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Throughout the following, Assumptions DGP and SM are always maintained, even when not

explicitly referenced. Section S.1 provides the proofs of Lemmas A.1–A.3, and Section S.2

provides the proofs of Lemmas C.1 and C.3–C.5.

S.1 Proofs of auxiliary lemmas from Appendix A

Proof of Lemma A.1. Since d2
n = var(xn) is bounded away from zero in all cases, it suffices

to prove that dn . n1/2 when {ρn} ∈ P is mildly integrated or local to unity. To that end,

recall from (C.2) that

xn =
n−1∑
k=1

akεt−k +
∞∑
k=n

at,kεt−k

where at,k =
∑k∧(t−1)

l=0 ρlφk−l. Hence

var(xn) =

n−1∑
k=1

a2
t,k +

∞∑
k=n

a2
t,k ≤

n−1∑
k=1

(
k∑
l=0

ρlnφk−l

)2

+

∞∑
k=n

(
n−1∑
l=0

ρlnφk−l

)2

≤ n

( ∞∑
i=0

|φi|

)2

+

∞∑
k=n

(
n−1∑
l=0

|φk−l|

)2

For the second r.h.s. term, we have

∞∑
k=n

(
n−1∑
l=0

|φk−l|

)2

.
∞∑
k=n

n−1∑
l=0

|φk−l| =

(
2n∑
k=n

+

∞∑
k=2n+1

)
n−1∑
l=0

|φk−l|

≤
n∑
k=0

∞∑
l=k

|φl|+ n

∞∑
k=n

|φk| = o(n).

Proof of Lemma A.2. As noted in the text, the stated convergence follows immediately

from Theorem 3.2: see also Remark 3.1. Regarding the strict positivity of τ(x): when {ρn}
is local to unity, this follows from Ray’s (1963) theorem; when {ρn} is mildly integrated

this is immediate from ϕ being the standard normal density; and when {ρn} is stationary,

this follows from the density fε of εt having been assumed strictly positive (see DGP2).

Proof of Lemma A.3. We first show that m̂n(x) = m(x) + op(1). To that end, decompose

m̂n(x)−m(x) =
An,1 +An,2

1
en

∑n
t=1Khn(xt − x)
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where:

|An,1| :=
1

en

n∑
t=1

Khn(xt − x)|m(xt)−m(x)|

≤ Chn
en

n∑
t=1

1

hn
K

(
xt − x
hn

)∣∣∣∣xt − xhn

∣∣∣∣
.p hn (S.1)

by Lemma A.2 and the Lipschitz continuity of m; and

An,2 :=
1

en

n∑
t=1

Khn(xt − x)ut+1 = op(1)

where the claimed negligibility follows since An,2 is a martingale with variance

EA2
n,2 =

1

e2
nh

2
n

n∑
t=1

EK2

(
xt − x
hn

)
u2
t+1

=
1

enhn
· σ

2

en

n∑
t=1

E
1

hn

n∑
t=1

K2

(
xt − x
hn

)
.p

1

enhn
= o(1)

by Lemma A.2 and n1/2hn →∞ (see SM2). Since by Lemma A.2

1

en

n∑
t=1

Khn(xt − x) τ(x)

which is a.s. positive, we have m̂n(x) = m(x) + op(1) as claimed.

The remainder of the proof follows similar lines to the proof of Theorem 3.2 in Wang

and Phillips (2009). Recalling

σ̂2
u(x) =

1
en

∑n
t=1Khn(xt − x)[yt+1 − m̂n(x)]2

1
en

∑n
t=1Khn(xt − x)

we decompose the numerator as

1

en

n∑
t=1

Khn(xt − x)[yt+1 − m̂n(x)]2

=
1

en

n∑
t=1

Khn(xt − x)u2
t+1 +

2

en

n∑
t=1

Khn(xt − x)[m(xt)− m̂n(x)]ut+1

+
1

en

n∑
t=1

Khn(xt − x)[m(xt)− m̂n(x)]2

=: Bn,1 + 2Bn,2 +Bn,3.
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Letting ζt := u2
t − σ2

u, we claim that

Bn,1 =
σ2
u

en

n∑
t=1

Khn(xt − x) +
1

en

n∑
t=1

Khn(xt − x)ζt+1 (S.2)

 σ2
uτ(x).

The convergence of the first r.h.s. term in (S.2) follows from Lemma A.2. Regarding the

second r.h.s. term, we note that since ζt+1 := u2
t+1 − σ2

u is a martingale difference under

DGP4, this term is a martingale with conditional variance

1

enhn
· 1

en

n∑
t=1

1

hn
K2

(
xt − x
hn

)
E[ζ2

t+1 | Gt] .p
1

enhn
= o(1)

by Lemma A.2 and supt E[ζ2
t+1 | Gt] <∞ a.s. (under DGP4). It follows by Corollary 3.1 of

Hall and Heyde (1980) that, indeed,

1

en

n∑
t=1

Khn(xt − x)ζt+1
p→ 0.

Next, we have

Bn,3 ≤ C
1

en

n∑
t=1

Khn(xt − x)
{

[m(xt)−m(x)]2 + [m̂n(x)−m(x)]2
}

= Op(h
2
n) + op(1)

= op(1)

by an analogous argument as was used to prove (S.1), and m̂n(x) = m(x) + op(1). Finally

Bn,2 ≤ (Bn,1)1/2(Bn,3)1/2,

by the Cauchy-Schwarz inequality; whence by Lemma A.2 and the preceding,

σ̂2
u(x) =

Bn,1 +Bn,2 +Bn,3
1
en

∑n
t=1Khn(xt − x)

 
σ2
uτ(x)

τ(x)
= σ2

u.

S.2 Proofs of auxiliary lemmas from Appendix C

Proof of Lemma C.1. Letting cn := n(ρn − 1) → −∞, we note that for every M < ∞,

we may take n sufficiently large such that cn < −M , whence

ρnεn =
(

1 +
cn
n

)nε
≤
(

1− M

n

)nε
→ e−Mε → 0

as n→∞ and then M →∞. Thus (i) holds.
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Now taking s = 1 in (C.2), we have

xt =

t−1∑
k=0

akεt−k +

∞∑
k=t

at,kεt−k = x1,t + x′0,t

where x1,t and x′0,t are independent, with variances ς2
1,t := var(x1,t) and ς2

2,t := var(x′0,t)

respectively. Let {tn} ⊆ [nε, n] be as in the statement of part (iii) of the lemma. We shall

prove below that

(1− ρ2
n) var(xtn) = (1− ρ2

n)(ς2
1,tn + ς2

2,tn) = (1− ρ2
n)ς2

1,tn + o(1)→ φ2,

from which both parts (ii) and (iii) of the lemma immediately follow.

Some tedious algebra (verified immediately below this proof) yields

ς2
1,tn =

tn−1∑
k=0

(
k∑
l=0

ρk−ln φl

)2

=

tn−1∑
i=0

φ2
i

tn−i−1∑
k=0

ρ2k
n + 2

tn−1∑
i=0

tn−1∑
j=i+1

φiφj

tn−j−1∑
k=0

ρ2k+(j−i)
n (S.3)

whence, since ρn ∈ (0, 1),

(1− ρ2
n)ς2

1,tn =

tn−1∑
i=0

φ2
i (1− ρ2(tn−i)

n ) + 2

tn−1∑
i=0

tn−1∑
j=i+1

φiφj(1− ρ2(tn−j)+(j−i)
n )

Since ρ
2(tn−i)
n ≤ ρ2(bnεc−i)

n → 0 as n→∞ for each fixed i ∈ N by part (i), and
∑∞

i=0|φi| <
∞, it follows that

(1− ρ2
n)ς2

1,tn →
∞∑
i=0

φ2
i + 2

∞∑
i=0

∞∑
j=i+1

φiφj = φ2.

Regarding ς2
2,tn , we note that since |ρn| ≤ 1 and Cφ :=

∑∞
i=0|φi| <∞

ς2
2,tn =

∞∑
k=tn

(
tn−1∑
l=0

ρlφk−l

)2

≤ Cφ
∞∑
k=tn

tn−1∑
l=0

ρln|φk−l| ≤ Cφ
tn−1∑
l=0

ρlnφ̃tn−l,

where φ̃j :=
∑∞

i=j |φi|. Further,

tn−1∑
l=0

ρlnφ̃tn−l =

btn/2c−1∑
l=0

+

tn−1∑
l=btn/2c

ρlnφ̃tn−l
≤
(
φ̃btn/2c−1 + Cφρ

btn/2c
n

) btn/2c−1∑
l=0

ρln = o[(1− ρ2
n)−1],
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since φ̃btn/2c → 0 and ρ
btn/2c
n → 0 by part (i), and

btn/2c∑
l=0

ρln ≤ (1− ρn)−1 � (1− ρ2
n)−1,

whence ς2
2,tn = o[(1− ρ2

n)−1].

Verification of (S.3). Dropping the n subscript from tn and ρn for simplicity, and setting

m := t− 1, we have

m∑
k=0

(
k∑
l=0

ρk−lφl

)2

=
m∑
k=0

k∑
i=0

k∑
j=0

ρ2k−i−jφiφj

=

m∑
i=0

m∑
j=0

φiφj

m∑
k=i∨j

ρ2k−i−j

=
m∑
i=0

φ2
i

m∑
k=i

ρ2(k−i) + 2
m∑
i=0

m∑
j=i+1

φiφj

m∑
k=j

ρ2(k−j)+(j−i)

=
m∑
i=0

φ2
i

m−i∑
k=0

ρ2k + 2
m∑
i=0

m∑
j=i+1

φiφj

m−j∑
k=0

ρ2k+(j−i).

Proof of Lemma C.3. When {ρn} is mildly integrated, ρn ∈ (0, 1) and the upper bound

in (C.9) follows trivially from |ak(ρn)| ≤
∑∞

i=0|φi|. Further, for any 0 ≤ k ≤ 2kn,

ρ2kn
n ≤ ρkn ≤ ρ−kn ≤ ρ−2kn

n .

Noting that ρ(1−ρ)−1 → e−1 as ρ→ 1, and 2kn ∼ (1−ρn)−1, it follows that (ρ2kn
n , ρ−2kn

n )→
(e−1, e) as n → ∞. Thus there exists an n0 ∈ N and C1, C2 ∈ (0,∞) such that ρkn, ρ

−k
n ∈

[C1, C2] for all n ≥ n0 and 0 ≤ k ≤ 2kn.

Now ak(ρn) = ρkn
∑k

l=0 ρ
−l
n φl, and for any m ≤ k ≤ 2kn,

k∑
l=0

ρ−ln φl =

m∑
l=0

φl −
m∑
l=0

(1− ρ−ln )φl +

k∑
l=m+1

ρ−ln φl.

Therefore, since |ρkn| ≤ 1,∣∣∣∣∣ak(ρn)− ρkn
m∑
l=0

φl

∣∣∣∣∣ ≤
m∑
l=0

|1− ρ−ln ||φl|+
k∑

l=m+1

|φl|

Let m0 be chosen such that both

ρkn

∣∣∣∣∣
m0∑
l=0

φl

∣∣∣∣∣ ≥ C1

∣∣∣∣∣
m0∑
l=0

φl

∣∣∣∣∣ ≥ C1

2
|φ| =: 3a
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for all n ≥ n0, and
∑∞

l=m0+1|φl| ≤ a. Since ρ−ln → 1 for each l, there exists an n1 ≥ n0

such that

|ak(ρn)| ≥ ρkn

∣∣∣∣∣
m0∑
l=0

φl

∣∣∣∣∣−
m0∑
l=0

|1− ρ−ln ||φl| −
k∑

l=m0+1

|φl| ≥ a

for all n ≥ n1. Taking k0 := 2m0 and re-designating n1 as n0 gives the claimed lower

bound in (C.9).

Finally, since a0 = φ0 is nonzero by DGP3, replacing a by a∧ |φ0| yields a lower bound

that also applies to |a0|.

Proof of Lemma C.4. Since ψε ∈ L1, ε0 has a bounded continuous density. Thus by the

Riemann-Lebesgue lemma (Feller, 1971, Lem. XV.3.3) lim sup|λ|→∞|ψε(λ)| = 0. Fur-

ther, ψε ∈ L1 cannot be periodic, and so |ψε(λ)| < 1 for all λ 6= 0 (Feller, 1971,

Lem. XV.1.4); since ψε is necessarily continuous (Feller, 1971, Lem. XV.1.1), it follows

that sup|λ|≥1|ψε(λ)| ≥ e−γ0 for some γ0 ∈ (0,∞). By the moments theorem for character-

istic functions (Feller, 1971, Lem. XV.4.2), we have ψε(λ) = 1 − 1
2λ

2(1 + o(1)) as λ → 0.

Thus there exists a γ1 ∈ (0,∞) such that |ψε(λ)| ≤ e−γ1λ
2
. Taking γ := γ0 ∧ γ1 thus gives

|ψε(λ)| ≤

{
e−γλ

2
if |λ| ∈ [0, 1],

e−γ if |λ| ≥ 1.
(S.4)

Let ψϑ(λ) := E exp(iλ
∑∞

k=1 ϑkεk) =
∏∞
k=1 ψε(ϑkλ); we want to control the integral

of (the modulus of) this function over [A,∞). Without loss of generality, assume the

coefficients {ϑk} are ordered such that |ϑi| ≥ |ϑi+1|. Since

∞∑
k=1

3σ2
ϑ

π
· k−2 =

σ2
ϑ

2
=

1

2

∞∑
k=1

ϑ2
k,

the set

K :=

{
k ∈ N | ϑ2

k ≥
3σ2

ϑ

π
· k−2

}
must be nonempty; let k∗ denote the smallest element of K.

We will bound the integral of |ψϑ| separately over each of the two r.h.s. sets in

[A,∞) = [A,A ∨ ϑ−1
k∗ ] ∪ [A ∨ ϑ−1

k∗ ,∞).

We first have ∫
{|λ|∈[A,A∨ϑ−1

k∗ ]}
|ψϑ(λ)| dλ ≤

∫
{|λ|∈[A,A∨ϑ−1

k∗ ]}

∏
k∈K
|ψε(ϑkλ)| dλ

≤(2)

∫
{|λ|≥A}

exp

(
−γλ2

∑
k∈K

ϑ2
k

)
dλ
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≤(3)

∫
{|λ|≥A}

exp(−γλ2σ2
ϑ/2) dλ

where ≤(2) follows from (S.4) and

|λ| ∈ [A,A ∨ ϑ−1
k∗ ] =⇒ |ϑk∗λ| ≤ 1 =⇒ |ϑkλ| ≤ 1, ∀k ≥ k∗;

while ≤(3) follows from

∑
k∈K

ϑ2
k = σ2

ϑ −
∑
k/∈K

ϑ2 ≥ σ2
ϑ −

3σ2
ϑ

π
·
∑
k/∈K

k−2 ≥
σ2
ϑ

2
.

Next, we have

∫
{|λ|∈[A∨ϑ−1

k∗ ,∞)}
|ψϑ(λ)|dλ ≤

∫
{|λ|∈[A∨ϑ−1

k∗ ,∞)}

k∗∏
k=1

ψε(ϑkλ) dλ

≤(2) e−γ(k∗−1)

∫
{|λ|∈[A∨ϑ−1

k∗ ,∞)}
|ψε(ϑk∗λ)| dλ

≤ e−γ(k∗−1)

∫
{|λ|≥A}

|ψε(ϑk∗λ)| dλ

= e−γ(k∗−1)ϑ−1
k∗

∫
{|λ|≥ϑk∗A}

|ψε(λ)| dλ

≤(5) c
−1
0 σ−1

ϑ e−γ(k∗−1)k∗
∫
{|λ|≥c0σϑA/k∗}

|ψε(λ)|dλ,

for c0 := (3/π)1/2, where ≤(2) holds trivially if k∗ = 1, and otherwise follows from

|λ| ∈ [A ∨ ϑ−1
k∗ ,∞) =⇒ |ϑk∗λ| ≥ 1 =⇒ |ϑkλ| ≥ 1, ∀k ≤ k∗;

while ≤(5) follows from ϑ2
k∗ ≥ (3σ2

ϑ/π) · (k∗)−2.

Finally, define

G(A;σ2, ψε)

:=

∫
{|λ|≥A}

exp(−γλ2σ2/2) dλ+ c−1
0 σ−1 sup

k≥1
e−γ(k−1)k

∫
{|λ|≥c0σA/k}

|ψε(λ)|dλ,

which clearly satisfies the first inequality in (C.10), and is decreasing in σ2; the second

inequality in (C.10) follows by evaluating G(0;σ2, ψε), and noting supk≥1 e−γ(k−1)k <∞.

It thus remains to show that G(A;σ2, ψε)→ 0 as A→∞. To that end, let ε > 0 and note

that there exists a k′ such that

e−γ(k′−1)k′
∫
R
|ψε(λ)| dλ < ε.
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Since

e−γ(k−1)k

∫
{|λ|≥c0σA/k}

|ψε(λ)| dλ→ 0

as A→∞, for each fixed k ∈ {1, . . . , k′}, the claim follows.

Proof of Lemma C.5. Making the change of variables u = ρx, we have∫ a

1

1

(1− ρx)1/2
dx =

1

− log ρ

∫ ρ

ρa

1

(1− u)1/2u
du =

1

− log ρ

[
−2 tanh−1{(1− u)1/2}

]ρ
ρa
.

for ρ ∈ (0, 1), where tanh−1(x) := 1
2 log{(1 + x)/(1 − x)} is inverse hyperbolic tangent

function. Now set ρ = ρn, for {ρn} mildly integrated, and a = nη: and note that ρn → 1,

whereas ρηnn → 0 by Lemma C.1. Then

1

n

∫ ηn

1

1

(1− ρxn)1/2
dx =

1

n
· 1

− log ρn

{
2 tanh−1[(1− ρηnn )1/2] + o(1)

}
∼ 1

n
· log[1− (1− ρηnn )1/2]

log ρn
.

Next, note that by two applications of L’Hôpital’s rule

lim
x→0

log[1− (1− x)1/2]

log x
= lim

x→0

1
2(1− x)−1/2/[1− (1− x)1/2]

1/x

=
1

2
lim
x→0

x

1− (1− x)1/2
=

1

2
lim
x→0

1
1
2(1− x)−1/2

= 1,

whence
1

n
· log[1− (1− ρηnn )1/2]

log ρn
∼ 1

n
· log(ρηnn )

log ρn
= η

and the result follows.
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