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This supplement is composed of four parts. Section B contains the proofs of the technical lemmas in the above
paper. Section C studies the determination of the number of groups. Section D provides some details on the
practical implementation of the C-Lasso procedure. Sections E and F contain some additional simulation

and application results, respectively.

B Proofs of the Technical Lemmas

Proof of Lemma A.1. (i) By Park and Phillips (1988, 1989), we can readily show that
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(ii) and (iii). By Park and Phillips (1988, 1989),
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where we allow that Yoo ; = E (2 ;+u;) to be nonzero and VQ%Z denotes the long-run covariance of xg ;1u; —
320,;- It follows that
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where J1; = (0p,x1,0pyxp» Ipy) and Jo; = (1,015p,, =5 ;555 Z) Combining the above results yields the
results in (ii)-(iii).

(iv) and (v). Our conditions ensure that || £:25 ;%2 — S22,|| = Op (p2T~%/?) = op (1) and Amin (585 ;Z2.7)
> Amin (Z224) — H%i‘ézigl — EQMH > C99/2 with probability approaching 1 (w.p.a.l). [See the proof of
Lemma A.2(iv) which is related to the former claim.] By (i)-(iii),
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Proof of Lemma A.2. (i) Noting that 75 ,0; = 72} u; — 521U, it suffices to prove (i) by
showing that (il) P(maxi<;<n % H:E/MUZH > cainT) =0 (Nfl) and (i2) P(maxi<j<n % |Z1,:8; | > carnT)
= o (N~') for any fixed constant ¢ > 0. Recall that e;; = (w4, €1 it>€9.4¢) - Let Sp and Sy be 1 x (1 4+ p1 + p2)
and p1 x (14 p1 + p2) selection matrices such that Spe;r = uix and Sie;r = €1,;. Noting that zq; =
Zi 1151 is + €14t and g4 = ;g€ + sj’tfl where 6;#1 = Z;’il V;€i1—j, we have
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We prove (il) by showing that N - P (maxi<;<n |bii| > cainr) = o(1) for any fixed constant ¢ > 0 and
I =1,2,3. For notational simplicity, We assume that p; = 1.

We first study by;. Let z;; = Sy ZS 1 Eis€iVioSh and F; ¢ = o (eit, €5,4—1, -..) , the sigma-field generated by
the series {e;+} . Then by; = ﬁ thl zit- Noting that E (z;;|F; —1) = 0 by construction, we want to apply the
exponential inequality for martingales (see, e.g., Freedman (1975, Proposition 2.1)). Let ¢iyr = N2/a7/2,
We make the following decomposition:
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where 214 = ziLli — E [zadat| Fie—1], 220 = zaelie, Lie = 1{|z| < eane}, and 1 = 1 — 1. It suffices to
show that N - P (maX1§i§N |b1i,l| >caint) =0(1) for 1 =1,2,3.
Let Vip = 23:1 E [z%i7t|.7:i7t_1] .oy = N2/4T2 and 1, = 1{|zit| < cinT}. Then by the Holder’s and



Jensen’s inequalities and the law of iterated expectations,
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where the fourth inequality follows because
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Here we use the independence between e;; and ZS 1 €is and the fact that F HZ“’ 1 Eis < Cti. [Re-
call that we allow the constant C to vary across places.] It follows that N?maxi<;<n P (Vir > vyr) <
N?maxi<i<y Vb E (VEL{Vir > unr}) = o (N*T?vy%) = o(1). By Proposition 2.1 in Freedman (1975),
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as T*a2 yr/vNT = ]TVZ‘??TVWE T?N~%/2 . > (log N and T2aynr/cinr > (log N)'€ for some € > 0 by
Assumption A.3(iii).
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= o(NTTHERE) = o (NT2T) = 0 (1).

Similarly, we can show that N-P (maxi<i<n |b1i,3] > cainr) = 0 (1) . Consequently, we have N-P(maxi<;<n |b1;]
>caint) =0(1).

To study by;, we apply the Beveridge-Nelson (BN) decomposition (see, e.g., Lemma 2.1 in Phillips and
Solo (1992)) to obtain
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follows that
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Noting that bo;1 = 7 3y 21 and baiz = = S, 21, where 2}, = Sy, (1) 12 eisely 0] (1) S and
zl;tt =51 (€0 — €it—1) e;t¢} (1) S satisfy F {zit|fi,t_1} =0and E {zit\Fi7t_1} =0, we can also follow the
analysis of by; and show that N - P (maxi<i<n |b2ii| > cainr) = o (1) for I = 1, 3. It remains to show that
N - P (maxi<;<n |b2i1] > cainr) = 0(1) for [ = 2,4. For by; 2, we have
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For bgi,gb, we have
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For bg; 24, we can make further decomposition
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Apparently, max;<;<n |b2i,24 (1)] < % maxj<;<ny {HSlw )l HSszo }max1<l<N 1192 o < T Noting that

E (ejseh, — Q| Fi s—1) = 0, we can apply the Markov and Burkholder’s inequalities to obtain
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Similarly, noting that E [eis (&is — %ioeis)\}},s,l] = 0, we can apply the Markov and Burkholder’s inequali-
ties (e.g., Hall and Heyde, 1980, p.23) to obtain N - P (maxi<;<n |b2i,24 (3)| > caint) = 0 (1) . Consequently,

we have N - P(max<;<n |b2i2| > caint) =0(1).
For bg; 4, we make the following decomposition

T
1 o o ) ! ot 1 o o v I ol
boi 4 = Slﬁeio (€0 — €ir) Sy — Slﬁ E €it—1(€it—1 — €it) Sy = b2iaq — bai 4.
=1

By the Markov inequality
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Asin the analysis of b2i,2a; we can show that N-P (maxlgiSN |b2i,4b‘ > calNT) =0 (1) . Then N~P(max1§i§N |b2i74|
> caint) = 0(1). In sum, we have N - P (maxi<;<n |b2;| > caint) =0 (1).
For b3;, we make the following decomposition
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It is easy to show that maxj<;,<n|bs;i 1| < C/T. For bs;; with [ = 2,3,4, by tedious calculations we
can show that E(b3,1)4 < CT~5. With this, we can apply the Markov inequality to show that NN -
P(maxi<i<n |bsii| > caint) < N*(cainr) * maxi<i<y F |b3i,l|4 =0 (N2T_6a;]€,T) =o0(1) for [ = 2,3,4.
Then N - P(maxi<i<n |bsi| > cainr) = 0(1) for each fixed constant ¢ > 0.

Consequently, we have shown (il).

We now show (i2) P (maxi<i<n T ||z > caint) = o (N™') for any fixed constant ¢ > 0. Noting



that by Lemma S1.2 in Su, Shi, and Phillips (2016b, hereafter SSPb),
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C1,i + C2,5 + C3,4, SQY.

As in the analysis of by;, we can show that N-P (maxi<;<n |c1,:| > cainr) = 0 (1) . By the Markov inequality,
we can show that
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Consequently, P(maxi<;<n % 1214 > cainTT*/? (log T)_3) =0 (N_l) . Let z; = 22:1 S19; (1) ej5. Then
€1, = % 23;1 zit where E (24| Fit—1) = zi1—1. We can readily follow the analysis of by; and show that
P (maxi<i<n|c1:] > caint) = 0 (N_l) . It follows that N - P(maxi<;<n |Z1,| > cayntT? (10gT)73) =
o(1). Then
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(ii) Noting that 575 ,4; = 5o ;u;—Ta, zuz, it suffices to prove (i) by showing that (i1) P(maxi<i<n [|725 ;ui

~Da0,il| = epyPaznr) = 0 (N71) and (i2) P(maxi<i<n  [Z248] > epy*asnr) = 0 (N1 for any fixed



constant ¢ > 0, where agnr = T~ /?(logT)?. (i1) follows directly from a modification of the proof of

Lemma S.1.2 in SSPb. Noting that both z3; and u;; have zero mean, we can follow SSPb and show

/2CL2NT) = 0 (Nil) and P (maxlgiSN |’U,Z| > CaQNT) = 0 (Nfl) s implying

that P (maxi i<y |72, > cpy
that P (maxlgiSN (|Z2,:@:]) > ca%NT) =0 (N_l) . Consequently, we have P(maxi<;<n ||%9?7'22ﬂZ — Y0, >
Cp;/2a2NT) =o(N71).

(iii) Noting that F (x24) = 0, the proof is analogous to that of (i) and thus omitted.

(iv) Note that %ﬁc’%fegz —Yog,; = % 23;1 (.’Eg,it.’L‘127it — 222’1‘) — 962296’21 Using Lemma S1.2 in SSPb, we
can readily show that P(max;<ij<n H% Zle ($2,it$/27it — 222,1-) || > epaaant) =0 (N_l) and P(maxi<;<n
|Z24] > Cp%/QGQNT) =0 (N~') for any ¢ > 0. Thus (iv) follows.

(v) Note that Qlilﬂ = %:ﬁ’lzm — %:ﬂ’iig,iZ;&iEgo,i. The condition in Assumption A.2(ii)-(iii) ensures
that i’é’it22721’i220)i behaves like 4;; despite the possible divergence of ps. As a result, part (i) also holds when
2= ;7; is replaced by 75 ;%2555 320,i- Then
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(vi) Note that TQizpa- = 7%, (@5 — #5555, 520,) = 724, (ui — ;555 500,0) —Th.; (i — T 1555 500,0) -
Since E (uit — m’QvitEQ_;’iZgoﬂ) = 0, we can use Lemma S1.2 in SSPb and show that P(maxi<;<n H%x’“(ul—

/

2CL2NT) =
o (N71) and P(maxi<i<n ||i]| > caznr) = 0 (N71), from which we can readily show that P(max;<;<n H%jéz
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Proof of Lemma A.3. (i) Let v € RP* be an arbitrary vector such that ||v|| = 1. Let dr = /2T loglog T
By arguments used in the proof of Lemma 2.1 of Corradi (1999), we can verify the conditions in Theorem 2
of Eberlein (1986) and obtain
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— QM5 s = QM2 2y —T14| = —Q P €l,s — 7 €1,is
d[Tr] 11,6 L1,4,[T7r] d[Tr] 11,0 [ 1,4,[Tr] 1, ] d[Tr] 11,5 SZ:; 1, T ; SZ:; 1

= L BT tous (1)
diry)

for each 7 € [0, 1] . This result can be strengthened to hold uniformly in r € [0, 1] with djp,) replaced by dr.
Let t = [T'r] and 9;1171-/2 S = Si.irr) = Si,r (r) . Define

Ny (r) = ([Tr] + 1 =Tr) Sir (r) + (Tr = [T7]) Si;r4a (1)
Then sup,.¢p 1 ﬁ 1S5,z (r) = Bi (Tr)|| = 0a.s. (1), SUPr¢o,1] ﬁ”si,T (r) =i () || = 0a.s. (1) as T — oo,

and the set of norm limit points of {d7'S; r} and {dz'n; r} coincides with the set of norm limit points of
{d'B;r} with probability one. By Theorem 1 in Strassen (1964), the latter is relatively norm compact



with the set of limit points coinciding a.s. with I, where
1 . 2
K= {f :[0,1] = RP*, f(0) =0, f is absolutely continuous, / Hf (7")H dr < 1} .
0

Here f (r) = df () /Vr. First, observe that
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where 7~71‘,T( r) = s, 7 ( fo Uiy (1) dr.

Now, let ¢, denote the continuous map from the space of p;-dimensional continuoub functions on

[0,1], closed With respect to the sup norm, to the Euclidean space such that ¢, (f) = v’ fo drv
where f (r) fo r) dr. By the Corollary of Theorem 3 in Strassen (1964) with probablhty one

{gbv ( T nl’T)} is relatlvely norm compact with the set of norm limit points coinciding almost surely with
¢, (K). This implies that

1 1
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By the definition of ¢, and K,
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where the second inequality follows from the Holder’s inequality, and the third follows from the fact that
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for any r € [0,1] and f € K. Tt follows that
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(5 + c) CQ,, a.8.,

where recall that ¢q,, denotes the upper bound for Ayax (Q11.:) -
(ii) Let v be a pa x 1 vector such that ||v|| = 1. By Lemma A.2(iv), with probability 1 —o (N~') we have

mi , , , R
min inf o'T = inf (U 222 v+ v (T S 222 ) U)

1<i<N ||v]j=1 Ql Z232U 1<Z<N lvli=1 i Qi35 i
> inf v 222 U1 — max HTQZ Foio 222 p

min
1<i<N ||v]|=1

> 1£IH<H )\mln(EQZ 1) —0 (1) > 222/2'
T . - T = ) )
S e — 77 i Tyt T it ﬁ D1 Trady g | Qizra: VTQiza,
(iii) Note that DrQ; 33 Dr = L T . . 1T ~ -~ o 9
577 Dope1 L2t T T Dape1 T2,itT VIQiza,  TQias

Let v = (v},v}) be a (p1 + pa2) x 1 vector such that ||v]| = 1. Then by Lemmas A.2(iii)-(iv) and Assumptions
A.2(i), A.2(iii), and A.3(iv), with probability 1 — o (N71)

121<HN IIﬁI1£ v'DrQizaDrv. = 1<7,'<N ||111]|(|lf1 (vi@i’ililvl + 05 Qi ga3,02 + 2“1@1‘,5:15:2112)
> i ITIIE (Ule #1301+ U5TQ;, anUg) — 2 max ’\/_QZ 1
> min, [0 A (Q1.2121): Amin(TQ5355)] _212%\[ (o
> ¢1p/(2b7).
Then (iii) follows. B
Proof of Lemma A.4. (i) Noting that %:FMMQZ;%“ - %j’llj“ - _T(%fll,ifzi)(%5312,1'532,2')71

X (7@ ;%1,i), it suffices to show that

1 _, 1_, -, 1,

12‘1}5\1 ‘T(Tgxl T2, z)(ffﬂz,i@,i) 1(@%,#1,1‘)

is o(1) with probability 1 —o (N~!). This follows because by Lemma A.2(iii)-(iv) and Assumptions A.2(iii)
T max

and A.3(iv), with probability 1 — o (N~') we have
2 1 -1
] . ip~vj Yo -
1<i<N [12%2% Amin <Tx2”x2’z>}

To (pga%NT) O(1)=o (b}l) .

IN

1., .
ﬁ%,i@,i
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(ii) Noting that 5 ; My ;o = %&5 ;Z2i — Tor(Feih ;F1,:) (%E ;81,:) " (F=1 i F2,:), the result follows
from Lemmas A.2(iii)-(iv) and Assumption A.2(i) and the fact that Tbr(\/p2aint)® = O(p2aant). The
detailed arguments are analogous to those used in the proof of (iii) below.

(ili) Note that £ ;M0 = ) ;i — 78 ;&0 (5 E2,4) ' F35 ;47 By Lemma A.2(v), P(max;<i<n
|7z, ;a*|| > cainr/2) = o (N') . Define the following two events:

1
Einr =< min Apin | =35 ;394 | > c90/2 > and Eony = { max T . Eo
Ty Amin | P20 > Coo/ 1SN 1,i%2,i

1 1/2 }

<py ainT -

2 2
‘T Sp
By Lemma A.2(iii)-(iv), P (Ejnr) = 1 — o (N™!) for | = 1,2. Denote the complement of Eynr as Efy,
for £ =1,2. Then, in view of the fact that [|AB| < |All, | B|| and [|All,, < [|A]| for any two conformable
matrices A and B, we have

1
1, 1., . 1., .
P (12%}5\1 T2 571,72, (T%,ix%) (Txhuz > cainT/2,
1
< P| max Lij’ To; li’ A | min A li’ To; > caint/2, ExnT N E
> 1SIEN T2 1,i42,4 “ T 2,3 %5 1SN min T 2,52,i INT /4y, &Z1INT 2NT
+P (E{nr YU Esnr)
1 - /2 -1
< P(llgn%}%v T{EQ,L > e cgopy | /4) +o(N7h)

= o(N"H)+o(N ) =o(NT),
where the first equality follows by Lemma A.2(vi) and the fact that p%/ 2aonT = o(py 1 2). Consequently, the
result in (iii) follows.
iv) Note that lx My i = w3 =T (AT 71.0) (R ¥ 31.0) " (= d, af) = I — Iz, say. By Lemma
2,1 T%2,5% T2%2% T 1,2 5 T2%1,5%
A2(vi), P(maxi<i<n |11l > epy*asnr/2) = 0 (N~ ) - Noting that

|:>\ ! <b_T:i/ .il >:| h
min 1,5t1,8
sp T?

and brainr = o(1), we can readily apply Lemmas A.2(iii), A.2(v), and A.3(i) to show that P(maxi<;<n
[ 12:]| > CP;/2CL2NT/2) =o(N7'). m

[12:]| < br

T2 $2 lxl i

Proof of Lemma A.5. (i) Noting that Bu - 5(1),1‘ = (%i’ljngﬂliu)_l 5% ;Ma;uy, the result follows
from Lemmas A.4(i) and (iii), and Assumption A.2(i).
(ii) Noting that

-1
P * 1 ~ ~ 1 ~ ~x
52,2‘ - 52,1' = (fff/zlezmzz) Tx’QZM“uZ
1 -t 1
~/ ~ —1 ~
= <T$2,iM1,i$2,i> - E22,1' sz My ag + E22 1T Ml iy,

the result follows from Lemma A.4(ii) and (iv) and Assumption A.2(iii).
(iii) Let 8] = ( ! s A ) which is BO ( ?Ci’ gfi)’ if ¥99; = 0. Noting that g, = fﬁ,uﬂ?,i + :ﬁzﬁﬁg’i +

11



~ &k ~ % : ~x ~/ -1
Uit = Ty B + afy with 4, = ;e — 25 4355 ;X00,i, We have
T
— } : INE
yzt ﬁ ‘rlt - Uiy + ‘rzt ﬁz)]

T (a;kt)Q + (87 — szt%t B3 5 )+2(8 Zjita;
= D1; + Do; + 2D3;, say.

We prove (i) by showing that (i1) P (max<i<n |D1; — 5% 5, > €) = 0o (N71), (i2) P (maxi<i<n [Das| > €) =
o(N71), and (i3) P (maxi<i<n |Dsi| > €) = o (N~!) for any € > 0. Noting that

* —1
Dy, — E0.2,1' = Uzt $2 1t222 220, 1) - (EUUJ - 20271'2224'220@)

T
1
2 2 —2 —1 ~ ~, —1
[uzy — B (u3y)] =T + 02,1200, <T D i — Em) 202,i220,i
t=1

~/ —1
itTy ¢ — Eou) Y55 1 220,i

s
+ NSl=
]
[~}

Dii2+ D1i3 + Disa.

By a simple application of Lemma S1.2 in SSPb, we can show that P (maxi<;<n |D1i¢| > €/4) =0 (Nfl)
for £ =1,2. By Lemma A.2(iv) and Assumption A.2(iv), P ( <i< )=o0(N"').By Lemma
A.2(ii) and Assumption A.2(iv), P (maxi<;<n [D1s4| > €/4) = o (N') . It follows that

P (122% |D1i — 56.0.4] > e) =o(N71).

For Ds;, we have by the Cauchy-Schwarz inequality

!

D2i

IN

T
2( ?,i _511 Z 10T Jit 51,1' = B1) +2(B3, _521 Z zt$2 it 521 Ba,i)

= 2Dy 1 + 2Dy 0.
With probability 1 — o (N_l) , Da; 1 is bounded above by

2
= o (Tloglog Thj.aiyr) =o(1),
sp

0 -
2TloglogT11§nl_a§XN H,@Li B1

1 ~ ~/
272 loglog T ; TLit Tt

32

max
1<i<N

by Lemma A.3(i) and part (i) and Assumption A.3(iii). And Ds; 2 bounded above by

T

~/
E L2,itLa 4t

= 0(p2a§NT) =o(1),
sp

max

B HBSJ‘*BQ”' 1<i<N

1<i<N

by Lemma A.2(iv), Assumption A.2(iii), and part (ii). It follows that P (maxi<;<n |Da| >€) =0 (N7!).

12



Similarly, with probability 1 — o (Nfl) ,
3 3 T
|Dsi| < |( Vi B le il | + (B3, — Ba) Z@ ity

1 ~ ~ %
ﬁg T1,it Uz g xtaUzt
t=1
1/2

= To(brainr)o(aint) + 0(]9;/2(12NT)0(192 asNT) =0 (1) ;

IN

T80 - By

) 2,3

by Lemma A.2(v)-(iv), parts (i)-(ii), and Assumption A.3(iii). It follows that P (maxi<,<n |Dai| > €) =
o) (N*I) .

Proof of Lemma A.6. (i) Noting that T2 :%1 Ju = 732 5:'1 U — 1}2 :%/1 T2, 122721,1»22071-, it suffices to show
% Zf\il HTlgj’l zqu =Op ( - ) and + Zl 1 HT23:1 Z.’E21222 12320, lH =Op ( ) . We only show the for-
mer one as the proof of the latter clalm is similar under the side condition HZQQ’ZEQOJH < C < o0, which is
ensured by Assumption A.2(ii)-(iii). By equation (B.1) and the Cauchy-Schwarz inequality

1 1 2 al A
- I
v Z ﬁzll,iul < = T2 T il + NTZ Z |21,
i=1 i=1 i=1
N 2 N
2
<> Z (I3l + N2l + 5 ”) + ; A
= 6d1 + 6d2 +6d3 + 2d4, say.
For dy, we have
1 N T t—1
Bd) = 52 B |51TQZZ&S€“%50
i=1 t=1 s=1
N T 2 T
1 1 2
N T
C
< t=0 (T2
B NT4 =1 t:zl O ( ) ’

where z; = S Zg 115136“5@/11050 satisfies E (z;+|F;+—1) = 0 and the first inequality follows because we can
show that E ( Zt) < Ct. For da, we can follow the analysw of by; in the proof of Lemma A.2 and show that
E(dy) < + 21:1 E[ *] = O(T2). In addition,

N T 2 N T 2
Bldy) = S B |Sim Y euchSy| < CTQZE{%ZHW}
Cj:lN 1 . t=1 =1 t=1
< NTQZ;T;EH%H =0(T7?), and
1 & 1 1/2
Bd) = gz Y Bl < 57z Y {BllzulME @)} =0T,

&
Il
—
-
Il
-



where the last equality follows from the fact that E(u}) g CT~?% and E(||:i11\|4) < CT?. Consequently,
+ Zf\il E|£&% i 1” =0 (T7?%) and % Zivzl || 7= 1ulH = Op (T2) by the Markov inequality.
(ii) Noting that

1 ., _. 1 _, . 1 _
Td/g 12 iU = mxé,zul - T3/2 $2 sz 1222171'22071'
1 1

= = —1

= Ta (25 105 — B20,1) — T3z (5, %2, — Y22.1) B39 520,i
1 1 _

= a2 (25,3ui — B20,i) — Tz (2 2,5 — D22.i) By 1 D20,i — T2 L2,

1
T1/2 :I,'Q 1:[,'2 1222 ,LEQ(] i = du + d21 + ddz + d4u say,

it suffices to show %ZZ\; |de|l> = Op (p2T—2) for ¢ = 1,2,3,4. We can prove these by the Markov
inequality. Then (ii) follows.
(iii) By the BN decomposition z1 ; = S1[; (1) 22:1 eit + €0 — €] and the Cauchy-Schwarz inequality,

1 N 1 T 2
N : = Z ﬁ lelﬂ'txll’it
| 1 » 1 t; ¢ t 2
< yLF EZM<1>Z_Ileuz_jle;rwi<1>’51
l_N liT N - 2
NZ T—Z — Gia) (Gi0 — €)' S

By straightforward moment calculation, we can bound the first term in the last expression by O (1) and the
second term by O (T*Q) . Then % ZﬁlJ’QhHQ = Op (1) by the Markov inequality.
(i) and thus omitted.
(v) Noting that &} ;M ;af = & ;i — & ;20,:(%h ;2,4) " &% ;47 , we have by Lemmas A.2(ii), A.2(iv), part
(iv), and Assumption A.3(iii)

(iv) The proof is analogous to that o

1 1, ~*2<2N ~,~*2 2 L1, -
N Z ﬁxl,iMZlui = N Z TQ Zy X U; + W Z ﬁxl,i x? 1$2 % x? i g
i=1 i=1 =1
1 -1 2 N 2
< Op(T7?) + max (ch’higl) max 372 Ry xl T2
sp =1
< Op(T72) + 0p (1) 0p(py*asnt)Op (p2T~2) = Op (T72) . M
Proof of Lemma A.7. (i) Note that Q n7 = x'7» Dieay T1itri— NoT? Diccy (21 i%2,1) (.’fé,i.’fg,i)_l
| 1

~) ~ .. ~) o~ 2 ~) o~ _
X (zé,izl,i) = Qlk,NT*QQk,NT- By Lemmas A.2(11)—(111), HQQk,NTH S TmaXiegg H%xll,ivaiH } (%$/2,i$27i)
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=Top (p2ainy) = op (1). By the arguments used in Phillips and Moon (1999, Section 4), we can show that

1 1
Qik,NT = Nk Z E (/ Bl,iBi,i) +op ( Z S19; ( (/ lewllz> ¥ (1)'8] +op (1)
0 0

'GGQ e

= 6N D S ()9 (1) Sy +op (1),

ieG)

where we use the fact that E(fo1 Wi Wi ,) = E(fo1 Wy Wi ) — f Wi fo Wi.) = 31, — 31, = 1, .Thus
(1) follows.

(i) Let By = 22:1 €is, €y = €it — 7 ZS ; €is; and p = 14p; +po. Note that € = e;r—€; = e, qlei,t—l-
We apply the arguments as used in the proof of Theorem 16 in Phillips and Moon (1999, PM hereafter) and
derive the limiting distribution of Vix nr below.!

First, we apply the BN decompositions. Noting that €;; = 9; (1) e + € ¢-1 — €+, we have x1; =
S1 [ (1) By + €0 — € 4] and

Uit — $/2,it22_21,i2207i = W’i (1) e + Cit—1 — éz’,t]l [56 - Sézz_zl,iEQO,i] = [e;t"/}i (1)/ + é;,t—l - é;,t] Siy

where s; = S — 5522_217;220,1' is a p x 1 vector. It follows that we can write the demeaned versions of x ;
/ —1
and w;y — Ty ;4359 ;2i20,i aS

~ = 1 < - </ _1 ~ r <
Ty =51 |; (1) By + €50 — ei,t} and u;; — $2,it222,¢z20,i = [eitwi (1) + €it—1— ei,t] Sis

where E;; = E;; — T Zs 1 Eis and & €it =¢Cit—7 Zstl'e:w. Let Sit = 22:1 g5 and S'ft = Sit—% Zstl Sit.
As in PM (p.1105), we can obtaining the following decomposition,

Vent — BNt = \/— E E Tt (T — Ty o 12320, i) = Br,nT
ieGY t 1

= {% S S 1) Bt~ (175 ) T w0

1 T-1 » ') , 1 o] ,
tT Z S1 <5z’,t+15it + Z’l/}i,s-&-lwi,s) Si— T 251%,34—1%,551

s=0

T
> Sus (1) [Budhetss (1 = by (1| i+ Z S (1) s

~
I
—

Z {Qir + Riir + Roir + Rsiv + Rai v + Rsir + Reir}
ieGY

\/_

Note that our terms Q;r and Rer (¢ = 1,2,...,6) parallel the corresponding term in PM. There are
three main differences: (1) all variables involved here are time-demeaned versions of those in PM; (2) we
need to center E;;&, around its expectation (1 — %)IPH while PM centers the non-demeaned version of
B, around its expectation I, 1, and the difference between the two centering terms, namely, —%Iﬁh
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enters the bias term Boy yr and reflects the contribution of time-demeaning of random variables in the
regression; (3) the sign Ra; 1 is negative rather than positive. One can verify that Y °2 (>0 (4, b, =

jo%s) v/ v
P (D) (1) + 302, Vi s+1¥is — Vio¥i (1)
Second, we study the asymptotic distribution of N,;l/2 ZieGg Q;, 7. Noting that %Z;";l Eqé), =

1 T ~/ ~ 1
T thl Eiteit; and €;; = e — TEiT, we have

~ T+1 /
B DL T B e prrat [ne;t—(l—%)@]wm

eGO zeGO t 1
T T
i X S (1) Bucrelty (1 o= = 3 o 308 () (BaEfy — 1) 6, (1) s
zEGO t:1 zeGO t=1
T
Z Z S19; (1) [eaesy — Ip] s (1)'ss
€@ t:1
{Quir — Qair + Qzir},
“wmE

By direct moment calculations, we can readily show that

= > Quar || = 7o 3 S0 1) s = 0 (VEia/T) =

v zeGO Y i€GY

and || Var (k= Yicag @air) | = || R Sicag Var @air)| < % Sicy EllQairll’ = O (T72) = 0(1).
Then \/LN—,c Ziecg Q3i,7 = op (1) by the Chebyshev inequality. It follows that

Z Qir | = N Z {Var (Qu;,1) + Var (Q2i,7) — Cov (Q1i,7, Q2i,7) — Cov (Quir, Q2ir)' }

1€G0 i€GY

Then we study the asymptotic variance by terms. For Qq; 7,

Var (Quir) = E [S1; (1) Ejy_refnb; (1) 85 sy (1) eis B 11 (1) S1)

=
N
M=

il
I
I,

1s

E {51% (1) Ei,tfle;t'ébi (1)/ Si 521/%‘ (1) ez‘th/‘,tﬂ%‘ (1)/ Si}

I
3~
MH

&~
Il
-

(s5; (1) @ Sty (1)) B {vee (Buaely)  [vee (Biumael)] | (st (1) @ Si; (1))

1
ﬂ|)—l
MH

H_
Il
—

(s ?/1 (1) ®S1y; (1) E (eite;t ® Ei,tflEl{,tfl) (5;7/% (1) ® S19; (1>)/

1
ﬂ|,—n
Mﬂ

H_
Il
—

(t = 1) (si0; (1) ® S19p; (1)) (si); (1) © S1p; (1))

Il
3~
Mﬂ

~
Il
-
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= %s; (DY, (1) 5@ Siap; (D), (1) ST +0 (T71) = %ngisileiﬂ +0 (T,
where the second equality follows from the fact that {E;; 1e},, F;+} is a martingale difference sequence
(m.d.s.), the third equality holds because vec(A;A2Az) = (A} ® Aj)vec(As) with A1 = Si9; (1), Ay =
E;i_1€},, and A3 = 9, (1)’ s;, the fourth equality follows from the fact that vec(ajah) = ap ® a; and
(a2 ® ay1) (a2 ® al)/ = asah ® ajay, the fifth equality holds because E (eitegt ® Ei,t,lEg,t_l) = F(eye},) @
E (Ei,t,lELt_l) =(t-1) I(14p)2- Similarly, we have for Qg; 7,

Var (in,T)

AN / / ,
= T2 Z ZE [51% (1) (Ei,th{,T - t) Y (1) s; 5;% (1) (Ei,sEi,T - 5) Y, (1) Sl]
t=1 s=1
= (s, (1) @ Sy, (1))Ti Elvec (E; B} 1) vec (Ei7SEZ'»7T)I — tvec (I14,) vec (Ei,SEg)T)I
(T14
1

—svec (E; 1B} 1) vec svec (I 1p) vec (I14p) ] (skp; (1) ® Sy, (1))

M“ ) 1
hiEivgt

= [siv (1) ® S1p; (1)] Elvec (Ei B 1) vec (Ei Bl 7)) — tsvec (Iiyp) vee (I 514, (1) © S (1)

Tt

o~
Il
s
w
Il
-

3=
B
B

= [sivi (1) ® S1p; (1)] B((BirEj r ® BitEj ) — tsvec (I4p) vee (I14,) |[sit; (1) @ S1; (1))

~
Il
s
w
Il
-

and

T T T T

1 1

O Y B (BBl ®BuEl) == > [ (¢ A ) Ly + 18 (Kisp + vee(Ipr1)vee(Tps1)')
t=1 s=1 t=1 s=1

1 1

= §I(1+p)2 + 1 (Kpt1 + vec(Ipi1)vec(Ips1)') ¢ + O

where K1, is the (p+1)% x (p+1)? commutation matrix such that Ki,vec(A) =vec(A’) for any (p + 1) x
(p+ 1) matrix A. It follows that

Var (Qa; 1) = (si; (1) ® S19; (1)) (%I(H_p)z + iKHp) (shh; (1) ® S1ep; (1)) + O (T*I) .

For Cov(Qui,1, Q2i,1)

Cov (Quir, Qair) = %ZZE (S (1) Eig—refpn; (1) 55 siab; (1) Ei o] oty (1) 5]

=
w



where we use the fact that

T T
1
75 2. 2P (€ r © BB )
t=1 s=1
T t—1

T T
= Tg Z Z E eztE T ® Ez t— lE/ % Z Z E (€itE,£’T ® Ei,t—lEas)

t=1 s=1 t=1 s=t
T t—1

_ % Z Z E (eitEg’T ® Ei,t—lEz{,s)

t=1 s=1

T
+03 Z Z {FE (e B - ® Ei,that,l) + Eleit B @ Eiy1 (Eis — Ei,tq)l]}

T T
1
slaapz + 5 YD =1 (Taape + Kigp)

t=1 s=1 t=1 s=t
1 1
- 51—(14-13)2 * EKHP +0(T7).
Thus we have
Var | — Z Qi N Z {Var (Qqi,7) + Var (Q2i,7) — 2Cov (Qui,7, Q2i,7)}
zEGO i€eGY
1 1
5 3 { eSSt - gl () ® S (Rl (1) @ S 1) )
k ieGY
+0 (T
1
_NLZ{ $iQusiS10S] — 75 (51981 @ 81 0us) p11}+0(T1),
k
i€y

where K, 1 is the p1 xp1 commutation matrix. It follows that Var(lel/2 ZieG% Qi) — limp, oo N%\ Ziecg

[ 12551651 — ( 291 ® S1948:) Kp, 1] = Vig). This limit contributes to the asymptotic variance of our

4
estimator. In addltlon, we can verify that Zi:l E ‘ NI;I/QQi,TH =0 (Nk_l) , which verifies the Lyapunov
condition for the central limit theorem for independent but non-identically distributed (i.n.i.d.) observations.
Consequently, we have shown that Q; 7 = N (O,V(k)) . Third, we study Ry; 7 :

Z Z S1 (51 t+15zt Z% 5+1TZ;5> Si

EGU eGO t=1
T—1 T—1 T
1 T o 1 1 y
= \/ﬁ Z T Z Si| €ier1€ir — Z%’,sﬂ%,s ST Z SlT Z €isitSi
kiego t=1 s=0 t=1 s=1

T

E {Rii;r1 — Riir2 — Riirs + Ruira} -
i€y

\/Vk
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2
Following PM, we can show that F HNk_l/2 ZieGg R”’TlH =0 (pQT*I) . For Ry; 12, we apply the Cauchy-
Schwarz and Markov inequalities '

IN

1 1 1
\/F Z Rli,Tz \/N_k Nk Z Si~ Zﬁzs m Z

o!
T EirSi
i€GY €@ i€GY T
k k
= \/NkOP 1/2 (p§/2T71/2) =op (1),

1/2 1/2
/ B 2y 1/
r=1

2
where we use the fact N%czieGg EHSl%Zil 61-8’ < CcT ! 1 ZzeGotr(Slﬂ S < CT (5,5 =
O (Tﬁl) . Similarly, we can show that \/;N—k ZieGg Riire =o0p (1) forﬁ = 3, 4. Thus we have \/;N_k Ziecg Rur
=op (1) .

Fourth,

T
\/}V_k Z {% 251% (1) {5‘2‘1‘/6%% (1) = ;0% ( } Si ~g ZZSW Y Eiveh b, (1)’}

eGD t=1 t=1 s=1

1
Z {Rsi71 — R3i 2} -

2
It is easy to show that F HN 1/2 ZieGU Rsi H =0 (pQT* ) implying that N, 1/2 ZieGg Rsir1 =o0p(1).
As in the analysis of Ry 72, we can show that N, 1/2 Ziecg Rsi 2 = Op(v/Ngp2/T) = op(1). Thus

N2 Y icop Rair = op (1),
Fifth,

T T T
Nk Z R41T = \/}T]f Z {% 25151061“/}1 /5' - TL ZZ 151tezswz Si}

ieGY

\/_ Z {Ryir1 — Raira} .

ieGY
Noting that Ra; 172 = Rs; 72, Nk_l/2 ZieG% Ryir2 = op (1) . For Ry; 71, in view of the fact ;0 = > o 122@561',75
and {e;;,t > 1} are mutually independent, we can readily show that F (R4Z-7T1) =0 and

2 2

T
1 1
E E Ry; = E E E S1&i0eh. (1
\/N_k 43, T1 Nk Tt:1 15061{4[}1()8

i€GY, i€GY,
T T

= TgNk Z ZZE (sith; (1) €isZin ST S18ioes s (1) 1)

= TQNk Z Z tI‘ 1081815‘1‘0) E (6;{(@ (1)/ 818;1#1 (1) eit)]

ieGY t=1

- TNk Z E u1051516z0) 21/11( )7,/1Z (1)/si =0 (pngl) 7

i€GY
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where we use the fact that

iy (1)1, (1) s 57128 < Amax () 878 < 2Amax () (5050 + Tho 1S3 19255555 3201

§ 2)\max (Qz> |:1 + )\max (SQSé) [)\min (22272')]7 22071220,1} S Cp2
and E( 205151620) < E( 20810) < Cp2 Then N 1/2 ZiGGg R4i,T1 = Op (pQT_1/2) and lel/Q ZiGGg R4i,T

=op (1) .
Sixth, we can show that

T
NS R = NJV2YD Sl{SfTé;T TZS:‘J;T Z ngsa Eét}%

ieGy ieG t=1 t=1

_ 1 y - R
NN ZSiSipErsi o (1) = N Y Reir+op (1), say.

i€Gy i€Gy
Note that
1 T oo /
Nl;l/Q Z Rsi.r = ngl/Q Z fsﬂb ZZE Cit€irr) VirSi
i€GY i€GY, t=1r=1
4 T
—1/2
= ||N, / Z TSM/J Z i T—tSi
z‘eGg t=1
< Nk_l/2 Z 11519, ( (\/NkPQ/T) =o(
ieGg =

Similarly, we can verify that HVar (N,;l/2 Ziegg Rgn"T) H <Nt ZieGg |Var (Rs;r)|| = O (p3/T) = o(1).
It follows that N, "/* ¥, o Resm = op (1)

Last, it is trivial to show HN 1/2 ZieGg Rgi,TH =0 (\/N_kPQ/T) = o0(1) and H]V,;l/2 Ziecg Rﬁi’TH =
Op (VNip2/T) = op (1).

In sum, we have shown Vip 7 — Big,nT = N (O,V(k)) . This completes the proof of (ii).
(111) For VQk,NT; we have

1
~7 o~
‘/2k7NT = § .’131 sz % 22 i <E2O;i - T$27iui

i€GY

1 1 1
= \/_T Z 551 iL2, 1222 i (220 i Tfﬁéz“z) + JNT Z 93/1,1‘932,i2221,i$2,iui

i€qy i€GY
1 1
/ 1
Z 1 z3?2 i 22 Ji (T%,iui — o0, | — N, Z T Z:cg iX99 T2,
GGD ieGo

=

Vo, NTa + Vor, Nt + Vor, NTc + Vor, NTd, Say.

. _ 2 — 2 - 2
Noting that x.7 Yicqo 711" = Op (1), 57 Yicay 172407 = Op (p2T71) , and s Yo |20 22| =

Op (p2) by direct moment calculation and Markov inequality and maxi<;<n ||Z2,| = Op(pé/ 2a2NT) and
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maxi<;<n |%;| = op(aent) by a simple application of Lemma S.1.2 in Su, Shi and Phillips (2016b, SSPb
hereafter), we have
1/2

Varnmsll < /Ny T2 N 2| maXIIle
ZEGO iea

H ||222 1pr

vV NkOP(pé/ Jop( p2/2a2NT>0P(a2NT) =op(1),

1/2 1/2
Vo, n7e| < VNi. N T Zgo Z@O [|Z2, 2 22’5 %mgzul — Ya,; HEQ_Ql,z‘HSp
ic ke
= V/NOp(W)Op (Y * T ?)op(py *aant) = op (1),
and
1/2
Vernrall < VNT N T ZJ [E2%ln HelaXmeH maXHqu 1522,
i€GY
= V/NiTop(p2a3yr)op(aant) = op (1).
For Var, nTa, it is easy to see that
1/2 L) 12
Vo, NTal < VNi. N, T2 ZG:O |2 w2, zH Nik ZG:O Y20, — %zlzzuz max = 221”sp
c i€GY

VN:Op (pé ) Op (T—1/2p§/2) 0(1)=0p (pz\/m)

which is op (1) if we assume that p3Ni,/T = o(1). But this is a very strong assumption that we try to
avoid. To do this, we can employ the BN decomposition and write 1 ;+ = S1 {1/11 (1) 22:1 €is + €0 — éz‘,t]
and xo; = S2[¥; (1) et + E;4—1 — €;4] . Let Bip = E;QIJ (22071‘ — %xélul) . As in the analysis of Vi, n7, we

can show that

Vak,NTa = \/FT Z a2, Bir
k

i€eGY

T
- Z Zslwi( Eiej1h; (1 ) Bir +o0p (1)

ZGGO t:1
T
= \/—Z{SNP )i (1) Sy Bir + Z 1) (enely — L) ¥; (1) Sy Bir
e t=1

% Z S1; (1) Bip1€yi; (1) SéBiT} +op (1)

\/— Z {Rair,1 + RaiT2 + Rair3} +op (1).

i€eGY
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Noting that E(Rgir,1) =0 and

Z Roira < - Z [ Var (Rair1)|| = Z 919485 F (Bir Bir) Sa€:S1 ||
EGU 1EGU 1EGU
< & Z I1E (Bir Bir)l, 1151925592 51|
’LEGO
< & Z 1B (Bir Bir)ll = O (p2T7") = 0(1),
1EGU

we have \/LN—k Zier Roir1 = op (1) . Next,

ZSW eztezt p) P, (1)/‘%

N Z HBlTH

ieGY

H\/—ZRQJQ < Ny Nikz

€ay i€GY

vV NkOP(pé/QTfl/Q)OP(pé/QTfl/Q) =op(1).

Let z¢ = S19; (1) Ei,t—le/it'(/Ji (1)/Sé Then \/;N_k ZieG% Roir3 = \/;N_k ZieG% % Z?:l zi+BiT. Noting that
E(zit|Fit—1) = 0, by the Burkholder’s and Holder’s inequalities, for any r > 2,

r/2

r T r/2 T T
SCE{Z||Zit|2} <y {ZE“%”T)} < 02]9;/22#/2 SCng/QTT/2+1.
t=1 t=1

t=1

T
FE E Zit
t=1

where C7 and C5 are constants that depend on r. Then by the Holder’s inequality

1
Roral| < E zit Byt
A S| < g S rEfnen

1 1 T ry 1/7 y

< =Y =B } {E||Bir| "}
N ieGgT{ t=1
C 1 v AR YC Y

< _{pr Tr/2+1} pi2T1/2

k
< CVNepT 7 =0(1).

where % + % =1.
Consequently, we have shown that Vor nv = op (1).
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(iv) Following the analysis of Vix n1 below, we can readily show that

—1
1 1 1
Var NT =~ Y 882,50 | mEhFe — Sooi | | @24 ) D20
3k, mT = 1,i62,1422 4 T 2,iv2,1 ) T 2,121 0,i

1 _
= \/WT > whweiShy, (fff/zﬂzi - Ew) 252,820 +op (1)
i€GY

Vak,NTa +0p (1).

Following the analysis of Vai, N7, we can show that ||Vag n7a| = op (1) by resorting to the BN decomposition,
moment calculations, and Chebyshev inequality.
(v) For Vi N1, by the Cauchy-Schwarz inequality and Lemmas A.2(iii)-(iv) and A.6(iv),
Vaienrl < VN NkTQ Z |2, 1:1021 ?e%}‘,g{

—1
1
~ A -1
<T$2,i952,i - Z22,1'
€
i€eGY sp

VNOp(py*)Op (paaant) OP(pQ/ asnt) =op (1).

1/2

A

(vi) This follows from (i)-(v). B

Proof of Lemma A.8. Let Vi v, = ﬁ Zieag ¥ My ;07 We make the following decomposition

1 -1 .

ViNT = — g zh ;08 E T @0, (T 4T0,) =V - V3 .

NT ~ T4 1,i%2,i \T2,i%2, 2,iVi 1k,NT — V2k,NT
VNT \/ N T

ieGY 1€GY
1 a !
Noting that vf, = Z‘j|>52 Yi.j€1,t+j, We have
2 _ / / —2a
max B [( Vit } =max Y > ViE (erer€g) v < Cmax | Y [lyigll | <or
U 1i1>pz ll>p2 |3]>Pp2

and

1 T—p2 2 1 T—po
mZaxE [(1‘);‘)2] =max F (T Z v&) < = Z maxE( a)? < CT2,

i,t 5.
P2 t=py+1 P2 gt

Then max; ; ¥ [(f) ) } <2max; E [( i) } + 2max; £ [(5?)2} < 4CT~24, Analogously, we can show that

Hzl,%XE [( 05y) } = C’mlax Z ||’yi’j|| <CT .
71>p2
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It follows that

T—p2 T—p2
E|Viinrl = E Z > madh|| < Z > Bty
VN’“ P2 GO t=pa+1 Tﬁ €GO t=pa+1

T—p2

< mm 2 2

P2 i€GY t=p2+1

1/2 9 /2
al?} Bl
T—p2

CVNT, Y =0 (N,i/zT*‘”%) =o(1),

t=pa+1

IN

where we use the fact that maxj<;<y E ||=’E1th < Ct. Then Vi yp =op (1) by the Markov inequality.
Next, noting that H%.i/QZ.in - 22271'H5p = op (1) by Lemma A.Q(lv) and

maxE H:E2 i f”2

AN AN
Q B
E -
“ 1M
R ™
]~ &
—

5 &
£ :
—— &)
— —
bty

e

=
——

S

t=1 s=1
T T
< Cz ZP2T72G = COpT~272,
t=1 s=1
we have
a 1+ . Y a
Vel < OP Z 121,582, [ B2, 112,057
i€GY
11+
S —221 \/ETQ % Hxl 11’2 7,” H:'BZ 7,1]1 H
1/2 1/2
< 622 (1 +op (1)) Ni N, TQ Z Hxl szZ N, T2 Z H$22 v;
ieGY 1€GY

- /N:Op (p;/Q) Op (pé/QT_a) = Op (pQN;/QT—a) = op(1).

In sum, we have shown that Vi yo =op(1). B

C Determination of the Number of Groups

In this section, we now propose a BIC-type information criterion to choose K, the number of groups. We
now use K to denote the true number of groups and K a generic number of groups. We assume that the
true number of groups is bounded from above by a finite integer K.x and 1 < Ky < Kpax. By mini-
mizing the objective function in (2.7), we obtain the C-Lasso estimators {ay (K, \), BM(K, A), BQJ(K, A)} of
{ak, B4 Ba,, } where we make the dependence of these estimators on (K, \) explicit. We classify individual
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i into group Gy (K., \) if and only if ) ;(K, ) = dx (K, N), i.e.,
Gr(K,N) = {i={1,2,..,N}: By ;(K,\) = a(K,\)} for k=1,..K. (C.1)

Let G(K,\) = {G1(K,\),--,Gr(K,\)}. We can define the post-Lasso estimators of oy, as

+

~post _ ~/ ~ ~ -
aék(K,)\) - Z xl,z'MQaimlai E $1,¢M2,z'yi-
i€GL(K,\) i€GL(K,N\)

~post , a

Bai (Gk(K,N)) is defined as before but now we also make its dependence on Gr (K, \) explicit. Let
~post , A

~2 K T ~ N ~ ~ N St ~
Te(KN) — ﬁ Zk:l Zie@k(K7/\) Zt:l[uit(k)]Q’ where @;t(k) = Fir — 95'1,“04%0:(1(),\) - :C/Q,it 2,i (Gr(K,N))

for i € G(K,\). We choose K = K ()\) to minimize the following information criterion:
IC(K, ) =n[6g, )]+ pyrpiK, (C2)

where pyr is a tuning parameter.

Let GE) = (Gk,...GKk i) be any K-partition of the set of {1,2,..,N} and Gg is a collection of
such partitions. Let 6o x) = 7 Zszl ZieGK,k Z;f:l[il]z‘t — T QG — 56'27it32,i(GK,k)]2, where ég,, =
(ZieGK,k ill,z’MZijl,iﬁ ZieGK,k 'ill,iMZigi and Bm‘(GKJc) = (5/2,2'52,1')_1 5/21 (@z - '%lyi&GK,k) for any i €
Gk k. Define

N'Y2T1/2 in Case 1 where x5 ;; is absent in (2.1) and there is no endogeneity in @ i,
vy =< TY/? in Case 2 where x5 ;¢ is absent in (2.1) and there is endogeneity in 1 ;, (C.3)

pQ_l/QTl/2 in Case 3 where x5 ;4 is present in (2.1).

Let 08 yp = 77 Zfil ZiT:1 @? in Cases 1-2 and = = Zfil ZiT:1 (%) in the Case 3. We can show that
&QGk(Ko,A) - G’%,NT = Op (NflT*I) , Op (T’l) , and Op (pQT’l) corresponding to the above three cases,
respectively.

We add the following assumption.

Assumption A.5 (i) As (N,T) — oo, mini<x <k, infg)eg, &é(m — g2 > 03, where 03 = plim(y,7) -0
g g,NT'

(ii) As (N,T) — o0, pyp — 0 and pypvip — 00 where vyr is as defined in (C.3).

Assumption A.5(i) guarantees that all under-grouped models yield asymptotic mean square errors that
are larger than o2, which can be obtained from the true model. Assumption A.5(ii) imposes the usual type
of conditions for the consistency of model selection: the penalty coefficient p, cannot shrink to zero either
too fast or too slowly.

The following theorem suggests that in large samples we can determine the correct number of groups by

minimizing the information criterion defined in (C.2).

Theorem C.1 Suppose that Assumptions A.1, A.3 and A.5 hold. Suppose that there exists a constant c,
such that mini<j<n Xo0,s > cog > 0. Then P(K' =Kp) — 1 as (N,T) — oo.

Theorem C.1 indicates that w.p.a.1 the use of IC(K, \) in (C.2) determines the correct number of groups.
A natural question is how to choose the tuning parameter py, empirically.
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In simulations and applications, we recommend the use of DPLS estimation so that Case 3 applies. We
will choose po = [T/4] and set pyp = 3(NT)~1/3. Note that this rate converges to zero much slower than
the usual (NT) ' In (NT)-rate that Works in Case 1. One can verify that the conditions in Lemma A.5(ii)
are satisfied in this case when N and T diverge to infinity at roughly the same rate. Our simulations suggest
that the choice of pyp has little effect on the results.

Proof of Theorem C.1. Let K = {1,2, ..., Kinax } where Kyax > Ko. We divide K into three subsets Ky,
K_and K, : Ky ={Ko}, Ko ={KeK:K <Ky}, and Ky ={K € K: K > K,}. First, using arguments
as used in the proof of Lemma A.5(iii) we can show that

Ko T

" 1 ~ ~D S ~ D, post N 2

G o) = NTZ > > [W T P Koy A) = B 0 (G’“(KO’A))} =05 +or(1).
k=1ieGy(Ko,A) t=1

It follows that IC(Ko, ) = ln[&é(KU)\)] + pyrp1 Ko = In[62 (Ko )] + o(1) il In(c2). We consider the cases
of under- and over-fitted models separately.
Case 1: Under-fitted model (K € K_). Noting that

K

5 1 ~ ~ ~D,pos ~D, post [/ A 2

UQG(K,)\) :ﬁz Z Z [y xll it k’IOt<K )‘) ‘r2 it2,4 (Gk(Kv)‘))}
k=lie Gk N t=1

2
. . . ~2
>  min g E [t o a — 7 GK;C} = min inf  0%k).
2 B g NTZ Yit T Pt QG T Pt bus(Gcr) 1<K<Ko Geg, ¢
k= 1’LEGKkt 1

By Assumption 4.2, we demonstrate

. . ~ P
(Jpin JC(K,0) > min - inf In(@Gu) + pyrpK = In(@®) > In(og).
= K

It follows that P(mingex_ IC(K,A) > IC(Ky,A)) — 1.
Case 2: Over-fitted model (K € KC}).

P ( min IC(K,\) > IC (K, A))

KeK4

=P ( Hel}él Vi In(67 04k, ,\)/‘32( ,\)) + Varpnr (K — Ko) > 0)
=P <KH€1%+ V?VT(CAT%;(K’)\) - &é(KO,A))/&é(KO,A) + viront (K — Ko) +op(1) > 0)

—las (N, T) — 0

where ming e g+ V%7 (6 = O,(1) by Lemma C.2 below and v3%,1pyr — 00 by Assumption

A5 1

2 2
GEN) UG(KO,,\))

Lemma C.2 Leto ‘70 NT =4 ZZ 1 Zt L @2, Let the conditions in Theorem C.1 hold. Then maxk,< k<K

max

| G(K ) 0—07NT| (VNT)'

Proof of Lemma C.2. When K > Ky, following the proof of Theorem 4.1, we can show that HB“ -
_ 7 * 1/2 e N K . -
BYill = Op(T ™" 4+ N), 1By; = Biill = Op(py/* (T2 + X)), and & S0 [T, 18Y: — el = Op(brT ).
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Noting that 61 it = 1,..,N, only take Ky distinct values, the latter implies that the collection C =
{1, ..., } contains at least Ko distinct vectors, say, &1, ..., a4k, such that ax — ab = Op(brT™1) for
k=1,..., K. For notational simplicity, we rename the other vectors in the above collection as &x,+1, ..., Gk
By the pointwise convergence of Bi-, O Ky+1, -, g Must converge in probability to one of the true values
in {af, ..., a(}(o}.

We classify i € Gy (K, \) if |[8;;—ax|| =0for k=1,..., K, and i € G(K, \) otherwise. Using arguments
like those used in the proof of Theorem 4.3 and that of Lemma S1.14 in SSPb, we can show that

Z P(EkNT,i> = 0(1) and Z P(FkNT,i) = O(l) for k = ]., ...,KQ. (04)
i€GY i€GL (K,
This implies that
N A A A
P(i € Go(K,\) UGgy+1(K,A\) U... UGk (K, X)) = o(1). (C.5)
i=1

That is, the ‘redundant’ last K — K groups containing empty elements asymptotically. Using the fact that
1{i € Gp} =1{i € GO} + 1{i € G:\GY} — 1{i € GY\G}}, we have

K T
1
G(K N T NT Z Z Z Uit (k)]® = DinT + Dont — D3Nt + Danr,

K, T ~ K, T ~
where Dint = 57 23201 Dieqy 2ol (B)]%, Dant = 57 1l Liec, (enap et [t ()]?, Danr =

NT Lortt CicanGu i) Sot—1[@ie(R)?, and Dant = §5 Y0 o1 Siec, Lot [Bit(R)]%. By (C4)-(C.5),
we can readily show that D,y = op ((NT)_l) for ¢ = 2,3,4. For Dy, we discuss several cases: (1) When
T2, is absent in the cointegrating regression and there is no endogeneity in x; ;¢, we can apply the fact & pOSt,
k=1,..., Ky, converge to their true values at N~ 1/27=1 and show that Dy n1 — 0‘(2)NT =0Op ( -7 ) i (2)
When x5 ;; is absent in the cointegrating regression and there is endogeneity in z; ;+, we can apply the fact
&y k = 1,..., Ko, converge to their true values at rate T~ and show that Diy7 — G2yp = Op (T71); (3)
When both z; ;s and xg,: are present, we observe that BQi converge to their (pseudo) true values at rate

p;/zT*1/2

and show that Diyr — o = Op (pT~') . As a result, we have 02 & = 0% + Op(vy%) where

K\
vy = NY2TY2 T2 and p;l/QTl/2 in the above three cases, respectively. This completes the proof of
the lemma. W

D Practical Implementation of the C-Lasso Procedure

In this section, we provide more details on the practical implementation of the C-Lasso procedure in the
followings steps.

1. Initial estimates based on the heterogenous nonstationary panels. Obtain the initial es-
timates Bl,i and 3271- from the LS time-series regression of §; on (:%/Ut,itén) Let QnT(8B1,85) =

N ~ ~ ~ 2 . T [~ = . A T - ~
ﬁ Zizl ||yz - Sﬁuﬂu - $2,i52,i“ ) U? = % Zt:l(yit - 52-3611)2’ and Q1; = % thl SCl,z‘tiL’/Mt-

2. Determining the number (K) of groups along with the tuning parameter \. Let

A= {)\ = ch_3/4, cj = coy’ for j = O,...,J} for some ¢y > 0 and v > 1.
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Given any K € {1,2,..., Knax} and A € A, compute IC(K,\) and IC(K(\),\) where K(\) =
arg min; < <, . IC(K, ) . Choose A € A such that IC(K ()), ) is minimized. The estimated number
of groups is then given by

K =min K(\).
AEA

Note that the above procedure fine-tunes the tuning parameter A for the determination of the number
of groups and is recommended by Su, Shi, and Phillips (2016a, SSPa hereafter). We find in simulations
co = 0.025, v = 2, and J = 3 work fairly well for all DGPs under our investigation. If K =1, stop
here and estimate a homogenous nonstationary panel as usual. Otherwise, move to the next step.

. C-Lasso estimation. Given A and K > 1, solve the PLS problem

A K
QN7 (81 B, @) = Qnr(By, B) + N P GO |

i=1 k=1

Qli(/@Li - Oék)H .

Obtain the C-Lasso estimates {ay} for the group-specific parameters and {Gy,k = 1,..., K} for the
estimated group membership.

. Post-Lasso estimator with bias correction: Given the estimated groups, {Gk, k=1, ...,K}7 we
can obtain the post-Lasso estimators of ay and 3, ; as

—1

~post __ E : ~/ ~ § : ~/ ~ _ 2%
. = xl’iMQ,ixl,i -Tl,iMQ,iyi for k = 1, vevy K,
i€Gl, i€Gr

~post ~ ~ —1 . ~ - R st . N
B = (95/213321) 55/22(% — Z1,;60™") for i € Gy,

where to remove the bias we apply the dynamic OLS method in the post-Lasso estimation by including

the lags and leads of Az ; into xg ;¢ as in Section 4.4. If xg,+ only contains the lags and leads of
Az ;; but no other stationary regressors, we compute the standard errors for the elements of dZOSt as

the square roots of the diagonal elements of ﬁ@@ﬁ/gk)@@% where

R 1 ) . R
@(k) = W Z :c'17z-M27i:r17i and V}k) =

1

14 A .
Nk Z gng,igllyi for k = 1, ...,K,

ieG ieG

and QE&OZ and 011,1' are as defined in Section 4.4. If x5, also contains other stationary covariates,
then we can compute the standard errors for the elements of dz‘m as the square roots of the diagonal

elements of ﬁ@@w(k@@g where

1

- 1 1~ A

(329151 ® Slﬂzgl) Kp171:| ,

ieék
3 =S — Séf];;)if]go’i, Qi denotes the HAC estimator of the long-run variance-covariance in €2;, and
222@ and 220@ denote the plug-in estimators of the short-run variance covariance submatrices X3 ;
and Ego,i of Ez

28



Table A.1: Frequency for selecting K=1, 2,..., 6 groups

N T 1 2 3 4 5 6
DGP1 50 40 0 0 0.992 0.008 0 O
50 80 O 0 1 0 0 0
100 40 O 0 1 0 0 0
100 80 O 0 1 0 0 0
DGP2 50 40 O 0 0.966 0034 0 O
50 80 O 0 0.998 0.002 0 O
100 40 O 0 0982 0018 0 O
100 80 O 0 1 0 0 0
DGP3 50 40 0 0 0.988 0.012 0 O
50 80 O 0 1 0 0 0
100 40 O 0 1 0 0 0
100 80 O 0 1 0 0 0
DGP4 50 40 0 0.976 0.024 0 0 0
50 80 O 1 0 0 0 0
100 40 0 0.956 0.044 0 0 0
100 80 O 1 0 0 0 0
DGP5 50 40 O 0 0.990 0.010 0 O
50 80 O 0 1 0 0 0
100 40 O 0 098 0014 0 O
100 80 O 0 1 0 0 0

E Additional Simulation Results

In this appendix, we assess the performance of the information criterion (IC) proposed in Section C. We set
PNT = %(]\/'T)’l/3 and A = ey T~3/* where ¢\ = 0.025, 0.05, 0.1, or 0.2. We find that the results are not
sensitive to the choice of ¢y and will only report the simulation results for the case where ¢y = 0.1 to save
space. Table A.1 displays the empirical probability with which a particular group number from 1 to 6 is
selected according to IC based on 500 replications for each DGP. Note that the true number of groups is 3
for DGPs 1, 2, 3, and 5 and 2 for DGP 4. When T = 40, the probabilities of correct choices are higher than
95 % in all cases and they reach the unity when 7" = 80. The simulation results show that our information
criterion works fairly well.

F Additional application results

In this section, we report some additional results for the empirical application

F.1 Information criterion for the quarterly data

Table A.2 reports the information criterion (IC) for the quarterly data with different tuning parameter
values: X = ¢y x T73/% where ¢, = 0.025, 0.05, 0.1, and 0.2. Following the majority rule, we decide to select
K = 2 groups for the period 1975.Q1-1998.Q4 and K = 3 groups for the period 1999.Q1-2014.Q2. Note that
the IC is minimized at ¢y = 0.1 and 0.05 for the first and second subsamples, respectively. For this reason,
we choose ¢y = 0.1 and 0.05 for these two subsamples, in the paper.
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Table A.2: The information criterion for different numbers of groups (quarterly data)

From 1975.Q1-1998.Q4 From 1999.Q1-2014.Q2
K/ca 0.025 0.05 0.10 0.20 0.025 0.05 0.10 0.20
-0.7503  -0.7503 -0.7503  -0.7503  -0.2074  -0.2074  -0.2074  -0.2074
-1.1262  -1.1262 -1.1262 -1.0716 -0.4719 -0.4730  -0.4902  -0.4836
-1.1622 -0.7961 -1.0956  -0.7135  -0.5230 -0.5319 -0.5268 -0.4418
-0.7719  -0.7507  -0.7507  -1.0596  -0.5037 = -0.4994  -0.4958  -0.3815
-0.7233  -0.7203 -0.6750  -0.6750  -0.4789 -0.4749  -0.3499  -0.2093
-0.6946  -0.6405 -0.6005 -0.6844  -0.4454  -0.4358  -0.3566  -0.1720

S U W N

Table A.3: The information criterion for different numbers of groups (monthly data)

From 1975-1998 From 1999-2014
K\ca 0.025 0.05 0.10 0.20 0.025 0.05 0.10 0.20
1 -0.8042  -0.8042 -0.8042  -0.8042  -0.1953 -0.1953  -0.1953  -0.1953

-1.0907  -1.0907 -1.0907 -1.0140 -0.4686 -0.4753  -0.4837  -0.4748
-1.1460 -0.8480  -0.8404  -0.8365 -0.5312 -0.5311 -0.5230 -0.3940
-1.0966 ~ -1.0897  -0.8292  -0.9159  -0.5161 -0.5132  -0.5086  -0.3139
-0.9044  -1.0646 -0.9047  -0.7949  -0.5032 -0.4987  -0.3630  -0.2711
-0.8782  -1.0379  -0.7875  -0.7678  -0.4768 -0.4753  -0.3016  -0.2466

ST W N

F.2 Results for the monthly data

In this section we provide the application results for the monthly data.

Table A.3 reports the information criterion (IC) for the monthly data with different tuning parameter
values: A = ¢y x T3/ where ¢\ = 0.025, 0.05, 0.1, and 0.2. As is evident from Table A.3, for the monthly
data our information criterion tends to choose 2 groups for the first subsample and 3 groups for the second
subsample, too. We set ¢y = 0.05 to report the estimation results in Table A.4 and classification results in
Table A.5.

Comparing the estimation results in Table 4 for the quarterly data with those in Table A.4 for the
monthly data, we find that the estimates for either group in either subsample period of the monthly data are
reasonably close to the corresponding estimates based on the quarterly data. This suggests the robustness of
our results. The countries in bold in Table A.5 suggest good coincidences of the classification results based
on the monthly and quarterly datasets.
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Table A.5: Classification results for the monthly data

Panel A: From 1975.M1-1998.M12

Group 1 (N; = 53)

Algeria Austria Bahrain Belgium Bolivia
Botswana Canada Colombia Costa Rica Cyprus
Denmark Egypt Finland France Ghana
Greece Honduras Hungary India Indonesia
Israel Italy Ivory Coast Jamaica Japan
Jordan Kenya South Korea Luxembourg Malta
Mauritius Mexico Morocco Nepal Netherlands
Nigeria Norway Pakistan Paraguay Philippines
Portugal Singapore South Africa Spain Sri Lanka
Sudan Sweden Switzerland Thailand Trinidad and Tobago
Turkey Uruguay Venezuela

Group 2 (N = 3)
Ecuador Kuwait Myanmar

Panel B: From 1999.M1-2014.M7

Group 1 (N; = 53)
Angola Argentina Austria Bangladesh Belgium
Botswana Cambodia Canada Costa Rica Denmark
Dominican Egypt Europe Finland France
Germany Ghana Honduras Iceland India
Iran Italy Jamaica Japan Jordan
Luxembourg Malawi Mauritius Mexico Mongolia
Morocco Mozambique  Nepal Netherlands Nigeria
Norway Pakistan Romania Saudi Arabia Sri Lanka
Sudan Sweden Switzerland Tanzania Trinidad and Tobago
Tunisia Turkey Uganda United Kingdom  Ukraine
Uruguay Venezuela Viet Nam

Group 2 (N, = 20)
Albania Armenia Brazil Bulgaria Colombia
Congo Croatia Georgia Hungary Ireland
Ivory Coast Kuwait Latvia Lithuania Macau
Moldova Peru Philippines Spain Thailand

Group 3 (N3 = 21)
Algeria Bolivia Czech Republic Guatemala Hong Kong
Indonesia Israel Kazakhstan Kenya South Korea
Kyrgyzstan Laos Macedonia Malaysia Myanmar
Paraguay Poland Portugal Russia Singapore

South Africa

Note: Countries in bold denote coincidences of the classification results based on the monthly and quarterly

datasets.
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