.8
0.7
0.6
0.5
0.4

A
Weypy and W

2

0.3
0.2
0.1
0.0

Note: For each of the values of a considered, MMMA (I) uses the same weights obtained from one-step-ahead forecast averaging

a=0, h=1 a=0, h=4 a=0, h=8 a=0, h=12

=5 - MCVA,(D):p=10 ----- MCVAL(D) :p=15
MMMA(D) :p=5 —— MMMA():p=10 —— MMMA():p=15

77777 MCVAL(D) : =3 ----- MCVAL(D):P
—— MMMA():p=

across forecast horizons.

Figure A5: Weight estimates obtained from MCVA, (D) and MMMA(I) based on p = 3,5, 10,15 (7" = 200)




8EV

a=0, h=1 a=0, h=4 a=0, h=8 a=0, h=12
1.0 - 1.0 - 1.0 - 1.0 -
0.0 - 0.0 - 0.9 - 0.0 -
0.8 — 0.8 — 0.8 — 0.8 —
0.7 — 0.7 — 0.7 — 0.7 —
Z o6 0.6 - 0.6 - 0.6 -
= 05 o 0.5 - 0.5 - 0.5 -
<§ 0.4 — 0.4 — 0.4 — 0.4 —
0.3 - 0.3 - 0.3 - 0.3 -
0.2 o 0.2 — 0.2 — 0.2 —
0.1 — 0.1 — 0.1 — 0.1 — _ -
0.0 - — == ——— 0.0 - 0.0 - 0.0 - == ——— -
T T T T T T T T T T T T T T T T T T T T T T T T T T
T2 s 4 5 8 7 8 8 10 11 12 13 14 15 T2 s 4 5 s 7 8 1 11 12 13 14 s
1.0 — 1.0 — 1.0 — 1.0 —
0.9 — 0.9 — 0.9 — 0.9 —
0.8 - 0.8 — 0.8 — 0.8 —
0.7 - 0.7 - 0.7 - 0.7 -
5 o6 0.6 - 0.6 - 0.6 -
‘10.5— 0.5 — 0.5 — 0.5 —
£ 0.4 - 0.4 - 0.4 - 0.4 -
0.3 - 0.3 - 0.3 - 0.3 -
0.2 — 0.2 — 0.2 — 0.2 —
0.1 — 0.1 — 0.1 — 0.1 —
0.0 - 0.0 - 0.0 - 0.0 -
1.0 - 1.0 — 1.0 — 1.0 —
0.9 — 0.9 — 0.9 — 0.9 —
o.s - o.s - o.s - o.s -
0.7 — 0.7 — 0.7 — 0.7 -
ii 0.6 — 0.6 — 0.6 — 0.6 —
s 05+ 0.5 - 0.5 - 0.5 -
£ 0.4 - 0.4 = 0.4 = 0.4 =
0.3 — 0.3 — 0.3 — 0.3 —
0.2 - 0.2 — 0.2 — 0.2 —
0.1 - 0.1 - o.1 - 0.1 -
0.0 - 0.0 - 0.0 - 0.0 -
T T T T T T T T T T T T T T T T T T T T T T T T T T T T
12 3 4 s e 7 8 o 10 11 12 13 14 15 ' s 4 s 6 7 8 9 10 11 12 13 14 15
1.0 — 1.0 — 1.0 —
0.0 - 0.9 - 0.0 -
o.s - 0.8 - o.s -
0.7 - 0.7 — 0.7 —
Z o6 0.6 - 0.6 -
= 05 - 0.5 - 0.5 -
<§5 0.4 o 0.4 — 0.4 —
0.3 — 0.3 — 0.3 —
0.2 - 0.2 - 0.2 -
0.1 o 0.1 o 0.1 —
0.0 — 0.0 — 0.0
T T T T T T T T T T T T T
T2 s 4 s 6 7 8 9 10 11 12 13 14 15 . s 4 5 6 7 8 9 10 11 12 13 14 15 T2 3 4 s 6 7 8 10 11 o1z 13 14 s
Lag Lag Lag

MCVAL(D) :5=3
MMMA() : 5 =3

Note: For each of the values of a considered, MMMA (I) uses the same weights obtained from one-step-ahead forecast averaging

across forecast horizons.

MCVAL(D) : B

=5 -
MMMA(I) :p=5

MCVAL(D) :B=10
MMMA() : =10

MCVAL(D) : =15
MMMA() :p =15

Figure A6: Weight estimates obtained from MCVA, (D) and MMMA(I) based on p = 3,5, 10,15 (7" = 500)
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Note: (1) The MSFEs for Y (GDP), P (the GDP deflator), and FF (the federal funds rate) are computed from (F.1), while the MSFEs for A are
the aggregated weighted MSFEs computed from (F.2). All is relative to OLS(I); (2) Normalized maximum regret is taken over 13 pre-specified
maximum lag orders: p = 3,...,15, with OLS(I) normalized to unity; (3) “I” and “D” in parentheses refer to iterative and direct multi-step forecasts,
respectively.

Figure A8: Empirical results: forecast performance (measured by relative MSFEs and normalized maximum regret) of
MMMA(I), MCVA(D), and competing methods based on three-variable VARs (with p = 5, 10, 15)
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