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B.1. Lemmas for Theorem 1

B.1.1. Topological preliminaries

Notation: Let B(Rn) denote the Borel σ-algebra on R
n. For any set S ∈ B(Rn), let B(Rn)S denote

the sub-space σ-algebra. Measurability of the function f : S → R is always relative to the measur-
able spaces (S , B(Rn)S)-(R, B(R)). The integral of f with respect to the Lebesgue measure in R

n

is denoted by
∫

S f(s)ds. Integration with respect to a different measure µ is denoted
∫

S f(s)dµ(s)
or
∫

S fdµ if no ambiguity arises. All vectors are column vectors. For notational convenience, (a, b)
will sometimes replace (a′, b′)′. The dimension of the column vector “a” is denoted da.

Preliminaries 1 (L1 and L∞): Since the sample space X ∈ B(Rs), the triplet (X, B(Rs)X, λs)
is a well-defined σ-finite measure space, where λS denotes the Lebesgue measure in R

s restricted to
X. Note that B(Rs)X = B(X) whenever X is endowed with the sub-space topology relative to R

s.
Following Rudin (2006), p. 65, let L1(X, B(X), λs) denote the space of all real-valued measurable
functions f that satisfy ||f ||1 ≡

∫
X

|f(x)|dx < ∞. Let L∞(X, B(X), λs) denote the class of all
essentially bounded real-valued measurable functions (Rudin (2006) p. 66).

Remark 1: Identify the class of all tests C as a subset of L∞(X, B(X), λs)

C ≡ {φ ∈ L∞(X, B(X), λs)
∣∣ φ(x) ∈ [0, 1] for λs-a.e. x ∈ X}.

And note that the elements of any statistical model {f(x; θ)}θ∈Θ are elements of L1(X, B(X), λs),
by the definition of probability density function

∫
X

f(x; θ)dx = 1 < ∞ for all θ ∈ Θ.

Preliminaries 2 (The dual space of L1): Let [L1(X, B(X), λs)]∗ denote the dual space of
L1(X, B(X), λs), i.e., the space of all continuous (w.r.t. ||f ||1 ) linear functionals on L1(X, B(X), λs);
see Rudin (2005), p. 56. Let Λ denote an element of the dual space [L1(X, B(X), λs)]∗. By Theorem
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6.16 in Rudin (2006), p. 127 and Theorem 1.18 in Rudin (2005), p. 15; the space [L1(X, B(X), λs)]∗

is isometrically isomorphic to L∞(X, B(X), λs). Therefore, one can identify each functional Λ with a
unique element (up to equivalence) g ∈ L∞(X, B(X), λs), and vice versa: for f ∈ L1(X, B(X), λs)∗,
the functional Λ ∈ [L1(X, B(X), λs)]∗ is of the form

Λ(f) ≡
∫

X

g(x)f(x)dx for some g ∈ L∞(X, B(X), λs).

Preliminaries 3 (weak∗ topology on L∞): Endow the space L∞(X, B(X), λs) with the topology
induced by the weak∗-topology on the space [L1(X, B(X), λs)]∗; see Rudin (2005), p. 67, 68. The
new topological space is denoted by (L∞(X, B(X), λs), T ∗). Denote convergence in such topology
by →∗. Note that, by definition, {gn}n∈N →∗ g if and only if

∫

X

f(x)gn(x)dx →
∫

X

f(x)g(x)dx ∀ f ∈ L1(X, B(X), λs).

Let (L∞(X, B(X), λs), T ∗) be the space of essentially bounded functions topologized with the
weak∗ topology. For any A ⊂ L∞(X, B(X), let T ∗

A denote the subset topology induced by T ∗.

B.1.2. Proof of Lemma 1

Proof of Lemma 1: The outline of the proof is the following. We show that the set C(α-s) is a
sequentially closed subset of C with the relative weak∗ topology. Then we use the Banach-Alaoglu
theorem and the topological separability of L1(X, B(X), λs) to establish the compactness of C(α-s).

(Sequential Closedness) Take any convergent sequence of tests φn →∗ φ with {φn}n∈N ⊆ C(α-s).
We want to show that φ ∈ C(α-s). First, we show that φ(x) ∈ C; i.e., φ ∈ [0, 1] for almost every
x ∈ X. Suppose not. Then there exists a measurable set A ∈ B(X) with λs(A) > 0 such that
φ(x) > 1 or φ(x) < 0 for all x ∈ A. Without loss of generality assume φ(x) > 1. Since λs is σ-finite,
there exists a countable collection {En}n∈N such that ∪n∈NEn = X and λs(En) < ∞ for every
n. Consider the sequence of sets {A ∩ En}n∈N. Note that 0 ≤ λs(A ∩ En) < ∞ for all n ∈ N. In
addition, there exists N ∈ N for which 0 < λs(A ∩ EN ), otherwise λs(A) = λs(∪∞

n=1(A ∩ En)) ≤∑∞
n=1

λs(A ∩ En) = 0. Consider the indicator function 1A∩EN . Since 0 < λs(A ∩ EN ) < ∞, the
indicator function 1A∩EN ∈ L1(X, B(X), λs). Note that

λs(A ∩ EN ) <

∫

X

1A∩EN (x)φ(x)dx = lim
n→∞

∫

X

1A∩EN (x)φn(x)dx ≤ λs(A ∩ EN ),

leading to a contradiction. Therefore φ(x) ≤ 1 λs-almost everywhere in X. An analogous argument
yields φ(x) ≥ 0 λs-almost everywhere. Therefore φ ∈ C. Now, we need to show that φ ∈ C(α-s). By
assumption, for every θ ∈ Bd(Θ0) f(·; θ) is an element of L1(X, B(X), λs). Consequently, f(·, θ) ∈
L1(X, B(X), λs). Since φn ∈ C(α-s) for every n ∈ N weak∗ convergence yields

0 = lim
n→∞

∫

X

f(x; θ)(φn(x) − α)dx =
(

lim
n→∞

∫

X

f(x; θ)φn(x)dx
)

−
∫

X

f(x; θ)αdx

=

∫

X

f(x; θ)φ(x)dx −
∫

X

f(x; θ)αdx

=

∫

X

f(x; θ)(φ(x) − α)dx.

So φ ∈ C(α-s). This implies C(α-s) is sequentially closed in C endowed with the weak∗ topology.

(Compactness) Let

V ≡
{

f ∈ L1(X, B(X), λs) :

∫

X

|f(x)|dx ≤ 1
}
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Note that V is a neighborhood of the function 0 in the space L1(X, B(X), λs). Let

(B.1) K ≡
{

g ∈ L∞(X, B(X), λs) :
∣∣∣
∫

X

f(x)g(x)
∣∣∣dx ≤ 1 ∀ f ∈ V

}
.

Note that C(α-s) ⊆ C ⊆ K, as for any test
∣∣∣
∫

X
f(x)φ(x)dx

∣∣∣ ≤
∫

X
|f(x)|φ(x)dx ≤

∫
X

|f(x)|dx ≤
1. By the Banach-Alaouglu Theorem the set K is compact in the weak∗ topology; see Rudin
(2005), p. 68, Theorem 3.15. Furthermore, the space L1(X, B(X), λs) is topologically separable as
(X, B(X), λs) is a separable measure space; see exercise 10, Chapter 1 of Stein (2011). Therefore,
Theorem 3.16 in Rudin (2005) p. 70 implies that the topological space (K, T ∗

K) is compact and
metrizable. Since every metrizable space is first-countable—consequently, Frechet-Urysohn— the
sequential closure of C(α-s) coincides with its closure. Therefore, the set C(α − s) is a closed
subset of the compact topological space (K, T ∗

K). We conclude that (C(α-s), T ∗
C(α-s)) is compact and

metrizable. That is, the space of α-similar tests is weak∗ compact.
Q.E.D.

B.1.3. Proof of Lemma 2

Proof of Lemma 2: This lemma has three claims. The first claim, denoted as L2a, is that
M(w) 6= ∅. The second claim, L2b, is that φ∗ ∈ M(w) =⇒ φ∗ is admissible in C(α-s). The
third claim, L2c, is that φ∗ ∈ M(w) =⇒ φ∗ is admissible in C. Now we prove these claims.

Proof of L2a: Let p denote the p.d.f of w. We have shown that the class of tests C(α-s) is weak∗

compact. This class is non-empty, as it contains the randomized test φ(x) = α. To establish L2a it
will be sufficient to show that the objective function

W∗(φ) ≡
∫

Θ1

R(φ, θ)p(θ)dθ

is continuous in the weak∗ topology.

L2a-Step 1 (Fubini’s Theorem:) Since the image of any test φ ∈ C is contained in the interval [0, 1]

λs-a.e. and f(x; θ) ∈ L1(X, B(X), λs) for all θ, it follows that
( ∫

X
φ(x)f(x; θ)dx

)
≤ 1 for every

θ ∈ Θ. Furthermore,
∫

Θ1

(∫

X

φ(x)f(x; θ)dx
)

p(θ)dθ ≤ 1 < ∞.

Therefore, an application of Fubini’s theorem in Billingsley (1995), p. 234 yields
∫

Θ1

R(φ, θ)p(θ)dθ ≡
∫

Θ1

(∫

X

(1 − φ(x))f(x; θ)dx
)

p(θ)dθ =

∫

X

(1 − φ(x))f∗
1 (x)dx

where f∗
1 is the “integrated" likelihood given by

(B.2) f∗
1 (x) ≡

∫

Θ1

f(x; θ)p(x)dθ,

Note that f∗
1 is an element of L1(X, B(X), λs). We can re-write

(B.3) W∗(φ) ≡
∫

X

(1 − φ(x))f∗
1 (x)dx

L2a-Step 2 (Sequential Continuity of W∗:) We now show that W∗ is continuous on the compact
metrizable space (C(α-G), T ∗

C(α-s)). It suffices to establish sequential continuity. Take any sequence
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of tests φn →∗ φ. Since f∗
1 is an element of L1(X, B(X), λX), convergence in the weak∗ topology

yields
∫

X

φn(x)f∗
1 (x)dx →

∫

X

φ(x)f∗
1 (x)dx.

Therefore

W∗(φn) ≡ 1 −
∫

X

φn(x)f∗
1 (x)dx → 1 −

∫

X

φ(x)f∗
1 (x)dx,

= W∗(φ).

Therefore, W∗ is a continuous functional defined on the compact space (C(α-s), T ∗
C(α-s)), and

C(α-s) 6= ∅, as it contains the test φ(x) = α. This implies M(w) 6= ∅.

L2b : Let φ∗ ∈ M(w1). We show that if φ′ ∈ C(α-s) satisfies

(B.4) Eθ[φ′(X)] ≥ Eθ[φ∗(X)] ∀ θ ∈ Θ1

then

(B.5) Eθ[φ′(x)] = Eθ[φ∗(x)] ∀ θ ∈ Θ1.

Consequently, there is no test φ′ ∈ C(α-s) that “weakly dominates” φ∗ ; i.e, R(φ′, θ) ≤ R(φ∗, θ)
with strict inequality for some θ.

Suppose (B.4) hold, but (B.5) does not. Then, the following is true:

C1: There exists θ̃ ∈ Θ1 such that ∆φ′,φ∗ (θ̃) ≡ Eθ̃[φ′(X)] − Eθ̃[φ∗(X)] > 0

C1 and the continuity of ∆φ′,φ(·) at θ̃ implies the existence of an open neighborhood τθ̃ for which
∆φ′,φ∗ (θ) > 0 for all θ ∈ τθ̃. Note that Θ1 6= ∅ is an open set. It follows that the set Sθ̃ defined
by Sθ̃ ≡ τθ̃ ∩ Θ1 satisfies three properties: it is non-empty, it is open, and it is contained in Θ1.
Since w1(θ) has full support on Θ1,

∫
A

dw1(θ) > 0 for any open set A contained in Θ1. Note that
∆φ′,φ∗ (θ) > 0 for all θ ∈ Sθ̃ and (B.4) implies

∫

Θ1

(∫

X

(1 − φ′(x))f(x; θ)dx
)

dw(θ) <

∫

Θ1

(∫

X

(1 − φ∗(x))f(x; θ)dx
)

dw(θ)

This contradicts the fact that φ∗ ∈ M(w1). We conclude C1 cannot hold.

Therefore, (B.4) implies (B.5). We conclude that φ∗ is admissible in C(α-s).

L2c : We now show that a test φ∗ ∈ M(w) is admissible in the class of all tests. This proof is based
on the arguments provided in Chernozhukov, Hansen, and Jansson (2009). The proof is divided
into two steps.

Step 1: First we show that if φ′ ∈ C satisfies

(B.6) Eθ[φ′(X)] ≤ Eθ[φ∗(X)] ∀ θ ∈ Θ0

and

(B.7) Eθ[φ′(X)] ≥ Eθ[φ∗(X)] ∀ θ ∈ Θ1
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with some strict inequality, then φ′ is α-similar on BdΘ0 = Θ0. Consequently, any test φ′ that
“weakly dominates” φ∗ (i.e, R(φ′, θ) ≤ R(φ∗, θ) with strict inequality for some θ) must be α-similar
on the boundary of Θ0.

Let Cns ⊂ C be the class of tests that are not similar on the boundary of Θ0. This is, φ ∈ Cns

if and only if there exists θ, θ′ ∈ BdΘ0 such that Eθ[φ(x)] 6= Eθ′ [φ(x)]. Partition C according
to Cns so that C ≡ Cns ∪ (C\Cns). Take any test φ′ ∈ Cns that satisfies (B.6). Since φ′ is an
element of Cns and Θ0 contains its boundary (as it is closed), there exists θ ∈ BdΘ0 such that
∆φ′,φ∗ (θ) ≡ Eθ[φ′(X)] − Eθ[φ∗(X)] < 0. Because ∆φ′,φ∗(θ) < 0 and the function ∆φ′,φ∗ (·) is
continuous at θ, there exists an open neighborhood τθ ∈ T such that ∆φ′,φ∗ (θ) < 0 for all θ ∈ τθ.
Since θ is an element of Bd Θ0, then τθ ∩ Θ1 6= ∅. The latter implies there exists θ1 ∈ Θ1 such that
∆φ′,φ∗

α
(θ1) = Eθ1 [φ′(X)] − Eθ1 [φ∗

α(X)] < 0. Therefore, equation (B.6) and (B.7) cannot hold. We
conclude there is no test φ′ ∈ Cns that satisfies (B.6) and (B.7).
Since Cns partitions C, a test φ′ ∈ C that satisfies (B.6) and (B.4) must be an element of C\Cns (as
φ′ /∈ Cns). Equation (B.6) implies φ′ is α′-similar on the boundary with α′ ≤ α. Two cases follow:
α′ < α or α′ = α. In the first case, the argument in the previous paragraph implies that φ′ will vio-
late (B.4). We conclude that any test that satisfies (B.6) and (B.4) must be α-similar on BdΘ0 = Θ0.

Step 2: We have shown that φ∗ ∈ M(w) implies φ∗ is admissible in C(α-s). We want to show
that there is no nonsimilar α-level test such that R(φ′, θ) ≤ R(φ∗, θ) with strict inequality for
some θ ∈ Θ. By Step 1 any test φ′ ∈ C that satisfies (B.6) and (B.4) must be α-similar on BdΘ0.
Therefore, we conclude φ∗ is admissible in C as only α-similar tests can dominate φ∗ and φ∗ has
been shown to be admissible in C(α-s). Q.E.D.

B.2. Lemmas for Result 1

B.2.1. Proof of Lemma 3

Proof of Lemma 3: The Gaussian likelihood for (S, T ) given parameters (ρ, φ, ω) is

f(S, T ; ρ, φ, ω) = c1 exp
(

− 1
2

([S′, T ′]′ − ρ(φ ⊗ ω))′([S′, T ′]′ − ρ(φ ⊗ ω))
)

,

where c1 is a positive constant. Algebra shows that
∫

Sk−1

f(S, T ; ρ, φ, ω)dλSk−1(ω)

equals

a1(Q) exp
(

− ρ2/2
)∫

Sk−1

exp
(

([S, T ]φ)′ρω
)

dλSk−1(ω),

where

a1(Q) ≡ c2 exp
(

− 1
2

[S′S + T ′T ]
)

and c2 is a positive constant.

The density of ρ is given by:

m(ρ) ≡ 1
2k/2Γ(k/2)

(ρ2)(k/2)−1e−(ρ2/2)2ρ

The integral of interest thus equals
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= a1(Q)

∫

Sk−1

(∫

R+

exp
([

(S, T )ρφ
]′
ω

)
m(ρ) exp(−ρ2/2)dρ

)
dλSk−1(ω),

= a2(Q)

∫

Sk−1

(∫

R+

exp
([

(S, T )ρφ
]′
ω

)
exp(−ρ2)ρk−1dp

)
dλSk−1(ω),

= a2(Q)

∫

Sk−1

(∫

R+

exp
([

(S, T )φ
]′

ρω
)

exp(−(ρω)′(ρω))ρk−1dp
)

dλSk−1(ω)

where the last line follows from ω
′
ω = 1 and a2(Q) = a1(Q)2/(2k/2Γ(k/2)). Theorem 5.2.2, p. 86

in Stroock (1999) implies the last equation above equals

a2(Q)

∫

RK

exp
([

(S, T )φ
]′

x
)

exp(−x′x)dx,

(by applying Theorem 5.2.2 to the function exp
([

(S, T )φ
]′

x
)

exp(−x′x))

= a3(Q) exp
(1

4
φ′Qφ

)
, Q ≡ [S, T ]′[S, T ],

where the last line follows by definition of the moment generating function of a k-dimensional mul-
tivariate normal evaluated at (S, T )φ. The constant a3(Q) equals

a3(Q) ≡ (2π)k/2a2(Q),

= (2π)k/22/(2k/2Γ(k/2))a1(Q),

= (2π)k/22/(2k/2Γ(k/2))c2 exp
(

− 1
2

[S′S + T ′T ]
)

.

B.2.2. Proof of Lemma 4

Proof of Lemma 4: Part ii) of exercise 5.2.4 in p. 87 of Stroock (1999) implies that
∫

S1

exp
(1

4
φ′Qφ

)
dλS1(φ) =

1
2π

∫ 2π

0

exp
(1

4
[cos(θ), sin(θ)]Q[cos(θ), sin(θ)]′

)
dθ.

Let L ≡ S′S − ζmin, where ζmin is the smallest eigenvalue of Q as defined in the statement of
Lemma 4. Note that L is the Likelihood Ratio Statistic as defined in Andrews, Moreira, and Stock
(2006) p. 722. The eigenvector associated with the largest eigenvalue of the matrix Q equals:

emax ≡ (L, S′T )′/
√

L2 + (S′T )2.

Define θ̂ ∈ [0, 2π] implicitly by the following equation:

[cos(θ̂), sin(θ̂)]′ = emax

Therefore,

P ≡
(

cos(θ̂) sin(θ̂)
sin(θ̂) − cos(θ̂)

)

yields the spectral decomposition of the matrix Q; that is:

P

(
ζmax 0

0 ζmin

)
P ′ = Q.

Note that for any θ:

P ′
(

cos(θ)
sin(θ)

)
=

(
cos(θ̂) cos(θ) + sin(θ̂) sin(θ)
sin(θ̂) cos(θ) − cos(θ̂) sin(θ)

)
=

(
cos(θ̂ − θ)
sin(θ̂ − θ)

)
.
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Therefore:

∫

S1

exp
(1

4
φ′Qφ

)
dλS1(φ) =

1
2π

∫ 2π

0

exp
(1

4

[
ζmax cos2(θ̂ − θ) + ζmin sin2(θ̂ − θ)

])
dθ,

=
1

2π

∫ θ̂

θ̂−2π

exp
(1

4

[
ζmax cos2(θ) + ζmin sin2(θ)

])
dθ,

(where he have changed the integration variable)

= exp
(1

4
ζmin

) 1)
2π

∫ θ̂

θ̂−2π

exp
(1

4

[
(ζmax − ζmin) cos2(θ)

])
dθ,

(as sin2(θ) + cos2(θ) = 1)

=
1

2π
exp
(1

4
ζmin

)
exp
(1

8
(ζmax − ζmin)

)

∫ θ̂

θ̂−2π

exp
(1

8
(ζmax − ζmin) cos(2θ)

)
dθ,

(as cos2(θ) = (1 + cos(2θ))/2)

=
1

4π
exp
(1

4
ζmin

)
exp
(1

8
(ζmax − ζmin)

)

x

∫ 2θ̂

2(θ̂−2π)

exp
(

κ(Q) cos(θ)
)

dθ,

(where we have used the change of variable θ̃ = 2θ)

(κ(Q) ≡ 1
8

(ζmax − ζmin))

= exp
(1

4
ζmin

)
exp
(1

8
(ζmax − ζmin)

)

1
2π

∫ 2π

0

exp
(

κ(Q) cos(u)
)

du,

(where we have used the change of variable u = (θ̂) − (θ/2).

Using the definition of the Von-Mises distribution and equation 3.5.18 in p. 36 of Mardia and Jupp
(2000) it follows that:∫

S1

exp
(1

4
φ′Qφ

)
dλS1(φ) = exp

(1
4

ζmin

)
exp
(1

8
(ζmax − ζmin)

)
I0

(
κ(Q)

)
,

= exp
(1

8

(
ζmax + ζmin

))
I0

(1
8

(ζmax − ζmin)
)

,

where I0(·) is the modified Bessel function of the first kind, defined in Abramowitz and Stegun
(1964), Section 9.6, p. 375.
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B.3. Additional results related to Theorem 1

B.3.1. Corollary to Theorem 1: sequences of WAP-similar tests

Corollary 1: Suppose that Θ is compact. Let φ be an admissible, α-similar test. Let →∗ denote
convergence in the weak∗ topology as defined in B.1.1. Under Assumption F0 there exists a sequence
of Borel probability measures wn on Θ, a weight function w∗, and an α-similar test φ∗ such that:

wn
d→ w∗, φwn,α

WAP
→∗ φ∗.

Moreover, if the sequence {wn}n∈N has a common σ-finite dominating measure, P, and the sequence
of corresponding Radon-Nikodym derivaties {fn}n∈N admits a function g such that:

|fn(θ)| ≤ g(θ) and

∫

Θ

|g|dP < ∞,

then WAP(φ∗, w∗) = WAP(φ, w∗). This means that for any admissible, α-similar test φ there is a
sequence of weights (with limit w∗) such that the test φ is WAP-equivalent to the properly defined
limit of wn-WAP α-similar tests.

Proof: We will break the proof of the corollary into two steps.

Step 1 (construction of w∗ and φ∗): Take any sequence of real numbers {ǫk}k∈N such that
ǫk → 0. Since φ is admissible and similar, Theorem 1 implies the existence of a sequence of Borel
probability measures {wk} satisfying

(B.8) WAP(φwk,α
WAP, wk) ≥ WAP(φ, wk) ≥ WAP(φwk,α

WAP, wk) − ǫk.

The sequence {WAP(φwk,α
WAP, wk)}k∈N takes its values on the [0, 1] interval. Hence, there exists a

subsequence {wkl
}l∈N along which:

WAP(φ
wkl

,α

WAP , wkl
) → WAP∗,

where WAP∗ is some number in the [0, 1] interval. Moreover, Equation (B.8) and ǫk → 0 then imply

WAP(φ, wkl
) → WAP∗.

It is well known that if Θ ⊆ R
p is endowed with its standard metric, then the space of Borel prob-

ability measures on Θ is sequentially compact—relative to the topology induced by the Prokhorov
metric, which metrizes weak convergence (see Proposition 4.4 in Chapter F of Ok (2019)). Therefore,
it is possible to extract a further subsequence {wklm

}m∈N such that:

wklm

d→ w∗.

In proving Theorem 1, we have showed that the space of α-similar tests is compact relative to
the weak∗ topology, and also metrizable. The latter implies that the space of α-similar tests is
sequentially compact. Consequently, we can extract a further subsequence {wklmn

}n∈N along which:

φ
wklmn

,α

WAP →∗ φ∗,

as n tends to infinity. Consider thus the sequence of weights {wn}n∈N with n-th element defined as

wn ≡ wklmn
.

By construction, under this sequence

wn
d→ w∗, φwn,α

WAP →∗ φ∗, WAP(φwn,α
WAP , wn) → WAP∗, WAP(φ, wn) → WAP∗.
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with φ∗ α-similar.

Step 2 (φ and φ∗ are WAP-equivalent under w∗): We will now show that WAP(φ, w∗) =
WAP∗ = WAP(φ∗, w∗). So that the original admissible, similar test φ and the limiting test φ∗ are
WAP equivalent under the limiting weight w∗.

First, Assumption F0 and the definition of weak convergence of probability measures implies

WAP(φ, wn) ≡
∫

Θ

R(φ; θ)dwn →
∫

Θ

R(φ; θ)dw ≡ WAP(φ, w∗).

(as R(φ, ·) is bounded and, by Assumption F0, continuous). Since—by construction of wn—WAP(φ, wn) →
WAP∗, then WAP(φ, w∗) = WAP∗.

Second, WAP∗ = WAP(φ∗, w∗). To establish such a relation, it is sufficient to show

WAP(φwn,α
WAP , wn) → WAP(φ∗, w∗),

as, by construction, WAP(φwn,α
WAP , wn) → WAP∗. Note that:

WAP(φwn,α
WAP , wn) − WAP(φ∗, w∗) = WAP(φwn,α

WAP , wn) − WAP(φ∗, wn)

+ WAP(φ∗, wn) − WAP(φ∗, w∗)

= WAP(φwn,α
WAP , wn) − WAP(φ∗, wn) + o(1)

(By Assumption F0 and the definition of weak convergence)

=

∫

Θ

(R(φwn,α
WAP; θ) − R(φ∗, θ))dwn + o(1)

=

∫

Θ

(R(φwn,α
WAP; θ) − R(φ∗, θ))fn(θ)dP + o(1)

(by the assumption about the existence of Radon-Nikodym

derivatives w.r.t. P and equation (32.5) in Billingsley (1995))

= o(1)

To establish the last equality, define the sequence of functions:

hn(θ) ≡ (R(φwn,α
WAP ; θ) − R(φ∗, θ))fn(θ)

and note that |hn(θ)| ≤ |(R(φwn,α
WAP ; θ) − R(φ∗, θ))|g(θ). Since φwn,α

WAP →∗ φ∗ it then follows that
R(φwn,α

WAP ; θ) → R(φ∗, θ)) for every θ and consequently:

hn(θ) → 0 ∀ θ ∈ Θ.

An application of the dominated convergence theorem yields

WAP(φwn,α
WAP , wn) − WAP(φ∗, w∗) → 0.

Consequently,
WAP(φ∗, w∗) = WAP∗.

Therefore φ and φ∗ are WAP-equivalent under w∗. That is, WAP(φ, w∗) = WAP∗ = WAP(φ∗, w∗).

Q.E.D.

Comment: The essentially complete class theorem (ECCT) invoked in the proof of Theorem 1—
based on Theorems 2.9.2 and 2.10.3 in Ferguson (1967)—characterizes admissible tests as extended
Bayes tests. There are other versions of the ECCT that characterize admissible tests in terms of
‘limits of Bayes procedures’. For example, Theorem 4A.10 in Brown (1986) shows that the closure
(in weak∗ topology) of the set of Bayes procedures for priors concentrated on finite subsets of Θ
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constitutes—under some assumptions on the action space, the loss function, and the statistical
model—an essentially complete class. Note that if we’re able to verify such a theorem in our set-
up, then for every admissible, α-similar test φ there would be a test φ∗—on the closure of Bayes
procedures—for which R(φ∗, θ) = R(φ, θ) for every θ. This, by definition of closure, would imply
the existence of a sequence of weights wn (concentrated on finite subsets of Θ) such that:

φwn,α
W AP →∗ φ∗,

and consequently, by the definition of weak∗ convergence,

R(φwn,α
W AP , θ) → R(φ∗, θ) = R(φ, θ), ∀ θ ∈ Θ.

This is a stronger result than the one obtained in Corollary 1. To the best of my knowledge, the
stronger version of the complete class theorems seem to require the convexity of the action space as
well as strict convexity of the loss function (see for example Theorem 7.15 in Lehmann and Casella
(1998)).

B.3.2. WAP-similar tests with a boundedly complete, null-sufficient statistic.

Preliminaries: This section generalizes a well-known observation in the IV literature: maximizing
constrained average power is straightforward whenever there is a boundedly-complete, null-sufficient
statistic. Consider the following assumptions.

Assumption F1 (Null Sufficiency): There is a partition of the data X = (x1, x2) such that
the conditional density of x1 given x2 in the statistical model f(x1, x2; θ) satisfies:

(B.9) f(x1|x2; β0) ≡ f(x1|x2; θ) = f(x1|x2; θ′) ∀ θ, θ′ ∈ Θ0.

The statistic x2 arising from such partition of the data will be called a null-sufficient statistic.

It is well known that a null-sufficient statistic can be used to control the null rejection probabil-
ity of a test in a two-sided problem with a nuisance parameter [Ferguson (1967), Moreira (2003),
Andrews et al. (2006), Lehmann and Romano (2005)].

Let h(x2; θ) denote the marginal density of the null-sufficient statistic x2 based on the statistical
model f(x1, x2; β, Π).

Assumption F2: (Bounded Completeness): For any bounded measurable function m : X2 →
R, the marginal densities of the null sufficient statistic are such that:

∫
m(x2)h(x2; θ)dx2 = 0, ∀ θ ∈ Θ0 =⇒ m(x2) = 0,

except, perhaps, in a set that has zero measure under every element of the collection {h(·, θ)}θ∈Θ0 .1

Theorem 4.3.1 in Lehmann and Romano (2005) provides a sufficient condition to guarantee that a
family of distributions is complete, and thus, boundedly complete. In the IV example studied in
this paper, it will be sufficient to show that the set Θ0 contains a rectangle of the same dimension
as the null-sufficient statistic.

Bounded completeness will be used to show that all similar tests must be “conditionally” similar.
This is a well-known result in the theory of statistical hypothesis testing. See Theorem 4.3.2 in
Lehmann and Romano (2005).

1See Lehmann and Romano (2005) p. 115 for the definition of bounded completeness.
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Description: Lemma 5 will show that under assumptions F1, F2 the test that rejects whenever

(B.10) φ∗(x1, x2) ≡ f∗
w1

(x1, x2)/f(x1|x2; β0) > c(x2; α),

is an element of

M(w1) ≡ arg min
φ∈C(α-s)

∫

Int Θ1

R(φ, θ)dw1(θ)

provided c(x2; α) is the 1 − α quantile of z(X1, x2) with X1 ∼ f(x1|x2; β0). This is a well-known
result and we reproduce it for the sake of completeness.

Relevance of Lemma 5: This implies that the tests in (B.10) are constrained weighted aver-
age power maximizers. This property has been discussed in Andrews, Moreira, and Stock (2004),
Chernozhukov et al. (2009). Lemma 5 combined with Lemma 2 implies that the tests in (B.10) are
admissible in the class of all tests.

Lemma 5: Let φ∗ be defined as in (B.10) and let c(·; α) be measurable. Under Assumptions
F1-F2, φ∗ ∈ M(w1); that is, φ∗ minimizes average risk inside the class of α-similar tests.

Proof: Throughout this proof we assume that X = X1 × X2. Fubini’s theorem (L2a-Step 1) and
Theorem 4.3.2 in Lehmann and Casella (1998) implies that φ∗ ∈ M(w1) if and only if φ∗ solves the
problem:

min
φ∈C

∫

X

(1 − φ(x))f∗
1 (x)dx

∫

X1(x2)

φ(x1, x2)f(x1|x2)dx1 = α

except, perhaps, for x2 that belong to a set of measure zero under the marginal density of h(x2, θ)
for all θ ∈ Θ0. Re-write the objective function as

max
φ∈C

∫

X

φ(x)f∗
1 (x)dx.

The product structure of X and the linearity of the integral allows a further expansion of the
previous equation:

max
φ∈C

∫

X2

(∫

X1

φ(x1, x2)f∗
1 (x1, x2)dx1

)
dx2.

Note first that the Neyman Pearson Lemma in Ferguson (1967) p. 204 implies that for a fixed x2

the WAP test φ∗(x1, x2) solves the problem

max
φ∈C

∫

X1

φ(x1, x2)f∗
1 (x1, x2) dx1

subject to
∫

X1

φ(x1, x2)f(x1|x2)dx1 = α.

except, perhaps, for x2 that belong to a set of measure zero under every h(x2, θ), θ ∈ BdΘ0. Hence,
to show that φ∗(x1, x2) ∈ M(w1) it only remains to prove that φ∗(x1, x2) is measurable. That
is, φ∗(x1, x2) ∈ C(α-s). Assumption F0 implies that φ∗(x1, x2) is continuous in x1, for every x2.
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Furthermore, since c(·, α) is measurable, then φ∗(x1, x2) is measurable in x2, for every x1. Therefore,
φ∗(x1, x2) is a Carathéodory function, as defined in Aliprantis and Border (2006), p. 153. Since the
sample space X is separable (by assumption) and metrizable (for it is a subset of a euclidean space),
Lemma 4.5.1 in Aliprantis and Border (2006) p. 153 implies φ∗ : X → [0, 1] is measurable. Q.E.D.

B.3.3. Continuity of the conditional critical value function

Measurability is required for the proof of Lemma 5. This subsection provides two sufficient con-
ditions that imply the continuity of c(·; α) (and hence, its measurability).

Let f(x; θ) denote the statistical model. Consider the following auxiliary assumptions:

Assumption F3: There exists a function g(θ) such that:

f(x; θ) ≤ g(θ) ∀ x,

and
∫

θ
g(θ)dw(θ) < ∞.

Assumption F4: f(x1|x2; β0) > 0 for every (x1, x2) and f(x1|x2; β0) is continuous in (x1, x2).

Assumptions F0, F3, F4 imply that c(x2; α) is continuous.

Proof: Note first that Assumption F0 implies that f∗
w(x) is sequentially continuous in x. To see

this, consider any sequence xn → x. Assumption F0 i) implies that f(xn; θ) → f(x; θ) for almost
every θ ∈ Θ. Since the weight function w(θ) is assumed to satisfy f∗

w(x) < ∞ for every x then:

∣∣∣f∗
w(xn) − f∗

w(x)
∣∣∣ =

∣∣∣
∫

Θ

f(xn; θ)dw(θ) −
∫

Θ

f(x; θ)dw(θ)
∣∣∣

≤
∫

Θ

∣∣∣f(xn; θ) − f(x; θ)
∣∣∣dw(θ).

By Assumption F3, the Dominated Convergence Theorem applies and we can conclude that
∫

Θ

∣∣∣f(xn; θ) − f(x; θ)
∣∣∣dw(θ) → 0.

Consequently, f∗
w(xn) → f∗

w(x). Furthermore, Assumption F4 implies that the test statistic:

z(x1, x2) = fw(x1, x2)/f(x1|x2; β0)

is continuous in (x1, x2).

Let x2,n → x2 and let X1,n ∼ f(x1|x2,n; β0). Consider the sequence of random variables.

z(X1,n, x2,n).

By Scheffe’s theorem and the continuity of f(x1|x2; β0) at x2, X1,n
d→ X ∼ f(x1|x2; β0). Therefore,

the random vector (X1,n, x2,n)
d→ (X, x2). The continuous mapping theorem implies that

z(X1,n, x2,n)
d→ z(X1, x2).

Lemma 21.2 in Van der Vaart (2000) implies c(x2,n; α) → c(x2; α) for any sequence x2,n → x2.
Hence, the critical value function is continuous and, consequently, measurable.
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B.4. Additional results related to Result 1

B.4.1. Asymptotic validity of the test in Result 1

The test in Result 1 was derived under the assumption that the rotated reduced-form OLS
estimators (S′

n, T ′
n)′ have the exact distribution:

Qn
β,Π,Σ ≡ N2k

(
([b′

0 ⊗ Ik)Σ(b0 ⊗ Ik)]−1/2(β − β0)
√

nΠ
[(a′

0 ⊗ Ik)Σ−1(a0 ⊗ Ik)]−1/2(a′
0 ⊗ Ik)Σ−1(a ⊗ Ik)

√
nΠ

, I2k

)
,

where Σ is of the form Ψ ⊗ Φ. In any finite sample, however, the law of (S′
n, T ′

n)′ is a function of
(β, Π), the sample size, and the joint distribution between the instrumental variables and reduced-
form residuals, denoted F . In fact, one can write:

(
([b′

0 ⊗ Ik)Σ̂(b0 ⊗ Ik)]−1/2(b′
0 ⊗ Ik)

[(a′
0 ⊗ Ik)Σ̂−1(a0 ⊗ Ik)]−1/2(a′

0 ⊗ Ik)Σ̂−1

)√
nγ̂n ∼ P n

β,Π,F ,

where Σ̂ is an estimator of the variance of
√

nγ̂n. This variance depends on F and such dependence
is denoted Σ(F ). The estimator Σ̂ need not have the Kronecker form, even when Σ(F ) does.

If one assumes that for n large enough the distributions P n and Qn are ‘close’ to each other
(under the null), then one would expect the rate of Type I error computed under P n to be close to
that obtained under Qn.

Preliminaries: We introduce some additional notation in order to establish the asymptotic va-
lidity of the test in Result 1.

1. Bounded Lipschitz Distance: Let dBL(P, Q) = suph∈BL1
|EP [h(X)]−EQ[h(X)]| denote the Bounded

Lipschitz distance between any pair of probability measures P and Q. For definitions and notation,
see p. 73, Section 1.12 of Van der Vaart and Wellner (1996). Note also that the Bounded Lipschitz
metric is equivalent to the ‘β’ metric between Borel probability measures defined in p. 394 of
Dudley (2002).

2. δ-Expansion of a set A: For any δ > 0 let Aδ denote the δ-expansion of the set A ⊆ R
m. This is

Aδ = {y ∈ R
m | d(x, y) ≤ δ for some x ∈ A}.

3. A bound on the distance between probability measures: One can show that for any measurable set
A and any δ > 0:

(B.11) −Q((Ac)δ\Ac) − 1
δ

dBL1 (P, Q) ≤ P (A) − Q(A) ≤ 1
δ

dBL1(P, Q) + Q(Aδ\A),

where Ac is the complement of A ⊆ R
m. We use the right-hand side of this inequality to establish

the main result.

Assumption L0: Suppose that the class of distributions F is such that:

lim
n→∞

sup
(Π,F )∈Rk×F

dBL

(
P n

β0,Π,F , Qn
β0,Π,Σ(F )

)
→ 0.

That is, the Bounded Lipschitz distance between the measures P n
β,Π,F and Qn

β,Π,Σ(F ) coverges to
zero as the sample size grows large (uniformly over Π and F ).

Asymptotic Validity of the Test in Result 1: If Assumption L0 holds and there are
constants 0 < λ < λ < ∞ such that the eigenvalues of Σ(F ) belong to an interval [λ, λ] for any
F ∈ F , then:

lim sup
n→∞

sup
(Π,F )∈Rk×F

P n
β0,Π,F (zwap(S, T ) − cwap(T, α) > 0) ≤ α.
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This means that the rate of Type I error of the test in Result 1 is uniformly controlled over
(Π, F) ∈ R

k × F .
Consider the test statistic

z(S, T ) ≡ S′S − T ′T + 8 ln
(

I0

[
(1/8)

√
(S′S − T ′T )2 + 4(S′T )2

])

and let c(T ; α) denote its conditional critical value. We would like to show that if Assumption L0
holds over the class F , then:

(B.12) lim sup
n→∞

sup
(Π,F )∈Rk×F

P n
β0,Π,F (z(S, T ) − c(T ; α) ≥ 0) ≤ α.

We establish the asymptotic validity of the test in Result 1 in six steps:

Step 0: Define
A ≡ {(s′, t′)′ ∈ R

2k | z(s, t) − c(t; α) ≥ 0}.

Note immediately that Equation (B.11) implies that for any sample size n and any (Π, F ) ∈ R
k ×F :

P n
β0,Π,F(A) ≤ Qn

β0,Π,Σ(F )(A) +
1
δ

dBL1 (P n
β0,Π,F , Qn

β0,Π,Σ(F )) + Qn
β0,Π,Σ(F )(A

δ\A),

= α +
1
δ

dBL1(P n
β0,Π,F , Qn

β0,Π,Σ(F )) + Qn
β0,Π,Σ(F )(A

δ\A).

where the last equality follows by the definition of the conditional critical value c(T ; α). Thus, in
order to establish (B.12), we need to show that

1
δ

dBL1 (P n
β0,Π,F , Qn

β0,Π,Σ(F )) + Qn
β0,Π,Σ(F )(A

δ\A)

can be made arbitrary small, uniformly over the values of (Π, F ). By the weak convergence assump-
tion in Part 2 of Result 1, for any fixed δ there is Mǫ(δ) ∈ N such that whenever n ≥ Mǫ(δ) the
term δ−1dBL1 (P n

β0,Π,F , Qn
β0,Π,Σ(F )) can be made smaller than ǫ. Thus, we only need to establish the

following result.

Goal: For every ǫ > 0 there is δǫ and Nǫ such that for all n ≥ Nǫ

sup
(Π,F )∈Rk×F

Qn
β0,Π,Σ(F )(A

δǫ\A) ≤ ǫ.

The proof of this result requires a series of intermediate steps. We exploit the fact that the test
statistic z(s, t) satisfies a Lipschitz condition whenever (s, t) is restricted to an appropriate set.

Step 1: (A bound on Qn
β0,Π,Σ(F )(A

δ\A)): Define the sets

(B.13) B(b1, b2) ≡ {(s′, t′)′ ∈ R
2k | s′s ∈ [b1, b2] },

(B.14) C(c1, c2) ≡ {(s′, t′)′ ∈ R
2k | t′t ∈ [c1, c2] },

(B.15) D(d1, d2) ≡ {(s′, t′)′ ∈ R
2k | (s′t)2/t′t ∈ [d1, d2] },

where b1, b2, c1, c2, d1, d2 are positive, finite constants. We want to study the behavior of Aδ\A in-
side and outside the sets defined above. Note that for any n, Π, F and δ:
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Qn
β0,Π,Σ(F )(A

δ\A) = Qn
β0,Π,Σ(F )(A

δ\A ∩ [B(b1, b1) ∩ C(c1, c2) ∩ D(d1, d2)])

+ Qn
β0,Π,Σ(F )(A

δ\A ∩ [B(b1, b1) ∩ C(c1, c2) ∩ D(d1, d2)]c)

(by the additivity property of probability measures)

≤ Qn
β0,Π,Σ(F )(A

δ\A ∩ [B(b1, b1) ∩ C(c1, c2) ∩ D(d1, d2)])

+ Qn
β0,Π,Σ(F )(A

δ\A ∩ Bc(b1, b1)) + Qn
β0,ΠΣ(F )(A

δ\A ∩ Cc(c1, c2))

+ Qn
β0,Π,Σ(F )(A

δ\A ∩ D(d1, d2))

(where we have used Boole’s inequality)

≤ Qn
β0,Π,Σ(F )(A

δ\A ∩ [B(b1, b1) ∩ C(c1, c2) ∩ D(d1, d2)])

+ Qn
β0,Π,Σ(F )(B

c(b1, b1)) + Qn
β0,ΠΣ(F )(D

c(d1, d2))

+ Qn
β0,ΠΣ(F )(A

δ\A ∩ Cc(c1, c2))

(by the monotonicity of probability measures)

≤ Qn
β0,Π,Σ(F )(A

δ\A ∩ [B(b1, b1) ∩ C(c1, c2) ∩ D(d1, d2)])

+ P(χ2
k /∈ (b1, b2)) + P(χ2

1 /∈ (d1, d2))

+ Qn
β0,ΠΣ(F )(A

δ\A ∩ Cc(c1, c2)),

where the second to last line uses the fact that under any probability measure Qn
β0,Π,Σ(F ):

2

S′
nSn

Qn
β0,Π,F∼ χ2

k and (S′
nTn)2/T ′

nTn

Qn
β0,Π,F∼ χ2

1.

Main conclusion of Step 1: We have shown that for any δ > 0 and any positive finite constants
b1, b2, c1, c2, d1, d2:

Qn
β0,Π,Σ(F )(A

δ\A) ≤ Qn
β0,Π,Σ(F )(A

δ\A ∩ [B(b1, b1) ∩ C(c1, c2) ∩ D(d1, d2)])(B.16)

+ P(χ2
k /∈ (b1, b2)) + P(χ2

1 /∈ (d1, d2))

+ Qn
β0,Π,Σ(F )(A

δ\A ∩ Cc(c1, c2)).

We now argue that for an appropriate selection of constants, the test statistic z(s, t) and its critical
value c(t; α) satisfy a Lipschitz condition when restricted to the set [B(b1, b1)∩C(c1, c2)∩D(d1, d2)].

Step 2—Part a): (Lipschitz property of z(s, t)): We show that there exists a constant M1—that
only depends on the sets B, C, D—such that for any

(s′
0, t′

0)′, (s′
1, t′

1)′ ∈ K ≡ [B(b1, b1) ∩ C(c1, c2) ∩ D(d1, d2)],

then:
|z(s0, t0) − z(s1, t1)| < M1||(s′

0, t′
0) − (s′

1, t′
1)||.

To verify the Lipschitz property on [B(b1, b1) ∩ C(c1(ǫ), c2(ǫ)) ∩ D(d1, d2)], it is sufficient to show
that, over this set, the derivative of z(s, t) is continuous in its arguments. This observation, together
with the fact that [B(b1, b1) ∩ C(c1(ǫ), c2(ǫ)) ∩ D(d1, d2)] is compact gives the desired result. Note
that the partial derivative of z(s, t) with respect to s is given by:

(B.17) zs(s, t) = 2S +
8I1

(
(1/8)

√
(s′s − t′t)2 + 4t′t(s′t)2/t′t

)

I0

(
(1/8)

√
(s′s − t′t)2 + 4t′t(s′t)2/t′t

) 1
8

4(s′s − t′t)s + 8t′t((s′t)/t′t)s

2
√

(s′s − t′t)2 + 4t′t((s′t)2/t′t)

2We also use the fact that Σ(F ) is invertible for any element F ∈ F .
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(B.18) zt(s, t) = 2t +
8I1

(
(1/8)

√
(s′s − t′t)2 + 4t′t(s′t)2/t′t

)

I0

(
(1/8)

√
(s′s − t′t)2 + 4t′t(s′t)2/t′t

) 1
8

4(s′s − t′t)t + 8t′t((s′t)/t′t)t

2
√

(s′s − t′t)2 + 4t′t((s′t)2/t′t)

where Iv(·) is the modified Bessel function of the first kind defined in Section 9.6, p. 374 of
Abramowitz and Stegun (1964). The formulae above use the fact that the derivative of the modified
Bessel function of the first kind of order 0, I0, is the modified Bessel function of order 1, I1; see
formula 9.6.27 in p. 376 of Abramowitz and Stegun (1964). The continuity of the derivatives and
the fact that: √

(s′s − t′t)2 + 4t′t(s′t)2/t′t

is bounded away from zero over the set

[B(b1, b1) ∩ C(c1, c2) ∩ D(d1, d2)]

implies that the Lipschitz condition holds.

Step 2—Part b): (Lipschitz property of c(t; α)): Part a) showed that for any selection of
constants (b,c,d) the test statistic z(s, t) satisfies the Lipschitz condition when restricted to K. We
now introduce a parameter γ and show that for any given γ > 0, ǫ > 0 and any pair of constants
c1, c2, one can find b∗

1, b
∗
2, d∗

1, d
∗
2, and M2—that depend on c1, c2, γ and ǫ—such that for any t0, t1

satisfying:

(s0, t0), (s1, t1) ∈ K∗ ≡ [B(b∗
1, b

∗
1) ∩ C(c1, c2) ∩ D(d∗

1, d
∗
2)], for some s0, s1 ∈ R

k

the critical value function satisfies a Lipschitz-type condition:

|c(t0; α) − c(t1; α)| < M2||t0 − t1|| + γ/2,

and:
P(χ2

k /∈ (b∗
1, b

∗
1) + P(χ2

1 /∈ (d∗
1, d

∗
2)) < ǫ/3.

To show this, note that for any constant z ∈ R and (Π, F) ∈ R
k × F :

Qn
β0,Π,Σ(F ) (z(s, t0) ≤ z | t = t0) = P (z(S, t0) ≤ z) , S ∼ N (0, Ik)

= P (z(S, t0) − z(S, t1) + z(S, t1) ≤ z)

= P (z(S, t1) ≤ z − (z(S, t0) − z(S, t1)) and (S, t0), (S, t1) ∈ K)

+ P (z(S, t1) ≤ z − (z(S, t0) − z(S, t1)) and (S, t0), (S, t1) ∈ Kc) .

where K ≡ [B(b1, b1) ∩ C(c1, c2) ∩ D(d1, d2)]. Since z(s, t) satisfies the Lipschitz condition in K with
constant M1(K) it follows that:

P

(
z(S, t1) ≤ z − M1(K)||t0 − t1||

)
≤ P

(
z(S, t1) ≤ z − M1(K)||t0 − t1|| and (S, t0), (S, t1) ∈ K

)

+ P

(
z(S, t1) ≤ z − M1(K)||t0 − t1|| and (S, t0), (S, t1) ∈ Kc

)

≤ P

(
z(S, t1) ≤ z − (z(S, t0) − z(S, t1)) and (S, t0), (S, t1) ∈ K

)

+ P((S, t0), (S, t1) ∈ Kc),
which implies that:

P

(
z(S, t1) ≤ z − M1(K)||t0 − t1||

)
− P((S, t0), (S, t1) ∈ Kc)

is less than or equal to

P

(
z(S, t1) ≤ z − (z(S, t0) − z(S, t1)) and (S, t0), (S, t1) ∈ K

)
.
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Note also that:

P

(
z(S, t1) ≤ z − (z(S, t0) − z(S, t1)) and (S, t0), (S, t1) ∈ K

)
≤ P

(
z(S, t1) ≤ z + M1(K)||t0 − t1||

)
.

Note now that for any t ∈ R
k, the critical value function is continuous in α. Therefore, there exists

a positive constant, ηγ(c1, c2) > 0, such that for any t such that t′t ∈ [c1, c2]:

|c(t; α + ηγ(c1, c2)) − c(t; α)| ≤ γ/2, |c(t; α − ηγ(c1, c2)) − c(t; α)| ≤ γ/2.

Since for any vectors t0, t1 6= 0k×1:

P((S, t0), (S, t1) ∈ Kc) ≤ P(χ2
k /∈ (b1, b1) + P(χ2

1 /∈ (d1, d2)),

one can then choose 0 < b∗
1 ≡ b1(ηγ(c1, c2), ǫ) < b

∗
1 ≡ b1(ηγ(c1, c2), ǫ) < ∞, and 0 < d∗

1 ≡
d1(ηγ(c1, c2), ǫ) < d

∗
2 ≡ d2(ηγ(c1, c2), ǫ) < ∞ such that

P(χ2
k /∈ (b∗

1, b
∗
1) + P(χ2

1 /∈ (d∗
1, d

∗
2)) < min{ηγ(c1, c2), ǫ/3}

for any t0, t1. This implies that:

(B.19) P

(
z(S, t1) ≤ z − M2(c1, c2, γ, ǫ)||t0 − t1||

)
− ηγ(c1, c2) ≤ P (z(S, t0) ≤ z)

(B.20) P (z(S, t0) ≤ z) ≤ P

(
z(S, t1) ≤ z + M2(c1, c2, γ, ǫ)||t0 − t1||

)
+ ηγ(c1, c2),

where

M2(c1, c2, γ, ǫ) ≡ M1

(
b1(ηγ(c1, c2), ǫ), b1(ηγ(c1, c2), ǫ), c1, c2, d1(ηγ(c1, c2), ǫ), d2(ηγ(c1, c2), ǫ)

)
.

For simplicity we write M2 instead of M2(c1, c2, γ, ǫ) whenever it is convenient.

Since (B.19) holds for any z, in particular it holds for z = c(t1; α) + M2||t0 − t1||. Consequently:

P (z(S, t0) ≤ c(t1; α) + M2||t0 − t1||) ≥ P (z(S, t1) ≤ c(t1; α)) − ηγ(c1, c2)

= 1 − α − ηγ(c1, c2).
This implies that

(B.21) c(t0; α + ηγ(c1, c2)) ≤ c(t1; α) + M2||t0 − t1||.

Likewise, equation (B.20) holds for any z, in particular it holds for z = c(t1; α) − M2||t0 − t1||. This
implies that:

P (z(S, t0) ≤ c(t1; α) − M2||t0 − t1||) ≤ P (z(S, t1) ≤ c(t1; α)) + ηγ(c1, c2)

= (1 − α) + ηγ(c1, c2).
This implies that:

(B.22) c(t0; α − ηγ(c1, c2)) ≥ c(t1; α) − M2||t0 − t1||.

Main conclusion of Step 2: Finally, (B.21)-(B.22) and the definition of ηγ(c1, c2) imply that for
any γ > 0, ǫ > 0 and any pair of constants c1, c2, one can find b∗

1, b
∗
2, d∗

1, d
∗
2, and M2—that depend

on c1, c2, γ and ǫ—such that for any:

(s0, t0), (s1, t1) ∈ K∗ ≡ [B(b∗
1, b

∗
1) ∩ C(c1, c2) ∩ D(d∗

1, d
∗
2)],

the critical value function satisfies the Lipschitz-type condition:

|c(t0; α) − c(t1; α)| < M2||t0 − t1|| + γ/2.



18

and:
P(χ2

k /∈ (b∗
1, b

∗
1) + P(χ2

1 /∈ (d∗
1, d

∗
2)) < ǫ/3.

Step 3: (Exploiting the Lipschitz property to manipulate Aδ\A) The constants in Step 2 depend
on γ > 0, ǫ > 0 and c1, c2. This step fixes γ > 0 and shows how to choose an appropriate enlargement
of the set A as a function of γ. The Lipschitz condition established at the end of Step 2 allows for
a convenient upper ‘bound’ on the set:

(B.23) Aδ(γ)\A ∩ [B(b∗
1, b

∗
1) ∩ C(c1, c2) ∩ D(d∗

1, d
∗
2)].

In particular, we show that for any γ > 0, there exists δ(γ) such that:

(s′, t′)′ ∈ Aδ(γ)\A ∩ [B(b∗
1, b

∗
1) ∩ C(c1, c2) ∩ D(d∗

1, d
∗
2)]

implies that:
−γ ≤ z(s, t) − c(t; α) ≤ 0.

This inclusion relation is convenient as it allows for the selection of the auxiliary parameter γ to
make the probability of the set (B.23) uniformly small over (Π, F ).

To establish the desired result, note that x ≡ (s′, t′)′ ∈ Aδ\A implies that:

z(s, t) − c(t; α) < 0, (as x ≡ (s′, t′)′ /∈ A),

and also that, for any δ, there exists x0(δ) ≡ (s′
0,δ, t′

0,δ)′ ∈ A such that

d(x, x0(δ)) ≤ δ.

Since the functions s′s, t′t, (s′t)2/(t′t) defining the set:

K∗ ≡ [B(b∗
1, b

∗
1) ∩ C(c1, c2) ∩ D(d∗

1, d
∗
2)],

are Lipschitz continuous when restricted to K∗, there exists δ∗ small enough for which the corre-
sponding x0(δ∗) belongs to the set K∗. In this case we have that:

||(z(s, t) − c(t; α)) − (z(s0,δ∗ , t0,δ∗ ) − c(t0; α))|| ≤ ||z(s, t) − z(s0,δ∗ , t0,δ∗)|| + ||c(t; α) − c(t0,δ∗ ; α)||,
≤ (M1(K∗) + M2(c1, c2, γ))d(x, x0(δ∗)) + γ/2,

(where we have used Step 2 part a) and b)),

≤ (M1 + M2)δ∗ + γ/2
Since x /∈ A and x0(δ∗) ∈ A implies that

0 ≥ (z(s, t) − c(t; α)) ≥ (z(s, t) − c(t; α)) − (z(s0,δ∗ , t0,δ∗ ) − c(t0; α)) ≥ −(M1 + M2)δ∗ − γ/2

Main conclusion of Step 3: Taking δ(γ) ≡ min{δ∗, γ
2(M1+M2)

} it follows that

(s′, t′)′ ∈ Aδ(γ)\A ∩ [B(b∗
1, b

∗
1) ∩ C(c1, c2) ∩ D(d∗

1, d
∗
2)]

implies that:
−γ ≤ z(s, t) − c(t; α) ≤ 0.

We now exploit this relation to show that one can choose γ to guarantee that

sup
Π,F ∈Rk×F

Qn
β0,Π,F (Aδ(γ)\A ∩ [B(b∗

1, b
∗
1) ∩ C(c1, c2) ∩ D(d∗

1, d
∗
2)])

can be made arbitrarily small.

Step 4: (Choosing γ as a function of ǫ) Remember that equation (B.16) in Step 1 established that
for any δ > 0 and any constants b1, b1, c1, c1, d1, d1:
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Qn
β0,Π,Σ(F )(A

δ\A) ≤ Qn
β0,Π,Σ(F )(A

δ\A ∩ [B(b1, b1) ∩ C(c1, c2) ∩ D(d1, d2)])

+ P(χ2
k /∈ (b1, b2)) + P(χ2

1 /∈ (d1, d2))

+ Qn
β0,ΠΣ(F )(A

δ\A ∩ Cc(c1, c2)).

Step 3 showed that for any γ > 0 there is a way of selecting the enlargement parameter δ(γ) > 0
and constants b∗

1, b
∗
2, d∗

1, d
∗
2—that depend on c1, c2 and γ—such that the probability

Qn
β0,Π,Σ(F )(A

δ(γ)\A ∩ [B(b∗
1, b

∗
1) ∩ C(c1, c2) ∩ D(d∗

1, d
∗
2)])

is less than or equal to

(B.24) Qn
β0,Π,Σ(F )(−γ ≤ z(s, t) − c(t; α) ≤ 0 ∩ [B(b∗

1, b
∗
1) ∩ C(c1, c2) ∩ D(d∗

1, d
∗
2)])

We now show that there exists γǫ > 0 small enough such that:

Qn
β0,Π,Σ(F )(−γǫ ≤ z(s, t) − c(t; α) ≤ 0 ∩ [B(b∗

1, b
∗
1) ∩ C(c1, c2) ∩ D(d∗

1, d
∗
2)]) < ǫ/3

for any n, Π, F .

To show this, define—for any t such that t′t ∈ [c1, c2]—the function γǫ(t) to satisfy:

PS(−γǫ(t) ≤ g(S, t) ≤ 0 and S′S ∈ (b∗
1, b

∗
1) and and (S′t)2/(t′t) ∈ (d∗

1, d
∗
1)), S ∼ N (0, Ik),

where g(s, t; α) ≡ z(s, t) − c(t; α) and t is treated as a fixed vector. Let

γǫ ≡ inf
{t | t′t∈[c

1
,c2]}

γǫ(t)

and note that γǫ > 0 (otherwise, there will be a value t∗ for which the distribution of PS(g(S, t∗) =
0) > ǫ/3). Note that for any n, Π, F :

Qn
β0,Π,Σ(F )(−γǫ ≤ g(s, t; α) ≤ 0 and s′s ∈ (b∗

1, b
∗
1) and t′t ∈ (c1, c2), and (s′t)2/t′t ∈ (d∗

1, d
∗
1)),

is the same as:
∫

t∈C(c
1

,c2)

(
Qn

β0,Π,Σ(F )(−γǫ ≤ g(s, t; α) ≤ 0 and s′s ∈ (b∗
1, b

∗
1) and and (s′t)2/t′t ∈ (d∗

1, d
∗
1) | t)

)
dPn

β0,Π,F (t),

where P
n
β0,Π,F is the marginal distribution that Qn

β0,Π,F induces over (t). Note that (B.25) equals:
∫

t∈C(c1,c2)

(
PS(−γǫ ≤ g(S, t) ≤ 0 and S′S ∈ (b∗

1, b
∗
1) and and (S′t)2/(t′t) ∈ (d∗

1, d
∗
1))
)

dPn
β0,Π,F (t),

s|t has distribution Nk(0, Ik) for any n, Π, F . And this is smaller than or equal:
∫

t∈C(c
1

,c2)

(
PS(−γǫ(t) ≤ g(S, t) ≤ 0 and S′S ∈ (b∗

1, b
∗
1) and and (S′t)2/(t′t) ∈ (d∗

1, d
∗
1))
)

dPn
β0,Π,F (t),

= P
n
β0,Π,F (t ∈ C(c1, c2))

ǫ

3
<

ǫ

3
, (by definition of γǫ(t)).

Main conclusion of Step 4: This means that for any ǫ > 0 there exists γǫ > 0 small enough
such that:

Qn
β0,Π,Σ(F )(−γǫ ≤ z(s, t) − c(t; α) ≤ 0 ∩ [B(b∗

1, b
∗
1) ∩ C(c1, c2) ∩ D(d∗

1, d
∗
2)]) < ǫ/3
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for any n, Π, F .

Step 5 (choosing c1 and c2): Step 1 through Step 4 have shown that for any ǫ > 0 there is
a constant δǫ ≡ δ(γǫ) and constants b∗

1, b
∗
2, d∗

1, d
∗
2—that depend on c1, c2 and ǫ such that for any

n, Π, F :

Qn
β0,Π,Σ(F )(A

δǫ\A) ≤ Qn
β0,Π,Σ(F )(A

δǫ \A ∩ [B(b∗
1, b

∗
1) ∩ C(c1, c2) ∩ D(d∗

1, d
∗
2)])

+ P(χ2
k /∈ (b∗

1, b
∗
2)) + P(χ2

1 /∈ (d
∗
1, d

∗
2))

+ Qn
β0,Π,Σ(F )(A

δǫ \A ∩ Cc(c1, c2)).

≤ 2ǫ

3
+ Qn

β0,Π,Σ(F )(A
δ\A ∩ Cc(c1, c2)).

This means that:

sup
(Π,F )∈Rk×F

Qn
β0,Π,Σ(F )(A

δǫ \A) ≤ 2ǫ

3
+ sup

(Π,F )∈Rk×F
Qn

β0,Π,Σ(F )(A
δǫ \A ∩ Cc(c1, c2)).

Thus, we only need to show that c1 and c2 can be chosen to make the second term on the right of
the inequality above smaller than ǫ/3. Let λ∗ be defined as:

λ∗ ≡ max
F ∈F

(a′
0 ⊗ Ik)Σ(F )−1(a0 ⊗ Ik)

By assumption, there are constants 0 < λ < λ < ∞ such that λ < λ∗ < λ. Fix c∗ ∈ R
k and

partition R
k as follows:

{Π ∈ R
k | : n||Π||2λ∗ ≤ c∗} ∪ {Π ∈ R

k | : n||Π||2λ∗ > c∗} ≡ Π
n
1 (c∗) ∪ Π

n
2 (c∗).

Note that

sup
(Π,F )∈Rk×F

Qn
β0,ΠΣ(F )(A

δǫ\A ∩ Cc(c1, c2))

is smaller than or equal to the sum of:

(B.25) sup
(Π,F )∈Π

n
1

(c∗)×F
Qn

β0,Π,Σ(F )(A
δǫ\A ∩ Cc(c1, c2)),

and

(B.26) sup
(Π,F )∈Π

n
2

(c∗)×F
Qn

β0,Π,Σ(F )(A
δǫ\A ∩ Cc(c1, c2)).

Step 5—Part a): First, we bound the term (B.25). Let χ2
k(c) denote a non-central chi-square

with k degrees of freedom and centrality parameter c. Note that:

sup
(Π,F )∈Π

n
1

(c∗)×F
Qn

β0,Π,Σ(F )(A
δǫ\A ∩ Cc(c1, c2)) ≤ sup

(Π,F )∈Π
n
1

(c∗)×F
Qn

β0,Π,Σ(F )(C
c(c1, c2)),

= sup
(Π,F )∈Π

n
1

(c∗)×F
Qn

β0,Π,Σ(F )(t
′t /∈ (c1, c2)),

= sup
(Π,F )∈Π

n
1

(c∗)×F
P

(
χ2

k(n||Π||2λ(F )) /∈ (c1, c2)
)

,

(where λ(F ) ≡ (a′
0 ⊗ Ik)Σ(F )−1(a0 ⊗ Ik)).



21

Therefore, one can choose constants c∗
1, c∗

2 that depend on c∗ and ǫ (but do not depend on the
sample size) such that for any c1 < c∗

1 and c2 > c∗
2:

sup
(Π,F )∈Π

n
1

(c∗)×F
Qn

β0,Π,Σ(F )(A
δǫ \A ∩ Cc(c1, c2)) <

ǫ

6
.

Step 5—Part b): Now, we bound the term (B.26). To do this, choose e to satisfy

P(χ2
k > e) <

ǫ

12
.

Since this selection of e implies that

sup
(Π,F )∈Π

n
2

(c∗)×F
Qn

β0,Π,Σ(F )(A
δǫ\A ∩ s′s > e ∩ Cc(c1, c2)) <

ǫ

12
,

it is sufficient to show that there is c2 large enough such that:

sup
(Π,F )∈Π

n
2

(c∗)×F
Qn

β0,Π,Σ(F )(A
δǫ\A ∩ s′s ≤ e ∩ Cc(c1, c2)) <

ǫ

12
.

The key to establish this result is to show that for t′t large enough and s′s in a compact set, the
test statistic z(s, t) defined in Result 1 is close to the statistic (s′t)2/(t′t).

Step 5—Part c): Let o(t′t) denote the function:

o(t′t) ≡
(

((s′s/t′t) − 1)2 + 4(s′t)2/(t′t)2
)1/2

− 1.

Note that:

8 ln
[
I0

(
(t′t/8)(1 + o(t′t))

)]
,

= 8 ln
[

e(t′t/8)(1+o(t′t))

√
2π((t′t/8)(1 + o(t′t)))

(
1 + O

( 1
(t′t/8)(1 + o(t′t))

))]
,

(where we have used the asymptotic approximation

for I0(z) in p. 435 of Olver (1997) and the definition

of ∼ in p. 4 of the same book)

= 8 ln
[

e(t′t/8)(1+o(t′t))

√
2π((t′t/8)(1 + o(t′t)))

]

+ 8 ln
[(

1 + O
( 1

(t′t/8)(1 + o(t′t))

))]
,

= t′t(1 + o(t′t)) − 4 ln(2π) − 4 ln(t′t/8) − 4 ln(1 + o(t′t))

+ 8 ln
[(

1 + O
( 1

(t′t/8)(1 + o(t′t))

))]
.

Therefore, zwap(s, t) in Result 1:

(s′s − t′t) + 8 ln
[

I0

(1
8

[
(s′s − t′t)2 + 4(s′t)2)

]1/2) ]
+ 4 ln(2pi) + 4 ln((1/8)t′t)

can be written in terms of the conditional likelihood ratio statistic (CLR) as follows:
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zwap(s, t) ≡ (s′s − t′t) + t′t(1 + o(t′t)) − 4 ln(1 + o(t′t))

+ 8 ln
[(

1 + O
( 1

(t′t/8)(1 + o(t′t))

))]
,

= 2CLR(s, t) − 4 ln(1 + o(t′t))

+ 8 ln
[(

1 + O
( 1

(t′t/8)(1 + o(t′t))

))]
,

(where we have used the fact that t′t(1 + o(t′t))

equals [(s′s − t′t)2 + (s′t)]1/2 ).

It is well-known for large values of t′t and for values of s′s in a compact set the CLR can be
approximated by the LM statistic (≡ s′t/t′t) uniformly over the values of s. Choose ζ∗ > 0 to
satisfy:

P(−η∗ ≤ N(0, 1) ≤ η∗) =
ǫ

24
.

Therefore, using the same argument as in part b) of step 2 one can show for ζ∗ > 0 there is c∗
2—that

depends on ζ∗—such that uniformly over s′s ≤ e

|zwap(s, t) − cwap(t; α) − 2LM(s, t) + 2χ2
1,1−α| < ζ∗,

where χ2
1,1−α is the 1-α quantile of a chi-squared random variable with one degree of freedom and

cwap(t; α) is the conditonal critical value of zwap(s, t).
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Step 5—Part d): Note that

x ≡ (s, t) ∈ (Aδǫ \A ∩ s′s ≤ e ∩ t′t > c∗
2),

implies that:

z(s, t) − c(t; α) < 0,

and also that there is x0(δǫ) ≡ (s0, t0) ∈ A such that z(s0, t0) − c(t; α) > 0 and d(x, x0(δǫ)) < δǫ.
Since the test based on the test statistic z(s, t) with conditional critical value c(t; α) is equivalent
to the test based on zwap(s, t) and cwap(t; α), it follows that:

zwap(s, t) − cwap(t; α) < 0, and zwap(s0, t0) − cwap(t; α) > 0.

Consequently:
LM(s, t) − χ2

1,1−α < ζ∗/2,

and
LM(s0, t0) − χ2

1,1−α > −ζ∗/2.

Note that the LM statistic can be written as a function of (S, ωt) where ωt ≡ t/||t||. Since the
partial derivatives of (s′ωt)2 are bounded whenever s′s ≤ e, the LM statistic satisfies the Lipschitz
condition when s′s belongs to the desired domain. Let M(e) denote the Lipschitz constant of the
LM statistic. Since:

−d(x, x0(δǫ))M(e) ≤ LM(s, t) − LM(s0, t0) ≤ M(e)d(x, x0(δǫ)),

then:
−δǫM(e) ≤ −d(x, x0(δǫ))M(e),

≤ LM(s, t) − χ2
1,1−α + χ2

1,1−α − LM(s0, t0),

≤ LM(s, t) − χ2
1,1−α + ζ∗/2,

(where we have used the fact that LM(s0, t0) − χ2
1,1−α > −ζ∗/2),

≤ ζ∗,

(where we have used the fact that LM(s, t) − χ2
1,1−α < ζ∗/2).

One can further shrink δǫ to satisfy δǫM(e) < −ζ∗. This means that:

sup
(Π,F )∈Π

n
2

(c∗)×F
Qn

β0,Π,Σ(F )(A
δǫ\A ∩ s′s ≤ e ∩ t′t > c∗

2) ≤ sup
(Π,F )∈Π

n
2

(c∗)×F
Qn

β0,Π,Σ(F )(−η∗ ≤ LM(s, t) ≤ η∗)

= P(−η∗ ≤ N(0, 1) ≤ η∗)

=
ǫ

24
Since

sup
(Π,F )∈Π

n
2

(c∗)×F
Qn

β0,Π,Σ(F )(A
δǫ\A ∩ s′s ≤ e ∩ Cc(c1, c∗

2)),

is smaller than or equal to

sup
(Π,F )∈Π

n
2

(c∗)×F
Qn

β0,Π,Σ(F )(A
δǫ \A ∩ s′s ≤ e ∩ t′t ≤ c1),

plus
sup

(Π,F )∈Π
n
2

(c∗)×F
Qn

β0,Π,Σ(F )(A
δǫ\A ∩ s′s ≤ e ∩ t′t > c∗

2),

it follows that:

sup
(Π,F )∈Π

n
2

(c∗)×F
Qn

β0,Π,Σ(F )(A
δǫ \A ∩ s′s ≤ e ∩ Cc(c1, c∗

2)) <
ǫ

24
+

ǫ

24
=

ǫ

12
.
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This implies that:

sup
(Π,F )∈Π

n
2

(c∗)×F
Qn

β0,Π,Σ(F )(A
δǫ \A ∩ Cc(c1, c2)) <

ǫ

12
+

ǫ

12
=

ǫ

6
.

Main conclusion of Step 5: The conclusion of Step 5 is that there are constants c∗
1, c∗

2 such that:

sup
(Π,F )∈Rk×F

Qn
β0,Π,Σ(F )(A

δǫ\A) ≤ 2ǫ

3
+ sup

(Π,F )∈Rk×F
Qn

β0,Π,Σ(F )(A
δǫ\A ∩ Cc(c∗

1, c∗
2)) ≤ 2ǫ

3
+

ǫ

3
= ǫ.

Step 1 to Step 5: We have shown that for every ǫ > 0 one can choose constants b∗
1, b

∗
2, c∗

1, c∗
2,

d∗
1, d

∗
2 such that for any sample size and (Π, F ) ∈ R

k × F :

Qn
β0,Π,Σ(F )(A

δǫ\A) ≤ Qn
β0,Π,Σ(F )(A

δ\A ∩ [B(b∗
1, b

∗
1) ∩ C(c∗

1, c∗
2) ∩ D(d∗

1, d
∗
2)])

+ P(χ2
k /∈ (b∗

1, b
∗
2)) + P(χ2

1 /∈ (d
∗
1, d

∗
2))

+ Qn
β0,ΠΣ(F )(A

δ\A ∩ Cc(c∗
1, c∗

2))

≤ ǫ
Since for any δ > 0:

P n
β0,Π,F(A) ≤ Qn

β0,Π,Σ(F )(A) +
1
δ

dBL1 (P n
β0,Π,F , Qn

β0,Π,Σ(F )) + Qn
β0,Π,Σ(F )(A

δ\A),

= α +
1
δ

dBL1(P n
β0,Π,F , Qn

β0,Π,Σ(F )) + Qn
β0,Π,Σ(F )(A

δ\A),

and, by assumption, there is Mǫ ∈ N such that for any n ≥ Mǫ:

dBL1 (P n
β0,Π,F , Qn

β0,Π,Σ(F )) ≤ ǫδǫ,

we conclude that for n ≥ Mǫ:

sup
(Π,F )∈Rk×F

P n
β0,Π,F (A) ≤ α + 2ǫ.

This establishes the asymptotic validity of the test in Result 1.

B.4.2. Local Asymptotic Power of the test in Result 1

Now we derive the local asymptotic power of the test in Result 1 under the following assumption:

Assumption L1: The class of distributions F is such that:

lim
n→∞

dBL

(
P n

β0+ c√
n

,Π,F , Qn
β0+ c√

n

)
→ 0.

This is, the Bounded Lipschitz distance between the measures P n
β,Π,F and Qn

β,Π,Σ(F ) coverges to
zero as the sample size grows large for any local alternative of the form β0 + c/

√
n.

Asymptotic Efficiency of the test in Result 1: Suppose that Assumption L1 holds
and suppose that there are constants 0 < λ < λ < ∞ such that the eigenvalues of Σ(F ) belong to
an interval [λ, λ] for any F ∈ F . If Σ(F ) = Ψ(F ) ⊗ Φ(F ) and Π 6= 0k×1, then:

lim inf
n→∞

P n
β0+ c√

n
,Π,F (zwap(s, t) − cwap(t; α) ≥ 0) ≥ P

(
χ2

1(µ2(β0, c, Π, F )) > χ2
1,1−α

)
,

where χ2
1(µ2(β0, c, Π, F )) is a non-central chi-square distribution with centrality parameter:

µ2(β0, c, Π, F ) ≡ c2(Π′Φ(F )−1Π)(b′
0Ψ(F )b0)−1.
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We establish the local efficiency of the test in Result 1 in 6 steps:

Step 0: Fix (Π, F ) ∈ R
k × F and suppose that ||Π|| 6= 0. Let e denote a positive scalar. In Part

c) of Step 5 we have shown that for any ζ > 0 there is e(η) such that for any t′t > e(η)—and
uniformly over the values of s′s < e—it follows that:

|zwap(s, t) − cwap(t; α) − 2LM(s, t) + 2χ2
1,1−α| < ζ/2,

where LM(s, t) ≡ (s′t)2/t′t. This means that if s′s < e and t′t > e(ζ):

LM(s, t) − χ2
1,1−α > ζ/4 =⇒ zwap(s, t) − cwap(t; α) ≥ 0.

Therefore, for any local alternative β(c) ≡ β0 + c√
n

:

P n
β(c),Π,F (zwap(s, t) − cwap(t; α) ≥ 0) ≥ P n

β(c),Π,F (LM(s, t) ≥ χ2
1−α + ζ and s′s < e and t′t > e(ζ)),

≥ P n
β(c),Π,F (LM(s, t) ≥ χ2

1−α + ζ/4)

+ P n
β(c),Π,F (s′s < e)

+ P n
β(c),Π,F (t′t > e(ζ)) − 2,

(where we have used P (A ∩ B) = P (A) + P (B) − P (A ∪ B)

twice, and also the fact that P (A ∪ B) ≤ 1).

We now characterize the asymptotic behavior of the terms:

P n
β(c),Π,F (LM(s, t) ≥ χ2

1−α + ζ/4), P n
β(c),Π,F (s′s < e), P n

β(c),Π,F (t′t > e(ζ)).

Step 1: Consider first the term:

P n
β(c),Π,F (LM(s, t) ≥ χ2

1−α + ζ/4).

Note that the event:
E1 = {(s′, t′)′ ∈ R

2k | LM(s, t) > χ2
1,1−α + ζ/4},

is the same as the event:

E1 = {(s′, t′)′ ∈ R
2k | LM(s, t/

√
n) > χ2

1,1−α + ζ/4},

as LM(s, t) = (s′t)2/t′t = s′t/
√

n)2/(t/
√

n)′(t/
√

n).
Let P̃ n

β(c),Π,F denote the distribution of the random vector (S′, (t/
√

n)′)′. Since the transformation
(x, y) → (x, y/

√
n) is Lipschitz for any n ∈ N (with constant 1) it follows—by assumption—that as

n → ∞:3

dBL1 (P̃ n
β(c),Π,F , Q̃n

β(c),Π,Σ(F )) → 0,

where Q̃ is the distribution of:

Q̃n
β,Π,Σ(F ) ≡ N2k

(
([b′

0 ⊗ Ik)Σ(b0 ⊗ Ik)]−1/2cΠ
[(a′

0 ⊗ Ik)Σ(F )−1(a0 ⊗ Ik)]−1/2(a′
0 ⊗ Ik)Σ(F )−1(an(c) ⊗ Ik)Π

,

(
Ik 0k×k

0k×k Ik/
√

n

))
,

3To see this, note that for any function h ∈ BL1 we have that:
∣∣∣E

P̃ n
β(c),Π,F

[h(X)] − E
Q̃n

β(c),Π,F

[h(X)]
∣∣∣ =

∣∣∣EP n
β(c),Π,F

[h ◦ gn(S, T )] − EQn
β(c),Π,F

[h ◦ gn(S, T )]
∣∣∣,

where gn(s, t) = (s′, (t/
√

n)′)′ is an element of BL1. Consequently,

0 ≤ dBL1 (P̃ n
β(c),Π,F , Q̃n

β(c),Π,Σ(F )) ≤ dBL1(P n
β(c),Π,F , Qn

β(c),Π,Σ(F )).
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with an(c) = (β0 + c/
√

n, 1)′. Moreover, the convergence of the mean vector of this distribution and
its covariance matrix this implies that:

dBL1 (Q̃n
β(c),Π,Σ(F ), Qβ0,Π,Σ(F )) → 0

where

Qβ0,Π,Σ(F ) ≡ N2k

(
([b′

0 ⊗ Ik)Σ(b0 ⊗ Ik)]−1/2cΠ
[(a′

0 ⊗ Ik)Σ(F )−1(a0 ⊗ Ik)]1/2Π
,

(
Ik 0k×k

0k×k 0k×k

))
.

Thus, one can conclude that

dBL1 (P̃ n
β(c),Π,Σ(F ), Qβ0,Π,Σ(F )) → 0.

For any event, and in particular for E1,

P̃ n
β(c),Π,F (E1) ≥ Qβ0,Π,Σ(F )(E1) − 1

δ
dBL1 (P̃ n

β(c),Π,F , Qβ0,Π,Σ(F )) − Qβ0,Π,Σ(F )((E
c
1)δ\Ec

1).

Under the probability measure Qβ0,Π,Σ(F ) (which does not depend on n), the topological boundary
of Ec

1

Bd(Ec
1) ≡ {(s′, t′)′ ∈ R

2k | LM(s, t) = χ2
1,1−α + ζ/4},

has probability zero. Therefore, there exists δǫ,ζ (independent of n) such that:

Qβ0,Π,F ((Ec)
δǫ,ζ

! \Ec
1) <

ǫ

6
.

Moreover, by choosing N(ǫ, ζ) ∈ N to be such that for n ≥ N(ǫ, ζ):

dBL1(P̃ n
β(c),Π,Σ(F ), Qβ0,Π,Σ(F )) ≤ δǫ,ζ

ǫ

6
,

we have that:
P n

β(c),Π,F (E1) = P̃ n
β(c),Π,F (E1),

≥ Qβ0,Π,Σ(F )(E1) − 1
δǫ,ζ

dBL1 (P̃ n
β(c),Π,F , Qβ0,Π,Σ(F )) − Qβ0,Π,Σ(F )((E

c
1)δǫ,ζ \Ec

1),

≥ Qβ0,Π,Σ(F )(E1) − ǫ

6
− ǫ

6
,

= Qβ0,Π,Σ(F )(E1) − ǫ

3
.

Moreover, under the probability measure Qβ0,Π,Σ(F )(E1):

t′S√
t′t

∼ N (µ(β0, c, Π, F ) , 1) ,

where

µ(β0, c, Π, F ) ≡ c
Π′
(

[(a′
0 ⊗ Ik)]Σ(F )−1(a0 ⊗ Ik)]1/2[(b′

0 ⊗ Ik)Σ(F )(b0 ⊗ Ik)]−1/2
)

Π
(

Π′[(a′
0 ⊗ Ik)]Σ−1(F )(a0 ⊗ Ik)]Π

)1/2
.

This means that Qβ0,Π,Σ(F )(E1) is the same as:

P

(
χ2

1(µ2(β0, c, Π, F )) > χ2
1,1−α + η

)
.

This means that for any ζ > 0, ǫ > 0 there is N(ǫ, ζ) ∈ N such that for n ≥ N(ǫ, ζ):

P n
β(c),Π,F (E1) ≥ P

(
χ2

1(µ2(β0, c, Π, F )) > χ2
1,1−α + ζ

)
− ǫ

3
,
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where χ2
1(µ2(c, β0, c, Π, F )) is a non-central chi-square distribution with centrality parameter:

µ(β0, c, Π, F ) ≡ c
Π′
(

[(a′
0 ⊗ Ik)]Σ(F )−1(a0 ⊗ Ik)]1/2[(b′

0 ⊗ Ik)Σ(F )(b0 ⊗ Ik)]−1/2
)

Π
(

Π′[(a′
0 ⊗ Ik)]Σ−1(F )(a0 ⊗ Ik)]Π

)1/2
.

Step 2: Now we take care of the term P n
β(c),Π,F (s′s < e). In particular, we show how to choose ǫ

to make the term of interest to be at least 1 − ǫ/3 for n large enough. Let E2 denote the event:

E2 ≡ {(s′, t′)′ | s′s < e}

Note that for any δ > 0:

P n
β(c),Π,F (E2) ≥ Qn

β(c),Π,Σ(F )(E2) − 1
δ

dBL1 (P n
β(c),Π,F , Qn

β(c),Π,Σ(F )) − Qn
β(c),Π,Σ(F )((E

c
2)δ\Ec),

= PS(E2) − 1
δ

dBL1(P n
β(c),Π,F , Qn

β(c),Π,Σ(F )) − PS((Ec
2)δ\Ec

2),

where S ∼ Nk([b′
0 ⊗ IkΣ(F )(b0 ⊗ Ik]−1/2Πc , I2k). Once again, since the topological boundary of E2

has zero measure under PS there exists δǫ,e such that:

PS((Ec
2)δǫ,e \Ec

2) <
ǫ

9
.

This means that one can choose N(ǫ, e) ∈ N such that for n ≥ N(ǫ, e):

P n
β(c),Π,F (E2) ≥ PS(E2) − 2ǫ

9
.

Moreover, there is e∗ large enough such that PS(E2) ≥ 1 − ǫ
9
. Therefore, for n ≥ N(ǫ, e∗),

P n
β(c),Π,F (E2) ≥ 1 − ǫ

3
.

Step 3: Finally, consider the term P n
β(c),Π,F (t′t > e). We show that for any fixed ǫ there is n large

enough such that this term is at least 1 − ǫ/3. Define:

E3,n ≡ {(s′, t′)′ | t′t > e/
√

n}.

Note that:

P n
β(c),Π,F (t′t > e) = P̃ n

β(c),Π,F (E3,n),

= Qβ0,Π,Σ(F )(E3,n) − 1
δ

dBL1 (P̃ n
β(c),Π,F , Qβ0,Π,Σ(F )) − Qβ0,Π,Σ(F )((E

c
3,n)δ\Ec

3,n),

≥ Qβ0,Π,Σ(F )(E3,n) − 1
δ

dBL1 (P̃ n
β(c),Π,F , Qβ0,Π,Σ(F )) − Qβ0,Π,Σ(F )((E

c
3,n)δ).

Under Qβ0,Π,Σ(F ), the statistic t has a degenerate distribution with all of its mass at t∗ ≡ [(a′
0 ⊗

Ik)]Σ−1(F )(a0 ⊗ Ik)]1/2Π ≡ 0. This means that for n large enough:

Qβ0,Π,Σ(F )(E3,n) = 1{t∗ ∈ E3,n} = 1.

Take any δ∗ such that the ball of radius δ∗ around t∗, Bδ∗ (t∗), excludes the origin. Note that for
any n such that e/

√
n < δ∗:

Be1/2/n1/4 (0k×1) ∩ Bδ∗ (t∗) = ∅.

This means that for n large enough there is no t0 ∈ R
k such that: t′

0t0 < e/
√

n and d(t0, t∗) ≤ δ∗.
This means that for n large enough t∗ /∈ (Ec

3,n)δ. Therefore for n large enough:
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P n
β(c),Π,F (t′t > e) ≥ 1 − 1

δ∗ dBL1 (P̃ n
β(c),Π,F , Qβ0,Π,Σ(F )) − 0

≥ 1 − ǫ

3
.

Step 4: We have shown that:
P n

β(c),Π,F (z(s, t) − c(t; α) ≥ 0) ≥ P n
β(c),Π,F (LM(s, t) ≥ χ2

1−α + ζ/4)

+ P n
β(c),Π,F (s′s < e∗)

+ P n
β(c),Π,F (t′t > e(ζ)) − 2.

Steps 1, 2, 3 of this proof have established the existence of N(ǫ, ζ, e∗) such that for any n ≥
N(ǫ, ζ, e∗) :

P n
β(c),Π,F (LM(s, t) ≥ χ2

1−α + ζ/4) ≥ P

(
χ2

1(µ2(β0, c, Π, F )) > χ2
1,1−α + ζ

)
− ǫ

3
,

P n
β(c),Π,F (s′s < e∗) ≥ 1 − ǫ

3
,

P n
β(c),Π,F (t′t > e(ζ)) ≥ 1 − ǫ

3
,

where the centrality parameter µ2(β0, c, Π, F ) is given by:

µ2(β0, c, Π, F ) ≡


c

Π′
(

[(a′
0 ⊗ Ik)]Σ(F )−1(a0 ⊗ Ik)]1/2[(b′

0 ⊗ Ik)Σ(F )(b0 ⊗ Ik)]−1/2
)

Π
(

Π′[(a′
0 ⊗ Ik)]Σ−1(F )(a0 ⊗ Ik)]Π

)1/2




2

.

This implies that:

lim inf
n→∞

P n
β0+ c√

n
,Π,F (zwap(s, t) − cwap(t; α) ≥ 0) ≥ P

(
χ2

1(µ2(β0, c, Π, F )) > χ2
1,1−α + ζ

)
,

for any ζ > 0. Since the distribution on the right-hand side is continuous in ζ, then:

lim inf
n→∞

P n
β0+ c√

n
,Π,F (zwap(s, t) − cwap(t; α) ≥ 0) ≥ P

(
χ2

1(µ2(β0, c, Π, F )) > χ2
1,1−α

)
.

Step 5: If Σ(F ) = Ψ(F ) ⊗ Φ(F ):

[(a′
0 ⊗ Ik)]Σ(F )−1(a0 ⊗ Ik)] = (a′

0Ψ−1a0)Φ−1

and
[(b′

0 ⊗ Ik)Σ(F )(b0 ⊗ Ik)] = (b′
0Ψb0)Φ.

Therefore, the expression for the centrality parameter simplifies to:

µ2(β0, c, Π, F ) ≡ c2(Π′Φ−1Π)(b′
0Ψb0)−1.

Final Comments: The lower bound on local power above implies that the test in Result 1 is as
powerful (locally) as a GMM-Wald test for β0 based on the sample moment condition:

1√
n

Z′(y − β0x) = 0.

To see this, note that under Assumption L0 the asymptotic variance of the sample moment condition
is simply QW0Q where Q is the probability limit of Z′Z/n and W0 ≡ (b′

0 ⊗ Ik)Σ(b0 ⊗ Ik). Therefore,
the efficient GMM estimator for β (assuming W0 is known) is:

βGMM =
(

X ′Z(Z′ZW0Z′Z)−1Z′X
)−1

X ′Z(Z′ZW0Z′Z)−1Z′y

=
(

γ̂2W −1
0 γ̂2

)−1

γ̂2W −1
0 γ̂1.
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The efficient α-level GMM-Wald test for β = β0 rejects whenever:

((
γ̂2W −1

0 γ̂2

)−1/2

γ̂2W −1
0

√
n(γ̂1 − β0γ̂2)

)2

> χ2
1,1−α,

and this test has local power, under alternatives of the form β0 + c/
√

n, given by:

P

(
χ2

1(c2(Π′W −1
0 Π)) > χ2

1,1−α

)
.

If Σ is of the form Ψ⊗Ω, then c2(Π′W −1
0 Π) coincides with the centrality parameter µ2(β0, c, Π, F ).

B.4.3. Details of the weights for (β, Π) in the Kronecker case

This section analyzes the properties of the weights:

(B.27)

(
βΠ
Π

)
= n−1/2

(
ΨΣC̃′

0 ⊗ Φ1/2
Σ

)
ρ(φ ⊗ ω), C̃0 ≡

(
(b′

0ΨΣb0)−1/2b′
0

(a′
0Ψ−1

Σ a0)−1/2a′
0Ψ−1

Σ

)
,

with

(B.28) φ ∼ U(S1), ω ∼ U(Sk−1),

and

(B.29) ρ|φ, ω ∼
√

χ2
k / (φ′ ⊗ ω′)

(
C̃0Ψ′

Σ ⊗ Φ′
Σ

1/2
)

Σ−1
(

ΨΣC̃′
0 ⊗ Φ1/2

Σ

)
(φ ⊗ ω).

The main assumption of this section is that Σ = Ψ ⊗ Φ. Note first that when Σ = Ψ ⊗ Φ:

ΨΣ = (vec(Φ)′vec(Φ))1/2Ψ, ΦΣ = Φ/(vec(Φ)′vec(Φ))1/2.

Therefore, we can write the weights in (B.27) as:

(B.30)

(
βΠ
Π

)
= n−1/2

(
ΨC′

0 ⊗ Φ
)

ρ(φ ⊗ ω), C0 ≡
(

(b′
0Ψb0)−1/2b′

0

(a′
0Ψ−1a0)−1/2a′

0Ψ−1

)
,

Weight for β: Under (B.30), the parameter β equals:

β =
[1, 0]ΨC′

0φ

[0, 1]ΨC′
0φ

.

This ratio can be simplified using the following equalities. First:

[1, 0]ΨC′
0φ = [1, 0]Ψ

[
b0(b′

0Ψb0)−1/2 , Ψ−1a0(a′
0Ψ−1a0)−1/2

]
φ,

(by definition of C0)

=
[
[1, 0]Ψb0(b′

0Ψb0)−1/2 , β0(a′
0Ψ−1a0)−1/2

]
φ,

(as [1, 0]a0 = β0).
Second:

a′
0Ψ−1a0 =

1
det(Ψ)

a′
0

(
0 −1
1 0

)
Ψ

(
0 1

−1 0

)
a0 = det

((
1 −β0

0 1

)
Ψ

(
1 −β0

0 1

)′)−1

b′
0Ψb0,

and

1 − r(β0)2 = det

((
1 −β0

0 1

)
Ψ

(
1 −β0

0 1

)′)/
(b′

0Ψb0)([0, 1]Ψ[0, 1]′),
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where r(β0) refers to the correlation coefficient of (b′
0; [0, 1])Ψ(b′

0; [0, 1])′. This means that the nu-
merator for β is given by:

[1, 0]ΨC′
0φ = [1, 0]Ψb0(b′

0Ψb0)−1/2φ1 + β0

√
1 − r2(β0)([0, 1]Ψ[0, 1]′)1/2φ2,

= [1, 0]Ψb0(b′
0Ψb0)−1/2φ1 − β0([0, 1]Ψb0)(b′

0Ψb0)−1/2φ1

+ β0

(
r(β0)φ1 +

√
1 − r2(β0)([0, 1]φ2

)
([0, 1]Ψ[0, 1]′)1/2,

(where we have added and subtracted β0r(β0)([0, 1]Ψ[0, 1]′)1/2φ1).
Therefore:

[1, 0]ΨC′
0φ = (b′

0Ψb0)1/2φ1 + β0[0, 1]ΨC′
0φ,

where we have used the fact that:

[0, 1]ΨC′
0φ =

(
r(β0)φ1 +

√
1 − r2(β0)([0, 1]φ2

)
([0, 1]Ψ[0, 1]′)1/2.

This means that β can be written as:

(B.31) β =
[1, 0]ΨC′

0φ

[0, 1]ΨC′
0φ

=
(b′

0Ψb0)1/2φ1

[0, 1]ΨC′
0φ

+ β0.

Weight for Π: The distribution of the first-stage coefficient is given by:

(B.32)
√

nΠ = ([0, 1]ΨC′
0φ)Φ1/2ρω.

This means that: √
nΠ | φ ∼ Nk

(
0 , ([0, 1]ΨC′

0φ)2Φ
)

.

Comparison to the MM2 weights: We claim that if Σ = Ψ ⊗ Φ the weights in (3.3) and (3.4)
are equivalent to the ‘MM2’ weights proposed in MM15. To see this, note that (B.31) implies that
the vector (β, 1)′ can be written as ΨC′

0φ divided by [0, 1]ΨC′
0φ. Since the vector (cβ, dβ)′ in MM15

equals C0(β, 1)′, then:

||(cβ , dβ)′|| = ||C0(β, 1)′|| = ||C0ΨC′
0φ||/|[0, 1]ΨC′

0φ| = 1/|[0, 1]ΨC′
0φ|.

Therefore,
1/||(cβ , dβ)′||2 = ([0, 1]ΨC′

0φ)2.

This implies that √
nΠ | φ ∼ Nk

(
0 , (||(cβ , dβ)′||−2Φ

)
,

which is the same distribution as in MM15, up to a scaling constant. Also, MM15 assumes that the
distribution of the angle of

C0(β, 1)′/||C0(β, 1)′||
is uniform on [−Π, Π]. Under (B.31) it follows that

C0(β, 1)′/||C0(β, 1)′|| = φ,

where φ is uniformly distributed on the unit circle S1. Part ii) of exercise 5.2.4 in Stroock (1999)
implies that φ can be written as [cos(θ)′, sin(θ)′]′ where θ is uniformly distributed on a connected
interval of length 2pi.

Distribution of
√

λ(β − β0) and λ: The Monte-Carlo exercises in Andrews et al. (2006) depend
on the parameters:

λ ≡ nΠΦ−1Π, and
√

λ(β − β0).
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Equation (B.32) implies
λ ≡

(
([0, 1]ΨC′

0φ)Φ1/2ρω
)

Φ−1
(
([0, 1]ΨC′

0φ)Φ1/2ρω
)

= ([0, 1]ΨC′
0φ)2ρ2ω′Φ1/2Φ−1Φ1/2ω

= ([0, 1]ΨC′
0φ)2ρ2.

Consequently, equation (B.31) implies
√

λ(β − β0) =
√

([0, 1]ΨC′
0φ)2ρ2

(
(b′

0Φb0)1/2φ1

[0, 1]ΨC′
0φ

)

= (b′
0Φb0)1/2ρφ1.

Therefore:

√
λ(β − β0) =

(
b′

0Ψb0

)1/2

ρφ1,(B.33)

λ = ([0, 1]ΨC′
0φ)2ρ2,(B.34)

The probability density function of (
√

λ(β − β0), λ) is given in Figure 1 in the main text of the
paper.

B.4.4. Asymptotic equivalence between the test in Result 1 and the CLR as t′t → ∞
The CLR statistic can be written as

1
2

(
(s′s − t′t) + 8x(s, t)

)
,

where

x(s, t) ≡ 1
8

(
(s′s − t′t)2 + 4(s′t)2

)1/2

,

=
t′t

8

((
s′s

t′t
− 1

)2

+ 4

(
s′t√
t′t

)2
1
t′t

)1/2

.

The equation above implies x(s, t) → ∞ as t′t → ∞ for any s. Moreover, the test statistic zwap(s, t)
in Result 1 equals

(s′s − t′t) + 8 ln
(

I0

(
x(s, t)

) )
+ 4 ln(2π) + 4 ln((1/8)t′t).

The asymptotic approximation for the modified Bessel function I0(x) given in Olver (1997), p. 435
implies that

I0(x)

/
ex

(2πx)1/2
→ 1, as x → ∞,

Therefore, as t′t → ∞
zwap(s, t) = (s′s − t′t) + 8 ln

(
ex(s,t)

(2πx(s, t))1/2

)
+ 4 ln(2π) + 4 ln((1/8)t′t + o(1)

= (s′s − t′t) + 8x(s, t) − 4 ln(2πx(s, t)) + 4 ln(2π) + 4 ln((1/8)t′t + o(1)

= 2CLR − 4 ln(x(s, t)/(t′t/8)) + o(1)

= 2CLR + o(1).
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