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C Auxiliary Lemmas and Proofs

C.1 Auxiliary Lemmas

C.1.1 Uniform Bahadur Representation

The following lemma proposes the uniform UBR for the local slope estimators.

Lemma 1 (Chiang, Hsu, and Sasaki (2019); Lemma 1). Under Assumption 2, we have the

uniform influence function representations (3.4) and (3.5) that hold uniformly on Y1 ×D .

C.1.2 Functional Central Limit Theorem

Lemma 2. Let the triangular array of separable stochastic processes {fni(ω, t) : i = 1, ...n, t ∈

T} be row independent and write Xn(t) =
∑n

i=1[fni(ω, t) − Efni(·, t)], and denote E∗ to be

the outer integral (see e.g., van der Vaart and Welner, 1996, Section 1.2). Suppose that the

following conditions are satisfied:

1. {fni} are manageable, with envelope {Fni} which are also independent within rows;

2. H(s, t) = limn→∞EXn(s)Xn(t) exists for every s, t ∈ T ;

3. lim supn→∞
∑n

i=1E
∗F 2

ni <∞;

4. limn→∞
∑n

i=1 E
∗F 2

ni1{Fni > ε} = 0 for each ε > 0;

5. ρ(s, t) = limn→∞ ρn(s, t), where ρn(s, t) = (
∑n

i=1E[fni(·, s)−fni(·, t)]2)1/2, exists for every

s, t ∈ T , and for all deterministic sequences {sn} and {tn} in T, if ρ(sn, tn) → 0 then

ρn(sn, tn)→ 0.

Then T is totally bounded under the ρ pseudometric, and Xn converges weakly to a tight

mean zero Gaussian process X concentrated on {z ∈ l∞ (T ) : z is uniformly ρ− continuous},

with covariance H(s, t).
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C.2 Proof of Theorem 2

Before starting to present a proof of the theorem, we introduce additional definitions and

notations for the proof of the theorem. Let F be a class of measurable functions defined on

(Ω,F ) with a measurable envelope F . We say that F is of VC type with envelope F if there

exist constants A, v > 0 such that supQN(F , L2(Q), ε ‖F‖Q,2) ≤ (A/ε)v, where the supremum

is taken over the set of all finite discrete measures Q on F .

To approximate the distribution of the UBR, we define the following Multiplier Processes

(MP):

ν±ξ,n(y, d, 1) =
1√

nhnfX(0)

n∑
i=1

ξie
>
1 (Γ±)−1r3

(Xi

hn

)[
1{Yi ≤ y,Di = d} − µ1(Xi, y, d)

]
K
(Xi

hn

)
δ±i ,

ν±ξ,n(y, d, 2) =
1√

nhnfX(0)

n∑
i=1

ξie
>
1 (Γ±)−1r3

(Xi

hn

)[
1{Di = d} − µ2(Xi, d)

]
K
(Xi

hn

)
δ±i .

For ease of writing, we use the following notations for the differences of right and left limits of

the UBR, the MP, and the EMP with k = 1, 2:

νn(y, d, k) = ν+
n (y, d, k)− ν−n (y, d, k),

νξ,n(y, d, k) = ν+
ξ,n(y, d, k)− ν−ξ,n(y, d, k),

ν̂ξ,n(y, d, k) = ν̂+
ξ,n(y, d, k)− ν̂−ξ,n(y, d, k).

With these preparations, we now start a proof of Theorem 2.

Part (i) (a): We will verify the five conditions in Lemma 2 for the triangular array of

stochastic processes {fni} defined by

fni(y, d, 1) =
1√

nhnfX(0)
e>1 (Γ+)−1r3

(Xi

hn

)[
1{Yi ≤ y}1{Di = d} − µ1(Xi, y, d)

]
K
(Xi

hn

)
δ+
i ,

fni(y, d, 2) =
1√

nhnfX(0)
e>1 (Γ+)−1r3

(Xi

hn

)[
1{Di = d} − µ2(Xi, y, d)

]
K
(Xi

hn

)
δ+
i ,

ν+
n (y, d, k) =

n∑
i=1

[fni(y, d, k)− Efni(y, d, k)].

The separability follows the same argument as in the proof of Theorem 4 of Kosorok (2003)
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and the left or right continuity of the processes. To show condition 1, define

Fn = {(y∗, d∗, x∗) 7→ 1{x∗ ≥ 0}[(1{y∗ ≤ y, d∗ = d} − µ1(x∗, y, d))1{k = 1}

+ (1{d∗ = d} − µ2(x∗, y, d))1{k = 2}] : (y, d, k) ∈ Y1 × {0, 1} × {1, 2}}

F +
n = {fni(y, d, k) : (y, d, k) ∈ Y1 × {0, 1} × {1, 2}}

We first claim that F +
n is a VC type class with envelope

F+
n (y∗, d∗, x∗) =

C ′′√
nhn
‖K‖∞ 1{|x∗/hn| ∈ [−1, 1]}

for some constant C ′′ > 0. It is clear {(y∗, d∗, x∗) 7→ 1{y∗ ≤ y} : y ∈ Y1} is of VC-

subgraph with VC index ≤ 2, since it is monotone increasing in y, and thus for each pair

(y∗1, x
∗
1, d
∗
1, r1), (y∗2, x

∗
2, d
∗
2, r2) ∈ Y1 × X × {0, 1} × R with y∗1 ≤ y∗2, it can never pick out

{(y∗2, x∗2, d∗2, r2)}. Similarly, {(y∗, d∗, x∗) 7→ 1{d∗ = d} : d ∈ {1, 2}}, {(y∗, d∗, x∗) 7→ {1{k∗ =

k} : k ∈ {1, 2}} and {(y∗, d∗, x∗) 7→ 1{x∗ ≥ 0}} are all VC subgraph classes, since they are

sub-collections of all half spaces and then by Lemma 9.12 (i) of Kosorok (2008). Each of them

is therefore of VC type with envelope 1. Next, Assumption 2(ii) (a) and (ii) (b) imply

|µk1(x∗, y1, d1)− µk2(x∗, y2, d2)| ≤ L ‖(k1, y1, d1)− (k2, y2, d2)‖

for an L > 0 and Euclidean norm ‖·‖. Thus {x∗ 7→ µk(x, y, d) : (k, y, d) ∈ {1, 2} × Y1 ×D} is

of VC type with envelope L in light of Example 19.7 of van der Vaart (1998) and Lemma 9.18

of Kosorok (2008). Under Assumption 2 (i) (b), (iii) and (iv), for each n, the collection of a

single function

{(y∗, d∗, x∗) 7→ e>1 (Γ+)−1r3(x∗/hn)1{|x∗/hn| ∈ [−1, 1]}√
nhnfX(0)

}

is of VC subgraph and therefore VC type with envelope C′1{|x∗/hn|∈[−1,1]}√
nhn

. Example 19.19 of van

der Vaart (1998) suggests VC type classes, that are of finite uniform integrals, are closed under

element-wise addition and multiplication. Therefore, Fn is of VC type with envelope constant

C ′′ and thus

F +
n = {e

>
1 (Γ+)−1r3(·/hn)K(·/hn)√

nhnfX(0)
· f : f ∈ Fn}
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is of VC type with envelope F+
n (y∗, d∗, x∗) = C′′√

nhn
‖K‖∞ 1{x∗/hn ∈ [−1, 1]}. Finally, standard

calculations show for each n and for any δ ∈ (0, 1) the uniform entropy integral bound∫ δ

0

sup
Q

√
1 + logN(Fn, L2(Q), ε ‖Fn‖Q,2)dε . δ

√
v log(A/δ).

Equation (A.1) in the proof of Theorem 1 in Andrews (1994) then implies that F +
n is a man-

ageable class of functions, as defined in Section 11.4.1 of Kosorok (2008). To check condition

2, notice

Eν+
n (y1, d1, k1)ν+

n (y2, d2, k2) =
n∑
i=1

Efni(y1, d1, k1)fni(y2, d2, k2)

−(
n∑
i=1

Efni(y1, d1, k1))(
n∑
i=1

Efni(y2, d2, k2)).

It suffices to check
∑n

i=1Efni(y1, d1, k1)fni(y2, d2, k2) <∞ since Efni(y, d, k) = 0 due to the law

of iterated expectations, and thus the second term is 0. When k1 = k2 = 1, under Assumption

2 (i) (a), (i) (b), (ii) (c), (iii), and (iv) (a),

n∑
i=1

Efni(y1, d1, 1)fni(y2, d2, 1)

=E[
e>1 (Γ+)−1r3(Xi

hn
)r>3 (Xi

hn
)(Γ+)−1e1

hnf 2
X(0)

[1{Yi ≤ y1, Di = d1} − µ1(Xi, y1, d1)]

× [1{Yi ≤ y2, Di = d2} − µ1(Xi, y2, d2)]K2(
Xi

hn
)δ+
i ]

=

∫
R+

e>1 (Γ+)−1r3(u)r>3 (u) (Γ+)−1e1

f 2
X(0)

K2(u)
(
σ11((y1, d1), (y2, d2)|0+) +O (uhn)

)
(fX(0) +O(uhn))du

=

∫
R+

e′1(Γ+)−1r(u)r′+)−1e1

fX(0)
K2(u)σ11((y1, d1), (y2, d2)|0+)du+O(hn) <∞

where the second to the last equality is due to mean value expansions under Assumption 2 (i)

(b) and (ii) (c). Notice that n enters only through the O(hn) term, and thus

lim
n→∞

n∑
i=1

Efni(y1, d1, 1)fni(y2, d2, 1)

exists. Similar calculations hold for k1 = k2 = 1 and k1 = 1, k2 = 2. This shows condition 2.
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Condition 3 is clear since

lim
n→∞

n∑
i=1

E
[
F+
n (y∗, d∗, x∗)

]2
= lim

n→∞

∫
(C ′′2

hn
‖K‖2

∞ 1{|x/hn| ∈ [−1, 1]}fX(x)dx

= f(0)(C ′′2 ‖K‖2
∞ <∞

under Assumption 2 (i) (a), (iii) and (iv) (a). To show condition 4, note that for each ε > 0,

lim
n→∞

n∑
i=1

E[
(
F+
n (y∗, d∗, x∗)

)2
1{F+

n (y∗, d∗, x∗) > ε}]

= lim
n→∞

∫
R

(C ′′2

hn
‖K‖2

∞ 1{x/hn ∈ [−1, 1]}1{(C ′′)

nhn
‖K‖∞ 1{x/hn ∈ [−1, 1]} > ε}fX(x)dx

≤
∫
R

(C ′′2 ‖K‖2
∞ 1{u ∈ [−1, 1]} lim

n→∞
1{(C ′′)

nhn
‖K‖∞ 1{u ∈ [−1, 1]} > ε}fX(0)du+O(hn) = 0

under Assumption 2 (i) (a), (iii) and (iv) (a). This shows condition 4. To show condition 5,

note that we can write

ρ2
n((y1, d1, k1), (y2, d2, k2)) =

n∑
i=1

E[fni(y1, d1, k1)− fni(y2, d2, k2)]2

=
n∑
i=1

E[f 2
ni(y1, d1, k1) + f 2

ni(y2, d2, k2)− 2fni(y1, d1, k1)fni(y2, d2, k2)].

From our calculations on the way to show condition 2, we know that each term on the right-

hand side exists under Assumption 2 (i) (a), (i) (b), (ii) (c), (iii), and (iv) (a). Since n enters the

expression only through the O(hn) part, for all deterministic sequences sn ∈ Y1×{0, 1}×{1, 2}

and tn ∈ Y1 × {0, 1} × {1, 2}, ρ2(sn, tn) → 0 implies ρ2
n(sn, tn) → 0. By Lemma 4, we have

ν+
n  G+ and similarly for ν−n  G−. Assumption 2 (i) (a) then implies νn = ν+

n − ν−n  G :=

G+ −G−.

Part (i) (b): We apply the FCLT and the functional delta method. Notice that νn  G

suggests

√
nh3

n

(µ̂′1(0+, y, d)− µ̂′1(0−, y, d))− (µ′1(0+, y, d)− µ′1(0−, y, d))

(µ̂′2(0+, d)− µ̂′2(0−, d))− (µ′2(0+, d)− µ′2(0−, d))

 =

G(y, d, 1)

G(y, d, 2)

 .
Let (A(·), B(·)) ∈ `∞(Y1 × {0, 1}) × `∞(Y1), if B(·) > C > 0, then (G,H)

Ψ7→ G/H is

Hadamard differentiable at (A,B) tangentially to `∞ with the Hadamard derivative Ψ′(A,B)
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given by Ψ′(A,B)(g, h) = (Bg − Ah)/B2. Therefore, under Assumption 1 (ii), we know that

µ′2(0+, d) − µ′2(0−, d) is bounded away from 0. Also, fY d|V X(·|h(0), 0) is bounded away from

zero under Assumption 2 (i) (c). The functional delta method then yields

√
nh3

n[F̂Y d|V X(·|h(0), 0)− FY d|V X(·|h(0), 0)]

=
√
nh3

n[
µ̂′1(0+, ·, d)− µ̂′1(0−, ·, d)

µ̂′2(0+, d)− µ̂′2(0−, d)
− µ′1(0+, ·, d)− µ′1(0−, ·, d)

µ′2(0+, d)− µ′2(0−, d)
]

 GF (·, d)

where

GF (y, d) :=
[µ′2(0+, d)− µ′2(0−, d)]G(y, d, 1)− [µ′1(0+, y, d)− µ′1(0−, y, d)]G(y, d, 2)

[µ′2(0+, d)− µ′2(0−, d)]2
.

Part (i) (c): Define operator Υ : DΥ(Y1 × {0, 1})→ `∞([a, 1− a]) as

F (·, ·) Υ7→ Φ(F (·, 1)) (·)− Φ(F (·, 0))(·) = Q(·, 1)−Q(·, 0)

where Φ(F )(θ) = Q(θ) = inf{y ∈ Y1 : F (y) ≥ θ}. By Hadamard differentiability from

Lemma 3.9.23 (ii) of van der Vaart and Welner (1996) and the chain rule van der Vaart (1998,

Theorem 20.9), under Assumption 2 (i) (c), (ii) (a), and (ii) (b), Υ is Hadamard differentiable

at FY ·|V X(·|h(0), 0) tangentially to C(Y1×D) and the derivative (Kosorok, 2008, Section 2.2.4)

is

Υ′FY ·|V X(·|h(0),0)(g(·, ·))

=−
g(QY 1|V X(·|h(0), 0), 1)

fY 1|V X(QY 1|V X(·|h(0), 0)|h(0), 0)
+

g(QY 0|V X(·|h(0), 0), 0)

fY 0|V X(QY 0|V X(·|h(0), 0)|h(0), 0)

is tangential to C(Y1 ×D). The functional delta method then yields

√
nh3

n[τ̂ − τ ] Gτ

where

Gτ (θ) = −
[ GF (QY 1|V X(θ|h(0), 0), 1)

fY 1|V X(QY 1|V X(θ|h(0), 0)|h(0), 0)
−

GF (QY 0|V X(θ|h(0), 0), 1)

fY 0|V X(QY 0|V X(θ|h(0), 0)|h(0), 0)

]
.
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Part (ii): This part of the proof consists of two steps. We first show the convergence result

for the EMP, and then show the convergence result for Ξ̂ (·).

Step 1 We claim νξ̂,n
p
 
ξ
G. Applying Theorem 11.19 of Kosorok (2008), which is applicable

under the five conditions verified in (i), we have νξ,n = ν+
ξ,n − ν

−
ξ,n

p
 
ξ
G. In light of Lemma 2 of

Chiang, Hsu, and Sasaki (2019), it then suffices to show

sup
(y,d,k)∈Y1×{0,1}×{1,2}

|ν̂±ξ,n(y, d, k)− ν±ξ,n(y, d, k)| p→
x×ξ

0.

Indeed, for k = 1, by Assumption 2 (i) (b) and (v), we have

ν̂+
ξ,n(y, d, 1)− ν+

ξ,n(y, d, 1)

=
1

fX(0)f̂X(0)

n∑
i=1

ξi
e>1 (Γ+)

−1
r3(Xi

hn
)K(Xi

hn
)δ+
i√

nhn
[1{Yi ≤ y,Di = d}fX(0)− µ̃1(0+, y, d)fX(0)

− 1{Yi ≤ y,Di = d}f̂X(0) + µ1(0+, y, d)f̂X(0)]

=
1

f 2
X(0) + ox×ξp (1)

n∑
i=1

T+
i [−µ̃1(0+, y, d)fX(0) + µ1(0+, y, d)f̂X(0) + ox×ξp (1)]

=
1

f 2
X(0) + ox×ξp (1)

n∑
i=1

T+
i [−µ̃1(0+, y, d)fX(0) + µ1(0+, y, d)fX(0)

− µ1(0+, y, d)fX(0) + µ1(0+, y, d)f̂X(0) + ox×ξp (1)]

=
fX(0)

f 2
X(0) + ox×ξp (1)

n∑
i=1

T+
i [−µ̃1(0+, y, d) + µ1(0+, y, d)]

+
µ1(0+, y, d)

f 2
X(0) + ox×ξp (1)

n∑
i=1

T+
i [−fX(0) + f̂X(0)] +

ox×ξp (1)

f 2
X(0) + ox×ξp (1)

n∑
i=1

T+
i

=
fX(0)

f 2
X(0) + ox×ξp (1)

n∑
i=1

T+
i o

x×ξ
p (1) +

µ1(0+, y, d)

f 2
X(0) + ox×ξp (1)

n∑
i=1

T+
i o

x×ξ
p (1)

+
ox×ξp (1)

f 2
X(0) + ox×ξp (1)

n∑
i=1

T+
i

=ox×ξp (1)
n∑
i=1

T+
i (C.1)

where T+
i = ξi

e>1 (Γ+)
−1
r3(

Xi
hn

)K(
Xi
hn

)δ+i√
nhn

. It can be shown that the array of zero mean ran-

dom variables {
∑n

i=1 T
+
i }ni=1 satisfies Lindeberg-Feller conditions (Proposition 2.27 of van der
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Vaart, 1998) under Assumption 2 (i) (a), (iii), (iv) (a), and (iv) (c) and therefore converges

in distribution to a normal distribution. Therefore, the asymptotic tightness then implies∑n
i=1 Ti = Ox×ξ

p (1). Thus we conclude that equation C.1 is ox×ξp (1).

Step 2 We will show

−[
Ẑξ,n(Q̂Y 1|V X(·|h(0), 0), 1)

f̂Y 1|V X(Q̂Y 1|V X(·)|h(0), 0)
−
Ẑξ,n(Q̂Y 0|V X(·|h(0), 0), 0)

f̂Y 0|V X(Q̂Y 0|V X(·)|h(0), 0)
]
p
 
ξ
Gτ (·)

where

Ẑξ,n(y, d) =
[µ̂′2(0+, d)− µ̂′2(0−, d)]ν̂ξ,n(y, d, 1)− [µ̂′1(0+, y, d)− µ̂′1(0−, y, d)]ν̂ξ,n(y, d, 2)

[µ̂′2(0+, d)− µ̂′2(0−, d)]2
.

We first use Theorem 12.1 of Kosorok (2008) (the functional delta for bootstrap) along with

the conclusion of Step 1 to get

Z̃ξ,n(·, ·) :=
[µ′2(0+, ·)− µ′2(0−, ·)]ν̂ξ,n(·, ·, 1)− [µ′1(0+, ·, ·)− µ′1(0−, ·, ·)]ν̂ξ,n(·, ·, 2)

[µ′2(0+, ·)− µ′2(0−, ·)]2
p
 
ξ
GF (·, ·).

Since the denominator is bounded away from 0 under Assumption 2 (i) (iv), uniform consistency

of µ̂
′
1, µ̂

′
2 from Theorem 2 gives

∥∥∥Z̃ξ,n − Ẑξ,n∥∥∥
Y1×{0,1}

p→
x×ξ

0, and Lemma 2 of Chiang, Hsu, and

Sasaki (2019) implies Ẑξ,n
p
 
ξ
GF . Using the functional delta method for bootstrap again, we

obtain

−[
Ẑξ,n(QY 1|V X(·|h(0), 0), 1)

fY 1|V X(QY 1|V X(·|h(0), 0)|h(0), 0)
−

Ẑξ,n(QY 0|V X(·|h(0), 0), 0)

fY 0|V X(QY 0|V X(·|h(0), 0)|h(0), 0)
]
p
 
ξ
Gτ (·).

Since fY d|V X(·|h(0), 0) are bounded away from zero, using asymptotic ρ−equicontinuity of

Ẑξ,n(·, ·) following its (conditional) weak convergence and Theorem 3.7.23 of Giné and Nickl

(2016), and the uniform consistency of f̂Y d|V X(·|h(0), 0) and Q̂Y d|V X(·) with d = 1, 2 along with

Lemma 2 of Chiang, Hsu, and Sasaki (2019), we conclude part (ii) of the theorem.

C.3 Proof of Lemma 1

We prove the lemma by two steps: for each (y, d, x) ∈ Y ×D × ([x, x] \ {0}), Step 1 shows

∂

∂x
µ(0±, y, d) =

∂

∂x
(fY |XD(y|x, d)PD|X(d|x))
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and Step 2 shows

∂

∂y
µ′1(0±, y, d) =

∂

∂y

∂

∂x
E[1{Yi ≤ y,Di = d}|Xi = x] =

∂

∂x
(fY |XD(y|x, d)PD|X(d|x)).

Step 1 For d = 1, under Assumptions 2 (i) (b), (ii) (a) (b), (iv) (a) and 3, for each

(y, x) ∈ Y × ([x, x] \ {0}), for d = 1, applying the dominated convergence theorem, we have

∂

∂x
lim
n→∞

E
[ 1

bn
K
(Yi − y

bn

)
1{Di = 1}|Xi = x

]
=
∂

∂x
lim
n→∞

(E
[ 1

bn
K
(Yi − y

bn

)∣∣∣Xi = x
]
PD|X(1|x) + 0)

=
∂

∂x
lim
n→∞

(∫
R

K(u)fY |XD(ubn + y|x, 1)duPD|X(1|x)
)

=
∂

∂x
lim
n→∞

(∫
R

K(u)(fY |XD(y|x, 1) +
∂

∂y
fY |XD(y|x, 1)ubn +

∂2

∂y2
fY |XD(y∗|x, 1)

u2b2
n

2
)duPD|X(1|x)

)
=
∂

∂x
lim
n→∞

((fY |XD(y|x, 1) +O(b2
n))PD|X(1|x)) =

∂

∂x
(fY |XD(y|x, 1)PD|X(1|x)).

where y∗ lies between y and y + ubn. A similar result holds for d = 0.

Step 2 Under Assumptions 2 (i) (b), (ii) (a) (b), (iv) (a) and 3, for each (y, x) ∈ Y ×

([x, x] \ {0}), for d = 1, an application of the dominated convergence theorem yields

∂

∂y

∂

∂x
E
[
1{Yi ≤ y,Di = 1}

∣∣∣Xi = x
]

=
∂

∂y

∂

∂x

(
E
[
1{Yi ≤ y}

∣∣∣Xi = x
]
PD|X(1|x) + 0

)
=
∂

∂y

∂

∂x
FY |XD(y|x, 1)PD|X(1|x)

=
∂

∂x

∂

∂y
FY |XD(y|x, 1)PD|X(1|x) =

∂

∂x
fY |XD(y|x, 1)PD|X(1|x).

A similar result holds for d = 0.

C.4 Proof of Lemma 2

The proof makes use of a maximal inequality from Chernozhukov, Chetverikov, & Kato (2014).

Under Assumptions 2 (ii) (a) and (ii) (b) and 3, as in Section 1.6 of Tsybakov (2008), the
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solution to equation (B.3) can be written as

α̃(0+, y, d)

=
[ 1

nan

n∑
i=1

δ+
i K
(Xi

an

)
r3

(Xi

an

)
r>3

(Xi

an

)]−1[ 1

nan

n∑
i=1

δ+
i K
(Xi

an

)
r3

(Xi

an

)( 1

bn
K
(Yi − y

bn

)
1{Di = d}

)]
=α(0+, y, d) +

[ 1

nan

n∑
i=1

δ+
i K
(Xi

an

)
r3

(Xi

an

)
r>3

(Xi

an

)]−1 1

nan

n∑
i=1

δ+
i K
(Xi

an

)
r3

(Xi

an

)µ(4)(x∗ni, y, d)

4!
a4
n

+
[ 1

nan

n∑
i=1

δ+
i K
(Xi

an

)
r3

(Xi

an

)
r>3

(Xi

an

)]−1

[ 1

nan

n∑
i=1

δ+
i K
(Xi

an

)
r3

(Xi

an

)( 1

bn
K
(Yi − y

bn

)
1{Di = d} − µ(Xi, y, d)

)]

where α(0+, y, d) =
[
µ(0±, y, d), µ′(0±, y, d)an, µ

′′(0±, y, d)a2
n/2!, µ′′′(0±, y, d)a3

n/3!
]>

. Multiply

both sides by e>1 to get

µ̃′(0+, y, d) = µ′(0+, y, d) + (1) + (2)

where

(1) =e>1

[ 1

nan

n∑
i=1

δ+
i K
(Xi

an

)
r3

(Xi

an

)
r>3

(Xi

an

)]−1 1

nan

n∑
i=1

δ+
i K
(Xi

an

)
r3

(Xi

an

)µ(4)(x∗ni, y, d)

4!
a4
n

(2) =e>1

[ 1

nan

n∑
i=1

δ+
i K
(Xi

an

)
r3

(Xi

an

)
r>3

(Xi

an

)]−1

1

nan

n∑
i=1

δ+
i K
(Xi

an

)
r3

(Xi

an

)( 1

bn
K
(Yi − y

bn

)
1{Di = d} − µ(Xi, y, d)

)
.

From Step 1 of Proof of Lemma 1 in Chiang, Hsu, and Sasaki (2019), with Assumption 2 (i)

(a), (i) (b), (iii), and (iv) and 3, we have the common inverse factor

[ 1

nan

n∑
i=1

δ+
i K
(Xi

an

)
r3

(Xi

an

)
r>3

(Xi

an

)]−1 p→
x×ξ

(Γ+)−1

fX(0)

uniformly in (y, d). It suffices to show that each of

(3) =
1

nan

n∑
i=1

δ+
i K
(Xi

an

)
r3

(Xi

an

)µ(4)(x∗ni, y, d)

4!
a4
n

(4) =
1

nan

n∑
i=1

δ+
i K
(Xi

an

)
r3

(Xi

an

)( 1

bn
K
(Yi − y

bn

)
1{Di = d} − µ(Xi, y, d)

)
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converges in probability to zero uniformly. We will divide the argument into the following four

steps.

Step 1 Under Assumption 2 (i) (a), (ii) (a), (ii) (b), (iii) and (iv) (a), it holds that∣∣∣ 1

nan

n∑
i=1

δ+
i K
(Xi

an

)
r3

(Xi

an

)µ(4)(x∗ni, y, d)

4!
a4
n

∣∣∣ ≤ 1

nan

n∑
i=1

∣∣∣K(Xi

an

)∣∣∣∣∣∣r3

(Xi

an

)∣∣∣∣∣∣µ(4)(x∗ni, y, d)

4!
a4
n

∣∣∣
.

n

nan
‖K‖∞Ma4

n → 0.

Step 2 We first bound the difference

1

nanbn

n∑
i=1

δ+
i K
(Xi

an

)
r3

(Xi

an

)
K
(Yi − y

bn

)
1{Di = d}

− E
[ 1

nanbn

n∑
i=1

δ+
i K
(Xi

an

)
r3

(Xi

an

)
K
(Yi − y

bn

)
1{Di = d}

]
.

It suffices to show that each term converges in probability uniformly. Define for each t =

0, 1, ..., 3

Ft = {(y∗, d∗, x∗) 7−→ δ+
x (ax∗)tK(ax∗)K(by∗ + c){d∗ = d} : d ∈ D , a, b ≥ 0, c ∈ R} and

Ft,n = {(y∗, d∗, x∗) 7−→ δ+
x (x/an)tK(x/an)K((y∗ − y)/bn){d∗ = d} : d ∈ D , y ∈ Y1}.

where δ+
x = 1{x ≥ 0} and δ−x = 1{x < 0}. Note that for a fixed t, Ft,n ⊂ Ft for all n. Fix

any t, under Assumption 2 (iv), {x∗ 7→ K(ax∗) : a ∈ R} is of VC Type class with measurable

envelope ‖K‖∞. By Proposition 3.6.12 of Giné and Nickl (2016), x 7→ (ax)t1{ax ≤ 1} is of

VC type class with measurable envelope 1 since z 7→ zt1{z ≤ 1} is a mapping of bounded

variations. Furthermore, {1{d∗ = d} : d ∈ D} is of VC-subgraph class and therefore of VC

type. Lemma A.6 of Chernozhukov, Chetverikov, & Kato (2014) then implies that the class

of their element-wise product Ft is of VC type with envelope Ft = ‖K‖2
∞, i.e., there exist

positive constants k, v < ∞ such that supQN(Ft, ‖·‖Q,2 , ε ‖Ft‖Q,2) ≤ (k
ε
)v for 0 < ε ≤ 1 and

the supremum is taken over the set of all probability measures on (Ωx,Fx). Corollary 5.1 in

Chernozhukov, Chetverikov, & Kato (2014) then gives

E

[∥∥∥∥∥ 1√
n

n∑
i=1

(f(Yi, Di, Xi)− Ef(Yi, Di, Xi))

∥∥∥∥∥
Ft

]
= Ox

p(1).
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Multiplying both sides by (
√
nanbn)−1, we have

E

[
sup

(y,d)∈Y1×D

∣∣∣∣∣ 1

nanbn

n∑
i=1

δ+
i K
(Xi

an

)
r3

(Xi

an

)
K
(Yi − y

bn

)
1{Di = d}

− E
[ 1

nanbn

n∑
i=1

δ+
i K
(Xi

an

)
r3

(Xi

an

)
K
(Yi − y

bn

)
1{Di = d}

]∣∣∣∣∣
]

= O(
1√
nanbn

).

The result then follows from Markov’s inequality and Assumption 3.

Step 3 We now want to control

1

nan

n∑
i=1

δ+
i K
(Xi

an

)
r3

(Xi

an

)
µ(Xi, y, d)− E

[ 1

nan

n∑
i=1

δ+
i K
(Xi

an

)
r3

(Xi

an

)
µ(Xi, y, d)

]
.

Since under Assumption 2 (ii) (a) and (ii) (b), for any (y1, d1), (y2, d2) ∈ Y ×D , |µ(x, y1, d1)−

µ(x, y2, d2)| ≤M(x)(|y1− y2|+ |d1− d2|), this implies that {µ(·, y, d) : y ∈ Y1, d ∈ D} is of VC

type class in lieu of Example 19.7 of van der Vaart (1998) and Lemma 9.18 of Kosorok (2008).

We can then follow the same steps as in Step 2 to show

E

[
sup

(y,d)∈Y1×D

∣∣∣∣∣ 1

nan

n∑
i=1

δ+
i K
(Xi

an

)
r3

(Xi

an

)
µ(Xi, y, d)− E

[ 1

nan

n∑
i=1

δ+
i K
(Xi

an

)
r3

(Xi

an

)
µ(Xi, y, d)

]∣∣∣∣∣
]

= O
( 1√

nan

)
.

The desired result of the current step then follows from Markov’s inequality and Assumption

3.

Step 4 Finally, we show that the two expectations above are asymptotically equivalent uni-

formly in y and d. Under Assumption 2 (i) (b), (ii) (a), (ii) (b), (iii), and (iv) (a), calculations

yield

E
[ 1

nanbn

n∑
i=1

δ+
i K
(Xi

an

)
r3

(Xi

an

)
K
(Yi − y

bn

)
1{Di = d}

]
=

E
[ 1

nan

n∑
i=1

δ+
i K
(Xi

an

)
r3

(Xi

an

)
µ(Xi, y, d)

]
by the law of iterated expectations under Assumption 3. This result, along with results from

Steps 2 and 3, concludes the proof.
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C.5 On Remark 2

This appendix section proves the statement in Remark 2. We mostly follow the proof of

Proposition 6 of Card, Lee, Pei, and Weber (2015). Let 1{Y ≤ y}1{D = d} be the “stacked”

n × 1 outcome variable {1{Yi ≤ y}1{Di = d}}ni=1, where the first n− entries are observations

to the left of x0 and the last n+ entries are those to the right of x0. Let Z be the n× 8 matrix

whose ith row is(
δ−i ,

Xi

hn
δ−i ,

(
Xi

hn

)2

δ−i ,

(
Xi

hn

)3

δ−i , δ
+
i ,
Xi

hn
δ+
i ,

(
Xi

hn

)2

δ+
i ,

(
Xi

hn

)3

δ+
i

)
.

Also let

WK =

 W−
K 0

0 W+
K


with W±

K being the diagonal matrices

Diag

(
K
(X1

hn

)
δ±1 , ...., K

(Xn

hn

)
δ±n

)
.

The constrained estimator can be obtained from

min
βR∈R8

(
1{Y ≤ y}1{D = d} − ZβR

)>
WK

(
1{Y ≤ y}1{D = d} − ZβR

)
subject to RβR = 0 where R = (1, 0, 0, 0,−1, 0, 0, 0). Denote the resulting estimator by

β̂R =

 µ̂R1 (0+, y, d), µ̂′R1 (0+, y, d)hn, µ̂
′′R
1 (0+, y, d)h2

n/2!, µ̂′′′R1 (0+, y, d)h3
n/3!,

µ̂R1 (0−, y, d), µ̂′R1 (0−, y, d)hn, µ̂
′′R
1 (0−, y, d)h2

n/2!, µ̂′′′R1 (0−, y, d)h3
n/3!

 .
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From equation (1.4.5) of Amemiya (1985), we have

β̂R − β

=

 (
Z>WKZ

)−1

−
(
Z>WKZ

)−1
R>

(
R
(
Z>WKZ

)−1
R>
)−1

R
(
Z>WKZ

)−1

Z>WK (1{Y ≤ y}1{D = d} − Zβ)

=
(
Z>WKZ

)−1
Z>WK (1{Y ≤ y}1{D = d} − Zβ)

−
(
Z>WKZ

)−1
R>

(
R
(
Z>WKZ

)−1
R>
)−1

R
(
Z>WKZ

)−1 · Z>WK (1{Y ≤ y}1{D = d} − Zβ)

=
(
Z>WKZ

)−1
Z>WK (1{Y ≤ y}1{D = d} − Zβ)

− Π−1R>
(
RΠ−1R

>
)−1

RΠ−1 · Z>WK (1{Y ≤ y}1{D = d} − Zβ)
1

nhn
+ op

(
1

nhn

)
,

where the first term on the RHS is the unconstrained version and Π−1 is

Π−1 =

 Γ− 0

0 Γ+

 .

Since µ̂′R1 (0+, y, d)hn − µ̂′R1 (0−, y, d)hn = Eβ̂R, where E = (0, 1, 0, 0, 0,−1, 0, 0) and K is the

uniform kernel, we have E·Π−1 ·R> = 0. Therefore,

µ̂′R1 (0+, y, d)hn−µ̂′R1 (0−, y, d)hn = E·
(
Z>WKZ

)−1
Z>WK (1{Y ≤ y}1{D = d} − Zβ)+op

(
1

nhn

)
,

where the constrained estimator has the same asymptotic distribution as the unconstrained

one.
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