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B Proofs of Theorem A.1, Lemmas A.1 and A.2

B.1 Proof of Theorem A.1

Using (2) the log likelihood ratio can be expressed
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to the £ = 0,1, 2 terms of the inner summation and collecting powers of T" gives

Yt \Yt—1
T 0 —k (B
Z Bi (yi—1, k; Br (hg)) W =1+ T Y 2a1, + T agy + T %asy,
k=0 vt



where

1)"‘ Py — Z”J LoV I

Jjeu

4y, = h% Yt—1 1_27ryt—1+77yt—2
7 2 Ty, Tyy

Ty—1
—hgyi-1 | (hry, — hry—1) — <yt _1> =1 = ) Wihn;

e
Yt jeu

ary = hgy— 1(

— h’]‘(‘ hﬂ'
azy = h%<yt 1) (_ (1_6%)%_1_3 ﬂ'T,l?/;( )+3( B;*)yt 1—2 Tyt 1(

Yt
(A YtAYt—1 (A
—3(1— gyt W) +T%2 3" Bi(y1,k; Br (hg)) Try—k (hr)
Ty, _ Tyy
k=3
Applying the mean value expansion

x? 23 1

log(l+2z)=20——+ ———
sl+) 2 3 (1t
and collecting powers of T' gives

Yt A\Yt—1

3 Ty —k h7r _ 1
g Z Bi(ye-1,k: br (hs)) ytw() =T""?ay; — §T Y(af, — 2a2:) + roy
k=0 Yt
where
_ /1 - 1
rre = T7 (a5, — arsazy) — T2 <2a§,t + aLtas,t) —T752ay a3, — 5T Sad,
1 3 1
(1 + a*T’t>
Thus the log-likelihood ratio has the representation
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(i) The first term of (A.35) is the linear operator

T
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as defined in (A.4), (A.5). Under Hy, so that y; is i.i.d., the process a;; is a stationary, ergodic
(1-dependent) finite-variance martingale difference for any h, and therefore obeys a central limit
theorem
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This central limit theorem clearly also holds jointly for finite collections of h’s, while asymptotic
equicontinuity is provided by the empirical process formulation of Lemma 1(c) of Drost et al.
(2009). Thus Sp converges to a tight Gaussian process with covariance operator V.

(ii) For any h, each term of ag; is stationary and ergodic and therefore satisfies a WLLN.

Moreover ap; has mean zero under Assumption 2, as shown by
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(These terms are not zero under Assumption 3.) Thus 7} Zthl ags > 0.

Similarly ait satisfies a WLLN with limit expressed as
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again using Assumption 2, and
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(iii) The remainder r7; contains terms of order T-3/2 and below. Two of these terms will be

considered, with the others following similarly. The first is
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since h, € £*° and wu; is assumed to have finite third moment. The second uses (A.32)—(A.34) to
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B.2 Proof of Lemma A.1

Following CHS, define the effective score
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From the expressions given in Theorem A.1, it can be seen that V! is defined by
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It immediately follows that ST, 3 1s given by (A.9). The weak convergence result for S reported
in Theorem A.1(i) implies that
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which verifies the asymptotic null distribution of £.

Theorem 1 of CHS states that an asymptotically uniformly most powerful test at a given II
is provided by the (infeasible) test that rejects Hy for &7 > z,, where z, is the upper a quantile
of the standard normal distribution. The asymptotic local power of this test can be computed
from the asymptotic distribution {7 ~» N (whg, 1) under Op, which follows from Le Cam’s third
lemma and the LAN property in Theorem A.1. In particular, under 6,
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which gives the local power. |

B.3 Proof of Lemma A.2

Denote the INAR(1) transition probabilities under 8, = T~ 'hg and any II = {r; ieuw as

ing
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are applied to Bi(j,1; 57) and Bi(j,0; B7) respectively to give an expression for the first two
terms in (A.38) as
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and where it is convenient for subsequent analysis to represent g;; as
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The main result is found from (A.43), with the sum of (A.44)—(A.45) being shown to be

negligible below. Defining
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gives
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Substituting these into (A.46) gives
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Now consider the sum of (A.44)-(A.45). Write r;; = r( )—i—r(‘ ), where r

is the less obvious term that is explicitly derived here. Observe that
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(A.44)-(A.45) satisfies
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showing that, compared to (A.47), each term in (A.44)—(A.45) is bounded by an expression with
an extra (% = O (T _2) and hence that the sum of T of these terms is asymptotically negligible
relative to (A.47). The terms involving r(‘) = —B% (sojmi + 51, (mi—1 — m;)) will clearly also

involve the extra BT factor and hence are negligible. |
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