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Throughout the following, Assumptions DGP and SM are always maintained, even when not
explicitly referenced. Section S.1 provides the proofs of Lemmas A.1-A.3, and Section S.2
provides the proofs of Lemmas C.1 and C.3-C.5.

S.1 Proofs of auxiliary lemmas from Appendix A

Proof of Lemma A.1. Since d2 = var(x,) is bounded away from zero in all cases, it suffices
to prove that d,, < n'/? when {p,} € P is mildly integrated or local to unity. To that end,
recall from (C.2) that
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For the second r.h.s. term, we have
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Proof of Lemma A.2. As noted in the text, the stated convergence follows immediately
from Theorem 3.2: see also Remark 3.1. Regarding the strict positivity of 7(z): when {p,}
is local to unity, this follows from Ray’s (1963) theorem; when {p,} is mildly integrated
this is immediate from ¢ being the standard normal density; and when {p, } is stationary,

this follows from the density f. of £; having been assumed strictly positive (see bGp2). [J
Proof of Lemma A.3. We first show that 1, (x) = m(z) + 0p(1). To that end, decompose
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where:

by Lemma A.2 and the Lipschitz continuity of m; and
1 n
An2 = — > K, (@ — 2)uspr = op(1)
n
=1

where the claimed negligibility follows since A, o is a martingale with variance
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by Lemma A.2 and n'/2h,, — oo (see sM2). Since by Lemma A.2
— ZKh" xp —x) ~ 7(T)
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which is a.s. positive, we have 7, (z) = m(x) + 0p(1) as claimed.
The remainder of the proof follows similar lines to the proof of Theorem 3.2 in Wang
and Phillips (2009). Recalling
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we decompose the numerator as
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<, we claim that

Letting ¢; == u? — o

2 n n
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en 14 R
~ 027 (x).

The convergence of the first r.h.s. term in (S.2) follows from Lemma A.2. Regarding the

. 2 2
second r.h.s. term, we note that since ;41 = uj,; — o

 is a martingale difference under

DGP4, this term is a martingale with conditional variance
o 1
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by Lemma A.2 and sup, E[¢(?; | G| < oo a.s. (under DGP4). It follows by Corollary 3.1 of
Hall and Heyde (1980) that, indeed,
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Next, we have
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by an analogous argument as was used to prove (S.1), and 7, (x) = m(z) + o0,(1). Finally

Bno < (Bn1)Y?(Bns)'/?,

by the Cauchy-Schwarz inequality; whence by Lemma A.2 and the preceding,
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S.2 Proofs of auxiliary lemmas from Appendix C

Proof of Lemma C.1. Letting ¢, = n(p, — 1) — —o0, we note that for every M < oo,

we may take n sufficiently large such that ¢, < —M, whence

ne
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as n — oo and then M — oo. Thus (i) holds.



SUPPLEMENTARY MATERIAL

Now taking s = 1 in (C.2), we have

t—1 [es)
/
= g ax€¢—k + g At kEt—k = Tl + Toy
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where x1,; and z{, are independent, with variances ¢f, := var(z1,) and ¢3, = var(x{,)
respectively. Let {t,} C [ne,n] be as in the statement of part (iii) of the lemma. We shall

prove below that
(1= p2)var(ze,) = (1= p2) (T, +534,) = (1 — p2)siy, +o(1) = 67,

from which both parts (ii) and (iii) of the lemma immediately follow.

Some tedious algebra (verified immediately below this proof) yields
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whence, since p,, € (0,1),
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Since p%(t"ﬂ') < pi(md*i) — 0 as n — oo for each fized i € N by part (i), and > "2, |¢i| <

00, it follows that
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Regarding ¢3, , we note that since [p,| < 1 and Cy == 32|¢;| < 00
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where ¢; = > iz ildil. Further,
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since d’tt 2] =0 and ,orLL"/ ! — 0 by part (i), and

[tn/2]
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whence §22,tn =o[(1—p2)~1]. O

Verification of (S.3). Dropping the n subscript from ¢, and p,, for simplicity, and setting

m =1 — 1, we have
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Proof of Lemma C.3. When {p,} is mildly integrated, p, € (0,1) and the upper bound
in (C.9) follows trivially from |a(pn)| < > og|¢i|. Further, for any 0 < k < 2k,

2kn k —k —2k
P S Pn S Pr S Py

Las p — 1, and 2k, ~ (1—p,) 71, it follows that (p2kn, p2Fn) —
(e71,e) as n — co. Thus there exists an ng € N and Cy, Cy € (0,00) such that pf, p-*
[C,Cs] for all n > np and 0 < k < 2k,.

Now ay(pn) = p* Zf:o prléy, and for any m < k < 2k,
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for all n > ng, and Z;’imoﬂlqbl\ < g. Since p;l — 1 for each [, there exists an ni; > ny
such that

mo mo k
lar(pu)l = P51 o] =D L =plllel = D el >=a
1=0 1=0 I=mo+1
for all n > n;. Taking k¢ := 2mg and re-designating n; as ng gives the claimed lower

bound in (C.9).
Finally, since ag = ¢¢ is nonzero by DGP3, replacing a by a A || yields a lower bound
that also applies to |ag]. O

Proof of Lemma C.4. Since 1. € L', ¢y has a bounded continuous density. Thus by the
Riemann-Lebesgue lemma (Feller, 1971, Lem. XV.3.3) limsupy_,o[¢=(A)| = 0. Fur-
ther, 1. € L' cannot be periodic, and so [:(\)| < 1 for all X # 0 (Feller, 1971,
Lem. XV.1.4); since 1. is necessarily continuous (Feller, 1971, Lem. XV.1.1), it follows
that sup|y>1[1e(A)] > 77 for some 79 € (0,00). By the moments theorem for character-
istic functions (Feller, 1971, Lem. XV.4.2), we have 1-(A) = 1 — 2A%(1 +o(1)) as A — 0.
Thus there exists a 1 € (0,00) such that |¢(A)| < e~ 11N Taking ~ := o A 71 thus gives

e ™ if A € [0, 1],
[Pe(A)] < (S.4)

e’ if N> 1.

Let ¢y(A) = Eexp(ir Y o Vker) = [loe; ¥e(UrA); we want to control the integral

of (the modulus of) this function over [A,00). Without loss of generality, assume the
coefficients {4} are ordered such that |9J;| > |9;11|. Since
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3
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must be nonempty; let k* denote the smallest element of .

We will bound the integral of |1y| separately over each of the two r.h.s. sets in
[A,00) = [A, AV I U[A VY, 00).
We first have
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<) / exp(—yA%0/2) dX
{Ix=A}
where <(y follows from (S.4) and
N €[A,AVI] = [ <1 = [0\ <1, Vk>k"

while <3y follows from
2 2 2 ) 303 2 T
Zﬁk:Uﬂ—Zﬁ ZUﬁ—TZk’ Z?
kek kK kK
Next, we have
k*
wo < TT v (0) dx

{IAl€[AvY, ! 00)} k=1
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= e YDyl [1he(A)| A
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<y ciloy e Vi [ BN,
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for co == (3/m)'/?, where < (2) holds trivially if k* = 1, and otherwise follows from
AN €AV 00) = [N >1 = |0\ > 1, Vk <K
while <(5) follows from 7. > (305 /7) - (k*) 2.
Finally, define
G(A; 0%, 9e)

- / exp(—yA202/2) dA + o sup e D / (V)] dA,
{IA=A} k>1 {IA>coo A/K}
which clearly satisfies the first inequality in (C.10), and is decreasing in o?; the second
inequality in (C.10) follows by evaluating G(0; 02, v.), and noting SUPg>1 e 7Dk < 0.
It thus remains to show that G(A4;02,1.) — 0 as A — oo. To that end, let € > 0 and note
that there exists a k' such that

eWk’l)k’/ywe(wdA <e
R
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Since

e—Wf—l)k/ [e(A) [ dX — 0
{IAZcocA/k}
as A — oo, for each fixed k € {1,...,k'}, the claim follows. O

Proof of Lemma C.5. Making the change of variables u = p®, we have

@ 1 1 P 1 1 P
———dr = du = —2tanh~H{(1 —u)Y/2}|" .
/1 (1— p¥)1/2 x “Tog /pa (1—u)l/2u u “Togp anh™ {(1 —u) """} s

for p € (0,1), where tanh™!(z) = Llog{(1 + x)/(1 — z)} is inverse hyperbolic tangent

function. Now set p = py,, for {p,} mildly integrated, and a = nn: and note that p, — 1,
whereas p;" — 0 by Lemma C.1. Then

1 /m 1 1
_ - — . 2 h—l 1 _m 1/2 1
n /1 (1 _ p£)1/2 dz n —logpn{ tan [( Pn ) ] + 0( )}
1 log[l — (1 —pi")'?)
n log pn '

Next, note that by two applications of L’Hopital’s rule

log[l—(1—2)Y? . 3(1—a)7?/[1 - (1 —x)'/?
lim = lim
20 log = 20 1/
1. T 1 . 1 .
=M ——— = IMh V0 =
20201 —(1—x)1/2 2220 4(1—2)~1/2
whence
1 log[l— (1= pI)"2) 1 log(ol")
n log pn, n  logp,
and the result follows. ]
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