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This supplemental appendix contains three sections: Appendices A, B and C. Appendix A (A.1-

A.9) contains clarifying or descriptive endnotes from Sections 1-3. Appendix B contains the detailed

version of the proofs of the results in Sections 2 and 3 of our paper. Abridged versions of these

proofs were presented in our paper. Appendix C (C.1-C.7) provides formal statements and their

proofs for the asymptotic properties of the efficient estimator in Section 4. This presentation allows

for overidentified models. Appendix C also reports simulation results describing the finite-sample

properties of the efficient estimator in the context of the Monte Carlo experiment in Section 5.

Additionally, Appendix C describes a simple one-step updating of any
√
n-consistent estimator

(e.g., IPW estimator) to obtain an estimator that is asymptotically equivalent to the efficient estima-

tor. A sketch of the proof for this efficiency is provided under standard regularity conditions. This

updating is computationally convenient and can be easily performed in standard statistical softwares.

We provide two illustrations of the efficient estimator: (i) a linear regression as in Section 5 where

a closed form efficient estimator is available (so, no updating is required), and (ii) a linear quantile

regression where the updating is useful due to the unavailability of closed form expressions.
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Appendix A: Descriptive endnotes

A.1 Planned incomplete design: examples from economics and other fields

Examples from other fields

The adoption of the planned incomplete survey design is common in other fields to the extent that

there are even established terminologies to refer to the different types of planned incompleteness.

The two/many-measurement-design is used in psychology where it is common to encounter an

expensive “gold standard” measure and other inexpensive but less accurate measures for behavioral

traits [see, e.g., Graham et al. (2006)]. Then, the gold standard measure is typically employed only

on a subset of the study subjects while the other measures are employed on all. In other contexts,

planned missing waves for pre-selected sample units in a panel have been extensively used since

MacArdle and Woodcock (1997) to cut the cost of estimation of key quantities in psychology.16 In

yet other contexts, the multiple matrix sampling of Shoemaker (1973), that requires most units to

respond only to parts of the full survey questionnaire, was extended as the split-questionnaire design

(SQD) by Raghunathan and Grizzle (1995) in statistics, as the partial questionnaire design (PQD) by

Wacholder et al. (1994) in biostatistics and epidemiology, and as the multi-forms surveys discussed

by Graham et al. (1996), Graham et al. (2006), and others in psychology and behavioral research.

Examples from economics

16While this example may appear less familiar than the other two types of examples, note that the structure of the
sample due to missing waves is actually similar to that from rotating panels with a single rotation. Rotating panels
such as the Current Population Survey are common in economics [see Nijman et al. (1991) for an influential study].
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The common theme in all these references is the cost cutting of surveys, which also applies to

the field of economics. This is even more relevant now as the use of primary data, often under tight

budgets, gets more common among economists. However, in spite of the promising early work of

DiNardo et al. (2006) who point to the benefits of planned incompleteness, systematic adoption of

planned incompleteness seems nonexistent in economics. Ad hoc adoptions can be found in laboratory

and field experiments, and we list below a small number of representative examples of both types.

(1) In a highly cited paper in experimental economics, Holt and Laury (2002) run a laboratory

experiment to elicit risk aversion for studying its dependence on the size of the stake. The experiment

involved planned incompleteness whereby the low-stake experiments were first run on all subjects

(phase one) and then the high-stake experiments were run on subsets of these subjects.

(2) Field experiments also typically involve follow-up rounds. We provide three recent examples:

(2a) Thornton (2008) studies an experiment in rural Malawi where the subjects where tested for

their HIV status and given incentives to learn the results from a nearby centre. After the respondents

had a chance to learn about the result (some did not), a follow-up interview was conducted on 75%

(so, 25% incompleteness by plan) of the original subjects to record their sexual behavior and their

response to an offer to buy up to 5 packages of 3 condoms using the .30 USD that was paid to them.

(2b) Ashraf et al. (2010) run an experiment in Zambia to differentiate between the screening

and sunk-cost effects measured by the usage of clorin (purchased from the experimenter) to purify

drinking water. In the first phase (baseline), the experimenter measures, among other variables, the

chemical concentration of clorin in the households’ drinking water. In the second phase (marketing),

the experimenter offers to sell a bottle of clorin to the concerned households at less than market price.

In the third phase (follow-up), the experimenter again measures, among other things, the clorin

concentration. The data are monotonic in terms of incompleteness — the third phase was conducted

only on those households who could be reached in the second phase (planned incompleteness) and

there was also high attrition, particularly, in the third phase (unplanned incompleteness).

(2c) Ashraf et al. (2014) run an experiment in Zambia to study household bargaining power in

terms of eventual fertility and usage of contraceptives when women were given access to contraceptives

in the presence and absence of their husbands. The first phase is a baseline survey on women that also

provided them with information on contraception and prevention of STD, and distributed condoms.

In the second phase (experiment) the respondents were reached either in the presence or absence

of their husbands (reflecting two types of treatments) and vouchers for injectable contraceptives

were provided. In the third phase (follow-up) information was collected on the women’s use of

contraceptives, sexual behavior, fertility, etc. Interestingly, beside a small number of rather balanced
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attrition (unplanned incompleteness), the monotonicity in this data resulted primarily from planned

incompleteness because the second phase was conducted on a much smaller subset of the respondents

from the first phase owing, in the authors’ words, to “overwhelmingly...resource constraints on the

part of the investigators and a strict timeline for completion of the study”/“Not enough budget”.

Other types of planned incompleteness in economics

Another source of planned incompleteness (and eventual monotonicity) in Ashraf et al. (2014)’s

data is the decision to collect new variables during the follow-up and an additional round but only

in focus groups with subsets of participants. In other words, by design, both the original and the

new variables are observed for a subset of units (those in focus groups) in the data, while only the

original variables are observed for the remaining units in the data. Relatedly, there can be cases

where such new variables might have less accurate counterparts in the original variables, making the

former subset (in the last sentence) a validation sample. An example is Beaman et al. (2015) who

use an input survey to obtain such data. An important consequence of this that we highlight in our

paper is that the joint distribution of the more and less accurate variables that are jointly observed

in the validation sample can often be useful for efficiency gains in subsequent estimation (although

Beaman et al. (2015) did not need to exploit it). A similar example with more and less accurate

measures of consumption, but unfortunately no joint observability (not needed for the stated purpose

of their paper), is Beegle et al. (2012) [see our Section 5 for more on it]. This is also an example that

does not involve a time dimension unlike the other references presented here.

Other types of cases where planned incompleteness could be useful include McKenzie (2012) and

Allcott and Rogers (2014). Monotonicity is natural (at least, not unnatural) in both types of cases.

McKenzie (2012) draws on the clinical trial literature and provides an analysis of the benefit in

precision gains from multiple follow-up measurements in field experiments over the standard practice

of a single baseline and a single follow-up. His discussion focuses on the tradeoff in the choice of n

(number of subjects) and T (number of measurements including baseline and follow-ups) at a given

cost. Alternatively, one could keep both n and T large but measure the relevant variables only for a

subset of subjects at each follow-up exactly like the prototypical multi-phase sampling.

Allcott and Rogers (2014) consider a treatment that was applied to subjects for varying duration.

Specifically, the treatment was applied, i.e., a “home energy report” (containing personalized energy

use, social comparisons, and energy conservation information) was sent to subjects, over a period

of time but was discontinued (and not reinstated) for subsets of subjects during the tenure. The

authors study the effect of this treatment on the energy consumption of the subjects. Note that, in

such cases, the treatment administrator need not choose the subset of subjects “exogenously” but
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could conceivably incorporate the subjects’ past responses to the treatment in the choice decision.

Relation with our framework

While the details of estimation vary, all the studies cited above involve estimating expectations

and, sometimes, regression coefficients. For example, consider, without loss of generality, the in-

strumental variables (IV) regression in equation (2) (p. 1848) in Thornton (2008) (our Example

(2a)) that was run on 75% of the full sample, namely, on the subjects from the districts of Rumphi

and Balaka and not from Mchinji [see their Tables 6 and 7]. Assume in the spirit of Table 7 that

the district-level heterogeneity is captured by the intercept, and extend this assumption to the full

sample so that the regression continues to hold in the population of the full sample simply by adding

a dummy D for Mchinji as a regressor. Denoting the instruments, endogenous regressors, exogenous

regressors and dependent variable by W,X1, X2 and y respectively, define the (moment) function:

m(y,X1, X2,W ;β1, β2) := (W ′, X ′
2)

′(y −X1β1 −X2β2).

The planned incompleteness due to the selective follow-up here is a case of missing y. Now, while

the coefficient ofD (inX2) is unidentified, the results in our paper imply that if interest lies in the pop-

ulation of all three districts then the optimal use of the full sample is possible using the modified mo-

ment vector: (1−D)
1−P (D=1)m(y,X1, X2,W ;β1, β2)+

(
1− (1−D)

1−P (D=1)

)
E[m(y,X1, X2,W ;β1, β2)|X1, X2,W ]

instead of (1−D)
1−P (D=1)m(y,X1, X2,W ;β1, β2) that is “close” to what was used in Table 7.17,18 (Feasi-

bility issues of the modified moment vector, which also arise in Example 1 below (Appendix A.2),

are addressed in detail in the sequel and can be skipped for now in this introductory discussion.)

Our paper explores such optimal uses of the sample for efficient estimation in more general contexts.

A.2 Planned incomplete design: examples of optimality of the design

Example 1: Minimizing variance of estimator subject to a given expected cost of survey

Let (Y,X) be scalar variables with finite means and variances. Let the parameter of interest be

β = E[Y −X]. Consider two random samples S† = {Yj , Xj}n
†

j=1 and S = {Yi, Di, DiXi}ni=1 where D

is binary. We observe X in S only when D = 1. Assume that P (D = 1|Y,X) = P (D = 1) = p.19

17Standard IV conditions such as E[m(y,X1, X2,W ;β0
1 , β

0
2)|X2,W ] = 0 or E[m(y,X1, X2,W ;β0

1 , β
0
2)] = 0 do not

imply that E[m(y,X1, X2,W ;β0
1 , β

0
2)|X1, X2,W ] = 0 where β0

1 and β0
2 are the true values of β1 and β2. Hence, the

modification in the moment vector is not moot, and it reduces the variability of the estimating function for β1 and β2.
18We say “close” to mean asymptotically equivalent. Note that Tables 6 and 7 suggest that the first stage was run

on the full sample since only y is missing, while the second stage was run on the sample where D = 0. While this gives
more precise first stage estimates than what our latter representation above gives, under standard assumptions both
approaches actually give asymptotically equivalent estimates of the parameters of interest β1 and β2 that, in turn, are
less precise than what our former representation above with the modified moment vector does.

19While n† and n are non-random quantities, we allow, here and throughout, D to be random. Hence nD :=∑n
i=1 Di ∼ Bin(n, p), i.e., the size of the complete sub-sample (the sub-sample containing all the variables required to

estimate β) is random. This is in spirit similar to the familiar relationship between multinomial sampling and standard
stratified sampling. It provides the technical convenience to consider a variety of cases under a unified framework.
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The standard and, in this case, efficient estimator of β based on S† is:

β̂† =

n†∑
j=1

(Yj −Xj) /n
† with V ar(β̂†) = ∆/n†

where ∆ := V ar(Y −X). On the other hand, the result in this paper gives an infeasible version of

the efficient estimator of β based on S as:

β̂ =
1

n

n∑
i=1

{
Di

p
(Yi −Xi) +

(
1− Di

p

)
(Yi − E[X|Yi])

}
with V ar

(
β̂
)
=

1

n

[
∆+

1− p

p
E[V ar(X|Y )]

]
.

β̂ is infeasible because E[X|Y ] is unknown in practice. A feasible version of β̂ plugs in an estimator

Ê[X|Y ] for E[X|Y ] in the expression for β̂. An important and desirable feature of our results that is

repeatedly emphasized in Appendix C is that as long as Ê[X|Y ] is consistent for E[X|Y ] uniformly

in Support(Y ), plugging Ê[X|Y ] in the expression for β̂ only makes the result asymptotic, i.e., (i)

what is referred to as V ar(β̂) turns out to be (1/n) times the asymptotic variance of the feasible β̂,

and (ii) the feasible β̂ is no longer unbiased but is asymptotically unbiased and normally distributed.

Now, let the cost of observing Y for a unit be 1 and that for X be c where c > 1. Let the allowed

expected total cost for the sample be c∗. Thus, n† = ⌊c∗/(1+ c)⌋ and n = ⌊c∗/(1+pc)⌋ for a given c,

c∗ and p, and where ⌊a⌋ denotes the largest integer ≤ a. Consider the problem of choosing p such that

V ar(β̂) < V ar(β̂†). By simple calculations: V ar(β̂) < V ar(β̂†) ⇐⇒ p > 1/(cq) provided that cq >

1 where q = V ar(Y − X)/E[V ar(X|Y )] − 1. No solution exists if cq ≤ 1. However, if cq > 1 and

p > 1/(cq), then the sample S is strictly advantageous over the sample S† under the premise of the

stated problem. (If Y and X are normally distributed with unit variance and correlation ρ then

q = (1− ρ)/(1 + ρ).) If cq > 1 and n = c∗/(1 + pc), V ar(β̂) is minimized when p = 1/
√
cq.

Example 2: Variance reduction through dependent as opposed to independent sampling

Consider estimating the parameter β from a regression model Y = α + βX + ϵ where Y and X

are scalar random variables. For simplicity, let X ∼ Bin(1, q) and let the model error ϵ ∼ (0, σ2)

be independent of X. Let S = {Di, DiYi, Xi}ni=1 where D is a binary variable such that we observe

Y in S only when D = 1. (We switch the missing variable from X to Y in this example, unlike in

most of our paper, so that we can consider a simple unweighted estimator without bothering about

bias due to the possible non-representativeness of the units with Di = 1 [see Wooldridge (2007)].)

Let p(j) = E[D|X = j] for j = 0, 1. Then, p := E[D] = qp(1) + (1 − q)p(0) and E[DX] = qp(1).

The ordinary least squares estimator β̂ of β, based on sample units with Di = 1, and the asymptotic

variance of β̂ are, respectively:
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β̂ =

n∑
i=1

DiXi

Yi − n∑
j=1

DjYj

/
n∑

j=1

Dj

/ n∑
i=1

DiXi

Xi −
n∑

j=1

DjXj

/
n∑

j=1

Dj


and

Avar = σ2 /E[DX] (1− E[DX]/E[D]) = pσ2 /[qp(1)(p− qp(1))] .

If P (D = 1|Y,X) = P (D = 1) = p, implying that p(1) = p(0) = p, then Avar = σ2/pq(1 − q).

On the other hand, p(1) = p/(2q) minimizes the general Avar and the minimized value is Avar

= 4σ2/p, which is strictly smaller than σ2/pq(1− q) unless q = 1/2. Hence, by virtue of making D

dependent on X, optimally, one could correct for the non-50-50 assignment of X in the population

– the essential idea behind stratification – to minimize variance.

A.3 The equivalence relation in the MAR condition in (1)

Lemma 11 Let P (C = r|TR(Z)) > 0 for each r = 1, . . . , R. Then, P (C = r|C ≥ r, TR(Z)) =

P (C = r|C ≥ r, Tr(Z)) for r = 1, . . . , R if and only if P (C = r|TR(Z)) = P (C = r|Tr(Z)) for

r = 1, . . . , R.

Proof: We assume only P (C = r|TR(Z)) > 0 for each r = 1, . . . , R for simplicity to avoid cases with

0/0. The proof follows by induction. We first show the “if” part and then the “only if” part.

“if:” Let P (C = r|TR(Z)) = P (C = r|Tr(Z)) for r = 1, . . . , R. Therefore, P (C = 1|C ≥

1, TR(Z)) ≡ P (C = 1|TR(Z)) = P (C = 1|T1(Z)) ≡ P (C = 1|C ≥ 1, T1(Z)). Now, suppose that

P (C = j|C ≥ j, TR(Z)) = P (C = j|C ≥ j, Tj(Z)) for j = 1, . . . , r for some r = 1, . . . , R − 1. This

will imply that P (C = r + 1|C ≥ r + 1, TR(Z)) = P (C = r + 1|C ≥ r + 1, Tr+1(Z)) because:

P (C = r + 1|C ≥ r + 1, TR(Z)) =
P (C = r + 1|TR(Z))
P (C ≥ r + 1|TR(Z))

=
P (C = r + 1|TR(Z))

1−
∑r

j=1 P (C = j|TR(Z))

=
P (C = r + 1|Tr+1(Z))

1−
∑r

j=1 P (C = j|Tj(Z))

=
P (C = r + 1|Tr+1(Z))

1−
∑r

j=1 P (C = j|Tr+1(Z))

=
P (C = r + 1|Tr+1(Z))

P (C ≥ r + 1|Tr+1(Z))

= P (C = r + 1|C ≥ r + 1, Tr+1(Z))

where the first, second, fifth and sixth equalities follow by definition, and the third and fourth

equalities follow from the assumed conditions once we note that Tj(Z) is nested by Tj+1(Z) for all

j = 1, . . . , R− 1.

7



“only if:” Let P (C = r|C ≥ r, TR(Z)) = P (C = r|C ≥ r, Tr(Z)) for r = 1, . . . , R. Therefore,

P (C = 1|TR(Z)) ≡ P (C = 1|C ≥ 1, TR(Z)) = P (C = 1|C ≥ 1, T1(Z)) ≡ P (C = 1|T1(Z)). Now,

suppose that P (C = j|TR(Z)) = P (C = j|Tj(Z)) for j = 1, . . . , r for some r = 1, . . . , R − 1. This

will imply that P (C = r + 1|TR(Z)) = P (C = r + 1|Tr+1(Z)) because:

P (C = r + 1|TR(Z)) = P (C = r + 1, C ≥ r + 1|TR(Z))

= P (C = r + 1|C ≥ r + 1, TR(Z))P (C ≥ r + 1|TR(Z))

= P (C = r + 1|C ≥ r + 1, TR(Z))

1−
r∑

j=1

P (C = j|TR(Z))


= P (C = r + 1|C ≥ r + 1, Tr+1(Z))

1−
r∑

j=1

P (C = j|Tj(Z))


= P (C = r + 1|C ≥ r + 1, Tr+1(Z))P (C ≥ r + 1|Tr(Z))

= P (C = r + 1|Tr+1(Z))

where the first three equalities follow by definition, the fourth equality follows by the assumed

conditions, and the last two equalities are simply the reverse steps of the first three equalities coupled

with the fact that Tj(Z) is nested by Tj+1(Z) for all j = 1, . . . , R− 1.

A.4 The equivalence relation in the planned incompleteness condition in (2)

Lemma 12 Let (1) hold and also P (C = r|TR(Z)) > 0 for each r = 1, . . . , R. Then, P (C = r|C ≥

r, Tr(Z)) is known for r = 1, . . . , R if and only if P (C = r|Tr(Z)) is known for r = 1, . . . , R.

Proof: The proof follows by induction exactly like the proof of Lemma 11. For the “if” part, when

showing that the result holds for r + 1 assuming that it holds for j = 1, . . . , r, we have:

P (C = r + 1|C ≥ r + 1, Tr+1(Z)) =
P (C = r + 1|Tr+1(Z))

1−
∑r

j=1 P (C = j|Tj(Z))

as before due to (1). The RHS is known by the assumed conditions. Hence the LHS is known.

For the “only if” part, when showing that the result holds for r + 1 assuming that it holds for

j = 1, . . . , r, we have:

P (C = r + 1|Tr+1(Z)) = P (C = r + 1|C ≥ r + 1, Tr+1(Z))

1−
r∑

j=1

P (C = j|Tj(Z))


as before due to (1). The RHS is known by the assumed conditions. Hence the LHS is known.

Remark: At this stage, it is important to list two useful relations that are both related to the steps
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in the proofs of Lemmas 11 and 12, and also used repeatedly in the proofs in Appendices A and B.

Relation 1: (1) implies that

P (C ≥ r|TR(Z)) = P (C ≥ r|Tr−1(Z)). (31)

This follows by noting that:

P (C ≥ r|TR(Z)) = 1−
r−1∑
j=1

P (C = j|TR(Z))

= 1−
r−1∑
j=1

P (C = j|Tj(Z))

= 1−
r−1∑
j=1

P (C = j|Tr−1(Z))

= 1− P (C ≤ r − 1|Tr−1(Z)) = P (C ≥ r|Tr−1(Z))

where the first equality follows by definition, the second by (1), the third by (1) and the nested

structure of Tj(Z)’s, while the fourth and the fifth by definition.

Note that, taking R = 2 in (31) implies that P (C = 2|T2(Z)) = P (C = 2|T1(Z)), the conven-

tional MAR assumption found in the econometrics literature that has traditionally focused on

R = 2 [see, e.g., Chen et al. (2005), Chen et al. (2008), Graham (2011), Graham et al. (2012)].

Looking at the complement events in (31) equivalently gives (31) as P (C ≤ r − 1|TR(Z)) =

P (C ≤ r−1|Tr−1(Z)), which perhaps better indicates the generality of the selection on variables

condition in our paper that can accommodate for all sorts of dimension reductions including

the extreme reduction CMAR in (10) and the no reduction in Barnwell and Chaudhuri (2018).

Relation 2: For any function ν(Z) such that E|ν(Z)| <∞, (1) implies that:

E

[
I(C ≥ r)

P (C ≥ r|Tr(Z))
ν(Z)

]
= E

[
P (C ≥ r|Z)

P (C ≥ r|Tr(Z))
ν(Z)

]
= E

[
P (C ≥ r|Tr(Z))
P (C ≥ r|Tr(Z))

ν(Z)

]
= E[ν(Z)] (32)

where the first equality follows by the law of iterated expectations and the second one by (1).

As a consequence of (31), one can instead write (32) as:

E

[
I(C ≥ r)

P (C ≥ r|Tr−1(Z))
ν(Z)

]
= E

[
P (C ≥ r|Tr(Z))
P (C ≥ r|Tr−1(Z))

ν(Z)

]
= E

[
P (C ≥ r|Tr−1(Z))

P (C ≥ r|Tr−1(Z))
ν(Z)

]
= E[ν(Z)].
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A.5 Intermediate steps in equation (4)

E

[
P (C ∈ λ|TR(Z))

P (C ∈ λ)

I(C = R)

P (C = R|TR(Z))
m(Z;β)

]
= E

[
P (C ∈ λ|TR(Z))

P (C ∈ λ)
E

[
I(C = R)

P (C = R|TR(Z))

∣∣∣∣TR(Z)]m(Z;β)

]
= E

[
P (C ∈ λ|TR(Z))

P (C ∈ λ)
m(Z;β)

]
= E

[
I(C ∈ λ)

P (C ∈ λ)
m(Z;β)

]
= E[m(Z;β)|C ∈ λ].

The first and third equalities follow by the law of iterated expectations, and the rest by definition.

Importantly, note that, the MAR condition in (1) and the planned incompleteness condition in (2)

are not required for this relation in (4) to hold. However, as noted in the discussion around equations

(1) and (2) that led to (4), the MAR condition in (1), in particular, is required to implement this

relation in practice for the estimation of β by the IPW or the efficient estimator.

A.6 Relation of the framework in Section 2 with closely related technical papers

We delineate the framework in Section 2 from the following not-too-old representative examples under

the non-Bayesian paradigm. (a) Whittemore (1997) considers maximum likelihood and Horvitz-

Thompson estimators with data obtained by multi-phase sampling (and seems to prefer the latter)

where the target is the full population, i.e, λ = C. (b) Robins and Rotnitzky (1995) and Holcroft

et al. (1997) consider optimally using all the sub-samples under a framework similar to ours but

with λ = C. (c) Lee et al. (2012) consider efficient semiparametric likelihood-based estimation with

λ = C in multi-phase case-control studies when TR−1(Z) has a finite number of support points. (d)

While the multi-valued treatment framework with λ = C considered in Cattaneo (2010) is generally

related, it also differs in an important way because we actually allow the entire random vector Z

to be the argument for each element of the vectorial moment function m(Z;β), and thus for each

element there can be R levels of hierarchy in observability. This creates a major difference in terms

of efficiency bounds, efficient influence functions, etc., and is discussed in details in Chaudhuri and

Guilkey (2016) (p. 686). (e) Dardanoni et al. (2011) consider a multiple regression framework

with regressors missing non-monotonically under an assumption that implies that the regression

coefficients do not vary across the populations of the sub-samples. So, they focus on λ = C and,

unlike in our paper and the references cited in (a)-(d) and (f) (below), use of their complete sub-
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sample without correction for selection does not cause any bias in estimation.20 Similarly, if one

extends Abrevaya and Donald (2017) to the case of multiple incomplete sub-samples, then each

sub-population would still be representative of λ = C. (f) Finally, Chen et al. (2005) and Chen

et al. (2008) consider frameworks where β0λ is defined exactly as in (3) for R = 2 and λ = {1}

(sub-population) and {1, 2} (full population).

By contrast in one way or the other to (a)-(f), our setup: (i) allows for a general R, (ii) expands

the scope to all (2R − 1) sub-populations (including λ = C), (iii) introduces a dynamically updated

sampling design via MAR, and (iv) provides the new insights available only from letting R > 2.

In this regard, it is also important to recall that the references in (d)-(f) above or the well-known

sampling designs like the SQD, PQD, etc. noted in Appendix A.1 either do not consider or do

not have the scope to consider a key feature of our framework, namely, sampling designs that are

dynamically updated using the newly available information from more than one phase.

A.7 Intermediate steps for Remark 1 following Proposition 1

When R = 2 and λ = {1, 2}, (5) and (6) give:

φ{1,2}(O;β) =
I(C = 2)

P (C = 2|T2(Z))
m(T2(Z);β)

+

(
I(C ≥ 1)

P (C ≥ 1|T1(Z))
− I(C = 2)

P (C = 2|T2(Z))

)
E[m(T2(Z);β)|T1(Z)]

=
I(C = 2)

P (C = 2|T1(Z))
m(T2(Z);β) +

(
1− I(C = 2)

P (C = 2|T1(Z))

)
E[m(T2(Z);β)|T1(Z)]

=
I(C = 2)

P (C = 2|T1(Z))
(m(T2(Z);β)− E[m(T2(Z);β)|T1(Z)]) + E[m(T2(Z);β)|T1(Z)]

where the second equality follows from (31). The last line is the expression from Chen et al. (2008).

20Bias arises due to problems with the imputed values if the same estimation is done in the incomplete sub-samples by
replacing the missing regressors with their imputed values. To improve the precision of the unbiased estimator based on
the complete sub-sample, they recommend Bayesian model averaging using the unbiased and biased estimates. While
this approach should be very useful in many cases, it is a difficult proposition to compare it with the results in our
paper and the other references here that all solve a different optimization problem: minimize asymptotic variance for
asymptotically unbiased estimators. We thank a referee for pointing out this useful reference that we had missed earlier.
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When R = 2 and λ = {1}, (5) and (6) give:

φ{1}(O;β) =
I(C = 2)

P (C = 2|T2(Z))
P (C = 1|T2(Z))

P (C = 1)
m(T2(Z);β)

+

(
I(C ≥ 1)

P (C ≥ 1|T1(Z))
− I(C = 2)

P (C = 2|T2(Z))

)
E

[
P (C = 1|T2(Z))

P (C = 1)
m(T2(Z);β)

∣∣∣∣T1(Z)]
=

I(C = 2)

P (C = 2|T1(Z))
P (C = 1|T1(Z))

P (C = 1)
m(T2(Z);β)

+

(
1− I(C = 2)

P (C = 2|T1(Z))

)
E

[
P (C = 1|T1(Z))

P (C = 1)
m(T2(Z);β)

∣∣∣∣T1(Z)]
=

I(C = 2)

P (C = 2|T1(Z))
P (C = 1|T1(Z))

P (C = 1)
(m(T2(Z);β)− E[m(T2(Z);β)|T1(Z)])

+
P (C = 1|T1(Z))

P (C = 1)
E[m(T2(Z);β)|T1(Z)]

where the second equality follows from (31) and (1). The RHS of the last equality is the expression

from Chen et al. (2008).

A.8 Proposition 2’s connection with the calibration and econometrics literature

The idea behind using the moment restrictions in (9) to augment the moment restriction (8), that

already identifies β0λ and can be used to obtain a
√
n-consistent estimator [see, e.g., Wooldridge

(2007)], and thus achieving efficiency gains is the same as the idea of calibration in the survey

sampling literature [see, e.g., Deville and Sarndal (1992)]. The same idea, in more economics-centric

ways, has appeared in the econometrics literature also: see Back and Brown (1993), Imbens and

Lancaster (1994), Hellerstein and Imbens (1999), Devereux and Tripathi (2009), Tripathi (2011),

Graham et al. (2012), etc. or Hellerstein and Imbens (1999), Nevo (2003), etc. in another context.

To see the connection, first note that under our setup this means estimating β0λ by solving for β

from
∑n

i=1 ωiφR,λ(Oi, β) = 0 where ωi = I(Ci = R)/P (C = R|TR(Zi)) = ωIPW,i, say, (instead

of 1/n to reflect the non-representativeness of the complete sub-sample) if only (8) is used. On

the other hand, if the calibration/augmenting/auxiliary restrictions in (9) are also utilized, then

ωi = ωIPW,i +
∑R−1

r=1 ar,i for some appropriate (and complicated) set of random functions ar,i’s.

For example, if R = 2, then a1,i = ωIPW,iΥ
′
K1

(T1(Zi))(
∑n

j=1ΥK1(T1(Zj))Υ
′
K1

(T1(Zj)))
−1
∑n

l=1(1 −

ωIPW,l)ΥK1(T1(Zl)) where ΥK1(T1(Z)) is a K1 × 1 vector of some possibly orthogonalized series of

functions (e.g., power series, splines, etc.) of T1(Z) with possibly K1 → ∞ as n → ∞ [see Graham

et al. (2012)]. One could instead use ω̄i = ωi/
∑

j ωj as the weights so that they necessarily add

up to one. However, there is no guarantee that ω̄i ∈ [0, 1] for all i (indeed it can be outside [0, 1]

for all i), which is not a desirable characteristic for weights. We do not pursue corrections for this

12



undesirable characteristic of the weights since they are peripheral to the main message of our paper.

A.9 The importance of the planned incompleteness condition (2) in Proposition 2

This importance becomes evident when the target is not the full population. Consider R = 2 and

λ = {1}, and note that Proposition 2 gives:

φ{1}(O;β) = ProjT1
(ϕ2,λ(O;β)|ϕ1) = ϕ2,λ(O;β)− ProjT1

(ϕ2,λ(O;β)|ϕ1)

=
I(C = 2)

P (C = 2|T1(Z))
P (C = 1|T1(Z))

P (C = 1)
m(Z;β)

−
{

P (C = 1|T1(Z))
P (C = 1)P (C = 2|T1(Z))

E[m(Z;β)|T1(Z)]
}
(I(C = 2)− P (C = 2|T1(Z)))

=
I(C = 2)

P (C = 2|T1(Z))
P (C = 1|T1(Z))

P (C = 1)
(m(Z;β)− E[m(Z;β)|T1(Z)])

+
P (C = 1|T1(Z))

P (C = 1)
E[m(Z;β)|T1(Z)].

On the other hand, it is known from Case 1 in Theorem 1 of Chen et al. (2008) (or plugging in R = 2

and λ = {1} in our Proposition 5, or, equivalently, Barnwell and Chaudhuri (2018)’s Proposition 1)

that the corresponding quantity without (2) would be:

φ{1}[u](O;β) =
I(C = 2)

P (C = 2|T1(Z))
P (C = 1|T1(Z))

P (C = 1)
(m(Z;β)− E[m(Z;β)|T1(Z)])

+
I(C = 1)

P (C = 1)
E[m(Z;β)|T1(Z)].

Of course, φ{1}[u](O;β) ̸= φ{1}(O;β), i.e., Proposition 2 does not generally apply when targets are

sub-populations unless the planned incompleteness condition in (2) holds.

Appendix B: Detailed version of the proofs of the results in Section 2 and 3

Appendix B provides the detailed version of the proofs of the results in Sections 2 and 3. Abridged

version of the same proofs were presented in our paper.

The proofs of Propositions 1, 3, 4 and 5 involve obtaining the semiparametric efficiency bound and

the efficient influence function, under different assumptions, following Chen et al. (2008). They follow

in two steps. Step 1 characterizes the tangent set for all regular parametric sub-models satisfying

the semiparametric assumptions on the observed data. Step 2 obtains the efficient influence function

and, thereby, the asymptotic variance lower bound as the expectation of its outer product. f and F

denote the density and distribution functions, with the concerned random variables specified inside

parentheses. L2
0(F ) denotes the space of mean-zero, square integrable functions with respect to F .
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Proof of Proposition 1:

STEP 1: Consider a regular parametric sub-model indexed by a parameter θ for the distribution

of the observed data O = (C ′, T ′
C(Z))

′. The log of the distribution can be expressed in terms of the

full data (C,Z ′)′ as:

log fθ(O) = log fθ(Z(1))+

R∑
r=2

I(C ≥ r) log fθ(Z(r)|Z(1), . . . , Z(r−1))+

R∑
r=1

I(C = r) logP (C = r|Z(1), . . . , Z(r)).

To reflect our condition (2), i.e., P (C = r|Z(1), . . . , Z(r)) is known for r = 1, . . . , R and hence need

not be accounted for in what follows, we do not index them by θ. (These quantities do not play a

role in the proof of the present proposition but does so in the proof of our Propositions 4 and 5.)

θ0 is the unique value of θ such that fθ0(O) equals the true f(O), and accordingly for all the

quantities. The score function with respect to θ can then be written in terms of (C,Z ′)′ as:

Sθ(O) = sθ(Z(1)) +

R∑
r=2

I(C ≥ r)sθ(Z(r)|Z(1), . . . , Z(r−1))

where sθ(Z(1)) :=
∂
∂θ log fθ(Z(1)) and sθ(Z(r)|Z(1), . . . , Z(r−1)) :=

∂
∂θ log fθ(Z(r)|Z(1), . . . , Z(r−1)). (We

will omit the subscript θ from the quantities evaluated at θ = θ0.) The tangent set is the mean square

closure of all d dimensional linear combinations of Sθ(O) for all such smooth parametric sub-models,

and it takes the form:

T := a1(Z(1)) +
R∑

r=2

I(C ≥ r)ar(Z(1), . . . , Z(r)), (33)

where a1(Z(1)) ∈ L2
0(F (Z(1))) and ar(Z(1), . . . , Z(r)) ∈ L2

0(F (Z(r)|Z(1), . . . , Z(r−1))).

STEP 2: Differentiating the moment conditions in (3) with respect to θ under the integral, and

noting that P (C ∈ λ|Z) (which is known) does not depend on θ but P (C ∈ λ) (which is unknown)

does, we obtain by using (3) and (1) that:

0 =Mλ
∂β0

λ(θ0)

∂θ′
+ E

[
m(Z;β0λ)

{
s(Z(1))

′ +

R∑
r=2

s(Z(r)|Z(1), . . . , Z(r−1))
′

}∣∣∣∣∣C ∈ λ

]
.

Therefore, assumption (A3) now gives:

∂β0λ(θ0)

∂θ′
= −M−1

λ E

[
m(Z;β0λ)

{
s(Z(1))

′ +

R∑
r=2

s(Z(r)|Z(1), . . . , Z(r−1))
′

}∣∣∣∣∣C ∈ λ

]
.
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Pathwise differentiability follows if we can find a ψ(O) ∈ T such that:

E[ψ(O)S(O)′] =
∂β0

λ(θ0)

∂θ′
. (34)

Let us conjecture that ψ(O) = −M−1
λ φλ(O;β0λ), and then verify (34) by equivalently showing that:

E[φλ(O;β0λ)S(O)′] = E

[
m(Z;β0λ)

{
s(Z(1))

′ +
R∑

r=2

s(Z(r)|Z(1), . . . , Z(r−1))
′

}∣∣∣∣∣C ∈ λ

]
.

Consider the left hand side (LHS) and, in accordance with the partition of φλ(O) (we work with the

alternative specification in (7) for convenience), write it as
∑R

q=1Bq where, for q = 2, . . . , R:

Bq := E

[
I(C ≥ q)

P (C ≥ q|Tq(Z)
[
φq,λ(O;β0λ)− φq−1,λ(O;β0λ)

]
S(O)′

]
while B1 := E

[
φ1,λ(O;β0λ)S(O)′

]
.

To avoid notational clutter, in the rest of STEP 2 we writem(Z;β0λ) asm; Tq(Z) as Tq; φq,λ(O;β0λ)

as φq,λ for q = 1, . . . , R; and also write s(Z(r)|Z(1), . . . , Z(r−1)) as s(Z(r)|Tr−1) for r = 2, . . . , R.

Now, note that:

B1 = E

[
E

[
P (C ∈ λ|TR)
P (C ∈ λ)

m

∣∣∣∣T1] s(Z(1))
′
]
+

R∑
r=2

E

[
E

[
P (C ∈ λ|TR)
P (C ∈ λ)

m

∣∣∣∣T1] I(C ≥ r)s(Z(r)|Tr−1)
′
]
.

Using MAR in (1) in the first equality of the last line below and the fact that s(Z(r)|Tr−1) ∈

L2
0(F (Z(r)|Tr−1)) for r > 1 in the last equality of the last line below, we obtain that:

R∑
r=2

E

[
E

[
P (C ∈ λ|TR)
P (C ∈ λ)

m

∣∣∣∣T1] I(C ≥ r)s(Z(r)|Tr−1)
′
]

=
R∑

r=2

E

[
E

[
P (C ∈ λ|TR)
P (C ∈ λ)

m

∣∣∣∣T1] (1− I(C ≤ r − 1))s(Z(r)|Tr−1)
′
]

=

R∑
r=2

E

[
E

[
P (C ∈ λ|TR)
P (C ∈ λ)

m

∣∣∣∣T1]E[(1− I(C ≤ r − 1))|Tr−1]E[s(Z(r)|Tr−1)
′|Tr−1]

]
= 0.

This is the first observation. On the other hand, since T1 := Z(1), we have the second observation:

E

[
E

[
P (C ∈ λ|TR)
P (C ∈ λ)

m

∣∣∣∣T1] s(Z(1))
′
]
= E

[
P (C ∈ λ|TR)
P (C ∈ λ)

ms(Z(1))
′
]
= E

[
I(C ∈ λ)

P (C ∈ λ)
ms(Z(1))

′
]
.

Combining the two observations it follows that B1 = E[ms(Z(1))
′|C ∈ λ].
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Now, we consider Bq. (1) gives for q = 2, . . . , R:

Bq

=

q−1∑
r=1

E

[
I(C ≥ q)

P (C ≥ q|Tq)
(φq,λ − φq−1,λ)s(Z(r)|Tr−1)

′
]
+

R∑
r=q

E

[
I(C ≥ r)

P (C ≥ q|Tq)
(φq,λ − φq−1,λ)s(Z(r)|Tr−1)

′
]
.

Since E[φq,λ|Tq−1] = φq−1,λ, it follows by conditioning on Tq−1 and from (32) that the first term on

the RHS is 0. On the other hand, (31) and the fact that s(Z(r)|Tr−1) ∈ L2
0(F (Z(r)|Tr−1)) implies

that the second term is:

R∑
r=q

E

[
1− I(C ≤ r − 1)

1− P (C ≤ q − 1|Tq−1)
(φq,λ − φq−1,λ)s(Z(r)|Tr−1)

′
]

= E[φq,λs(Z(q)|Tq−1)
′]

= E[ms(Z(q)|Tq−1)
′|C ∈ λ].

Therefore, Bq = E[ms(Z(q)|Tq−1)
′|C ∈ λ] for q = 2, . . . , R, combining which with B1 verifies (34).

That ψ(O) ∈ T follows from matching terms as follows. (i) −M−1
λ φ1,λ is a function of only

T1 := Z(1), and E[φ1,λ] = 0 and, hence, satisfies the properties of a1(Z(1)) in (33). (ii) The r-

th term (r = 2, . . . , R, without the multiplier I(C ≥ r)) on the RHS of ψ(O) can be written

as: − 1
P (C≥r|Tr)

M−1
λ [φr,λ − φr−1,λ] = − 1

1−P (C≤r−1|Tr−1)
M−1

λ [φr,λ − φr−1,λ] by (1) [also see (31)].

Hence, by definition of φr, taking expectation of the RHS of the above equation conditional on

Tr−1 := (Z(1), . . . , Z(r−1))
′ gives 0. Therefore, this term is a function of only Tr and it is also in

L2
0(F (Z(r)|Z(1), . . . , Z(r−1))), and hence satisfies the properties of ar(Z(1), . . . , Z(r)) in (33).

Therefore, we have now verified that the projection of the influence function −M−1
λ m(Z;β0λ) on

to the tangent set T is ψ(O) := −M−1
λ φλ(O;β0λ). Hence, ψ(O) is the efficient influence function and,

therefore, the asymptotic variance lower bound is E[ψ(O)ψ(O)′] =M−1
λ VλM

−1′

λ =: Ωλ.

Proof of Proposition 2:

(i) Let us start with r = 1, i.e., the residual from the projection, ProjTR−1
(ϕR,λ(β)|ϕR−1), inside

the innermost parenthesis on the RHS. We will also consider r = 2 so that the pattern in the form

of the residuals from the successive projections inside the first few innermost parentheses is clear to

all. Then we apply induction arguments. For brevity, write φR,λ(O;β) as φR,λ and Tr(Z) as Tr.

First, note that direct computation and (1) along with (31) give:

ProjTR−1
(ϕR,λ(β)|ϕR−1) =

[
I(C = R)

P (C = R|TR)
− I(C ≥ R− 1)

P (C ≥ R− 1|TR−1)

]
E[φR,λ|Tr−1],
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which implies that:

ProjTR−1
(ϕR,λ(β)|ϕR−1) =

I(C = R)

P (C = R|TR)
(φR,λ − E[φR,λ|TR−1])︸ ︷︷ ︸+ I(C ≥ R− 1)

P (C ≥ R− 1|TR−1)
E[φR,λ|TR−1].

Consider the under-braced part in the RHS of the expression for ProjTR−1
(ϕR,λ(β)|ϕR−1). Using

TR−1 \ TR−2 = Z(R−1) and (1), note that E [(φR,λ − E[φR,,λ|TR−1])ϕR−2|TR−2] is a d × 1 vector of

zeros, and hence has no contribution in the successive projections. (Terms with no contribution in

the successive projections are marked by under-braces in this proof.) On the other hand,

E

[
I(C ≥ R− 1)

P (C ≥ R− 1|TR−1)
E[φR,λ|TR−1]ϕR−2

∣∣∣∣TR−2

]
=
P (C = R− 2|TR−2)

P (C ≥ R− 2|TR−2)
E[φR,λ|TR−2].

Thus, similar computation as above (and the use of (31)) gives for r = 2:

ProjTR−2

(
ProjTR−1

(ϕR,λ(β)|ϕR−1)
∣∣∣ϕR−2

)
=

[
I(C ≥ R− 1)

P (C ≥ R− 1|TR−1)
− I(C ≥ R− 2)

P (C ≥ R− 2|TR−2)

]
E[φR,λ|TR−2],

which implies that:

ProjTR−2

(
ProjTR−1

(ϕR,λ(β)|ϕR−1)
∣∣∣ϕR−2

)
=

1∑
s=0

I(C ≥ R− s)

P (C ≥ R− s|TR−s)
(E[φR,λ|TR−s]−E[φR,λ|TR−s−1])︸ ︷︷ ︸+ I(C ≥ R− 2)

P (C ≥ R− 2|TR−2)
E[φR,λ|TR−2].

For our proof by induction, first assume that the following holds for a general r ∈ {2, . . . , R− 2}:

ProjTR−r

(
. . .ProjTR−1

(ϕR,λ(β)|ϕR−1) . . .
∣∣∣ϕR−r

)
=

r−1∑
s=0

I(C ≥ R− s)

P (C ≥ R− s|TR−s)
(E[φR,λ|TR−s]−E[φR,λ|TR−s−1])︸ ︷︷ ︸+ I(C ≥ R− r)

P (C ≥ R− r|TR−r)
E[φR,λ|TR−r].

Now, once again using (31), note that:

E[ϕ2R−r−1|TR−r−1] =
P (C ≥ R− r|TR−r)P (C = R− r − 1|TR−r−1)

P (C ≥ R− r − 1|TR−r−1)
,

and

E[ProjTR−r

(
. . .ProjTR−1

(ϕR,λ(β)|ϕR−1) . . .
∣∣∣ϕR−r

)
ϕR−r−1|TR−r−1]

=
P (C = R− r − 1|TR−r−1)

P (C ≥ R− r − 1|TR−r−1)
E[φR,λ|TR−r−1].
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Hence, the proof follows by induction since the form is also valid for r + 1, i.e.,

ProjTR−r−1

(
. . .ProjTR−1

(ϕR,λ(β)|ϕR−1) . . .
∣∣∣ϕR−r−1

)
=

r∑
s=0

I(C ≥ R− s)

P (C ≥ R− s|TR−s)
(E[φR,λ|TR−s]−E[φR,λ|TR−s−1]) +

I(C ≥ R− r − 1)

P (C ≥ R− r − 1|TR−r−1)
E[φR,λ|TR−r−1].

(ii) The proof follows in the same way as that of Theorem 1 in Chamberlain (1992) or, more

generally, as that of Theorem 1 of Ai and Chen (2012). Appendix B.1 makes the connection with Ai

and Chen (2012) explicit.

Proof of Proposition 3:

This proof follows in the same way as that of Proposition 1. The efficient influence function in

this case turns out to be exactly the same as in Proposition 1 if CMAR is imposed on the latter.

We present the proofs of Propositions 4 and 5 in reverse order because the proof for the latter

makes a reference to that for the former. Certain details of lesser importance are omitted below

because they were already made explicit in the proof of Proposition 1.

Proof of Proposition 5:

STEP 1: Consider a regular parametric sub-model indexed by θ for the joint distribution of

the observed data O = (C, T ′
C(Z))

′. Because of CMAR in (10), the log of the distribution can be

expressed in terms of the full data (C,Z ′)′ as:

log fθ(O) =
R∑

r=1

I(C = r) logPθ(C = r|Z(1))+
R∑

r=1

I(C ≥ r) log fθ(Z(r)|Z(1), . . . , Z(r−1))+ log fθ(Z(1)).

Let the true distribution be f(O) = fθ0(O) for some θ0. Using the same notations as before, the

score function with respect to θ can be written in terms of (C,Z ′)′ as:

Sθ(O) = sθ(Z(1)) +

R∑
r=2

I(C ≥ r)sθ(Z(r)|Z(1), . . . , Z(r−1)) +

R∑
r=1

I(C = r)
Ṗθ(C = r|Z(1))

Pθ(C = r|Z(1))

where Ṗθ(C = r|Z(1)) :=
∂
∂θPθ(C = r|Z(1)). Thus, the tangent space is characterized by functions of

the form:

T := a1(Z(1)) +
R∑

r=2

I(C ≥ r)ar(Z(1), . . . , Z(r)) +
R∑

r=1

I(C = r)
br(Z(1))

bbr(Z(1))
, (35)

where a1(Z(1)) ∈ L2
0(F (Z(1))); ar(Z(1), . . . , Z(r)) ∈ L2

0(F (Z(r)|Z(1), . . . , Z(r−1))) for r = 2, . . . , R;∑R
r=1 br(Z(1))) = 0,

∑R
r=1 bbr(Z(1)) = 1 , and

∑R
r=1 I(C = r)

br(Z(1))

bbr(Z(1))
∈ L2

0(F (C|Z(1))).

To avoid notational clutter, in the rest of the proof we write m(Z;β0λ) as m; Tr(Z) as Tr for
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r = 1, . . . , R; and also write s(Z(r)|Z(1), . . . , Z(r−1)) as s(Z(r)|Tr−1) for r = 2, . . . , R.

Unlike in Chen et al. (2008)’s proof we use the same factorization of the joint density of O for

all λ. For a given λ ∈ Λ, the following relation obtained by two different factorization of the joint

distribution of (I(C ∈ λ), T1(Z) ≡ Z(1)) helps us to switch between different factorizations:

s(T1) + I(C ∈ λ)
Ṗ (C ∈ λ|T1)
P (C ∈ λ|T1)

+ I(C /∈ λ)
Ṗ (C /∈ λ|T1)
P (C /∈ λ|T1)

= I(C ∈ λ)

[
Ṗ (C ∈ λ)

P (C ∈ λ)
+ s(T1|C ∈ λ)

]
+ I(C /∈ λ)

[
Ṗ (C /∈ λ)

P (C /∈ λ)
+ s(T1|C /∈ λ)

]
. (36)

STEP 2: Differentiating (3) with respect to θ under the integral:

∂β0
λ(θ0)

∂θ′
= −M−1

λ E

[
m

{
s(T1|C ∈ λ)′ +

R∑
r=2

s(Z(r)|Tr−1)
′

}∣∣∣∣∣C ∈ λ

]
.

Then, as in the proof of Proposition 1, here we will need to correspondingly verify that:

E[φCMAR
λ[u] (O;β0λ)S(O)′] = E

[
m

{
s(T1|C ∈ λ)′ +

R∑
r=2

s(Z(r)|Tr−1)
′

}∣∣∣∣∣C ∈ λ

]
. (37)

We do this term by term for φCMAR
λ[u] (O;β0λ) and show equality of the terms on the LHS and RHS.

Consider the first term of φCMAR
λ[u] (O;β0λ). Since s(Z(r)|Tr−1) ∈ L2

0(F (Z(r)|Tr−1)) for r = 2, . . . , R

by definition, we can use (10) to take conditional expectations and then write:

E

[
I(C ∈ λ)

P (C ∈ λ)
E[m|T1]S(O)′

]
= E

[
I(C ∈ λ)

P (C ∈ λ)
E[m|T1]

{
s(T1)

′ +

R∑
r=1

I(C = r)
Ṗ (C = r|T1)′

P (C = r|T1)

}]

= E

[
I(C ∈ λ)

P (C ∈ λ)
E[m|T1]

{
Ṗ (C ∈ λ)

P (C ∈ λ)
+ s(T1|C ∈ λ)− Ṗ (C ∈ λ|T1)

P (C ∈ λ|T1)

}′]

+E

[
1

P (C ∈ λ)
E[m|T1]Ṗ (C ∈ λ|T1)′

]

where the second line follows by using (36) to replace s(T1). The last line follows since, by using

(10), we obtain that:

E

[
I(C ∈ λ)

R∑
r=1

I(C = r)
Ṗ (C = r|T1)
P (C = r|T1)

∣∣∣∣∣T1
]

=
∑
r∈λ

P (C = r|T1)
Ṗ (C = r|T1)
P (C = r|T1)

=
∑
r∈λ

Ṗ (C = r|T1) = Ṗ (C ∈ λ|T1).
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Hence, now by repeatedly using (10) (e.g., first term on RHS of second equality) we obtain that:

E

[
I(C ∈ λ)

P (C ∈ λ)
E[m|T1]S(O)′

]
= E [E[m|T1]|C ∈ λ]

Ṗ (C ∈ λ)′

P (C ∈ λ)
+ E

[
E[m|T1]s(T1|C ∈ λ)′|C ∈ λ

]
− E

[
E[m|T1]

Ṗ (C ∈ λ|T1)′

P (C ∈ λ)

]
+ E

[
E[m|T1]

Ṗ (C ∈ λ|T1)′

P (C ∈ λ)

]

= E [m|C ∈ λ]
Ṗ (C ∈ λ)′

P (C ∈ λ)
+ E

[
E[m|T1]s(T1|C ∈ λ)′|C ∈ λ

]
+ 0

= 0 + E[ms(T1|C ∈ λ)′|C ∈ λ] + 0 (38)

where the first zero in last line follows from (3). The second term follows by using (10) and noting that

E [E[m|T1]s(T1|C ∈ λ)′|C ∈ λ] = E [E[ms(T1|C ∈ λ)′|T1, C ∈ λ]|C ∈ λ] = E [ms(T1|C ∈ λ)′|C ∈ λ].

Now consider the r-th term of φCMAR
λ[u] (O;β0λ) for r = 2, . . . , R. By taking expectation conditional

on Tr−1 ≡ (Z(1), . . . , Z(r−1)), and using (10) we obtain that:

E

[
P (C ∈ λ|T1)
P (C ∈ λ)

(E[m|Tr]− E[m|Tr−1])S(O)′
]

= E

[
P (C ∈ λ|Z1)

P (C ∈ λ)
(E[m|Tr]− E[m|Tr−1])

R∑
s=r

s(Z(s)|Ts−1)

]

= E

[
I(C ∈ λ)

P (C ∈ λ)
E[m|Tr]s(Z(r)|Tr−1)

′
]

= E
[
ms(Z(r)|Tr−1)

′|C ∈ λ
]

(39)

by using that s(Z(s)|Ts−1) ∈ L2
0(F (Z(s)|Ts−1)) for s = r, . . . , R by definition, and by (10).

Therefore, (38) and (39) verify (37). That φCMAR
λ[u] (O;β0λ) belongs to T in (35) can be shown as

follows. (i) Match the term a(Z(1), . . . , Z(r)) in T with the r-th term of φCMAR
λ[u] (O;β0λ) for r > 1.

(ii) Distribute the first term s(Z(1)) in T according to the relation (36) and match the term I(C ∈

λ)s(Z(1)|C ∈ λ) with the first term of φCMAR
λ[u] (O;β0λ) while keeping in mind that, by definition,

s(Z(1)|C ∈ λ) ∈ L2
0(F (Z(1)|C ∈ λ)). It is straightforward to verify that all the corresponding

conditional expectations, as required by the definition in (35) and also (36), are zeros. The remaining

terms in T (including the one due to distributing the terms in (ii)) are represented in φCMAR
λ[u] (O;β0λ)

by zeros.

Proof of Proposition 4:

The references in the steps of this proof are mainly to that of Proposition 3 (i.e., effectively to

that of Proposition 1) and to that of Proposition 5. To avoid notational clutter, when convenient,

we write m(Z;β0λ) as m; Tr(Z) as Tr for r = 1, . . . , R; and also write s(Z(r)|Z(1), . . . , Z(r−1)) as

s(Z(r)|Tr−1) for r = 2, . . . , R.
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As before, we obtain the score function for a parametric sub-model indexed by θ as:

Sθ(O) = sθ(T1) +
R∑

r=2

I(C ≥ r)sθ(Z(r)|Tr−1) +
R∑

r=1

I(C = r)

P (C = r|T1)

(
∂P (C = r|T1; γ0)

∂γ′
∂γ0

∂θ′

)′
.

Recall that Sγ(C|T1) :=
∑R

r=1
I(C=r)

P (C=r|T1)
∂
∂γP (C = r|T1; γ0). Let b denote constant matrices of

dimension same as that of ∂γ0

∂θ′ . Then, the tangent set for the model is characterized by the set of

functions:

T := a1(T1) + b′Sγ(C|T1) +
R∑

r=2

I(C ≥ r)ar(Tr),

where a1(T1) ∈ L2
0(F (T1)), Sγ(C|T1) ∈ L2

0(F (C|T1)) and ar(Tr) ∈ L2
0(F (Z(r)|Tr−1)).

Recognizing that P (C = r|T1) = P (C = r|T1; γ0) is known up to the finite (dγ) dimensional

parameter γ, alters the relationship in (36) as follows:

s(T1) +
∂γ0

′

∂θ

[
I(C ∈ λ)

∂
∂γP (C ∈ λ|T1; γ0)
P (C ∈ λ|T1)

+ I(C /∈ λ)

∂
∂γP (C /∈ λ|T1; γ0)
P (C /∈ λ|T1)

]

= I(C ∈ λ)

[
Ṗ (C ∈ λ)

P (C ∈ λ)
+ s(T1|C ∈ λ)

]
+ I(C /∈ λ)

[
Ṗ (C /∈ λ)

P (C /∈ λ)
+ s(T1|C /∈ λ)

]
.

As before, differentiating (3) (equivalently, (4)) under the integral with respect to θ, and using

the above relationship gives:

∂β0λ(θ0)

∂θ′

= −M−1
λ E

[
P (C ∈ λ|T1)
P (C ∈ λ)

m

{
s(T1)

′ +
R∑

r=2

s(Z(r)|Tr−1)
′

}]
−M−1

λ E

[
E[m|T1]

∂
∂γ′P (C ∈ λ|T1; γ0)

P (C ∈ λ)

∂γ0

∂θ′

]
.

Therefore, utilizing the expression of the efficient influence function in Proposition 3 and its relation

to that in Proposition 4, the verification of pathwise differentiability reduces to verifying that:

E

[
Π

(
I(C ∈ λ)

P (C ∈ λ)
E[m|T1)]

∣∣∣∣Sγ(C|T1))S(O)′
]
= E

[
E[m|T1]

∂
∂γ′P (C ∈ λ|T1; γ0)

P (C ∈ λ)

∂γ0

∂θ′

]
.

Note that E
[
Sγ(C|T1)

{
s(T1)

′ +
∑R

r=2 I(C ≥ r)s(Z(r)|Tr−1)
′
}]

= 0. This follows (term by term)

by using E[Sγ(C|T1)|T1] = 0 for term one; and then, for the other terms r = 2, . . . , R, by noting that

(10) implies that E
[
Sγ(C|T1)I(C ≥ r)s(Z(r)|Tr−1)

′] = E
[
Sγ(C|T1)(1− I(C ≤ r − 1))s(Z(r)|Tr−1)

′] =
E
[
Sγ(C|T1)(1− P (C ≤ r − 1|T1))s(Z(r)|Tr−1)

′] = 0 since s(Z(r)|Tr−1) ∈ L2
0(F (Z(r)|Tr−1).

Therefore, using the expression for S(O), it follows that in the above equation (that contains the
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equality relationship to be verified), the LHS simplifies as:

LHS = E

[
Π

(
I(C ∈ λ)

P (C ∈ λ)
E[m|T1]

∣∣∣∣Sγ(C|T1))Sγ(C|T1)′] ∂γ0∂θ′

= E

[
I(C ∈ λ)

P (C ∈ λ)
E[m|T1]Sγ(C|T1)′

]
∂γ0

∂θ′

= E

[
I(C ∈ λ)

P (C ∈ λ)
E[m|T1]

R∑
r=1

I(C = r)

P (C = r|T1)
∂P (C = r|T1; γ0)

∂γ′

]
∂γ0

∂θ′

= E

[
1

P (C ∈ λ)
E[m|T1]

∑
r∈λ

P (C = r|T1)
P (C = r|T1)

∂P (C = r|T1; γ0)
∂γ′

]
∂γ0

∂θ′

= E

[
1

P (C ∈ λ)
E[m|T1]

∂P (C ∈ λ|T1; γ0)
∂γ′

]
∂γ0

∂θ′

= RHS.

Proofs of Corollary 6, 7, 8: Straightforward but tedious manipulations of the results of Proposi-

tions 3 and 5 give Corollaries 7 and 8 respectively [see Chaudhuri (2014) for the proof of the latter].

Corollary 6 follows by imposing INDEP on the result of either Proposition 3 or Proposition 5.

Appendix C: Generalized method of moments (GMM) estimation of β0
λ

Sections C.1, C.4 and part of C.5 in Appendix C collect materials related to efficient estimation that

were not presented in our paper. On the other hand, the materials in Sections C.2 and C.3 were

presented in our paper but again presented here to make Appendix C self-contained. The proofs of

all the results that were presented in abridged form in our paper are presented here in detail.

C.1 This GMM estimation is a special case of Ai and Chen (2012)

Recall that Proposition 2 shows that under (1), (2) and assumption A, the efficient influence function

and the efficiency bound for the estimation of β0λ based on (3) are identical to those based on the

sequential moment restrictions (8)-(9). Hence, one could perform the efficient GMM estimation of

β0λ simply as a special case of the optimally weighted orthogonalized sieve minimum distance (SMD)

estimator that was proposed by Ai and Chen (2012) in a more general context.

To see the connection with Ai and Chen (2012) more clearly, note that our unconditional moment

restriction in (8) corresponds to equation (1) in Ai and Chen (2012) with their conditioning variable

X(1) taken as a constant. Now, the simplifications for our setup follow because, unlike Ai and Chen

(2012), we do not have any unknown nuisance parameters (thanks to (2)) and because in our setup

βλ only enters the unconditional moment restrictions. That is, in our setup the moment restrictions
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in (9) turn out to be truly auxiliary whose sole purpose is to assist in obtaining efficiency gains.

This results in equation (10) of Ai and Chen (2012) (using their notation) to become:

α0 := inf
α∈Θ

E
{
m1(X

(1), α)′Σ01(X
(1))−1m1(X

(1), α)
}
, (40)

where m1(X
(1), α) := E

[
ε1(Z,α)|X(1)

]
= E [ε1(Z,α)] ,

Σ01(X
(1)) := E

[
ε1(Z,α0)ε1(Z,α0)

′|X(1)
]
= E

[
ε1(Z,α0)ε1(Z,α0)

′] ,
i.e.,

α0 := inf
α∈Θ

E
[
ε1(Z,α)

′] (E [ε1(Z,α0)ε1(Z,α0)
′|X(1)

])−1
E [ε1(Z,α)] .

Now, note that ε1(Z,α) is Ai and Chen (2012)’s sequentially orthogonalized moment vector, i.e.,

ε1(Z,α) := ρ1(Z;α)−
T∑
t=2

Γ1,t(X
(t))εt(Z,α)

where εT (Z;α) := ρT (Z,α) and for t = 2, . . . , T − 1, εt(Z,α) are the orthogonalized residuals:

εt(Z,α) := ρt(Z;α)−
T∑

s=t+1

Γt,s(X
(s))εs(Z,α),

where Γt,s(X
(s)) := E

[
ρt(Z;α0)εs(Z;α0)

′|X(s)
] (
E
[
εs(Z;α0)εs(Z;α0)

′|X(s)
])−1

.

Therefore, thanks to our Proposition 2, ε1(Z,α) and Σ01(X
(1)) in Ai and Chen (2012) are our

φλ(O;β) and Vλ := V ar(φλ(O;β0)) respectively. Accordingly, the optimally weighted orthogonalized

SMD estimator in equation (11) of Ai and Chen (2012), that is based on the sample counterpart of

(40), is identical to the GMM estimator that uses the average estimated φλ(O;β) as the moment

vector and an estimator of V −1
λ as the weighting matrix. We say “estimated φλ(O;β)” because, as

is clear from the definition of ε1(Z,α) entering m1(X
(1), α) := E [ε1(Z,α)], this contains unknown

conditional expectations (covariance and variances) as nuisance parameters that need to be estimated

and, thereby, profiled out from the criterion function of the estimation of the parameter of interest.

The purpose of Section C.2 and C.3 below is to point out with some details that under this special

case of Ai and Chen (2012) that is our setup, a key feature of φλ(O;β) provides practically useful

flexibility in the parametric or nonparametric estimation of these nuisance parameters.

This key feature is of independent interest even without any consideration of efficiency. Hence,

for completeness, we will work under the setup of an over-identified model where β is dβ×1, m(Z;β)

is dm × 1 and dm ≥ dβ. However, it is important to remember that the results on efficiency bounds
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that were presented in our paper imposed the restriction that dβ = dm = d [see footnote 5]. In light

of this, our discussion when dm > dβ can be viewed simply as highlighting the specialities of GMM

estimation based on a special moment vector like φλ(O;β). To avoid introducing new notation when

dm > dβ, we continue with the notation from our paper. It is easy to see how the expressions thus

obtained below will simplify when dm = dβ to give the exact expressions presented in our paper.

C.2 Estimation framework and the key feature

To consolidate notation following Chen et al. (2003), and guided by (6), define a dm × 1 function:

g(O;β, h(β)) :=
I(C = R)

P (C = R|TR(Z))
φR,λ(O;β)+

R−1∑
r=1

[
I(C ≥ r)

P (C ≥ r|Tr(Z))
− I(C ≥ r + 1)

P (C ≥ r + 1|Tr+1(Z))

]
hr(β)

(41)

where h(β) = (h′1(β), . . . h
′
R−1(β))

′ are the unknown nuisance parameters, and each hr(β) belongs to a

class of functions (Z, β) 7→ Rdm , call it Hr(β), for r = 1, . . . , R−1. Let H := {H1(β)×. . .×HR−1(β) :

β ∈ B} be a vector space endowed with a pseudo-metric ∥.∥H, which is the sup-norm metric with

respect to the argument β and a pseudo-metric with respect to the other arguments.

g(O;β, h(β)) = φλ(O;β) defined in (6) if hr(β) = φr,λ(O;β) for r = 1, . . . , R − 1. Denote the

true hr(β) as h0r(β) := φr,λ(O;β) for r = 1, . . . , R − 1. While this suggests restricting hr(β) as

(Tr(Z), β) 7→ Rdm for r = 1, . . . , R− 1, it turns out that letting hr(β) instead be a function of Z and

β does not affect either consistency or asymptotic normality of the GMM estimator defined below.

In light of this discussion, now define the GMM average moment vector and its expectation as:

Gn(β, h(β)) :=
1

n

n∑
i=1

g(Oi;β, (h
′
1,i(β), . . . , h

′
R−1,i(β))

′) and G(β, h(β)) := E [Gn(β, h(β))] .

Then, given any standard parametric or nonparametric estimator ĥ(β) for h(β) and any dm × dm

symmetric weighting matrix Wn (possibly efficient), the GMM estimator β̂λ(Wn) of β
0
λ is defined as:

β̂λ(Wn) ≈ argmin
β∈B

Gn(β, ĥ(β))
′WnGn(β, ĥ(β)). (42)

The key feature of our setup is the identity that for any β ∈ B and any h(.) ∈ H (that need not

be h(β)):

G(β, h(.)) = E[φR,λ(O;β)] = E[m(Z;β)|C ∈ λ] (43)

by (4), (1) and (41). That is, G(β, h(.)) does not depend on h(.) ∈ H. Its main implications are:

(F1) G(β0λ, h(.)) = 0 for any h(.) ∈ H by also using (3). Also, for any β ∈ B and any h(.), h̄(.) ∈ H:
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G(β, h(.))−G(β0λ, h̄(.)) = 0 ⇐⇒ E[m(Z;β)|C ∈ λ]− E[m(Z;β0λ)|C ∈ λ] = 0 ⇐⇒ β = β0λ.

(F2) The partial derivative of G(β, h(β)) with respect to β, denote it by Gβ(β, h(β)), satisfies

Gβ(β, h(β)) =Mλ(β) :=
∂
∂β′E [m(Z;β)|C ∈ λ], and it exists whenever Mλ(β) exists.

(F3) G(β, h(.)) − G(β, h̄(.)) = 0 for any β ∈ B and h(.), h̄(.) ∈ H. Thus, the pathwise derivative of

G(β, h(.)) with respect to h(.), denote it by Gh(β, h(.)), exists at all h(.) ∈ H, in all directions

[h̄(.)− h(.)] for {h(.) + τ(h̄(.)− h(.)) : τ ∈ [0, 1]} ⊂ H, and satisfies Gh(β, h(.))[h̄(.)− h(.)] = 0.

(F1) helps to verify the well-separability (of the true β) assumption for consistent estimation of β0λ by

β̂λ(Wn). It is even stronger since it indicates that ĥ(β) need not converge in probability to the true

h0(β) but can converge to any h†(β) ∈ interior(H) without affecting the consistency of β̂λ(Wn) for

β0λ [see Proposition 13]. (F2) simplifies the Jacobian formula (and its estimation) in the asymptotic

variance of β̂λ(Wn) since it implies that Gβ(β
0
λ, h(β

0
λ)) = Mλ. Finally, while it was already clear

from (F1) that the asymptotic orthogonality condition, Assumption N(c), in Andrews (1994) is

satisfied following his equations (4.9)-(4.11) if ∥ĥ(β)− h†(β)∥H = op(1) for any h
†(β) ∈ interior(H);

(F3) is still stated in a way that makes it more convenient for us to verify condition (4.1.4) in

Theorem 4.1 of Chen (2007). (Proofs of the results stated below proceed by verifying the conditions

in Chen et al. (2003) or Chen (2007).) Hence, the asymptotic variance of β̂λ(Wn) is unaffected by

the estimation of h(β) even if ĥ(β) converges at a rate slower than ∥ĥ(β) − h†(β)∥H = op(n
−1/4);

for example, ∥ĥ(β) − h†(β)∥H = op(1) will suffice. See Remark 2(iii) in Chen et al. (2003) and

Theorem 5 in Cattaneo (2010). The scenario is actually stronger here since we do not even require

that h†(β) = h0(β), the truth [see Proposition 14]. Of course, semiparametric efficiency for β̂λ(Wn)

requires that h†(β0λ) = h0(β0λ), but the rate of convergence of the consistent ĥ(β) is still of no

consequence as far as the first-order asymptotic properties of GMM estimators are concerned [see

Corollary 15]. Naturally, all these nice implications of (43) also provide flexibility in estimating the

nuisance parameters – (i) parametrically based on misspecified models, e.g., giving linear projections

rather than conditional expectations or (ii) nonparametrically under less than satisfactory conditions

that might prevent a faster than n1/4-rate convergence of the estimator.

C.3 Asymptotic properties of the GMM estimator in (42)

For simplicity we follow Chen et al. (2003) and write (β, h(β)) as (β, h) unless confusing. Also, define

∥A∥B :=
√
trace(A′BA) for conformable matrices A and B. Write ∥A∥ ≡ ∥A∥B if B is identity.

Proposition 13 Let (1), (3), and assumptions (A1) and (A2) hold. Let {Wn} be a dm×dm positive

semidefinite matrix such that Wn = W + op(1) where W is a constant positive definite matrix.

25



Assume:

(B1) ∥Gn(β̂λ(Wn), ĥ)∥Wn ≤ infβ∈B ∥Gn(β, ĥ)∥Wn + op(1) where B is a compact subset of Rdβ ;

(B2) ∥ĥ(β)−h†(β)∥H = op(1) for some h†(β) ∈ interior(H) for all β, and h†(β) not necessarily equal

to h0(β);

(B3) for all sequences of positive numbers {δn} with δn = o(1),

sup
β∈B,∥h−h†(β)∥H≤δn

∥Gn(β, h)−G(β, h)∥
1 + ∥Gn(β, h)∥+ ∥G(β, h)∥

= op(1).

Then β̂λ(Wn)− β0λ = op(1).

Proposition 14 Let (1), (3) and assumptions A hold. Let {Wn} be a dm× dm positive semidefinite

matrix such thatWn =W+op(1) whereW is a constant positive definite matrix. Let β0λ ∈ interior(B)

and h†(β) ∈ interior(H) for all β, but h†(β) not necessarily equal to h0(β). For a small δ > 0 define

the neighborhoods Bδ := {β ∈ B : ∥β − β0λ∥ ≤ δ} and Hδ := {h ∈ H : ∥h − h†(β)∥H ≤ δ}. (Nothing

changes if the sup-norm with respect to β in ∥.∥H is alternatively defined to be taken locally over

β ∈ Bδ instead β ∈ B; see Chen et al. (2003).) Let β̂λ(Wn)−β0λ = op(1) and ∥ĥ(β)−h†(β)∥H = op(1).

Assume:

(C1) ∥Gn(β̂λ(Wn), ĥ)∥Wn ≤ infβ∈Bδ
∥Gn(β, ĥ)∥Wn + op(n

−1/2);

(C2) Gβ(β, h
†) exists for β ∈ Bδ and is continuous at β = β0λ (Gβ(β

0
λ, h

†) is full column rank by (A3)

and (F2));

(C3) for all sequences of positive numbers {δn} with δn = o(1),

sup
β∈Bδn ,h∈Hδn

∥Gn(β, h)−G(β, h)−Gn(β
0
λ, h

†)∥
n−1/2 + ∥Gn(β, h)∥+ ∥G(β, h)∥

= op(1);

(C4)
√
nGn(β

0
λ, h

†)
d−→ N(0,Σ) where Σ := E

[
g(O; (β0λ, h

†))g(O; (β0λ, h
†))′
]
is finite.

Then, for Mλ :=M(β0λ) defined in assumption (A3), Rλ :=M ′
λWMλ and Sλ :=M ′

λWΣWMλ,

√
n(β̂λ(Wn)− β0λ) = −R−1

λ M ′
λW

√
nGn(β

0
λ, h

†) + op(1)
d−→ N

(
0, R−1

λ SλR
−1
λ

)
.

Remark: Propositions 13 and 14 respectively establish the consistency and asymptotic normality of

the GMM estimator defined in (42). We focus on showing how the key feature (43) helps to satisfy

some of the conditions from Theorem 1 in Chen et al. (2003) and Theorem 4.1 in Chen (2007). We

assume their other conditions. Through its condition (4.1.4), as opposed to (4.1.4)’, Theorem 4.1

in Chen (2007) broadens the scope of Theorem 2 in Chen et al. (2003). This is useful to highlight
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that Propositions 13 and 14 (and the subsequent results) do not depend on the rate of convergence

∥ĥ(β) − h†(β)∥H = op(1). Importantly, we allow h†(β) ̸= h0(β) to emphasize that consistency and

asymptotic unbiasedness of β̂λ(Wn) are robust to the estimation of the nuisance parameters h(β)

parametrically under misspecification or nonparametrically under less than satisfactory conditions.

Thus, the theoretical results confirm the intuitions from our discussion of the implications of the

key feature, except for the final bit, i.e., on efficiency, that is to be confirmed by the following result.

Corollary 15 Under the assumptions of Proposition 14:

(1) if W = Σ−1 then

√
n(β̂λ(Wn)− β0λ) = −

(
M ′

λΣ
−1Mλ

)−1
M ′

λΣ
−1√nGn(β

0
λ, h

†) + op(1)
d−→ N

(
0,
(
M ′

λΣ
−1Mλ

)−1
)
;

(2) if, additionally, h†(β0λ) = h0(β0λ) then Σ = Vλ as in Proposition 1, and letting β̂λ := β̂λ(Wn),

√
n(β̂λ−β0λ) = −

(
M ′

λV
−1
λ Mλ

)−1
M ′

λV
−1
λ

√
nGn(β

0
λ, h

0)+op(1)
d−→ N

(
0,Ωλ =

(
M ′

λV
−1
λ Mλ

)−1
)
,

i.e., by Proposition 1, the estimator β̂λ becomes semiparametrically efficient when dβ = dm.

Estimation of asymptotic variance: Consistent estimation of Mλ is simplified due to (F2) be-

cause one could completely ignore the unknown nuisance parameters and obtain an estimator by

taking analytical derivative (if it exists) or numerical derivative only for the first term of Gn(β, h).

Consistency of M̂λ(β) for Mλ(β) with numerical derivatives follows by Theorem 7.4 in Newey and

McFadden (1994). Also see Section 5.3 of Cattaneo (2010).

Standard conditions, e.g., g(Oi; (β, h)) is continuous with probability approaching one in a neigh-

borhood N of (β0λ, h
†) and E

[
sup(β,h)∈N ∥g(Oi; (β, h))∥2

]
< ∞ [see Lemma 4.3 in Newey and

McFadden (1994)], ensure that for any β = β0λ + op(1) and h(β) such that ∥h(β) − h†(β)∥H =

op(1) (suffices if the sup-norm in ∥.∥H with respect to β is only local), the estimator V̂λ(β, h) :=

1
n

∑n
i=1 g(Oi; (β, h))g(Oi; (β, h))

′ = Σ+op(1). Thus, the estimator Ω̂λ(β̂λ, ĥ) :=
(
M̂ ′

λ(β̂λ)V̂
−1
λ (β̂λ, ĥ)M̂λ(β̂λ)

)−1

is consistent for the asymptotic variance in Corollary 15(1). If h†(β0λ) = h0(β0λ) then Σ = Vλ, and

now Ω̂λ(β̂λ, ĥ) will be consistent for the asymptotic variance Ωλ in Corollary 15(2). Any consistent

(for the appropriate limit) estimator (β̃, h̃) ensures consistency of all these quantities.

C.4 One step from the IPW estimator gives asymptotic equivalence with β̂λ

The presence of β in possibly highly nonlinear form in all the R additive terms of the average

moment vector Gn(β, ĥ(β)) should not ideally be a drawback for computational purpose. If the

GMM estimator has a closed form (e.g., Illustration 1 below) then this is not an issue. However, if
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there is no closed form expression (e.g., Illustration 2 below), one could start with an easy to compute

√
n-consistent estimator for β0λ and then update it in one step to obtain an estimator with the same

asymptotic distribution as the estimator β̂λ in Corollary 15(2). For example, an IPW estimator

based on the complete sub-sample {i = 1, . . . , n : Ci = R} and with the identity (or some simple)

weighting matrix is relatively easy to compute:

β̃λ := argmin
β∈B

∥∥∥∥∥ 1n
n∑

i=1

I(Ci = R)

P (C = R|TR(Zi))
φR,λ(Oi;β)

∥∥∥∥∥
≡ argmin

β∈B

∥∥∥∥∥ 1n
n∑

i=1

I(Ci = R)

P (C = R|Zi)

P (C ∈ λ|Zi)

P̂ (C ∈ λ)
m(Zi;β)

∥∥∥∥∥ . (44)

It is consistent under the assumptions of Proposition 13 [see, e.g., Wooldridge (2002)]. Built-in

routines in standard statistical softwares can be directly used or slightly modified to obtain this

estimator for a wide variety of the moment vector m(Z;β) (e.g., Illustration 2 below). Now a one-

step estimator of β0λ can be obtained by updating β̃λ as:

β̂1step = β̃λ − Ω̂−1
λ (β̃λ, ĥ(β̃λ))M̂

′
λ(β̃λ)V̂

−1
λ (β̃λ, ĥ(β̃λ))Gn(β̃λ, ĥ(β̃λ)) (45)

where ĥ(β̃λ) is a consistent estimator of h0(β0λ), and M̂λ(β̃λ), V̂λ(β̃λ, ĥ(β̃λ)) and Ω̂λ(β̃λ, ĥ(β̃λ)), defined

below Corollary 15, are consistent estimators for Mλ, Vλ and Ωλ respectively under the conditions

noted therein.21

Proposition 16 Let all the conditions of Corollary 15(2) hold for β̂λ, i.e., for the GMM estimator

with the efficient weighting matrix. Additionally, let there be a first step estimator β̃λ satisfying:

√
n(β̃λ − β0λ) = Op(1), M̂λ(β̃λ) = Mλ + op(1), V̂λ(β̃λ, ĥ(β̃λ)) = Vλ + op(1) and Ω̂λ(β̃λ, ĥ(β̃λ)) =

Ωλ+op(1). For simplicity, assume a slightly stronger version of the stochastic equicontinuity condition

(C3) [see Proposition 14] as: supβ∈Bδn ,h∈Hδn

√
n∥Gn(β, h) − G(β, h) − Gn(β

0
λ, h

0)∥ = op(1). Then,

β̂1step defined in (45) satisfies:
√
n
(
β̂1step − β̂λ

)
= op(1).

C.5 Illustration of the GMM estimator when R = 3

To focus on the main components, we abstract from the weighting matrix Wn by taking dm = dβ.

We consider two cases where the moment vector respectively corresponds to: (1) a linear regression

giving a closed form expression for the efficient estimator, and (2) a linear quantile regression where

21While the one-step estimator in (45) could be easily modified to allow for the possibility that ĥ(β̃λ) converges in
probability to h†(β0

λ) instead of the truth h0(β0
λ), we do not consider this here since, as evident from Corollary 15,

semiparametric efficiency is usually not achieved unless h†(β0
λ) = h0(β0

λ).
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the efficient estimator is computed in one step as in (45). As for a concrete scenario with R = 3, it

may be useful to keep in mind the setup of our Monte Carlo experiment in Section 5.

Illustration 1: Linear regression in the target population λ

Consider a moment vector of the form m(Z;β) = X(y−X ′β). For i = 1, . . . , n, let Tji := Tj(Zi)

for j = 1, 2, 3, a3i := I(Ci = 3)/P (C = 3|T3i), a2i := I(Ci ≥ 2)/P (C ≥ 2|T2i)−a3i, a1i := 1−a2i−a3i,

q := P (C ∈ λ|T3(Z)) and qi := P (C ∈ λ|T3i). Simple computations give a closed form expression for

the estimator β̂λ in (42) as:

β̂λ =

(
n∑

i=1

{
a3iqiXiX

′
i + a2iÊ

[
qXX ′|T2i

]
+ a1iÊ

[
qXX ′|T1i

]})−1

×
n∑

i=1

{
a3iqiXiyi + a2iÊ [qXy|T2i] + a1iÊ [qXy|T1i]

}

where Ê denotes the estimated conditional expectation. While one could factor out yi from all three

terms inside the last pair of braces under the setup of Section 5 (where y is always observed), our

experience is that estimating the conditional expectations, e.g., E [qXy|T2i] directly instead of using

the form E [qX|T2i] yi leads to smaller variance of the estimator β̂λ in small samples.

Illustration 2: Linear quantile regression in the target population λ

Consider a moment vector of the form m(Z;β) = X (τ − I(y −X ′β < 0)) for some fixed τ ∈

(0, 1). (The notation a3i, a2i, a1i, qi and q remain the same as in Illustration 1.) For any (β, h) define:

g(Oi; (β, h)) = a3iqim(T3i;β) + a2iE[qm(T3;β)|T2i] + a1iE[qm(T3;β)|T1i],

and accordingly define g(Oi; (β, ĥ)) andGn(β, ĥ) replacing the conditional expectations in g(Oi; (β, h))

by their estimators. (The ignored common denominator P (C ∈ λ) will be adjusted for in the fi-

nal step.) Let β̃λ denote the inefficient but
√
n-consistent estimator of β0λ obtained from (44) by

using this particular choice of the moment vector m(Z;β). It is simple to obtain β̃λ since com-

monly used statistical softwares provide built-in routine for weighted quantile regression which au-

tomatically gives the estimator with (a3iqi/
∑

j a3jqj)
n
i=1 as weights. Estimate Mλ where Mλ(β) =

−(∂/∂β′)E [XI(y −X ′β < 0)|C ∈ λ] using β̃λ [see below Corollary 15]. Therefore, since dm = dβ,

by using (45) we obtain the one-step estimator as: β̂1step = β̃λ − M̂−1
λ (β̃λ)Gn(β̃λ, ĥ(β̃λ))/P̂ (C ∈ λ).

C.6 Simulation evidence from Section 5 of the finite-sample properties of β̂λ

Besides the efficient estimators based on various sub-samples, we also consider the complete case

(CC) and IPW [see (44)] estimators. The CC estimator is the default in the statistical softwares and
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is based only on the complete sub-sample ignoring its likely unrepresentative of the target population.

We consider certain finite-sample properties of all these estimators and report them in Table 4

under INDEP, Tables 5 for Intercept and 6 for Slope under CMAR, and Tables 7 for Intercept and

8 for Slope under MAR. We focus on the following quantities computed as averages over the 10,000

Monte Carlo trials: Mbias (deviation from the true values), Abias (absolute deviation from the true

values), Std (standard deviation obtained as
√

(estimated Avar)/(size of the used sample)) and IQR

(interquartile range). Mean squared error is not reported but follows directly as Mbias2+ Std2.

The CC and IPW estimators are numerically equivalent if λ = {3} or under INDEP. Otherwise,

as expected, CC can be badly biased (Mbias) since it does not recognize the sample-selection.

The other estimators are consistent under our assumptions, and their small Mbias and decreasing

(with n) Std support this. The ordering of the variability of the estimators, as measured by Abias,

Std and IQR, are as expected: always the largest when the used sample is {3}, and the smallest

when the used sample is {1, 2, 3}.

Comparison between the two estimators based on the used samples {1, 3} and {2, 3} is possible

under INDEP or under CMAR and MAR if λ = {3} or λ = {1, 2, 3}. In these cases, it seems that in

spite of the poorer quality of information in the units of {1, 3}, its larger sample size makes it more

desirable than {2, 3}. (Under our premise, {1, 3} could still be less expensive than {2, 3} to observe.)

Overall, under our simulation design all the estimators display good properties in finite samples,

and thus lend credibility to the encouraging simulation results on the efficiency loss in Section 5.

Used n = 600 n = 1200 n = 1800
Sample Mbias Abias Std IQR Mbias Abias Std IQR Mbias Abias Std IQR

{3} -.0002 .0748 .0933 .1250 .0011 .0529 .0661 .0895 -.0003 .0436 .0540 .0739
{1, 3} .0005 .0560 .0667 .0947 .0007 .0388 .0473 .0666 .0002 .0313 .0388 .0530
{2, 3} -.0001 .0584 .0673 .0986 .0008 .0392 .0475 .0661 .0003 .0317 .0388 .0534
{1, 2, 3} .0003 .0523 .0584 .0878 .0006 .0346 .0411 .0589 .0003 .0278 .0337 .0475

{3} .0004 .0773 .0927 .1296 .0001 .0527 .0659 .0885 .0002 .0434 .0539 .0737
{1, 3} .0090 .0641 .0714 .1069 .0038 .0425 .0510 .0715 .0028 .0345 .0418 .0579
{2, 3} .0062 .0667 .0720 .1106 .0019 .0432 .0507 .0739 .0013 .0347 .0415 .0586
{1, 2, 3} .0082 .0631 .0649 .1044 .0030 .0403 .0458 .0686 .0021 .0320 .0377 .0545

Table 4: Bias (Mbias), absolute bias (Abias), standard deviation (Std) and interquartile range (IQR) of the
estimators under INDEP sampling are reported based on the average over 10,000 Monte Carlo trials. Target
population λ = {1, 2, 3}. Top panel: Intercept parameter βλ,1. Bottom panel: Slope parameter βλ,2.
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C.7 Proofs

For simplicity, we write βλ as β. We follow the steps of the proof for Theorems 1 and 2 in Chen et al.

(2003) with adjustments for the weaker conditions that are consequences of (43) [see (F1)-(F3)]. The

main adjustment is that we allow ∥ĥ− h†∥H = op(1) where h
† ∈ H need not be h0.

Proof of Proposition 13: (F1) already implies the standard well-separability of β0 by virtue of

(3). Hence, for all δ > 0 there exists ϵ(δ) > 0 such that P (∥β̂ − β0∥ > δ) ≤ P (∥G(β̂, h†)∥ ≥ ϵ(δ)).

Therefore, to establish that β̂
P−→ β0, it is sufficient to show that ∥G(β̂, h†)∥ = op(1). Assumption

(B2) implies that P (ĥ(β) ∈ H) → 1 uniformly in β ∈ B as n → ∞. The rest of the proof works

conditional on the sequence of events {ĥ(β̂) ∈ H}, i.e., we use the fact that:

P (∥G(β̂, h†)∥ < ϵ(δ))

= P (∥G(β̂, h†)∥ < ϵ(δ)|ĥ(β̂) ∈ H)P (ĥ(β̂) ∈ H) + P (∥G(β̂, h†)∥ < ϵ(δ)|ĥ(β̂) /∈ H)P (ĥ(β̂) /∈ H)

= P (∥G(β̂, h†)∥ < ϵ(δ)|ĥ(β̂) ∈ H) + o(1) (46)

as n→ ∞ and, instead, show that ∥G(β̂, h†)∥ = op(1) conditional on {ĥ(β̂) ∈ H}.

To this end, first note that:

∥G(β̂, h†)∥ ≤ ∥G(β̂, h†)−G(β̂, ĥ)∥+ ∥G(β̂, ĥ)−Gn(β̂, ĥ)∥+ ∥Gn(β̂, ĥ)∥

= ∥G(β̂, ĥ)−Gn(β̂, ĥ)∥+ ∥Gn(β̂, ĥ)∥. (47)

The inequality holds by the triangle inequality (kept implicit hereafter). The equality holds by (F3).

Using (B3) and then (F3), we obtain:

∥G(β̂, ĥ)−Gn(β̂, ĥ)∥ ≤ op(1){1 + ∥Gn(β̂, ĥ)∥+ ∥G(β̂, ĥ)∥} ≤ op(1){1 + ∥Gn(β̂, ĥ)∥+ ∥G(β̂, h†)∥}.

Using this along with (47) gives:

∥G(β̂, h†)∥ × (1− op(1))

≤ op(1) + ∥Gn(β̂, ĥ)∥ × (1 + op(1))

≤ op(1) + ∥Gn(β̂, ĥ)∥Wn × (1 + ∥W−1
n −W−1∥+ ∥W−1 − Idm∥)× (1 + op(1))

= op(1) + ∥Gn(β̂, ĥ)∥Wn × (c+ op(1))

≤ op(1) + inf
β∈B

∥Gn(β, ĥ)∥Wn × (c+ op(1)) (48)
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where c = 1 + ∥W−1 − Idm∥. The equality in the above equations follows since (i) Wn −W = op(1)

for a constant positive definite matrix W implies that W−1
n exists with probability approaching one

and W−1
n −W−1 = op(1), and hence ∥W−1

n −W−1∥ = op(1) as dm is finite, (ii) a finite and positive

definite W and a finite dm imply that c(> 1) is finite. The last inequality in (48) is due to (B1).

Following similar steps again and letting d = 1 + ∥W − Idm∥ (> 1 and finite), note that:

∥Gn(β, ĥ)∥Wn

≤ ∥Gn(β, ĥ)∥ × (d+ op(1))

≤ {∥Gn(β, ĥ)−G(β, ĥ)∥+ ∥G(β, ĥ)−G(β, h†)∥+ ∥G(β, h†)−G(β0, h†)∥} × (d+ op(1))(49)

by using (43), i.e., G(β0, h) = 0 for all h ∈ H (in the last term inside the braces). This is the special

feature of our setup; whereas this holds only at h = h0 in Chen et al. (2003). On the other hand,

∥G(β, ĥ)−G(β, h†)∥ = 0 by (F3). Lastly, since G(β0, h†) = 0 and ∥G(β, ĥ)−G(β, h†)∥ = 0, we can

use (B3) as before to obtain that:

∥Gn(β, ĥ)−G(β, ĥ)∥ ≤ op(1){1 + ∥Gn(β, ĥ)∥+ ∥G(β, h†)∥+ 0} = op(1) + ∥Gn(β, ĥ)∥ × op(1)

= op(1) + ∥Gn(β, ĥ)∥Wn × (c+ op(1))× op(1)

where the second line follows by the same argument as in (48). Therefore, (49) gives:

∥Gn(β, ĥ)∥Wn ≤ {op(1) + ∥Gn(β, ĥ)∥Wn × (c+ op(1))× op(1) + ∥G(β, h†)−G(β0, h†)∥} × (d+ op(1))

= op(1) + ∥Gn(β, ĥ)∥Wn × op(1) + ∥G(β, h†)−G(β0, h†)∥ × (d+ op(1))

and hence ∥Gn(β, ĥ)∥Wn × (1 − op(1)) ≤ op(1) + ∥G(β, h†) − G(β0, h†)∥ × (d + op(1)) where all the

op(1) terms are uniform with respect to β ∈ B. This implies that:

inf
β∈B

∥Gn(β, ĥ)∥Wn ≤ sup
β∈B

op(1) + inf
β∈B

∥G(β, h†)−G(β0, h†)∥W × (d+ sup
β∈B

op(1)) = op(1)

since infβ∈B ∥G(β, h†)−G(β0, h†)∥W = 0. So, by (46) and (48) it follows that ∥G(β̂, h†)∥ = op(1).

Proof of Proposition 14: First, we show
√
n-consistency of β̂, and then its asymptotic normality.

Since β0 ∈ interior(B), h†(β) ∈ interior(H), β̂ − β = op(1) and ∥ĥ(β) − h†(β)∥H = op(1), we

can choose a positive sequence δn = op(1) such that P ((β̂, ĥ) ∈ Bδn × Hδn) → 1 as n → ∞. For

the δ in the statement of the proposition, P (Bδn × Hδn ⊂ Bδ × Hδ) → 1 as n → ∞. While to
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avoid repetition we do not make it explicit, it is important to keep in mind that as in the proof of

Proposition 13, here also we work conditional on the event {(β̂, ĥ) ∈ Bδn ×Hδn} which occurs with

probability approaching one, i.e., we implicitly use arguments similar to (46) throughout the proof.

(C2) implies that there exists a constant a > 0 such that P (a∥β̂ − β0∥ ≤ ∥G(β̂, h†)∥) → 1 as

n→ ∞. Therefore,
√
n-consistency of β̂ follows if we can establish that ∥G(β̂, h†)∥ = Op(n

−1/2).

To this end, note that:

∥G(β̂, h†)∥ ≤ ∥G(β̂, h†)−G(β̂, ĥ)∥+ ∥G(β̂, ĥ)−Gn(β̂, ĥ) +Gn(β
0, h†)∥+ ∥Gn(β̂, ĥ)∥+ ∥Gn(β

0, h†)∥

= 0 + ∥G(β̂, ĥ)−Gn(β̂, ĥ) +Gn(β
0, h†)∥+ ∥Gn(β̂, ĥ)∥+Op(n

−1/2) (50)

where the first 0 follows from (F2) and the last Op(n
−1/2) from (C4). Now, by (C3) for the first

inequality below,

∥G(β̂, ĥ)−Gn(β̂, ĥ) +Gn(β
0, h†)∥ ≤ op(1)× {n−1/2 + ∥Gn(β̂, ĥ)∥+ ∥G(β̂, ĥ)∥}

≤ op(1)× {n−1/2 + ∥Gn(β̂, ĥ)∥+ ∥G(β̂, ĥ)−G(β̂, h†)∥+ ∥G(β̂, h†)∥}

= op(1)× {n−1/2 + ∥Gn(β̂, ĥ)∥+ ∥G(β̂, h†)∥}

where the last line follows by (F3). Therefore, this along with (50) implies that:

∥G(β̂, h†)∥ ≤ op(1)× {n−1/2 + ∥Gn(β̂, ĥ)∥+ ∥G(β̂, h†)∥}+ ∥Gn(β̂, ĥ)∥+Op(n
−1/2)

which, further implies that (second inequality below follows using same arguments as in (48) with

c = 1 + ∥W−1 − Idm∥)

∥G(β̂, h†)∥ × (1− op(1)) ≤ Op(n
−1/2) + ∥Gn(β̂, ĥ)∥ × (1 + op(1))

≤ Op(n
−1/2) + ∥Gn(β̂, ĥ)∥Wn × (c+ op(1))

≤ Op(n
−1/2) + inf

β∈Bδ

∥Gn(β, ĥ)∥Wn × (c+ op(1)) (51)

where the last line follows by (C1). Now, for d = 1 + ∥W − Idm∥, recall from the first line of (49)

that ∥Gn(β, ĥ)∥Wn ≤ ∥Gn(β, ĥ)∥ × (d+ op(1)). On the other hand,

∥Gn(β, ĥ)∥ ≤ ∥Gn(β, ĥ)−G(β, ĥ)−Gn(β
0, h†)∥+ ∥G(β, ĥ)−G(β, h†)∥+ ∥G(β, h†)∥+ ∥Gn(β

0, h†)∥

≤ op(1)× {n−1/2 + ∥Gn(β, ĥ)∥+ ∥G(β, ĥ)∥}+ 0 + ∥G(β, h†)∥+Op(n
−1/2)
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where the first term in the last line follows from (C3), the third term, i.e., the 0, from (F3), and the

last one from (C4). Therefore,

∥Gn(β, ĥ)∥ × (1− op(1)) ≤ ∥G(β, ĥ)∥ × op(1) + ∥G(β, h†)∥+Op(n
−1/2)

≤ ∥G(β, ĥ)−G(β, h†)∥ × op(1) + ∥G(β, h†)∥ × (1 + op(1)) +Op(n
−1/2)

= ∥G(β, h†)∥ × (1 + op(1)) +Op(n
−1/2) [by (F3)]

≤ ∥G(β, h†)−G(β0, h†)∥ × (1 + op(1)) + ∥G(β0, h†)∥ × (1 + op(1)) +Op(n
−1/2)

= ∥G(β, h†)−G(β0, h†)∥ × (1 + op(1)) +Op(n
−1/2)

sinceG(β0, h†) = 0. Therefore, ∥Gn(β, ĥ)∥Wn ≤ ∥G(β, h†)−G(β0, h†)∥×(d+op(1))+Op(n
−1/2) where

all the op and Op terms are uniform with respect to β ∈ Bδ. Hence, as in the proof of Proposition

13, noting that infβ∈B ∥G(β, h†)−G(β0, h†)∥ = 0, it follows that infβ∈Bδ
∥Gn(β, ĥ)∥Wn = Op(n

−1/2)

and, therefore, (51) gives ∥G(β̂, h†)∥ = Op(n
−1/2) and, subsequently, β̂ − β0 = Op(n

−1/2).

To establish asymptotic normality, define the linearization Ln(β) = Gn(β
0, h†) +Mλ(β − β0).

Note that the differences from the linearization in Chen et al. (2003) arise due to (F2) and (F3).

This gives:

∥Gn(β̂, ĥ)− Ln(β̂)∥

= ∥Gn(β̂, ĥ)−Gn(β
0, h†)−Mλ(β̂ − β0)∥

= ∥Gn(β̂, ĥ)−Gn(β
0, h†)−G(β̂, ĥ) +G(β̂, ĥ) +G(β̂, h†)−G(β̂, h†)−Mλ(β̂ − β0)∥

≤ ∥Gn(β̂, ĥ)−Gn(β
0, h†)−G(β̂, ĥ)∥+ ∥G(β̂, ĥ)−G(β̂, h†)∥+ ∥G(β̂, h†)−Mλ(β̂ − β0)∥

≤ ∥Gn(β̂, ĥ)−Gn(β
0, h†)−G(β̂, ĥ)∥+ ∥G(β̂, h†)−Mλ(β̂ − β0)∥ [by (F3)]

≤ op(1)× {1 + ∥Gn(β̂, ĥ)∥+ ∥G(β̂, ĥ)∥}+ ∥G(β̂, h†)−G(β0, h†)−Mλ(β̂ − β0)∥

where the term inside braces follows from (C3) and the inclusion of G(β0, h†) in the last term is

innocuous since G(β0, h†) = 0. Now, by the definition of Mλ, assumptions (C2), (A3) and (F2), it

follows that ∥G(β̂, h†)−G(β0, h†)−Mλ(β̂ − β0)∥ = op(∥β̂ − β0∥), which is op(n
−1/2) since β̂ − β0 =

Op(n
−1/2). On the other hand, the same steps from the top line of (51) until (almost) the end of the

first part of the proof give ∥Gn(β̂, ĥ)∥ ≤ infβ∈Bδ
∥Gn(β, ĥ)∥+ op(n

−1/2) = Op(n
−1/2). Finally, since

∥G(β̂, ĥ)∥ ≤ ∥G(β̂, ĥ)−G(β̂, h†)∥+ ∥G(β̂, h†)∥ = Op(n
−1/2) because the first term is 0 by (F3) and

the second term is Op(n
−1/2) from the first part of the proof, we obtain that ∥Gn(β̂, ĥ)− Ln(β̂)∥ ≤

op(n
−1/2). Similarly, for β̄ := argminβ ∥Ln(β)∥W , that, by construction, satisfies

√
n(β̄ − β0) =
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−(M ′
λWMλ)

−1M ′
λW

√
nGn(β

0, h†), we can show that ∥Gn(β̄, ĥ) − Ln(β̄)∥ ≤ op(n
−1/2). Now that

the proximity of Gn(β, ĥ) and Ln(β) has been established at β̂ and β̄ respectively, the rest of the

proof is to show that
√
n(β̄− β̂) = op(1). As was the case in Chen et al. (2003), this does not involve

anything particularly related to the key feature of our setup (it only works with the linearization),

and hence follows exactly in the same way as in the proof of Theorem 3.3 and Lemma 3.5 in Pakes

and Pollard (1989).

Proof of Corollary 15:

(1) This is standard and hence the proof is omitted.

(2) This follows by noting that g(O;β, h0(O;β)) = φλ(O;β) defined in (6).

Proof of Proposition 16: Define Ln(β) := Gn(β
0, h0)+Mλ(β−β0) and note that

√
nLn(β̃) = Op(1)

by assumptions (A3), (C4) and since
√
n(β̃ − β0) = Op(1). Therefore, using (F1), (F3) and also the

stochastic equicontinuity condition from the statement of the proposition, we obtain that:

√
n∥Gn(β̃, ĥ)− Ln(β̃)∥

=
√
n∥{Gn(β̃, ĥ)−G(β̃, ĥ)−Gn(β

0, h0)}+ {G(β̃, ĥ)−G(β̃, h0(β0))}+ {G(β̃, h0(β0)−Mλ(β̃ − β0)∥

≤ sup
β∈Bδn ,h∈Hδn

√
n∥Gn(β, h)−G(β, h)−Gn(β

0, h0)∥+
√
n∥G(β̃, ĥ)−G(β̃, h0(β0))∥

+ ∥
√
nG(β0, h0) + (Mλ + op(1)−Mλ)

√
n(β̃ − β0)∥

= op(1) + 0 + (0 + op(1)) = op(1).

Now, the proof completes since under the conditions of the proposition, the definition in (45) gives:

√
n
(
β̂1step − β̃

)
= −

(
Ω−1
λ + op(1)

) (
M ′

λ + op(1)
) (
V −1
λ + op(1)

) (√
nLn(β̃) + op(1)

)
= −Ω−1

λ M ′
λV

−1
λ

(√
nGn(β

0, h0) +Mλ

√
n(β̃ − β0)

)
+ op(1)

=
√
n
(
β̂ − β0

)
−

√
n
(
β̃ − β0

)
+ op(1) =

√
n
(
β̂ − β̃

)
+ op(1).
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