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Abstract

This appendix presents an empirical study of public capital returns and additional simulation

results of Fan et al. (2019).
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1 Applications for returns of public capital

In the main text, we discussed the finite sample performance of the PQMLE when n is comparable

to T . Here, we apply our proposed method to study how public expenditure affects local economic

growth. Public infrastructure, with components such as state highways, bridges, water utilities, etc.,

contributes to long-run economic growth and competitiveness. However, how much public funds

should be spent on the development of public infrastructure and what is the potential crowding-out

effect are always popular topics in public policy debate. The validity of policy evaluations relies on

a good estimation of the public capital productivity.

Following the study of Munnell (1990), the classic Cobb-Douglas productivity function we

consider is:

gspit = αi + β1iprcit + β2ihwyit + β3iwaterit + β4iutilit + β5iempit + β6iumpit + εit (1.1)

where gspit is the gross state product of state i at time t, prcit is the stock of state private capital1

after adjustment for capital depreciation, hwyit, waterit and utilit are the three components of

the stock of state public capital, which are highway capital, water utility capital and other utility

capital, respectively, empit is the total state employment and umpit is the state unemployment

rate. All these variables used in the regressions are the natural logarithms of the original variables.

Assuming that εt is i.i.d. with mean 0 and covariance matrix Σ0, we use the state-level panel data

to estimate both the model coefficients β and the covariance matrix Σ0.

We use 42 annual observations of the 48 U.S. continental states from 1970 to 2011, which is an

extended version of the data set used in Munnell (1990). Gross state product annual data and state

private capital data are from the Bureau of Economic Analysis. Employment data are from the

Bureau of Labor Statistics. Capital outlay, which details the items of state public capital, is from

the U.S. Census Bureau (government division) data of state government finances. State private

capital by sector, specifically, non-farm manufacturing and farm sector data, are from the Bureau

1State private capital is collected from agriculture, manufacturing and non-manufacturing sectors.
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of Labor Statistics and the Bureau of Economic Analysis. The detailed methodology of proxies for

the variables in the production function can be found in Munnell (1990).

Since T = 42 and n = 48, conventional estimation methods are not feasible for estimating

the SUR system. Aggregation of individuals for the SUR model or single-equation estimation

are often applied.2 However, there are some serious disadvantages of regional aggregation in this

study. First, interactions between states are not captured if we aggregate the data to study the

productivity of public capital. By aggregating the data, we also miss the connections of state-level

economy through channels other than geographical association, such as economic and legislative

associations. Second, when using the aggregated state-level data, we cannot explore the specific

characteristics of each individual state’s public capital productivity. Even though aggregation of

macroeconomic data is common in empirical studies, the homogeneity assumption is often invalid,

which raises concerns about internal validity study.

Using the newly proposed method in Fan et al. (2018), we are able to estimate the productivity

of public capital in each state while accounting for contemporaneous correlations. It is important

that the estimation and predictions are based on individual states, which are more relevant in state-

level legislation and policy evaluation. Additionally, we can explore the correlation structure of the

unobserved errors in 48 production functions directly through both geographical associations and

other possible channels. The proposed PQMLE fits well in this empirical study because some states

might have correlations with other states in the random disturbances of Equation (1.1), whereas

some states might not have correlations with any other state. Moreover, we need not assume any a

priori covariance structure. In our empirical findings, the sparsity rate of the correlations is 64.98%.

For comparison, we also report the SUR model regression results using aggregated state-level

data. The FGLS results and selected 3 PQMLE results are shown in Table 1 and Table 2, respec-

tively. Several meaningful differences require attention. Taking the gulf region as one example,

the water utility spending β3 is not significant. However, looking at each state in the gulf region,

2The nine regions GF, MW, MA, MT, NE, SO, SW, CN, and WC are geographical regions, as discussed in detail
in Munnell (1990).

3This is mainly due to the size of the original table. The whole table is available upon request.
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specifically, Alabama, Florida, Louisiana and Mississippi, the coefficients of water utility are quite

different for each state. The PQMLE for Alabama’s water utility is positively correlated with local

economic growth and is significant at the 5% level. For another example, in the south region, the

other utility capital β4 is negatively correlated with growth and is not significant. This result raises

concerns that in this region, the productivity of other utility spending is not significantly associ-

ated with regional economic growth. However, looking at each state individually, North Carolina,

for example, has the same sign but is much more significant. Granted that no causal relationship

can be implied here, one possible policy suggestion is that the state of North Carolina could re-

duce spending on this component. In the west coast region, which includes California, Oregon and

Washington, private capital shows the crowd-out effect. But this does not hold for California alone,

where the crowd-out effect is not significant in our regression results. Considering the different eco-

nomic growth patterns of the three states, it is not surprising that some coefficients differ in sign

and significance. We also use the PQMLE to estimate the covariance matrix. The selected large

correlations of the estimated sparse correlation matrix are shown in Table 3.

In summary, we find that, generally, states that invest more in public infrastructure tend to

have greater output. This result agrees with the main findings of Munnell (1990) and Greene

(2010). Our results are more efficient than the single equation OLS method, which ignores the

cross-equation correlations. We also find that some individual states behave quite differently if

aggregated into regional-level data. This result confirms our concern that individual characteristics

are not well captured when using aggregated data.

In Table 3, we observe geographical correlation, such as that between New York and Rhode

Island, Connecticut and Massachusetts, and North Carolina and Virginia, in addition to other

correlation (possibly economic), such as that between Colorado and Texas. We find some correlation

at the state level that is not observable in the regional aggregated data.
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Table 1: FGLS regression results for the public capital productivity SUR model

αi β1i β2i β3i β4i β5i β6i

GF -2.0921 0.1444 0.3754 0.0582 0.0138 0.9191 -0.0470
(0.5858) (0.0615) (0.0755) (0.0998) (0.0635) (0.1160) (0.0289)

MW -3.5254 0.4695 0.2361 0.3382 -0.0230 0.4928 -0.1391
(0.8626) (0.0758) (0.0838) (0.1250) (0.0535) (0.1701) (0.0248)

MA -7.6833 0.4849 0.1146 -0.1672 0.0468 1.4887 -0.0046
(1.3524) (0.0807) (0.0569) (0.0411) (0.0475) (0.2229) (0.0297)

MT -2.4793 0.7687 0.2309 0.0116 0.0008 0.3583 -0.1663
(0.4579) (0.1112) (0.0616) (0.0581) (0.0382) (0.1188) (0.0286)

NE -0.0098 0.8756 -0.0591 -0.0948 0.0228 0.3628 -0.0328
(1.5097) (0.0482) (0.0383) (0.1278) (0.0276) (0.2855) (0.0368)

SO -1.6778 1.1376 0.0220 -0.0706 -0.0251 0.0855 -0.1003
(0.3052) (0.0645) (0.0333) (0.0676) (0.0265) (0.0932) (0.0156)

SW -2.0714 1.0867 -0.0636 0.0438 0.0727 0.0493 -0.1260
(0.4638) (0.0974) (0.0650) (0.1002) (0.0442) (0.1031) (0.0238)

CN -1.1654 1.0717 0.0427 0.1615 -0.0507 -0.1129 -0.1837
(0.6440) (0.1124) (0.0787) (0.0758) (0.0395) (0.1866) (0.0253)

WC -4.6350 -0.1022 0.3725 0.4335 -0.0867 1.2325 -0.0609
(0.5908) (0.0590) (0.0527) (0.1541) (0.0412) (0.1567) (0.0406)

The standard errors are in parentheses.

Table 2: Selected regression results for the PQMLE

αi β1i β2i β3i β4i β5i β6i

AL -1.3286 0.5748 0.1331 0.2066 0.0255 0.3919 -0.0674
(0.4786) (0.1624) (0.0883) (0.1190) (0.0353) (0.2020) (0.0199)

CA -3.2155 -0.0127 0.2457 0.4014 -0.0358 1.0994 -0.0432
(0.9026) (0.0508) (0.0647) (0.1745) (0.0166) (0.1577) (0.0430)

MI -4.1030 0.1646 0.4012 0.3557 0.0082 0.8327 -0.0763
(0.9891) (0.0498) (0.0645) (0.1615) (0.0434) (0.2526) (0.0423)

ME -2.5852 0.8337 0.0256 -0.0117 0.0048 0.6743 -0.0300
(0.8491) (0.1023) (0.0664) (0.0727) (0.0159) (0.2599) (0.0324)

NC -0.4457 0.9875 0.1491 0.0030 -0.0509 -0.0168 -0.0816
(0.5277) (0.0998) (0.0473) (0.0774) (0.0325) (0.1678) (0.0265)

NJ 1.2664 0.8976 0.0089 -0.0553 0.0136 0.0729 -0.0495
(1.0111) (0.0412) (0.0351) (0.0955) (0.0224) (0.1985) (0.0329)

NY -17.5926 0.0006 0.2757 -0.1000 0.1794 2.9105 0.1440
(1.8745) (0.0733) (0.0762) (0.0158) (0.0563) (0.2243) (0.0475)

The standard errors are in parentheses.
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Table 3: Selected large estimated correlations of unobserved errors of the production function
between states

State State Correlation

CO TX 0.2325
GA VA 0.1998
NY RI 0.1859
OR TX 0.1808
KS SD 0.1745
CO OK 0.1663
WY NV 0.1616
IA SD 0.1549
AR KY 0.1535
CT MA 0.1444
NC VA 0.1266

2 Additional simulation studies

The results in the main text suggest that the PQMLE has good estimation and inference properties

due to the better estimation of the true covariance matrix Σ0. The simulation results show that in

the model setting of commonly encountered cases, our method performs better than contemporary

high-dimensional methods. In this section, we compare the finite sample performance of our pro-

posed estimators in SUR models to that of more conventional methods, complementing the results

in the main text. Specifically, we compare the estimator for both the regression coefficient β0 and

covariance matrix Σ0 with that of FGLS, MLE and MD.

The simulation study is based on the data generating process of model (2.1). For simplicity,

we set ki = 2 for all equations i = 1, . . . , n; hence, xit = (1, xit,1) are the regressors for equation

i and β0i = (β01i, β02i) are the corresponding model coefficients. xit,1 is generated as an AR(1)

process with autocorrelation coefficient ρ = 0.6 and i.i.d. N(0, 1) innovations for each i = 1, ..., n.

In this simulation study, we consider n = 20 and n = 50, and the true model coefficients of the two

SUR systems are reported in Table 4 and 5 in the Appendix. (Ut) is generated as i.i.d. Gaussian4

4Since Gaussian errors are used, the estimators are indeed the PMLE and MLE instead of the PQMLE and QMLE.
We expect that the relative performance of the penalized estimator and other aforementioned estimators is similar if
non-Gaussian errors are used.
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with mean 0 and E(UtU
′
t) = Σ0. To investigate the performance of the PQMLE for models with

Σ0 having different sparsity structures, we consider the following three cases. Without loss of

generality, we set all the diagonal elements of Σ0 to 1.

Case 1: Σ0 is a band covariance matrix where the first off-diagonal elements are 0.5 and all other

off-diagonal elements are zero.

Case 2: Set the first off-diagonal elements to 0.5, the second off-diagonal elements to 0.05 and all

other elements to 0. This case is used to check whether the estimation procedure can catch small

but nonzero covariance elements.

Case 3: Construct Σ0 by setting the mth off-diagonal elements to 0.8m for m = 1, . . . , n/2. This

case is used to check the performance of the PQMLE on models with less sparse error covariance

matrices. The sparsity rate is only 23.68% and 24.48%, respectively, for n = 20 and n = 50. On

the other hand, the off-diagonal elements of Σ0 decrease gradually and become increasingly close

to 0 as they get further away from the diagonal elements. Indeed, when m = 25, 0.8m = 0.0038 is a

tiny nonzero number. By setting Σ0 in this way, we check the identification ability of the PQMLE

in the neighborhood of 0.

We consider six combinations of n and T . In particular, T = 15, 25 and 50 are considered for

n = 20 and T = 30, 100 and 200 are considered for n = 50. We are particularly interested in the

performance of the estimators when T < n, which is becoming increasingly popular in practice due

to the availability of individual-level data. Although the asymptotic theories are established for

cases where T diverges faster than n, the finite sample performance of the PQMLE shows some

merit in cases where the restrictions are not as stringent.

Remark 2.1 Clearly, when n > T , the sample covariance matrix S of the residuals cannot be full

rank, and the solution of (2.5) in Fan et al. (2018) will be degenerate. In the calculation, we set

S = S + ιIn, where ι is a very small number, e.g., 10−6. This process is equivalent to augmenting

the data with points that do not lie perfectly in the span of the observed data. Our algorithm is

designed to handle this common issue in real data. The algorithm established here converges with

the same rate as that in Bien and Tibshirani (2011). Notably, when n ≈ T , the regular QMLE of
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the covariance matrix does not work and is not recommended for empirical researchers. For a fair

comparison, we add a small ι to the diagonal for the other aforementioned conventional methods.

The proposed PQMLE is shown to have the best performance.

The error covariance matrix Σ0 and regression coefficient β0 are estimated using the simulated

data via the proposed PQMLE, MLE, FGLS and MD methods. We compare these four estimators

based on the following three statistics.

1. cov. RMSE, the overall root mean square error of the covariance matrix estimator Σ̂, i.e., its

empirical Frobenius norm, which is given as cov. RMSE =
√∑

ij(σ̂ij − σ0
ij)

2 = ‖Σ̂−Σ0‖F .

2. MAD, the overall median absolute deviation of coefficient matrix β0, with

MAD = mediannsim

(∑n
i=1(|β̂1i−β01i|+|β̂2i−β02i|)

2n

)
, where nsim is the number of simulations.

3. MSE, the overall mean squared error of coefficient matrix β0, with

MSE = mediannsim

(∑n
i=1((β̂1i−β01i)2+v̂ar(β̂1i)+(β̂2i−β02i)2+v̂ar(β̂2i))

2n

)
, where v̂ar(β̂1i) and v̂ar(β̂2i)

of the PQMLE of β0 are obtained from the estimated asymptotic covariance matrix according

to Theorem 3, where the matrix M is estimated as M̂ = 1
nT

∑T
t=1X

′
tΣ̂Xt.

Finally, since the PQMLE enjoys model selection consistency, i.e., it can estimate the zero

elements in Σ0 as 0 and the nonzero elements as nonzero, we report the following statistic for the

PQMLE.

4. Sp rate, the sparsity recognition rate, which is calculated as ns/n(n − 1), where ns is the

number of successfully recognized off-diagonal elements of the estimated covariance matrix.

If the PQMLE estimates a nonzero off-diagonal element as nonzero or a zero off-diagonal

element as zero, we count it as one successful event. ns is the total number of such successful

events.

Note that this value is calculated only for PQMLE since this statistic is not relevant to the other

conventional estimators.
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Tables 6–8 present the simulation results for n = 20. The results in the three tables suggest

at least two features. First, the proposed PQMLE produces a more accurate estimation of the

covariance matrix in terms of the empirical Frobenius norm and sparsity rate. Second, as a result

of the better estimation of the covariance matrix, the PQMLE performs better than the alternative

estimators in terms of the median absolute deviation and MSE of the estimator of β0. Specifically,

for n = 20, the proposed PQMLE has the best MAD and MSE. This result is robust for Cases

1, 2 and 3 and for different sample sizes. Furthermore, for n = 20 and T = 15, the PQMLE

is much better than the other methods in terms of the coefficient estimator MSE. The sparsity

recognition rate increases with sample size T in general. The simulation results for n = 50 are

reported in Tables 9–11. Here, we observe similar patterns, i.e., the bias of the PQMLE is better

than that of the other methods. Additionally, the correct covariance structure recognition rate

increases as T increases. Cases 1 and 2 have, in general, better results than difficult Case 3, which

has less satisfactory results in terms of the model selection correction rate. As shown in Table

10, the model selection consistency property holds for the proposed PQMLE when the sparsity is

relatively high. Additionally, when n is comparable to T and the sparsity is not severe, it is very

difficult to distinguish the small elements from 0 for finite samples, as shown in Table 11.

We conclude that for a large SUR system with a sparse error covariance matrix, the PQMLE

generally outperforms the alternative estimators. The simulation results indicate that our method

is better than FGLS, MLE and MD in terms of: 1) the RMSE of σ’s, 2) estimation bias of the

regression coefficients β and 3) MSE of coefficients β. The proposed PQMLE can also recognize the

sparsity structure of the covariance matrix as the sample size increases. In the finite sample case,

where the cross-sectional dimension n and total number of model parameters are relatively large

compared to the time dimension T and the covariance matrix is sparse, our method achieves better

performance. In practice, since we usually do not know the covariance matrix sparsity structures

of cross-sectional units, our proposed method provides a better solution than the alternatives to

estimate the general covariance matrix and regression coefficients.
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3 Definition of Ĵα test

In this section, we formally define the Ĵα test of Pesaran and Yamagata (2017), which is compared

with our proposed estimator in the second simulation setting. The factor model was already

introduced in the simulation section 4.2 of Fan et al. (2018), so we will not repeat it here. Define

the diagonal elements of Σ, namely, the n × n diagonal matrix, D = diag (σ11, σ22, ..., σnn), with

σii = E
(
u2
it

)
. Consider the statistic

Wd =
(
τ ′TMFτT

)
α̂′D−1α̂ =

(
τ ′TMFτT

) n∑
i=1

(
α̂2
i

σii

)
(3.1)

where

α̂i =
(
αiτ

′
T + β′iF

′ + u′i
)( MFτT
τ ′TMFτT

)
= αi + u′ic, c =

(
MFτT
τ ′TMFτT

)
.

is an efficient estimator of αi. Additionally, τT = (1, 1, ..., 1)′, ft = (f1t, f2t, ..., fmt)
′ is the m × 1

vector of factors, F = (f1,f2,f3, . . . ,fT )′, MF = IT − F (F ′F )−1 F ′. Its feasible counterpart is

given by

Ŵd =
(
τ ′TMFτT

)
α̂′D̂−1

v α̂ =

(
τ ′TMFτT
v−1T

) N∑
i=1

(
α̂2
i

σ̂ii

)
(3.2)

where Σ̂ii = û
′
iûi/T , and the degrees of freedom v = T − m − 1. In the simulations, we use a

three-factor model, such that m = 3. The infeasible statistic, Wd, can be written as

Wd =

N∑
i=1

z2
i (3.3)

where

z2
i = α̂2

i

(
τ ′TMFτT

)
/σii (3.4)

It is then easily seen that

Ŵd =

N∑
i=1

t2i (3.5)
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where ti denotes the standard t-ratio of αi in the OLS regression of yit on an intercept and ft,

namely,

t2i =
α̂2
i (τ ′TMFτT )

v−1T σ̂ii
(3.6)

A standardized version of Ŵd, defined by (3.2), is

n−1/2
[
Ŵd − E

(
Ŵd

)]
√
V ar(Ŵd)

(3.7)

where

n−1E(Ŵd) = E(t2i ) (3.8)

n−1V ar(Ŵd) = n−1V ar(

n∑
i=1

t2i ) = N−1
n∑
i=1

V ar(t2i ) +
2

n

n∑
i=2

i−1∑
j=1

Cov(t2i , t
2
j ) (3.9)

Under Gaussianity, the individual ti statistics are identically distributed as Student’s t with v

degrees of freedom, and we have (assuming v = T −m− 1 > 4)

E(t2i ) =
v

v − 2
and V ar(t2i ) =

(
v

v − 2

)2 2(v − 1)

v − 4
(3.10)

Using (3.8)–(3.10), the standardized statistic (3.7) can be written as

Jα(θ2
n) =

n−1/2
[
Ŵd − E

(
Ŵd

)]
√
V ar(Ŵd)

=
n−1/2

∑n
i=1(t2i − v

v−2)√(
v
v−2

)2
2(v−1)
v−4 (1 + θ2

n)

(3.11)

where

θ2
n = n−1

n∑
i=2

i−1∑
j=1

Corr(t2i , t
2
j )

and

Corr(t2i , t
2
j ) = Cov(t2i , t

2
j )/[V ar(t

2
i )V ar(t

2
j )]

1/2
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To make the Jα test operational, one must provide a large n consistent estimator of θ2
n. The Jα test

is standardized assuming ti has a standard t distribution; the test will continue to have satisfactory

small sample performance even if such an assumption does not hold due to the non-Gaussianity of

the underlying errors.
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