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This Appendix consists of six sections of additional results: K) asymptotic prediction of the MAR(1, q)

when α ∈ (0, 1) and an explicit example in the MAR(1, 1) case; L) expectation of MAR(p, q) processes

conditionally on a linear combination of past values and proof of the unit root property; M) conditional

correlation structure of noncausal AR(1) processes, proofs of Proposition 3.3 and of the conditional variance

of the MAR(1,1); N) proof of Lemma E.1; O) recursion over polynomials Ph and Qh; P) Cluster size

distribution, an illustration with the noncausal AR(1); Q) complementary results on the empirical study

and details about the estimation of the excess clustering term structure; R) Complementary estimation of

the financial series using the R package ’MARX’.

K A complement to Corollary 3.1 in the case α ∈ (0, 1) and q > 1

Corollary K.1 Under the conditions of Proposition 3.2, when α ∈ (0, 1), we have almost surely

∣∣∣E [Xt+h|Ft−1]
∣∣∣ −→
h→+∞

 0 if ψ<α−1> +
∑+∞
i=0 a0,i(ψ<1−α>)i = 0,

+∞ else,

where the a0,i’s are defined in Lemma E.1.

Proof.

To complete the proof of Corollary 3.1 in this case, we will derive the limit of Qh(ψ<α−1>) =(
ψ<α−1>

)h−1[
ψ<α−1> +

∑h−1
i=0 a0,i(ψ<1−α>)i

]
when α < 1. Recall that we have shown a0,h ∼

h→+∞
Chm−1λh.

In this case, we have |λ||ψ|1−α < 1, thus
∣∣∣ψ<α−1> +

∑h−1
i=0 a0,i(ψ<1−α>)i

∣∣∣ −→
i→+∞

D, whereD is a nonnegative

constant.

• Assume D > 0. Then |Qh(ψ<α−1>)| → +∞ as h tends to infinity, since |ψ|(α−1)(h−1) → +∞.

• Assume D = 0. We will show that |Qh(ψ<α−1>)| −→ 0.

Indeed, we have

ψ<α−1> +
+∞∑
i=0

a0,i(ψ<1−α>)i = 0

ψ<α−1> +
h−1∑
i=0

a0,i(ψ<1−α>)i = −
+∞∑
i=h

a0,i(ψ<1−α>)i.
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Thus,

|Qh(ψ<α−1>)| = |ψ|(α−1)(h−1)
∣∣∣ψ<α−1> +

h−1∑
i=0

a0,i(ψ<1−α>)i
∣∣∣

= |ψ|(α−1)(h−1)
∣∣∣+∞∑
i=h

a0,i(ψ<1−α>)i
∣∣∣

≤ |ψ|(α−1)(h−1)
+∞∑
i=h
|a0,i||ψ|i(1−α),

and
+∞∑
i=h
|a0,i||ψ|i(1−α) ∼

h→+∞
|C|

+∞∑
i=h

im−1(|λ||ψ|1−α)i.

We will show that for any x ∈ (0, 1), and any integer r ≥ 0,

+∞∑
i=h

irxi ∼
h→+∞

hrxh(1− x)−1, (K.1)

which will imply

|ψ|(α−1)(h−1)
+∞∑
i=h
|a0,i||ψ|i(1−α) =

h→+∞
O(hm−1|λ|h),

and thus |Qh(ψ<α−1>)| −→ 0, yielding the conclusion.

Let us now prove Equation (K.1). Notice that for x ∈ (0, 1), the sequences
(
irxi

)
i
and

(
i(i−1) . . . (i−

r + 1)xi
)
i
are equivalent as i tends to infinity and are both general terms of absolutely convergent

series. Thus,
+∞∑
i=h

irxi ∼
h→+∞

+∞∑
i=h

i(i− 1) . . . (i− r + 1)xi = xrg(r)(x),

where g(x) :=
∑+∞
i=h x

i = xh(1− x)−1.

By the general Leibniz rule for r-times differentiable functions, we obtain

g(r)(x) =
r∑
j=0

h!(r − j)!
(h− j)!

xh−j

(1− x)r−j+1 ∼
h→+∞

hrxh−r

1− x ,

and thus,
+∞∑
i=h

irxi ∼
h→+∞

xr
hrxh−r

1− x = hrxh

1− x.

Substituting x by |λ||ψ|1−α concludes the proof.

In the case α ∈ (0, 1), i.e. for the heavier tails within the stable family, the absolute conditional expecta-

tion tends to +∞ in modulus whenever the quantity ψ<α−1> +
∑+∞
i=0 a0,i(ψ<1−α>)i does not vanish. This

divergence is coherent with the fact that the unconditional expectation of (Xt) does not exist when α < 1.

It would be striking to have a case for which the above quantity is exactly zero, which would imply that

the conditional expectation vanishes even for this class of particularly extreme processes. However, as the

following example shows, all MAR(1,1) feature diverging conditional expectation when α < 1.
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Example K.1 (Asymptotic predictions of the MAR(1,1) process) Let (Xt) be defined by Equation

(3.3). From the explicit predictions formulated in Section 3.4, we deduce the asymptotic equivalents as the

horizon h tends to infinity:

E
[
Xt+h

∣∣∣Ft−1

]
a.s.∼

h→+∞



(ψ<α−1>)h+1

1− ψ<1−α>φ
(Xt−1 − φXt−2) , if |φ| < |ψ|α−1,

φh+2

φ− ψ<α−1>

(
Xt−1 − ψ<α−1>Xt−2

)
, if |φ| > |ψ|α−1,

φh+1
(
Xt−1 −

1 + (−1)h
2 (Xt−1 − φXt−2)

)
, if φ = −ψ<α−1>,

(h+ 1)φh+1(Xt−1 − φXt−2), if φ = ψ<α−1>.

Noticing that the condition |φ| < |ψ|α−1 is equivalent to α < 1 + ln |φ|
ln |ψ| , with

ln |φ|
ln |ψ| > 0, it can be seen that

the three asymptotic limits of Corollary 3.1 are consistent with these equivalents. In particular, when α = 1,

we always have |φ| < 1 = |ψ|α−1 and we get that, almost surely,∣∣∣E [Xt+h|Xt−1, Xt−2]
∣∣∣ −→
h→+∞

`t−1 =
∣∣∣∣Xt−1 − φXt−2

1− sign(ψ)φ

∣∣∣∣ .
L Unit root property and extension

The equality E
[
Xt

∣∣∣Xt−1
]

= Xt−1 for the noncausal Cauchy AR(1) with positive AR coefficient shows the

existence of a unit root. Indeed, we have Xt = Xt−1 + ηt where E
[
ηt
∣∣Xt−1

]
= 0. We show in this section

that this property actually extends to more general MAR processes. The next result provides the conditional

expectation of Xt given Xt−1.

Proposition L.1 Let Xt be the MAR(p, q) process solution of (2.1) with symmetric α-stable errors, 1 <

α < 2. Denoting (dk) the coefficients sequence of its MA(∞) representation, we have

E [Xt|Xt−1] =

∑
k∈Z

dk (dk+1)<α−1>

∑
k∈Z
|dk+1|α

Xt−1.

The condition for the existence of a unit root is now straightforward.

Corollary L.1 Under the assumptions of Proposition L.1,

E [Xt|Xt−1] = Xt−1 ⇐⇒
∑
k∈Z

dk (dk+1)<α−1> =
∑
k∈Z
|dk+1|α .

The case α ≤ 1 is more intricate because the expectation on the left-hand side of (L.1) might not exist.

However, the conditions for existence can be established using Theorem 2.13 of Samorodnistky and Taqqu

(1994). This is left for further research. Proposition L.1 is a consequence of the more general conditional

expectation of Xt given any linear combination of the past that we provide in the next result.

Proposition L.2 Let Xt be the MAR(p, q) process solution of (2.1) with symmetric α-stable errors, 1 <

α < 2. Denote (dk) the coefficients sequence of its MA(∞) representation. Then for any h ≥ 0, k ≥ 1, and
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a1, . . . , ak such that there exists ` ∈ Z, a1d`+1 + . . .+ akd`+k 6= 0, we have

E
[
Xt+h

∣∣∣ k∑
j=1

ajXt−j

]
=

∑
`∈Z d`−h

(∑k
j=1 ajd`+j

)<α−1>

∑
`∈Z

∣∣∣∑k
j=1 ajd`+j

∣∣∣α (a1Xt−1 + . . .+ akXt−k). (L.1)

Proposition L.1 is obtained for k = 1, a1 = 1.

Proof.

Let us introduce Yt−1,k = a1Xt−1 + . . . + akXt−k. Let ϕ(u, v) = E
[
eiuYt−1,k+ivXt+h

]
. For any (u, v) ∈ R2

we have,

ϕ(u, v) = E

exp
{
iu

k∑
j=1

aj
∑
`∈Z

d`εt+`−j + v
∑
`∈Z

d`εt+`+h

}
= E

exp

i∑
`∈Z

u k∑
j=1

ajd`+j + vd`−h

 εt+`




= exp

−σα∑
`∈Z

∣∣∣∣∣∣u
k∑
j=1

ajd`+j + vd`−h

∣∣∣∣∣∣
α .

Thus,

∂ϕ

∂u
(u, v) = −ασαϕ(u, v)

∑
`∈Z

 k∑
j=1

ajd`+j

u k∑
j=1

ajd`+j + vd`−h

<α−1>

,

and

∂ϕ

∂u

∣∣∣∣
v=0

= −ασαu<α−1>ϕ(u, 0)
∑
`∈Z

∣∣∣∣∣∣
k∑
j=1

ajd`+j

∣∣∣∣∣∣
α

.

We also have

∂ϕ

∂v
(u, v) = −ασαϕ(u, v)

∑
`∈Z

d`−h

u k∑
j=1

ajd`+j + vd`−h

<α−1>

,

∂ϕ

∂v

∣∣∣∣
v=0

= −ασαu<α−1>ϕ(u, 0)
∑
`∈Z

d`−h

 k∑
j=1

ajd`+j

<α−1>

.

Therefore,

∂ϕ

∂v

∣∣∣∣
v=0

=

∑
`∈Z d`−h

(∑k
j=1 ajd`+j

)<α−1>

∑
`∈Z

∣∣∣∑k
j=1 ajd`+j

∣∣∣α ∂ϕ

∂u

∣∣∣∣
v=0

(L.2)

On the other hand, for u 6= 0:

∂ϕ

∂u

∣∣∣∣
v=0

= iE
[
Yt−1,ke

iuYt−1,k
]
,

∂ϕ

∂v

∣∣∣∣
v=0

= iE
[
Xt+he

iuYt−1,k
]
.
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Therefore, for u ∈ R∗:

E


Xt+h −

∑
`∈Z d`−h

(∑k
j=1 ajd`+j

)<α−1>

∑
`∈Z

∣∣∣∑k
j=1 ajd`+j

∣∣∣α Yt−1,k

 eiuYt−1,k

 = 0. (L.3)

Hence, from Bierens (Theorem 1, 1982): Thus

E [Xt+h|Yt−1,k] =

∑
`∈Z d`−h

(∑k
j=1 ajd`+j

)<α−1>

∑
`∈Z

∣∣∣∑k
j=1 ajd`+j

∣∣∣α Yt−1,k.

M Conditional heteroscedasticity of the MAR(1, q) process

In order to prove Proposition 3.3, we need to show some preliminary results about the conditional covariance

of noncausal AR(1) processes. We will then turn to the conditional covariance of a MAR(1, q) process from

which the conditional variance will be obtained.

M.1 Conditional correlation structure of the MAR(1, q)

Lemma M.1 Let Xt be a noncausal AR(1) process satisfying Xt = ψXt+1 + εt, with εt
i.i.d.∼ S(1, 0, σ, 0).

Then, for any nonnegative integers h and τ :

E
[
Xt+hXt+h+τ

∣∣∣Xt−1

]
= (sign ψ)τ

[
|ψ|−h−1

(
X2
t−1 + σ2

(1− |ψ|)2

)
− σ2

(1− |ψ|)2

]
.

Remark M.1 From the previous result, it is possible to derive the whole conditional correlation structure

of (Xt). It can be shown that for any t ∈ Z, and any positive integers h and τ :

Cov
(
Xt+h, Xt+h+τ

∣∣∣Xt−1

)
√
V
(
Xt+h

∣∣∣Xt−1

)√
V
(
Xt+h+τ

∣∣∣Xt−1

) = (sign ψ)τ
√
|ψ|−h−1 − 1
|ψ|−h−τ−1 − 1 ,

which, when τ → +∞, is asymptotically equivalent to (sign ψ)τ |ψ|τ/2
√

1− |ψ|h+1 for any h ≥ 0, and

to (sign ψ)τ |ψ|τ/2 when h becomes large. Although in our infinite variance framework, the unconditional

correlation is not defined, empirical correlations can always be computed. We know from Davis and Resnick

(1985,1986) that they converge in probability towards the theoretical autocorrelations that would prevail in

the L2 framework. Given n observations of process (Xt), we have for any τ ≥ 0,∑n−τ+1
t=1 XtXt+τ∑n

t=1X
2
t

p−→
n→+∞

ψτ .

Surprisingly, the "unconditional" autocorrelations of (Xt) do not converge to the conditional ones when

n→ +∞, and vanish at a much slower rate (|ψ|τ/2 instead of |ψ|τ ).

We now turn to the MAR(1, q) process.
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Proposition M.1 Let Xt be a MAR(1, q) process, q ≥ 0, solution of Equation (2.1) with εt
i.i.d.∼ S(1, 0, σ, 0).

Then, for any positive integers h and τ , there exist polynomials Ph, Ph+τ , both of degrees q − 1, and Qh,

Qh+τ of respective degrees h and h+ τ such that

E [Xt+hXt+h+τ |Ft−1] = (Ph(B)Xt−1)(Ph+τ (B)Xt−1)

+ sign(ψ)(φ(B)Xt−1)
[
(Ph(B)Xt−1)Qh+τ (sign ψ) + (Ph+τ (B)Xt−1)Qh(sign ψ)

]
+ ch,τ

(
(φ(B)Xt−1)2 + σ2

(1− |ψ|)2

)
− σ2

(1− |ψ|)2Qh(sign ψ)Qh+τ (sign ψ),

with ch,τ =
∑h+τ
i=0

∑h
j=0 qi,h+τqj,h(sign ψ)i+j |ψ|−min(i,j)−1 and Qk(z) =

∑k
i=0 qi,kz

i, for any k ≥ 0.

This result yields Proposition 3.2 by taking h = τ = 0, with P0(B) = φ1 +φ2B+ . . .+φqB
q and Q0(B) = 1.

M.2 Proof of Lemma M.1

Consider ϕ(x, y, z) := E
(
eixXt+k+iyXt+`+izXt−1

)
, with 0 ≤ ` ≤ k, Xt = ψXt+1 + εt and εt

i.i.d.∼ S(α, 0, σ, 0).

We have

ϕ(x, y, z) = E
(
e
i
∑

n∈Z
(xdn−k+ydn−`+zdn+1)εt+n

)
= exp

{
−σα

∑
n∈Z
|xdn−k + ydn−` + zdn+1|α

}
.

Thus, on the one hand,

∂ϕ

∂z
= −ασα

∑
n∈Z

dn+1(xdn−k + ydn−` + zdn+1)<α−1>ϕ(x, y, z),

∂2ϕ

∂z2 = (ασα)2

(∑
n∈Z

dn+1(xdn−k + ydn−` + zdn+1)<α−1>

)2

ϕ(x, y, z)

− α(α− 1)
∑
n∈Z

d2
n+1|xdn−k + ydn−` + zdn+1|α−2ϕ(x, y, z),

∂2ϕ

∂z2

∣∣∣∣∣x=0
y=0

= (ασα)2|z|2(α−1)

(∑
n∈Z
|dn+1|α

)2

ϕ(0, 0, z)− α(α− 1)|z|α−2
∑
n∈Z
|dn+1|αϕ(0, 0, z).
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And on the other hand,

∂ϕ

∂y
= −ασα

∑
n∈Z

dn−`(xdn−k + ydn−` + zdn+1)<α−1>ϕ(x, y, z),

∂2ϕ

∂x∂y
= (ασα)2

(∑
n∈Z

dn−`(xdn−k + ydn−` + zdn+1)<α−1>

)

×

(∑
n∈Z

dn−k(xdn−k + ydn−` + zdn+1)<α−1>

)
ϕ(x, y, z)

− α(α− 1)
∑
n∈Z

dn−`dn−k|xdn−k + ydn−` + zdn+1|α−2ϕ(x, y, z),

∂2ϕ

∂x∂y

∣∣∣∣∣x=0
y=0

= (ασα)2|z|2(α−1)

(∑
n∈Z

dn−`(dn+1)<α−1>

)(∑
n∈Z

dn−k(dn+1)<α−1>

)
ϕ(0, 0, z)

− α(α− 1)|z|α−2
∑
n∈Z

dn−`dn−k|dn+1|α−2ϕ(0, 0, z).

Hence,

1
A2

 ∂2ϕ

∂x∂y

∣∣∣∣∣x=0
y=0

− (ασα)2A1|z|2(α−1)ϕ(0, 0, z)

 = −α(α− 1)|z|α−2ϕ(0, 0, z),

1
A3

[
∂2ϕ

∂z2 − (ασα)2A2
3|z|2(α−1)ϕ(0, 0, z)

]
= −α(α− 1)|z|α−2ϕ(0, 0, z),

with

A1 =
(∑
n∈Z

dn−`(dn+1)<α−1>

)(∑
n∈Z

dn−k(dn+1)<α−1>

)
,

A2 =
∑
n∈Z

dn−`dn−k|dn+1|α−2,

A3 =
∑
n∈Z
|dn+1|α.

Therefore,

1
A2

 ∂2ϕ

∂x∂y

∣∣∣∣∣x=0
y=0

− (ασα)2A1|z|2(α−1)ϕ(0, 0, z)

 = 1
A3

[
∂2ϕ

∂z2 − (ασα)2A2
3|z|2(α−1)ϕ(0, 0, z)

]
,

This yields for α = 1,

1
A2

 ∂2ϕ

∂x∂y

∣∣∣∣∣x=0
y=0

− σ2A1ϕ(0, 0, z)

 = 1
A3

[
∂2ϕ

∂z2 − σ
2A2

3ϕ(0, 0, z)
]
.

Taking into account that dn = ψn1{n≥0} for the noncausal AR(1) and noticing that

∂2ϕ

∂x∂y
= −E

[
Xt+kXt+`e

izXt−1
]
,

∂2ϕ

∂z2 = −E
[
X2
t−1e

izXt−1
]
,
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we get for any z ∈ R∗:

E
[{
Xt+kXt+` − (sign ψ)k+` (|ψ|−`−1(X2

t−1 + σ̃2)− σ̃2)} eizXt−1
]

= 0,

with σ̃ = σ

1− |ψ| . From Bierens (Theorem 1, 1982):

E
[
Xt+kXt+`

∣∣∣Xt−1

]
= (sign ψ)k+` (|ψ|−`−1(X2

t−1 + σ̃2)− σ̃2) ,
which concludes the proof.

M.3 Proof of Proposition M.1

Let k and ` be two positive integers such that ` ≤ k. From Lemma D.1, we know that for any h ≥ 0, there

exist two polynomials Ph and Qh of respective degrees q − 1 and h such that:

Xt+h = Ph(B)Xt−1 +Qh(F )ut.

Thus, using the same device as in the Proof of Proposition 3.2,

E
[
Xt+kXt+`

∣∣∣Xt−1, . . . , Xt−q−1

]
= E

[(
Pk(B)Xt−1 +Qk(F )ut

)(
P`(B)Xt−1 +Q`(F )ut

)∣∣∣∣∣Xt−1, . . . , Xt−q−1

]
,

=
(
Pk(B)Xt−1

)(
P`(B)Xt−1

)
+
(
Pk(B)Xt−1

)
E
[
Q`(F )ut

∣∣∣ut−1

]
+
(
P`(B)Xt−1

)
E
[
Qk(F )ut

∣∣∣ut−1

]
+

k∑
i=0

∑̀
j=0

qiqjE
[
ut+iut+j

∣∣∣ut−1

]
.

The second and third terms can be expressed as:(
Pk(B)Xt−1

)
E
[
Q`(F )ut

∣∣∣ut−1

]
+
(
P`(B)Xt−1

)
E
[
Qk(F )ut

∣∣∣ut−1

]
=

sign(ψ)
(
φ(B)Xt−1

)[
Q`(sign ψ)

(
Pk(B)Xt−1

)
+Qk(sign ψ)

(
P`(B)Xt−1

)]
,

whereas the fourth term can be rewritten using Lemma M.1:
k∑
i=0

∑̀
j=0

qiqjE
[
ut+iut+j

∣∣∣ut−1

]
=

k∑
i=0

∑̀
j=0

qiqj(sign ψ)i+j
[
|ψ|−min(i,j)−1

(
(φ(B)Xt−1)2 + σ̃2

)
− σ̃2

]
,

= −σ̃2Qk(sign ψ)Q`(sign ψ)

+
(

(φ(B)Xt−1)2 + σ̃2
) k∑
i=0

∑̀
j=0

qiqj(sign ψ)i+j |ψ|−min(i,j)−1.

M.4 Proof of Proposition 3.3

The result of Proposition 3.3 is obtained by substituting E
[
Xt+h

∣∣∣Ft−1

]
and E

[
X2
t+h

∣∣∣Ft−1

]
in

V
(
Xt+h

∣∣∣Ft−1

)
= E

[
X2
t+h

∣∣∣Ft−1

]
−
(
E
[
Xt+h

∣∣∣Ft−1

])2
,

using the formulas of Propositions 3.2 and M.1.
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M.5 Details on the conditional variance of the MAR(1,1) of Section 3.4

By Lemma E.1, the polynomial Qh intervening in Proposition 3.3 reads in the case of the MAR(1,1)

Qh(z) =
h∑
i=0

φh−izi.

Applying Proposition 3.3, we know that

V
(
Xt+h

∣∣∣Ft−1

)
=
(

(Xt−1 − φXt−2)2 + σ2

(1− |ψ|)2

)(
ch −

(
Qh(sign ψ)

)2
)
,

with ch =
∑h
i=0
∑h
j=0 qi,hqj,h(sign ψ)i+j |ψ|−min(i,j)−1. Using the explicit form of the qi,h’s, the coefficients

of polynomial Qh, we can deduce that for ψ > 0

Qh(signψ) = 1− φh+1

1− φ ,

ch = ψ−h−1
h∑
i=0

h∑
j=0

φiφjψmax(i,j),

which can be simplified by elementary calculations after splitting the sums according to whether i ≥ j or

j > i.

N Proof of Lemma E.1

For h = 0, Equation (D.1) holds with P0(B) = φ1 + φ2B
2 . . .+ φqB

q−1 and Q0(B) = 1. We have

Xt+h = a0,hXt−1 +
q−1∑
i=1

ai,hXt−i−1 +
h∑
i=0

bi,hut+i

= a0,h

(
q−1∑
i=0

φi+1Xt−i−2 + ut−1

)
+
q−1∑
i=1

ai,hXt−i−1 +
h∑
i=0

bi,hut+i

=
q−2∑
i=0

(
ai+1,h + a0,hφi+1

)
Xt−i−2 + a0,hφqXt−q−1 + a0,hut−1 +

h∑
i=0

bi,hut+i.

Since this last formula holds at any t ∈ Z, this last equation yields

Xt+h+1 =
q−2∑
i=0

(
ai+1,h + a0,hφi+1

)
Xt−i−1 + a0,hφqXt−q + a0,hut +

h+1∑
i=1

bi−1,hut+i.

However, we also have by definition

Xt+h+1 = Ph+1(B)Xt−1 +Qh+1(F )ut =
q−1∑
i=0

ai,h+1Xt−i−1 +
h+1∑
i=0

bi,h+1ut+i.

Thus, by identification,

aq−1,h+1 = a0,hφq,

ai,h+1 = ai+1,h + a0,hφi+1, for 0 ≤ i ≤ q − 2,

a0,h = b0,h+1,

bi,h+1 = bi−1,h, for 1 ≤ i ≤ h+ 1.
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We deduce from these equations that for any h ≥ 0,

bi,h+1 = a0,h−i, for 0 ≤ i ≤ h+ 1,

ai,h+1 =
min(q−i−1,h)∑

j=0
a0,h−jφi+1+j , for 0 ≤ i ≤ q − 1,

with the convention a0,−1 = 1. We obtain that (a0,h) is the solution of the linear recurrent equation of order

q

a0,h+q = φ1a0,h+q−1 + . . .+ φqa0,h, for h ≥ 0, (N.1)

with initial values (a0,0, . . . , a0,q−1) that could be expressed as functions of φ1, . . . , φq. Denote λ1, . . . , λs the

distinct roots of the polynomial F qφ(B) with respective multiplicitiesm1, . . . ,ms, with s ≤ q,m1+. . .+ms =

q. Since φ has all its roots outside the unit circle, we know that |λi| < 1 for all i. Therefore, there exist

polynomials C1, . . . , Cq of respective degrees m1, . . . ,ms such that for any h ≥ q,

a0,h = C1(h)λh1 + . . .+ Cs(h)λhs .

O A recursive scheme for computing polynomials Ph and Qh of

Lemma D.1

Lemma O.1 Polynomials Ph and Qh of Lemma D.1 satisfy the following recursive equations:

BPh+1(B) = Ph(B)− Ph(0)φ(B), Qh+1(F ) = FQh(F ) + Ph(0), (O.1)

with initial conditions Q0(B) = 1, P0(B) = φ1 + φ2B + . . .+ φqB
q−1.

Proof. By applying polynomial φ(B) to (D.1), we get by (B.1)

φ(B)Xt+h = Ph(B)φ(B)Xt−1 +Qh(F )φ(B)ut,

B−hut = BPh(B)ut +Qh(F )φ(B)ut,

which implies Bh+1Ph(B) + BhQh(F )φ(B) = 1. The same holds at rank h + 1. Thus, denoting Qh(F ) =∑h
i=0 qi,hF

i and Q∗h(B) := BhQh(F ) =
∑h
i=0 qh−i,hB

i, we also have: Bh+2Ph+1(B)+Qh+1(B)ψ∗(B)φ(B) =

1. Subtracting the expressions at ranks h and h+ 1 yields:

Bh+1
(
BPh+1(B)− Ph(B)

)
+ φ(B)

(
Q∗h+1(B)−Q∗h(B)

)
= 0. (O.2)

We can notice that the term of degree zero in this expression is: φ(0)
(
Q∗h+1(0)−Q∗h(0)

)
= 0, hence qh+1,h+1 =

qh,h. Focusing on the next terms of degrees i = 1, . . . , h, we can iteratively show that qh+1−i,h+1 = qh−i,h.

Finally, focusing on the term of degree h+ 1, we now deduce that −Ph(0) + q1,h+1 − q0,h = 0. This leads us

to the equality

Q∗h+1(B) = Q∗h(B) +Bh+1Ph(0), (O.3)

10



or equivalently Qh+1(F ) = FQh(F )+Ph(0), which establishes the right-hand side equation of (O.1). Finally,

replacing (O.3) in (O.2) concludes the proof of Lemma O.1.

P Cluster size distribution: the noncausal AR(1) case

Figure 5: Theoretical tail probability given by Equation (4.16) of cluster sizes of extreme errors (4.18) (strong representation,

points) and (4.19) (all-pass representation, triangles) for α = 1.5, ψ0 = 0.9 at different horizons h.

We illustrate the extreme clustering behaviors of the two error sequences (4.18) and (4.19) for various horizons
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and parameter values α = 1.5, ψ0 = 0.9. From equations (4.18) and (4.19), we deduce the sequence (c(k))

and compute the tail probability distributions of the cluster size using (4.16). As depicted in Figure 5, the

contrast between the errors of the all-pass representations and those of the strong representations is the

highest for intermediate values of h.

Q Monte Carlo study: complementary results and methodology

Q.1 Asymptotic distribution of the LS estimator

α = 1.5 ψ = 0.7 φ = 0.9 α = 1 ψ = 0.7 φ = 0.9

n q0.1 q0.25 Median q0.75 q0.9 q0.1 q0.25 Median q0.75 q0.9

500 δ̂1 -2.759 -1.338 -0.527 -0.061 0.231 -12.69 -3.569 -0.731 0.012 0.691

δ̂2 -0.265 0.038 0.495 1.284 2.653 -0.873 -0.049 0.694 3.430 12.13

2000 δ̂1 -1.558 -0.746 -0.226 0.086 0.417 -6.321 -1.732 -0.221 0.247 1.382

δ̂2 -0.448 -0.105 0.214 0.730 1.521 -0.662 -0.320 0.001 0.322 0.655

5000 δ̂1 -1.188 -0.565 -0.132 0.156 0.513 -4.564 -1.269 -0.097 0.387 1.824

δ̂2 -0.536 -0.172 0.125 0.561 1.177 -2.098 -0.469 0.096 1.357 4.749

∞ δ̂1 -0.726 -0.252 0.000 0.246 0.719 -5.470 -0.856 0.000 0.954 5.686

δ̂2 -0.762 -0.264 0.000 0.268 0.768 -6.687 -1.110 0.000 1.006 6.503

α = 0.5 ψ = 0.7 φ = 0.9 α = 1.7 ψ = 0.3 φ = 0.4

500 δ̂1 -1307 -114.6 -5.247 0.157 14.06 -1.003 -0.513 -0.042 0.408 0.870

δ̂2 -21.31 -0.412 5.176 114.8 1239 -0.958 -0.484 -0.008 0.466 0.956

2000 δ̂1 -524.3 -40.97 -0.493 2.804 54.63 -0.662 -0.328 -0.016 0.290 0.618

δ̂2 -74.37 -4.171 0.506 46.28 563.9 -0.662 -0.320 0.001 0.322 0.655

5000 δ̂1 -385.3 -28.11 -0.109 5.402 96.34 -0.641 -0.313 -0.008 0.292 0.608

δ̂2 -127.1 -7.493 0.111 33.07 445.0 -0.647 -0.318 -0.001 0.316 0.648

∞ δ̂1 -1546 -31.43 0.000 32.34 1614 -0.555 -0.235 0.000 0.231 0.554

δ̂2 -2129 -42.88 0.000 41.63 2068 -0.614 -0.257 0.001 0.261 0.621

Table Q.1: Characteristics of the empirical distribution of δ̂i =
(
n

lnn

)1/α
(η̂i−η0i), for i = 1, 2 over 100,000 simulated paths

of α-stable MAR(1,1) processes (Xt) solution of (1 − ψF )(1 − φB)Xt = εt with four different parametrizations (α,ψ0, φ0) ∈

{(1.5, 0.7, 0.9), (1, 0.7, 0.9), (0.5, 0.7, 0.9), (1.7, 0.3, 0.4)}. The empirical a-quantile is denoted qa. The results for n = ∞ are

obtained by simulations of the asymptotic distribution in (4.10). [See Example 4.1]

Q.2 Direct implementation of the Portmanteau test

We conducted an experiment to assess the direct implementation of the portmanteau test (without Monte

Carlo) and focused on α = 1.5. We computed the residuals of the 100,000 simulated paths based on the all-

pass causal AR(2) fits, evaluate the statistic (4.13) for h = 1, . . . , 10 and simulate its asymptotic distribution.

For each path, we performed the test at three different nominal sizes 1%, 5% and 10% by comparing the

statistics to the appropriate quantile of the asymptotic distribution. The empirical sizes are reported in
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Table Q.2. The test suffers heavy distortions, especially in smaller samples, which was expected from the

results by Lin and McLeod (2008) in the pure causal AR framework. It is generally oversized for small lags

and progressively becomes undersized as more lags are included. The empirical sizes slowly approach the

nominal sizes as the number of observations increases and the discrepancy between few and more lags also

gets smaller.

n = 500 n = 2000 n = 5000

H 1% 5% 10% 1% 5% 10% 1% 5% 10%

1 6.69 21.2 31.7 3.08 9.42 17.0 1.92 6.28 12.5

2 4.54 16.4 27.1 2.40 7.80 14.7 1.60 5.77 11.6

3 3.40 13.4 22.8 1.96 6.41 12.4 1.36 4.84 10.1

4 2.65 10.7 19.0 1.64 5.38 10.3 1.17 4.17 8.74

5 2.11 8.96 16.2 1.37 4.58 8.96 1.04 3.59 7.61

6 1.61 7.58 13.8 1.16 3.93 7.94 0.91 3.20 6.84

7 1.24 6.49 12.1 1.01 3.51 7.17 0.80 2.86 6.22

8 0.96 5.66 10.6 0.89 3.19 6.58 0.70 2.62 5.73

9 0.74 5.08 9.62 0.81 2.94 5.99 0.64 2.42 5.30

10 0.57 4.55 8.74 0.75 2.70 5.50 0.60 2.26 5.00

Table Q.2: Empirical sizes of portmanteau tests with nominal sizes 1%, 5% and 10% using the first H lags, H = 1, . . . , 10

of the residuals’ autocorrelations of 100,000 simulated paths of process (Xt) solution of (1 − 0.7F )(1 − 0.9B)Xt = εt, with

1.5-stable noise.

Q.3 Extreme residuals clustering

Q.3.1 Estimating the term structure of excess clustering

In practice, for one simulated path of the MAR(1,1) process (Xt) and one horizon h, we have six series of

residuals (ζ̂it+h|t)t, i = 1, . . . , 6, one each for the pure causal and noncausal AR(2) competitors, and two

each for the two MAR(1,1) competitors (one for the causal component, one for the noncausal component).

To compute the cluster sequences (ξ̂ik,h(x))k as defined in Section 5.2 for each residuals series, we need to

choose a threshold x > 0. It would be desirable to use thresholds such that we can harmoniously compare

the clustering behaviors of the six series of residuals. For the experiment detailed below, we worked with

the autostandardised series of residuals

v̂it+h|t :=

 ζ̂it+h|t

max
s
|ζ̂is+h|s|


t

, (Q.1)

which lie between 0 and 1, and for each horizon h, we used the threshold

xh := max
i=1,...,6

qa

(
|v̂it+h|t|

)
, (Q.2)

where qa(·) the a-percent quantile. In our experiments, a = 0.9 was used.
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Outline of the experiment

For a given parameterization (α,ψ0, φ0) and path length n, we simulate 10000 paths of process (Xt) solution

of (1 − ψ0F )(1 − φ0B)Xt = εt and conducted the experiment as follows. For each simulated path of (Xt)

and a given horizon h ≥ 1:

ι) Estimate the regression Xt = η̂1Xt−1 + η̂2Xt−2 + ζ̂t.

ιι) Obtain the set of (inverted) roots {ψ̂, φ̂} by solving for the zeros of η̂(z) = 1− η̂1z − η̂2z
2.

ιιι) For each of the four competing models (5.1)-(5.4), decompose the process into pure causal

and noncausal components and compute (v̂it+h|t), the series of autostandardised errors at

horizons h as in (Q.1).

ιν) Compute xh as in (Q.2) and obtain the cluster sizes sequences (ξ̂ik,h(xh))k for each series

(v̂it+h|t), i = 1, . . . , 6.

ν) Compute the Excess Clustering at horizon h of each residuals series as in (5.5).

νι) For the two MAR(1,1) competitors, average the Excess Clustering indicators obtained

from the residuals of the causal and noncausal components.

For a given simulated path (Xt), we repeat the above steps for horizons h = 1, . . . ,H and obtain four

estimators of the term structure of Excess Clustering, one for each of the competing models (5.1)-(5.4).

Across the 10000 simulated paths of (Xt), one can then either:

(i) average model-wise across the obtained term structure estimators to gauge the typical excess clustering

behavior of each competing model (as in Figures 3 and Q.1), or

(ii) for each of the simulated paths (Xt), compute the area under the four estimated term structures, select

the least clustering model and evaluate the rate of correct selections.

Q.3.2 Excess clustering for additional parameterizations

We evaluated the residuals excess clustering behaviors of the four alternatives (5.1)-(5.4) for additional

parameterizations and sample sizes of the MAR(1,1) data generating process. Excess clustering in all-

pass residuals is apparent even for small sample sizes. The contrast between the residuals of the strong

representation and those of the all-pass increases as the sample size grows (see the left panel of Figure 3

and the two upper panels of Figure Q.1). Also, even with a much smaller noncausal parameter ψ = 0.2

(lower right panel of Figure Q.1), the strong representation still clearly displays the least excess clustering

compared to the three other competitors. We can nevertheless notice in this case that the pure causal

AR(2) alternative is not far from the strong representation (points). This is coherent with the fact that the

noncausal parameter ψ is relatively small, especially compared to the causal parameter φ, yielding much

weaker dependence across the residuals of the misspecified pure causal AR(2).
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Figure Q.1: Across 10,000 simulations of the α-stable MAR(1,1) process (Xt) solution of (1 − ψ0F )(1 − φ0B)Xt = εt,

average of the term structure of excess clustering of the linear residuals of the four competing models (5.1) (squares), the strong

representation (5.2) (points), (5.3) (triangles) and (5.4) (diamond). The parameterizations and path lengths are indicated on

each panel.

R Real data: complementary results using the R package

’MARX’

R.1 Total AR orders selection by Information Criterion

The portmanteau procedure of Section 6.1 allowed to discard non-admissible low order models for the six

financial and economic time series considered. Portmanteau tests are however not designed to select an

«optimal» model. To go further, we report in Table Q.3 the orders that minimise Akaike’s information

criterion (AIC) using the R package ’MARX’ available on CRAN (see Hecq, Telg and Lieb (2017b)). The

validity of such AIC’s for innovations in the domain of attraction of a stable law has been studied by Knight

(1989). Except for the HSI, the results of the two procedures are compatible, the AIC criterion tending to

select higher optimal orders.
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Cotton Soybean Sugar Coffee HSI Shiller P/E

Selected total AR order 3 8 7 9 1 8

Table Q.3: Optimal order minimising the AIC criterion.

R.2 Identification of causal and noncausal roots

Given the lowest total AR orders validated by the portmanteau procedure (see Table 6.1), we used the

routine marx.t of the ’MARX’ package to fit MAR models on the six series by t-Student ML. The results

are presented in Table Q.4. Except for the HSI and the sugar series, the causal/non-causal orders obtained

are equal to those of the final specifications in Table 5. The estimated roots are also similar, but we note

some discrepancies in their causal/non-causal allocations.

Series Final specification Noncausal (inverted) roots Causal (inverted) roots

Cotton MAR(2,0) 0.93, 0.11 −

Soybean MAR(2,3) 0.16± 0.42i 0.94, −0.55, 0.30

Sugar MAR(2,2) 0.29± 0.41i 0.96, −0.43

Coffee MAR(1,3) 0.41 0.95, −0.23± 0.20

HSI MAR(3,0) 0.92, 0.28, −0.21 −

Shiller P/E MAR(2,4) 0.95, −0.48, 0.50± 0.23i −0.21± 0.43i

Table Q.4: Estimation of the MAR(p, q) specification for each financial series by t-Student ML using the routine marx.t of

the ’MARX’ package. This routine requires as input the total AR order p+ q, for which we used the validated orders given by

Table 4.
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