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Appendix B. The Proofs of Theorem 2.2 and Proposition 2.3

The proof of Theorem 2.2 requires two analytic results, which we provide in the fol-
lowing two lemmas.

Lemma B.1. Let (c, c′) ∈ R2 \ {(0, 0)}, V,W ∈ V, and let f, g : [0,∞) 7→ [0,∞) denote
two right-continuous functions. Assume that there exist some t ≥ 0 and ε > 0 such that

ft < fs, for all s ∈ (t, t+ ε) (B.1)

and define the two right-continuous functions

f̃s = fs + c1s∈[t,t+ε), s ≥ 0; (B.2)

g̃s = gs + c′1s∈[t,t+ε), s ≥ 0. (B.3)

Then we have the equivalence

(LV , f, f̃) =
Å
L c′

c
W
,
c

c′
g,
c

c′
g̃
ã

if and only if (LV ◦ f,LV ◦ f̃) = (LW ◦ g,LW ◦ g̃).

Proof. The “only if” direction is trivial; hence let us assume that (LV ◦ f,LV ◦ f̃) =
(LW ◦ g,LW ◦ g̃). Since this implies that

LV (fs)− LV
Ä
f̃s
ä

= LW (gs)− LW (g̃s)

we then have c 6= 0 and c′ 6= 0. By swapping f with f̃ (and g with g̃) we may assume
that c > 0. The monotonicity of LV and LW then also yields that c′ > 0. Next, define
the functions

ϕ : (LV (∞), 1]→ R; s 7→ LV
Ä
L−1V (s) + c

ä
;

ψ : (LW (∞), 1]→ R; s 7→ LW
Ä
L−1W (s) + c′

ä
and observe

ϕ (LV (fs)) = LV
Ä
f̃s
ä

= LW (g̃s) = ψ (LW (gs)) = ψ (LV (fs)) , s ∈ [t, t+ ε).

Now, (B.1) guarantees that the range of the function [t, t+ ε) 3 s 7→ LV (fs) contains an
open non-empty interval. This then yields that ϕ = ψ since the two functions ϕ and ψ
are analytic; see Chapter II.5 in Widder (1946).
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Next, note that LV (0) = LW (0) and proceed by induction as follows. Assume that we
have argued LV ((n− 1)c) = LW ((n− 1)c′) for some n ∈ N. Then we get

LV (nc) = ϕ(LV ((n− 1)c)) = ψ(LW ((n− 1)c′)) = LW (nc′), n ∈ N.
Now, consider the random variable W ′ = (c′/c)W ≥ 0 with Laplace transform LW ′(x) =
LW (xc′/c) for all x ≥ 0. We thus have

LV (nc) = LW ′(nc), n ∈ N.
Since, moreover,

∑
n∈N 1/(cn) =∞, the Müntz theorem yields LV = LW ′ = L(c′/c)W ; see

Feller (1968), in particular, Theorem 2 and the representation of (1.7) in that paper. We
then also get that

f = L−1V (LV (f)) = L−1V (LW (g)) = L−1V (L(c/c′)V (g)) = L−1V
Å
LV
Å c
c′
g
ãã

=
c

c′
g,

and similarly, that f̃ = (c/c′)g̃. Hence, the statement follows. �

The proof of Lemma B.1 is inspired by Brinch (2007).

Lemma B.2. Recall the setup and notation of Lemma B.1. Then there exists n ∈ N
such that, for all right-continuous functions f, g : [0,∞) 7→ [0,∞) satisfying

sup
s∈[t,t+ε)

Ä
|c+ fs − f s|+ |c′ + g − gs|

ä
<

1

n
(B.4)

and

(LV , f, f) 6=
Ç
LκW ,

1

κ
g,

1

κ
g

å
for each constant κ > 0,

we have

(LV ◦ f,LV ◦ f) 6= (LW ◦ g,LW ◦ g),

Proof. We may assume in the proof that LV ◦ f = LW ◦ g; otherwise nothing is to be
argued. We recall the right-continuous functions f̃ and g̃ from (B.2) and (B.3). Let us

first assume that LV ◦ f̃ = LW ◦ g̃ on [t, t + ε). Then we also have LV ◦ f̃ = LW ◦ g̃.
Lemma B.1 now yields that LV = L(c′/c)W . This then yields the statement.

Hence, let us now assume that LV ◦ f̃ 6= LW ◦ g̃ on [t, t+ ε). Thanks to the continuity
properties of the two functions LV and LW , there exists n ∈ N such that LV ◦f 6= LW ◦g
whenever (B.4) holds. This concludes the proof. �

Proof of Theorem 2.2. We only need to argue one direction. Hence, let us assume that
(LV , F ) 6= (LκW , G/κ) for each constant κ > 0. In the notation of Assumption (R), fix
ω ∈ A1 ∩ A2, set f = F (ω), g = G(ω), t = ρ(ω), c = C(ω), c′ = C ′(ω), and ε = E(ω).
Then Lemma B.2 yields the existence of N(ω) such that

(LV ◦ f,LV ◦ F (ω̃)) 6= (LW ◦ g,LW ◦G(ω̃)), ω̃ ∈ Of,g,t,c,c′,ε,N(ω). (B.5)

Setting N(ω) = 1 for all ω /∈ A1 ∩ A2 then yields a mapping N : Ω → N. It can be
checked that N is measurable, hence N is a random variable.

To proceed with the argument, let us consider the product space (Ω×Ω,H ×H ,P×P)
and identify all random variables X : Ω→ R with random vectors (X1, X2) : Ω×Ω→ R2

by X1(ω1, ω2) = X(ω1) and X2(ω1, ω2) = X(ω2) for all (ω1, ω2) ∈ Ω × Ω. Next, define
the set

B = ‹A ∩ {(ω1, ω2) : ω2 ∈ OF 1,G1,ρ1,C1,C′1,E1,N1} ⊂ Ω× Ω, (B.6)
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where ‹A = {(ω1, ω2) : ω1 ∈ A1 ∩ A2} ∈H ×H .

Similar as in the proof of Lemma C.1 below, we can see that B ∈H ×H .
Next, note that Assumption (R) guarantees that (P × P)[B] > 0. Moreover, on B we

have

|LV (F 1)− LW (G1)|+ |LV (F 2)− LW (G2)| > 0,

thanks to (B.5). Since the distribution of (F,G) under P is the same as the one of (F 1, G1)
under the product measure P× P, as well as the one of (F 2, G2), we now obtain

E[|LV (F )− LW (G)|] =
1

2
EP×P

î
|LV (F 1)− LW (G1)|+ |LV (F 2)− LW (G2)|

ó
> 0,

which proves that LV (F ) 6= LW (G), and hence the statement follows. �

Remark B.3. In Assumption (R), each ω ∈ A1 ∩ A2 is matched with an event that has
positive probability. After reading the proof of Theorem 2.2, the diligent reader might
possibly wonder why it does not suffice to consider those paths that can be paired with
a single path ω̃ (instead of an event with positive probability). To require now that the
family of those ω’s has positive probability is less restrictive than requiring that the event
A1 ∩ A2 in Assumption (R) has positive probability. Instead of considering the product
measure in the proof of Theorem 2.2 one could conjecture that it suffices to use

|LV (F (ω))− LW (G(ω))|+ |LV (F (ω̃))− LW (G(ω̃))| > 0

for all such pairs (ω, ω̃). However, we were not able to construct a measurable selection
to pick the “right partner.” Indeed, if ω ∈ Ω can be paired with some candidate ω̃, it
can also usually be paired with uncountably many other candidates ω̃ and it is not clear
how to pick one in a measurable way. �

Proof of Proposition 2.3. Fix some continuous functions α, β ∈ A and set

Ft =
∫ t

0
α(s, Zs)ds and Gt =

∫ t

0
β(s, Zs)ds

By assumption there exist x, y ∈ Z and t1 > 0 such that α(t1, x) 6= α(t2, y). Set now
ρ = t1 and E = t2 − t1. We directly get that P[A1] = 1 since the function α was assumed
to be strictly positive.

Next, observe that the continuity of α implies that there exists δ ∈ (0, t1) such that∫ t1

t1−δ
α(s, x)ds 6=

∫ t1

t1−δ
α(s, y)ds.

Hence, we can construct, in a measurable way, a random variable Z, taking values in
{x, y}, such that

C =
∫ t1

t1−δ

Ä
α(s, Z)− α(s, Zs)

ä
ds 6= 0, (B.7)

where the inequality is with probability 1. Hence, C is R \ {0}–valued. Similarly, we
define the random variable

C ′ =
∫ t1

t1−δ

Ä
β(s, Z)− β(s, Zs)

ä
ds.

We now want to argue that P[A2] > 0 with this choice of random variables ρ, E , and
(C,C ′). Indeed, we will argue that P[A2] = 1. To this end, fix n ∈ N and ω ∈ Ω such
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that z = Z(ω) is in the support of the process Z, which happens with probability one.
Moreover, set

f = F (ω) =
∫ ·
0
α(s, zs)ds, g = G(ω) =

∫ ·
0
β(s, zs)ds,

t = ρ(ω), c = C(ω), c′ = C ′(ω), and ε = E(ω). Next, let z̃ denote a Z–valued path with

z̃s = zs1s<t1−δ or s>t1 + Z(ω)1t1−δ≤s≤t1 , s ≥ 0.

Hence z̃ equals the given path z outside of the interval [t1 − δ, t1]. On that interval, z̃ is
constant and takes value x or y. We now want to prove that the event

Of,g,t,c,c′,ε,n =
ß
ω̃ ∈ Ω : sup

s∈[t,t+ε)

Ä
|c+ fs − Fs|+ |c′ + gs −Gs|

ä
<

1

n

™
=

{
ω̃ ∈ Ω : sup

s∈[t,t+ε)

Å∣∣∣∣∫ s

0
(α(u, z̃u)− α(u, Zu(ω̃))) du

∣∣∣∣
+
∣∣∣∣∫ s

0
(β(u, z̃u)− β(u, Zu(ω̃))) du

∣∣∣∣ã < 1

n

´
has positive probability. Indeed, with this representation, Lemma B.4 below yields that
P[Of,g,t,c,c′,ε,n] > 0, which concludes the proof. �

Lemma B.4. Suppose Assumptions (P) and (A) hold along with (2.5); i.e., we are in the
mixed hazard setup. Assume, moreover, that α ∈ A and that z be a Z–valued function in
the support of the observation process Z. Fix n ∈ N, z ∈ Z, δ ∈ (0, t1), and T > 0, and
define the Z–valued function

z̃s = zs1s<t1−δ or s>t1 + z1t1−δ≤s≤t1 , s ≥ 0.

Then we have

P

[
sup
s∈[0,T ]

Å∫ s

0
|α(u, z̃u)− α(u, Zu)| du

ã
<

1

n

]
> 0.

Proof. Thanks to the continuity of the function α, it suffices to show for some appropri-
ately chosen sufficiently small ε > 0 that the event{

sup
s∈[0,t1−ε)

|Zs − zs| < ε

}
∩
{

sup
s∈(t1+ε,t2−ε)

|Zs − z| < ε

}
∩
{

sup
s∈(t2+ε,T ]

|Zs − zs| < ε

}

has positive probability. Any of the three conditions in Assumption (P) yields this.
Indeed, if the covariate process Z is piecewise constant with Poisson update times this
probability can be written as the product of positive probabilities of the following three
events: (1) the event that up to time t1 − ε the observations stay close to z; (2) the
event that a jump occurs around time t1 to a neighbourhood of z, and that another jump
occurs around time t2 to a neighbourhood of z; (3) the event that after time t2 + ε the
observations stay close to z.

If the covariate process is a diffusion, the result follows from the support theorem;
see, for example, Stroock and Varadhan (1972). In the case of one-dimensonsal Markov
processes, a similar argument yields the claim; see for example Bruggeman and Ruf
(2016). �
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Appendix C. Some Results on Measurability

Assumption (R) implicitly uses two subtle but essential facts:

(1) The set Of,g,t,c,c′,ε,n is measurable such that the probability in (2.6) is well-defined.
(2) The set A1 ∩ A2 is measurable.

In this subsection, we provide the necessary arguments to justify these facts.

Lemma C.1. With the notation of Assumption (R), the set Of,g,t,c,c′,ε,n is an event; more
precisely,

Of,g,t,c,c′,ε,n ∈ F∞.

Proof. Consider the right-continuous F∞–measurable process

Hs = 1s∈[t,t+ε)
Ä
|c+ fs − Fs|+ |c′ + gs −Gs|

ä
, s ≥ 0.

Then we have

Of,g,t,c,c′,ε,n =
⋂

q∈Q∩[0,∞)

{Hq < 1/n} ∈ F∞,

which concludes the argument. �

Lemma C.2. With the notation of Assumption (R), we have A1 ∩ A2 ∈H .

Proof. It suffices to fix n ∈ N and check the measurability of the following set:

A(n) = A1 ∩
¶
P [Of,g,t,c,c′,ε,n]|f=F,g=G,t=ρ,c=C,c′=C′,ε=E > 0

©
,

where A1 ∈H . We now use the same argument as in the proof of Theorem 2.2. Consider
the product space (Ω× Ω,H ×H ,P× P) and define, as in (B.6),

B(n) = A ∩ {(ω1, ω2) : ω2 ∈ OF 1,G1,ρ1,C1,C′1,E1,n} ∈H ×H ,

where

A = {(ω1, ω2) : F 1
ρ < F 1

s , for each s ∈ (ρ1, ρ1 + E1)} ∈H ×H .

Next, let Y describe the conditional expectation of 1B(n) given the sigma algebra H ×
{∅,Ω}; to wit,

Y = E [1B(n)|H × {∅,Ω}]
= 1A × P [Of,g,t,c,c′,ε,n]|f=F 1,g=G1,t=ρ1,c=C1,c′=C′1,ε=E1 .

Then we see that

A(n) = {ω1 : Y (ω1, ω2) > 0}.

Since we assumed that the sigma algebra H is complete, we get A(n) ∈ H , concluding
the proof. �

Appendix D. Some Martingale Properties Of The Hazard Model

Theorem D.1. Fix a pair (W,G) ∈ V × F , assume that
∫∞
0 F ◦t dt < ∞, and define the

process M = 1/LW (G)1[[0,τ [[. Then the following conditions are equivalent:

(i) LW (G) = LV ◦(F ◦).
(ii) M is a uniformly integrable (Gt)–martingale.
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Proof. Assume that (i) holds. Now fix s, t ∈ [0,∞] with s < t and A ∈ Gs. Then we can
write A ∩ {τ > s} = B ∩ {τ > s} for some B ∈ Fs. Hence, we get

E[Mt1A] = E[Mt1B] = E

ñ
1

LV ◦(F ◦t )
lim
u↑t

1{τ>u}∩B

ô
= E

ñ
1

LV ◦(F ◦t )
1Be−V

◦F ◦t

ô
= P[B]

= E

ñ
1

LV ◦(F ◦s )
1Be−V

◦F ◦s

ô
= E

ñ
1

LV ◦(F ◦s )
1{τ>s}∩B

ô
= E[Ms1B] = E[Ms1A].

Here, we used (2.5). Thus, M is indeed a uniformly integrable (Gt)–martingale.
Let us now assume that (ii) holds, but LW (G) 6= LV ◦(F ◦). Then (2.5) yields the

existence of t > 0 such that

P [{τ > t} ∩ {LW (G) 6= LV ◦(F ◦)}] > 0.

Thus, we have

M 6= 1

LV ◦(F ◦)
1[[0,τ [[.

The left-hand side is a (Gt)–martingale by assumption, the right-hand side by the impli-
cation from (i) to (ii). This, however, contradicts the uniqueness of the multiplicative
decomposition of the nonnegative (Gt)–supermartingale 1[[0,τ [[ as a product of a local
martingale and a predictable nonincreasing process:

1[[0,τ [[ = M × LW (G); 1[[0,τ [[ =
1

LV ◦(F ◦)
1[[0,τ [[ × LV ◦(F ◦);

see also Yoeurp (1976) and Appendix B in Perkowski and Ruf (2015). Hence, we have
the implication from (ii) to (i). �

Example D.2. The choice of filtration is essential in the statement of Theorem D.1,
even if there is no unobserved factor. To see this, we provide now a setup that satisfies
Assumption (R). However, in this specific setup there exists G ∈ F such that the process
M = 1/LV ◦(G)1[[0,τ [[ is a uniformly integrable (Et)–martingale, but LV ◦(G) 6= LV ◦(F ◦).
Here, (Et) ⊂ (Gt) denotes the filtration generated by M itself.

Suppose that Ω = {w1, w2} × [0,∞), that ζ(w, r) = r for all (w, r) ∈ Ω and that

P [{w1} × (t,∞)] =
1

2
e−t = P [{w2} × (t,∞)] , t ≥ 0.

In particular, ζ is exponentially distributed. Moreover, let V ◦ = 1 and F = {F ◦, G},
where

F ◦t (w1, r) = t ∧ 3; Gt(w1, r) = log

Ç
2

1 + e−(1∧t)

å
+ (t− 1)+ ∧ 2, t, r ≥ 0;

F ◦t (w2, r) = (t− 2)+ ∧ 1; Gt(w2, r) = log

Ç
2

1 + e−(1∧t)

å
+ (t− 2)+ ∧ 1, t, r ≥ 0.

Next, define τ in the same way as in Footnote 3. Then the basic setup is satisfied. It
is also easy to check that Assumption (R) is satisfied with ρ = C = 2 and E = C ′ = 1.
However, clearly we have LV ◦(G) 6= LV ◦(F ◦).

Let us observe that

Mt =
2

1 + e−t
1[[0,τ [[, t ∈ [0, 1];

Mt =
2

(1 + e−1)eF
◦
1
× eF

◦
t 1[[0,τ [[, t ≥ 1.
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Next, let us check that M is a uniformly integrable (Et)–martingale. To this end, for
s, t ∈ [0, 1] with s < t we have, on the event {τ > s} ∈ Es,

E[Mt|Es] =
2

1 + e−t
P[τ > t|τ > s] =

2

1 + e−t
× 1 + e−t

1 + e−s
= Ms.

For s, t ∈ [1,∞] with s < t it is also easy to check that E[Mt|Es] = Ms. Hence, M is
indeed a uniformly integrable (Et)–martingale.

Let us now double-check that M is indeed not a (Gt)–martingale. The event A =
{w2} × [0,∞) is G1/2–measurable, but we have

E[M11A] =
2

1 + e−1
P[{τ > 1} ∩ A] =

2

1 + e−1
P[A] =

1

1 + e−1

>
1

1 + e−1/2
=

2

1 + e−1/2
P[A] = E[M1/21A].

Here we used the fact that τ(ω2, r) = r + 2 ≥ 2, for all r ≥ 0, on A. Thus, M is not a
(Gt)–martingale, which is consistent with the assertion of Theorem D.1. �
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