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A Outline and Assumptions

In this supplemental material, we present theoretical and numerical details that are omitted in the main

paper Hill and Motegi (2019). In the present appendix, we state our assumptions on the data generating

process and plug-in estimator.

Appendix B contains a comparison between our imposed Near Epoch Dependence [NED] property

with the moment contraction property invoked in Shao (2011), Guay, Guerre, and Lazarová (2013) and

Xiao and Wu (2014).

Appendix C contains several examples of data generating processes, filters, and the resulting corre-

lation expansion form.

Appendix D details local asymptotic power for the max-correlation test.

Appendix E presents a kernel variance estimator for self-standardization of the sample correlation as

an option for weighting.

Appendix F presents omitted proofs for Lemma A.4 (expansion), Lemma A.5 (convergence in finite

dimensional distributions) and Lemma A.6 (ULLN’s).

Appendix G presents an environment in which an upper bound on the maximum lag rate of increase

Ln → ∞ is available.

Appendix H contains the complete Monte Carlo study.

Throughout | · | is the l1-matrix norm; || · || is the l2-matrix norm; || · ||p is the Lp-norm. I(·) is the

indicator function: I(A) = 1 if A is true, else I(A) = 0. Ft ≡ σ(yτ , xτ : τ ≤ t). All random variables

lie in a complete probability measure space (Ω,P,F), hence σ(∪t∈ZFt) ⊆ F . We drop the (pseudo) true

value θ0 from function arguments when there is no confusion. K is a positive constant the value of which

may be different in different places.

Assumptions The class of time series models considered is:

yt = f(xt−1, φ0) + ut and ut = εtσt(θ0) (A.1)

where φ ∈ Rkφ , kφ ≥ 0, and f(x, φ) is a level response function. εt satisfies E[εt] = 0, E[ε2t ] < ∞, and

the regressors are xt ∈ Rkx , kx ≥ 0. {xt, yt} are strictly stationary in order to focus ideas. σ2
t (θ0) is a

process measurable with respect to Ft−1 ≡ σ(yτ , xτ : τ ≤ t − 1), where θ0 is decomposed as [φ′0, δ
′
0] and

δ0 ∈ Rkδ are volatility-specific parameters, kδ ≥ 0.

Unless yt = εt such that yt is known to have a zero mean, let θ̂n = [φ̂′n, δ̂
′
n] estimate θ0 where n is the

sample size, and define the residual, and its sample serial covariance and correlation at lag h ≥ 1:

εt(θ̂n) ≡ ut(φ̂n)

σt(θ̂n)
≡ yt − f(xt−1, φ̂n)

σt(θ̂n)
and γ̂n(h) ≡ 1

n

n∑
t=1+h

εt(θ̂n)εt−h(θ̂n) and ρ̂n(h) ≡ γ̂n(h)

γ̂n(0)
.

In the pure volatility model set f(xt−1, φ̂n) = 0, and in the level model set σt(θ̂n) = 1.
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The general test statistic is based on the measurable function:

ϑ : RL → [0,∞) (A.2)

that satisfies the following: ϑ(x) is continuous; lower bound ϑ(a) = 0 if and only if a = 0; upper bound

ϑ(a) ≤ KLM for some K > 0 and any a = [ah]Lh=1 such that |ah| ≤ M for each h; divergence ϑ(a)

→ ∞ as ||a|| → ∞; monotonicity ϑ(aL1) ≤ ϑ([a′L1
, c′L2−L1

]′) where (aL, cL) ∈ RL, ∀L2 ≥ L1 and any

cL2−L1 ∈ RL2−L1 ; and the triangle inequality ϑ(a + b) ≤ ϑ(a) + ϑ(b) ∀a, b ∈ RLn . Examples include

the maximum ϑ(a) = max1≤h≤L |ah| and sum ϑ(a) =
∑L

h=1 |ah|, where a = [ah]Lh=1. The general test

statistic is:

T̂n ≡ ϑ
([√

nω̂n(h)ρ̂n(h)
]Ln
h=1

)
with weights ω̂n(h) > 0 and ω̂n(h)

p→ ω(h) ∈ (0,∞) .

Let {υt} be a stationary α-mixing process with σ-fields Vt
s ≡ σ(υτ : s ≤ τ ≤ t) and Vt ≡ Vt

−∞ and

coefficients

α
(υ)
h = sup

t∈Z
sup

A⊂V∞t ,B⊂V
t−h
−∞

|P (A ∩ B)− P (A)P (B)| .

We say {εt} is stationary Lq-NED with size λ on a mixing base {υt} when εt is Lq-bounded and∥∥∥εt − E[εt|Vt+h
t−h]

∥∥∥
q
≤ Kψh where ψh = O

(
h−λ−ι

)
for tiny ι > 0.

If εt = υt then ||εt − E[εt|Vt+h
t−h]||q = 0, hence NED includes mixing sequences, but it also includes

non-mixing sequences since it covers infinite lag functions of mixing sequences that need not be mixing

(see, e.g., Doukhan, 1994). See Davidson (1994) for historical references and deep results.

Assumption 1 (data generating process).

a. {xt, yt} are stationary, ergodic, and L2+δ-bounded for tiny δ > 0.

b. εt is stationary, ergodic, E[εt] = 0, Lr-bounded, r > 4, and L4-NED with size 1/2 on stationary

α-mixing {υt} with coefficients α
(υ)
h = O(h−r/(r−2)−ι) for tiny ι > 0.

c. The weights satisfy ω̂n(h) > 0 a.s. and ω̂n(h) = ω(h) + Op(1/n
κ) for some κ > 0 and non-random

ω(h) ∈ (0,∞), for each h.

We require notation that makes use of estimating equations mt ∈ Rkm and a matrix A ∈ Rkθ×km

defined under Assumption 2.c. Define

D(h) ≡ E
[(
εtst +

Gt
σt

)
εt−h

]
+ E

[
εt

(
εt−hst−h +

Gt−h
σt−h

)]
∈ Rkθ , (A.3)

and

zt(h) ≡ rt(h)− ρ(h)rt(0) where rt(h) ≡ εtεt−h − E [εtεt−h]−D(h)′Amt

E
[
ε2t
] and ρ(h) ≡ E[εtεt−h]

E[ε2t ]
.
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The process that arises in the key approximation is:

Zn(h) ≡ 1√
n

n∑
t=1+h

zt(h). (A.4)

Assumption 2 (plug-in: response and identification).

a. Level response. f : Rkx × Φ → R, where Φ is a compact subset of Rkφ, kφ ≥ 0; f(x, φ) is Borel

measurable for each φ, and for each x three times continuously differentiable, where (∂/∂φ)jf(x, φ) is

Borel measurable for each φ and j = 1, 2, 3; E[supφ∈Nφ0
|(∂/∂φ)jf(xt, φ)|6] < ∞ for j = 0, 1, 2, 3 and

some compact set with positive measure Nφ0 ⊆ Φ containing φ0.

b. Volatility. σ2
t : Θ→ [0,∞) where Θ = Φ × ∆ ∈ Rkθ , and ∆ is a compact subset of Rkδ , kδ ≥ 0; σ2

t (θ) is

Ft−1-measurable, continuous, and three times continuously differentiable, where (∂/∂θ)j lnσ2
t (θ) is Borel

measurable for each θ and j = 0, 1, 2, 3; infθ∈Θ |σ2
t (θ)| ≥ ι > 0 a.s. and E[supθ∈Nθ0

|(∂/∂θ)j lnσ2
t (θ)|4]

< ∞ for j = 0, 1, 2, 3 and some compact subset Nθ0 ⊆ Θ containing θ0.

c. Estimator. θ̂n ∈ Θ for each n, and for a unique interior point θ0 ∈ Θ we have
√
n(θ̂n − θ0) =

An−1/2
∑n

t=1mt(θ0) + Rm(n), where the km × 1 stochastic remainder Rm(n) = Op(n
−ζ) for some ζ >

0, with Ft-measurable estimating equations mt = [mi,t]
km
i=1 : Θ → Rkm for km ≥ kθ, and non-stochastic

A ∈ Rkθ×km. Moreover, zero mean mt(θ0) is stationary, ergodic, Lr/2-bounded and L2-NED with size

1/2 on {υt}, where r > 4 and {υt} appear in Assumption 1.b.

d. Nondegenerate Finite Dimensional Variance. Let L ∈ N be arbitrary, and let λ ≡ [λh]Lh=1 ∈ RL. Then

lim infn→∞ infλ′λ=1E[(
∑L

h=1 λhZn(h))2] > 0.

Assumption 2.c′. θ̂n ∈ Θ for each n, and for a unique interior point θ0 ∈ Θ we have
√
n(θ̂n − θ0) =

An−1/2
∑n

t=1mt(θ0) + Rm(n) where the km × 1 stochastic remainder Rm(n) = Op(n
−ζ) for some ζ >

0, with Ft-measurable estimating equations mt = [mi,t]
km
i=1 : Θ → Rkm for km ≥ kθ; and non-stochastic

A ∈ Rkθ×km. mt(θ) is twice continuously differentiable, (∂/∂θ)jmt(θ) is Borel measurable for each θ

and j = 1, 2, and E[supθ∈Θ |(∂/∂θ)imj,t(θ)|] < ∞ for each i = 0, 1, 2 and j = 1, ..., km. Moreover, zero

mean mt is stationary, ergodic, Lr/2-bounded and L2-NED with size 1/2 on {υt}, where r > 4 and {υt}
appear in Assumption 1.b.

We use the following variance bound for NED sequences repeatedly and without further citation. If

wt is zero mean, stationary, Lp-bounded for some p > 2, and L2-NED with size 1/2, on an α-mixing

base with decay O(h−p/(p−2)−ι), then by Theorem 17.5 in Davidson (1994) and Theorem 1.6 in McLeish

(1975):

E

( 1√
n

n∑
t=1

wt

)2
 = O(1). (A.5)
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B Moment Contraction and NED

Consider Wu’s (2005) physical dependence measure (see also Wu and Shao, 2004, Wu and Min, 2005)

exploited in Shao (2011), Xiao and Wu (2014) and Guay, Guerre, and Lazarová (2013) for white noise

tests. Assume there exists a measurable function g and random variables {vt}t∈Z such that

εt = g(νt, νt−1, ...)

is a well-defined random variable. If vt is iid then {εt} is a stationary and ergodic process. Let ε′t =

g(νt, νt−1, ..., v
′
0, v
′
−1, ...) where {v′t}t∈Z is an iid copy of {vt}t∈Z, thus ε′t is a coupled version of εt. The

dependence quantity

d
(ε)
t (q) ≡

∥∥εt − ε′t∥∥q
measures the impact of a distant past on εt as t → ∞. We say that a random variable zt is Lq-moment

contracting, or MCq, when zt is Lq-bounded and

∞∑
k=0

d
(z)
k (q) <∞.

Under stationary MC2, {zt} is a short memory process since (see, e.g. Shao, 2011, Remark 2.1):

∞∑
h=0

|E[ztzt−h]| ≤

( ∞∑
k=0

d
(z)
k (2)

)2

<∞.

We say zt is geometrically MCq, or GMCq, if E|εt − ε′t|q ≤ Kρt for some ρ ∈ (0, 1).

It is easy to show ∥∥εtεt−h − ε′tε′t−h∥∥q/2 ≤ K {dt(q) + dt−h(q)} ,

hence εtεt−h is MC2 when εt is MC4, and therefore {εtεt−h} is a short memory process when εt is MC4.

If εtεt−h is L2-NED with size 1/2 then by Theorem 1.6 in McLeish (1975), cf. Davidson (1994,

Theorem 17.2):

S ≡ lim
n→∞

E

( 1√
n

n∑
t=1

{εtεt−h − E[εtεt−h]}

)2
 <∞.

Conversely, MC4 does not generally imply S < ∞, hence S < ∞ would have to be assumed under an

MC assumption. In the present context, S < ∞ holds if: (i) a standard cumulant series bound holds

which essentially reduces to S < ∞ (Wu and Shao, 2004, Shao, 2011); or (ii) εt is GMC4 (Wu and Shao,

2004, Proposition 2, cf. Wu, 2005); or (iii) εt =
∑∞

i=0 ψiυt−i with zero mean υt = g(ωt, ωt−1, ...), iid

ωt,
∑∞

i,j=0 |ψiψjE[υ0υi−j ]| < ∞ and
∑∞

i=0 i
1/2|ψi| < ∞, provided υt and εtεt−h are respectively L2- and

L4-weakly dependent (Wu and Min, 2005, Theorem 3, Proposition 1). See Hannan (1973) and Wu and

Min (2005) for definitions of Lp-weak dependence. If εtεt−h is MC2 then it is L2-weakly dependent (Wu,

2005, Theorem 1), hence if S <∞ then central limit theorems in Hannan (1973) and Wu and Min (2005)
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apply.

Now define

P0εt ≡ E[εt|V0]− E[εt|V−1] where Vt ≡ σ(υτ : τ ≤ t).

By Theorem 1 in Wu (2005), ||P0εt||q ≤ d
(ε)
t (q), hence MCq implies

∑∞
k=0 ||P0εt||q < ∞. Similarly,

if εt is Lq-NED with size 1 on {νt} then εt is an Vt-adapted Lq-mixingale with size 1 and therefore∑∞
k=0 ||E[εk|F0]||q < 0 hence

∑∞
k=0 ||P0εt||q < ∞ (see, e.g., Meng and Lin, 2009). Thus, MCq and Lq-

NED with size 1 equally imply a sufficient condition for linear processes of εt to satisfy a central limit

theorem (Hannan, 1973, Wu and Min, 2005). However, in Assumption 1 we only need εt to be L4-NED

with size 1/2, which allows for slower memory decay than MC4.

In addition to MC8 and therefore a finite 8th moment, Shao (2011) imposes an eighth order cumulant

summability condition which ultimately ensures a cross product partial sum has a finite second moment.

As discussed above, L4-NED under Assumption 1.b implies S < ∞, hence no additional cumulant

condition is required.

Guay, Guerre, and Lazarová (2013) impose an MC12 condition and therefore require at least a 12th

moment. Further, rather than impose sufficient conditions for weak convergence as in Lobato (2001),

Shao (2011), and in the present paper under Assumption 1, they assume it under their Assumption M

in the form of joint weak convergence of a covariance process and the plug-in estimator. They claim

their Assumption M holds for linear processes and a least squares estimator, but no further processes or

estimators are considered.

Xiao and Wu (2014) impose MC4 and restrict the degree of dependence based on the rate of increase

of the maximum lag. We do not tie the degree of dependence to the maximum lag, while L4-NED with

size 1/2 allows for slower memory decay.

C Examples

We give several examples of models under (A.1) in order to verify the assumptions. Recall

Gt(φ) ≡
[
∂

∂φ′
f(xt−1, φ),0′kδ

]′
∈ Rkθ and st(θ) ≡

1

2

∂

∂θ
lnσ2

t (θ)

D(h) ≡ E
[(
εtst +

Gt
σt

)
εt−h

]
+ E

[
εt

(
εt−hst−h +

Gt−h
σt−h

)]
∈ Rkθ .

Under Assumption 2
√
n(θ̂n − θ0) = A 1

n1/2

n∑
t=1

mt(θ0) + op(1),

with Ft-measurable estimating equations mt = [mi,t]
km
i=1 : Θ → Rkm for km ≥ kθ, and non-stochastic A

∈ Rkθ×km . Define

zt(h) ≡ rt(h)− ρ(h)rt(0) where rt(h) ≡ εtεt−h − E [εtεt−h]−D(h)′Amt

E
[
ε2t
] and ρ(h) ≡ E[εtεt−h]

E[ε2t ]
,
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and

Zn(h) ≡ 1√
n

n∑
t=1+h

zt(h).

Lemma 2.1 states that under Assumptions 1 and 2:∣∣∣ϑ(√n [ρ̂n(h)− ρ(h)]Lnh=1

)
− ϑ

(
[Zn(h)]Lnh=1

)∣∣∣ ≤ ϑ([√n{ρ̂n(h)− ρ(h)} − Zn(h)
]Ln
h=1

)
p→ 0,

for some non-unique sequence {Ln} of positive integers, where Ln → ∞ and Ln = o(n).

We specifically characterize the form of Zn(h) under the null in order to compute the bootstrapped

p-value:

Zn(h) ≡ 1√
n

n∑
t=1+h

{εtεt−h −D(h)′Amt}
E
[
ε2t
] . (C.1)

The exact form of Zn(h) can be simplified depending on whether εt is assumed independent under the

null, the regressors {xt} are independent of the sequence {εt}, the stochastic volatility component σt is

estimated, and the level response f is linear.

In the following we operate under the null.

C.1 Level Response

The level response model is

yt = f(xt−1, φ0) + ut.

Assume f(·, φ) is three times continuously differentiable in φ ∈ Rkφ , E[u2
t ] <∞, and E[GtG

′
t] is finite and

positive definite where Gt = Gt(φ0) = [Gt,i(φ0)]ki=1 ≡ (∂/∂φ)f(xt−1, φ0). Define nonlinear least squares

estimating equations mt(φ) = (yt − f(xt−1, φ)) × (∂/∂φ)f(xt−1, φ). Assume E[mt(φ)] = 0 if and only

if φ = φ0, a unique interior point of compact Φ.

Assume {ut, xt} are stationary Lr-bounded, r > 4, and α-mixing with coefficients αh =

O(h−r/(r−4)/ ln(h)). Assume E[supφ∈Nφ0
|Gt,i(φ)|r] < ∞ for each i, some r > 4, and some compact

Nφ0 ⊆ Φ containing φ0. Many nonlinear response functions satisfy this condition under Lr-boundedness

of {ut, xt}, including linear, logistic, and trigonometric functions. Then mt is stationary, Lr-bounded,

and α-mixing. Sufficient conditions for stationary geometric ergodicity of nonlinear AR-GARCH with

iid innovations are in Meitz and Saikkonen (2008), amongst others, cf. Doukhan (1994, Chapt. 2.4.2).

Define the nonlinear least squares estimator φ̂n = arg minφ∈Φ{1/n
∑n

t=1(yt − f(xt−1, φ))2}. By

construction st = .5(∂/∂θ) lnσ2
t = 0 since σ2

t = 1, and D(h) = E[ut−hGt] + E[utGt−h] = E[ut−hGt].

Then Assumptions 1 and 2 hold, with mt = utGt and A = (E[GtG
′
t])
−1, hence

√
nρ̂n(h) =

1√
n

n∑
t=1+h

ut

{
ut−h − E[ut−hGt]

′ (E [GtG
′
t])
−1Gt

}
E
[
u2
t

] + op(1). (C.2)
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If additionally ut is independent of the sequence {xt}, then E[ut−hGt] = 0, hence

√
nρ̂n(h) =

1√
n

n∑
t=1+h

utut−h/E[u2
t ] + op(1),

the well-known result that φ̂n does not impact the limit distribution of
√
nρ̂n(h) (cf. Wooldridge, 1990).

C.2 Linear Response with Least Squares

The model is

yt = φ′0xt−1 + ut, E[ut] = 0.

Let E[(yt − φ′0xt−1)ut] = 0 for a unique interior φ0 ∈ Φ, and assume E[xtx
′
t] is positive definite. Assume

{xt, ut} are stationary and ergodic, Lr-bounded, p > 4, and L4-NED on an α-mixing base with coefficient

decay O(h−r/(r−4)−ι). An AR process with an iid error that has a continuous bounded distribution is

geometrically α-mixing and therefore geometrically NED. This extends to linear or nonlinear GARCH

errors (see, e.g., Doukhan, 1994, Meitz and Saikkonen, 2008).

By construction Gt = xt−1 and st = 0 hence D(h) ≡ E[ut−hxt−1]. If φ̂n is the least squares estimator

then Assumptions 1 and 2 are satisfied, with A = (E[xtx
′
t])
−1 and mt = utxt−1. Therefore:

√
nρ̂n(h) =

1

E
[
u2
t

] 1√
n

n∑
t=1+h

ut
{
ut−h − E[ut−hxt−1]′(E[xtx

′
t])
−1xt−1

}
+ op(1).

If u2
t − E[u2

t ] is an adapted mds then E[m2
i,t] = E[u2

t ]E[x2
i,t] < ∞ and E[(utut−h)2] = (E[u2

t ])
2 < ∞,

hence we only need {xt, ut} to be Lr-bounded, r > 2, and α-mixing.

C.3 Mean Model with Sample Mean

The mean model is yt = E[yt] + ut, hence f(xt−1, φ0) = E[yt], σt = 1 and E[ut] = 0. Assume {yt} is sta-

tionary, ergodic, Lr-bounded for some r > 4, and L4-NED on an α-mixing base with decayO(h−r/(r−4)−ι).

Then Gt = 1 and st = 0, hence D(h) ≡ E[utut−h] + E[ut] = E[(yt − E[yt])(yt−h − E[yt−h])] hence D(h)

= 0 under H0 for h ≥ 1. The plug-in estimator is the sample mean θ̂n = 1/n
∑n

t=1 yt, so that mt = ut

and A = 1. Assumptions 1 and 2 are satisfied, hence from (C.2):

√
nρ̂n(h) =

1√
n

n∑
t=1+h

(yt − E[yt]) (yt−h − E[yt−h])

E
[
(yt − E[yt])

2
] + op(1).

C.4 GARCH(1,1) with QML

The model is GARCH(1,1) yt = σtεt with σ2
t = ω0 + α0y

2
t−1 + β0σ

2
t−1, ω0, α0, β0 > 0, E[εt] = 0 and

E[ε2t ] = 1. We ignore boundary cases by assuming α0, β0 > 0. The model includes weak, semi-strong or

strong GARCH (see Drost and Nijman, 1993), in which case the model is correct in some sense since εt

9



is assumed to be serially uncorrelated. Conditions for strict stationarity in the case of iid or mds εt are

given in Nelson (1990) and Lee and Hansen (1994), and Boussama (2006) proves geometric ergodicity.

Let θ ≡ [ω, α, β]′, and Θ = [ιω, uω] × [0, 1 − ι] × [0, 1 − ι], where uω > ιω > 0 and ι ∈ (0, 1). Define the

unobserved volatility process σ2
t (θ) = ω + αy2

t−1 + βσ2
t−1(θ) on Θ, and define the iterated process used

for estimation: σ̃2
0(θ) = ω and σ̃2

t (θ) = ω + αy2
t−1 + βσ̃2

t−1(θ) for t ≥ 1. Let θ0 be the unique interior

point of Θ such that σ2
t (θ0) = σ2

t and E[(y2
t /σ

2
t (θ0) − 1)(∂/∂θ) ln(σ2

t (θ0))] = 0, the QML first order

moment condition. The feasible QML estimator is θ̂n ≡ arg infθ∈Θ{
∑n

t=1{ln σ̃2
t (θ) +

∑n
t=1 y

2
t /σ̃

2
t (θ)}}.1

See Francq and Zaköıan (2004) for refined QML asymptotics when εt is iid, and see Lee and Hansen

(1994) for the semi-strong case.

Since our assumptions must hold whether εt is white noise or not, under potentially much weaker

conditions than weak-GARCH (Drost and Nijman, 1993), we assume {yt, εt} are stationary and ergodic,

(E|yt|ι,E|σ2
t |ι) <∞ for some ι > 0, infθ∈Θ |σ2

t (θ)| ≥ ι > 0 a.s., and {εt, (∂/∂θ)i ln(σ2
t (θ0)) : i = 0, 1, 2, 3}

are stationary geometrically α-mixing. Further, for each θ ∈ Θ unique stationary and ergodic solutions

exist for the iterated process and its derivatives {(∂/∂θ)j σ̃2
i (θ) : j = 0, 1, 2, 3}ti=0 as t→∞ at a geometric

rate. We also require for some compact subset Nθ0 ⊆ Θ containing θ0:

E
[
st(θ0)s′t(θ0)

]
− E

[(
y2
t

σ2
t (θ0)

− 1

)
∂2

∂θ∂θ′
ln(σ2

t (θ0))

]
is non-singular (C.3)

E

 sup
θ∈Nθ0

∣∣∣∣∣
(
∂

∂θ

)j
lnσ2

t (θ)

∣∣∣∣∣
4
 <∞ for each j = 1, 2, 3. (C.4)

If εt is iid, or {εt, ε2t − 1} are martingale differences adapted to some sequence of sigma fields {Gt},
then stationary solutions exist respectively when E[ln(ω0 + α0ε

2
t )] < 0 and E[ln(ω0 + α0ε

2
t )|Gt] < 0 a.s.

(Nelson, 1990, Lee and Hansen, 1994). Write st(θ) ≡ 0.5 × (∂/∂θ) ln(σ2
t (θ)). If εt is iid or {εt, ε2t − 1}

are martingale differences then (C.3) holds, and (C.4) holds by arguments in Francq and Zaköıan (2004,

Section 4.2). The latter assume an iid error, but their proofs of (C.4) do not make use of independence.

See, e.g., their equation (4.28).

Under the above conditions, Assumptions 1 and 2 hold. Assuming θ0 does not lie on the boundary

of Θ, plug-in estimator Assumption 2.c holds with mt = (ε2t − 1)st and A = {2E[ε2t sts
′
t] − E[(ε2t −

1)(∂/∂θ)st(θ0)]} = {2E[sts
′
t] − E[(ε2t − 1)(∂/∂θ)st(θ0)]}−1. Finally, Gt = 0 hence D(h) ≡ E[εtεt−h(st +

st−h)], and expansion (C.1) holds.

D Local Asymptotic Power

Hong (1996) shows that his standardized periodogram yields non-trivial asymptotic power against a

sequence of local alternatives applied to the spectrum, with a slower than
√
n drift. Ultimately the

1Since we assume the start condition σ̃2
0(θ) = ω we avoid the case where α0 = 0, β0 is not identified and is therefore

a nuisance parameter, and there are no GARCH effects (see Andrews, 2001). We do not allow nuisance parameters for
brevity, but their inclusion is straightforward, although beyond this paper’s scope.
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reduced rate arises from an increasing bandwidth parameter. Using a similar spectrum local alternative,

but with
√
n drift, Shao (2011) proves the Cramér-von Mises test achieves non-trivial local power.

Delgado and Velasco (2011) impose local
√
n drift to the correlations, and show that a weighted average

portmanteau statistic yields non-trivial local power.

The proposed bootstrap p-value test operates on
√
nρ̂n(h) and

√
nρ̂

(dw)
n (h). The test therefore

achieves the parametric rate of local asymptotic power against the sequence of alternatives:

HL
1 : ρ(h) = ρn(h) =

r(h)√
n

for each h, where |r(h)| ≤
√
n.

Note that r(h) is a fixed constant for each h, where |r(h)| ≤
√
n ensures |ρn(h)| ≤ 1.

Theorem D.1. Let Assumptions 1 and 2, Ân
p→ A, and M = Mn →∞ hold. There exists a non-unique

sequence of maximum lags {Ln}, Ln → ∞ and Ln = o(n), such that under HL
1 , limn→∞ P (p̂

(dw)
n,M < α)

> α if r(h) 6= 0 for some h ∈ N. Further limn→∞ P (p̂
(dw)
n,M < α) ↗ 1 monotonically in |r(h)| ↗ ∞.

Proof.

Step 1. Recall F̄
(0)
n (c) ≡ P (ϑ([Z̊(h)]Lnh=1) > c), where {Z̊(h) : h ∈ N} is an independent copy of

{Z(h) : h ∈ N}, the Lemma 2.2 zero mean Gaussian process with variance E[Z(h)2] < ∞. Recall ρn(h)

= r(h)/
√
n under HL

1 . We prove in Step 2 that

P(L)
n,1 (α) + op(1) ≤ p̂(dw)

n,Mn
≤ P(L)

n,2 (α) + op(1), (D.1)

where

P(L)
n,1 (α) = F̄ (0)

n

(
ϑ
(

[Z(h)]Lnh=1

)
+ ϑ

(
[r(h)]Lnh=1

))
P(L)
n,2 (α) = F̄ (0)

n

(
−ϑ
(

[Z(h)]Lnh=1

)
+ ϑ

(
[r(h)]Lnh=1

))
.

By construction

P
(
F̄ (0)
n

(
ϑ
(

[Z̊(h)]Lnh=1

))
< α

)
= α and P

(
−F̄ (0)

n

(
ϑ
(

[Z̊(h)]Lnh=1

))
< α

)
= 1− α.

Therefore, if r(h) 6= 0 for some h ∈ N:

lim
n→∞

P
(
p̂

(dw)
n,M < α

)
> α

Moreover, monotonically P (P(L)
n,1 (α) < α) ↘ 0 and P (P(L)

n,2 (α) < α) ↘ 0 as ϑ([r(h)]Lnh=1) → ∞ and

therefore as max1≤h≤Ln |r(h)| → ∞ for each n. Therefore

P
(
p̂

(dw)
n,M < α

)
≤ P

(
op(1) < α− P(L)

n,2 (α)
)
↗ 1 as |r(h)| ↗ ∞

P
(
p̂

(dw)
n,M < α

)
≥ P

(
op(1) < α− P(L)

n,1 (α)
)
↗ 1 as |r(h)| ↗ ∞
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hence limn→∞ P (p̂
(dw)
n,M < α) ↗ 1 monotonically in |r(h)| ↗ ∞.

Step 2. We now prove (D.1). Recall ϑ satisfies the triangle inequality. Thus

ϑ
([√

nρ̂n(h)
]Ln
h=1

)
− ϑ

([√
nρn(h)

]Ln
h=1

)
≤ ϑ

([√
n {ρ̂n(h)− ρn(h)}

]Ln
h=1

)
ϑ
([√

nρn(h)
]Ln
h=1

)
− ϑ

([√
nρ̂n(h)

]Ln
h=1

)
≤ ϑ

([√
n {ρ̂n(h)− ρn(h)}

]Ln
h=1

)
and therefore ∣∣∣ϑ([√nρ̂n(h)

]Ln
h=1

)
− ϑ

([√
nρn(h)

]Ln
h=1

)∣∣∣ ≤ ϑ([√n {ρ̂n(h)− ρn(h)}
]Ln
h=1

)
.

Now apply arguments used in the proof of Theorem 2.5 under H0, and the triangle inequality, to yield:

ϑ
([√

nρ̂n(h)
]Ln
h=1

)
≤

∣∣∣ϑ([√nρ̂n(h)
]Ln
h=1

)
− ϑ

([√
nρn(h)

]Ln
h=1

)∣∣∣+ ϑ
([√

nρn(h)
]Ln
h=1

)
≤ ϑ

([√
n {ρ̂n(h)− ρn(h)}

]Ln
h=1

)
+ ϑ

([√
nρn(h)

]Ln
h=1

)
= ϑ

(
[Z(h)]Lnh=1

)
+ ϑ

([√
nρn(h)

]Ln
h=1

)
+ op(1)

hence

p̂
(dw)
n,Mn

= P

(
ϑ

([√
nρ̂(dw)

n (h)
]Ln
h=1

)
≥ ϑ

([√
nρ̂n(h)

]Ln
h=1

)
|Xn
)

+ op(1)

≥ P

(
ϑ

([√
nρ̂(dw)

n (h)
]Ln
h=1

)
≥
∣∣∣ϑ([√nρ̂n(h)

]Ln
h=1

)
− ϑ

([√
nρn(h)

]Ln
h=1

)∣∣∣
+ϑ
([√

nρn(h)
]Ln
h=1

)
|Xn
)

+ op(1)

≥ F̄ (0)
n

(
ϑ
(

[Z(h)]Lnh=1

)
+ ϑ

([√
nρn(h)

]Ln
h=1

))
+ op(1).

Similarly:

p̂
(dw)
n,Mn

= P

(
ϑ

([√
nρ̂(dw)

n (h)
]Ln
h=1

)
≥ ϑ

([√
nρ̂n(h)

]Ln
h=1

)
|Xn
)

+ op(1)

= P

(
ϑ

([√
nρ̂(dw)

n (h)
]Ln
h=1

)
≥ ϑ

([√
nρ̂n(h)

]Ln
h=1

)
−ϑ
([√

nρn(h)
]Ln
h=1

)
+ ϑ

([√
nρn(h)

]Ln
h=1

)
|Xn
)

+ op(1)

≤ P

(
ϑ

([√
nρ̂(dw)

n (h)
]Ln
h=1

)
≥ −

∣∣∣ϑ([√nρ̂n(h)
]Ln
h=1

)
− ϑ

([√
nρn(h)

]Ln
h=1

)∣∣∣
+ϑ
([√

nρn(h)
]Ln
h=1

)
|Xn
)

+ op(1)

≤ P

(
ϑ

([√
nρ̂(dw)

n (h)
]Ln
h=1

)
≥ −

∣∣∣ϑ([√n {ρ̂n(h)− ρn(h)}
]Ln
h=1

)∣∣∣
+ϑ
([√

nρn(h)
]Ln
h=1

)
|Xn
)

+ op(1)
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= F̄ (0)
n

(
−ϑ
(

[Z(h)]Lnh=1

)
+ ϑ

([√
nρn(h)

]Ln
h=1

))
+ op(1).

This completes the proof. QED.

E Nonparametric Self-Standardization: Kernel Variance Estimation

In order to control for variable dispersion across lags, a natural choice for ω̂n(h) is an inverted standard

deviation estimator. Based on Corollary 2.4 we need to estimate the asymptotic variance under the

null, identically limn→∞E[(1/
√
n
∑n

t=1 rt(h))2]. A now classic approach exploits a kernel estimator, cf.

Newey and West (1987), Andrews (1991) and De Jong and Davidson (2000). See, e.g., Shao (2010) for

a viable alternative to kernel estimators.

Recall mt(θ) are the estimating equations for θ̂n, let Ân be a consistent estimator of A in Assumption

2.c, and define

D̂n(h) ≡ 1

n

n∑
t=h+1

{(
εt(θ̂n)st(θ̂n) +

Gt(θ̂n)

σt(θ̂n)

)
εt−h(θ̂n) + εt(θ̂n)

(
εt−h(θ̂n)st−h(θ̂n) +

Gt−h(θ̂n)

σt−h(θ̂n)

)}
(E.1)

and

Ên,t,h(θ̂n) ≡ εt(θ̂n)εt−h(θ̂n)− D̂n(h)′Ânmt(θ̂n).

The variance estimator and proposed weights are:

ν̂2
K,n(h) ≡

1/n
∑n

s,t=1K ((s− t) /bn) Ên,s,h(θ̂n)Ên,t,h(θ̂n)

1/n
∑n

s=1 ε
2
t (θ̂n)

and ω̂n(h) ≡ 1

ν̂K,n(h)
,

where K is a kernel function and positive integer bn is bandwidth satisfying bn → ∞ as n → ∞. Recall

rt(h) ≡ εtεt−h − E [εtεt−h]−D(h)′Amt

E
[
ε2t
] .

We need only show ν̂2
K,n(h)

p→ limn→∞E[(1/
√
n
∑n

t=1 rt(h))2] since by Theorem 2.3 the latter is

exactly the asymptotic variance of ρ̂n(h) under the null. Let i ≡
√
−1.

Assumption 3 (kernel variance).

a. K : R → [−1, 1] satisfies K(0) = 1,K(x) = K(−x) ∀x ∈ R, K(·) is continuous at 0 and at all but a

finite number of points,
∫∞
−∞ |K(x)|dx <∞, and

∫∞
−∞ |ψ(ξ)|dξ <∞ where ψ(ξ) = (2π)−1

∫∞
−∞K(x)eiξxdx

< ∞.

b. bn/n + 1/bn → 0.

Lemma E.1. Under Assumptions 1, 2.a,b,c′,d and 3, ν̂2
K,n(h)

p→ limn→∞E[(1/
√
n
∑n

t=1 rt(h))2].

Proof. Define

Et,h(θ) ≡ εt(θ)εt−h(θ)−D(h)′Amt(θ) and Et,h ≡ Et,h(θ0).
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By the arguments leading to (A.27) in the main paper 1/n
∑n

s=1 ε
2
t (θ̂n)

p→ E[ε2t ] ∈ (0,∞), hence we focus

on 1/n
∑n

s,t=1K((s− t)/bn)Ên,s,h(θ̂n)Ên,t,h(θ̂n). Add and subtract terms to yield:

ν̂2
K,n(h) =

1

n

n∑
s,t=1

K
(
s− t
bn

)
Ên,s,h(θ̂n)Ên,t,h(θ̂n)

=
1

n

n∑
s,t=1

K
(
s− t
bn

)
Es,h(θ̂n)Et,h(θ̂n)

−
{
D̂n(h)′Ân −D(h)′A

} 1

n

n∑
s,t=1

K
(
s− t
bn

)
Es,h(θ̂n)mt(θ̂n)

−
{
D̂n(h)′Ân −D(h)′A

} 1

n

n∑
s,t=1

K
(
s− t
bn

)
ms(θ̂n)Et,h(θ̂n)

+
{
D̂n(h)′Ân −D(h)′A

} 1

n

n∑
s,t=1

K
(
s− t
bn

)
ms(θ̂n)mt(θ̂n)′

{
D̂n(h)′Ân −D(h)′A

}′
.

We will prove

1

n

n∑
s,t=1

K
(
s− t
bn

)
Es,h(θ̂n)Et,h(θ̂n)

p→ lim
n→∞

E

( 1√
n

n∑
t=1

Et,h

)2
 <∞. (E.2)

Proofs that the remaining summands converge in probability to finite constants is similar. Furthermore,

D̂n(h)
p→ D(h) by arguments in the proof of Lemma 2.1, and Ân

p→ A by supposition. Therefore ν̂2
K,n(h)

p→ limn→∞E[(1/
√
n
∑n

t=1 Et,h)2]/E[ε2t ] = limn→∞E[(1/
√
n
∑n

t=1 rt(h))2].

In order to prove (E.2) we will verify the conditions of Theorem 2.2 in De Jong and Davidson (2000),

which requires demonstrating their Assumptions 1-4 hold, which we label A1-A4. A1 holds by our stated

kernel properties. Under Assumptions 1 and 2, and Theorem 17.8 in Davidson (1994), {Et,h} satisfies

A2. A3 holds by our stated bandwidth properties.2 A4.a holds since
√
n(θ̂n − θ0) = Op(1) by our

Assumption 2.c′ and (A.5). A4.b holds by the continuous differentiability properties under Assumption

2.a,b,c′. A4 holds sufficiently if for some open neighborhood N0 ⊂ Θ of θ0, and every ξ ∈ R:

lim sup
n→∞

1

n

n∑
t=1

E

[
sup
θ∈N0

∥∥∥∥ ∂∂θEt,h(θ)

∥∥∥∥2
]
<∞ and sup

θ∈N0

∣∣∣∣∣ 1n
n∑
t=1

eiξt/bn
(
∂

∂θ
Et,h(θ)− E

[
∂

∂θ
Et,h(θ)

])∣∣∣∣∣ p→ 0.

The first holds by the moment envelope bounds in Assumption 2.a,b. Consider the second, and note that

the term inside | · | has real and imaginary components Rn(θ) and In(θ). Assumption 2a,b,c′ ensures

(∂/∂θ)Et,h(θ) is Ft-measurable and therefore stationary and ergodic, while, |eiξt/bn | ≤ 1 for any t =

1, ..., n. Therefore the same arguments used to prove the uniform laws in Step 2 of the proof of Lemma

2.1 carry over here to prove supθ∈N0
|Rn(θ)| p→ 0 and supθ∈N0

|In(θ)| p→ 0. QED.

2Assumption 2 in De Jong and Davidson (2000) requires two sets of constants cnt and dnt. We have stationarity and
standard asymptotics, hence cnt = 1/

√
n. Further, dnt = K since Et,h is stationary and does not depend on n. Their

Assumption 3 states 1/bn + bn max1≤t≤n cnt → 0 which holds under our assumptions when cnt = 1/
√
n.
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F Omitted Proofs: Lemmas A.4-A.6

We now present omitted proofs.

F.1 Lemma A.4 (Expansion)

Let h ≥ 0. Recall ρ(h) ≡ E[εtεt−h]/E[ε2t ] and

Gt(φ) ≡
[
∂

∂φ′
f(xt−1, φ),0′kδ

]′
∈ Rkθ and st(θ) ≡

1

2

∂

∂θ
lnσ2

t (θ)

D(h) ≡ E [(εtst +Gt/σt) εt−h] + E [εt (εt−hst−h +Gt−h/σt−h)] ∈ Rkθ

zt(h) ≡ rt(h)− ρ(h)rt(0) where rt(h) ≡ εtεt−h − E [εtεt−h]−D(h)′Amt

E
[
ε2t
] ,

where mt and A appear in plug-in expansion Assumption 2.c:
√
n(θ̂n − θ0) = An−1/2

∑n
t=1mt(θ0) +

Op(n
−ζ) for some ζ > 0.

Lemma A.4. Under Assumptions 1 and 2: for some ζ > 0 that appears in Assumption 2.c, and each

h ≥ 0:

Xn(h) ≡

∣∣∣∣∣√n {ρ̂n(h)− ρ(h)} − 1

n1/2

n∑
t=1+h

{rt(h)− ρ(h)rt(0)}

∣∣∣∣∣ = Op

(
1

nmin{ζ,1/2}

)
. (F.1)

Proof. There exists θ∗n, ||θ∗n − θ0|| ≤ ||θ̂n − θ0||, that may be different in different places, such that

√
nγ̂n(h) =

1√
n

n∑
t=1+h

εtεt−h +
√
nAn(h) +

√
nAn(−h), (F.2)

where

An(h) (F.3)

= −
(
θ̂n − θ0

)′ 1

n

n∑
t=1+h

(
εtst +

Gt
σt

)
εt−h

−
(
θ̂n − θ0

)′ 1

n

n∑
t=1+h

εtst
Gt−h
σt−h

(
θ̂n − θ0

)
+
(
θ̂n − θ0

)′{ 1

n

n∑
t=1+h

εt−h
∂

∂θ′

(
Gt(φ

∗
n)

σt(θ∗n)

)
− 1

n

n∑
t=1+h

Gt(φ
∗
n)

σt(θ∗n)

Gt−h(φ∗n)′

σt−h(θ∗n)

}(
θ̂n − θ0

)
−
(
θ̂n − θ0

)′{ 1

n

n∑
t=1+h

εt−h(θ∗n)
Gt(φ

∗
n)

σt(θ∗n)
st−h(θ∗n)′ +

1

n

n∑
t=1+h

εt(θ
∗
n)st(θ

∗
n)εt−h(θ∗n)st−h(θ∗n)′

}(
θ̂n − θ0

)
+
(
θ̂n − θ0

)′ 1

n

n∑
t=1+h

εtεt−h
∂

∂θ′
st(θ

∗
n)
(
θ̂n − θ0

)
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+
(
θ̂n − θ0

)′{ 1

n

n∑
t=1+h

εt−hst(θ
∗
n)

∂

∂θ′
εt(θ

∗
n)− 1

n

n∑
t=1+h

st(θ
∗
n)
Gt−h(φ∗n)

σt−h(θ∗n)

∂

∂θ′
εt(θ

∗
n)

}(
θ̂n − θ0

)
−
(
θ̂n − θ0

)′{ 1

n

n∑
t=1+h

εtst
∂

∂θ′

(
Gt−h(φ∗n)

σt−h(θ∗n)

)
+

1

n

n∑
t=1+h

εt
Gt−h(φ∗n)

σt−h(θ∗n)

∂

∂θ′
st(θ

∗
n)

}(
θ̂n − θ0

)

= −
(
θ̂n − θ0

)′
Bn(h) +

(
θ̂n − θ0

)′ 6∑
i=1

Cn,i(h, θ∗n)
(
θ̂n − θ0

)
.

In the following we will show each

sup
θ∈Θ
‖Cn,i(h, θ)‖ = Op (1) ,

while Assumption 2.c implies
√
n(θ̂n − θ0) = Op(1/

√
n). This yields

√
n
(
θ̂n − θ0

)′ 6∑
i=1

Cn,i(h, θ∗n)
(
θ̂n − θ0

)
= Op

(
1/
√
n
)
,

hence
√
nγ̂n(h) =

1√
n

n∑
t=1+h

εtεt−h −
√
n
(
θ̂n − θ0

)′
{Bn(h) + Bn(−h)}+Op

(
1/
√
n
)
.

We set the convention that

{γ̂n(h),An(h),Bn(h), Cn,i(h, θ)} = 0 ∀h ≥ n− 1.

Stationarity, ergodicity, and the Assumptions 1 and 2 moment bounds imply Bn(h)
p→ E[(εtst +

Gt/σt)εt−l] and Bn(−h)
p→ E[εt(εt−hst−h + Gt−h/σt−h)] for each h, hence

Bn(h) + Bn(−h)
p→ D(h) ≡ E [(εtst +Gt/σt) εt−h] + E [εt (εt−hst−h +Gt−h/σt−h)] ∈ Rkθ . (F.4)

Furthermore,

Cn,1(h, θ∗n) = Cn,1(h, θ0)
p→ E [Cn,i(h, θ0)] and E [|Cn,1(h, θ0)|] = O(1).

Now let i = 2, ..., 6. Stationarity, ergodicity, and the Assumptions 1 and 2 moment bounds imply

pointwise Cn,i(h, θ)
p→ E[Cn,i(h, θ)] and E[supθ∈Nθ0

|Cn,i(h, θ)|] = O(1) for some compact set Nθ0 ⊆ Θ

containing θ0.

Moreover, Cn,i(·, θ) are stochastically equicontinuous on Nθ0 . Consider i = 2, the remaining terms

being similar. Use infθ∈Θ σ
2
t (θ) ≥ ι > 0 a.s. under Assumption 2, the mean value theorem and properties

of the matrix norm to yield |Cn,i(h, θ) − Cn,i(h, θ̃)| ≤ Et × |θ − θ̃| for any {θ, θ̃} ∈ Nθ0 , where

Et ≡ K |εt−h| × sup
θ∈Nθ0

∣∣∣∣ ∂2

∂φ∂φ′
Gt(φ)

∣∣∣∣× ∣∣∣θ − θ̃∣∣∣
16



+K |εt−h| × sup
θ∈Nθ0

|Gt(φ)| × sup
θ∈Nθ0

∣∣∣∣ ∂2

∂θ∂θ′
ln (σt(θ))

∣∣∣∣× ∣∣∣θ − θ̃∣∣∣
+K |εt−h| × sup

θ∈Nθ0

{(
K

∣∣∣∣ ∂∂φGt(φ)

∣∣∣∣+ |Gt(φ)| ×
∣∣∣∣ ∂∂θ ln (σt(θ))

∣∣∣∣)× sup
θ∈Nθ0

∣∣∣∣ ∂∂θ ln
(
σt(θ̃)

)∣∣∣∣
}
×
∣∣∣θ − θ̃∣∣∣

+2 sup
θ∈Nθ0

{
|Gt(φ)| ×

(
K

∣∣∣∣ ∂∂φGt(φ)

∣∣∣∣+ |Gt(φ)| ×
∣∣∣∣ ∂∂θ ln (σt(θ))

∣∣∣∣)}× ∣∣∣θ − θ̃∣∣∣ .
Note that, e.g., supθ∈Nθ0

|Gt(φ)| = supφ∈Nφ0
|Gt(φ)| for some compact Nφ0 ⊆ ∆ containing φ0. Under

Assumptions 1 and 2, and multiple applications of the Cauchy-Schwartz inequality, E[Et] <∞. Markov’s

inequality now yields for any (ε, η) > 0 there exists 0 < δ < εη/E[Et] sufficiently small such that

lim
n→∞

P

 sup
θ,θ∈Nθ0 :|θ−θ̃|<δ

∣∣∣Cn,i(h, θ)− Cn,i(h, θ̃)∣∣∣ > η

 ≤ lim
n→∞

P

 sup
θ,θ∈Nθ0 :|θ−θ̃|<δ

Et ×
∣∣∣θ − θ̃∣∣∣ > η


≤ lim

n→∞
P (δEt > η) ≤ δ

η
E [Et] < ε.

Therefore {Cn,i(·, θ) : θ ∈ Nθ0} is stochastically equicontinuous. Hence, in conjunction with pointwise

probability convergence (see e.g. Newey, 1991, Corollary 3.1):

sup
θ∈Nθ0

|Cn,i(h, θ)− E [Cn,i(h, θ)]|
p→ 0. (F.5)

Further, ||θ∗n − θ0|| ≤ ||θ̂n − θ0||
p→ 0 under Assumption 2.c. Therefore θ∗n ∈ Nθ0 asymptotically with

probability approaching one. Hence, by (F.5) and continuity of Cn,i(·, θ):

|Cn,i(h, θ∗n)− E[Cn,i(h, θ0)]| p→ 0. (F.6)

Finally, under Assumption 2.c

√
n
(
θ̂n − θ0

)
= A 1√

n

n∑
t=1

mt +Op

(
1

nζ

)
,

where 1/
√
n
∑n

t=1mt = Op(1) by square integrability and the NED property for mt. Hence:

θ̂n − θ0 = Op
(
1/
√
n
)
. (F.7)

Combine (F.3)-(F.7) to yield:

√
nγ̂n(h) =

1√
n

n∑
t=1+h

εtεt−h −
√
n
(
θ̂n − θ0

)′
D(h) +Op

(
1/
√
n
)
. (F.8)
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Now use
√
n(θ̂n − θ0) = An−1/2

∑n
t=1mt + Op

(
n−ζ

)
, ζ > 0, to yield

√
n {γ̂n(h)− γ(h)} =

1√
n

n∑
t=1+h

εtεt−h −
√
nE [εtεt−h]

−D(h)′

{
A 1√

n

n∑
t=1

mt +Op

(
1/nζ

)}
+Op

(
1/
√
n
)

=
1√
n

n∑
t=1+h

(
εtεt−h − E [εtεt−h]−D(h)′Amt

)
+Op

(
1/nmin{ζ,1/2}

)
.

If we set h = 0 then similarly:

√
n {γ̂n(0)− γ(0)} =

1√
n

n∑
t=1+h

(
ε2t − E

[
ε2t
]
−D(0)′Amt

)
+Op

(
1/nmin{ζ,1/2}

)
. (F.9)

By the assumed NED properties under Assumption 1 and 2.c, (A.5) applies to ε2t − E[ε2t ] − D(0)′Amt

(see Davidson, 1994, Chap. 17), hence:

γ̂n(0)− γ(0) =
1

n

n∑
t=1+h

(
ε2t − E

[
ε2t
]
−D(0)′Amt

)
+Op

(
1

n1/2+min{ζ,1/2}

)
= Op

(
1√
n

)
.

Next we tackle the key term

rt(h) ≡ {εtεt−h − E[εtεt−h]−D(h)′Amt}
E
[
ε2t
] .

Under Assumptions 1 and 2.c, rt(h) is zero mean, stationary, Lp-bounded for some p > 2, and L2-NED

with size 1/2, on an α-mixing base with decay O(h−p/(p−2)−ι) (Davidson, 1994, Theorems 17.8 and 17.9).

Therefore E[(1/
√
n
∑n

t=1 rt(h))2] = O(1) by (A.5). This implies

1√
n

n∑
t=1+h

rt(h)(1 + op(1)) =
1√
n

n∑
t=1+h

rt(h) + op(1).

Additionally, E[r2
t (0)] < ∞ implies

1√
n

n∑
t=1

rt(0) =
1√
n

n∑
t=1+h

rt(0) +Op
(
1/
√
n
)
.

Combine the above derivations to yield:

√
n {ρ̂n(h)− ρ(h)} =

√
n

{
γ̂n(h)

γ̂n(0)
− γ(h)

γ(0)

}
=

1

γ̂n(0)

√
n {γ̂n(h)− γ(h)} − γ(h)

γ̂n(0)γ(0)

√
n {γ̂n(0)− γ(0)}

18



=
1

γ(0) +Op (1/
√
n)

1√
n

n∑
t=1+h

(
εtεt−h − E [εtεt−h]−D(h)′Amt

)
− γ(h)

(γ(0) +Op (1/
√
n)) γ(0)

1√
n

n∑
t=1+h

(
ε2t − E

[
ε2t
]
−D(0)′Amt

)
+Op

(
1

nmin{ζ,1/2}

)

=
1

γ(0)

1√
n

n∑
t=1

(
εtεt−h − E [εtεt−h]−D(h)′Amt

)
−ρ(h)

γ(0)

1√
n

n∑
t=1

(
ε2t − E

[
ε2t
]
−D(0)′Amt

)
+Op

(
1

nmin{ζ,1/2}

)

=
1√
n

n∑
t=1+h

{rt(h)− ρ(h)rt(0)}+Op

(
1

nmin{ζ,1/2}

)
.

This proves (F.1) as required. QED.

F.2 Lemma A.5 (Convergence in Finite Dimensional Distributions)

Define

zt(h) ≡ rt(h)− ρ(h)rt(0) where rt(h) ≡ εtεt−h − E [εtεt−h]−D(h)′Amt

E
[
ε2t
] .

Lemma A.5. Let Assumptions 1 and 2 hold, and write Zn(h) ≡ 1/
√
n
∑n

t=1+h zt(h). For each L ∈ N:

{Zn(h) : 1 ≤ h ≤ L} d→ {Z(h) : 1 ≤ h ≤ L} , (F.10)

where {Z(h) : 1 ≤ h ≤ L} is a zero mean Gaussian process with variance limn→∞ n
−1
∑n

s,t=1E[zs(h)zt(h)]

∈ (0,∞), and covariance function limn→∞ n
−1
∑n

s,t=1E[zs(h)zt(h̃)].

Proof. For arbitrary L ∈ N, and λ ∈ RL, λ′λ = 1:

L∑
h=1

λhZn(h) =
1√
n

L∑
h=1

λh

n∑
t=1+h

zt(h) =
1√
n

L∑
h=1

λh

n∑
t=1

zt(h)I (t ∈ {1, ..., n− h})

=
1√
n

n∑
t=1

L∑
h=1

λhzt(h)I (t ∈ {1, ..., n− h}) =
1√
n

n∑
t=1

λ′zt(L),

where zt(L) ≡ [zt(h)I(t ∈ {1, ..., n − h})]Lh=1 ∈ RL. Define σ2
n(λ) ≡ E[(

∑L
h=1 λhZn(h))2]. We need:

1√
n

n∑
t=1

λ′zt(L)
d→ N

(
0, lim
n→∞

σ2
n(λ)

)
where lim

n→∞
σ2
n(λ) ∈ (0,∞) . (F.11)

The claim (F.10) then follows by the Cramér-Wold theorem.

Under Assumptions 1 and 2.c, λ′zt(L) is zero mean, Lp-bounded for some p > 2, and L2-NED

with size 1/2, on an α-mixing base with decay O(h−p/(p−2)−ι) (Davidson, 1994, Theorems 17.8, 17.9).
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Therefore σ2
n(λ) = O(1) by (A.5). By Assumption 2.d, lim infn→∞ infλ′λ σ

2
n(λ) > 0. Now (F.11) follows

by Theorem 2 in de Jong (1997). QED

F.3 Lemma A.6 (ULLN’s)

Set a block size bn such that 1 ≤ bn < n, bn → ∞ and bn/n → 0. Denote the blocks by Bs =

{(s−1)bn+ 1, . . . , sbn} with s = 1, . . . , n/bn. Assume for simplicity that the number of blocks n/bn is an

integer. Generate iid random numbers {ξ1, . . . , ξn/bn} with E[ξi] = 0, E[ξ2
i ] = 1, and E[ξ4

i ] < ∞. Define

an auxiliary variable ωt = ξs if t ∈ Bs.

Lemma A.6. Under Assumptions 1 and 2.a,b,c′,d:

sup
θ∈Θ

∥∥∥∥∥ 1

n

n∑
t=1

ωt
∂

∂θ
mt(θ)

∥∥∥∥∥ p→ 0 (F.12)

sup
θ∈Θ

∥∥∥∥∥ 1

n

n∑
t=1

∂

∂θ
mt(θ)− E

[
∂

∂θ
mt(θ)

]∥∥∥∥∥ p→ 0 (F.13)

1√
n

n∑
t=1+h

ωtmt = Op(1). (F.14)

Proof.

Step 1. Consider (F.12). The proof for (F.13) is similar, although simpler. For iid ξs that is

distributed N(0, 1) and independent of the data:

1

n

n∑
t=1

ωt
∂

∂θ
mt(θ) =

1

n/bn

n/bn∑
s=1

ξs
1

bn

sbn∑
t=(s−1)bn+1

∂

∂θ
mt(θ),

where (∂/∂θ)mt(θ) is integrable uniformly on Θ under Assumption 2.c′. Therefore, for each i = 1, ..., kθ

and j = 1, ..., km, stationarity and Minkowski’s inequality yield:

E

( 1

n

n∑
t=1

ωt
∂

∂θi
mj,t(θ)

)2
 =

1

n/bn
E

 1

bn

sbn∑
t=(s−1)bn+1

∂

∂θi
mj,t(θ)

2 (F.15)

≤ bn
n

sup
θ∈Θ

E

[(
∂

∂θi
mj,t(θ)

)2
]
→ 0.

Therefore pointwise 1/n
∑n

t=1 ωt(∂/∂θ)mt(θ)
p→ 0. Moreover, 1/n

∑n
t=1 ωt(∂/∂θ)mt(θ) is stochasti-

cally equicontinuous. This follows by using a first order expansion of (∂/∂θ)mt(θ) and integrability

of supθ∈Θ |1/n
∑n

t=1 ωt(∂
2/∂θ∂θ)mi,t(θ)| under Assumption 2.c′. For each i, by the mean-value-theorem:

sup
|θ−θ̃|<δ

∣∣∣∣∣ 1n
n∑
t=1

ωt

(
∂

∂θ
mi,t(θ)−

∂

∂θ
mi,t(θ̃)

)∣∣∣∣∣ ≤ sup
|θ−θ̃|<δ

{∣∣∣∣∣ 1n
n∑
t=1

ωt
∂2

∂θ∂θ
mi,t(θ)

∣∣∣∣∣× ∣∣∣θ − θ̃∣∣∣
}
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≤ sup
θ∈Θ

∣∣∣∣∣ 1n
n∑
t=1

ωt
∂2

∂θ∂θ
mi,t(θ)

∣∣∣∣∣× δ.
Hence, for any (ε, η) > 0 there exists

0 < δ <


∞ if E

[
supθ∈Θ

∣∣∣ ∂2

∂θ∂θmi,t(θ)
∣∣∣] = 0

ηε

E
[
supθ∈Θ

∣∣∣ ∂2

∂θ∂θ
mi,t(θ)

∣∣∣] if 0 < E
[
supθ∈Θ

∣∣∣ ∂2

∂θ∂θmi,t(θ)
∣∣∣] <∞

such that:

lim
n→∞

P

 sup
θ,θ∈Nθ0 :|θ−θ̃|<δ

∣∣∣∣∣ 1n
n∑
t=1

ωt

(
∂

∂θ
mt(θ)−

∂

∂θ
mt(θ)

)∣∣∣∣∣ > η


≤ lim

n→∞
P

(
sup
θ∈Θ

∣∣∣∣∣ 1n
n∑
t=1

ωt
∂2

∂θ∂θ
mi,t(θ)

∣∣∣∣∣ > η

δ

)
≤ δ

η
lim
n→∞

E

[
sup
θ∈Θ

∣∣∣∣∣ 1n
n∑
t=1

ωt
∂2

∂θ∂θ
mi,t(θ)

∣∣∣∣∣
]

=
δ

η
lim
n→∞

E

sup
θ∈Θ

∣∣∣∣∣∣ 1

n/bn

n/bn∑
s=1

ξs
1

bn

sbn∑
t=(s−1)bn+1

∂2

∂θ∂θ
mi,t(θ)

∣∣∣∣∣∣
 ≤ δ

η
E

[
sup
θ∈Θ

∣∣∣∣ ∂2

∂θ∂θ
mi,t(θ)

∣∣∣∣] < ε.

This proves stochastic equicontinuity (see, e.g., Newey, 1991, Andrews, 1992). Therefore (F.12) holds by

Newey (1991, Corollary 3.1).

Step 2. Next we show (F.14). Under Assumption 2.c′, mt is zero mean, stationary, Lp-bounded for

some p > 2, and L2-NED with size 1/2, on an α-mixing base with decay O(h−p/(p−2)−ι) (Davidson, 1994,

Theorems 17.8 and 17.9). Therefore E[(1/
√
bn
∑bn

t=1mi,t)
2] = O(1) by Theorem 17.5 in Davidson (1994)

and Theorem 1.6 in McLeish (1975). By construction of ωt this yields:

E

( 1√
n

n∑
t=1

ωtmi,t

)2
 = E

 1√
n/bn

n/bn∑
s=1

ξs
1√
bn

sbn∑
t=(s−1)bn+1

mi,t

2
= E

 1√
bn

sbn∑
t=(s−1)bn+1

mi,t

2 ≤ K,
hence 1/

√
n
∑n

t=1 ωtmi,t = Op(1). QED.

G Maximum Lag Upper Bound

In this appendix we present conditions that lead to an upper bound on the maximum lag rate of increase

Ln → ∞, cf. Lemma 2.1.

Recall the Lemma 2.1 expansion result. This requires κ > 0 in ω̂n(h) = ω(h) +Op(1/n
κ) and ζ > 0

in
√
n(θ̂n − θ0) = An−1/2

∑n
t=1mt(θ0) + Rm(n) where Rm(n) = Op(n

−ζ).
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Lemma 2.1. Let Assumptions 1 and 2 hold. Then

X̃n(h) ≡

∣∣∣∣∣√nω̂n(h) {ρ̂n(h)− ρ(h)} − ω(h)
1√
n

n∑
t=1+h

{rt(h)− ρ(h)rt(0)}

∣∣∣∣∣ = Op

(
1/nmin{ζ,κ,1/2}

)
. (G.1)

Moreover, for some non-unique monotonic sequence of positive integers {Ln}, Ln → ∞ and Ln =

o(n), we have: |ϑ(
√
n[ω̂n(h){ρ̂n(h) − ρ(h)}]Lnh=1) − ϑ([ω(h)Zn(h)]Lnh=1)| ≤ ϑ([

√
nω̂n(h){ρ̂n(h) − ρ(h)} −

ω(h)Zn(h)]Lnh=1)
p→ 0. Therefore, under the null hypothesis:∣∣∣∣∣∣ϑ

([√
nω̂n(h)ρ̂n(h)

]Ln
h=1

)
− ϑ

[ω(h)
1√
n

n∑
t=1+h

{
εtεt−h −D(h)′Amt

E
[
ε2t
] }]Ln

h=1

∣∣∣∣∣∣ p→ 0. (G.2)

Finally, if ϑ(·) is the maximum transform, and (nmin{ζ,κ,1/2}/ ln(n))X̃n(h) for all h is uniformly inte-

grable, then Ln = O(nmin{ζ,κ,1/2}/ ln(n)) must be satisfied.

In this appendix we seek conditions such that (nmin{ζ,κ,1/2}/ ln(n))X̃n(h) is uniformly integrable.

In order to simplify notation we assume ω̂n(h) = ω(h) = 1, but the main results carry over under

straightforward modifications (see also Remark 4 below). Hence, from Assumption 1.c ω̂n(h) = ω(h) +

Op(1/n
κ) for some κ > 0, we may take κ = ∞. Thus:

X̃n(h) ≡

∣∣∣∣∣√n {ρ̂n(h)− ρ(h)} − 1√
n

n∑
t=1+h

{rt(h)− ρ(h)rt(0)}

∣∣∣∣∣ = Op

(
1/nmin{ζ,1/2}

)
(G.3)

and ∣∣∣∣ max
1≤i≤Ln

√
n |ρ̂n(h)− ρ(h)| p→ 0 (G.4)

− max
1≤i≤Ln

∣∣∣∣∣ 1√
n

n∑
t=1+h

{
εtεt−h − ρ(h)ε2t − (D(h)− ρ(h)D(0))′Amt

E
[
ε2t
] }∣∣∣∣∣

∣∣∣∣∣ p→ 0.

Demonstrating (nmin{ζ,1/2}/ ln(n))X̃n(h) is uniformly integrable requires several additional technical

conditions. In the following ι > 0 is a tiny number that may be different in different places.

Assumption 4 (maximum lag conditions).

a. εt is Lr-bounded for some r > 6.

b. ||1/γ̂n(0)||p = O(1) for some p > 1,
√
n||θ̂n − θ0||4 = O(1), and ||nλRm(n)||q = O(1) for some λ >

0 and q > 2.

c. {(εtst + Gt/σt)εt−h, (εt−hst−h + Gt−h/σt−h)εt} are Lp-bounded, p > 2, Lr-NED, 2 < r ≤ p, with

size 1, on an α-mixing base {υt} with σ-fields Vt ≡ σ(υτ : τ ≤ t) and decay O(h−ηp/(p−2)−ι) where η =

(1/(2 + ι) − 1/p)−1.
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Remark 1. The higher error moment (a) extends ||εt||r < ∞ for some r > 4 under Assumption

1.b. This is required since we demonstrate uniform integrability by establishing L1+ι-boundedness for

(nmin{ζ,1/2}/ ln(n))X̃n(h).

Remark 2. All conditions save ||1/γ̂n(0)||p = O(1) are easily verified for most of the simulation study

processes.3

Remark 3. NED condition (c) is imposed because we require a moment bound similar to (A.5) for {(εtst
+ Gt/σt)εt−h, (εt−hst−h + Gt−h/σt−h)εt}. In view of the higher moment conditions in Assumption 2.a,b,

and the NED definition, it always suffices to assume {εt, xt} are Lp-bounded, p > 6, stationary α-mixing

with mixing coefficients αh = O(h−ηp/(p−2)−ι).

Remark 4. In the general case for ω̂n(h) = ω(h) +Op(1/n
κ) we additionally need nmin{ζ,κ,1/2}||ω̂n(h)−

ω(h)||q = O(1) for some q > 2.

We now have the main result in this appendix. Under the appropriate conditions (nmin{ζ,1/2}/ ln(n))X̃n(h)

is uniformly integrable, hence the Lemma 2.1 upper bound on Ln applies.

Lemma G.1. Let Assumptions 1, 2 and 4 hold, and assume H0 is true. Then (nmin{ζ,1/2}/ ln(n))X̃n(h)

is uniformly integrable for each h.

Before we prove the claim, we verify Assumption 4 for a stationary AR(1) process.

Example 1. Let yt = θ0yt−1 + εt, |θ0| < 1, where E[εt] = 0, E |εt|p <∞ for some p > 12, and E[εtyt−1]

= 0. Assume {εt, yt} are stationary geometrically α-mixing. Let ||(1/n
∑n

t=1 y
2
t )
−1||12+ι = O(1). The

plug-in estimator θ̂n is least squares. It is easily verified that D(h) = E[yt−1εt−h] and st(θ) = 0 for any

θ.

If εt is iid with a bounded density function, then the mixing condition follows. See Gorodetskii (1977)

and Doukhan (1994, p. 77). If εt follows a stationary GARCH process, then the mixing condition holds

under mild regularity conditions (see Meitz and Saikkonen, 2008). Conversely, the stationary solution yt

=
∑∞

i=0 θ
i
0εt−i a.s. is an infinite order lag function of a stationary α-mixing process {εt}. See Doukhan

(1994, Chapt. 2.3.2) for deep theory and conditions under which such a process is also α-mixing.

Assumption 4.a. E|εt|r < ∞ for some r > 6 holds by construction.

Assumption 4.b. The first condition ||1/γ̂n(0)||p = O(1) for some p > 1 holds by supposition.

For the second condition
√
n||θ̂n − θ0||4 = O(1), by Hölder’s inequality and ||1/γ̂n(0)||12+ι = O(1):

∥∥∥√n(θ̂n − θ0

)∥∥∥
4
≤
∥∥∥∥ 1

1/n
∑n

t=2 y
2
t−1

∥∥∥∥
12

∥∥∥∥∥ 1√
n

n∑
t=2

εtyt−1

∥∥∥∥∥
6

≤ K

E
( 1√

n

n∑
t=2

εtyt−1

)6
1/6

.

Under the stated conditions and Cauchy-Schwartz inequality, εtyt−1 is stationary Lp-bounded, p > 6, and

geometrically α-mixing. Hence E|1/
√
n
∑n

t=2 εtyt−1|6 ≤ K by Corollary 3 in Hansen (1991). Therefore

||
√
n(θ̂n − θ0)||4 = O(1).

3Some processes in the simulation study likely fail to have the required higher moments, but are used to demonstrate
the sensitivity of the proposed test to moment condition failure. See Section 4 in the main paper, and see Appendix H.

23



Next, for the third condition ||nλRm(n)||q = O(1) for some λ > 0 and q > 2, the least squares

expansion satisfies:

√
n
(
θ̂n − θ0

)
=

1

E
[
y2
t−1

] 1√
n

n∑
t=2

εtyt−1 +Rm(n)

where Rm(n) = −
(
1/n

∑n
t=2 y

2
t−1 − E

[
y2
t−1

])
E
[
y2
t−1

]
n−1

∑n
t=2 y

2
t−1

1√
n

n∑
t=2

εtyt−1.

The geometric α-mixing property and E[εtyt−1] = 0 yields 1/
√
n
∑n

t=2 εtyt−1 = Op(1) by Theorem 1.6

in McLeish (1975). Similarly, y2
t is L2-bounded, geometrically α-mixing hence:

1

n

n∑
t=2

y2
t−1 − E

[
y2
t−1

]
=

1

n

n∑
t=2

(
y2
t−1 − E

[
y2
t−1

])
− 1

n
E
[
y2
t−1

]
= Op(1/

√
n).

Therefore
√
nRm(n) = −

√
n
(
1/n

∑n
t=2 y

2
t−1 − E

[
y2
t−1

])
E
[
y2
t−1

]
n−1

∑n
t=2 y

2
t−1

1√
n

n∑
t=2

εtyt−1 = Op(1)

so that Rm(n) = Op(n
−λ) with λ = 1/2.

Hölder’s inequality, ||1/
√
n
∑n

t=2 εtyt−1||6 ≤ K from above, and ||1/γ̂n(0)||12+ι = O(1) yield:

∥∥√nRm(n)
∥∥

2+ι
≤

∥∥∥∥∥
√
n
(
1/n

∑n
t=2 y

2
t−1 − E

[
y2
t−1

])
E
[
y2
t−1

]
n−1

∑n
t=2 y

2
t−1

∥∥∥∥∥
3+ι

∥∥∥∥∥ 1√
n

n∑
t=2

εtyt−1

∥∥∥∥∥
6

≤ K

∥∥∥∥∥
√
n
(
1/n

∑n
t=2 y

2
t−1 − E

[
y2
t−1

])
1/n

∑n
t=2 y

2
t−1

∥∥∥∥∥
3+ι

≤ K

∥∥∥∥ 1

1/n
∑n

t=2 y
2
t−1

∥∥∥∥
12+ι

∥∥∥∥∥√n
(

1

n

n∑
t=2

y2
t−1 − E

[
y2
t−1

])∥∥∥∥∥
4

≤ K

∥∥∥∥∥√n
(

1

n

n∑
t=2

y2
t−1 − E

[
y2
t−1

])∥∥∥∥∥
4

.

Coupled with Lp-boundedness for εt for some p > 12, and the α-mixing property, y2
t−1 is stationary

Lp/2-bounded geometrically α-mixing. Hence ||
√
n(1/n

∑n
t=2 y

2
t−1 − E

[
y2
t−1

]
)||4 = O(1) by Corollary 3

in Hansen (1991). Therefore ||
√
nRm(n)||2+ι = O(1) which verifies the third condition.

Assumption 4.c. By construction Gt(φ) = yt−1, σt = 1 and st(θ) = 0, hence {(εtst + Gt/σt)εt−h,

(εt−hst−h + Gt−h/σt−h)εt} = {yt−1tεt−h, yt−1−hεt}. From the above arguments, {yt−1tεt−h, yt−1−hεt} is

Lp-bounded, p > 6, geometrically α-mixing. Therefore they are Lr-NED, 2 < r ≤ p, with arbitrary size,

on a geometrically α-mixing base which therefore has arbitrarily fast decay, i.e. αh = O(h−λ) for any λ

> 0. Hence all components of Assumption 4.c hold (see, e.g., Davidson, 1994, Chapt. 7).
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Proof of Lemma G.1. In order to reduce notation, let H0 : ρ(h) = 0 ∀h ≥ 1 be true. Then:

X̃n(h) ≡

∣∣∣∣∣√nρ̂n(h)− 1√
n

n∑
t=1+h

rt(h)

∣∣∣∣∣ =

∣∣∣∣∣√nρ̂n(h)− 1√
n

n∑
t=1+h

(
εtεt−h −D(h)′Amt

E
[
ε2t
] )∣∣∣∣∣ .

Hence:
nmin{ζ,1/2}

ln(n)
X̃n(h) =

nmin{ζ,1/2}

ln(n)

∣∣∣∣∣√nρ̂n(h)− 1√
n

n∑
t=1+h

(
εtεt−h −D(h)′Amt

E
[
ε2t
] )∣∣∣∣∣ .

By the triangle inequality:

nmin{ζ,1/2}

ln(n)
X̃n(h) =

nmin{ζ,1/2}

ln(n)

∣∣∣∣∣√nρ̂n(h)− 1√
n

n∑
t=1+h

(
εtεt−h −D(h)′Amt

E
[
ε2t
] )∣∣∣∣∣

≤ 1

γ(0)

nmin{ζ,1/2}

ln(n)

∣∣∣∣∣√nγ̂n(h)− 1√
n

n∑
t=1+h

(
εtεt−h −D(h)′Amt

)∣∣∣∣∣
+
nmin{ζ,1/2}

ln(n)

√
nγ̂n(h)

∣∣∣∣ 1

γ̂n(0)
− 1

γ(0)

∣∣∣∣
≤ 1

γ(0)

nmin{ζ,1/2}

ln(n)

∣∣∣∣∣√nγ̂n(h)− 1√
n

n∑
t=1+h

(
εtεt−h −D(h)′Amt

)∣∣∣∣∣
+
nmin{ζ,1/2}

ln(n)

γ̂n(h)

γ̂n(0)γ(0)

√
n |γ̂n(0)− γ(0)|

≡ Mn,1(h) +Mn,2(h),

say. It suffices to prove each Mn,i(h) is Lp-bounded for some p > 1 (Billingsley, 1999, eq. (3.18)). In

the following p > 1 and tiny ι > 0 may be different in different places.

Step 1 (Mn,1(h)): Using notation from the proof of Lemma A.3, by (F.2) and (F.3):

Mn,1(h) =
1

γ(0)

nmin{ζ,1/2}

ln(n)

∣∣∣∣∣√nγ̂n(h)− 1√
n

n∑
t=1+h

(
εtεt−h −D(h)′Amt

)∣∣∣∣∣
=

1

γ(0)

nmin{ζ,1/2}

ln(n)

∣∣√nAn(h) +
√
nAn(−h) +D(h)′Amt

∣∣
≤ 1

γ(0)

nmin{ζ,1/2}

ln(n)

∣∣∣∣∣−√n(θ̂n − θ0

)′
{Bn(h) + Bn(−h)}+D(h)′A 1√

n

n∑
t=1+h

mt

∣∣∣∣∣ (G.5)

+
1

γ(0)

∣∣∣∣∣√n(θ̂n − θ0

)′ 6∑
i=1

{Cn,i(h, θ∗n) + Cn,i(−h, θ∗n)}
√
n

ln(n)

(
θ̂n − θ0

)∣∣∣∣∣ .
By multiple applications of Hölder and Minkowsky inequalities, for some ι > 0 the second term in (G.5)
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satisfies:∥∥∥∥∥√n(θ̂n − θ0

)′ 6∑
i=1

{Cn,i(h, θ∗n) + Cn,i(−h, θ∗n)}
√
n

ln(n)

(
θ̂n − θ0

)∥∥∥∥∥
1+ι

≤
∥∥∥√n(θ̂n − θ0

)∥∥∥
3+ι

∥∥∥∥∥
6∑
i=1

{Cn,i(h, θ∗n) + Cn,i(−h, θ∗n)}

∥∥∥∥∥
3/2+ι

∥∥∥∥ √nln(n)

(
θ̂n − θ0

)∥∥∥∥
3+ι

≤ 1

ln(n)

∥∥∥√n(θ̂n − θ0

)∥∥∥2

3+ι
sup
θ∈Θ

6∑
i=1

‖Cn,i(h, θ) + Cn,i(−h, θ)‖3/2+ι

= O (1/ ln(n)) = o(1).

The last line follows from Assumptions 1 and 2: each supθ∈Θ ||Cn,i(h, θ)|| satisfies E| supθ∈Θ ||Cn,i(h, θ)|||4+ι

= O(1), and by Assumption 4.b ||
√
n(θ̂n − θ0)||4 = O(1).

Use
√
n(θ̂n − θ0) = An−1/2

∑n
t=1mt + Rm(n) under Assumption 2, and the definitions of D(h) and

Bn(h) in (A.3) and (F.3) to deduce for the first term in (G.5):

nmin{ζ,1/2}

ln(n)

∣∣∣∣∣√n(θ̂n − θ0

)′
{Bn(h) + Bn(−h)} − D(h)′A 1√

n

n∑
t=1+h

mt

∣∣∣∣∣
=
nmin{ζ,1/2}

ln(n)

∣∣∣∣∣{Bn(h) + Bn(−h)}′
√
n
(
θ̂n − θ0

)
−D(h)′A 1√

n

n∑
t=1+h

mt

∣∣∣∣∣
=
nmin{ζ,1/2}

ln(n)

∣∣∣∣∣
{

1

n

n∑
t=1+h

(
εtst +

Gt
σt

)
εt−h +

1

n

n∑
t=1+h

(
εt−hst−h +

Gt−h
σt−h

)
εt

}′

×

{
A 1√

n

n∑
t=1

mt +Rm(n)

}
−D(h)′A 1√

n

n∑
t=1+h

mt

∣∣∣∣∣
≤ nmin{ζ,1/2}

ln(n)

∣∣∣∣∣
{

1

n

n∑
t=1+h

(
εtst +

Gt
σt

)
εt−h +

1

n

n∑
t=1+h

(
εt−hst−h +

Gt−h
σt−h

)
εt

−E
[(
εtst +

Gt
σt

)
εt−h +

(
εt−hst−h +

Gt−h
σt−h

)
εt

]}′
A 1√

n

n∑
t=1+h

mt

∣∣∣∣∣
+

1

ln(n)

∣∣∣∣∣ 1n
n∑

t=1+h

(
εtst +

Gt
σt

)
εt−h +

1

n

n∑
t=1+h

(
εt−hst−h +

Gt−h
σt−h

)
εt

∣∣∣∣∣× ∣∣∣nmin ζRm(n)
∣∣∣ .

Now apply Hölder and Minkowsky inequalities to yield for some ι > 0:

nmin{ζ,1/2}

ln(n)

∥∥∥∥∥√n(θ̂n − θ0

)′
{Bn(h) + Bn(−h)} − D(h)′A 1√

n

n∑
t=1+h

mt

∥∥∥∥∥
1+ι

≤ 1

ln(n)

√
n

∥∥∥∥∥ 1

n

n∑
t=1+h

(
εtst +

Gt
σt

)
εt−h +

1

n

n∑
t=1+h

(
εt−hst−h +

Gt−h
σt−h

)
εt
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−E
[(
εtst +

Gt
σt

)
εt−h +

(
εt−hst−h +

Gt−h
σt−h

)
εt

]∥∥∥∥
2+i

×

∥∥∥∥∥A 1√
n

n∑
t=1+h

mt

∥∥∥∥∥
2

+
1

ln(n)

∥∥∥∥∥ 1

n

n∑
t=1+h

(
εtst +

Gt
σt

)
εt−h +

1

n

n∑
t=1+h

(
εt−hst−h +

Gt−h
σt−h

)
εt

∥∥∥∥∥
2

×
∥∥∥nmin ζRm(n)

∥∥∥
2+i

.

By variance property (A.5) ||An−1/2
∑n

t=1+hmt||2 = O(1), and by supposition ||nmin ζRm(n)||2+i = O(1).

Under Assumptions 1, 2 and 4, applications of Hölder and Minkowsky inequalities yield:∥∥∥∥∥ 1

n

n∑
t=1+h

(
εtst +

Gt
σt

)
εt−h +

1

n

n∑
t=1+h

(
εt−hst−h +

Gt−h
σt−h

)
εt

∥∥∥∥∥
2

≤ K.

Finally, we show

√
n

∥∥∥∥∥ 1

n

n∑
t=1+h

(
εtst +

Gt
σt

)
εt−h − E

[(
εtst +

Gt
σt

)
εt−hεt

]∥∥∥∥∥
2+ι

= O(1). (G.6)

The same argument extends to (εt−hst−h + Gt−h/σt−h)εt. Observe that:

√
n

∥∥∥∥∥ 1

n

n∑
t=1+h

(
εtst +

Gt
σt

)
εt−h − E

[(
εtst +

Gt
σt

)
εt−hεt

]∥∥∥∥∥
2+ι

(G.7)

≤
√
n

∥∥∥∥∥ 1

n

n∑
t=1

{(
εtst +

Gt
σt

)
εt−h − E

[(
εtst +

Gt
σt

)
εt−hεt

]}∥∥∥∥∥
2+ι

+
h√
n

∥∥∥∥(εtst +
Gt
σt

)
εt−h

∥∥∥∥
2+ι

.

Hölder and Minkowsky inequalities combined with Assumptions 2 and 4.a imply ||(εtst + Gt/σt)εt−h||2+ι

< ∞.

By Assumption 4.c {(εtst + Gt/σt)εt−h} is Lp-bounded, p > 2, Lr-NED, 2 < r ≤ p, with size 1,

on an α-mixing base {υt} with σ-fields Vt ≡ σ(υτ : τ ≤ t) and decay O(h−ηp/(p−2)−ι) where η = ( 1
2+ι

− 1
p)−1. Since ι > 0 in (G.7) is an arbitrary tiny number, we can always choose it small enough such

that 2 + ι < r ≤ p. By Hölder’s inequality {(εtst + Gt/σt)εt−h} is therefore also L2+ι-NED. If {(εtst
+ Gt/σt)εt−h,Vt} subsequently forms an L2+ι-mixingale sequence with size 1, then by Corollary 1 in

Hansen (1991):

√
n

∥∥∥∥∥ 1

n

n∑
t=1

{(
εtst +

Gt
σt

)
εt−h − E

[(
εtst +

Gt
σt

)
εt−hεt

]}∥∥∥∥∥
2+ι

= O(1),

and the proof is complete.

Apply Theorem 17.6 of Davidson (1994) to deduce that {(εtst + Gt/σt)εt−h,Vt} forms an L2+ι-
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mixingale sequence with size

min

{
1,

1
1

2+ι −
1
p

p

p− 2

(
1

2 + ι
− 1

p

)}
= min

{
1,

1
1

2+ι −
1
p

(
1

2 + ι
− 1

p

)}
= min{1, 1} = 1.

This completes the proof. QED.

H Complete Monte Carlo Study

In this appendix we perform a large scale Monte Carlo study by presenting all tests noted in the main

paper Hill and Motegi (2019, Section 4).

H.1 Simulation Design

We first construct an error term et that drives an observed variable yt. Let νt be iid N(0, 1). We consider

iid et = νt; GARCH(1,1) et = νtwt with random volatility process w2
1 = 1 and w2

t = 1+0.2e2
t−1 +0.5w2

t−1

for t ≥ 2; MA(2) et = νt + 0.5νt−1 + 0.25νt−2 for t ≥ 3, with initial values e1 = 0 and e2 = ν2 + 0.5ν1;

and AR(1) et = 0.7et−1 + νt for t ≥ 2 with initial e1 = 0. Each error process is strictly stationary and

ergodic.4

Now recall Scenarios #1–#9 from the main paper:

Scenario #1: Simple yt = et; mean filter εt = yt − E[yt]; φ̂n = 1/n
∑n

t=1 yt.

Scenario #2: Bilinear yt = 0.5et−1yt−2 + et; mean filter εt = yt − E[yt]; φ̂n = 1/n
∑n

t=1 yt.

Scenario #3: AR(2) yt = 0.3yt−1 − 0.15yt−2 + et; AR(2) filter εt = yt − φ1yt−1 − φ2yt−2; least

squares.

Scenario #4: AR(2) yt = 0.3yt−1 − 0.15yt−2 + et; AR(1) filter εt = yt − φ1yt−1; least squares.

Scenario #5: GARCH(1,1) yt = σtet, σ
2
t = 1 + 0.2y2

t−1 + 0.5σ2
t−1; no filter.

Scenario #6: GARCH(1,1) yt = σtet, σ
2
t = 1+0.2y2

t−1 +0.5σ2
t−1; GARCH(1,1) filter εt = yt/σt

with σ2
t = ω + αy2

t−1 + βσ2
t−1; quasi-maximum likelihood.5

Scenario #7: Remote MA(6) yt = et + 0.25et−6; mean filter εt = yt−E[yt]; φ̂n = 1/n
∑n

t=1 yt.

Scenario #8: Remote MA(12) yt = et+0.25et−12; mean filter εt = yt−E[yt]; φ̂n = 1/n
∑n

t=1 yt.

Scenario #9: Remote MA(24) yt = et+0.25et−24; mean filter εt = yt−E[yt]; φ̂n = 1/n
∑n

t=1 yt.

4Ergodicity follows since each error process is stationary α-mixing. See, e.g., Kolmogorov and Rozanov (1960) for
processes with continuous bounded spectral densities (e.g. stationary Gaussian AR, Gaussian MA(2)); Nelson (1990) for
GARCH process stationarity; and Carrasco and Chen (2002) for mixing properties of stationary GARCH processes.

5QML is performed using the iterated process σ̃2
1(θ) = ω and σ̃2

t (θ) = ω + αy2
t−1 + βσ̃2

t−1(θ) for t = 2, . . . , n. We impose
(ω, α, β) > 0 and α + β ≤ 1 during estimation.
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H.1.1 White Noise Tests

In the main paper, we study the max-correlation test with the dependent wild bootstrap and automatic

lag selection, and Shao’s (2011) Cramér-von Mises test with the dependent wild bootstrap and Ln = n−1.

In this appendix, we consider several additional white noise tests and a non-random lag length.

We consider fourteen total tests: eight tests with a non-random Ln = o(n) and five tests with

Ln = n− 1, including CvMdw; and the max-correlation test with automatic lag L∗n.

Tests with Ln = o(n) require a specific selection of lag length. We use a fixed length at Ln = 5 and

sample-size dependent length Ln = [δn/ ln(n)] with δ ∈ {.5, 1}, where [·] truncates to an integer value.

In this set-up, we have Ln ∈ {5, 10, 21} for n = 100; Ln ∈ {5, 22, 45} for n = 250; Ln ∈ {5, 40, 80} for

n = 500; and Ln ∈ {5, 72, 144} for n = 1000. We summarize the choices in Table 1.

Table 1: Non-Stochastic Lag Values: Ln ∈ {5, [δn/ ln(n)]}, δ ∈ {.5, 1}

n 100 250 500 1000

Ln {5, 10, 21} {5, 22, 45} {5, 40, 80} {5, 72, 144}

The following tests are summarized in Table 2.

Max-Correlation with Fixed Ln or Automatic Lag L∗n We perform both a max-correlation test

with automatic lag L∗n and dependent wild bootstrap, and a max-correlation test with a non-random lag

Ln and wild bootstrap or dependent wild bootstrap.

The dependent wild bootstrap is always valid asymptotically under our assumptions, but the wild

bootstrap requires independence or a martingale difference assumption under the null (see Wu, 1986,

Liu, 1988, Hansen, 1996). We omit results for the max-correlation test with L∗n and wild bootstrap

because the max-correlation test with L∗n and dependent wild bootstrap is both valid under the null and

our assumptions, and overall dominates all other tests in this study.

The test with non-random Ln from Table 1 is based on T̂n(Ln) ≡
√
nmax1≤h≤Ln |ω̂n(h)ρ̂n(h)| with

weight ω̂n(h) = 1.

The test statistic with the automatic lag is similarly T̂n(L∗n) ≡
√
nmax1≤h≤L∗n |ρ̂n(h)|. The automatic

lag selection L∗n is chosen from a set {1, ..., L̄n} for some pre-chosen upper-bound L̄n →∞. In the case of

the maximum and ω̂n(h) = ω(h) = 1, we have from expansion Lemma 2.1 and dependent wild bootstrap

Theorem 2.5 that

L̄n = o

(
nmin{ζ,1/2}

ln(n)

)

must hold, where ζ > 0 appears in the Assumption 2.c or 2.c′ plug-in expansion
√
n(θ̂n − θ0) =

An−1/2
∑n

t=1mt(θ0) + Op(n
−ζ). Under standard regularity conditions many plug-in estimators will
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satisfy ζ = 1/2, hence L̄n = O(
√
n/ ln(n)). We use

L̄n =

[
δ ×
√
n

lnn

]
with δ = 10,

where [·] denotes the integer part, hence

L̄n ∈ {21, 28, 35, 45} for n ∈ {100, 250, 500, 1000}.

We also require the tuning parameter q (cf. (12) and (13) in the main paper). In order to choose a

plausible value of q, in the main paper we performed a preliminary simulation study that computes empir-

ical size and size-adjusted power for the max-correlation test with T̂n(L∗n) across q ∈ {1.50, 1.75, . . . , 4.50}.
We considered two cases. In Case 1, size is computed under Scenario #1 with an iid error; and size-

adjusted power is computed under #4 with an iid error. In Case 2, size is computed under #5 with

an iid error; and size-adjusted power is computed under #5 with MA(2) error. For each case, sample

size is {100, 500}; nominal size is 0.05; and 1000 Monte Carlo samples and 500 bootstrap samples are

generated.

See Figure 1 for results. Variation of empirical size and size-adjusted power for the test based on

T̂ dw(L∗n) across the values of q is fairly small in each experiment, implying that a choice of q should

not have a critical impact on the test performance. For each case and sample size, we obtain relatively

accurate size and high power around q = 3. We therefore use q = 3 throughout.

Andrews and Ploberger’s Sup-LM Test Andrews and Ploberger’s (1996) sup-LM test is based on

the representation (see Nankervis and Savin, 2010):

APn ≡ sup
λ∈Λ

LMn(λ, n− 1) where LMn(λ, n− 1) ≡ n(1− λ2)

{
n−1∑
h=1

λh−1ρ̂n(h)

}2

.

Andrews and Ploberger (1996) compute LMn(λ, n − 1) but use a truncated maximum lag L = 50 for

simulating critical values. Nankervis and Savin (2010) compute LMn(λ,L) for L = 20, and use the

same L for simulating critical values. Thus, the test proposed in Nankervis and Savin (2010) is, strictly

speaking, not the same test as in Andrews and Ploberger (1996), but a truncated variant that is therefore

inconsistent against some deviations from the white noise null hypothesis.

We use either Ln = o(n) or Ln = n− 1 in order to accomplish test consistency and fair comparison.

Hence we compute LMn(λ,Ln) = n(1 − λ2){
∑Ln

h=1 λ
h−1ρ̂n(h)}2. Since the lags vary with n, we do not

simulate critical values. We only bootstrap a p-value via the wild bootstrap or the dependent wild

bootstrap.

The parameter space Λ is discretized to {−.800,−.795, . . . , .795, .800}. We use the same end-points

±.8 as in Andrews and Ploberger (1996) and Nankervis and Savin (2010), but a twice finer grid (their

increment is .010). Nankervis and Savin (2012) use endpoints ±.95 with increment .010. The distance

from the maximum endpoints ±1 is due to their placing the test in a stationary ARMA framework. We

30



perform the sup-LM test without an ARMA interpretation and therefore also relax the endpoints to

±.95 for the sake of comparison. We only report results based on ±.8 because using ±.95 yields similar

rejection frequencies.

We apply the wild bootstrap and dependent wild bootstrap procedures for the sup-LM test.

Hong’s Test Hong’s (1996) test is based on a standardized periodogram. If the periodogram is com-

puted with a truncated kernel, then the statistic is just a standardized Box-Pierce statistic. We use a

standardized Ljung-Box statistic Nn ≡ (2Ln)−1/2
∑Ln

h=1 ω̂n(h){nρ̂2
n(h) − 1} with ω̂n(h) = (n + 2)/(n

− h), cf Hong (1996, eq. (3)). If the null hypothesis of white noise is true and {
√
nρ̂2

n(h)}Lnh=1 are

asymptotically independent, then under Hong’s Assumptions 1.a, 2 and 3 we have Nn
d→ N(0, 1), else

Nn
p→ ∞. This is a one-sided test where the rejection region exists only at the upper tail of N(0, 1).

The asymptotic independence of {
√
nρ̂2

n(h)}Lnh=1 holds if tested variable εt is iid, but may not hold if εt

is only mds or white noise. Hence, the asymptotic N(0, 1) test is not a white noise test in a strict sense.

We compute p-values via the asymptotic standard normal distribution, wild bootstrap, and dependent

wild bootstrap. Since Nn is just an affine transformation of the Ljung-Box statistic, a bootstrapped test

based on Nn is identical to a bootstrapped Ljung-Box Q-test when they are performed at the same lag

Ln. Bootstrapped p-values are computed as p̂n,M = 1/M
∑M

i=1 I(N (boot)
n,i ≥ Nn).

Cramér-von Mises Test In the main paper, we run the Cramér-von Mises test with the dependent

wild bootstrap. In this study we use three bootstrap procedures: the wild bootstrap, dependent wild

bootstrap, and Zhu and Li’s (2015) blockwise random weighting bootstrap [BRWB].

The BRWB algorithm is performed as follows (we ignore the first-order correlation expansion for no-

tational clarity). Suppose that the objective function to be minimized is written as 1/n
∑n

t=1 lt(θ).

Set a block size bn, 1 ≤ bn < n, and denote the blocks by Bs = {(s − 1)bn + 1, . . . , sbn} with

s = 1, . . . , n/bn. Assume n/bn is an integer for simplicity. Generate positive iid random numbers

{δ1, . . . , δn/bn} from a common distribution with mean 1 and variance 1. Following Zhu and Li (2015),

we use the Bernoulli distribution with P [δt = 0.5 × (3 −
√

5)] = (2
√

5)−1 × (1 +
√

5) and P [δt =

0.5 × (3 +
√

5)] = 1 − (2
√

5)−1 × (1 +
√

5). Define an auxiliary variable ω∗t = δs if t ∈ Bs. Cal-

culate θ̂∗n = argminθ∈Θ1/n
∑n

t=1 ω
∗
t lt(θ). Compute γ̂∗n(h) = 1/n

∑n
t=1+h ω

∗
t εt(θ̂

∗
n)εt−h(θ̂∗n) and S∗n(λ)

=
∑n−1

h=1

√
nγ̂∗n(h)ψh(λ), where ψh(λ) = (hπ)−1 sin(hλ). Define the bootstrapped process ∆n(λ) =

S∗n(λ)−Sn(λ)−Zn(λ), where Zn(λ) = n
∑n−1

h=1{
∑n

t=1+h ω
∗
t −n+h}γ̂n(h)ψh(λ). Then compute the boot-

strapped CvM test statistic C∗n =
∫ π

0 {∆n(λ)}2dλ. Repeat M times, resulting in the sequence {C∗n,i}Mi=1

and approximate p-value 1/M
∑M

i=1 I(C∗n,i ≥ Cn).

Ljung-Box Q-test We perform the Ljung-Box Q-test with Ln from Table 1. P-values are computed

from the χ2(Ln − kθ) distribution. We do not report bootstrap test because the bootstrapped Q-test is

arithmetically identical to Hong’s (1996) bootstrapped standardized Q-test, as noted above.
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Wild Bootstrap and Dependent Wild Bootstrap P-Value Computation The following details

how sample autocorrelations are bootstrapped by the wild bootstrap (Wu, 1986, Liu, 1988) and dependent

wild bootstrap (Shao, 2011). Recall mt(θ) are the estimating equations for θ̂n, let Ân be a consistent

estimator of A in Assumption 2.c, and define

D̂n(h) ≡ 1

n

n∑
t=h+1

{(
εt(θ̂n)st(θ̂n) +

Gt(θ̂n)

σt(θ̂n)

)
εt−h(θ̂n) + εt(θ̂n)

(
εt−h(θ̂n)st−h(θ̂n) +

Gt−h(θ̂n)

σt−h(θ̂n)

)}
(H.1)

and

Ên,t,h(θ̂n) ≡ εt(θ̂n)εt−h(θ̂n)− D̂n(h)′Ânmt(θ̂n).

The dependent wild bootstrapped sample correlation ρ̂
(dw)
n,i (h) is computed as:

ρ̂(dw)
n (h) ≡ 1

1/n
∑n

t=1 ε
2
t (θ̂n)

1

n

n∑
t=1+h

ϕt

{
Ên,t,h(θ̂n)− 1

n

n∑
s=1+h

Ên,s,h(θ̂n)

}
.

Notice ρ̂
(dw)
n (h) exploits the Lemma 2.1 correlation expansion via Ên,t,h(θ̂n), which correctly accounts for

the first order (asymptotic) impact of the ith sample’s plug-in θ̂n,i.

In each case we generate M = 500 bootstrap samples. The dependent wild bootstrap requires a

block size bn, while Shao (2011) uses bn = b
√
n with b ∈ {.5, 1, 2}, leading to qualitatively similar results.

We therefore simply use the middle value bn =
√
n.6 The wild bootstrap has block size bn = 1 and no

re-centering with 1/n
∑n

s=1+h Ên,s,h(θ̂n).

We perform the max-correlation test with fixed Ln and wild bootstrap or dependent wild bootstrap,

denoted T̂ wn (Ln) and T̂ dwn (Ln). We perform the max-correlation test with automatic lag by dependent

wild bootstrap, T̂ dwn (L∗n).

Consider T̂ dwn (L∗n). We compute the bootstrapped statistic T̂ (dw)
n,i (L∗n,i) ≡

√
nmax1≤h≤L∗n,i |ρ̂

(dw)
n,i (h)|

for each bootstrap sample i ∈ {1, . . . ,M} with M = 500. Note that L∗n,i is the automatic lag for the ith

bootstrap sample specifically. The approximate p-value is computed as

p̂
(dw)
n,M =

1

M

M∑
i=1

I
(
T̂ (dw)
n,i (L∗n,i) ≥ T̂n(L∗n)

)
.

The test proposed rejects the null at nominal size α when p̂
(dw)
n,M < α.

The Q-statistic, Hong’s normalized Q-statistic, the sup-LM statistic and the CvM statistic are linear

combinations of (squared) residual correlations. Therefore, exactly as with the max-correlation test, both

bootstrap procedures are applied based on the Lemma 2.1 correlation expansion in order to account for

the impact of the estimator θ̂n on asymptotics.

6In simulations not reported here, we compared bn = b
√
n across b ∈ {.5, 1, 2} and found there is little difference in test

performance.
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H.2 Simulation Results

As in the main paper, sample size is n ∈ {100, 250, 500, 1000}, and J = 1000 independent Monte Carlo

samples and M = 500 independent bootstrap samples are generated. Rejection frequencies with respect

to nominal size α ∈ {.010, .050, .100} are reported. See Tables 3-29 for rejection frequencies from Sup-

LM, Hong, Q, and T̂n(Ln) each based on Ln = o(n) from Table 1. Tables 30-34 contain results for

sup-LM with Ln = n − 1 and CvM with Ln = n − 1 and T̂n(L∗n). The groupings follow from the fact

that the former group uses various Ln, while the latter group uses exactly one maximum lag.

H.2.1 Empirical Size

Max-Correlation test We focus on the max-correlation test with the dependent wild bootstrap and

fixed Ln (denoted T̂ dw(Ln)). We then compare results with T̂ dw(L∗n) in order to see how our proposed

lag selection approach improves inference. We comment below on the wild bootstrap results as compared

to the dependent wild bootstrap.

Consider Scenario #1, n = 100, and iid error et (see Table 3). The empirical size with respect to

nominal sizes α ∈ {.010, .050, .100} is {.009, .060, .135} at Ln = 5, {.009, .047, .113} at Ln = 10, and

{.000, .026, .077} at Ln = 21. The empirical size of T̂ dw(L∗n), in contrast, is {.017, .068, .128} (see Table

30). Those results suggest that T̂ dw(Ln) with Ln = o(n) has a tendency of under-rejections when lag

length is large.

The same implication holds under more complex scenarios which involve filters. See, for example,

Scenario #6, n = 1000, and iid error (Table 26). The empirical size of T̂ dw(Ln) is {.011, .052, .106} at

Ln = 5, {.002, .028, .083} at Ln = 72, and {.004, .022, .066} at Ln = 144. The empirical size of T̂ dw(L∗n),

in contrast, is {.011, .047, .101} (Table 33). Those results highlight that the automatic lag selection

significantly stabilizes the empirical size of the max-correlation test by trimming redundant lags.

Hong’s Test with Dependent Wild Bootstrap Hong’s test with the dependent wild bootstrap

(N dw) is even more conservative than T̂ dw(Ln) at large lags. In Scenario #1, n = 100, and iid error et

(Table 3), the empirical size of N dw is {.007, .054, .122} at Ln = 5, {.002, .023, .073} at Ln = 10, and

{.000, .026, .075} at Ln = 21. In Scenario #6, n = 1000, and iid error (Table 26), the empirical size of

N dw is {.018, .061, .137} at Ln = 5, {.001, .006, .028} at Ln = 72, and {.000, .001, .014} at Ln = 144.

Given Ln = o(n), the max-correlation test statistic leads to a more accurate size than Hong’s statistic

arguably because the former has a simpler structure than the latter. The former picks only the largest

sample correlation, while the latter sums up all Ln sample correlations into one test statistic.

Bootstrapped Sup-LM Test and CvM Test We now discuss the sup-LM tests assisted by the

dependent wild bootstrap (APdw) with Ln = o(n) from Table 1 and Ln = n − 1; and the CvM test

assisted by the dependent wild bootstrap (CvMdw) or BRWB (CvM brw). Each has similar empirical size.

APdw with Ln = o(n) produces stable empirical size across various lag lengths, which is a considerable

advantage over T̂ dw(Ln) and N dw. See, for example, Scenario #1, n = 100, and iid error et (Table
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3). The empirical size of APdw is {.014, .071, .135} at Ln = 5, {.020, .082, .154} at Ln = 10, and

{.020, .064, .134} at Ln = 21.

A disadvantage of the sup-LM and CvM tests is that they sometimes lead to over-rejections. Such

a tendency is indeed observed from the rejection frequencies of APdw reported above. Another example

is Ln = n− 1, Scenario #2, n = 100, and iid error (Table 30). The empirical size is {.022, .083, .151} for

APdw, {.018, .076, .149} for CvMdw, and {.045, .115, .186} for CvM brw. The empirical size of T̂ dw(L∗n)

is {.008, .047, .090}, which is much sharper than the size of sup-LM and CvM tests.

Asymptotic Q-Test and Asymptotic Hong Test The asymptotic Ljung-Box test (Qχ2) and the

asymptotic Hong test (NN0,1) produce fatal size distortions when the true process is non-iid. See, for

example, Scenario #2, n = 1000, and iid error et (Table 10), where the tested variable is bilinear. The

empirical size at Ln = 5 is {.064, .169, .254} for Qχ2 and {.135, .207, .264} for NN0,1 . Similar results are

observed in Scenario #5, n = 1000, and iid error et (Table 22), where the tested variable is GARCH.

Those results confirm that the asymptotic convergence of the Ljung-Box test statistic to χ2 and that of

the Hong test statistic to N(0, 1) require more than serial uncorrelatedness. Hence, those tests are not

white noise tests in a strict sense.

Wild Bootstrap Versus Dependent Wild Bootstrap Given our simulation design, the wild boot-

strap often results in more accurate size than the dependent wild bootstrap for each test under study.

Revisit Scenario #6, n = 1000, and iid error (Table 26), where T̂ dw(Ln) becomes more and more con-

servative as lag length increases as stated above. The max-correlation test with the wild bootstrap

(T̂ w(Ln)), in contrast, leads to stable empirical size of {.011, .048, .102} at Ln = 5, {.006, .049, .090} at

Ln = 72, and {.005, .041, .103} at Ln = 144. Similar results arise for Hong’s test, the sup-LM test, and

the CvM test as well. Interestingly, the wild bootstrap still operates well under non-mds white noise

cases like bilinear. Those results, however, call for some caution since there is not a theoretical guarantee

that the wild bootstrap is valid under non-mds white noise.7

Summary The empirical size of T̂ dw(L∗n) is overall more accurate than the size of any other test in

this study. T̂ dw(L∗n) is free of an ad-hoc selection of lag length, and has sharp size even in small samples

with relatively challenging scenarios like bilinear or GARCH.

H.2.2 Empirical Power

We now discuss empirical power of each test. We do not discuss Qχ2 orNN0,1 since they produce fatal size

distortions under non-iid scenarios. We do not discuss T̂ dw(Ln) or N dw with Ln = o(n) since they tend

to be conservative at large lags. Since APdw with Ln = o(n) and Ln = n− 1 produce virtually identical

results, we discuss the latter only. Thus, we compare T̂ dw(L∗n) with APdw, CvMdw, and CvM brw with

Ln = n− 1.

7It is left as a future task to find a numerical example of non-mds white noise where the wild bootstrap fails and the
dependent wild bootstrap operates well.
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In Scenarios #1–#6, there is not an obvious ranking among {T̂ dw(L∗n),APdw, CvMdw, CvM brw}.
T̂ dw(L∗n) is more powerful than the other tests in some cases, but not in other cases. Overall we do not

observe a drastic difference in power. See, for example, Scenario #2, n = 1000, and AR(1) error (Table

33). The empirical power with respect to nominal sizes α ∈ {.010, .050, .100} is {.723, .823, .864} for

T̂ dw(L∗n), {.408, .661, .774} for APdw, {.474, .697, .810} for CvMdw, and {.615, .761, .833} for CvM brw.

In this specific case, T̂ dw(L∗n) is most powerful; CvM brw is the second; CvMdw is the third; APdw is

least powerful.

Another example is Scenario #3, n = 1000, and AR(1) error (Table 33). The empirical power is

{.599, .847, .922} for T̂ dw(L∗n), {.459, .681, .787} forAPdw, {.688, .876, .923} for CvMdw, and {.700, .878, .913}
for CvM brw. In this specific case, T̂ dw(L∗n) is more powerful than APdw, but slightly less powerful than

{CvMdw, CvM brw} when the nominal size is 1%.

In Scenarios #7–#9, T̂ dw(L∗n) dominates {APdw, CvMdw, CvM brw} completely. The former can

detect remote autocorrelations given a large enough sample size n, while the latter cannot. The

power of T̂ dw(L∗n) under Scenario #8 (Remote MA(12)), for instance, is {.013, .067, .117} for n = 100,

{.024, .134, .244} for n = 250, {.371, .673, .770} for n = 500, and {.983, .997, .997} for n = 1000 (Table

34). We observe that T̂ dw(L∗n) captures remote autocorrelation with increasing probability as n grows.

The reason for this desired result is that, as confirmed in Hill and Motegi (2019, Table 2), L∗n converges

to h∗ = 12 sufficiently fast under Remote MA(12). See Section 4.2.3 in the main paper for further

discussion.

The power of CvM brw, by contrast, is {.056, .125, .189} for n = 100, {.020, .094, .156} for n = 250,

{.020, .068, .128} for n = 500, and {.026, .081, .152} for n = 1000 (Table 34). CvM brw has no power

against the remote autocorrelation even when sample size is as large as n = 1000. The power of APdw

and CvMdw is virtually identical to the power of CvM brw. Hence, T̂ dw(L∗n) is the only test under study

that has power against remote autocorrelations.

The reason why the sup-LM and CvM tests fail to capture remote autocorrelations is that those

test statistics assign the largest weights to small lags. That feature delivers sharp size and high power

against adjacent correlations like those in Scenarios #1–#6, but critically low power against remote

correlations like those in Scenarios #7–#9. The present max-correlation test statistic, in contrast,

assigns equal weights to all lags. That feature itself delivers under-rejections and low power against

adjacent correlations when Ln is large, but such a shortcoming is addressed by our proposed automatic

lag selection mechanism.8

Summary Taking both size and power into account, T̂ dw(L∗n) generally dominates each white noise

test studied here. First, T̂ dw(L∗n) achieves the most accurate size. Second, under H1 with adjacent

correlations, the relative performance of {T̂ dw(L∗n),APdw, CvMdw, CvM brw} varies across cases, but in

any case there is not a large difference in power. Third, T̂ dw(L∗n) has much higher power against remote

8As mentioned in the main paper, a weighted max-correlation test where the weights are inverted standard errors may
provide necessary improvements when the data are extremely volatile (e.g. bilinear with GARCH error). The difficulty
there, however, is the need for a non-parametric variance estimator that will be sensitive to choice of tuning parameter.
These issues are left for a future study.
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autocorrelations than the strongest competitors {APdw, CvMdw, CvM brw}. The latter tests cannot

detect remote autocorrelations even when sample size is as large as n = 1000. Thus, T̂ dw(L∗n) is indeed

the only white noise test in this study that achieves both accurate size under each null and high power

under each alternative.
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Table 2: List of All White Noise Tests

Tests with non-random Ln = o(n) (cf. Table 1)

Symbol Test Statistic P-Value Computation Reference

T̂ w(Ln) max-corr with fixed Ln wild bootstrap Hill and Motegi (2019)

T̂ dw(Ln) max-corr with fixed Ln dependent wild bootstrap Hill and Motegi (2019)

APw sup-LM wild bootstrap Andrews and Ploberger (1996)

APdw sup-LM dependent wild bootstrap Andrews and Ploberger (1996)

Qχ2 Ljung-Box Q-statistic asymptotic χ2 Ljung and Box (1978)

NN0,1 std. Ljung-Box Q-statistic asymptotic N(0, 1) Hong (1996)

Nw std. Ljung-Box Q-statistic wild bootstrap Hong (1996)

N dw std. Ljung-Box Q-statistic dependent wild bootstrap Hong (1996)

Tests with Ln = n− 1

Symbol Test Statistic P-Value Computation Reference

APw sup-LM wild bootstrap Andrews and Ploberger (1996)

APdw sup-LM dependent wild bootstrap Andrews and Ploberger (1996)

CvMw Cramér-von Mises wild bootstrap -

CvMdw Cramér-von Mises dependent wild bootstrap Shao (2011)

CvM brw Cramér-von Mises blockwise random weighting bootstrap Zhu and Li (2015)

Test with automatic lag L∗n
Symbol Test Statistic P-Value Computation Reference

T̂ dw(L∗n) max-corr with automatic L∗n dependent wild bootstrap Hill and Motegi (2019)

std. = standardized. For Qχ2 , the degrees of freedom of the asymptotic χ2-distribution are Ln− 2 in Scenario #3

since an AR(2) filter is used; Ln − 1 in Scenario #4 since an AR(1) filter is used; and Ln in the other scenarios.

The automatic L∗n is computed such that L∗n/L̄n → [0, 1] for a non-random upper bound L̄n = [10×
√
n/(lnn)] =

o(
√
n/ ln(n)).
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Table 3: Rejection Frequencies of Tests with Various Fixed Ln = o(n) in Scenario #1 (n = 100)

et is iid: et = νt et is GARCH(1,1): w2
t = 1.0 + 0.2e2t−1 + 0.5w2

t−1

Lag = 5 Lag = 10 Lag = 21 Lag = 5 Lag = 10 Lag = 21

1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10%

T̂ w .006, .039, .089 .004, .038, .096 .005, .028, .066 .005, .041, .090 .003, .043, .082 .003, .044, .089

T̂ dw .009, .060, .135 .009, .047, .113 .000, .026, .077 .002, .048, .093 .005, .044, .099 .001, .021, .057

APw .002, .047, .097 .008, .026, .087 .001, .033, .071 .007, .050, .087 .003, .038, .090 .007, .035, .073

APdw .014, .071, .135 .020, .082, .154 .020, .064, .134 .014, .062, .134 .013, .063, .145 .012, .058, .125

Qχ2 .010, .045, .094 .020, .057, .113 .029, .095, .157 .033, .098, .172 .036, .091, .150 .049, .103, .152

NN0,1 .021, .041, .087 .019, .055, .096 .023, .050, .070 .087, .139, .191 .042, .094, .144 .032, .058, .092

Nw .002, .032, .077 .005, .036, .092 .003, .040, .086 .008, .042, .086 .008, .031, .088 .005, .044, .081

N dw .007, .054, .122 .002, .023, .073 .000, .026, .075 .003, .040, .103 .000, .027, .082 .000, .012, .047

et is MA(2): et = νt + 0.50νt−1 + 0.25νt−2 et is AR(1): et = 0.7et−1 + νt

Lag = 5 Lag = 10 Lag = 21 Lag = 5 Lag = 10 Lag = 21

1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10%

T̂ w .918, .984, .991 .907, .974, .984 .902, .970, .985 1.00, 1.00, 1.00 .999, 1.00, 1.00 1.00, 1.00, 1.00

T̂ dw .788, .956, .990 .706, .950, .984 .623, .922, .974 .955, .998, 1.00 .941, 1.00, 1.00 .936, .995, .999

APw .922, .992, 1.00 .900, .986, .996 .904, .982, .995 1.00, 1.00, 1.00 .999, 1.00, 1.00 1.00, 1.00, 1.00

APdw .743, .956, .991 .697, .934, .979 .677, .935, .985 .831, .981, .998 .756, .965, .992 .758, .956, .998

Qχ2 .937, .977, .991 .870, .960, .970 .762, .880, .929 .998, 1.00, 1.00 1.00, 1.00, 1.00 .996, 1.00, 1.00

NN0,1 .971, .991, .994 .913, .963, .978 .774, .856, .899 1.00, 1.00, 1.00 .998, .998, .998 .996, 1.00, 1.00

Nw .844, .975, .986 .644, .894, .950 .434, .771, .884 .996, 1.00, 1.00 .987, 1.00, 1.00 .964, .998, 1.00

N dw .492, .839, .950 .168, .608, .841 .048, .253, .529 .703, .961, .996 .482, .897, .978 .172, .594, .853

Scenario #1: Simple yt = et; mean filter εt = yt − E[yt]; φ̂n = 1/n
∑n
t=1 yt. In this table we report rejection

frequencies with the nominal sizes 1%, 5%, and 10%. T̂ is the proposed max-correlation test. AP is Andrews

and Ploberger’s (1996) sup-LM test. Qχ2 is the asymptotic Ljung-Box test based on the χ2 distribution. NN0,1

is Hong’s (1996) asymptotic test based on N(0, 1). Superscript “w” means the wild bootstrap while “dw” means

Shao’s (2011) dependent wild bootstrap. Lag length is Ln ∈ {5, [.5n/ ln(n)], [n/ ln(n)]}.
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Table 4: Rejection Frequencies of Tests with Various Fixed Ln = o(n) in Scenario #1 (n = 250)

et is iid: et = νt et is GARCH(1,1): w2
t = 1.0 + 0.2e2t−1 + 0.5w2

t−1

Lag = 5 Lag = 22 Lag = 45 Lag = 5 Lag = 22 Lag = 45

1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10%

T̂ w .008, .043, .086 .007, .039, .090 .007, .039, .072 .005, .039, .084 .008, .050, .086 .004, .041, .082

T̂ dw .013, .065, .135 .003, .046, .094 .001, .032, .080 .007, .041, .108 .001, .033, .080 .001, .019, .052

APw .006, .040, .093 .001, .037, .092 .008, .047, .093 .004, .038, .077 .007, .042, .082 .006, .039, .073

APdw .008, .060, .123 .013, .062, .134 .010, .064, .109 .018, .064, .108 .007, .055, .118 .011, .050, .109

Qχ2 .015, .056, .109 .022, .057, .097 .026, .086, .133 .049, .114, .188 .039, .108, .164 .035, .091, .151

NN0,1 .024, .049, .085 .028, .057, .092 .020, .053, .083 .080, .149, .201 .045, .096, .132 .016, .054, .082

Nw .010, .051, .095 .005, .039, .088 .006, .031, .073 .006, .044, .097 .008, .040, .084 .002, .030, .080

N dw .004, .046, .116 .000, .015, .050 .001, .007, .033 .003, .044, .103 .000, .005, .036 .000, .009, .031

et is MA(2): et = νt + 0.50νt−1 + 0.25νt−2 et is AR(1): et = 0.7et−1 + νt

Lag = 5 Lag = 22 Lag = 45 Lag = 5 Lag = 22 Lag = 45

1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10%

T̂ w 1.00, 1.00, 1.00 1.00, 1.00, 1.00 1.00, 1.00, 1.00 1.00, 1.00, 1.00 1.00, 1.00, 1.00 1.00, 1.00, 1.00

T̂ dw 1.00, 1.00, 1.00 1.00, 1.00, 1.00 1.00, 1.00, 1.00 1.00, 1.00, 1.00 1.00, 1.00, 1.00 1.00, 1.00, 1.00

APw 1.00, 1.00, 1.00 1.00, 1.00, 1.00 1.00, 1.00, 1.00 1.00, 1.00, 1.00 1.00, 1.00, 1.00 1.00, 1.00, 1.00

APdw .995, 1.00, 1.00 .974, .999, 1.00 .971, .999, 1.00 .991, .999, 1.00 .973, 1.00, 1.00 .980, 1.00, 1.00

Qχ2 1.00, 1.00, 1.00 .999, 1.00, 1.00 .990, .998, .998 1.00, 1.00, 1.00 1.00, 1.00, 1.00 1.00, 1.00, 1.00

NN0,1 1.00, 1.00, 1.00 .999, 1.00, 1.00 .991, .998, .999 1.00, 1.00, 1.00 1.00, 1.00, 1.00 1.00, 1.00, 1.00

Nw 1.00, 1.00, 1.00 .998, 1.00, 1.00 .949, .996, .998 1.00, 1.00, 1.00 1.00, 1.00, 1.00 1.00, 1.00, 1.00

N dw .979, 1.00, 1.00 .435, .917, .987 .091, .534, .824 .987, 1.00, 1.00 .823, .986, .998 .365, .904, .990

Scenario #1: Simple yt = et; mean filter εt = yt − E[yt]; φ̂n = 1/n
∑n
t=1 yt. In this table we report rejection

frequencies with the nominal sizes 1%, 5%, and 10%. T̂ is the proposed max-correlation test. AP is Andrews

and Ploberger’s (1996) sup-LM test. Qχ2 is the asymptotic Ljung-Box test based on the χ2 distribution. NN0,1

is Hong’s (1996) asymptotic test based on N(0, 1). Superscript “w” means the wild bootstrap while “dw” means

Shao’s (2011) dependent wild bootstrap. Lag length is Ln ∈ {5, [.5n/ ln(n)], [n/ ln(n)]}.
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Table 5: Rejection Frequencies of Tests with Various Fixed Ln = o(n) in Scenario #1 (n = 500)

et is iid: et = νt et is GARCH(1,1): w2
t = 1.0 + 0.2e2t−1 + 0.5w2

t−1

Lag = 5 Lag = 40 Lag = 80 Lag = 5 Lag = 40 Lag = 80

1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10%

T̂ w .006, .048, .109 .010, .043, .098 .004, .033, .081 .005, .056, .103 .006, .048, .081 .005, .039, .095

T̂ dw .012, .055, .111 .001, .029, .062 .000, .021, .060 .007, .043, .102 .001, .031, .070 .000, .014, .052

APw .005, .038, .082 .009, .050, .087 .006, .050, .103 .010, .051, .102 .014, .053, .094 .008, .046, .095

APdw .014, .065, .121 .008, .050, .120 .007, .061, .115 .008, .044, .100 .011, .045, .089 .009, .065, .122

Qχ2 .012, .044, .104 .014, .057, .099 .026, .073, .110 .042, .135, .221 .028, .081, .158 .028, .098, .145

NN0,1 .023, .059, .122 .019, .049, .079 .014, .028, .058 .089, .157, .213 .040, .084, .135 .019, .053, .096

Nw .008, .053, .108 .003, .045, .094 .005, .035, .085 .010, .048, .096 .005, .037, .105 .007, .028, .075

N dw .004, .051, .121 .001, .010, .030 .000, .001, .018 .007, .043, .104 .000, .004, .030 .000, .002, .015

et is MA(2): et = νt + 0.50νt−1 + 0.25νt−2 et is AR(1): et = 0.7et−1 + νt

Lag = 5 Lag = 40 Lag = 80 Lag = 5 Lag = 40 Lag = 80

1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10%

T̂ w 1.00, 1.00, 1.00 1.00, 1.00, 1.00 1.00, 1.00, 1.00 1.00, 1.00, 1.00 1.00, 1.00, 1.00 1.00, 1.00, 1.00

T̂ dw 1.00, 1.00, 1.00 1.00, 1.00, 1.00 1.00, 1.00, 1.00 1.00, 1.00, 1.00 1.00, 1.00, 1.00 1.00, 1.00, 1.00

APw 1.00, 1.00, 1.00 1.00, 1.00, 1.00 1.00, 1.00, 1.00 1.00, 1.00, 1.00 1.00, 1.00, 1.00 1.00, 1.00, 1.00

APdw 1.00, 1.00, 1.00 1.00, 1.00, 1.00 1.00, 1.00, 1.00 1.00, 1.00, 1.00 .998, 1.00, 1.00 .999, 1.00, 1.00

Qχ2 1.00, 1.00, 1.00 1.00, 1.00, 1.00 1.00, 1.00, 1.00 1.00, 1.00, 1.00 1.00, 1.00, 1.00 1.00, 1.00, 1.00

NN0,1 1.00, 1.00, 1.00 1.00, 1.00, 1.00 1.00, 1.00, 1.00 1.00, 1.00, 1.00 1.00, 1.00, 1.00 1.00, 1.00, 1.00

Nw 1.00, 1.00, 1.00 1.00, 1.00, 1.00 1.00, 1.00, 1.00 1.00, 1.00, 1.00 1.00, 1.00, 1.00 1.00, 1.00, 1.00

N dw 1.00, 1.00, 1.00 .876, .997, 1.00 .269, .898, .991 1.00, 1.00, 1.00 .974, 1.00, 1.00 .770, .994, 1.00

Scenario #1: Simple yt = et; mean filter εt = yt − E[yt]; φ̂n = 1/n
∑n
t=1 yt. In this table we report rejection

frequencies with the nominal sizes 1%, 5%, and 10%. T̂ is the proposed max-correlation test. AP is Andrews

and Ploberger’s (1996) sup-LM test. Qχ2 is the asymptotic Ljung-Box test based on the χ2 distribution. NN0,1

is Hong’s (1996) asymptotic test based on N(0, 1). Superscript “w” means the wild bootstrap while “dw” means

Shao’s (2011) dependent wild bootstrap. Lag length is Ln ∈ {5, [.5n/ ln(n)], [n/ ln(n)]}.
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Table 6: Rejection Frequencies of Tests with Various Fixed Ln = o(n) in Scenario #1 (n = 1000)

et is iid: et = νt et is GARCH(1,1): w2
t = 1.0 + 0.2e2t−1 + 0.5w2

t−1

Lag = 5 Lag = 72 Lag = 144 Lag = 5 Lag = 72 Lag = 144

1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10%

T̂ w .006, .043, .090 .003, .053, .104 .015, .059, .110 .005, .055, .098 .009, .047, .089 .008, .039, .094

T̂ dw .013, .068, .128 .004, .033, .072 .003, .019, .069 .006, .054, .122 .003, .025, .068 .002, .025, .069

APw .008, .044, .094 .010, .044, .096 .011, .051, .094 .001, .035, .085 .005, .042, .094 .007, .037, .086

APdw .015, .063, .120 .013, .061, .106 .007, .056, .111 .012, .059, .100 .006, .040, .101 .005, .044, .101

Qχ2 .013, .050, .105 .014, .050, .122 .021, .067, .127 .048, .137, .213 .024, .089, .148 .024, .075, .128

NN0,1 .020, .053, .097 .017, .064, .102 .008, .022, .057 .093, .162, .208 .020, .056, .112 .007, .028, .044

Nw .015, .050, .114 .013, .064, .115 .005, .037, .078 .009, .050, .096 .010, .048, .095 .008, .041, .082

N dw .007, .041, .103 .000, .003, .021 .000, .004, .014 .005, .051, .099 .000, .006, .026 .000, .000, .011

et is MA(2): et = νt + 0.50νt−1 + 0.25νt−2 et is AR(1): et = 0.7et−1 + νt

Lag = 5 Lag = 72 Lag = 144 Lag = 5 Lag = 72 Lag = 144

1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10%

T̂ w 1.00, 1.00, 1.00 1.00, 1.00, 1.00 1.00, 1.00, 1.00 1.00, 1.00, 1.00 1.00, 1.00, 1.00 1.00, 1.00, 1.00

T̂ dw 1.00, 1.00, 1.00 1.00, 1.00, 1.00 1.00, 1.00, 1.00 1.00, 1.00, 1.00 1.00, 1.00, 1.00 1.00, 1.00, 1.00

APw 1.00, 1.00, 1.00 1.00, 1.00, 1.00 1.00, 1.00, 1.00 1.00, 1.00, 1.00 1.00, 1.00, 1.00 1.00, 1.00, 1.00

APdw 1.00, 1.00, 1.00 1.00, 1.00, 1.00 1.00, 1.00, 1.00 1.00, 1.00, 1.00 1.00, 1.00, 1.00 1.00, 1.00, 1.00

Qχ2 1.00, 1.00, 1.00 1.00, 1.00, 1.00 1.00, 1.00, 1.00 1.00, 1.00, 1.00 1.00, 1.00, 1.00 1.00, 1.00, 1.00

NN0,1 1.00, 1.00, 1.00 1.00, 1.00, 1.00 1.00, 1.00, 1.00 1.00, 1.00, 1.00 1.00, 1.00, 1.00 1.00, 1.00, 1.00

Nw 1.00, 1.00, 1.00 1.00, 1.00, 1.00 1.00, 1.00, 1.00 1.00, 1.00, 1.00 1.00, 1.00, 1.00 1.00, 1.00, 1.00

N dw 1.00, 1.00, 1.00 1.00, 1.00, 1.00 .842, 1.00, 1.00 1.00, 1.00, 1.00 1.00, 1.00, 1.00 .987, 1.00, 1.00

Scenario #1: Simple yt = et; mean filter εt = yt − E[yt]; φ̂n = 1/n
∑n
t=1 yt. In this table we report rejection

frequencies with the nominal sizes 1%, 5%, and 10%. T̂ is the proposed max-correlation test. AP is Andrews

and Ploberger’s (1996) sup-LM test. Qχ2 is the asymptotic Ljung-Box test based on the χ2 distribution. NN0,1

is Hong’s (1996) asymptotic test based on N(0, 1). Superscript “w” means the wild bootstrap while “dw” means

Shao’s (2011) dependent wild bootstrap. Lag length is Ln ∈ {5, [.5n/ ln(n)], [n/ ln(n)]}.
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Table 7: Rejection Frequencies of Tests with Various Fixed Ln = o(n) in Scenario #2 (n = 100)

et is iid: et = νt et is GARCH(1,1): w2
t = 1.0 + 0.2e2t−1 + 0.5w2

t−1

Lag = 5 Lag = 10 Lag = 21 Lag = 5 Lag = 10 Lag = 21

1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10%

T̂ w .007, .047, .108 .006, .040, .090 .006, .041, .080 .005, .035, .098 .004, .032, .078 .000, .020, .069

T̂ dw .016, .066, .147 .002, .035, .105 .003, .032, .080 .000, .022, .076 .001, .015, .052 .000, .008, .035

APw .010, .062, .125 .011, .055, .126 .008, .040, .103 .004, .026, .066 .006, .040, .080 .007, .036, .091

APdw .028, .093, .167 .018, .080, .167 .024, .084, .156 .008, .038, .095 .002, .040, .084 .006, .038, .092

Qχ2 .045, .138, .229 .037, .104, .165 .057, .114, .181 .295, .440, .531 .238, .376, .462 .145, .234, .298

NN0,1 .084, .151, .211 .058, .097, .153 .046, .080, .107 .366, .471, .522 .275, .367, .428 .113, .173, .213

Nw .007, .058, .120 .005, .040, .110 .007, .050, .105 .005, .030, .069 .002, .027, .078 .004, .025, .062

N dw .003, .045, .128 .004, .028, .090 .002, .015, .051 .002, .024, .060 .000, .007, .039 .000, .005, .020

et is MA(2): et = νt + 0.50νt−1 + 0.25νt−2 et is AR(1): et = 0.7et−1 + νt

Lag = 5 Lag = 10 Lag = 21 Lag = 5 Lag = 10 Lag = 21

1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10%

T̂ w .614, .819, .885 .548, .765, .867 .576, .805, .869 .685, .891, .942 .701, .891, .947 .689, .893, .945

T̂ dw .328, .657, .803 .319, .628, .794 .235, .577, .762 .262, .538, .695 .258, .498, .682 .234, .489, .677

APw .471, .809, .901 .440, .817, .900 .451, .793, .900 .612, .874, .944 .596, .874, .944 .619, .870, .939

APdw .313, .629, .783 .319, .608, .770 .338, .613, .770 .247, .497, .674 .218, .476, .661 .221, .511, .694

Qχ2 .811, .929, .967 .726, .846, .905 .621, .742, .809 .965, .986, .996 .939, .971, .987 .912, .947, .966

NN0,1 .863, .910, .934 .769, .834, .877 .586, .707, .765 .985, .993, .996 .957, .977, .988 .896, .925, .938

Nw .365, .718, .842 .320, .644, .794 .224, .532, .702 .565, .831, .919 .546, .839, .921 .481, .783, .875

N dw .151, .453, .666 .062, .284, .546 .012, .121, .297 .166, .416, .619 .078, .342, .561 .042, .209, .453

Scenario #2: Bilinear yt = 0.5et−1yt−2 + et; mean filter εt = yt −E[yt]; φ̂n = 1/n
∑n
t=1 yt. In this table we report

rejection frequencies with the nominal sizes 1%, 5%, and 10%. T̂ is the proposed max-correlation test. AP is

Andrews and Ploberger’s (1996) sup-LM test. Qχ2 is the asymptotic Ljung-Box test based on the χ2 distribution.

NN0,1 is Hong’s (1996) asymptotic test based on N(0, 1). Superscript “w” means the wild bootstrap while “dw”

means Shao’s (2011) dependent wild bootstrap. Lag length is Ln ∈ {5, [.5n/ ln(n)], [n/ ln(n)]}.
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Table 8: Rejection Frequencies of Tests with Various Fixed Ln = o(n) in Scenario #2 (n = 250)

et is iid: et = νt et is GARCH(1,1): w2
t = 1.0 + 0.2e2t−1 + 0.5w2

t−1

Lag = 5 Lag = 22 Lag = 45 Lag = 5 Lag = 22 Lag = 45

1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10%

T̂ w .015, .073, .140 .008, .056, .108 .007, .044, .100 .000, .029, .084 .006, .039, .082 .002, .026, .071

T̂ dw .006, .046, .099 .002, .034, .091 .002, .026, .071 .008, .030, .064 .008, .018, .052 .007, .018, .038

APw .014, .073, .128 .015, .063, .117 .024, .075, .128 .005, .030, .091 .005, .032, .084 .005, .026, .073

APdw .019, .081, .152 .014, .068, .141 .012, .058, .126 .010, .039, .084 .007, .024, .071 .008, .037, .069

Qχ2 .065, .155, .226 .031, .099, .164 .051, .114, .168 .564, .698, .755 .432, .522, .584 .244, .325, .386

NN0,1 .113, .191, .249 .037, .094, .129 .039, .066, .091 .611, .672, .715 .439, .530, .581 .247, .307, .342

Nw .014, .072, .138 .011, .044, .100 .011, .042, .090 .005, .028, .072 .001, .020, .064 .000, .011, .060

N dw .006, .050, .096 .001, .012, .041 .000, .004, .032 .005, .013, .049 .003, .011, .031 .001, .005, .010

et is MA(2): et = νt + 0.50νt−1 + 0.25νt−2 et is AR(1): et = 0.7et−1 + νt

Lag = 5 Lag = 22 Lag = 45 Lag = 5 Lag = 22 Lag = 45

1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10%

T̂ w .946, .980, .991 .945, .985, .994 .951, .981, .989 .856, .956, .980 .863, .951, .977 .855, .952, .971

T̂ dw .743, .915, .964 .717, .907, .964 .711, .898, .957 .344, .601, .744 .343, .584, .738 .383, .626, .753

APw .917, .986, .995 .911, .990, .997 .900, .977, .995 .846, .946, .969 .841, .955, .982 .813, .947, .975

APdw .582, .839, .920 .601, .810, .901 .572, .811, .909 .290, .562, .717 .281, .538, .698 .298, .563, .720

Qχ2 .997, .998, 1.00 .968, .987, .992 .925, .969, .983 .999, .999, .999 1.00, 1.00, 1.00 .998, .999, .999

NN0,1 .999, .999, .999 .979, .992, .995 .923, .956, .973 1.00, 1.00, 1.00 .999, 1.00, 1.00 .995, .997, .998

Nw .847, .962, .979 .746, .924, .957 .623, .866, .924 .799, .956, .983 .817, .947, .974 .777, .939, .967

N dw .489, .797, .907 .123, .523, .778 .025, .227, .508 .260, .525, .691 .139, .442, .642 .074, .337, .586

Scenario #2: Bilinear yt = 0.5et−1yt−2 + et; mean filter εt = yt −E[yt]; φ̂n = 1/n
∑n
t=1 yt. In this table we report

rejection frequencies with the nominal sizes 1%, 5%, and 10%. T̂ is the proposed max-correlation test. AP is

Andrews and Ploberger’s (1996) sup-LM test. Qχ2 is the asymptotic Ljung-Box test based on the χ2 distribution.

NN0,1 is Hong’s (1996) asymptotic test based on N(0, 1). Superscript “w” means the wild bootstrap while “dw”

means Shao’s (2011) dependent wild bootstrap. Lag length is Ln ∈ {5, [.5n/ ln(n)], [n/ ln(n)]}.
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Table 9: Rejection Frequencies of Tests with Various Fixed Ln = o(n) in Scenario #2 (n = 500)

et is iid: et = νt et is GARCH(1,1): w2
t = 1.0 + 0.2e2t−1 + 0.5w2

t−1

Lag = 5 Lag = 40 Lag = 80 Lag = 5 Lag = 40 Lag = 80

1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10%

T̂ w .010, .062, .118 .015, .053, .116 .015, .055, .114 .003, .015, .073 .002, .027, .061 .002, .024, .065

T̂ dw .015, .054, .112 .001, .028, .069 .001, .019, .056 .007, .012, .052 .005, .023, .047 .006, .014, .036

APw .012, .069, .121 .019, .084, .147 .013, .077, .132 .002, .025, .080 .004, .028, .078 .002, .028, .068

APdw .020, .063, .132 .012, .074, .126 .013, .069, .130 .002, .023, .063 .008, .017, .047 .003, .016, .055

Qχ2 .052, .136, .215 .034, .089, .151 .039, .085, .147 .742, .817, .862 .534, .613, .663 .362, .438, .480

NN0,1 .120, .187, .240 .041, .086, .134 .022, .055, .085 .781, .838, .863 .550, .619, .665 .321, .398, .433

Nw .016, .073, .145 .010, .047, .110 .004, .037, .082 .001, .021, .065 .001, .018, .060 .001, .011, .052

N dw .006, .040, .095 .000, .006, .039 .000, .003, .018 .007, .023, .043 .002, .008, .017 .002, .003, .006

et is MA(2): et = νt + 0.50νt−1 + 0.25νt−2 et is AR(1): et = 0.7et−1 + νt

Lag = 5 Lag = 40 Lag = 80 Lag = 5 Lag = 40 Lag = 80

1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10%

T̂ w .992, .996, .998 .993, .998, .999 .991, .993, .996 .907, .979, .989 .891, .967, .987 .889, .969, .984

T̂ dw .907, .971, .991 .894, .976, .990 .897, .977, .987 .402, .648, .764 .372, .629, .761 .411, .621, .770

APw .977, .994, .996 .984, 1.00, 1.00 .976, .993, .999 .913, .975, .988 .892, .971, .985 .891, .974, .986

APdw .767, .923, .967 .767, .921, .966 .767, .936, .970 .378, .628, .784 .347, .623, .751 .343, .590, .740

Qχ2 1.00, 1.00, 1.00 .999, .999, 1.00 .999, .999, .999 1.00, 1.00, 1.00 1.00, 1.00, 1.00 1.00, 1.00, 1.00

NN0,1 1.00, 1.00, 1.00 1.00, 1.00, 1.00 .994, .998, .998 1.00, 1.00, 1.00 .998, .998, .999 .999, .999, .999

Nw .969, .993, .999 .959, .991, .996 .924, .984, .996 .872, .967, .988 .856, .962, .984 .875, .966, .982

N dw .744, .917, .965 .315, .788, .924 .055, .460, .777 .317, .570, .721 .193, .483, .681 .094, .411, .667

Scenario #2: Bilinear yt = 0.5et−1yt−2 + et; mean filter εt = yt −E[yt]; φ̂n = 1/n
∑n
t=1 yt. In this table we report

rejection frequencies with the nominal sizes 1%, 5%, and 10%. T̂ is the proposed max-correlation test. AP is

Andrews and Ploberger’s (1996) sup-LM test. Qχ2 is the asymptotic Ljung-Box test based on the χ2 distribution.

NN0,1 is Hong’s (1996) asymptotic test based on N(0, 1). Superscript “w” means the wild bootstrap while “dw”

means Shao’s (2011) dependent wild bootstrap. Lag length is Ln ∈ {5, [.5n/ ln(n)], [n/ ln(n)]}.
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Table 10: Rejection Frequencies of Tests with Various Fixed Ln = o(n) in Scenario #2 (n = 1000)

et is iid: et = νt et is GARCH(1,1): w2
t = 1.0 + 0.2e2t−1 + 0.5w2

t−1

Lag = 5 Lag = 72 Lag = 144 Lag = 5 Lag = 72 Lag = 144

1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10%

T̂ w .017, .087, .137 .013, .066, .125 .009, .052, .107 .002, .026, .083 .001, .028, .076 .002, .026, .064

T̂ dw .012, .062, .112 .008, .026, .072 .004, .016, .057 .002, .012, .040 .003, .007, .030 .000, .005, .018

APw .015, .075, .138 .015, .079, .149 .016, .080, .147 .001, .030, .082 .003, .024, .073 .003, .036, .065

APdw .014, .063, .109 .015, .076, .137 .012, .066, .119 .001, .014, .039 .004, .019, .047 .000, .010, .042

Qχ2 .064, .169, .254 .030, .087, .153 .020, .081, .145 .855, .907, .931 .632, .715, .765 .436, .509, .550

NN0,1 .135, .207, .264 .033, .087, .127 .009, .024, .044 .877, .901, .917 .632, .698, .718 .411, .469, .518

Nw .029, .085, .147 .009, .053, .107 .007, .037, .076 .001, .031, .069 .001, .016, .053 .000, .007, .047

N dw .007, .045, .102 .000, .003, .036 .000, .000, .005 .001, .010, .024 .001, .001, .006 .000, .000, .001

et is MA(2): et = νt + 0.50νt−1 + 0.25νt−2 et is AR(1): et = 0.7et−1 + νt

Lag = 5 Lag = 72 Lag = 144 Lag = 5 Lag = 72 Lag = 144

1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10%

T̂ w .999, 1.00, 1.00 .997, .997, .997 .995, 1.00, 1.00 .929, .974, .987 .924, .977, .986 .901, .968, .980

T̂ dw .966, .994, .995 .966, .992, .999 .961, .989, .997 .486, .678, .789 .482, .705, .811 .480, .680, .791

APw .996, .998, .998 .996, 1.00, 1.00 .996, 1.00, 1.00 .924, .972, .988 .933, .977, .989 .924, .984, .989

APdw .891, .973, .991 .902, .973, .991 .895, .968, .981 .396, .659, .789 .375, .627, .786 .415, .677, .807

Qχ2 1.00, 1.00, 1.00 1.00, 1.00, 1.00 1.00, 1.00, 1.00 1.00, 1.00, 1.00 1.00, 1.00, 1.00 1.00, 1.00, 1.00

NN0,1 1.00, 1.00, 1.00 1.00, 1.00, 1.00 1.00, 1.00, 1.00 1.00, 1.00, 1.00 1.00, 1.00, 1.00 .998, .998, .999

Nw .997, .999, 1.00 .990, .998, 1.00 .990, .996, .997 .926, .977, .984 .918, .977, .992 .917, .973, .986

N dw .911, .971, .990 .674, .933, .972 .218, .793, .953 .392, .643, .775 .254, .548, .706 .145, .492, .669

Scenario #2: Bilinear yt = 0.5et−1yt−2 + et; mean filter εt = yt −E[yt]; φ̂n = 1/n
∑n
t=1 yt. In this table we report

rejection frequencies with the nominal sizes 1%, 5%, and 10%. T̂ is the proposed max-correlation test. AP is

Andrews and Ploberger’s (1996) sup-LM test. Qχ2 is the asymptotic Ljung-Box test based on the χ2 distribution.

NN0,1 is Hong’s (1996) asymptotic test based on N(0, 1). Superscript “w” means the wild bootstrap while “dw”

means Shao’s (2011) dependent wild bootstrap. Lag length is Ln ∈ {5, [.5n/ ln(n)], [n/ ln(n)]}.
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Table 11: Rejection Frequencies of Tests with Various Fixed Ln = o(n) in Scenario #3 (n = 100)

et is iid: et = νt et is GARCH(1,1): w2
t = 1.0 + 0.2e2t−1 + 0.5w2

t−1

Lag = 5 Lag = 10 Lag = 21 Lag = 5 Lag = 10 Lag = 21

1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10%

T̂ w .008, .048, .099 .008, .049, .090 .005, .034, .093 .007, .037, .088 .010, .036, .072 .006, .038, .080

T̂ dw .025, .106, .181 .015, .068, .142 .006, .047, .118 .019, .075, .164 .005, .053, .133 .002, .034, .088

APw .010, .045, .102 .005, .036, .107 .006, .047, .095 .005, .045, .100 .006, .042, .106 .004, .029, .075

APdw .036, .110, .185 .037, .120, .198 .028, .103, .182 .033, .109, .177 .034, .112, .194 .037, .121, .204

Qχ2 .008, .056, .107 .009, .050, .098 .019, .069, .128 .023, .062, .118 .019, .050, .111 .014, .049, .085

NN0,1 .005, .013, .021 .010, .020, .041 .008, .023, .042 .010, .020, .035 .008, .024, .037 .006, .014, .024

Nw .007, .050, .119 .006, .031, .063 .005, .035, .070 .007, .043, .084 .003, .037, .087 .002, .025, .073

N dw .025, .102, .191 .006, .044, .116 .000, .023, .084 .022, .082, .155 .002, .044, .122 .000, .018, .078

et is MA(2): et = νt + 0.50νt−1 + 0.25νt−2 et is AR(1): et = 0.7et−1 + νt

Lag = 5 Lag = 10 Lag = 21 Lag = 5 Lag = 10 Lag = 21

1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10%

T̂ w .008, .068, .139 .006, .049, .114 .007, .045, .099 .028, .101, .192 .005, .058, .129 .010, .040, .092

T̂ dw .041, .143, .235 .012, .078, .174 .007, .063, .141 .039, .143, .239 .011, .070, .170 .004, .061, .141

APw .015, .068, .115 .022, .061, .111 .014, .050, .108 .023, .115, .191 .028, .113, .203 .030, .112, .188

APdw .030, .108, .194 .031, .108, .192 .032, .118, .196 .091, .218, .308 .098, .211, .299 .109, .227, .298

Qχ2 .020, .084, .153 .010, .063, .131 .024, .069, .116 .030, .113, .185 .027, .100, .168 .035, .084, .142

NN0,1 .021, .036, .057 .017, .037, .062 .019, .035, .058 .028, .054, .078 .017, .047, .079 .015, .034, .055

Nw .013, .085, .170 .015, .070, .134 .009, .041, .091 .026, .101, .184 .013, .069, .151 .009, .052, .114

N dw .033, .129, .219 .007, .064, .142 .007, .045, .109 .046, .148, .234 .013, .086, .171 .003, .040, .111

Scenario #3: AR(2) yt = 0.3yt−1 − 0.15yt−2 + et; AR(2) filter εt = yt − φ1yt−1 − φ2yt−2; least squares es-

timation. In this table we report rejection frequencies with the nominal sizes 1%, 5%, and 10%. T̂ is the

proposed max-correlation test. AP is Andrews and Ploberger’s (1996) sup-LM test. Qχ2 is the asymptotic

Ljung-Box test based on the χ2 distribution. NN0,1 is Hong’s (1996) asymptotic test based on N(0, 1). Super-

script “w” means the wild bootstrap while “dw” means Shao’s (2011) dependent wild bootstrap. Lag length is

Ln ∈ {5, [.5n/ ln(n)], [n/ ln(n)]}.
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Table 12: Rejection Frequencies of Tests with Various Fixed Ln = o(n) in Scenario #3 (n = 250)

et is iid: et = νt et is GARCH(1,1): w2
t = 1.0 + 0.2e2t−1 + 0.5w2

t−1

Lag = 5 Lag = 22 Lag = 45 Lag = 5 Lag = 22 Lag = 45

1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10%

T̂ w .011, .054, .104 .005, .039, .083 .007, .045, .099 .011, .050, .088 .010, .044, .092 .007, .035, .092

T̂ dw .020, .063, .125 .005, .033, .082 .004, .033, .082 .015, .065, .139 .005, .029, .084 .006, .032, .080

APw .014, .053, .118 .007, .049, .096 .010, .044, .096 .003, .044, .085 .006, .035, .087 .007, .034, .092

APdw .019, .092, .149 .015, .079, .144 .022, .080, .139 .018, .078, .152 .014, .075, .146 .023, .082, .169

Qχ2 .006, .045, .103 .014, .058, .089 .016, .069, .113 .023, .079, .138 .017, .081, .134 .026, .068, .110

NN0,1 .003, .006, .012 .011, .032, .056 .010, .024, .041 .016, .031, .049 .014, .034, .064 .012, .024, .043

Nw .005, .049, .111 .008, .037, .080 .006, .039, .080 .011, .045, .104 .004, .039, .081 .007, .036, .076

N dw .007, .062, .135 .002, .022, .072 .001, .007, .038 .012, .065, .136 .001, .014, .060 .000, .007, .034

et is MA(2): et = νt + 0.50νt−1 + 0.25νt−2 et is AR(1): et = 0.7et−1 + νt

Lag = 5 Lag = 22 Lag = 45 Lag = 5 Lag = 22 Lag = 45

1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10%

T̂ w .035, .137, .227 .013, .065, .132 .008, .046, .098 .052, .187, .309 .014, .063, .142 .007, .054, .107

T̂ dw .038, .143, .246 .005, .045, .110 .004, .038, .104 .059, .190, .309 .007, .053, .148 .006, .039, .109

APw .028, .098, .184 .032, .085, .156 .021, .097, .164 .082, .220, .341 .058, .195, .303 .085, .208, .306

APdw .030, .114, .184 .022, .110, .196 .024, .089, .162 .136, .298, .424 .169, .310, .393 .154, .307, .397

Qχ2 .040, .149, .239 .025, .081, .139 .042, .107, .172 .108, .255, .373 .047, .137, .207 .049, .127, .198

NN0,1 .033, .077, .106 .020, .050, .078 .019, .039, .054 .087, .126, .172 .034, .075, .123 .023, .058, .093

Nw .048, .157, .258 .011, .066, .128 .014, .066, .117 .074, .210, .331 .032, .105, .192 .014, .062, .136

N dw .032, .134, .253 .001, .029, .089 .001, .012, .054 .084, .256, .377 .007, .050, .143 .002, .016, .075

Scenario #3: AR(2) yt = 0.3yt−1 − 0.15yt−2 + et; AR(2) filter εt = yt − φ1yt−1 − φ2yt−2; least squares es-

timation. In this table we report rejection frequencies with the nominal sizes 1%, 5%, and 10%. T̂ is the

proposed max-correlation test. AP is Andrews and Ploberger’s (1996) sup-LM test. Qχ2 is the asymptotic

Ljung-Box test based on the χ2 distribution. NN0,1 is Hong’s (1996) asymptotic test based on N(0, 1). Super-

script “w” means the wild bootstrap while “dw” means Shao’s (2011) dependent wild bootstrap. Lag length is

Ln ∈ {5, [.5n/ ln(n)], [n/ ln(n)]}.
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Table 13: Rejection Frequencies of Tests with Various Fixed Ln = o(n) in Scenario #3 (n = 500)

et is iid: et = νt et is GARCH(1,1): w2
t = 1.0 + 0.2e2t−1 + 0.5w2

t−1

Lag = 5 Lag = 40 Lag = 80 Lag = 5 Lag = 40 Lag = 80

1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10%

T̂ w .011, .055, .116 .012, .041, .084 .012, .054, .106 .005, .043, .094 .010, .054, .101 .005, .035, .088

T̂ dw .009, .067, .120 .002, .027, .095 .003, .026, .081 .020, .076, .131 .002, .030, .078 .001, .021, .055

APw .007, .059, .110 .005, .043, .090 .011, .051, .098 .014, .049, .102 .007, .048, .106 .006, .044, .087

APdw .015, .063, .119 .019, .076, .149 .024, .074, .132 .015, .060, .115 .012, .058, .125 .012, .062, .128

Qχ2 .011, .054, .111 .009, .049, .091 .019, .070, .121 .018, .076, .136 .023, .069, .125 .023, .071, .122

NN0,1 .004, .015, .030 .009, .034, .062 .005, .016, .029 .010, .023, .048 .009, .038, .069 .007, .023, .041

Nw .012, .051, .091 .004, .046, .103 .007, .032, .085 .006, .050, .104 .009, .038, .085 .004, .036, .079

N dw .018, .053, .114 .001, .008, .046 .000, .002, .023 .016, .066, .126 .001, .006, .036 .000, .001, .012

et is MA(2): et = νt + 0.50νt−1 + 0.25νt−2 et is AR(1): et = 0.7et−1 + νt

Lag = 5 Lag = 40 Lag = 80 Lag = 5 Lag = 40 Lag = 80

1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10%

T̂ w .087, .251, .379 .014, .080, .150 .015, .069, .116 .149, .372, .539 .026, .091, .171 .008, .084, .165

T̂ dw .098, .284, .390 .005, .054, .117 .005, .041, .099 .133, .357, .505 .006, .061, .137 .004, .038, .107

APw .042, .158, .232 .034, .126, .205 .037, .115, .199 .177, .407, .539 .128, .342, .492 .143, .339, .488

APdw .048, .139, .220 .026, .118, .211 .018, .085, .161 .276, .489, .613 .263, .441, .550 .257, .442, .572

Qχ2 .119, .294, .413 .029, .102, .180 .037, .114, .184 .267, .459, .596 .069, .175, .264 .064, .163, .252

NN0,1 .085, .155, .212 .035, .073, .117 .019, .037, .065 .191, .287, .364 .058, .139, .198 .033, .079, .109

Nw .108, .293, .398 .031, .090, .168 .025, .077, .144 .217, .415, .548 .052, .144, .232 .025, .097, .192

N dw .097, .258, .410 .003, .032, .092 .001, .008, .048 .178, .425, .552 .001, .042, .130 .000, .010, .054

Scenario #3: AR(2) yt = 0.3yt−1 − 0.15yt−2 + et; AR(2) filter εt = yt − φ1yt−1 − φ2yt−2; least squares es-

timation. In this table we report rejection frequencies with the nominal sizes 1%, 5%, and 10%. T̂ is the

proposed max-correlation test. AP is Andrews and Ploberger’s (1996) sup-LM test. Qχ2 is the asymptotic

Ljung-Box test based on the χ2 distribution. NN0,1 is Hong’s (1996) asymptotic test based on N(0, 1). Super-

script “w” means the wild bootstrap while “dw” means Shao’s (2011) dependent wild bootstrap. Lag length is

Ln ∈ {5, [.5n/ ln(n)], [n/ ln(n)]}.
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Table 14: Rejection Frequencies of Tests with Various Fixed Ln = o(n) in Scenario #3 (n = 1000)

et is iid: et = νt et is GARCH(1,1): w2
t = 1.0 + 0.2e2t−1 + 0.5w2

t−1

Lag = 5 Lag = 72 Lag = 144 Lag = 5 Lag = 72 Lag = 144

1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10%

T̂ w .011, .049, .104 .009, .048, .091 .011, .045, .089 .013, .056, .113 .010, .056, .093 .009, .040, .085

T̂ dw .013, .064, .110 .003, .034, .091 .003, .025, .052 .008, .060, .132 .002, .026, .071 .004, .022, .059

APw .010, .044, .104 .012, .053, .100 .008, .057, .097 .010, .051, .109 .004, .028, .084 .005, .045, .094

APdw .012, .065, .121 .020, .073, .138 .018, .065, .106 .020, .059, .114 .011, .067, .119 .016, .064, .133

Qχ2 .008, .049, .098 .012, .055, .085 .021, .081, .133 .033, .100, .164 .019, .066, .123 .020, .072, .130

NN0,1 .009, .028, .040 .007, .027, .058 .007, .018, .036 .017, .032, .050 .011, .037, .068 .006, .021, .033

Nw .010, .047, .093 .013, .044, .094 .009, .036, .088 .007, .056, .103 .006, .033, .081 .009, .036, .092

N dw .010, .054, .111 .000, .012, .034 .000, .003, .014 .006, .046, .114 .000, .006, .028 .000, .001, .010

et is MA(2): et = νt + 0.50νt−1 + 0.25νt−2 et is AR(1): et = 0.7et−1 + νt

Lag = 5 Lag = 72 Lag = 144 Lag = 5 Lag = 72 Lag = 144

1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10%

T̂ w .236, .496, .630 .038, .117, .186 .042, .105, .171 .405, .685, .798 .060, .205, .316 .053, .159, .250

T̂ dw .223, .485, .656 .016, .070, .156 .009, .055, .131 .390, .673, .800 .029, .125, .255 .015, .088, .184

APw .079, .240, .366 .065, .208, .322 .056, .190, .288 .426, .684, .797 .351, .627, .756 .355, .632, .745

APdw .071, .231, .363 .047, .179, .281 .042, .171, .298 .502, .751, .854 .493, .707, .801 .506, .735, .819

Qχ2 .304, .543, .677 .065, .163, .254 .058, .159, .234 .547, .757, .832 .119, .265, .364 .106, .261, .366

NN0,1 .270, .390, .477 .040, .098, .159 .019, .062, .092 .492, .613, .685 .072, .189, .272 .037, .097, .144

Nw .294, .550, .680 .036, .118, .209 .026, .113, .189 .541, .759, .859 .067, .212, .316 .057, .170, .267

N dw .256, .527, .674 .000, .022, .063 .000, .002, .018 .473, .730, .845 .004, .043, .130 .001, .005, .034

Scenario #3: AR(2) yt = 0.3yt−1 − 0.15yt−2 + et; AR(2) filter εt = yt − φ1yt−1 − φ2yt−2; least squares es-

timation. In this table we report rejection frequencies with the nominal sizes 1%, 5%, and 10%. T̂ is the

proposed max-correlation test. AP is Andrews and Ploberger’s (1996) sup-LM test. Qχ2 is the asymptotic

Ljung-Box test based on the χ2 distribution. NN0,1 is Hong’s (1996) asymptotic test based on N(0, 1). Super-

script “w” means the wild bootstrap while “dw” means Shao’s (2011) dependent wild bootstrap. Lag length is

Ln ∈ {5, [.5n/ ln(n)], [n/ ln(n)]}.
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Table 15: Rejection Frequencies of Tests with Various Fixed Ln = o(n) in Scenario #4 (n = 100)

et is iid: et = νt et is GARCH(1,1): w2
t = 1.0 + 0.2e2t−1 + 0.5w2

t−1

Lag = 5 Lag = 10 Lag = 21 Lag = 5 Lag = 10 Lag = 21

1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10%

T̂ w .048, .204, .340 .021, .111, .213 .021, .118, .198 .047, .193, .327 .031, .138, .224 .031, .130, .210

T̂ dw .082, .227, .343 .023, .131, .265 .019, .098, .204 .055, .203, .329 .026, .137, .259 .005, .080, .181

APw .051, .214, .347 .053, .190, .313 .040, .179, .311 .043, .175, .302 .031, .163, .298 .041, .150, .277

APdw .199, .349, .465 .185, .377, .494 .195, .364, .483 .131, .302, .417 .121, .297, .430 .131, .328, .472

Qχ2 .070, .200, .281 .068, .172, .245 .076, .177, .263 .106, .252, .361 .077, .184, .279 .068, .147, .212

NN0,1 .090, .164, .207 .072, .122, .161 .063, .095, .125 .114, .194, .246 .081, .138, .196 .058, .100, .143

Nw .060, .195, .335 .043, .149, .251 .029, .094, .169 .050, .183, .310 .033, .139, .237 .019, .090, .160

N dw .045, .195, .323 .015, .098, .220 .006, .048, .148 .048, .211, .338 .010, .100, .222 .005, .043, .104

et is MA(2): et = νt + 0.50νt−1 + 0.25νt−2 et is AR(1): et = 0.7et−1 + νt

Lag = 5 Lag = 10 Lag = 21 Lag = 5 Lag = 10 Lag = 21

1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10%

T̂ w .259, .580, .728 .177, .424, .576 .124, .341, .473 .147, .436, .618 .079, .286, .447 .041, .198, .315

T̂ dw .229, .533, .705 .089, .350, .546 .032, .182, .360 .135, .404, .605 .035, .239, .443 .009, .102, .265

APw .455, .703, .818 .455, .702, .814 .437, .706, .803 .441, .753, .851 .440, .709, .832 .413, .722, .821

APdw .547, .757, .850 .516, .734, .834 .529, .758, .857 .558, .782, .860 .564, .787, .875 .556, .786, .868

Qχ2 .540, .750, .829 .397, .609, .714 .345, .519, .626 .296, .558, .681 .227, .455, .569 .194, .367, .483

NN0,1 .575, .691, .755 .442, .554, .633 .316, .437, .500 .340, .489, .574 .258, .373, .455 .143, .233, .289

Nw .426, .694, .817 .256, .547, .695 .157, .404, .563 .214, .517, .669 .129, .380, .557 .067, .249, .406

N dw .288, .640, .797 .086, .350, .568 .022, .165, .340 .202, .496, .684 .051, .237, .439 .014, .097, .229

Scenario #4: AR(2) yt = 0.3yt−1 − 0.15yt−2 + et; AR(1) filter εt = yt − φ1yt−1; least squares estimation. In this

table we report rejection frequencies with the nominal sizes 1%, 5%, and 10%. T̂ is the proposed max-correlation

test. AP is Andrews and Ploberger’s (1996) sup-LM test. Qχ2 is the asymptotic Ljung-Box test based on the χ2

distribution. NN0,1 is Hong’s (1996) asymptotic test based on N(0, 1). Superscript “w” means the wild bootstrap

while “dw” means Shao’s (2011) dependent wild bootstrap. Lag length is Ln ∈ {5, [.5n/ ln(n)], [n/ ln(n)]}.
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Table 16: Rejection Frequencies of Tests with Various Fixed Ln = o(n) in Scenario #4 (n = 250)

et is iid: et = νt et is GARCH(1,1): w2
t = 1.0 + 0.2e2t−1 + 0.5w2

t−1

Lag = 5 Lag = 22 Lag = 45 Lag = 5 Lag = 22 Lag = 45

1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10%

T̂ w .221, .443, .574 .101, .266, .377 .086, .228, .350 .174, .385, .512 .107, .282, .396 .085, .208, .312

T̂ dw .190, .455, .611 .047, .200, .345 .026, .153, .280 .153, .365, .522 .043, .192, .308 .033, .135, .253

APw .202, .451, .597 .171, .395, .564 .172, .406, .556 .151, .386, .523 .141, .356, .522 .131, .329, .476

APdw .314, .564, .672 .280, .523, .656 .293, .535, .652 .242, .512, .649 .263, .484, .618 .243, .466, .598

Qχ2 .257, .449, .578 .103, .248, .358 .082, .221, .299 .302, .521, .631 .141, .293, .382 .124, .260, .346

NN0,1 .251, .373, .445 .108, .204, .268 .069, .141, .207 .308, .438, .507 .157, .250, .319 .087, .161, .211

Nw .223, .462, .600 .064, .205, .321 .039, .152, .259 .172, .384, .531 .054, .172, .288 .037, .150, .250

N dw .171, .428, .590 .007, .078, .201 .000, .039, .104 .127, .369, .525 .001, .067, .172 .000, .028, .098

et is MA(2): et = νt + 0.50νt−1 + 0.25νt−2 et is AR(1): et = 0.7et−1 + νt

Lag = 5 Lag = 22 Lag = 45 Lag = 5 Lag = 22 Lag = 45

1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10%

T̂ w .784, .944, .985 .577, .810, .889 .505, .759, .843 .699, .910, .962 .390, .685, .811 .307, .601, .736

T̂ dw .665, .932, .980 .284, .650, .805 .193, .514, .724 .567, .875, .963 .163, .521, .734 .073, .366, .590

APw .938, .986, .996 .912, .978, .988 .910, .987, .995 .953, .988, .996 .958, .992, .997 .938, .985, .995

APdw .933, .983, .993 .901, .975, .992 .899, .975, .988 .945, .988, .999 .944, .993, 1.00 .941, .987, .994

Qχ2 .961, .991, .994 .794, .908, .955 .661, .823, .875 .853, .957, .975 .504, .729, .825 .430, .637, .740

NN0,1 .970, .987, .994 .823, .898, .929 .581, .726, .788 .874, .932, .962 .523, .678, .761 .323, .459, .548

Nw .952, .987, .993 .643, .879, .929 .426, .718, .831 .778, .956, .982 .365, .693, .828 .237, .526, .659

N dw .851, .974, .990 .133, .550, .802 .029, .215, .466 .639, .916, .975 .041, .325, .576 .009, .100, .280

Scenario #4: AR(2) yt = 0.3yt−1 − 0.15yt−2 + et; AR(1) filter εt = yt − φ1yt−1; least squares estimation. In this

table we report rejection frequencies with the nominal sizes 1%, 5%, and 10%. T̂ is the proposed max-correlation

test. AP is Andrews and Ploberger’s (1996) sup-LM test. Qχ2 is the asymptotic Ljung-Box test based on the χ2

distribution. NN0,1 is Hong’s (1996) asymptotic test based on N(0, 1). Superscript “w” means the wild bootstrap

while “dw” means Shao’s (2011) dependent wild bootstrap. Lag length is Ln ∈ {5, [.5n/ ln(n)], [n/ ln(n)]}.
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Table 17: Rejection Frequencies of Tests with Various Fixed Ln = o(n) in Scenario #4 (n = 500)

et is iid: et = νt et is GARCH(1,1): w2
t = 1.0 + 0.2e2t−1 + 0.5w2

t−1

Lag = 5 Lag = 40 Lag = 80 Lag = 5 Lag = 40 Lag = 80

1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10%

T̂ w .570, .782, .871 .336, .542, .637 .268, .455, .560 .431, .657, .756 .289, .492, .602 .289, .466, .575

T̂ dw .538, .783, .866 .184, .442, .570 .143, .376, .516 .412, .679, .787 .180, .386, .534 .135, .333, .475

APw .479, .776, .865 .446, .728, .838 .444, .721, .850 .363, .656, .780 .345, .614, .757 .307, .593, .718

APdw .566, .794, .881 .553, .751, .850 .567, .781, .869 .461, .701, .806 .441, .673, .788 .439, .675, .792

Qχ2 .579, .776, .854 .191, .372, .507 .168, .322, .422 .587, .762, .839 .248, .423, .527 .166, .301, .411

NN0,1 .614, .730, .781 .226, .352, .440 .098, .178, .269 .631, .755, .804 .197, .332, .424 .122, .213, .292

Nw .567, .795, .874 .132, .345, .463 .071, .229, .376 .439, .688, .779 .108, .276, .409 .076, .223, .348

N dw .488, .768, .867 .010, .076, .230 .001, .027, .100 .311, .625, .763 .006, .071, .211 .000, .022, .077

et is MA(2): et = νt + 0.50νt−1 + 0.25νt−2 et is AR(1): et = 0.7et−1 + νt

Lag = 5 Lag = 40 Lag = 80 Lag = 5 Lag = 40 Lag = 80

1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10%

T̂ w .998, 1.00, 1.00 .954, .994, .998 .941, .983, .992 .992, 1.00, 1.00 .913, .981, .994 .872, .967, .988

T̂ dw .979, 1.00, 1.00 .834, .979, .992 .751, .962, .982 .977, 1.00, 1.00 .713, .958, .989 .643, .919, .972

APw 1.00, 1.00, 1.00 .999, 1.00, 1.00 .999, 1.00, 1.00 1.00, 1.00, 1.00 1.00, 1.00, 1.00 1.00, 1.00, 1.00

APdw 1.00, 1.00, 1.00 .997, 1.00, 1.00 .995, 1.00, 1.00 1.00, 1.00, 1.00 1.00, 1.00, 1.00 1.00, 1.00, 1.00

Qχ2 1.00, 1.00, 1.00 .970, .991, .998 .921, .970, .986 .997, 1.00, 1.00 .836, .944, .968 .718, .870, .924

NN0,1 1.00, 1.00, 1.00 .968, .993, .997 .876, .926, .951 1.00, 1.00, 1.00 .840, .933, .960 .625, .761, .826

Nw 1.00, 1.00, 1.00 .945, .991, .996 .798, .946, .978 .997, .998, 1.00 .765, .920, .969 .519, .794, .892

N dw .998, 1.00, 1.00 .294, .817, .949 .036, .345, .663 .981, 1.00, 1.00 .105, .524, .789 .017, .175, .419

Scenario #4: AR(2) yt = 0.3yt−1 − 0.15yt−2 + et; AR(1) filter εt = yt − φ1yt−1; least squares estimation. In this

table we report rejection frequencies with the nominal sizes 1%, 5%, and 10%. T̂ is the proposed max-correlation

test. AP is Andrews and Ploberger’s (1996) sup-LM test. Qχ2 is the asymptotic Ljung-Box test based on the χ2

distribution. NN0,1 is Hong’s (1996) asymptotic test based on N(0, 1). Superscript “w” means the wild bootstrap

while “dw” means Shao’s (2011) dependent wild bootstrap. Lag length is Ln ∈ {5, [.5n/ ln(n)], [n/ ln(n)]}.

52



Table 18: Rejection Frequencies of Tests with Various Fixed Ln = o(n) in Scenario #4 (n = 1000)

et is iid: et = νt et is GARCH(1,1): w2
t = 1.0 + 0.2e2t−1 + 0.5w2

t−1

Lag = 5 Lag = 72 Lag = 144 Lag = 5 Lag = 72 Lag = 144

1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10%

T̂ w .921, .979, .991 .778, .904, .938 .724, .878, .918 .833, .955, .980 .705, .828, .874 .655, .801, .856

T̂ dw .914, .975, .994 .658, .845, .914 .573, .788, .869 .787, .921, .958 .595, .795, .868 .502, .733, .827

APw .854, .969, .990 .825, .953, .980 .788, .958, .983 .733, .914, .955 .678, .875, .939 .659, .889, .941

APdw .893, .965, .985 .881, .976, .988 .864, .968, .995 .771, .925, .958 .726, .892, .940 .724, .916, .951

Qχ2 .937, .983, .996 .338, .573, .705 .265, .467, .599 .901, .956, .976 .405, .615, .708 .303, .495, .594

NN0,1 .942, .969, .980 .382, .558, .643 .175, .319, .415 .941, .967, .979 .387, .549, .633 .175, .307, .387

Nw .934, .991, .997 .279, .524, .662 .140, .362, .502 .818, .935, .964 .270, .525, .664 .162, .358, .509

N dw .900, .977, .991 .016, .166, .372 .000, .029, .113 .716, .921, .970 .003, .110, .291 .001, .022, .099

et is MA(2): et = νt + 0.50νt−1 + 0.25νt−2 et is AR(1): et = 0.7et−1 + νt

Lag = 5 Lag = 72 Lag = 144 Lag = 5 Lag = 72 Lag = 144

1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10%

T̂ w 1.00, 1.00, 1.00 1.00, 1.00, 1.00 1.00, 1.00, 1.00 1.00, 1.00, 1.00 1.00, 1.00, 1.00 1.00, 1.00, 1.00

T̂ dw 1.00, 1.00, 1.00 1.00, 1.00, 1.00 .999, 1.00, 1.00 1.00, 1.00, 1.00 .999, 1.00, 1.00 .999, 1.00, 1.00

APw 1.00, 1.00, 1.00 1.00, 1.00, 1.00 1.00, 1.00, 1.00 1.00, 1.00, 1.00 1.00, 1.00, 1.00 1.00, 1.00, 1.00

APdw 1.00, 1.00, 1.00 1.00, 1.00, 1.00 1.00, 1.00, 1.00 1.00, 1.00, 1.00 1.00, 1.00, 1.00 1.00, 1.00, 1.00

Qχ2 1.00, 1.00, 1.00 .999, 1.00, 1.00 1.00, 1.00, 1.00 1.00, 1.00, 1.00 .995, .999, 1.00 .955, .991, .995

NN0,1 1.00, 1.00, 1.00 .999, 1.00, 1.00 .986, .996, .998 1.00, 1.00, 1.00 .988, .997, .998 .899, .958, .975

Nw 1.00, 1.00, 1.00 1.00, 1.00, 1.00 .989, 1.00, 1.00 1.00, 1.00, 1.00 .972, .995, .998 .876, .978, .991

N dw 1.00, 1.00, 1.00 .761, .989, .999 .129, .708, .919 1.00, 1.00, 1.00 .380, .892, .981 .028, .320, .638

Scenario #4: AR(2) yt = 0.3yt−1 − 0.15yt−2 + et; AR(1) filter εt = yt − φ1yt−1; least squares estimation. In this

table we report rejection frequencies with the nominal sizes 1%, 5%, and 10%. T̂ is the proposed max-correlation

test. AP is Andrews and Ploberger’s (1996) sup-LM test. Qχ2 is the asymptotic Ljung-Box test based on the χ2

distribution. NN0,1 is Hong’s (1996) asymptotic test based on N(0, 1). Superscript “w” means the wild bootstrap

while “dw” means Shao’s (2011) dependent wild bootstrap. Lag length is Ln ∈ {5, [.5n/ ln(n)], [n/ ln(n)]}.
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Table 19: Rejection Frequencies of Tests with Various Fixed Ln = o(n) in Scenario #5 (n = 100)

et is iid: et = νt et is GARCH(1,1): w2
t = 1.0 + 0.2e2t−1 + 0.5w2

t−1

Lag = 5 Lag = 10 Lag = 21 Lag = 5 Lag = 10 Lag = 21

1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10%

T̂ w .001, .037, .089 .004, .036, .081 .005, .031, .065 .001, .037, .096 .003, .032, .074 .003, .037, .079

T̂ dw .005, .052, .108 .004, .036, .093 .004, .029, .071 .003, .034, .099 .002, .024, .073 .000, .016, .057

APw .006, .036, .087 .006, .032, .072 .001, .042, .080 .002, .033, .077 .007, .038, .082 .003, .034, .077

APdw .009, .060, .127 .006, .060, .136 .012, .059, .129 .004, .044, .095 .008, .058, .111 .010, .049, .122

Qχ2 .037, .108, .162 .032, .088, .140 .021, .082, .134 .476, .620, .704 .462, .617, .684 .334, .476, .548

NN0,1 .062, .128, .165 .044, .082, .124 .033, .063, .088 .566, .654, .710 .515, .624, .685 .317, .409, .453

Nw .005, .033, .072 .009, .033, .076 .004, .030, .069 .003, .022, .075 .003, .034, .082 .000, .014, .061

N dw .003, .041, .112 .000, .019, .068 .001, .012, .049 .002, .018, .066 .000, .011, .045 .000, .005, .029

et is MA(2): et = νt + 0.50νt−1 + 0.25νt−2 et is AR(1): et = 0.7et−1 + νt

Lag = 5 Lag = 10 Lag = 21 Lag = 5 Lag = 10 Lag = 21

1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10%

T̂ w .893, .974, .991 .848, .966, .981 .823, .962, .985 .967, .998, 1.00 .965, .998, .999 .972, .998, .999

T̂ dw .612, .889, .962 .536, .857, .941 .478, .849, .941 .594, .843, .933 .579, .832, .933 .580, .836, .929

APw .770, .965, .990 .774, .967, .988 .776, .957, .988 .948, .994, .998 .936, .989, 1.00 .950, .994, .999

APdw .550, .844, .945 .517, .830, .942 .485, .799, .925 .489, .785, .904 .465, .793, .923 .419, .768, .902

Qχ2 .967, .988, .994 .934, .979, .989 .877, .956, .973 .996, .997, .999 .997, .998, 1.00 .995, .997, .999

NN0,1 .987, .996, .998 .958, .985, .988 .865, .920, .936 .999, .999, .999 .998, .998, .998 .986, .991, .994

Nw .702, .946, .980 .543, .871, .952 .446, .790, .907 .929, .993, .999 .923, .993, .999 .893, .988, .998

N dw .339, .704, .885 .112, .496, .742 .025, .229, .489 .422, .775, .902 .270, .678, .851 .082, .422, .710

Scenario #5: GARCH(1,1) yt = σtet, σ
2
t = 1 + 0.2y2t−1 + 0.5σ2

t−1; no filter. In this table we report rejection

frequencies with the nominal sizes 1%, 5%, and 10%. T̂ is the proposed max-correlation test. AP is Andrews

and Ploberger’s (1996) sup-LM test. Qχ2 is the asymptotic Ljung-Box test based on the χ2 distribution. NN0,1

is Hong’s (1996) asymptotic test based on N(0, 1). Superscript “w” means the wild bootstrap while “dw” means

Shao’s (2011) dependent wild bootstrap. Lag length is Ln ∈ {5, [.5n/ ln(n)], [n/ ln(n)]}.
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Table 20: Rejection Frequencies of Tests with Various Fixed Ln = o(n) in Scenario #5 (n = 250)

et is iid: et = νt et is GARCH(1,1): w2
t = 1.0 + 0.2e2t−1 + 0.5w2

t−1

Lag = 5 Lag = 22 Lag = 45 Lag = 5 Lag = 22 Lag = 45

1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10%

T̂ w .009, .057, .119 .006, .047, .091 .008, .037, .084 .007, .040, .100 .005, .027, .073 .002, .029, .075

T̂ dw .007, .054, .119 .005, .032, .075 .001, .021, .075 .005, .037, .083 .007, .025, .054 .005, .015, .048

APw .011, .048, .102 .007, .042, .084 .009, .036, .093 .004, .032, .080 .007, .025, .075 .007, .041, .097

APdw .009, .063, .121 .012, .065, .136 .008, .063, .135 .012, .054, .104 .012, .036, .088 .013, .042, .094

Qχ2 .043, .122, .196 .027, .080, .143 .031, .090, .142 .808, .883, .916 .801, .876, .903 .652, .741, .781

NN0,1 .089, .143, .208 .029, .076, .117 .024, .051, .086 .874, .909, .923 .844, .894, .904 .611, .693, .736

Nw .003, .036, .085 .006, .040, .084 .007, .045, .083 .005, .031, .069 .003, .025, .086 .001, .020, .061

N dw .004, .041, .106 .001, .008, .044 .000, .007, .031 .003, .021, .059 .000, .006, .020 .000, .002, .015

et is MA(2): et = νt + 0.50νt−1 + 0.25νt−2 et is AR(1): et = 0.7et−1 + νt

Lag = 5 Lag = 22 Lag = 45 Lag = 5 Lag = 22 Lag = 45

1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10%

T̂ w .992, .999, .999 .993, 1.00, 1.00 .997, .999, .999 .981, .996, 1.00 .985, .997, 1.00 .982, 1.00, 1.00

T̂ dw .902, .974, .994 .905, .975, .993 .913, .976, .995 .696, .861, .931 .667, .848, .930 .672, .850, .937

APw .982, .999, 1.00 .985, .998, 1.00 .983, .997, 1.00 .983, .997, .999 .979, .997, .999 .978, .997, 1.00

APdw .829, .964, .987 .801, .942, .980 .800, .945, .979 .631, .833, .914 .608, .832, .912 .563, .825, .904

Qχ2 1.00, 1.00, 1.00 1.00, 1.00, 1.00 .997, 1.00, 1.00 1.00, 1.00, 1.00 1.00, 1.00, 1.00 .998, .998, .998

NN0,1 1.00, 1.00, 1.00 1.00, 1.00, 1.00 .999, 1.00, 1.00 .999, 1.00, 1.00 .999, .999, .999 .998, .998, .999

Nw .981, .998, .999 .973, .997, 1.00 .935, .993, .998 .975, 1.00, 1.00 .970, .999, 1.00 .971, 1.00, 1.00

N dw .780, .945, .980 .289, .781, .931 .049, .450, .785 .584, .826, .912 .396, .733, .857 .170, .645, .825

Scenario #5: GARCH(1,1) yt = σtet, σ
2
t = 1 + 0.2y2t−1 + 0.5σ2

t−1; no filter. In this table we report rejection

frequencies with the nominal sizes 1%, 5%, and 10%. T̂ is the proposed max-correlation test. AP is Andrews

and Ploberger’s (1996) sup-LM test. Qχ2 is the asymptotic Ljung-Box test based on the χ2 distribution. NN0,1

is Hong’s (1996) asymptotic test based on N(0, 1). Superscript “w” means the wild bootstrap while “dw” means

Shao’s (2011) dependent wild bootstrap. Lag length is Ln ∈ {5, [.5n/ ln(n)], [n/ ln(n)]}.
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Table 21: Rejection Frequencies of Tests with Various Fixed Ln = o(n) in Scenario #5 (n = 500)

et is iid: et = νt et is GARCH(1,1): w2
t = 1.0 + 0.2e2t−1 + 0.5w2

t−1

Lag = 5 Lag = 40 Lag = 80 Lag = 5 Lag = 40 Lag = 80

1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10%

T̂ w .006, .040, .097 .005, .047, .089 .009, .042, .083 .000, .028, .080 .001, .027, .077 .001, .033, .083

T̂ dw .006, .046, .087 .002, .019, .067 .003, .019, .058 .006, .027, .058 .003, .020, .049 .006, .020, .041

APw .010, .042, .090 .005, .054, .098 .006, .044, .093 .003, .035, .079 .003, .047, .081 .002, .031, .085

APdw .012, .053, .105 .008, .053, .101 .007, .065, .129 .007, .031, .091 .008, .029, .070 .008, .031, .073

Qχ2 .058, .155, .239 .025, .088, .147 .034, .085, .140 .933, .955, .972 .940, .960, .972 .801, .847, .878

NN0,1 .083, .149, .209 .032, .062, .105 .014, .043, .067 .948, .958, .971 .946, .966, .976 .818, .855, .872

Nw .006, .039, .086 .006, .039, .089 .005, .041, .084 .004, .041, .079 .004, .028, .060 .001, .021, .043

N dw .005, .041, .100 .000, .001, .026 .000, .004, .013 .003, .024, .052 .003, .007, .017 .000, .001, .006

et is MA(2): et = νt + 0.50νt−1 + 0.25νt−2 et is AR(1): et = 0.7et−1 + νt

Lag = 5 Lag = 40 Lag = 80 Lag = 5 Lag = 40 Lag = 80

1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10%

T̂ w 1.00, 1.00, 1.00 .998, .999, 1.00 .999, 1.00, 1.00 .983, 1.00, 1.00 .995, 1.00, 1.00 .986, .998, 1.00

T̂ dw .970, .995, .998 .955, .991, .997 .956, .991, .995 .716, .868, .926 .725, .874, .930 .700, .850, .918

APw .998, 1.00, 1.00 .996, 1.00, 1.00 .994, .999, 1.00 .984, .998, .999 .982, .998, 1.00 .979, .995, 1.00

APdw .930, .983, .995 .910, .979, .994 .905, .979, .992 .672, .835, .901 .623, .818, .895 .658, .844, .916

Qχ2 .999, 1.00, 1.00 1.00, 1.00, 1.00 1.00, 1.00, 1.00 1.00, 1.00, 1.00 1.00, 1.00, 1.00 .999, .999, .999

NN0,1 1.00, 1.00, 1.00 1.00, 1.00, 1.00 1.00, 1.00, 1.00 1.00, 1.00, 1.00 .999, 1.00, 1.00 .999, 1.00, 1.00

Nw .997, 1.00, 1.00 .993, .999, 1.00 .993, 1.00, 1.00 .986, .997, 1.00 .974, .999, 1.00 .981, .998, 1.00

N dw .908, .974, .991 .624, .923, .970 .197, .772, .955 .645, .824, .896 .505, .753, .879 .293, .694, .852

Scenario #5: GARCH(1,1) yt = σtet, σ
2
t = 1 + 0.2y2t−1 + 0.5σ2

t−1; no filter. In this table we report rejection

frequencies with the nominal sizes 1%, 5%, and 10%. T̂ is the proposed max-correlation test. AP is Andrews

and Ploberger’s (1996) sup-LM test. Qχ2 is the asymptotic Ljung-Box test based on the χ2 distribution. NN0,1

is Hong’s (1996) asymptotic test based on N(0, 1). Superscript “w” means the wild bootstrap while “dw” means

Shao’s (2011) dependent wild bootstrap. Lag length is Ln ∈ {5, [.5n/ ln(n)], [n/ ln(n)]}.
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Table 22: Rejection Frequencies of Tests with Various Fixed Ln = o(n) in Scenario #5 (n = 1000)

et is iid: et = νt et is GARCH(1,1): w2
t = 1.0 + 0.2e2t−1 + 0.5w2

t−1

Lag = 5 Lag = 72 Lag = 144 Lag = 5 Lag = 72 Lag = 144

1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10%

T̂ w .013, .056, .107 .004, .048, .082 .011, .033, .068 .002, .041, .099 .006, .029, .080 .004, .032, .069

T̂ dw .004, .044, .092 .004, .038, .078 .003, .017, .056 .006, .020, .050 .000, .011, .044 .006, .011, .028

APw .006, .059, .097 .008, .050, .107 .010, .045, .086 .006, .045, .095 .003, .032, .075 .006, .038, .083

APdw .009, .045, .095 .010, .043, .093 .007, .056, .111 .003, .025, .062 .004, .017, .047 .008, .019, .052

Qχ2 .045, .138, .215 .032, .085, .153 .031, .094, .153 .988, .996, .996 .974, .983, .986 .921, .940, .946

NN0,1 .103, .168, .221 .025, .063, .121 .016, .038, .059 .990, .993, .993 .977, .982, .986 .894, .917, .924

Nw .011, .044, .091 .009, .043, .090 .004, .037, .087 .005, .031, .077 .003, .027, .065 .000, .019, .047

N dw .005, .045, .109 .000, .002, .023 .000, .000, .007 .001, .017, .044 .000, .001, .004 .000, .001, .004

et is MA(2): et = νt + 0.50νt−1 + 0.25νt−2 et is AR(1): et = 0.7et−1 + νt

Lag = 5 Lag = 72 Lag = 144 Lag = 5 Lag = 72 Lag = 144

1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10%

T̂ w 1.00, 1.00, 1.00 1.00, 1.00, 1.00 1.00, 1.00, 1.00 .988, .999, .999 .987, .998, 1.00 .986, 1.00, 1.00

T̂ dw .985, .997, .999 .987, .996, .996 .991, 1.00, 1.00 .751, .870, .917 .768, .884, .935 .762, .883, .933

APw .998, 1.00, 1.00 .997, 1.00, 1.00 .997, 1.00, 1.00 .981, 1.00, 1.00 .985, 1.00, 1.00 .982, .998, 1.00

APdw .975, .996, .999 .967, .987, .992 .973, .993, .999 .728, .864, .923 .704, .841, .904 .687, .848, .915

Qχ2 1.00, 1.00, 1.00 1.00, 1.00, 1.00 1.00, 1.00, 1.00 1.00, 1.00, 1.00 1.00, 1.00, 1.00 1.00, 1.00, 1.00

NN0,1 1.00, 1.00, 1.00 1.00, 1.00, 1.00 1.00, 1.00, 1.00 1.00, 1.00, 1.00 1.00, 1.00, 1.00 1.00, 1.00, 1.00

Nw .998, 1.00, 1.00 .999, 1.00, 1.00 .998, 1.00, 1.00 .981, .999, 1.00 .981, .998, 1.00 .977, .995, .998

N dw .961, .988, .997 .892, .983, .992 .603, .958, .987 .680, .838, .900 .570, .780, .871 .471, .747, .870

Scenario #5: GARCH(1,1) yt = σtet, σ
2
t = 1 + 0.2y2t−1 + 0.5σ2

t−1; no filter. In this table we report rejection

frequencies with the nominal sizes 1%, 5%, and 10%. T̂ is the proposed max-correlation test. AP is Andrews

and Ploberger’s (1996) sup-LM test. Qχ2 is the asymptotic Ljung-Box test based on the χ2 distribution. NN0,1

is Hong’s (1996) asymptotic test based on N(0, 1). Superscript “w” means the wild bootstrap while “dw” means

Shao’s (2011) dependent wild bootstrap. Lag length is Ln ∈ {5, [.5n/ ln(n)], [n/ ln(n)]}.
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Table 23: Rejection Frequencies of Tests with Various Fixed Ln = o(n) in Scenario #6 (n = 100)

et is iid: et = νt et is GARCH(1,1): w2
t = 1.0 + 0.2e2t−1 + 0.5w2

t−1

Lag = 5 Lag = 10 Lag = 21 Lag = 5 Lag = 10 Lag = 21

1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10%

T̂ w .006, .047, .089 .009, .047, .084 .005, .033, .072 .007, .047, .097 .004, .040, .083 .003, .035, .083

T̂ dw .015, .095, .163 .010, .051, .114 .005, .031, .070 .016, .080, .157 .010, .046, .128 .003, .027, .093

APw .009, .050, .095 .008, .036, .075 .009, .041, .090 .012, .054, .102 .013, .044, .096 .010, .044, .094

APdw .020, .075, .149 .021, .084, .152 .017, .065, .130 .028, .097, .175 .038, .100, .184 .033, .091, .173

Qχ2 011, .055, .107 .016, .051, .093 .030, .082, .127 .033, .092, .151 .040, .103, .169 .035, .087, .146

NN0,1 .025, .060, .088 .021, .058, .092 .015, .042, .063 .050, .116, .147 .046, .090, .136 .044, .077, .116

Nw .007, .050, .107 .011, .044, .084 .005, .030, .064 .008, .059, .114 .008, .043, .089 .013, .052, .093

N dw .009, .063, .141 .004, .039, .105 .001, .016, .057 .018, .085, .168 .002, .045, .107 .001, .029, .084

et is MA(2): et = νt + 0.50νt−1 + 0.25νt−2 et is AR(1): et = 0.7et−1 + νt

Lag = 5 Lag = 10 Lag = 21 Lag = 5 Lag = 10 Lag = 21

1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10%

T̂ w .865, .946, .960 .794, .923, .946 .737, .850, .885 .970, .977, .983 .949, .958, .962 .927, .946, .954

T̂ dw .799, .924, .950 .655, .882, .926 .471, .800, .882 .953, .975, .976 .946, .971, .976 .894, .948, .957

APw .902, .965, .974 .873, .955, .968 .873, .949, .962 .964, .972, .980 .967, .973, .975 .964, .976, .979

APdw .821, .943, .960 .782, .926, .947 .801, .943, .966 .959, .974, .979 .923, .966, .970 .939, .978, .981

Qχ2 .903, .976, .992 .794, .909, .948 .670, .825, .888 .998, 1.00, 1.00 .997, 1.00, 1.00 .989, .997, .998

NN0,1 .941, .976, .984 .861, .925, .955 .688, .798, .838 1.00, 1.00, 1.00 .997, 1.00, 1.00 .990, .994, .998

Nw .760, .912, .942 .572, .826, .895 .355, .652, .778 .949, .965, .972 .927, .959, .970 .821, .916, .937

N dw .546, .840, .931 .199, .569, .770 .056, .267, .494 .909, .970, .978 .589, .910, .961 .212, .586, .816

Scenario #6: GARCH(1,1) yt = σtet, σ
2
t = 1 + 0.2y2t−1 + 0.5σ2

t−1; GARCH(1,1) filter εt = yt/σt with σ2
t =

ω + αy2t−1 + βσ2
t−1; QML estimation. In this table we report rejection frequencies with the nominal sizes 1%, 5%,

and 10%. T̂ is the proposed max-correlation test. AP is Andrews and Ploberger’s (1996) sup-LM test. Qχ2 is the

asymptotic Ljung-Box test based on the χ2 distribution. NN0,1 is Hong’s (1996) asymptotic test based on N(0, 1).

Superscript “w” means the wild bootstrap while “dw” means Shao’s (2011) dependent wild bootstrap. Lag length

is Ln ∈ {5, [.5n/ ln(n)], [n/ ln(n)]}.
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Table 24: Rejection Frequencies of Tests with Various Fixed Ln = o(n) in Scenario #6 (n = 250)

et is iid: et = νt et is GARCH(1,1): w2
t = 1.0 + 0.2e2t−1 + 0.5w2

t−1

Lag = 5 Lag = 22 Lag = 45 Lag = 5 Lag = 22 Lag = 45

1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10%

T̂ w .014, .055, .115 .008, .045, .102 .008, .048, .083 .011, .055, .108 .008, .046, .091 .009, .052, .104

T̂ dw .010, .073, .139 .002, .034, .096 .002, .026, .068 .010, .058, .127 .005, .036, .094 .003, .024, .083

APw .011, .045, .084 .011, .042, .086 .009, .048, .107 .017, .057, .114 .018, .052, .103 .015, .056, .098

APdw .019, .075, .143 .015, .064, .140 .017, .072, .128 .019, .074, .133 .014, .072, .150 .014, .065, .137

Qχ2 .015, .053, .099 .019, .073, .114 .032, .077, .120 .030, .096, .156 .027, .074, .139 .035, .099, .155

NN0,1 .031, .089, .124 .031, .061, .095 .022, .043, .072 .069, .132, .179 .038, .078, .123 .025, .057, .083

Nw .010, .045, .095 .009, .049, .102 .007, .031, .069 .014, .066, .127 .009, .049, .093 .010, .052, .113

N dw .007, .056, .118 .000, .026, .062 .000, .015, .041 .009, .061, .126 .000, .023, .065 .000, .011, .045

et is MA(2): et = νt + 0.50νt−1 + 0.25νt−2 et is AR(1): et = 0.7et−1 + νt

Lag = 5 Lag = 22 Lag = 45 Lag = 5 Lag = 22 Lag = 45

1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10%

T̂ w .992, .992, .993 .988, .989, .992 .982, .988, .989 .995, .999, .999 .991, .993, .993 .991, .991, .992

T̂ dw .994, .997, .997 .989, .991, .993 .967, .977, .978 .997, .997, .998 .991, .993, .994 .995, .997, .997

APw .993, .994, .997 .993, .994, .995 .994, .994, .997 .999, 1.00, 1.00 .999, .999, .999 .993, .994, .994

APdw .990, .993, .994 .988, .995, .995 .992, .995, .996 .994, .994, .996 .994, .994, .996 .998, .999, .999

Qχ2 1.00, 1.00, 1.00 .997, 1.00, 1.00 .979, .991, .998 1.00, 1.00, 1.00 1.00, 1.00, 1.00 1.00, 1.00, 1.00

NN0,1 1.00, 1.00, 1.00 .999, 1.00, 1.00 .975, .990, .998 1.00, 1.00, 1.00 1.00, 1.00, 1.00 1.00, 1.00, 1.00

Nw .991, .992, .993 .969, .986, .988 .838, .948, .967 .993, .994, .994 .995, .995, .996 .991, .992, .993

N dw .979, .992, .993 .410, .894, .963 .089, .470, .774 .997, .997, .997 .866, .986, .988 .383, .903, .982

Scenario #6: GARCH(1,1) yt = σtet, σ
2
t = 1 + 0.2y2t−1 + 0.5σ2

t−1; GARCH(1,1) filter εt = yt/σt with σ2
t =

ω + αy2t−1 + βσ2
t−1; QML estimation. In this table we report rejection frequencies with the nominal sizes 1%, 5%,

and 10%. T̂ is the proposed max-correlation test. AP is Andrews and Ploberger’s (1996) sup-LM test. Qχ2 is the

asymptotic Ljung-Box test based on the χ2 distribution. NN0,1 is Hong’s (1996) asymptotic test based on N(0, 1).

Superscript “w” means the wild bootstrap while “dw” means Shao’s (2011) dependent wild bootstrap. Lag length

is Ln ∈ {5, [.5n/ ln(n)], [n/ ln(n)]}.
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Table 25: Rejection Frequencies of Tests with Various Fixed Ln = o(n) in Scenario #6 (n = 500)

et is iid: et = νt et is GARCH(1,1): w2
t = 1.0 + 0.2e2t−1 + 0.5w2

t−1

Lag = 5 Lag = 40 Lag = 80 Lag = 5 Lag = 40 Lag = 80

1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10%

T̂ w .012, .057, .106 .011, .051, .104 .002, .040, .086 .012, .048, .089 .010, .040, .093 .009, .043, .089

T̂ dw .007, .058, .113 .006, .036, .107 .001, .029, .073 .006, .050, .116 .003, .029, .079 .003, .021, .064

APw .006, .047, .096 .008, .046, .087 .017, .057, .104 .010, .055, .110 .015, .049, .102 .009, .040, .094

APdw .013, .072, .125 .014, .075, .145 .016, .060, .111 .016, .071, .126 .021, .075, .130 .016, .060, .133

Qχ2 .013, .046, .092 .018, .067, .105 .029, .084, .135 .033, .104, .169 .022, .078, .148 .020, .083, .137

NN0,1 .021, .064, .101 .019, .063, .096 .016, .039, .069 .065, .141, .192 .032, .076, .120 .026, .055, .080

Nw .009, .054, .105 .004, .040, .098 .010, .037, .071 .016, .059, .125 .011, .043, .093 .005, .033, .080

N dw .014, .053, .109 .000, .011, .047 .000, .003, .025 .011, .048, .113 .001, .015, .048 .000, .006, .035

et is MA(2): et = νt + 0.50νt−1 + 0.25νt−2 et is AR(1): et = 0.7et−1 + νt

Lag = 5 Lag = 40 Lag = 80 Lag = 5 Lag = 40 Lag = 80

1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10%

T̂ w .999, 1.00, 1.00 .998, .998, .998 .998, .998, .998 .998, 1.00, 1.00 .995, .995, .995 .997, .997, .997

T̂ dw .996, .996, .997 .997, .998, .998 .996, .996, .996 .996, .996, .996 .999, .999, .999 .998, .998, .999

APw .999, .999, .999 .995, .995, .995 1.00, 1.00, 1.00 .998, .998, .998 1.00, 1.00, 1.00 1.00, 1.00, 1.00

APdw 1.00, 1.00, 1.00 .998, .998, .998 1.00, 1.00, 1.00 .999, .999, 1.00 .999, 1.00, 1.00 .999, .999, .999

Qχ2 1.00, 1.00, 1.00 1.00, 1.00, 1.00 .999, 1.00, 1.00 1.00, 1.00, 1.00 1.00, 1.00, 1.00 1.00, 1.00, 1.00

NN0,1 1.00, 1.00, 1.00 1.00, 1.00, 1.00 1.00, 1.00, 1.00 1.00, 1.00, 1.00 1.00, 1.00, 1.00 1.00, 1.00, 1.00

Nw .999, .999, .999 .997, .999, .999 .991, .994, .994 .999, 1.00, 1.00 .999, .999, .999 .996, .996, .996

N dw .999, 1.00, 1.00 .821, .995, .996 .210, .819, .962 .997, .998, .998 .990, .997, .998 .774, .994, .995

Scenario #6: GARCH(1,1) yt = σtet, σ
2
t = 1 + 0.2y2t−1 + 0.5σ2

t−1; GARCH(1,1) filter εt = yt/σt with σ2
t =

ω + αy2t−1 + βσ2
t−1; QML estimation. In this table we report rejection frequencies with the nominal sizes 1%, 5%,

and 10%. T̂ is the proposed max-correlation test. AP is Andrews and Ploberger’s (1996) sup-LM test. Qχ2 is the

asymptotic Ljung-Box test based on the χ2 distribution. NN0,1 is Hong’s (1996) asymptotic test based on N(0, 1).

Superscript “w” means the wild bootstrap while “dw” means Shao’s (2011) dependent wild bootstrap. Lag length

is Ln ∈ {5, [.5n/ ln(n)], [n/ ln(n)]}.
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Table 26: Rejection Frequencies of Tests with Various Fixed Ln = o(n) in Scenario #6 (n = 1000)

et is iid: et = νt et is GARCH(1,1): w2
t = 1.0 + 0.2e2t−1 + 0.5w2

t−1

Lag = 5 Lag = 72 Lag = 144 Lag = 5 Lag = 72 Lag = 144

1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10%

T̂ w .011, .048, .102 .006, .049, .090 .005, .041, .103 .011, .049, .097 .010, .065, .109 .009, .056, .098

T̂ dw .011, .052, .106 .002, .028, .083 .004, .022, .066 .012, .068, .121 .001, .038, .088 .001, .034, .080

APw .011, .046, .096 .010, .043, .093 .011, .047, .106 .013, .046, .091 .009, .059, .102 .007, .052, .101

APdw .021, .071, .123 .013, .051, .108 .020, .079, .129 .011, .057, .137 .012, .063, .121 .008, .051, .114

Qχ2 .013, .060, .100 .023, .073, .123 .019, .078, .148 .042, .115, .183 .020, .075, .123 .027, .088, .141

NN0,1 .032, .073, .100 .022, .053, .092 .011, .030, .047 .069, .137, .190 .030, .078, .121 .013, .042, .068

Nw .011, .068, .110 .008, .045, .098 .004, .045, .094 .009, .046, .096 .008, .047, .094 .004, .036, .091

N dw .018, .061, .137 .001, .006, .028 .000, .001, .014 .006, .051, .118 .000, .002, .020 .000, .004, .017

et is MA(2): et = νt + 0.50νt−1 + 0.25νt−2 et is AR(1): et = 0.7et−1 + νt

Lag = 5 Lag = 72 Lag = 144 Lag = 5 Lag = 72 Lag = 144

1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10%

T̂ w 1.00, 1.00, 1.00 1.00, 1.00, 1.00 1.00, 1.00, 1.00 1.00, 1.00, 1.00 1.00, 1.00, 1.00 .998, .998, .999

T̂ dw 1.00, 1.00, 1.00 .999, .999, 1.00 .999, .999, .999 .998, .998, .998 .999, .999, 1.00 .999, .999, .999

APw .999, 1.00, 1.00 1.00, 1.00, 1.00 1.00, 1.00, 1.00 .999, .999, .999 .999, .999, .999 1.00, 1.00, 1.00

APdw 1.00, 1.00, 1.00 .998, .998, .998 1.00, 1.00, 1.00 .999, .999, .999 1.00, 1.00, 1.00 .999, .999, .999

Qχ2 1.00, 1.00, 1.00 1.00, 1.00, 1.00 1.00, 1.00, 1.00 1.00, 1.00, 1.00 1.00, 1.00, 1.00 1.00, 1.00, 1.00

NN0,1 1.00, 1.00, 1.00 1.00, 1.00, 1.00 1.00, 1.00, 1.00 1.00, 1.00, 1.00 1.00, 1.00, 1.00 1.00, 1.00, 1.00

Nw 1.00, 1.00, 1.00 1.00, 1.00, 1.00 1.00, 1.00, 1.00 1.00, 1.00, 1.00 .999, .999, .999 .997, .998, .998

N dw .999, .999, .999 .998, 1.00, 1.00 .670, .992, 1.00 1.00, 1.00, 1.00 .999, 1.00, 1.00 .994, 1.00, 1.00

Scenario #6: GARCH(1,1) yt = σtet, σ
2
t = 1 + 0.2y2t−1 + 0.5σ2

t−1; GARCH(1,1) filter εt = yt/σt with σ2
t =

ω + αy2t−1 + βσ2
t−1; QML estimation. In this table we report rejection frequencies with the nominal sizes 1%, 5%,

and 10%. T̂ is the proposed max-correlation test. AP is Andrews and Ploberger’s (1996) sup-LM test. Qχ2 is the

asymptotic Ljung-Box test based on the χ2 distribution. NN0,1 is Hong’s (1996) asymptotic test based on N(0, 1).

Superscript “w” means the wild bootstrap while “dw” means Shao’s (2011) dependent wild bootstrap. Lag length

is Ln ∈ {5, [.5n/ ln(n)], [n/ ln(n)]}.
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Table 27: Rejection Frequencies of Tests with Various Fixed Ln = o(n) in Scenario #7 (Remote MA(6))

n = 100 n = 250

Lag = 5 Lag = 10 Lag = 21 Lag = 5 Lag = 22 Lag = 45

1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10%

T̂ w .014, .080, .146 .068, .231, .381 .057, .201, .336 .024, .077, .131 .519, .732, .814 .464, .666, .750

T̂ dw .011, .063, .143 .048, .226, .388 .025, .147, .293 .005, .040, .098 .319, .649, .789 .269, .543, .678

APw .012, .066, .123 .023, .110, .182 .032, .104, .175 .027, .086, .159 .052, .147, .226 .034, .147, .232

APdw .019, .075, .151 .016, .086, .158 .018, .084, .153 .018, .069, .136 .018, .093, .180 .017, .072, .164

Qχ2 .033, .107, .178 .138, .290, .400 .141, .283, .381 .044, .111, .188 .342, .570, .703 .302, .488, .599

NN0,1 .071, .125, .175 .194, .319, .399 .132, .228, .286 .067, .124, .164 .384, .545, .634 .256, .381, .467

Nw .017, .065, .120 .060, .229, .357 .042, .154, .265 .019, .089, .157 .219, .469, .634 .131, .338, .482

N dw .016, .074, .155 .018, .149, .303 .006, .056, .159 .013, .050, .103 .021, .173, .362 .001, .051, .171

n = 500 n = 1000

Lag = 5 Lag = 40 Lag = 80 Lag = 5 Lag = 72 Lag = 144

1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10%

T̂ w .019, .092, .161 .942, .988, .993 .952, .986, .991 .034, .092, .169 1.00, 1.00, 1.00 1.00, 1.00, 1.00

T̂ dw .010, .064, .122 .878, .968, .985 .823, .944, .974 .007, .059, .121 1.00, 1.00, 1.00 1.00, 1.00, 1.00

APw .020, .098, .171 .102, .244, .343 .092, .245, .363 .025, .091, .162 .165, .341, .455 .178, .359, .481

APdw .008, .048, .115 .026, .129, .236 .027, .112, .211 .009, .058, .124 .063, .223, .347 .064, .221, .357

Qχ2 .037, .106, .186 .661, .846, .910 .495, .706, .801 .029, .097, .167 .941, .983, .988 .817, .926, .964

NN0,1 .070, .137, .186 .704, .833, .889 .441, .589, .680 .083, .143, .189 .935, .977, .987 .692, .825, .893

Nw .034, .102, .171 .488, .763, .869 .295, .585, .720 .025, .108, .183 .851, .960, .988 .633, .869, .941

N dw .007, .049, .115 .037, .297, .571 .004, .080, .243 .009, .058, .113 .177, .676, .877 .010, .170, .433

Scenario #7: Remote MA(6) yt = et+ 0.25et−6 with et
i.i.d.∼ N(0, 1); mean filter εt = yt−E[yt]; φ̂n = 1/n

∑n
t=1 yt.

In this table we report rejection frequencies with the nominal sizes 1%, 5%, and 10%. T̂ is the proposed

max-correlation test. AP is Andrews and Ploberger’s (1996) sup-LM test. Qχ2 is the asymptotic Ljung-

Box test based on the χ2 distribution. NN0,1 is Hong’s (1996) asymptotic test based on N(0, 1). Super-

script “w” means the wild bootstrap while “dw” means Shao’s (2011) dependent wild bootstrap. Lag length

is Ln ∈ {5, [.5n/ ln(n)], [n/ ln(n)]}.
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Table 28: Rejection Frequencies of Tests with Various Fixed Ln = o(n) in Scenario #8 (Remote MA(12))

n = 100 n = 250

Lag = 5 Lag = 10 Lag = 21 Lag = 5 Lag = 22 Lag = 45

1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10%

T̂ w .010, .062, .126 .008, .067, .132 .053, .180, .283 .012, .060, .122 .488, .715, .799 .491, .705, .800

T̂ dw .019, .067, .148 .010, .067, .159 .034, .163, .280 .019, .077, .155 .383, .659, .779 .320, .596, .729

APw .011, .048, .097 .012, .054, .109 .016, .062, .132 .013, .055, .123 .021, .087, .162 .020, .079, .143

APdw .029, .115, .184 .015, .085, .180 .024, .097, .176 .023, .083, .139 .022, .098, .175 .015, .084, .165

Qχ2 .024, .075, .125 .034, .100, .168 .130, .252, .351 .029, .080, .156 .327, .563, .692 .261, .457, .570

NN0,1 .046, .099, .139 .062, .122, .167 .120, .193, .253 .050, .098, .136 .410, .572, .646 .200, .309, .402

Nw .007, .061, .121 .021, .072, .135 .037, .159, .280 .015, .064, .119 .224, .476, .641 .117, .331, .483

N dw .012, .073, .147 .006, .060, .140 .011, .082, .215 .009, .067, .154 .048, .287, .500 .017, .128, .305

n = 500 n = 1000

Lag = 5 Lag = 40 Lag = 80 Lag = 5 Lag = 72 Lag = 144

1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10%

T̂ w .014, .061, .128 .939, .977, .989 .901, .959, .981 .019, .082, .140 1.00, 1.00, 1.00 1.00, 1.00, 1.00

T̂ dw .009, .061, .121 .883, .964, .976 .854, .958, .979 .014, .051, .114 1.00, 1.00, 1.00 1.00, 1.00, 1.00

APw .012, .065, .135 .023, .094, .161 .027, .098, .170 .007, .054, .110 .027, .109, .168 .029, .118, .198

APdw .010, .070, .131 .005, .049, .119 .013, .063, .145 .016, .066, .125 .011, .071, .149 .014, .077, .137

Qχ2 .010, .066, .118 .621, .804, .897 .500, .698, .785 .016, .075, .137 .936, .978, .992 .809, .924, .955

NN0,1 .059, .108, .151 .667, .814, .877 .417, .574, .674 .042, .089, .130 .930, .981, .992 .710, .845, .890

Nw .014, .058, .132 .497, .768, .855 .296, .584, .733 .019, .086, .143 .862, .966, .991 .618, .864, .926

N dw .006, .071, .139 .094, .440, .697 .015, .145, .372 .011, .054, .115 .229, .737, .926 .020, .232, .527

Scenario #8: Remote MA(12) yt = et + 0.25et−12 with et
i.i.d.∼ N(0, 1); mean filter εt = yt − E[yt]; φ̂n =

1/n
∑n
t=1 yt. In this table we report rejection frequencies with the nominal sizes 1%, 5%, and 10%. T̂ is the

proposed max-correlation test. AP is Andrews and Ploberger’s (1996) sup-LM test. Qχ2 is the asymptotic Ljung-

Box test based on the χ2 distribution. NN0,1 is Hong’s (1996) asymptotic test based on N(0, 1). Superscript

“w” means the wild bootstrap while “dw” means Shao’s (2011) dependent wild bootstrap. Lag length is Ln ∈
{5, [.5n/ ln(n)], [n/ ln(n)]}.
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Table 29: Rejection Frequencies of Tests with Various Fixed Ln = o(n) in Scenario #9 (Remote MA(24))

n = 100 n = 250

Lag = 5 Lag = 10 Lag = 21 Lag = 5 Lag = 22 Lag = 45

1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10%

T̂ w .014, .058, .115 .008, .042, .092 .012, .056, .109 .016, .060, .117 .019, .077, .142 .362, .586, .688

T̂ dw .017, .094, .168 .011, .073, .150 .010, .068, .143 .014, .083, .160 .011, .066, .167 .258, .534, .670

APw .005, .044, .093 .009, .044, .089 .008, .045, .097 .010, .064, .124 .014, .078, .129 .010, .056, .112

APdw .026, .084, .164 .022, .083, .154 .021, .094, .164 .014, .073, .142 .015, .075, .158 .018, .069, .142

Qχ2 .019, .074, .122 .032, .097, .152 .066, .135, .194 .016, .067, .123 .048, .140, .213 .229, .426, .533

NN0,1 .034, .074, .105 .053, .088, .124 .055, .094, .128 .041, .088, .127 .075, .141, .183 .224, .337, .415

Nw .008, .063, .131 .012, .059, .117 .012, .059, .136 .017, .071, .142 .028, .094, .160 .106, .324, .457

N dw .010, .065, .135 .006, .056, .135 .005, .050, .118 .004, .053, .144 .005, .052, .108 .020, .130, .287

n = 500 n = 1000

Lag = 5 Lag = 40 Lag = 80 Lag = 5 Lag = 72 Lag = 144

1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10%

T̂ w .018, .069, .129 .914, .974, .983 .891, .965, .977 .008, .061, .119 1.00, 1.00, 1.00 1.00, 1.00, 1.00

T̂ dw .012, .059, .133 .867, .959, .979 .851, .949, .979 .012, .060, .128 .999, 1.00, 1.00 .999, 1.00, 1.00

APw .013, .051, .105 .013, .063, .119 .015, .064, .129 .015, .067, .119 .002, .049, .113 .015, .065, .113

APdw .019, .079, .153 .021, .075, .156 .017, .064, .138 .018, .073, .134 .012, .072, .133 .016, .070, .150

Qχ2 .016, .083, .140 .626, .818, .877 .487, .696, .791 .016, .075, .126 .936, .981, .989 .821, .932, .955

NN0,1 .058, .106, .162 .673, .800, .860 .404, .567, .652 .057, .101, .166 .943, .979, .988 .712, .842, .888

Nw .012, .073, .133 .514, .772, .869 .293, .559, .717 .009, .069, .147 .867, .975, .989 .646, .864, .928

N dw .008, .069, .144 .134, .516, .756 .029, .247, .512 .016, .076, .126 .316, .787, .929 .044, .354, .663

Scenario #9: Remote MA(24) yt = et + 0.25et−24 with et
i.i.d.∼ N(0, 1); mean filter εt = yt − E[yt]; φ̂n =

1/n
∑n
t=1 yt. In this table we report rejection frequencies with the nominal sizes 1%, 5%, and 10%. T̂ is the

proposed max-correlation test. AP is Andrews and Ploberger’s (1996) sup-LM test. Qχ2 is the asymptotic Ljung-

Box test based on the χ2 distribution. NN0,1 is Hong’s (1996) asymptotic test based on N(0, 1). Superscript

“w” means the wild bootstrap while “dw” means Shao’s (2011) dependent wild bootstrap. Lag length is Ln ∈
{5, [.5n/ ln(n)], [n/ ln(n)]}.
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Table 30: Rejection frequencies of T̂n(L∗n), AP, and CvM (Scenarios #1–#6, n = 100)

IID error: et = νt

#1. Simple #2. Bilin #3. AR2/AR2 #4. AR2/AR1 #5. GARCH/wo #6. GARCH/w

1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10%

T̂n(L∗n) .017, .068, .128 .008, .047, .090 .002, .061, .129 .034, .197, .327 .006, .031, .068 .026, .091, .140

APw .007, .038, .086 .011, .072, .128 .007, .042, .098 .042, .195, .329 .004, .028, .068 .006, .039, .086

APdw .017, .079, .144 .022, .083, .151 .022, .102, .190 .182, .376, .504 .020, .072, .136 .019, .078, .135

CvMw .012, .063, .132 .013, .075, .135 .009, .060, .124 .106, .287, .413 .005, .035, .079 .012, .043, .076

CvMdw .023, .081, .138 .018, .076, .149 .020, .086, .167 .133, .338, .483 .021, .077, .141 .034, .087, .144

CvMbrw .028, .082, .142 .045, .115, .186 .009, .041, .076 .123, .276, .390 .034, .076, .139 .001, .024, .075

GARCH(1,1) error: et = νtwt with w2
t = 1 + 0.2e2

t−1 + 0.5w2
t−1

#1. Simple #2. Bilin #3. AR2/AR2 #4. AR2/AR1 #5. GARCH/wo #6. GARCH/w

1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10%

T̂n(L∗n) .005, .026, .075 .007, .021, .040 .004, .054, .109 .027, .150, .248 .001, .003, .012 .026, .090, .162

APw .003, .034, .083 .004, .032, .078 .003, .040, .091 .049, .170, .287 .006, .028, .075 .013, .055, .102

APdw .010, .071, .141 .006, .034, .077 .034, .117, .218 .148, .343, .480 .005, .038, .109 .028, .102, .175

CvMw .004, .048, .105 .007, .045, .102 .012, .053, .108 .075, .245, .364 .005, .038, .099 .018, .072, .117

CvMdw .017, .081, .149 .002, .030, .070 .026, .086, .168 .118, .287, .430 .006, .049, .103 .036, .100, .168

CvMbrw .028, .079, .140 .013, .056, .113 .009, .032, .061 .098, .209, .300 .015, .060, .113 .006, .044, .091

MA(2) error: et = νt + 0.5νt−1 + 0.25νt−2

#1. Simple #2. Bilin #3. AR2/AR2 #4. AR2/AR1 #5. GARCH/wo #6. GARCH/w

1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10%

T̂n(L∗n) .693, .901, .951 .582, .769, .825 .012, .068, .135 .242, .601, .762 .461, .707, .788 .908, .966, .979

APw .896, .989, .996 .484, .816, .913 .013, .052, .112 .438, .693, .792 .789, .965, .985 .860, .932, .953

APdw .673, .916, .976 .331, .627, .784 .029, .115, .181 .516, .751, .836 .508, .828, .931 .813, .922, .963

CvMw .963, .994, 1.00 .681, .898, .943 .015, .071, .156 .604, .829, .896 .900, .989, .997 .882, .917, .927

CvMdw .898, .984, .995 .450, .743, .866 .029, .113, .182 .570, .805, .898 .681, .908, .969 .878, .927, .940

CvMbrw .929, .991, .995 .712, .841, .899 .018, .058, .110 .587, .802, .884 .791, .932, .967 .247, .739, .904

AR(1) error: et = 0.7et−1 + νt

#1. Simple #2. Bilin #3. AR2/AR2 #4. AR2/AR1 #5. GARCH/wo #6. GARCH/w

1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10%

T̂n(L∗n) .531, .752, .847 .477, .637, .685 .021, .128, .227 .263, .636, .788 .179, .345, .432 .987, .991, .991

APw 1.00, 1.00, 1.00 .588, .872, .946 .017, .078, .162 .405, .735, .820 .936, .996, .999 .972, .987, .989

APdw .774, .972, .996 .232, .500, .665 .115, .243, .315 .530, .756, .865 .470, .758, .898 .953, .987, .990

CvMw .998, 1.00, 1.00 .743, .938, .975 .035, .152, .250 .434, .727, .838 .961, .997, .999 .938, .948, .954

CvMdw .925, .996, 1.00 .282, .567, .741 .064, .193, .299 .472, .741, .849 .564, .818, .923 .958, .970, .973

CvMbrw .981, 1.00, 1.00 .564, .744, .830 .044, .118, .192 .520, .748, .845 .687, .862, .921 .481, .863, .932
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Table 31: Rejection frequencies of T̂n(L∗n), AP, and CvM (Scenarios #1–#6, n = 250)

IID error: et = νt

#1. Simple #2. Bilin #3. AR2/AR2 #4. AR2/AR1 #5. GARCH/wo #6. GARCH/w

1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10%

T̂n(L∗n) .011, .045, .087 .012, .042, .087 .005, .048, .093 .178, .479, .634 .005, .029, .063 .019, .064, .125

APw .008, .052, .105 .011, .064, .134 .011, .049, .098 .162, .397, .537 .012, .047, .114 .007, .040, .085

APdw .018, .056, .114 .016, .079, .145 .023, .071, .126 .298, .537, .666 .012, .062, .114 .013, .062, .136

CvMw .008, .047, .093 .019, .076, .148 .007, .042, .100 .376, .621, .730 .011, .058, .104 .005, .044, .091

CvMdw .016, .072, .144 .030, .085, .154 .011, .065, .127 .370, .615, .735 .011, .058, .118 .019, .065, .112

CvMbrw .029, .075, .120 .020, .064, .119 .012, .054, .097 .388, .630, .728 .016, .054, .107 .002, .019, .061

GARCH(1,1) error: et = νtwt with w2
t = 1 + 0.2e2

t−1 + 0.5w2
t−1

#1. Simple #2. Bilin #3. AR2/AR2 #4. AR2/AR1 #5. GARCH/wo #6. GARCH/w

1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10%

T̂n(L∗n) .004, .031, .069 .008, .023, .038 .007, .040, .084 .116, .312, .451 .004, .010, .015 .011, .063, .107

APw .003, .039, .081 .007, .033, .088 .006, .030, .076 .130, .355, .524 .008, .037, .081 .009, .043, .082

APdw .008, .045, .100 .014, .036, .079 .014, .066, .133 .250, .461, .587 .010, .030, .080 .029, .098, .171

CvMw .007, .058, .118 .007, .035, .095 .004, .045, .097 .291, .528, .642 .003, .047, .096 .007, .047, .095

CvMdw .013, .059, .108 .029, .048, .083 .012, .058, .127 .242, .501, .648 .009, .037, .080 .020, .075, .132

CvMbrw .013, .062, .108 .006, .019, .052 .009, .045, .086 .299, .509, .634 .010, .039, .094 .006, .055, .111

MA(2) error: et = νt + 0.5νt−1 + 0.25νt−2

#1. Simple #2. Bilin #3. AR2/AR2 #4. AR2/AR1 #5. GARCH/wo #6. GARCH/w

1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10%

T̂n(L∗n) .993, .998, 1.00 .841, .935, .962 .006, .060, .114 .677, .927, .982 .707, .834, .868 .992, .993, .993

APw 1.00, 1.00, 1.00 .919, .983, .997 .021, .095, .166 .928, .977, .991 .982, .999, .999 .992, .994, .995

APdw .969, .999, 1.00 .592, .818, .921 .016, .073, .144 .911, .978, .989 .801, .952, .982 .982, .986, .989

CvMw 1.00, 1.00, 1.00 .974, .994, .995 .026, .103, .189 .980, .993, .999 .998, 1.00, 1.00 .975, .979, .984

CvMdw .999, 1.00, 1.00 .769, .924, .968 .019, .086, .189 .951, .996, .999 .903, .979, .994 .983, .989, .991

CvMbrw 1.00, 1.00, 1.00 .901, .946, .975 .024, .088, .144 .973, .997, .999 .939, .978, .990 .616, .952, .981

AR(1) error: et = 0.7et−1 + νt

#1. Simple #2. Bilin #3. AR2/AR2 #4. AR2/AR1 #5. GARCH/wo #6. GARCH/w

1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10%

T̂n(L∗n) .903, .979, .990 .676, .774, .812 .041, .217, .355 .714, .954, .984 .156, .271, .334 1.00, 1.00, 1.00

APw 1.00, 1.00, 1.00 .830, .958, .989 .072, .217, .320 .936, .984, .996 .970, .995, 1.00 .997, .998, .999

APdw .971, .996, 1.00 .285, .535, .709 .150, .296, .386 .940, .989, .994 .566, .788, .899 .997, .999, .999

CvMw 1.00, 1.00, 1.00 .888, .979, .988 .136, .328, .464 .953, .996, .998 .974, .999, 1.00 .987, .989, .991

CvMdw .999, 1.00, 1.00 .341, .572, .718 .136, .341, .465 .935, .991, .999 .680, .849, .912 .984, .987, .988

CvMbrw 1.00, 1.00, 1.00 .575, .706, .792 .127, .289, .419 .948, .991, .996 .725, .860, .903 .816, .983, .995
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Table 32: Rejection frequencies of T̂n(L∗n), AP, and CvM (Scenarios #1–#6, n = 500)

IID error: et = νt

#1. Simple #2. Bilin #3. AR2/AR2 #4. AR2/AR1 #5. GARCH/wo #6. GARCH/w

1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10%

T̂n(L∗n) .007, .047, .096 .010, .036, .077 .004, .045, .094 .462, .803, .894 .005, .033, .083 .016, .053, .096

APw .006, .043, .088 .008, .059, .117 .008, .045, .095 .440, .729, .828 .008, .039, .079 .014, .048, .096

APdw .012, .055, .118 .016, .057, .111 .010, .069, .139 .561, .780, .870 .007, .055, .120 .025, .069, .128

CvMw .011, .048, .098 .014, .081, .150 .013, .052, .097 .759, .910, .944 .009, .050, .108 .014, .052, .102

CvMdw .010, .051, .102 .014, .072, .124 .012, .059, .132 .710, .882, .939 .009, .053, .103 .016, .072, .141

CvMbrw .023, .064, .115 .027, .070, .134 .014, .057, .099 .712, .879, .934 .009, .052, .103 .005, .037, .087

GARCH(1,1) error: et = νtwt with w2
t = 1 + 0.2e2

t−1 + 0.5w2
t−1

#1. Simple #2. Bilin #3. AR2/AR2 #4. AR2/AR1 #5. GARCH/wo #6. GARCH/w

1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10%

T̂n(L∗n) .001, .031, .063 .017, .029, .042 .008, .032, .078 .283, .588, .733 .003, .005, .006 .012, .046, .089

APw .014, .053, .094 .004, .037, .090 .011, .048, .106 .347, .609, .745 .002, .030, .090 .008, .052, .118

APdw .004, .049, .107 .008, .021, .064 .016, .066, .142 .444, .687, .793 .006, .030, .066 .021, .080, .137

CvMw .009, .056, .107 .006, .026, .084 .010, .048, .092 .579, .813, .887 .002, .045, .098 .007, .044, .092

CvMdw .015, .066, .115 .026, .038, .075 .011, .051, .104 .550, .802, .881 .013, .052, .111 .026, .072, .143

CvMbrw .013, .052, .105 .003, .021, .056 .011, .063, .116 .583, .802, .882 .008, .029, .065 .010, .055, .099

MA(2) error: et = νt + 0.5νt−1 + 0.25νt−2

#1. Simple #2. Bilin #3. AR2/AR2 #4. AR2/AR1 #5. GARCH/wo #6. GARCH/w

1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10%

T̂n(L∗n) 1.00, 1.00, 1.00 .932, .965, .976 .019, .086, .151 .972, .999, .999 .798, .874, .908 1.00, 1.00, 1.00

APw 1.00, 1.00, 1.00 .982, .996, .999 .040, .141, .234 .999, 1.00, 1.00 .996, .998, 1.00 .998, .998, .999

APdw 1.00, 1.00, 1.00 .767, .921, .970 .025, .100, .189 1.00, 1.00, 1.00 .920, .972, .990 .997, .998, .998

CvMw 1.00, 1.00, 1.00 .997, 1.00, 1.00 .028, .150, .275 1.00, 1.00, 1.00 .998, 1.00, 1.00 .995, .996, .996

CvMdw 1.00, 1.00, 1.00 .884, .966, .990 .032, .144, .250 1.00, 1.00, 1.00 .959, .994, .995 .995, .998, .998

CvMbrw 1.00, 1.00, 1.00 .955, .980, .989 .031, .131, .232 1.00, 1.00, 1.00 .971, .988, .992 .901, .993, .997

AR(1) error: et = 0.7et−1 + νt

#1. Simple #2. Bilin #3. AR2/AR2 #4. AR2/AR1 #5. GARCH/wo #6. GARCH/w

1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10%

T̂n(L∗n) .998, 1.00, 1.00 .715, .819, .860 .181, .512, .636 .991, 1.00, 1.00 .111, .176, .230 1.00, 1.00, 1.00

APw 1.00, 1.00, 1.00 .891, .964, .984 .162, .371, .501 1.00, 1.00, 1.00 .986, 1.00, 1.00 .997, .998, .998

APdw 1.00, 1.00, 1.00 .338, .585, .743 .270, .467, .559 1.00, 1.00, 1.00 .626, .805, .896 .998, .998, .999

CvMw 1.00, 1.00, 1.00 .919, .985, .993 .333, .597, .709 1.00, 1.00, 1.00 .986, .999, 1.00 .995, .995, .997

CvMdw 1.00, 1.00, 1.00 .393, .630, .781 .325, .592, .700 .999, 1.00, 1.00 .700, .852, .918 .999, 1.00, 1.00

CvMbrw 1.00, 1.00, 1.00 .584, .730, .803 .365, .603, .713 1.00, 1.00, 1.00 .794, .876, .911 .945, .999, 1.00
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Table 33: Rejection frequencies of T̂n(L∗n), AP, and CvM (Scenarios #1–#6, n = 1000)

IID error: et = νt

#1. Simple #2. Bilin #3. AR2/AR2 #4. AR2/AR1 #5. GARCH/wo #6. GARCH/w

1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10%

T̂n(L∗n) .012, .050, .109 .008, .056, .103 .006, .057, .097 .929, .996, .998 .008, .038, .077 .011, .047, .101

APw .008, .043, .085 .015, .067, .134 .007, .041, .089 .822, .946, .977 .010, .056, .106 .012, .050, .110

APdw .012, .047, .095 .011, .057, .123 .016, .068, .124 .870, .964, .984 .013, .061, .123 .006, .052, .115

CvMw .008, .053, .104 .022, .074, .138 .011, .050, .093 .974, .996, .998 .012, .055, .111 .014, .057, .102

CvMdw .008, .060, .108 .016, .063, .106 .010, .049, .102 .974, .991, .993 .015, .058, .107 .013, .057, .103

CvMbrw .016, .057, .105 .023, .072, .128 .016, .051, .102 .972, .997, .999 .017, .063, .104 .003, .044, .081

GARCH(1,1) error: et = νtwt with w2
t = 1 + 0.2e2

t−1 + 0.5w2
t−1

#1. Simple #2. Bilin #3. AR2/AR2 #4. AR2/AR1 #5. GARCH/wo #6. GARCH/w

1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10%

T̂n(L∗n) .006, .032, .071 .014, .026, .031 .008, .033, .085 .741, .925, .961 .002, .002, .002 .006, .051, .102

APw .007, .045, .098 .001, .028, .079 .006, .057, .091 .712, .907, .959 .009, .034, .074 .014, .052, .097

APdw .010, .058, .117 .003, .008, .028 .010, .054, .110 .728, .900, .943 .002, .032, .078 .010, .058, .118

CvMw .007, .054, .101 .002, .030, .092 .009, .061, .102 .901, .980, .991 .007, .043, .096 .011, .018, .018

CvMdw .010, .060, .116 .004, .014, .028 .008, .056, .105 .880, .973, .993 .006, .032, .065 .049, .065, .073

CvMbrw .015, .054, .104 .002, .014, .051 .014, .065, .109 .911, .967, .985 .006, .035, .078 .096, .122, .116

MA(2) error: et = νt + 0.5νt−1 + 0.25νt−2

#1. Simple #2. Bilin #3. AR2/AR2 #4. AR2/AR1 #5. GARCH/wo #6. GARCH/w

1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10%

T̂n(L∗n) 1.00, 1.00, 1.00 .968, .982, .986 .063, .184, .257 1.00, 1.00, 1.00 .900, .934, .952 1.00, 1.00, 1.00

APw 1.00, 1.00, 1.00 .995, .996, .998 .083, .226, .350 1.00, 1.00, 1.00 1.00, 1.00, 1.00 1.00, 1.00, 1.00

APdw 1.00, 1.00, 1.00 .898, .967, .989 .053, .177, .296 1.00, 1.00, 1.00 .971, .994, .997 .999, 1.00, 1.00

CvMw 1.00, 1.00, 1.00 .999, .999, .999 .095, .287, .442 1.00, 1.00, 1.00 1.00, 1.00, 1.00 .998, .999, .999

CvMdw 1.00, 1.00, 1.00 .974, .994, .997 .068, .295, .471 1.00, 1.00, 1.00 .986, .997, 1.00 .998, .998, .998

CvMbrw 1.00, 1.00, 1.00 .991, .994, .995 .092, .270, .438 1.00, 1.00, 1.00 .998, .998, .999 .988, 1.00, 1.00

AR(1) error: et = 0.7et−1 + νt

#1. Simple #2. Bilin #3. AR2/AR2 #4. AR2/AR1 #5. GARCH/wo #6. GARCH/w

1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10%

T̂n(L∗n) 1.00, 1.00, 1.00 .723, .823, .864 .599, .847, .922 1.00, 1.00, 1.00 .066, .126, .158 1.00, 1.00, 1.00

APw 1.00, 1.00, 1.00 .923, .981, .992 .369, .667, .792 1.00, 1.00, 1.00 .976, .998, 1.00 1.00, 1.00, 1.00

APdw 1.00, 1.00, 1.00 .408, .661, .774 .459, .681, .787 1.00, 1.00, 1.00 .677, .832, .901 .998, .999, .999

CvMw 1.00, 1.00, 1.00 .941, .984, .991 .690, .886, .935 1.00, 1.00, 1.00 .982, .998, 1.00 .999, 1.00, 1.00

CvMdw 1.00, 1.00, 1.00 .474, .697, .810 .688, .876, .923 1.00, 1.00, 1.00 .750, .877, .929 .998, .999, .999

CvMbrw 1.00, 1.00, 1.00 .615, .761, .833 .700, .878, .913 1.00, 1.00, 1.00 .819, .882, .927 .989, 1.00, 1.00
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Table 34: Rejection frequencies of T̂n(L∗n), AP, and CvM (Scenarios #7–#9)

n = 100 n = 250

#7. MA(6) #8. MA(12) #9. MA(24) #7. MA(6) #8. MA(12) #9. MA(24)

1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10%

T̂n(L∗n) .016, .084, .139 .013, .067, .117 .017, .065, .118 .155, .289, .352 .024, .134, .244 .012, .042, .088

APw .036, .104, .163 .013, .062, .133 .014, .054, .107 .050, .149, .233 .020, .087, .148 .006, .050, .110

APdw .009, .063, .139 .026, .090, .171 .022, .082, .171 .020, .089, .162 .017, .077, .139 .015, .085, .149

CvMw .006, .065, .123 .008, .048, .110 .010, .057, .124 .024, .096, .163 .010, .079, .144 .010, .065, .121

CvMdw .040, .098, .171 .034, .110, .179 .029, .098, .186 .026, .080, .142 .025, .087, .155 .022, .088, .143

CvMbrw .049, .112, .193 .056, .125, .189 .038, .091, .143 .025, .080, .161 .020, .094, .156 .017, .083, .137

n = 500 n = 1000

#7. MA(6) #8. MA(12) #9. MA(24) #7. MA(6) #8. MA(12) #9. MA(24)

1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10%

T̂n(L∗n) .710, .812, .826 .371, .673, .770 .024, .097, .192 .999, 1.00, 1.00 .983, .997, .997 .578, .833, .918

APw .096, .226, .311 .025, .095, .168 .015, .063, .129 .162, .356, .485 .037, .120, .195 .012, .067, .119

APdw .022, .130, .226 .015, .069, .142 .018, .079, .158 .060, .199, .332 .011, .066, .152 .008, .049, .115

CvMw .027, .112, .207 .020, .086, .133 .011, .060, .135 .034, .158, .344 .021, .078, .151 .020, .075, .146

CvMdw .014, .087, .175 .026, .092, .161 .024, .071, .133 .038, .160, .320 .017, .083, .166 .028, .079, .144

CvMbrw .033, .101, .188 .020, .068, .128 .019, .078, .142 .037, .150, .321 .026, .081, .152 .027, .078, .138

#7: Remote MA(6) yt = et + 0.25et−6 with a mean filter. #8: Remote MA(12) yt = et + 0.25et−12 with a mean

filter. #9: Remote MA(24) yt = et+0.25et−24 with a mean filter. For each scenario, et
i.i.d.∼ N(0, 1). T̂n(L∗n) is the

max-correlation test based on Shao’s (2011) dependent wild bootstrap, with automatic lag L∗n. AP is Andrews

and Ploberger’s (1996) sup-LM test. CvM is the Cramér-von Mises test. The AP and CvM tests use Ln = n −
1 lags. Superscript “w” means the wild bootstrap; “dw” means the dependent wild bootstrap; “brw”means Zhu

and Li’s (2015) block-wise random weighting bootstrap.
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Figure 1: Empirical Size and Size-Adjusted Power of T̂ dw(L∗n) with α = 0.05
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Case 2, n = 500

We plot empirical size and size-adjusted power of the bootstrapped max-correlation test with automatic lag selection given

nominal size 5%. In Case 1, the empirical size and empirical quantiles for size adjustment are computed under Scenario

#1 (iid yt and mean filter) with i.i.d. error; then the size-adjusted power is computed under Scenario #4 (AR(2) yt and

AR(1) filter) with i.i.d. error. In Case 2, the empirical size and empirical quantiles for size adjustment are computed under

Scenario #5 (GARCH yt and no filter) with i.i.d. error; then the size-adjusted power is computed under Scenario #5 with

MA(2) error. The tuning parameter that affects the penalty term Pn(L) is q ∈ {1.50, 1.75, . . . , 4.50}. The largest possible

lag length is L̄n = [10
√
n/(lnn)], which implies that L̄100 = 21 and L̄500 = 35. J = 1000 Monte Carlo samples and

M = 500 bootstrap samples are generated.
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