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This supplement is composed of four parts. Section B contains the proofs of the technical lemmas in the above

paper. Section C studies the determination of the number of groups. Section D provides some details on the

practical implementation of the C-Lasso procedure. Sections E and F contain some additional simulation

and application results, respectively.

B Proofs of the Technical Lemmas

Proof of Lemma A.1. (i) By Park and Phillips (1988, 1989), we can readily show that
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(ii) and (iii). By Park and Phillips (1988, 1989),
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where we allow that Σ20 =  (2) to be nonzero and 
0
20 denotes the long-run covariance of 2−
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Jensen’s inequalities and the law of iterated expectations,
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P−1

=1  and the fact that 
°°°P−1

=1 

°°°2 ≤  [Re-

call that we allow the constant  to vary across places.] It follows that 2max1≤≤  (   ) ≤
2max1≤≤ 

−
 (


1 {  }) = 

¡
2 2

−


¢
=  (1)  By Proposition 2.1 in Freedman (1975),

we have

 · 
µ
max
1≤≤

|11| ≥ 1

¶
≤ 2 max

1≤≤


Ã¯̄̄̄
¯ 1 2

X
=1

1

¯̄̄̄
¯ ≥ 1

!

≤ 2 max
1≤≤



Ã¯̄̄̄
¯
X
=1

1

¯̄̄̄
¯ ≥  21   ≤ 

!
+2 max

1≤≤
 (   )

= 2 · exp
µ
− 2 421

2 + 4 21 1

¶
+ 

¡
2 2

−


¢
=  (1) +  (1) =  (1)

as  421  =
421
22

=  2−221 ≥ (log)1+ and  211 ≥ (log)1+ for some   0 by
Assumption A.3(iii).

 · 
µ
max
1≤≤

|12| ≥ 1

¶
≤  · 

µ
max
1≤≤

max
1≤≤

|| ≥ 1

¶
≤ 2


2
1

· max
1≤≤

max
1≤≤


h
||2 1 {|| ≥ 1 }

i
= 

³
2 +1

−2
1

´
= 

¡
−2

¢
=  (1) 

Similarly, we can show that  · (max1≤≤ |13| ≥ 1 ) =  (1)  Consequently, we have · (max1≤≤ |1|
≥ 1 ) =  (1) 

To study 2 we apply the Beveridge-Nelson (BN) decomposition (see, e.g., Lemma 2.1 in Phillips and

Solo (1992)) to obtain

 =  (1)  + ̆−1 − ̆

where  (1) =
P∞

=0   ̆ = ̆ ()  =
P∞

=0 ̆−  and ̆ =
P∞

=+1  Then
P−1

=1  =

 (1)
P−1

=1  + ̆0 − ̆−1 and 
†
−1 =  − 0 = 

†
 (1)  + ̆−1 − ̆ where 

†
 (1) =

P∞
=1   It
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follows that

2 = 1
1

 2

X
=1

Ã
−1X
=1



!

†0
−1

0
0

= 1
1

 2

X
=1

Ã
 (1)

−1X
=1

 + ̆0 − ̆−1

!³

†
 (1)  + ̆−1 − ̆

´0
00

= 1
1

 2

X
=1

 (1)
−1X
=1


0


†
 (1)

0
00 + 1

1

 2

X
=1

 (1)
−1X
=1

 (̆−1 − ̆)
0
00

+1
1

 2

X
=1

(̆0 − ̆−1) 0
†
 (1)

0
00 + 1

1

 2

X
=1

(̆0 − ̆−1) (̆−1 − ̆)
0
00

≡ 21 + 22 + 23 + 24

Noting that 21 =
1
 2

P
=1 

†
 and 23 =

1
 2

P
=1 

‡
 where 

†
 = 1 (1)

P−1
=1 

0


†
 (1)

0
00 and


‡
 = 1 (̆0 − ̆−1) 0

†
 (1)

0
00 satisfy 

n

†
|F−1

o
= 0 and 

n

‡
|F−1

o
= 0 we can also follow the

analysis of 1 and show that  ·  (max1≤≤ |2| ≥ 1 ) =  (1) for  = 1 3 It remains to show that

 ·  (max1≤≤ |2| ≥ 1 ) =  (1) for  = 2 4 For 22 we have

22 = 1
1

 2

−1X
=1

 (1) 

X
=+1

(̆−1 − ̆)
0
00

= 1
1

 2

−1X
=1

 (1)  (̆ − ̆ )
0
00

= 1
1

 2

−1X
=1

 (1) ̆
0


0
0 − 1

1

 2

−1X
=1

 (1) ̆
0


0
0 ≡ 22 − 22

For 22 we have

 · 
µ
max
1≤≤

|22| ≥ 1

¶
≤ 2 max

1≤≤
 (|22| ≥ 1 )

≤ 2−2(1 )
− max

1≤≤


°°°°°1
−1X
=1

 (1) ̆
0


0
0

°°°°°


≤ 2−2(1 )
− max

1≤≤

⎧⎨⎩

°°°°°
−1X
=1

1 (1) 

°°°°°
2

 k0̆ k2
⎫⎬⎭
12

≤ 2−2(1 )
−( 2) = (2−32−1 ) =  (1) 

For 22 we can make further decomposition

22 = 1 (1)
1

 2

−1X
=1

Ω̆
0
0

0
0 + 1 (1)

1

 2

−1X
=1

(
0
 − Ω) ̆

0
0

0
0

+1 (1)
1

 2

−1X
=1



³
̆ − ̆0

´0
00 ≡ 22 (1) + 22 (2) + 22 (3) 
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Apparently, max1≤≤ |22 (1)| ≤ 1

max1≤≤

n
k1 (1)k

°°°0̆0°°°omax1≤≤ kΩksp ≤ 

 Noting that

 (
0
 −Ω|F−1) = 0 we can apply the Markov and Burkholder’s inequalities to obtain

 · 
µ
max
1≤≤

|22 (2)| ≥ 1

¶
≤ 2 max

1≤≤
 (|22 (2)| ≥ 1 )

≤ 2−2(1 )
− max

1≤≤


°°°°°1 (1)
−1X
=1

(
0
 −Ω) ̆

0
0

0
0

°°°°°


≤ 2−2(1 )
− 2 = (2−32−1 ) =  (1) 

Similarly, noting that 
h
(̆ − ̆0)|F−1

i
= 0 we can apply the Markov and Burkholder’s inequali-

ties (e.g., Hall and Heyde, 1980, p.23) to obtain  · (max1≤≤ |22 (3)| ≥ 1 ) =  (1)  Consequently,

we have  ·  (max1≤≤ |22| ≥ 1 ) =  (1) 

For 24, we make the following decomposition

24 = 1
1

 2
̆0 (̆0 − ̆ )

0
00 − 1

1

 2

X
=1

̆−1 (̆−1 − ̆)
0
00 ≡ 24 − 24

By the Markov inequality

 · 
µ
max
1≤≤

|24| ≥ 1

¶
≤ 2 max

1≤≤
 (|24| ≥ 1 )

≤ 2−2(1 )
− k1̆0 (̆0 − ̆ )

0
0k

= (2−2−1 ) =  (1) 

As in the analysis of 22, we can show that · (max1≤≤ |24| ≥ 1 ) =  (1)  Then · (max1≤≤ |24|
≥ 1 ) =  (1)  In sum, we have  ·  (max1≤≤ |2| ≥ 1 ) =  (1) 

For 3 we make the following decomposition

3 = 1
1

 2

X
=1

∞X
=1

∞X
=1

−
0
−

0


0
0

= 1
1

 2

X
=1

∞X
=1

Ω
0


0
0 + 1

1

 2

X
=1

∞X
=1


£
−0− −Ω

¤
0

0
0

+1
1

 2

X
=1

∞X
=1

∞X
=+1

−
0
−

0


0
0 + 1

1

 2

X
=1

∞X
=1

∞X
=+1

−
0
−

0


0
0

≡ 31 + 32 + 33 + 34

It is easy to show that max1≤≤ |31| ≤  For 3 with  = 2 3 4 by tedious calculations we

can show that  (3)
4 ≤ −6 With this, we can apply the Markov inequality to show that  ·

 (max1≤≤ |3| ≥ 1 ) ≤ 2(1 )
−4max1≤≤  |3|4 = 

¡
2−6−41

¢
=  (1) for  = 2 3 4

Then  ·  (max1≤≤ |3| ≥ 1 ) =  (1) for each fixed constant   0

Consequently, we have shown (i1).

We now show (i2) 
¡
max1≤≤ 1


k̄1̄k ≥ 1

¢
= 

¡
−1

¢
for any fixed constant   0 Noting
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that by Lemma S1.2 in Su, Shi, and Phillips (2016b, hereafter SSPb),



µ
max
1≤≤

|̄| ≥ −12 (log  )3
¶
= 

¡
−1

¢


Using  =  (1)  + ̆−1 − ̆

1


̄1 =

1

 2

X
=1

1 =
1

 2

X
=1

1

X
=1



=
1

 2
1 (1)

X
=1

X
=1

 +
1


1̆0 − 1

 2
1

X
=1

̆

≡ 1 + 2 + 3 say.

As in the analysis of 1, we can show that · (max1≤≤ |1| ≥ 1 ) =  (1)  By the Markov inequality,

we can show that

 · 
µ
max
1≤≤

|2| ≥ 1
12 (log  )

−3
¶
≤ 2 max

1≤≤

³
k1̆0k ≥ 1

32 (log  )
−3´

= 2
³

−2
1

−3 (log  )6
´
=  (1) 

For 3 we use the fact that 
°°°P

=1 1̆

°°°2 ≤   and the Markov inequality to obtain

 · 
µ
max
1≤≤

|3| ≥ 1
12 (log  )−3

¶
≤ 2 max

1≤≤


Ã
1

 2

°°°°°
X
=1

1̆

°°°°° ≥ 1
12 (log  )−3

!

≤ 2−4³
1 12 (log  )

−3´2 ( )

= 
³
2

−2
1

−4 (log  )6
´
=  (1) 

Consequently,  (max1≤≤ 1

k̄1k ≥ 1

12 (log  )
−3
) = 

¡
−1

¢
 Let  =

P
=1 1 (1)  Then

1 =
1
2

P
=1  where  (|F−1) = −1 We can readily follow the analysis of 2 and show that

 (max1≤≤ |1| ≥ 1 ) = 
¡
−1

¢
 It follows that  ·  (max1≤≤ |̄1| ≥ 1

12 (log  )
−3
) =

 (1)  Then



µ
max
1≤≤

1


k̄1̄k ≥ 1

¶
≤ 

µ
max
1≤≤

1


k̄1̄k ≥ 1  max

1≤≤
|̄| ≤ −12 (log  )3

¶
+ 

µ
max
1≤≤

|̄| ≥ −12 (log  )3
¶

≤ 

µ
max
1≤≤

1


k̄1k ≥ 1

12 (log  )−3
¶
+ 

¡
−1

¢
= 

¡
−1

¢
+ 

¡
−1

¢
= 

¡
−1

¢


(ii) Noting that 1

̃02̃ =

1

02−̄2̄ it suffices to prove (ii) by showing that (i1)  (max1≤≤ || 1 02

−Σ20|| ≥ 
12
2 2 ) = 

¡
−1

¢
and (i2)  (max1≤≤ 1


k̄2̄k ≥ 

12
2 2 ) = 

¡
−1

¢
for any fixed

7



constant   0 where 2 = −12(log  )3 (i1) follows directly from a modification of the proof of

Lemma S.1.2 in SSPb. Noting that both 2 and  have zero mean, we can follow SSPb and show

that 
³
max1≤≤ k̄2k ≥ 

12
2 2

´
= 

¡
−1

¢
and  (max1≤≤ |̄| ≥ 2 ) = 

¡
−1

¢
 implying

that 
¡
max1≤≤ k̄2̄k ≥ 22

¢
= 

¡
−1

¢
 Consequently, we have  (max1≤≤ || 1 ̃02̃ − Σ20|| ≥


12
2 2 ) = 

¡
−1

¢


(iii) Noting that  (2) = 0, the proof is analogous to that of (i) and thus omitted.

(iv) Note that 1

̃02̃2 − Σ22 = 1



P
=1

¡
2

0
2 −Σ22

¢− ̄2̄
0
2 Using Lemma S1.2 in SSPb, we

can readily show that  (max1≤≤ || 1
P

=1

¡
2

0
2 −Σ22

¢ || ≥ 22 ) = 
¡
−1

¢
and  (max1≤≤

k̄2k ≥ 
12
2 2 ) = 

¡
−1

¢
for any   0 Thus (iv) follows.

(v) Note that ̂̃1̃∗ =
1
2

̃01̃− 1
 2

̃01̃2Σ
−1
22Σ20 The condition in Assumption A.2(ii)-(iii) ensures

that ̃02Σ
−1
22Σ20 behaves like ̃ despite the possible divergence of 2 As a result, part (i) also holds when

1
2

̃01̃ is replaced by
1
2

̃01̃2Σ
−1
22Σ20 Then



µ
max
1≤≤

°°°̂̃1̃∗
°°° ≥ 1

¶
≤ 

µ
max
1≤≤

°°°° 1 2 ̃01̃
°°°° ≥ 1 2

¶
+

µ
max
1≤≤

°°°° 1 2 ̃01̃2Σ−122Σ20
°°°° ≥ 1 2

¶
= 

¡
−1

¢
+ 

¡
−1

¢
= 

¡
−1

¢


(vi) Note that ̂̃2̃∗ =
1

̃02

¡
̃ − ̃02Σ

−1
22Σ20

¢
= 1


02

¡
 − 02Σ

−1
22Σ20

¢−̄02 ¡̄ − ̄02Σ
−1
22Σ20

¢


Since 
¡
 − 02Σ

−1
22Σ20

¢
= 0 we can use Lemma S1.2 in SSPb and show that  (max1≤≤ || 1 02(−

02Σ
−1
22Σ20)|| ≥ 

12
2 22) = 

¡
−1

¢
for any fixed   0 In addition,  (max1≤≤ ||̄2||≥ 

12
2 2 ) =


¡
−1

¢
and  (max1≤≤ ||̄|| ≥ 2 ) = 

¡
−1

¢
 from which we can readily show that  (max1≤≤ || 1 ̄02

(̄ − ̄02Σ
−1
22Σ20)|| ≥ 

12
2 22) = 

¡
−1

¢
 Then (vi) follows. ¥

Proof of Lemma A.3. (i) Let  ∈ R1 be an arbitrary vector such that kk = 1 Let  =
√
2 log log  

By arguments used in the proof of Lemma 2.1 of Corradi (1999), we can verify the conditions in Theorem 2

of Eberlein (1986) and obtain

1

[]
Ω
−12
11 ̃1[] =

1

[]
Ω
−12
11

£
1[] − ̄1

¤
=

1

[]
Ω
−12
11

⎡⎣[]X
=1

1 − 1



X
=1

X
=1

1

⎤⎦
=

1

[]
̃ () +  (1)

for each  ∈ [0 1]  This result can be strengthened to hold uniformly in  ∈ [0 1] with [] replaced by  

Let  = [] and Ω
−12
11

P[]
=1 1 = [] =  ()  Define

 () = ([] + 1− ) () + ( − [])+1 () 

Then sup∈[01]
1

k ()− ()k =  (1)  sup∈[01]

1

|| () − () || =  (1) as  → ∞

and the set of norm limit points of
©
−1 

ª
and

©
−1 

ª
coincides with the set of norm limit points of©

−1 

ª
with probability one. By Theorem 1 in Strassen (1964), the latter is relatively norm compact
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with the set of limit points coinciding a.s. with K where

K =
½
 : [0 1]→ R1   (0) = 0  is absolutely continuous,

Z 1

0

°°°̇ ()°°°2  ≤ 1¾ 

Here ̇ () =  () ∇ First, observe that



Ã
lim sup
→∞

max
kk=1

0Ω−1211

1

2

X
=1

̃1̃
0
1Ω

−12
11  = lim sup

→∞
max
kk=1

1

2
0
Z 1

0

̃ () ̃ ()
0


!
= 1

where ̃ () =  ()−
R 1
0
 () 

Now, let  denote the continuous map from the space of 1-dimensional continuous functions on

[0 1], closed with respect to the sup norm, to the Euclidean space such that  () = 0
R 1
0
̃ () ̃ ()0 

where ̃ () =  () − R 1
0
 ()  By the Corollary of Theorem 3 in Strassen (1964), with probability one©


¡
−1 

¢ª
is relatively norm compact with the set of norm limit points coinciding almost surely with

 (K)  This implies that



Ã
lim sup
→∞

max
kk=1

1

2
0
Z 1

0

̃ () ̃ ()
0
 = sup

∈K
max
kk=1

 ()

!


By the definition of  and ,

sup
∈K

max
kk=1

 () = sup
∈K

max
kk=1

0
Z 1

0

̃ () ̃ ()0 

≤ sup
∈K

max
kk=1

0
µZ 1

0

 ()  ()0  −
Z 1

0

 () 

Z 1

0

 ()0 
¶


≤ sup
∈K

max
kk=1

Z 1

0

µZ 

0

0̇ () 
¶2

 ≤ sup
∈K

max
kk=1

Z 1

0

µZ 

0

12

¶Z 

0

³
0̇ ()

´2


= sup
∈K

max
kk=1

Z 1

0



µ
0
Z 

0

̇ () ̇ ()
0


¶
 ≤

Z 1

0

 =
1

2


where the second inequality follows from the Hölder’s inequality, and the third follows from the fact that

max
kk=1

0
Z 

0

̇ () ̇ ()
0
 ≤ max

µZ 

0

̇ () ̇ ()
0


¶
≤ tr

µZ 

0

̇ () ̇ ()
0


¶
≤
Z 1

0

°°°̇ ()°°°2  = 1
for any  ∈ [0 1] and  ∈ K It follows that

lim sup
→∞

max

Ã
Ω
−12
11

1

2

X
=1

̃1̃
0
1Ω

−12
11

!
≤ 1
2
+  a.s. for any   0
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and

lim sup
→∞

max

Ã
1

2

X
=1

̃1̃
0
1

!
= lim sup

→∞
max

Ã
Ω
−12
11

1

2

X
=1

̃1̃
0
1Ω

−12
11 Ω11

!

≤ lim sup
→∞

max

Ã
Ω
−12
11

1

2

X
=1

̃1̃
0
1Ω

−12
11

!
max
1≤≤

max (Ω11)

≤
µ
1

2
+ 

¶
̄Ω11 a.s.,

where recall that ̄Ω11 denotes the upper bound for max (Ω11) 

(ii) Let  be a 2× 1 vector such that kk = 1 By Lemma A.2(iv), with probability 1− 
¡
−1

¢
we have

min
1≤≤

inf
kk=1

0̂̃2̃2 = min
1≤≤

inf
kk=1

³
0Σ22 + 0

³
̂̃2̃2 −Σ22

´

´

≥ min
1≤≤

inf
kk=1

0Σ221 − max
1≤≤

°°°̂̃2̃2 −Σ22
°°°

≥ min
1≤≤

min(Σ22)−  (1) ≥ 222

(iii) Note that ̂̃̃ =

⎛⎝ 1
 2

P
=1 ̃1̃

0
1

1
 32

P
=1 ̃1̃

0
2

1
32

P
=1 ̃2̃

0
1

1


P
=1 ̃2̃

0
2

⎞⎠ =

⎛⎝ ̂11

√
̂12√

̂012 ̂22

⎞⎠ 

Let  = (01 
0
2)
0
be a (1 + 2)×1 vector such that kk = 1 Then by Lemmas A.2(iii)-(iv) and Assumptions

A.2(i), A.2(iii), and A.3(iv), with probability 1− 
¡
−1

¢
min
1≤≤

inf
kk=1

0 ̂̃̃  = min
1≤≤

inf
kk=1

³
01̂̃1̃11 + 02̂̃2̃22 + 2

0
1̂̃1̃22

´
≥ min

1≤≤
inf
kk=1

³
01̂̃1̃11 + 02̂̃2̃22

´
− 2 max

1≤≤

°°°√̂̃1̃2

°°°
≥ min

1≤≤

h
minmin(̂̃1̃1) min(̂̃2̃2)

i
− 2 max

1≤≤

°°°√̂̃1̃2

°°°
≥ 11(2 )

Then (iii) follows. ¥

Proof of Lemma A.4. (i) Noting that 1
2

̃012̃1 − 1
2

̃01̃1 = − ( 12 ̃01̃2)( 1 ̃02̃2)−1
×( 1

2
̃02̃1) it suffices to show that

max
1≤≤

°°°° ( 1 2 ̃01̃2)( 1 ̃02̃2)
−1(

1

 2
̃02̃1)

°°°°
is (1) with probability 1− 

¡
−1

¢
 This follows because by Lemma A.2(iii)-(iv) and Assumptions A.2(iii)

and A.3(iv), with probability 1− 
¡
−1

¢
we have

max
1≤≤

°°°° ( 1 2 ̃01̃2)( 1 ̃02̃2)
−1(

1

 2
̃02̃1)

°°°° ≤  max
1≤≤

°°°° 1 2 ̃01̃2
°°°°2 ∙ min1≤≤

min

µ
1


̃02̃2

¶¸−1
= 

¡
2

2
1

¢
 (1) = 

¡
−1
¢


10



(ii) Noting that 1

̃021̃2 =

1

̃02̃2 −  (

1
2

̃02̃1)(

 2

̃01̃1)
−1( 1

 2
̃01̃2) the result follows

from Lemmas A.2(iii)-(iv) and Assumption A.2(i) and the fact that  (
√
21 )

2 = (22 ). The

detailed arguments are analogous to those used in the proof of (iii) below.

(iii) Note that 1

̃012̃

∗
 =

1

̃01̃

∗
 − 1


̃01̃2(

1

̃02̃2)

−1 1

̃02̃

∗
  By Lemma A.2(v),  (max1≤≤

|| 1
2

̃01̃
∗||  1 2) = 

¡
−1

¢
 Define the following two events:

1 =

½
min
1≤≤

min

µ
1


̃02̃2

¶
≥ 222

¾
and 2 =

(
max
1≤≤

°°°° 1 2 ̃01̃2
°°°°
sp

≤ 
12
2 1

)


By Lemma A.2(iii)-(iv),  ( ) = 1 − 
¡
−1

¢
for  = 1 2 Denote the complement of  as 




for  = 1 2 Then, in view of the fact that kk ≤ kksp kk and kksp ≤ kk for any two conformable
matrices  and  we have



Ã
max
1≤≤

°°°°° 1 2 ̃01̃2
µ
1


̃02̃2

¶−1µ
1


̃02̃

∗


¶°°°°°  12

!

≤ 

Ã
max
1≤≤

°°°° 1 2 ̃01̃2
°°°°
sp

°°°° 1 ̃02̃
∗


°°°° ∙ min1≤≤
min

µ
1


̃02̃2

¶¸−1
 1 2 1 ∩2

!
+ (

1 ∪
2 )

≤ 

µ
max
1≤≤

°°°° 1 ̃02̃
∗


°°°°   · 22−122 4

¶
+ 

¡
−1

¢
= 

¡
−1

¢
+ 

¡
−1

¢
= 

¡
−1

¢


where the first equality follows by Lemma A.2(vi) and the fact that 
12
2 2 = (

−12
2 ). Consequently, the

result in (iii) follows.

(iv) Note that 1

̃021̃

∗
 =

1

̃02̃

∗
− ( 1 2 ̃02̃1)( 12 ̃01̃1)−1( 12 ̃01̃∗ ) ≡ 1−2 say. By Lemma

A.2(vi),  (max1≤≤ k1k ≥ 
12
2 2 2) = 

¡
−1

¢
 Noting that

k2k ≤ 

°°°° 1 2 ̃02̃1
°°°°
sp

∙
min

µ


 2
̃01̃1

¶¸−1 °°°° 1 ̃01̃
∗


°°°°
and 1 =  (1)  we can readily apply Lemmas A.2(iii), A.2(v), and A.3(i) to show that  (max1≤≤
k2k ≥ 

12
2 22) = 

¡
−1

¢
 ¥

Proof of Lemma A.5. (i) Noting that ̃1−01 =
¡

2

̃012̃1
¢−1 

 2
̃012̃

∗
  the result follows

from Lemmas A.4(i) and (iii), and Assumption A.2(i).

(ii) Noting that

̃2 − ∗2 =

µ
1


̃021̃2

¶−1
1


̃021̃

∗


=

"µ
1


̃021̃2

¶−1
−Σ−122

#
1


̃021̃

∗
 +Σ

−1
22

1


̃021̃

∗
 

the result follows from Lemma A.4(ii) and (iv) and Assumption A.2(iii).

(iii) Let ∗ = (
00
1 

∗0
2)

0 which is 0 = (
00
1 

00
2)

0 if Σ20 = 0 Noting that ̃ = ̃01
0
1 + ̃02

0
2 +

11



̃ = ̃0
∗
 + ̃∗ with ̃∗ = ̃ − ̃02Σ

−1
22Σ20 we have

̃2 =
1



X
=1

[̃ − ̃
0
̃]

2 =
1



X
=1

[̃∗ + ̃0(
∗
 − ̃)]

2

=
1



X
=1

(̃∗)
2 + (∗ − ̃)

0 1


X
=1

̃̃
0
(

∗
 − ̃) + 2(

∗
 − ̃)

0 1


X
=1

̃̃
∗


≡ 1 +2 + 23 say.

We prove (i) by showing that (i1) 
¡
max1≤≤

¯̄
1 −Σ∗02

¯̄
 
¢
= 

¡
−1

¢
 (i2)  (max1≤≤ |2|  ) =


¡
−1

¢
, and (i3)  (max1≤≤ |3|  ) = 

¡
−1

¢
for any   0 Noting that

1 −Σ∗02 =
1



X
=1

¡
̃ − ̃02Σ

−1
22Σ20

¢2 − ¡Σ00 −Σ02Σ−122Σ20¢
=

1



X
=1

£
2 −

¡
2
¢¤− 2 +Σ02Σ

−1
22

Ã
1



X
=1

̃2̃
0
2 −Σ22

!
Σ−122Σ20

−2
Ã
1



X
=1

̃̃
0
2 −Σ02

!
Σ−122Σ20

≡ 11 +12 +13 +14

By a simple application of Lemma S1.2 in SSPb, we can show that  (max1≤≤ |1|  4) = 
¡
−1

¢
for  = 1 2 By Lemma A.2(iv) and Assumption A.2(iv),  (max1≤≤ |13|  4) = 

¡
−1

¢
 By Lemma

A.2(ii) and Assumption A.2(iv),  (max1≤≤ |14|  4) = 
¡
−1

¢
 It follows that



µ
max
1≤≤

¯̄
1 −Σ∗02

¯̄
 

¶
= (−1)

For 2 we have by the Cauchy-Schwarz inequality

2 ≤ 2(01 − ̃1)
0 1


X
=1

̃1̃
0
1(

0
1 − ̃1) + 2(

∗
2 − ̃2)

0 1


X
=1

̃2̃
0
2(

∗
2 − ̃2)

≡ 221 + 222

With probability 1− 
¡
−1

¢
 21 is bounded above by

2 log log  max
1≤≤

°°°01 − ̃1

°°°2 max
1≤≤

°°°°° 1

2 2 log log 

X
=1

̃1̃
0
1

°°°°°
sp

= 
¡
 log log 2

2
1

¢
=  (1) 

by Lemma A.3(i) and part (i) and Assumption A.3(iii). And 22 bounded above by

max
1≤≤

°°°∗2 − ̃2

°°°2 max
1≤≤

°°°°° 1
X
=1

̃2̃
0
2

°°°°°
sp

= (2
2
2 ) =  (1) 

by Lemma A.2(iv), Assumption A.2(iii), and part (ii). It follows that  (max1≤≤ |2|  ) = 
¡
−1

¢

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Similarly, with probability 1− 
¡
−1

¢


|3| ≤
¯̄̄̄
¯(01 − ̃1)

0 1


X
=1

̃1̃
∗


¯̄̄̄
¯+

¯̄̄̄
¯(∗2 − ̃2)

0 1


X
=1

̃2̃
∗


¯̄̄̄
¯

≤ 
°°°01 − ̃1

°°°°°°°° 1 2
X
=1

̃1̃
∗


°°°°°+ °°°∗2 − ̃2

°°°°°°°° 1
X
=1

̃2̃
∗


°°°°°
=  (1 )  (1 ) + (

12
2 2 )(

12
2 2 ) =  (1) 

by Lemma A.2(v)-(iv), parts (i)-(ii), and Assumption A.3(iii). It follows that  (max1≤≤ |2|  ) =


¡
−1

¢
 ¥

Proof of Lemma A.6. (i) Noting that 1
2

̃01̃
∗
 =

1
2

̃01̃ − 1
2

̃01̃2Σ
−1
22Σ20 it suffices to show

1


P
=1

°° 1
2

̃01̃
°°2 = 

¡
−2

¢
and 1



P
=1

°° 1
2

̃01̃2Σ
−1
22Σ20

°°2 = 

¡
−2

¢
 We only show the for-

mer one as the proof of the latter claim is similar under the side condition
°°Σ−122Σ20°° ≤  ∞ which is

ensured by Assumption A.2(ii)-(iii). By equation (B.1) and the Cauchy-Schwarz inequality

1



X
=1

°°°° 1 2 ̃01̃
°°°°2 ≤ 2



X
=1

°°°° 1 201
°°°°2 + 2

 2

X
=1

k̄1̄k2

≤ 6



X
=1

³
k1k2 + k2k2 + k3k2

´
+

2

 2

X
=1

k̄1̄k2

≡ 61 + 62 + 63 + 24 say.

For 1 we have

(1) =
1



X
=1



⎛⎝°°°°°1 1 2
X
=1

−1X
=1


0


0
0

0
0

°°°°°
2
⎞⎠

=
1

 4

X
=1



⎛⎝°°°°°
X
=1



°°°°°
2
⎞⎠ =

1

 4

X
=1

X
=1


¡
2
¢

≤ 

 4

X
=1

X
=1

 = 
¡
−2

¢


where  = 1
P−1

=1 
0


0
0

0
0 satisfies  (|F−1) = 0 and the first inequality follows because we can

show that 
¡
2
¢ ≤  For 2 we can follow the analysis of 2 in the proof of Lemma A.2 and show that

(2) ≤ 4


P
=1[k21k2 + k22k2 + k23k2 + k24k2] = (−2) In addition,

(3) =
1



X
=1



°°°°°1 1 2
X
=1


0


0
0

°°°°°
2

≤ 

 2

X
=1



(
1



X
=1

kk2
)2

≤ 

 2

X
=1

1



X
=1

 kk4 = 
¡
−2

¢
 and

(4) =
1

 2

X
=1

 k̄1̄k2 ≤ 1

 2

X
=1

n
(k̄1k4)

¡
̄4
¢o12

= 
¡
−2

¢

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where the last equality follows from the fact that (̄4 ) ≤ −2 and (k̄1k4) ≤  2 Consequently,
1


P
=1

°° 1
 2

̃01̃
°°2 = 

¡
−2

¢
and 1



P
=1

°° 1
2

̃01̃
°°2 = 

¡
−2

¢
by the Markov inequality.

(ii) Noting that

1

 32
̃02̃

∗
 =

1

 32
̃02̃ −

1

 32
̃02̃2Σ

−1
22Σ20

=
1

 32

¡
̃02̃ −Σ20

¢− 1

 32

¡
̃02̃2 −Σ22

¢
Σ−122Σ20

=
1

 32

¡
02 −Σ20

¢− 1

 32

¡
022 −Σ22

¢
Σ−122Σ20 −

1

 12
̄02̄

+
1

 12
̄02̄2Σ

−1
22Σ20 ≡ 1 + 2 + 3 + 4 say,

it suffices to show 1


P
=1 kk2 = 

¡
2

−2¢ for  = 1 2 3 4 We can prove these by the Markov

inequality. Then (ii) follows.

(iii) By the BN decomposition 1 = 1[ (1)
P

=1 + ̆0− ̆] and the Cauchy-Schwarz inequality,

1



X
=1


°°°̂1°°°2 ≤ 1



X
=1



°°°°° 1 2
X
=1

1
0
1

°°°°°
2

≤ 1



X
=1



°°°°° 1 2
X
=1

1 (1)
X

=1



X
=1

0 (1)
0
01

°°°°°
2

+
1



X
=1



°°°°° 1 2
X
=1

1[(̆0 − ̆) (̆0 − ̆)
0
01

°°°°°
2



By straightforward moment calculation, we can bound the first term in the last expression by  (1) and the

second term by 
¡
−2

¢
 Then 1



P
=1

°°°̂1°°°2 =  (1) by the Markov inequality.

(iv) The proof is analogous to that of (i) and thus omitted.

(v) Noting that ̃012̃
∗
 = ̃01̃

∗
 − ̃01̃2(̃02̃2)−1̃02̃∗  we have by Lemmas A.2(ii), A.2(iv), part

(iv), and Assumption A.3(iii)

1



X
=1

°°°° 1 2 ̃012̃
∗


°°°°2 ≤ 2



X
=1

°°°° 1 2 ̃01̃∗
°°°°2 + 2

 2

X
=1

°°°°° 1 2 ̃01̃2
µ
1


̃02̃2

¶−1
1


̃02̃

∗


°°°°°
2

≤ 

¡
−2

¢
+max



°°°°°
µ
1


̃02̃2

¶−1°°°°°
sp

max


°°°° 1 ̃02̃
∗


°°°°2 2
X
=1

°°°° 1 2 ̃01̃2
°°°°2

≤ 

¡
−2

¢
+ (1)  (

12
2 2 )

¡
2

−2¢ = 

¡
−2

¢
 ¥

Proof of Lemma A.7. (i) Note that  =
1

 2

P
∈0


̃01̃1− 1

 2

P
∈0



¡
̃01̃2

¢ ¡
̃02̃2

¢−1
× ¡̃02̃1¢ ≡ 1−2  By Lemmas A.2(ii)-(iii), k2 k ≤  max∈0



°° 1
2

̃01̃2
°°2 °°( 1


̃02̃2)

−1°°
sp
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= 
¡
2

2
1

¢
=  (1)  By the arguments used in Phillips and Moon (1999, Section 4), we can show that

1 =
1



X
∈0





µZ 1

0

̃1̃
0
1

¶
+  (1) =

1



X
∈0



1 (1)

µZ 1

0

̃1̃
0
1

¶
 (1)

0
01 +  (1)

=
1

6

X
∈0



1 (1) (1)
0
01 +  (1) 

where we use the fact that (
R 1
0
̃1̃

0
1) = (

R 1
0
1

0
1)−(

R 1
0
1

R 1
0
 0
1) =

1
21− 1

31 =
1
61 Thus

(i) follows.

(ii) Let  ≡
P

=1  
∗
 ≡ − 1



P
=  and  = 1+1+2 Note that ̃ = − ̄ = ∗− 1


−1

We apply the arguments as used in the proof of Theorem 16 in Phillips and Moon (1999, PM hereafter) and

derive the limiting distribution of 1 below.
1

First, we apply the BN decompositions. Noting that  =  (1)  + ̆−1 − ̆ we have 1 =

1 [ (1) + ̆0 − ̆] and

 − 02Σ
−1
22Σ20 = [ (1)  + ̆−1 − ̆]

0 £
00 − 02Σ

−1
22Σ20

¤
=
£
0 (1)

0 + ̆0−1 − ̆0
¤


where  = 00 − 02Σ
−1
22Σ20 is a  × 1 vector. It follows that we can write the demeaned versions of 1

and  − 02Σ
−1
22Σ20 as

̃1 = 1

h
 (1) ̃ + ĕ0 − ĕi and ̃ − ̃02Σ

−1
22Σ20 =

h
̃0 (1)

0 + ĕ0−1 − ĕ0i 
where ̃ = − 1



P
=1 and ĕ = ̆− 1



P
=1

ĕ Let  =P
=1  and ̃


 = − 1



P
=1 




As in PM (p.1105), we can obtaining the following decomposition,

̄ − B =
1√


X
∈0



1



X
=1

̃1
¡
̃ − ̃02Σ

−1
22Σ20

¢− B

=
1√


X
∈0



(
1



X
=1

1 (1)

∙
̃̃

0
 −

µ
1−  + 1

2

¶
+1

¸
 (1)

0


+
1



−1X
=1

1

Ã
̃+1ĕ0 + ∞X

=0

+1̆
0


!
 − 1



∞X
=0

1+1̆
0


− 1



X
=1

1 (1)
hĕ̃0 (1)0 − ̆0 (1)

0i
 +

1



X
=1

1ĕ0̃0 (1)0 
− 1

1̃



ĕ0  + 1


1̃


1
ĕ00¾

=
1√


X
∈0



{ +1 +2 +3 +4 +5 +6 }  say.

Note that our terms  and  ( = 1 2  6) parallel the corresponding term in PM. There are

three main differences: (1) all variables involved here are time-demeaned versions of those in PM; (2) we

need to center ̃̃
0
 around its expectation (1 − +1

2 )+1 while PM centers the non-demeaned version of

̃̃
0
 around its expectation +1 and the difference between the two centering terms, namely, −+1

2 +1
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enters the bias term B2 and reflects the contribution of time-demeaning of random variables in the

regression; (3) the sign 2 is negative rather than positive. One can verify that
P∞

=0

P∞
=0 +

0
 =

 (1) (1)
0
+
P∞

=0 +1̆
0
 − ̆0 (1)

0


Second, we study the asymptotic distribution of 
−12


P
∈0


  Noting that

1


P
=1 ̃̃

0
 =

1


P
=1̃

0
 and ̃ =  − 1


  we have

1√


X
∈0



 =
1√


X
∈0



1



X
=1

1 (1)

∙
̃̃

0
 −

µ
1−  + 1

2

¶


¸
 (1)

0


=
1√


X
∈0



1



X
=1

1 (1)−10 (1)
0
 − 1√



X
∈0



1

 2

X
=1

1 (1) (
0
 − ) (1)

0


+
1√


X
∈0



1



X
=1

1 (1) [
0
 − ] (1)

0


=
1√


X
∈0



{1 −2 +3}  say.

By direct moment calculations, we can readily show that°°°°°°
⎛⎝ 1√



X
∈0



3

⎞⎠°°°°°° ≤ 1



1√


X
∈0



°°1(1) (1)0 °° = 
³p

2
´
=  (1)

and
°°°Var³ 1√



P
∈0


3

´°°° = °°° 1


P
∈0


Var (3 )

°°° ≤ 1


P
∈0


 k3k2 = 

¡
2

−2¢ =  (1) 

Then 1√


P
∈0


3 =  (1) by the Chebyshev inequality. It follows that

Var

⎛⎝ 1√


X
∈0





⎞⎠ =
1



X
∈0



©
Var (1 ) +Var (2 )−Cov (1  2 )−Cov (1 2 )0

ª
Then we study the asymptotic variance by terms. For 1 

Var (1 ) =
1

 2

X
=1

X
=1


£
1 (1)−10 (1)

0
 

0
 (1) 

0
−1 (1)

0
01
¤

=
1

 2

X
=1


©
1 (1)−10 (1)

0
 

0
 (1) 

0
−1 (1)

0
01
ª

=
1

 2

X
=1

(0 (1)⊗ 1 (1))
n
vec (−10) [vec (−10)]

0 o
(0 (1)⊗ 1 (1))

0

=
1

 2

X
=1

(0 (1)⊗ 1 (1))
¡


0
 ⊗−10−1

¢
(0 (1)⊗ 1 (1))

0

=
1

 2

X
=1

(− 1) (0 (1)⊗ 1 (1)) (
0
 (1)⊗ 1 (1))

0
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=
1

2
0 (1) (1)

0
 ⊗ 1 (1) (1)

0
01 +

¡
−1

¢
=
1

2
0Ω1Ω

0
1 +

¡
−1

¢


where the second equality follows from the fact that {−10F} is a martingale difference sequence
(m.d.s.), the third equality holds because vec(123) = (03 ⊗1)vec(2) with 1 = 1 (1)  2 =

−10, and 3 =  (1)
0
 the fourth equality follows from the fact that vec(1

0
2) = 2 ⊗ 1 and

(2 ⊗ 1) (2 ⊗ 1)
0
= 2

0
2 ⊗ 1

0
1 the fifth equality holds because 

¡


0
 ⊗−10−1

¢
=  (

0
) ⊗


¡
−10−1

¢
= (− 1) (1+)2  Similarly, we have for 2 

Var (2 )

=
1

 2

X
=1

X
=1


£
1 (1)

¡


0
 − 

¢
 (1)

0
 

0
 (1)

¡


0
 − 

¢
 (1)

0
01
¤

= (0 (1)⊗ 1 (1))
1

 4

X
=1

X
=1

[vec
¡


0


¢
vec

¡


0


¢0 − vec (1+) vec
¡


0


¢0
−vec ¡

0


¢
vec (1+)

0 + vec (1+) vec (1+)
0](0 (1)⊗ 1 (1))

0

= [0 (1)⊗ 1 (1)]
1

 4

X
=1

X
=1

[vec
¡


0


¢
vec

¡


0


¢0 − vec (1+) vec (1+)
0
][0 (1)⊗ 1 (1)]

0

= [0 (1)⊗ 1 (1)]
1

 4

X
=1

X
=1

[
¡


0
 ⊗

0


¢− vec (1+) vec (1+)
0][0 (1)⊗ 1 (1)]

0

and

1

 4

X
=1

X
=1


¡


0
 ⊗

0


¢
=

1

 4

X
=1

X
=1

h
 ( ∧ ) (+1)2 +  (1+ + vec(+1)vec(+1)

0)
i

=

½
1

3
(1+)2 +

1

4
(+1 + vec(+1)vec(+1)

0)
¾
+

¡
−1

¢


where 1+ is the (+1)
2× (+1)2 commutation matrix such that 1+vec() =vec(

0) for any (+ 1)×
(+ 1) matrix . It follows that

Var (2 ) = (
0
 (1)⊗ 1 (1))

µ
1

3
(1+)2 +

1

4
1+

¶
(0 (1)⊗ 1 (1))

0 +
¡
−1

¢


For Cov(1  2 ) 

Cov (1 2 ) =
1

 3

X
=1

X
=1


£
1 (1)−10 (1)

0
 

0
 (1)

0
 (1)

0
01
¤

= [0 (1)⊗ 1 (1)]
1

 3

X
=1

X
=1


n
vec (−10) vec

¡


0


¢0o
[0 (1)⊗ 1 (1)]

0

= [0 (1)⊗ 1 (1)]
1

 3

X
=1

X
=1


¡


0
 ⊗−10

¢
[0 (1)⊗ 1 (1)]

0

= [0 (1)⊗ 1 (1)]

½
1

3
(1+)2 +

1

6
1+

¾
[0 (1)⊗ 1 (1)]

0 +
¡
−1

¢

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where we use the fact that

1

 3

X
=1

X
=1


¡


0
 ⊗−10

¢
=

1

 3

X
=1

−1X
=1


¡


0
 ⊗−10

¢
+
1

 3

X
=1

X
=


¡


0
 ⊗−10

¢
=

1

 3

X
=1

−1X
=1


¡


0
 ⊗−10

¢
+
1

 3

X
=1

X
=

©

¡


0
 ⊗−10−1

¢
+[

0
 ⊗−1 ( −−1)

0]
ª

=
1

 3

X
=1

−1X
=1

(1+)2 +
1

 3

X
=1

X
=

(− 1) ¡(1+)2 +1+

¢
=

1

3
(1+)2 +

1

6
1+ +

¡
−1

¢


Thus we have

Var

⎛⎝ 1√


X
∈0





⎞⎠ =
1



X
∈0



{Var (1 ) +Var (2 )− 2Cov (1  2 )}

=
1



X
∈0



½
1

6
0Ω1Ω

0
1 −

1

12
[0 (1)⊗ 1 (1)]1+[

0
 (1)⊗ 1 (1)]

0
¾

+
¡
−1

¢
=
1



X
∈0



½
1

6
0Ω1Ω

0
1 −

1

12
(0Ω

0
1 ⊗ 1Ω)11

¾
+

¡
−1

¢


where11 is the 1×1 commutation matrix. It follows that Var(−12

P
∈0


 )→ lim→∞

1


P
∈0



[16
0
Ω1Ω

0
1− 1

12 (
0
Ω

0
1 ⊗ 1Ω)11] ≡ () This limit contributes to the asymptotic variance of our

estimator. In addition, we can verify that
P

=1
°°°−12 

°°°4 = 
¡
−1

¢
 which verifies the Lyapunov

condition for the central limit theorem for independent but non-identically distributed (i.n.i.d.) observations.

Consequently, we have shown that  ⇒ 
¡
0V()

¢
 Third, we study 1 :

1√


X
∈0



1 =
1√


X
∈0



1



−1X
=1

1

Ã
̃+1ĕ0 − ∞X

=0

+1̆
0


!


=
1√


X
∈0



(
1



−1X
=1

1

Ã
+1̆

0
 −

∞X
=0

+1̆
0


!
 − 1



−1X
=1

1
1



X
=1

̆
0


− 1


−1X
=1

1+1
1



X
=1

̆0 +
 − 1


1

Ã
1



X
=1


1



X
=1

̆0

!


)

≡ 1√


X
∈0



{11 −12 −13 +14} 
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Following PM, we can show that 
°°°−12

P
∈0


11

°°°2 = 
¡
2

−1¢  For 12 we apply the Cauchy-
Schwarz and Markov inequalities

°°°°°° 1√


X
∈0



12

°°°°°° ≤
p


⎧⎨⎩ 1



X
∈0



°°°°°1 1
X
=1



°°°°°
2
⎫⎬⎭
12⎧⎨⎩ 1



X
∈0



°°°°° 1
−1X
=1

̆0

°°°°°
2
⎫⎬⎭
12

=
p
 (

−12) (
12
2 −12) =  (1) 

where we use the fact 1


P
∈0



°°°1 1 P

=1 

°°°2 ≤ −1 1


P
∈0


tr(1Ω

0
1) ≤ −1tr(101) =


¡
−1

¢
 Similarly, we can show that 1√



P
∈0


1  =  (1) for  = 3 4 Thus we have

1√


P
∈0


1

=  (1) 

Fourth,

1√


X
∈0



3 =
1√


X
∈0



(
1



X
=1

1 (1)
h
̆

0
 (1)

0 − ̆0 (1)
0i
 − 1

 2

X
=1

X
=1

1 (1) ̆
0
 (1)

0
)

≡ 1√


X
∈0



{31 −32} 

It is easy to show that 
°°°−12

P
∈0


31

°°°2 = 
¡
2

−1¢, implying that −12

P
∈0


31 =  (1) 

As in the analysis of 12 we can show that 
−12


P
∈0


32 =  (

√
2 ) =  (1)  Thus


−12


P
∈0


3 =  (1) 

Fifth,

1√


X
∈0



4 =
1√


X
∈0



(
1



X
=1

1̆0
0
 (1)

0
 − 1

 2

X
=1

X
=1

1̆
0
 (1)

0


)

≡ 1√


X
∈0



{41 −42} 

Noting that42 = 32 
−12


P
∈0


42 =  (1)  For41 in view of the fact ̆0 =

P∞
=0 ̃−

and {  ≥ 1} are mutually independent, we can readily show that  (41) = 0 and



°°°°°° 1√


X
∈0



41

°°°°°°
2

=
1



X
∈0





°°°°° 1
X
=1

1̆0
0
 (1)

0


°°°°°
2

=
1

 2

X
∈0



X
=1

X
=1


¡
0 (1) ̆

0
0

0
11̆0

0
 (1)

0

¢

=
1

 2

X
∈0



X
=1

tr
£

¡
̆00

0
11̆0

¢

¡
0 (1)

0


0
 (1) 

¢¤
=

1



X
∈0




¡
̆00

0
11̆0

¢
0 (1) (1)

0
 = 

¡
22

−1¢ 
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where we use the fact that

0 (1) (1)
0
 = 0Ω ≤ max (Ω) 

0
 ≤ 2max (Ω)

¡
0

0
0 +Σ

0
20Σ

−1
222

0
2Σ
−1
22Σ20

¢
≤ 2max (Ω)

h
1 + max (2

0
2) [min (Σ22)]

−2Σ020Σ20
i
≤ 2

and 
¡
̆00011̆0

¢ ≤ 
¡
̆00̆0

¢ ≤ 2 Then 
−12


P
∈0


41 = 

¡
2

−12¢ and −12

P
∈0


4

=  (1) 

Sixth, we can show that


−12


X
∈0



5 = 
−12


X
∈0



1


1

(
 ̆

0
 −

1



X
=1

̆
0
 −

1




X
=1

̆0 +
1

 2

X
=1



X
=1

̆0

)


= 
−12


X
∈0



1


1


 ̆

0
  +  (1) = 

−12


X
∈0



̄5 +  (1)  say.

Note that°°°°°°
⎛⎝

−12


X
∈0



̄5

⎞⎠°°°°°° =

°°°°°°−12

X
∈0



1


1 (1)

X
=1

∞X
=1


¡


0
−

¢
̆
0


°°°°°°
=

°°°°°°−12

X
∈0



1


1 (1)

X
=1

̆
0
−

°°°°°°
≤ 

−12


X
∈0



1


k1 (1)ksp

∞X
=1

°°°̆0°°°
sp
= 

³p
2

´
=  (1) 

Similarly, we can verify that
°°°Var³−12

P
∈0


̄5

´°°° ≤ −1

P
∈0



°°Var ¡̄5 ¢°° = 
¡
22

¢
=  (1) 

It follows that 
−12


P
∈0


5 =  (1) 

Last, it is trivial to show
°°°−12

P
∈0


2

°°° = 
¡√

2
¢
=  (1) and

°°°−12

P
∈0


6

°°° =


¡√
2

¢
=  (1) 

In sum, we have shown 1 − B1 ⇒ 
¡
0V()

¢
 This completes the proof of (ii).

(iii) For 2  we have

2 =
1√


X
∈0



̃01̃2Σ
−1
22

µ
Σ20 − 1


̃02̃

¶

=
1√


X
∈0



012Σ
−1
22

µ
Σ20 − 1


02

¶
+

1√


X
∈0



012Σ
−1
22̄2̄

+
1√


X
∈0



̄1̄
0
2Σ

−1
22

µ
1


02 −Σ20

¶
− 1√



X
∈0



̄1̄
0
2Σ

−1
22̄2̄

≡ 2 + 2 + 2 + 2 say.

Noting that 1


P
∈0


k̄1k2 =  (1) 

1


P
∈0


k̄2k2 = 

¡
2

−1¢  and 1
2

P
∈0



°°012°°2 =
 (2) by direct moment calculation and Markov inequality and max1≤≤ k̄2k =  (

12
2 2 ) and
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max1≤≤ |̄| =  (2 ) by a simple application of Lemma S.1.2 in Su, Shi and Phillips (2016b, SSPb

hereafter), we have

k2k ≤
p


⎧⎨⎩ 1

 2

X
∈0



°°012°°2
⎫⎬⎭
12

max
∈0



k̄2kmax
∈0



k̄k
°°Σ−122°°sp

=
p
 (

12
2 ) (

12
2 2 ) (2 ) =  (1) 

k2k ≤
p


⎧⎨⎩ 1



X
∈0



k̄1k2
⎫⎬⎭
12⎧⎨⎩ 1



X
∈0



k̄2k2
⎫⎬⎭
12

max
∈0



°°°° 1 02 −Σ20
°°°°°°Σ−122°°sp

=
p
 (1) (

12
2 −12) (

12
2 2 ) =  (1) 

and

k2k ≤
p


⎧⎨⎩ 1



X
∈0



k̄1k2
⎫⎬⎭
12

max
∈0



k̄2k2max
∈0



k̄k
°°Σ−122°°sp

=
p
 (2

2
2 ) (2 ) =  (1) 

For 2 it is easy to see that

k2k ≤
p


⎧⎨⎩ 1

 2

X
∈0



°°012°°2
⎫⎬⎭
12⎧⎨⎩ 1



X
∈0



°°°°Σ20 − 1


02

°°°°2
⎫⎬⎭
12

max
1≤≤

°°Σ−122°°sp
=

p


³

12
2

´


³
−12122

´
 (1) = 

³
2
p


´
which is  (1) if we assume that 

2
2 =  (1)  But this is a very strong assumption that we try to

avoid. To do this, we can employ the BN decomposition and write 1 = 1

h
 (1)

P
=1  + ̆0 − ̆

i
and 2 = 2 [ (1)  + ̆−1 − ̆]  Let  = Σ

−1
22

¡
Σ20 − 1


02

¢
 As in the analysis of 1  we

can show that

2 =
1√


X
∈0



012

=
1√


X
∈0



1



X
=1

1 (1)
0
 (1)

0
02 +  (1)

=
1√


X
∈0



(
1 (1) (1)

0
02 +

1



X
=1

1 (1) (
0
 − ) (1)

0
02

1



X
=1

1 (1)−10 (1)
0
02

)
+  (1)

≡ 1√


X
∈0



{21 +22 +23}+  (1) 
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Noting that (21) = 0 and°°°°°°Var
⎛⎝ 1√



X
∈0



21

⎞⎠°°°°°° ≤ 1



X
∈0



kVar (21)k = 1



X
∈0



k1Ω02 (
0
 )2Ω

0
1k

≤ 1



X
∈0



k (
0
 )ksp k1Ω022Ω01k

≤ 



X
∈0



k (
0
 )k = 

¡
2

−1¢ =  (1) 

we have 1√


P
∈0


21 =  (1)  Next,

°°°°°° 1√


X
∈0



22

°°°°°° ≤
p


⎧⎨⎩ 1



X
∈0



°°°°° 1
X
=1

1 (1) (
0
 − ) (1)

0
02

°°°°°
2
⎫⎬⎭
12⎧⎨⎩ 1



X
∈0



kk2
⎫⎬⎭
12

=
p
 (

12
2 −12) (

12
2 −12) =  (1) 

Let  = 1 (1)−10 (1)
0
02 Then

1√


P
∈0


23 =

1√


P
∈0



1


P
=1   Noting that

(|F−1) = 0 by the Burkholder’s and Hölder’s inequalities, for any  ≥ 2



°°°°°
X
=1



°°°°°


≤ 

(
X
=1

kk2
)2

≤ 1

(
X
=1

 (kk)
)2

≤ 2
2
2

X
=1

2 ≤ 2
2
2  2+1

where 1 and 2 are constants that depend on  Then by the Hölder’s inequality



°°°°°° 1√


X
∈0



23

°°°°°° ≤ 1√


X
∈0



1




°°°°°
X
=1



°°°°°
≤ 1√



X
∈0



1



(


°°°°°
X
=1



°°°°°
)1

{ kk}1

≤ √


X
∈0



1



n

2
2  2+1

o1

12
2 −12

≤ 
p
2

−1+1 =  (1) 

where 1

+ 1


= 1

Consequently, we have shown that 2 =  (1) 
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(iv) Following the analysis of 4 below, we can readily show that

3 =
1√


X
∈0



̃01̃2Σ
−1
22

µ
1


̃02̃2 −Σ22

¶µ
1


̃02̃2

¶−1
Σ20

=
1√


X
∈0



012Σ
−1
22

µ
1


022 −Σ22

¶
Σ−122Σ20 +  (1)

≡ 3 +  (1) 

Following the analysis of 2  we can show that k3k =  (1) by resorting to the BN decomposition,

moment calculations, and Chebyshev inequality.

(v) For 4  by the Cauchy-Schwarz inequality and Lemmas A.2(iii)-(iv) and A.6(iv),

k4k ≤
p


⎧⎨⎩ 1

 2

X
∈0



°°̃01̃2°°2
⎫⎬⎭
12

max
∈0



°°°°°
µ
1


̃02̃2

¶−1
− Σ−122

°°°°°
sp

max
∈0



°°°° 1 ̃02̃ −Σ20
°°°°

=
p
 (

12
2 ) (22 ) (

12
2 2 ) =  (1) 

(vi) This follows from (i)-(v). ¥

Proof of Lemma A.8. Let V =
1√


P
∈0


̃012̃


  We make the following decomposition

V =
1√


X
∈0



̃01̃

 −

1√


X
∈0



̃01̃2
¡
̃02̃2

¢−1
̃02̃


 ≡ V1 − V2 

Noting that  =
P
||≥̄2 

0
1+  we have

max



h
()

2
i
= max



X
||≥̄2

X
||≥̄2

0
¡
1+

0
1+

¢
 ≤ max



⎛⎝ X
||≥̄2

°°°°
⎞⎠2

≤ −2

and

max



h
(̄ )

2
i
= max




Ã
1

̄2

−̄2X
=̄2+1



!2
≤ 1

̄2

−̄2X
=̄2+1

max


 ()
2 ≤ −2

Then max
h
(̃)

2
i
≤ 2max

h
()

2
i
+ 2max

h
(̄ )

2
i
≤ 4−2 Analogously, we can show that

max



h
(̃)

4
i
= max



⎛⎝ X
||≥̄2

°°°°
⎞⎠4

≤ −4
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It follows that


°° 

1

°° = 

°°°°°° 1√
̄2

X
∈0



−̄2X
=̄2+1

1̃



°°°°°° ≤ 1√
̄2

X
∈0



−̄2X
=̄2+1

 k1̃k

≤ 1√
̄2

X
∈0



−̄2X
=̄2+1

n
 k1k2

o12 n
 k̃k2

o12

≤ 
p


−−1
2

−̄2X
=̄2+1

12 = 
³

12
 −+

1
2

´
=  (1) 

where we use the fact that max1≤≤  k1k2 ≤  Then  
1 =  (1) by the Markov inequality.

Next, noting that
°° 1

̃02̃2 −Σ22

°°
sp
=  (1) by Lemma A.2(iv) and

max



°°02̃ °°2 ≤ max



X
=1

X
=1


¡
022̃


̃

2


¢
≤ max



X
=1

X
=1

n
 k2k4

o12 n
 (̃)

4
o12

≤ 

X
=1

X
=1

2
−2 = 2

−2+2

we have

°°V

°° ≤ 1 +  (1)√
 2

X
∈0



°°̃01̃2°°°°Σ−122°°sp °°̃02̃ °°
≤ −122

1 +  (1)√
 2

X
∈0



°°̃01̃2°°°°02̃ °°
≤ −122 (1 +  (1))

p


⎧⎨⎩ 1

 2

X
∈0



°°̃01̃2°°2
⎫⎬⎭
12⎧⎨⎩ 1

 2

X
∈0



°°02̃ °°2
⎫⎬⎭
12

=
p


³

12
2

´


³

12
2 −

´
= 

³
2

12
 −

´
=  (1) 

In sum, we have shown that V =  (1)  ¥

C Determination of the Number of Groups

In this section, we now propose a BIC-type information criterion to choose  the number of groups. We

now use 0 to denote the true number of groups and  a generic number of groups. We assume that the

true number of groups is bounded from above by a finite integer max and 1 ≤ 0 ≤ max. By mini-

mizing the objective function in (2.7), we obtain the C-Lasso estimators {̂() ̂1() ̂2()} of
{ 1 2 } where we make the dependence of these estimators on () explicit. We classify individual
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 into group ̂() if and only if ̂1() = ̂(), i.e.,

̂() = { = {1 2 } : ̂1() = ̂()} for  = 1  (C.1)

Let ̂() = {̂1() · · ·  ̂()}. We can define the post-Lasso estimators of  as

̂
post

̂()
=

⎛⎝ X
∈̂()

̃012̃1

⎞⎠+ X
∈̂()

̃012̃

̂
post

2 (̂()) is defined as before but now we also make its dependence on ̂ () explicit. Let

̂2
̂()

= 1


P
=1

P
∈̂()

P
=1[̂()]

2 where ̂() = ̃ − ̃01̂
post

̂()
− ̃02̂

post

2 (̂())

for  ∈ ̂(). We choose ̂ = ̂ () to minimize the following information criterion:

() = ln[̂2
̂()

] +  1 (C.2)

where  is a tuning parameter.

Let () = (1  ) be any K-partition of the set of {1 2 } and G is a collection of

such partitions. Let ̂2() = 1


P
=1

P
∈

P
=1[̃ − ̃01̂

− ̃02̂2()]
2, where ̂

=

(
P

∈
̃012̃1)

+
P

∈
̃012̃ and ̂2() =

¡
̃02̃2

¢−1
̃02

¡
̃ − ̃1̂

¢
for any  ∈

 Define

 =

⎧⎪⎪⎨⎪⎪⎩
12 12 in Case 1 where 2 is absent in (2.1) and there is no endogeneity in 1

 12 in Case 2 where 2 is absent in (2.1) and there is endogeneity in 1


−12
2  12 in Case 3 where 2 is present in (2.1)

(C.3)

Let 20 =
1


P
=1

P
=1 ̃

2
 in Cases 1-2 and =

1


P
=1

P
=1 (̃

∗
)
2
in the Case 3. We can show that

̂2
̂(0)

− 20 = 

¡
−1−1

¢
 

¡
−1

¢
 and 

¡
2

−1¢ corresponding to the above three cases,
respectively.

We add the following assumption.

Assumption A.5 (i) As ( )→∞ min1≤0 inf()∈G ̂2() → 2  20, where 
2
0 = plim( )→∞

20 

(ii) As ( )→∞,  → 0 and  
2
 →∞ where  is as defined in (C.3).

Assumption A.5(i) guarantees that all under-grouped models yield asymptotic mean square errors that

are larger than 20, which can be obtained from the true model. Assumption A.5(ii) imposes the usual type

of conditions for the consistency of model selection: the penalty coefficient  cannot shrink to zero either

too fast or too slowly.

The following theorem suggests that in large samples we can determine the correct number of groups by

minimizing the information criterion defined in (C.2).

Theorem C.1 Suppose that Assumptions A.1, A.3 and A.5 hold. Suppose that there exists a constant 00
such that min1≤≤ Σ00 ≥ 00  0. Then  (̂ = 0)→ 1 as ( )→∞

Theorem C.1 indicates that w.p.a.1 the use of IC() in (C.2) determines the correct number of groups.

A natural question is how to choose the tuning parameter  empirically.
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In simulations and applications, we recommend the use of DPLS estimation so that Case 3 applies. We

will choose 2 = [
14] and set  =

1
3( )−13 Note that this rate converges to zero much slower than

the usual ( )−1 ln ( )-rate that works in Case 1. One can verify that the conditions in Lemma A.5(ii)

are satisfied in this case when  and  diverge to infinity at roughly the same rate. Our simulations suggest

that the choice of  has little effect on the results.

Proof of Theorem C.1. Let K = {1 2 max} where max ≥ 0. We divide  into three subsets 0

− and + : K0 = {0} K− = { ∈ K :   0} and K+ = { ∈ K :   0}. First, using arguments
as used in the proof of Lemma A.5(iii) we can show that

̂2
̂(0)

=
1



0X
=1

X
∈̂(0)

X
=1

h
̃ − ̃01̂

,post
 (0 )− ̃02̂

 post

2

³
̂(0 )

´i2
= 20 +  (1) 

It follows that (0 ) = ln[̂
2
̂(0)

] + 10 = ln[̂
2
̂(0)

] + (1)
→ ln(20) We consider the cases

of under- and over-fitted models separately.

Case 1: Under-fitted model ( ∈ K−). Noting that

̂2
̂()

=
1



X
=1

X
∈ ̂()

X
=1

h
̃ − ̃01̂

,post
 ()− ̃02̂

 post

2

³
̂()

´i2

≥ min
1≤0

inf
()∈G

1



X
=1

X
∈

X
=1

h
̃ − ̃01̂



̂
− ̃02̂



2(̂)
i2
= min
1≤0

inf
()∈G

̂2() 

By Assumption 4.2, we demonstrate

min
1≤0

() ≥ min
1≤0

inf
()∈

ln(̂2()) +  
→ ln(2)  ln(20)

It follows that  (min∈K− ()  (0 ))→ 1.

Case 2: Over-fitted model ( ∈ K+).



µ
min
∈K+

()  (0 )

¶
= 

µ
min
∈K+

2 ln(̂
2
̂()

̂2
̂(0)

) + 2  ( −0)  0

¶
= 

µ
min
∈K+

2 (̂
2
̂()

− ̂2
̂(0)

)̂2
̂(0)

+ 2  ( −0) +  (1)  0

¶
→ 1 as ( )→∞

where min∈+ 2 (̂
2
̂()

− ̂2
̂(0)

) = (1) by Lemma C.2 below and 
2
 →∞ by Assumption

A.5.¥

Lemma C.2 Let ̄20 =
1


P
=1

P
=1 ̃

2
. Let the conditions in Theorem C.1 hold. Thenmax0≤max

|̂2
̂()

− ̄20 | = (
−2
 )

Proof of Lemma C.2. When   0, following the proof of Theorem 4.1, we can show that k̂1 −
01k =  (

−1 + ), k̂2 − ∗2k =  (
12
2 (−12 + )), and 1



P
=1

Q
=1 k01 − ̂k =  (

−1).
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Noting that 01,  = 1   , only take 0 distinct values, the latter implies that the collection C ≡
{̂1  ̂} contains at least 0 distinct vectors, say, ̂1  ̂0 , such that ̂ − 0 =  (

−1) for
 = 1 0. For notational simplicity, we rename the other vectors in the above collection as ̂0+1  ̂ .

By the pointwise convergence of ̂


1 ̂0+1  ̂ must converge in probability to one of the true values

in {01  00
}

We classify  ∈ ̂() if ||̂1− ̂|| = 0 for  = 1 , and  ∈ ̂0() otherwise. Using arguments

like those used in the proof of Theorem 4.3 and that of Lemma S1.14 in SSPb, we can show thatX
∈0



 (̂) = (1) and
X

∈̂()

 (̂) = (1) for  = 1 0 (C.4)

This implies that
X
=1

 ( ∈ ̂0() ∪ ̂0+1() ∪  ∪ ̂()) = (1) (C.5)

That is, the ‘redundant’ last  −0 groups containing empty elements asymptotically. Using the fact that

1{ ∈ ̂} = 1{ ∈ 0}+ 1{ ∈ ̂\0}− 1{ ∈ 0\̂}, we have

̂2
̂()

=
1



X
=1

X
∈̂()

X
=1

[̂()]
2 = 1 +2 −3 +4 

where 1 =
1


P0

=1

P
∈0



P
=1[̂()]

2, 2 =
1


P0

=1

P
∈̂()\0



P
=1[̂()]

2, 3 =
1


P0

=1

P
∈0


\̂()

P
=1[̂()]

2, and 4 =
1


P
=0+1

P
∈̂

P
=1[̂()]

2. By (C.4)-(C.5),

we can readily show that  = 
¡
( )−1

¢
for  = 2 3 4 For 1  we discuss several cases: (1) When

2 is absent in the cointegrating regression and there is no endogeneity in 1, we can apply the fact ̂
post
 

 = 1 0 converge to their true values at 
−12−1 and show that 1 − ̄20 = 

¡
−1−1

¢
; (2)

When 2 is absent in the cointegrating regression and there is endogeneity in 1, we can apply the fact

̂
post
   = 1 0 converge to their true values at rate 

−1 and show that 1 − ̄20 = 

¡
−1

¢
; (3)

When both 1 and 2 are present, we observe that ̂2 converge to their (pseudo) true values at rate


12
2 −12 and show that 1 − 20 = 

¡
−1

¢
 As a result, we have ̂2

̂()
= 20 +  (

−2
 ) where

 = 12 12  12 and 
−12
2  12 in the above three cases, respectively. This completes the proof of

the lemma. ¥

D Practical Implementation of the C-Lasso Procedure

In this section, we provide more details on the practical implementation of the C-Lasso procedure in the

followings steps.

1. Initial estimates based on the heterogenous nonstationary panels. Obtain the initial es-

timates ̃1 and ̃2 from the LS time-series regression of ̃ on
¡
̃01 ̃

0
2

¢
 Let  (β1β2) =

1
2

P
=1

°°̃ − ̃11 − ̃22
°°2  ̃2 = 1



P
=1(̃ − ̃

0
̃)

2 and ̂1 =
1
2

P
=1 ̃1̃

0
1

2. Determining the number () of groups along with the tuning parameter  Let

Λ ≡
n
 = 

−34  = 0
 for  = 0  

o
for some 0  0 and   1
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Given any  ∈ {1 2 max} and  ∈ Λ compute IC() and IC(̂() ) where ̂() =

argmin1≤≤maxIC()  Choose ̂ ∈ Λ such that IC(̂ ()  ) is minimized. The estimated number

of groups is then given by

̂ = min
∈Λ

̂()

Note that the above procedure fine-tunes the tuning parameter  for the determination of the number

of groups and is recommended by Su, Shi, and Phillips (2016a, SSPa hereafter). We find in simulations

0 = 0025  = 2 and  = 3 work fairly well for all DGPs under our investigation. If ̂ = 1 stop

here and estimate a homogenous nonstationary panel as usual. Otherwise, move to the next step.

3. C-Lasso estimation. Given ̂ and ̂  1 solve the PLS problem


(β1β2α) =  (β1β2) +

̂



X
=1

(̃)
2−̂

̂Y
=1

°°°̂1(1 − )
°°° 

Obtain the C-Lasso estimates {̂} for the group-specific parameters and {̂  = 1  ̂} for the
estimated group membership.

4. Post-Lasso estimator with bias correction: Given the estimated groups, {̂  = 1  ̂}, we
can obtain the post-Lasso estimators of  and 2 as

̂
post
 =

⎛⎝X
∈̂

̃012̃1

⎞⎠−1 X
∈̂

̃012̃ for  = 1  ̂

̂
post

2 =
¡
̃02̃2

¢−1
̃02(̃ − ̃1̂

post
 ) for  ∈ ̂

where to remove the bias we apply the dynamic OLS method in the post-Lasso estimation by including

the lags and leads of ∆1 into 2 as in Section 4.4. If 2 only contains the lags and leads of

∆1 but no other stationary regressors, we compute the standard errors for the elements of ̂
post
 as

the square roots of the diagonal elements of 1
̂2

Q̂−1()V̂
†
()Q̂

−1
() where

Q̂() =
1

̂ 2

X
∈̂

̃012̃1 and V̂†() ≡
1

̂

X
∈̂

1

6
Ω̂†00Ω̂11 for  = 1  ̂

and Ω̂†00 and Ω̂11 are as defined in Section 4.4. If 2 also contains other stationary covariates,
then we can compute the standard errors for the elements of ̂

post
 as the square roots of the diagonal

elements of 1
̂2

Q̂−1()V̂()Q̂
−1
() where

V̂() =
1

̂

X
∈̂

∙
1

6
̂0Ω̂̂1Ω̂

0
1 −

1

12

³
̂0Ω̂

0
1 ⊗ 1Ω̂̂

´
11

¸


̂ = 00 − 02Σ̂
−1
22Σ̂20, Ω̂ denotes the HAC estimator of the long-run variance-covariance in Ω, and

Σ̂22 and Σ̂20 denote the plug-in estimators of the short-run variance covariance submatrices Σ22
and Σ20 of Σ
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Table A.1: Frequency for selecting K=1, 2,..., 6 groups

N T 1 2 3 4 5 6

DGP1 50 40 0 0 0.992 0.008 0 0

50 80 0 0 1 0 0 0

100 40 0 0 1 0 0 0

100 80 0 0 1 0 0 0

DGP2 50 40 0 0 0.966 0.034 0 0

50 80 0 0 0.998 0.002 0 0

100 40 0 0 0.982 0.018 0 0

100 80 0 0 1 0 0 0

DGP3 50 40 0 0 0.988 0.012 0 0

50 80 0 0 1 0 0 0

100 40 0 0 1 0 0 0

100 80 0 0 1 0 0 0

DGP4 50 40 0 0.976 0.024 0 0 0

50 80 0 1 0 0 0 0

100 40 0 0.956 0.044 0 0 0

100 80 0 1 0 0 0 0

DGP5 50 40 0 0 0.990 0.010 0 0

50 80 0 0 1 0 0 0

100 40 0 0 0.986 0.014 0 0

100 80 0 0 1 0 0 0

E Additional Simulation Results

In this appendix, we assess the performance of the information criterion (IC) proposed in Section C. We set

 =
1
3( )−13 and  = 

−34 where  = 0025 005 01 or 02. We find that the results are not

sensitive to the choice of  and will only report the simulation results for the case where  = 01 to save

space. Table A.1 displays the empirical probability with which a particular group number from 1 to 6 is

selected according to IC based on 500 replications for each DGP. Note that the true number of groups is 3

for DGPs 1, 2, 3, and 5 and 2 for DGP 4. When  = 40 the probabilities of correct choices are higher than

95 % in all cases and they reach the unity when  = 80. The simulation results show that our information

criterion works fairly well.

F Additional application results

In this section, we report some additional results for the empirical application

F.1 Information criterion for the quarterly data

Table A.2 reports the information criterion (IC) for the quarterly data with different tuning parameter

values:  = ×−34 where  = 0025 005 01 and 02. Following the majority rule, we decide to select
 = 2 groups for the period 1975.Q1-1998.Q4 and  = 3 groups for the period 1999.Q1-2014.Q2. Note that

the IC is minimized at  = 01 and 0.05 for the first and second subsamples, respectively. For this reason,

we choose  = 01 and 0.05 for these two subsamples, in the paper.
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Table A.2: The information criterion for different numbers of groups (quarterly data)

From 1975.Q1-1998.Q4 From 1999.Q1-2014.Q2

 0.025 0.05 0.10 0.20 0.025 0.05 0.10 0.20

1 -0.7503 -0.7503 -0.7503 -0.7503 -0.2074 -0.2074 -0.2074 -0.2074

2 -1.1262 -1.1262 -1.1262 -1.0716 -0.4719 -0.4730 -0.4902 -0.4836

3 -1.1622 -0.7961 -1.0956 -0.7135 -0.5230 -0.5319 -0.5268 -0.4418

4 -0.7719 -0.7507 -0.7507 -1.0596 -0.5037 -0.4994 -0.4958 -0.3815

5 -0.7233 -0.7203 -0.6750 -0.6750 -0.4789 -0.4749 -0.3499 -0.2093

6 -0.6946 -0.6405 -0.6005 -0.6844 -0.4454 -0.4358 -0.3566 -0.1720

Table A.3: The information criterion for different numbers of groups (monthly data)

From 1975-1998 From 1999-2014

\ 0.025 0.05 0.10 0.20 0.025 0.05 0.10 0.20

1 -0.8042 -0.8042 -0.8042 -0.8042 -0.1953 -0.1953 -0.1953 -0.1953

2 -1.0907 -1.0907 -1.0907 -1.0140 -0.4686 -0.4753 -0.4837 -0.4748

3 -1.1460 -0.8480 -0.8404 -0.8365 -0.5312 -0.5311 -0.5230 -0.3940

4 -1.0966 -1.0897 -0.8292 -0.9159 -0.5161 -0.5132 -0.5086 -0.3139

5 -0.9044 -1.0646 -0.9047 -0.7949 -0.5032 -0.4987 -0.3630 -0.2711

6 -0.8782 -1.0379 -0.7875 -0.7678 -0.4768 -0.4753 -0.3016 -0.2466

F.2 Results for the monthly data

In this section we provide the application results for the monthly data.

Table A.3 reports the information criterion (IC) for the monthly data with different tuning parameter

values:  =  × −34 where  = 0025 005 01 and 02. As is evident from Table A.3, for the monthly

data our information criterion tends to choose 2 groups for the first subsample and 3 groups for the second

subsample, too. We set  = 005 to report the estimation results in Table A.4 and classification results in

Table A.5.

Comparing the estimation results in Table 4 for the quarterly data with those in Table A.4 for the

monthly data, we find that the estimates for either group in either subsample period of the monthly data are

reasonably close to the corresponding estimates based on the quarterly data. This suggests the robustness of

our results. The countries in bold in Table A.5 suggest good coincidences of the classification results based

on the monthly and quarterly datasets.
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Table A.5: Classification results for the monthly data

Panel A: From 1975.M1-1998.M12

Group 1 (1 = 53)
Algeria Austria Bahrain Belgium Bolivia

Botswana Canada Colombia Costa Rica Cyprus

Denmark Egypt Finland France Ghana

Greece Honduras Hungary India Indonesia

Israel Italy Ivory Coast Jamaica Japan

Jordan Kenya South Korea Luxembourg Malta

Mauritius Mexico Morocco Nepal Netherlands

Nigeria Norway Pakistan Paraguay Philippines

Portugal Singapore South Africa Spain Sri Lanka

Sudan Sweden Switzerland Thailand Trinidad and Tobago

Turkey Uruguay Venezuela

Group 2 (2 = 3)
Ecuador Kuwait Myanmar

Panel B: From 1999.M1-2014.M7

Group 1 (1 = 53)
Angola Argentina Austria Bangladesh Belgium

Botswana Cambodia Canada Costa Rica Denmark

Dominican Egypt Europe Finland France

Germany Ghana Honduras Iceland India

Iran Italy Jamaica Japan Jordan

Luxembourg Malawi Mauritius Mexico Mongolia

Morocco Mozambique Nepal Netherlands Nigeria

Norway Pakistan Romania Saudi Arabia Sri Lanka

Sudan Sweden Switzerland Tanzania Trinidad and Tobago

Tunisia Turkey Uganda United Kingdom Ukraine

Uruguay Venezuela Viet Nam

Group 2 (2 = 20)
Albania Armenia Brazil Bulgaria Colombia

Congo Croatia Georgia Hungary Ireland

Ivory Coast Kuwait Latvia Lithuania Macau

Moldova Peru Philippines Spain Thailand

Group 3 (3 = 21)
Algeria Bolivia Czech Republic Guatemala Hong Kong

Indonesia Israel Kazakhstan Kenya South Korea

Kyrgyzstan Laos Macedonia Malaysia Myanmar

Paraguay Poland Portugal Russia Singapore

South Africa

Note: Countries in bold denote coincidences of the classification results based on the monthly and quarterly

datasets.

32


