Supplement: Combining Estimates of CTE

SUPPLEMENTAL DOCUMENT FOR COMBINING ESTIMATES OF
CONDITIONAL TREATMENT EFFECTS

This supplemental document has two parts: a theoretical justification for TEEM and
additional simulation studies comparing TEEM to other model selection and combination
methods. Section S1 develops a risk bound for an alternative version of the TEEM algo-
rithm. TEEM,, a version of TEEM intended for theoretical development (see Section 3.2 of
the main article for a discussion of the differences in the algorithms), is presented, and a risk
bound for its estimator’s performance under squared error loss is given. Section S2 presents
three sets of simulation results. In Section S2.1, all candidate models to be combined are
misspecified; in Section S2.1.3, the error distributions are misspecified as well. Finally,
Section S2.2 demonstrates how applying ideas of sufficient dimension reduction prior to the
pairing step (see Section 3.3 of the main article for details) may improve the performance
of TEEM. As in Sections 4 and 5 of the main article, the version of TEEM used in Section

S2.1 is the nearest-neighbor version described in Section 3.1 of the main article.

S1. TEEM FOR THEORETICAL DEVELOPMENT

In this section, we present a version of the TEEM algorithm for theoretical development,
as opposed to the version of TEEM presented in Section 3.1 of the main article that is rec-
ommended for practical use. Section 3.2 of the main article discusses the major differences

between the two algorithms and the motivations for both.

S1.1 THE TEEM, ALGORITHM

Here we describe in detail the version of the TEEM algorithm with independent pairs for
which we derive the risk bound in Section S1.2. For our theoretical development, the support
of the covariates U/ is assumed to be a compact subset of RP and the covariate distribution

Py is assumed to have a density bounded below by a constant ¢ > 0 on I/ almost surely.
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Without further loss of generality, we set & = [0, 1]P. Note that these restrictions on ¢ and
Py are not required or assumed for the version of the algorithm described in Section 3.1 of
the main article.

Step 0. Select a fraction p € (0,1) of the n observations that will be used to fit the
models. Denote |pn + 0.5| by ny; n; is the number of observations used to fit the models.
Similarly denote the size of the evaluation set, n — ni, by ny. Note that asymptotically, nq
and ng are both of order n.

Step 1. Randomly permute the order of the n observations; call this permutation 7.
Split the resulting ordered data into two parts: the training part Z) = (V;, T;, U;)™, and
the evaluation part Z?) = (V;, T3, Ui, 1
Step 2. Within the evaluation data Z(), let ny, denote the number of observations

for which T; = t and n., the number for which 7; = ¢. Let n§ = min(ng,,n.,). Partition

U = [0,1]? into hypercubes each with side length A such that

%: Kmi)?n;)l/pJ ' W)

Let no denote the number of these hypercubes containing at least one realized covariate

value from each treatment group in Z(®). Within each of these 7y cells, randomly select a
pair of observations (i,:*) such that T; =t and T;» = c¢. Use the indices i from these pairs
to create the ordering m = 1,...,72, where each m represents the treatment-control pair
(7,7*) with the mth-smallest value of i among the pairs created in this step. Using this
index, hereafter denote the treatment and control observations (i,¢*) in pair m by (m¢, m.).

Step 3. For each resulting matched pair (m;, m.), create approximate treatment effects
gm = Y, — Y. These approximate local treatment effects will be used to evaluate the
candidate procedures and assign them weights.

Step 4. Fit the J candidate procedures v, ...,%  to the data Z() to obtain J es-

timates of the treatment effect function (denoted by ﬁnl,l,...,ﬁnlJ). Let 65m g =

\/ 52 (Up,) +62  (Up.) denote the estimated standard deviation of Sm from proce-

t,n1,j cn1,j
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dure j applied to yAON
Step 5. For each procedure indexed by j = 1,2,...,J, assign initial weights (or prior
probabilities) Wi ; = w;, where the w;’s are positive numbers that sum to 1. Then for

2 <m < ng, let

Wi Hl 1 ¢{[ m,j(Ult)} /Ugl nm}/ O%8,,n1,j
S we T {[51 — Am,k(Ult)} /&&,m,k} /‘A’&,nl,k’

where ¢ is the pdf of the error distribution. Note that Z;>1 m,j = 1 for each m =

Wi = (2)

1,...,n2.

Step 6. For m =1,...,n9, let

J
Z Anyj(w). 3)

Step 7. For every cell m containing at least one treatment-control pair, let U4, denote
the region of the covariate space representing the cell. Then let
~ Am(Up,) if u € Up,
0 if the cell containing u has no treatment-control pair in Z(2).

The subscript 7 indicates the estimator’s dependence on the permutation 7 applied in Step
1.
Step 8. Repeat Steps 1-7 a total of P times for some P > 1, and average the resulting

E,r to obtain the TEEM, estimator

(4)

l>>\
Mw
Pz

where for each iteration 1 < p < P, m, denotes the permutation applied in Step 1 of the
iteration.

The partition size given in Step 2 is not a bandwidth in the traditional sense. It takes
the form given in (1) so that, asymptotically, the partition becomes finer (allowing for more

precise estimation of local treatment effects) while each cell continues to contain at least
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one treatment-control pair with high probability. The technical aspect of this partition in
establishing the risk bound for the TEEM algorithm can be understood from the proof.

Equation (2) gives the formula for the combining weight of each procedure j in cell
m. Intuitively, the numerator in (2) represents the product of the predictive densities
(likelihoods) of the first m — 1 treatment-control pairs in the evaluation set given procedure
7. The greater the likelihoods, the more trustworthy the procedure, and the higher the
weight in (2). The denominator in (2) scales the weights so that they sum to one. The
weight of each procedure Wy, ; in (2) depends on the arbitrary ordering of the treatment-
control pairs done in Step 2. However, the effect of the ordering is averaged out by repeating
Steps 1-7 over P independent random permutations.

Whether or not the weight of the best procedure goes to one (and thus the method
reduces to model selection) asymptotically depends on the relationship between n; and no
and the relative performance of the candidate procedures; see Rolling and Yang (2014) for
a related discussion regarding the ability to identify the best treatment effect estimation
procedure among the candidates. Unlike in Rolling and Yang (2014), the current work does
not require one of the candidate procedures to be asymptotically better than the others in

order for the main theoretical result (presented in the next section) to hold.

S1.2 Risk Bound for the TEEM, Estimator

In this section we bound the risk of the estimator produced by the TEEM, algorithm
described in Section S1.1. Our proof uses the following assumptions on the data-generating

process:

Regularity Conditions

1. Covariates of treatment and control groups: Let Py, and Py, denote the covariate
distributions, conditional on treatment status, for the treatment and control groups,

respectively. Note that we allow treatment to be associated with covariates, as is
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the case in many observational studies, so Py, and Py, may differ from each other.
We assume that the realizations U;|T; = ¢ are i.i.d. from Py, and, similarly, that
U;|T; = c are i.i.d. from Py,. We assume that Py, and Py, are continuous and

bounded above and below by ¢ < oo and ¢ > 0, respectively, on U.

2. Size of treatment and control groups: For n large enough, there exist constants (a, b)
not depending on n such that 0 < a < ny/n < b < 1, where n; is the number of the n

observations for which T; = t.

3. Error distribution: The error density ¢ has the property that for each pair 0 < sg < 1

and T' > 0, there exists a constant By (depending on sg and 7") such that

o(x) _ 622
[ o718 (e e = P44

for all sp < s < 1/sp and —T < t < T (see Assumption A2 in Yang, 2001). Many
distributions satisfy this condition, including the Gaussian, ¢ (with degrees of freedom

greater than 2), and double-exponential (Laplace) distributions.

4. Boundedness: The regression functions f; and f. are uniformly bounded in absolute
value by A < oo, and the standard deviation functions o; and o, each are bounded
above and below by & < oo and g > 0, respectively. We assume correspondingly
that the estimators EIJ-, G115, and . ; satisfy Hﬁl,jHoo < 24, 64,5 € [o,0], and

Geuj € 0,0, foreach I > 1 and j > 1.

5. Smoothness: The regression functions for the treatment and control groups, f; and f,,
and the estimators ﬁl,j for I > 1 and 5 > 1 have all p first-order partial derivatives,
and each of these first-order partial derivatives is upper bounded in absolute value
by a constant L on Y. The same smoothness is assumed for the standard deviation

functions o; and o, and their corresponding estimators.

The theorem below bounds the risk of the TEEM estimator in terms of the minimum
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risks of the individual candidate procedures, the dimension of the covariate vector, and the

size of the evaluation set.

Theorem 1. Under regularity conditions 1-5, the risk on from the TEEMy algorithm

described in Section S1.1 has the following bound:

— 1/p
E|A - AH% < C{ <logn2>

n2

. log ny 1 R .
+inf [( e >log+Euat—at,m,jn%wnac—ac,m,ﬂ
J n2 Wy

2 N 2
>+ E[A - Am,j||2] },
where the constant C' depends on a, b, ¢, ¢, o, 7, A, p, and L (but not on n).

Proof. A detailed proof is provided in the Appendix of this supplemental document.

Remarks

1. By choosing a fixed fraction of n to fit the estimators and using the remainder to
construct the combining weights, ny and ne both are of order n. Therefore, if one of
the candidate models (say j*) is a correctly specified parametric representation of the
data-generating process, then E||A — ﬁnhj* 13, Ellot — 6ty 4+ |3, and El|oc — ey j+113
each will converge to zero at a rate of n~!. In this case, if p = 1, the risk of the
combined estimator will converge to zero at rate (logn)n~!, almost as fast as an

oracle that knows the true model in advance.

2. The finite-sample performance of the method may be sensitive to p, the proportion
of observations used for training data. In our experience, a 50/50 splitting of the
data into estimation and evaluation provides a good balance for achieving the goals of
estimating A and evaluating competing procedures for estimating A. More discussion
regarding the allocation between training and testing data can be found in Yang (2007)
and Zhang and Yang (2015). The number of permutations P should be as large as

computationally feasible to average out the variability due to data splitting, but as is
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typical for resampling methods, accuracy gains are subject to diminishing returns for

large P. We use P = 100 in our numerical work.

3. Increasing the dimension of U slows the convergence of the combined estimator due
to the “curse of dimensionality” in constructing the treatment-control pairs. This
suggests that more efficient estimation can be achieved by reducing the dimension of
the covariate vector before constructing the pairs if the dimension reduction does not
result in any loss of information about A. See Sections 3.3 and S2.2 for more details
about applying dimension reduction techniques to improve the performance of TEEM

in high-dimensional settings.

4. The risk bound of TEEM can be simplified if one is willing to assume the error
variances for the treatment and control groups are the same and are homoscedastic

with respect to U, as in the following corollary.

Corollary 1. Assuming homoscedastic errors (that is, oy and o. are equal constants)

and reqularity conditions 1-5, the risk bound ofi can be expressed as

— 1/p
EHA—AH% < C{ (logm)

n2

I 1 N
T inf [( Og”Z) log L 1 E(o — 6 ) + E|lA - Am,ju%] }
7 ny wj

where o = o, = 0. and the constant C' depends on a, b, ¢, ¢, o, 7, A, p, and L (but

not on n).

Proof. The proof follows a similar path as that of Theorem 1.

5. In the setting of Corollary 1, with homoscedastic errors and smoothness conditions
on f; and f., the standard deviation can be estimated at rate nl_l independently of
the candidate procedures (see, e.g., Rice, 1984). Thus, the term E(c — &, ;)* could

be removed from the risk bound by incorporating this independent estimation of o
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into the algorithm. However, in practice, separate model-based estimators of o often

are helpful in assigning proper weights to each of the candidate procedures.

6. Under the regularity conditions of Theorem 1 (and Corollary 1), the minimax rate of
convergence for A is n=2/(2tP) This rate can be achieved by a procedure j** that
sets ﬁj** = ﬁ — ]?C, where ft and fc are appropriate nonparametric estimators that
converge to f; and f., respectively, at the minimax rate for each regression function.

* among the candidates and utilizing independent

By including such a procedure j*
estimation of o (see Remark 5), TEEM can automatically achieve the minimax rate
for A when p = 1. However, because of the term ((logng)/n2)'/? in the risk bound,

when p > 1 inclusion of such a j** is not sufficient to guarantee that the TEEM

estimator will converge to A at the minimax rate.

S2. Additional Simulation Studies

S2.1 Misspecified Models

Nonlinearity in conditional treatment effects may exist but be difficult to detect through
exploratory data analysis. For example, the effectiveness of a retailer’s marketing treatment
may depend on a customer’s level of engagement with the retailer, and the treatment
may be most effective for those moderately engaged; very occasional customers may ignore
communications from the retailer, while very loyal customers may purchase regardless of the
marketing treatment. Such a relationship cannot be captured by linear interaction terms,
but this can be difficult to observe graphically. In such situations, it is possible that all
candidate models may be misspecified, and that models best for predicting the response

may not be best for estimating the treatment effect.
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S2.1.1 Setup

We generate data from the following process:
Y; = 0.5U7) + 0.5Us, + I(T; = t) = (0.5U; 1 + 0.5U7%) + &, (A1)

where (Ui 1,Ui2,¢€;) are i.i.d. N(0,I3) and the T; are i.i.d. with P(T; =t) = 0.5. The nine
candidate models contain different subsets of the two covariates and their interactions with
treatment; they are enumerated in Table 1. The candidate models are hierarchical in the
sense that if a treatment-covariate interaction is included in the model, the main effect of

that covariate also is included.

Table 1: Candidate models for the simulation study in Section S2.1.

Model Number Model Terms

1 T,U1,Us, T x U1, T % Uy
2 T,Uy,Us, T x Uy

3 T,U1,Us, T % Uy

4 T,U1,U,

5 T,U,, T xU;

6 T,U;

7 T,Us, T x Uy

8 T,U,

9 T

We create 100 realizations of (A.1) at each of two sample sizes: n = 100 and n = 300. For
each realization, we use the model selection and combination methods described in Section
4.3 to choose a model/combination and use the chosen model/combination to estimate A.
The squared Ly risks (for A) for each candidate model and for each selection/combination

method at each sample size are estimated by averaging the risks over the 100 realizations,
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where each realization-risk is estimated from the sample mean of (A(U;) — A(U;))? based
on an independent evaluation data set of 1 million independent draws from the distribution

Of (Uz‘,h Ui’g).

S2.1.2 Results

In this setting, there is a conflict between the goals of estimating the full regression
function and estimating the treatment effect. For example, Model 5 is a relatively effective
model for treatment effect estimation, because it contains the linear interaction term be-
tween 1" and Uy, but it is not effective for estimating the full regression function because it
omits the main effect for Us. Because of this conflict, we should expect that the selection
and combination methods targeted toward A will perform better than the methods targeted
toward the full regression function.

Table 2 shows the risks of the model selection and combination methods, as well as the
risks of the individual models, at n = 100 and n = 300. Among the model selection methods,
TECV performs the best at both sample size levels. Its performance is much better than
that of traditional CV at both sample sizes. Overall, the TEEM algorithm features the
lowest risk among all nine methods of selection and combination methods. At n = 100,
TEEM results in much better performance than any of the model selection methods due to
the high model selection instability at this sample size. At n = 300, the methods targeted
to treatment effect estimation that do not assume the true model is among the candidates

(TECV and TEEM) feature the lowest estimated risks for A.

S2.1.3 Misspecified Error Distribution

Because it is a likelihood-based method, our algorithm TEEM requires the error distri-
bution to be known. Of course, knowing the true error distribution is unlikely in practice.
To evaluate the robustness of our method to incorrect specification of the error distribu-

tion, the simulation described in this section was repeated with the random errors being

10
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Table 2: Section S2.1 results with Gaussian errors.

Estimated Risk of A (SE)

Model/Method n = 100 n = 300
Model 1 0.835 (0.025) 0.631 (0.010)
Model 2 0.712 (0.017) 0.587 (0.009)
Model 3 0.961 (0.024) 0.825 (0.007)
Model 4 0.824 (0.009) 0.779 (0.003)
Candidate Models Model 5 0.732 (0.019) 0.588 (0.009)
Model 6 0.827 (0.010) 0.780 (0.004)
Model 7 0.970 (0.023) 0.829 (0.007)
Model 8 0.831 (0.009) 0.781 (0.004)
Model 9 0.833 (0.010) 0.781 (0.004)
AIC 0.847 (0.025) 0.629 (0.012)
BIC 0.856 (0.021) 0.656 (0.013)
Model Selection
Cv 0.858 (0.021) 0.682 (0.014)
Methods
wFIC 0.860 (0.023) 0.633 (0.012)
TECV 0.834 (0.017) 0.622 (0.012)
cAIC 0.805 (0.021) 0.627 (0.011)
Model Combination BMA 0.790 (0.018) 0.644 (0.011)
Methods ARM 0.733 (0.016) 0.635 (0.009)
TEEM 0.714 (0.015) 0.607 (0.009)

11
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generated from a double-exponential (Laplace) distribution with variance one, instead of a
normal distribution. The model selection and combination methods all incorrectly assume
that the errors follow a Gaussian distribution in this study.

The results of the analysis with a misspecified error distribution are shown in Table
3. In this setting, the performance of TEEM is fairly robust to the misspecification of
the error distribution. Among the model selection and combination methods considered,
TEEM again features the lowest mean squared error, which is close to that of the best
candidate procedure, at both sample sizes. This example shows that TEEM can estimate
the conditional treatment effect with similar accuracy as the best candidate, even when all

candidate model forms and the assumed error distribution are incorrectly specified.

S2.2 TEEM with Dimension Reduction

According to Theorem 1, the risk bound of TEEM may grow with the number of covari-
ates p. This property, common to nonparametric methods, is due to the increased difficulty
of finding nearby neighbors in high-dimensional space. As discussed in Section 3.3 of the
main article, one solution to this problem when p is moderate or large is to estimate a
dimension reduction subspace for A and create the pairings necessary for TEEM using the
projection of U onto this lower-dimensional subspace. This section demonstrates the use of

dimension reduction techniques with TEEM.

S2.2.1 Setup

In this simulation study, we set n = 500 and p = 10; these are fairly moderate values
typical of what one might encounter in an observational study. While a setting with p = 10
may not typically be considered high-dimensional, a sample size much higher than n = 500
often is needed to reliably find nearby neighbors in 10-dimensional space. Applying a
dimension reduction technique prior to identifying neighbors may therefore be beneficial.

The p = 10 covariates are mean-zero normal with covariance matrix ¥;; = 0.7/1=1l. We

12
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Table 3: Section S2.1 results with Laplace® errors.

Estimated Risk of A (SE)

Model/Method n = 100 n = 300
Model 1 0.848 (0.034) 0.610 (0.010)
Model 2 0.733 (0.028) 0.573 (0.008)
Model 3 0.974 (0.027) 0.812 (0.006)
Model 4 0.834 (0.015) 0.774 (0.003)
Candidate Models Model 5 0.759 (0.030) 0.576 (0.009)
Model 6 0.844 (0.016) 0.777 (0.003)
Model 7 0.979 (0.027) 0.814 (0.006)
Model 8 0.837 (0.014) 0.775 (0.003)
Model 9 0.847 (0.016) 0.776 (0.003)
AIC 0.854 (0.033) 0.603 (0.010)
BIC 0.881 (0.030) 0.632 (0.013)
Model Selection
CvV 0.893 (0.029) 0.644 (0.013)
Methods
wFIC 0.860 (0.033) 0.603 (0.010)
TECV 0.845 (0.025) 0.592 (0.010)
cAIC 0.816 (0.030) 0.602 (0.009)
Model Combination BMA 0.824 (0.028) 0.621 (0.009)
Methods ARM 0.748 (0.021) 0.617 (0.009)
TEEM 0.717 (0.019) 0.586 (0.008)

& The model selection and combination methods, including TEEM, that require
the specification of an error distribution incorrectly assume Gaussian errors

in this study.

13
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allow the probability that 7' = ¢ to depend on the covariates in this example; specifically,

0
exp (% >iti Uz‘j)

P(T;,=t)= = . (A.2)
1+ exp (E ijl Uij)
The outcome Y; is generated according to
6 3
}Q:QZUz’j‘i‘I(n:t)ZUij‘i‘Ei, <A3)
j=1 J=1

where the ¢; are i.i.d. normal with ¢ = 10. The 20 candidate models considered are linear
regressions with different subsets, including 10 main-effects only models with progressively

larger numbers of covariates,

T,U;

T,Uy,Us

T7 U17U27U37 .. ')Ul()u

and the same models with interaction terms between the treatment variable and each co-

variate in the model,

T .U, T Uy

T7 U17T* UlaUQaT* U2

T,Ul,T*Ul,UQ,T*UQ,Ug,T*U3,...,U10,T*U10.

As in the previous section, we compare the estimated risks of model selection and com-
bination methods for estimating A by selecting one of, or combining, these models. All
methods that require the specification of an error distribution assume normal errors. The
sample size available for selecting or combining models is n = 500, and 100 independent

realizations of such samples are generated. For each method-realization, the sample mean

14
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of (A(U;) — A(U;))? is calculated for an independent evaluation data set of 1 million draws
from the distribution of U. These estimated mean squared errors are averaged over the 100
realizations to estimate the risks of each method. The TEEM algorithm with a dimension
reduction step (described below) is compared with the basic TEEM algorithm and the same

competitors studied elsewhere in this paper.

For TEEM with dimension reduction, the observations in the treatment and control
groups are used to create ft = B}T U and fc = BCTU, respectively, via OLS regression
using all 10 covariates. Assuming the regression functions under treatment and control are
linear (which they are in this case), the two-column matrix (37 U, 37 U) contains all of the
information about A contained in the original 10-column U. Let Btc denote the 10 x 2
matrix with columns /3} and BC. If Bt and Bc are accurate estimates of their targets, then
ﬁth will be an approximate dimension reduction subspace for A. Thus in the pairing
step of TEEM with dimension reduction, the distance between two observations U; and
U, is measured by d(ﬁthi, Bthz‘/), and for each observation the nearest neighbor in the
other treatment group with respect to this distance is used as its pair. The same dimension
reduction prior to pairing is used for the TECV algorithm, in addition to the usual TECV

with no dimension reduction.

S2.2.2 Results

The boxplot of Figure 1 shows that model combination is generally more effective than
model selection in this setting because of the small signal-to-noise ratio. Among the model
combination methods, ARM and TEEM achieve the highest accuracy in this setting. For
TEEM and TECV, the dimension reduction step prior to pairing is effective in producing
pairs that are more similar with respect to A(u), thereby enabling more effective model

combination and selection for the purpose of accurately estimating A.

15
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Average Value of (A(U;) - 4,(U;))“ for One Realization

Figure 1: Results of the dimension-reduction simulation setting of Section S2.2.
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APPENDIX

Proof of Theorem 1

First let P = 1, where P is the number of permutations from Step 8 of the algorithm.

For each pair m created in Step 2 of the algorithm, let gm = Y, — Y, and o5 =

Vo2 (apm,) + 02(u,,,). Conditional on (U, Up,) = (Wm,, U, ), the density of 6m under

A, f., 0 and 02 can be expressed as

pAmfc»O'tz,O’g (5m|umt, umc) = ?¢

om g5,

m

{ O = A(,) = [feltm,) = fo(m,) } |

The estimated density of & under 3, 62, 62, and supposing fe(Wy,) = fe(un,,) is
J, 1 fom—Au
pg& &(m|um“umc):& ¢{77’l/\(7nt)},

where 65 = /67 (Wn,) + 62(Um,)-

Define

q1 (61|u1t7u1 ij Anl s &2 ((5]_’111“1116),

Utnl ,J7 e ,g

and for 2 < m < ng, define

dm (gm ’umt ’ umc) =

Z] 1W] Hl 1 pA”l 770’tn1]’Agn1J(5l|UZt7UZC):| pA"l J7Utn1 N (2*n1]( m|umt7umc)
Z —wi [0 pA 52 (5l’ult7ulc)

n1.5:0F n1.0emy g
The error density ¢ has mean 0; therefore, given 7, Z(), (wy,,w,,y,, ylc)?:ﬁl, and (W, um, ),
Gm(Om |, , W, ) has mean > Wmd-&m,j(umt) = An(uy,), where Wi, represent the
weights defined in Step 5 of the TEEM, algorithm.

Let
n ~
91 |G| = Jigs s (Ot i, ),

”1 J’Ut ,n1 ]7 c,ny,j

and let

7 |@niia] = Z%[ i)

17
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Note that Hifle G (O [y, W) = G {(Sm)ﬁle] One can view g (6m|m,, Uy, ) as an

estimator of the conditional density of 8, given (U, , U, ). The cumulative risk, under the
Kullback-Leibler divergence, of gm (0 |tm,, Um,.) at the design points (umt,umc)zfz1 can
be bounded in terms of the risks of the individual procedures using an idea from Barron

(1987). Letting E. denote the expectation conditional on the permutation = and D(f||g)

the Kullback-Leibler divergence of g from f, we have

2
Z EWD[pA,fc,af,og (G| s Win )| |G (Om [y s Wi, )]

m=1

M2 N
~ DA fo.02, g(5m|um Up,) ~
- Z B /pA,facr?,og (6m W, Um,.) log Jeoi =
m=1

dom,

dm (gm ‘ Uy, umc)

n2 n2 N

Z ~ PA f.,02, 3(5m|um s Wm,) ~
- Eﬁ/ { H PA,fe,02,02 (O am,, umc>} log Lt t dom

m=1

m=1 Qm((sm’umta umc)

ﬁ2 ﬁg N
~ PA fo0?.02(Om[Umy, W) | ~ ~
:Ew/{HpA,fc,cr?,og((Sm’umtaumc)}{ E log J Tt:9¢ miTmey Tm déy - - - do,
m=1

m=1 Qm(ém’umta umc)

i . [T Gl ) ~ -
,1pA7 02, 2\ 9m |Umy, YUme
= 7r/ { H pAJC’Jtz?Uz ((5m]umt,umc)} ]Og m fe,08,0 t d61 o d(5ﬁ2

HZQ:1 Qm(gm|umt ; Up,.)

m=1

no 9 =
~ 1 PA.f..02.02 (Om Wy, Wi, ) ~ ~
_EW/ { H DA fe02,02 (G| tm,, umc)} log 11 . Af = 2E [ime )d(51 - dog,.
5G]

Since ¢ is a positive-valued function and log(z) is an increasing function, we have that

m=1

for any j > 1,

i _ I Gt my) ~
,1pA, 02, 2\9m|Umy, YUme
Eﬂ_/ { H pAach?ﬂ% (5m‘umt7 umc)} log = j Uio- 52 - d51 st ddﬁQ
g |:(5m)m:1]

n2 ) <
~ 1 D 02 52 (0m|Um,, Um,) ~ ~
< En / { H DA, fe,0?,02 (6m|umt7 umc)} log H S ;g( po ’ )ddl s d552
i3 | Gm)ii_y]

m=1

m=1

= log —
Wy

n2 9 s
~ 1 PA . 02,02 (Om[ Wy s Um, ) ~ ~
+E”/{HpA,fc,of,ag(‘sm’ummumc)}log m=1PA . JtNUCﬁm myey» Um 05, b,
97 [ Gy

The last term in the preceding equation is the cumulative risk, under the Kullback-Leibler

m=1

ng

m—1, given the permutation

2 o at the design points (W, um,)

divergence, of px .
g ’ pAnlaj’Ut,nl,j’aC,nlaj
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7. This is because

= = JES O Wngs Wn,) ~  ~
71pA7 Cy 2, g ) e
Eﬂ'/ { H pA’fQU?,Ug (5m\umt, umc)} log m f UtNJ 7~lQm mgy Um &5y d(sﬁz
gj |:(5m)m:1:|

m=1

n2
_EW/ [{ H DA fe02 02 (| tm, umc)}

m=1

2 T

P 2 2 (0| Uy s U, ~ ~

% Z log A fe,0} ,Jc( m‘ ~mt m ) d5, - - -d(;%
m=1 PR 2 (6m |umt7 umc)

Uc,nl,j

52
n1,7:9t,ny,5°

DA, fe,02,02 (5m | Uy, umc) dgm

- Eﬂ' /pA,faa'tz,o'g (gm‘umﬁ umc) log
1

) ) (5m|umt7um )
n1,3:%,n1,5°%,n1,j ¢

PA

52 52 (Om|m,, um, )]
n1,3°%t,ny,j°" c,ny,jg

= ExDlpa 1. 02,02 Ol g wm,)|p3

m=1

By definition,

52 .(gm‘umta U, )]
c,ny,j

_ / <1¢ {Sm — A() — [Foltim,) = Foltn,)] }
Ugm O'gm

(1/5,)6 ({8n = An,) = feltm,) = felwm,)]} /o5, ) ) _

D[pA7fz;70',5270'g ((5m‘umt ) umc) ‘ |p£n1,jv&t2 ny?

x log - — 7 oY
1195, [ Bt 530, }
Letting B
L= 5m — A(umt) - [fc(umt) - fc(umc)]
= o5 )

we perform an integral transformation to obtain

g 02, 62 ,(6M|umw umc)]
3%%,n1,5°%¢,mq .,

D[pA,fC,af,ag (gm Wy, Ui, )| |p£
a—grrunlvj
= [ ¢(2)log | ——=
o5
P(z)

" 6] (o5, 7+ Al — B (tm) + eltn) — folun)]) /ergm,m,j}] "

Using the condition provided for the error distribution ¢ and taking

so=0a/0, s =03 Jo, T =44A/(v20), and

m,11,]
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800~ Basn)] + [£eam) = fean)
o5 )

m

it follows that

D[pA fc;O't70'2( m|Umt7umC)||pAn1]70't ny,370 gnl]( m|umt,umc)]

}z . (A () = By )| + [felm,) = felum,)

s,

m

2

5‘5 ni,j

< By 1 _9mm1d
o~

1

for a constant By depending on A, ¢, and 7. Using (o3 ) > 202 and the parallelogram

law, we obtain that for any j > 1,

D[pA fe,02,02 (5 |umt7 umc)HpA 32 ( m|umt7 umc)]

< 2 o5~ 5] [A(um» - ﬁm,jmmt)} (Ao = £etwn)] ).

02 m

2

By the reverse triangle inequality,

2 2
[ng B &gm,nl,j] - [\/ag(umt) + Gg(umc) B \/&wfz,nl,j (umt) + 6z,n17j (umc)}

2 2
< [0 0m0) = Gt ()| + [7em) = G (0,
Thus we have shown
1 2
Z EzD[pa e 02 ,02( m‘umtaumc)HQm( m’ummumc)]
m=1
2 1 1
< (,2”2 Z_lE [ eltm) = Folun,)] + inf <%1ogwj
Bo [ 1 & R 2 R 2
+ ;g {2% mZ: Ex <[Ut(umt) - Ut,m,j(umt)} + [UC(umc) - UC,nLj(umc)} >
~ 2
Z Er |A(n,) = By (um)| ) (A4)
n2 1

Let d%(f,9) = [(Vf — V9) )2dv denote the squared Hellinger distance between the
densities f and g with respect to the measure v. The squared Hellinger distance is upper

bounded by the K-L divergence, so

na

Z E d%l[pA fer02, 02( m|umtvumc) qm( m|umtaumc)]

m=1

1
na
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is bounded above by (A.4).
As mentioned earlier, for each m, given m, Z(1), (ult,ulc,ylt,ylc)?;l, and (W, upm,),

G (O | Wi, » u,,,) has mean A,,(u,,,) with respect to 6m. For this estimator, we have
B B B B B 12
|:/ 5mpA7fcyg't27o'g (5m|umt7 umc>d5m - /5QO(5m‘umta umc>d5m:|
B B B N2
- {/5’“ [pAﬂfc,af,crE (G [y, W) = G (S|, umc)] ddm}
:{ /gm I:\/pA,fc,a?,ag (gm‘umtaumc) + \/Qm(gm|umwumc>}

2
X [\/pA,fc,of,ag(‘sm’umm W) — \/Qm((sm’ummumc)} d5m}

2
< [ 3 [Vossuot ottt tin) 4 Gl )|

2
o S Y e

32[/S%PA,fc,gg,ag(ngmmumc) +/g72an(gm|ummumc)dgm}

2

< [ | geato ol =il 5,
- [E(S,%lrumt, )+ [ Tt Bl umc>d5m]

X d%{ [pA,fc,af,ag (gm|umm U, ), Gm (gm|umw umc)}

N 2 2 2 2 N N

=2 [E((Sm‘umta umcﬂ + o} (umt) + Uc(umc) + 5QO(5m‘umu umc)d5m

% [P 12,02 O s W, ) o B ) |

2 ~, ~ ~

=2 { [ + ) = Fern)] ) 020 [ Bt

X d%—[ [pA,fc,af,ag (gm’umtvumc)ﬂm(gmmmwumc)} )

where the first and second inequalities follow from the Cauchy-Schwarz inequality and the
parallelogram law, respectively.

By the fourth regularity condition, [A(um,) + fe(um,) — fe(um.)]* < (44)%. Now
J im (Gl W s Wi, )G = B (07, [0, Win,) < (B, (0| Wi win, )] + (25)?, and

G (Om W, , W, ) is & convex combination of J densities in the location-scale family ¢[(z —
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b)/al/a, each with mean Em,j (U, ) with respect to &,,. Therefore, i 62 G (O | W, » Wy, ) O

is bounded above by (24)? + (25)2. Tt follows that

2
|:/ 5mpA,fC’a't2’o'g (Om|Qm,, Wi, )0, — /5QO<5m’umt7umc)d5m:|

< (4042 + 16&2)d12q |:pA7fc7a't2,o'g(gm‘umt7umc)7qm(gm‘umt7umc)i| .

Together with

/gmpA,fc,aZ,a?: (gm’umta umc)dgm = E(gm’umw W) = A(um,) + fe(um,) = fe(am,)

and

/ Bt (Bl iy W, )08 = Ao (W),

we have, for each 1 < m < no,

Afun) + folttm) — Felum) — Bon(n,)]

< (40A% + 165%)d% pAJc’Utz’Ug(gm\umt,umc),qm(gm]umt,umc)] . (A.5)

~ 2
The expression (A.5) also is an upper bound for {A(umt) — [fe(um,) — fe(um,)] — Am(umt)} .
~ 2
So by the parallelogram law, (A.5) is an upper bound for [A(umt) - Am(umt)} . Then by
using the earlier risk bound on the average squared Hellinger distance and combining con-

stants, we obtain

732 :Zil[ﬂﬁ [A(umt) — Am(umt)] ’

< By (ﬁ12 i E, {fc(umt) — fc(umc)]2 + inf {NlloglA
m=1

i | ng wj

m=1

1 2 ~ 2
+ = Z Ex {A(umt) - Am,j(umt)} }) , (A.6)
where By depends on o, 7, and A.
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Now we connect the global risk of the estimator iw to the average risk of the individual
estimators A,, at the design points. Let D, denote the event that 71y = (1/h)P; that is, the
event that every cell in the partition of U/ contains at least one treatment-control pair from
Z?) after the permutation 7. Let U, denote the cell in the partition containing the mth

treatment-control pair. Conditional on Dy,

Eql|A - Aql3

By the definition of Ay, for any u € Up,, Ar(u) = Ay (uyy,). Therefore, for u € U,

= {[a0) = )| + [Aun) = Bntun)]}

<9 [A(u) _ A(umt)r 42 [A(umt) _ Am(umt)r.

Combining the previous two displays and using the fact that for any m, fum dPy <¢/ng,

we have
ExllA — A3
< 2R, {i / [A(u) - A(umt)rdPU + % i [A(umt) - &m(umt)r} . (AT
m=1 m m=1

For the first summation on the right-hand side of (A.7), by the Mean Value Theorem for

integrals and the fact that every cell U, has volume 1/m5, we have

i/ (A~ Au,)] aro = Zf A~ Anu,)]
m=1 m

where u}, is some point in the hypercube U,, and f(u},) represents the design density at this

point. The smoothness conditions on f; and f. imply that A satisfies a Lipschitz condition
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with Lipschitz constant \/pL. Thus for any m, since the distance between uy, and u,,, is

at most /ph, A(u;,) — A(uy,,) < pLh. Thus we have
(A.R)

fia )
3 / [Aw) ~ Aun,)| dPy < 2(pLh)
m=1 m

Combining (A.6), (A.7), and (A.8), we have established

Eﬂ' |:||A - £ﬂ||%‘D7T:|

1 &
— 2 — - .
< 2(pLh)? + 2B, <ﬁ2 mz_:lEﬂ [foltn,) = felwn,)]

ﬁ12 iEw ([Ut(umt) - 51&,7~01,]'(1177~bt)}2 + {ac(umc) — &cvnl,j(umc)r>

2

1 1
+inf{~log+
J

ny Wi
+ ﬁlz Z Er [A(umt) - 3711,]'(1]‘77%5)]2}> . (Ag)
m=1

Next we relate the global risk of each Am,j to its average risk at the design points.
Again using the Mean Value Theorem for integrals and conditioning on D,, we have for
any j > 1,

=3 B (A = Buygun)] ~ EellA - By

*

=1
c* "2 - 2 . N 2

{80 = Bowstun)] = [Aw5) = Bos]

where ¢* is a constant bounded by max(1/¢,¢) that exists by the boundedness of Py. The

difference in the squared differences after the summation can be bounded for each m by the

smoothness of A and Bm,j-

Indeed, for each m we have
(A = By u)] = A5~ Bay )]
= {[A@n) = Buplum)| + [Alws) = By ()] }

< {[B ) = B yum)| = [AGws) = Bos()] }-
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Since A and Bm,j both are bounded between —2A and 2A4,
| Atm) = By ()| + | AS) = By ()] < 44,

Meanwhile, the smoothness of A and ﬁnhj ensure that both satisfy a Lipschitz condition

with Lipschitz constant \/pL. Thus for any m, since each U, has diameter ,/ph,

[Atm) = By ()] = [AS) = By ()]

~ ~

= [A@n) = A@)] + [Bn (i) = Buys(am,)| < 29Lh.
Therefore, conditional on D,

1 & " 2 " ,
= E- 3 [A(umt) - Am,j(umt)} <Ex||A — An, |2 + 8c* ApLh. (A.10)

m=1
Because o; and o, and their corresponding estimators also are bounded and smooth

(conditions 4 and 5), we can apply similar arguments to obtain, conditional on Dy,

1 2 A . .
%Eﬂ Z [oc(am,) — Ut,nhj(umt)]z < Erlloy — Utmmj”% +4c*opLh (A.11)
m=1
and
1 &
%EW Z [oc(um,) — 8C,m,j (umc)]Q < Erlloe - 80,7114‘”% +4c*apLh. (A.12)
m=1

Thus combining (A.10), (A.11) and (A.12) with (A.9), we have established that

E, [HA _R2

3

< 8¢*pLh(A + @) + ¢(pLh)? + By {ﬁ12 i E, [fc(umt) - fc(umc)] i

m=1

. 1 1 . . ~
+ inf [~ log — + Exlloy — 61,0 5l13 + Exlloec = 6513 + Exl| A — Anhj”g] }
J [n2 Wj

Using the Lipschitz condition for f. within each cell, in a similar fashion as before, we can

show that ~
1 & 2 9
=3 Ba|feltm) — felun)|” < (LB
n2 m=1
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Thus we have

E, [IIA _R.z

DW}
< 8c*pLh(A+7) + 133{(pLh)2

) 1 1 . R ~
+int | 2 10g 2+ Exllr = Gt + Brllo = G 513 + BellA = By 1B }

J (.U]
(A.13)
for a constant Bs depending on ¢, 7, A, and €.
Now,
BrllA — &1 < Bx |1 =~ AoJB[0:] +Er 18 - BB |2| < PR (a14)
By the boundedness of A and A, between —24 and 24,
E, {HA — A3 D;} < 1642, (A.15)

To use (A.14), we need to bound P(D%). Denote the event that all cells in our partition
contain at least one observation from the treatment group by Dy ;, and let D . denote the
corresponding event for the control group. Since Dy = Dz N Dy, P(Dg) < P(Dg ;) +
P(Dz)-

Let U, denote an arbitrary cell in the partition. By the first regularity condition, the
probability that any observation from the treatment group falls into U, is at least ch”.
Since the covariate values of the n;, treatment observations are i.i.d., the probability that

U, contains no treatment observations from Z? is at most
(1 — chP)™2 = ¢ log(1—ch?) ~ e~ 2 h?
where the last inequality results from the fact that logax <z — 1.

Since U, is arbitrary and there are (1/h)P such cells in the partition of U, the probability

that any of them contain no treatment observations is at most
(1/h)Pe™2<" — exp[—ny,ch? + plog(1/h)].
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By the choice of h in Step 2 of the TEEMy algorithm, h > [2log(n})/cn3]'/P. Therefore,

— ng,ch? + plog(1/h)
< —2n4, log(n3) +10g< cny )

5 2lognj

<1 <
oo [ — =
=08 2n3 lognj

<1 =
O —_ = ).
= 108 2no log na

The second inequality in the above expression results from n;, > n3. Thus

c &
PDs) <expllog (s )| = ()
( ﬂ,t)—eXp[Og <2n§10gn§>} <2”§10g”3>

The same bound may be established for P(Dy; .); therefore,

P(D%) < —=

_ A.16
— njlogni ( )

Using (A.14) together with (A.13), (A.15), and (A.16), and using the fact that h =

By{log(n3)/n3}'/P for some B, depending on ¢ and p, we have
Exl|lA - Arl3

logng \ /P , (logn3\ /P 9 1
<sepria+ o)z (E2)  aman? (E52) s roae ()
nj ns ns log n

. 1 1 R R ~
+ Bs H}f {% log o, + Erllor — Ut,nhj”% +Erlloc — UCWLJ’H% +Ex[|A - Anm’”%} .
J

(A.17)

With the exception of small nj,

2 1
1 < <logn§> /pg <logn§> /p7
nslogn ns ns

so we can rewrite expression (A.17) as

~ log n%\ /P
EnnA—Aw\%s&{( B )

2

—l—inf[
j

1 1 . . N
;72 log o + Exllor — Utﬂlhj”% + Exlloc — Uc,m,j”g +Ex[|A - Am,jug] }a
j
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for a constant By depending on ¢, ¢, ¢, 7, A, p, and L.
Now nj and ng, which heretofore we have treated as fixed, are random variables deter-
mined by the values of (U;, T;)"" ; and the permutation 7. By the iterated expectation law,

unconditional on the permutation 7,

E|A - A3 —E (EWHA - M%)

x\ 1/p
§B5{E (10g*712>
gy

, 1 1 . . ~
inf B 108 -+ B0t = 1l + Bl — e 15 + BIA - B8] }

J

(A.18)

Let o € (0,1) be a fixed constant and let H, . denote the event that P(n} > ansy). Since
(logn3/n3)YP < 1, we have

E log nj 1/p log nj 1/p
n n

1/p
<q P <10g”2> + P(HE).
n9 ’

<E Hox| + P(H )

For P(H, gé,ﬂ), the exponential bound on the upper tail probability of the hypergeometric
distribution established by Chvatal (1979) can be used to show that we can find a € (0, 1)

depending on a and b from the second regularity condition such that
P(ch,ﬂ') < Bﬁe_n27
for a constant Bg depending on a and b. Thus

x\ 1/p 1/p
E [<1g”> < B <1°g ”) , (A.19)
ny

for B7 depending on a and b.

For E(1/n2), conditional on Dy,

1 cnd ™" log n log 1o
— =hP = =2 < Bg 2 ) < BrBg , (A.20)
9 2log n; n N9
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for a constant Bg depending on c¢. As established earlier in this proof, P(D%) converges
faster than O(1/n%) = O(1/n2).
Using (A.19) and (A.20) to replace the random variables in (A.18) with fixed constants,

we obtain a bound for the risk of KW:
E[|A - Aq3

1 1/p
< Bg{ ( ogn2>
ng

. log na 1 . .
L inf K >1og L Ell0 — 61m 513+ Elloe — o]
2 no wj

2 L E|A - Em,ju%] }
(A.21)

for a constant By depending on a, b, ¢, ¢, 0, 7, A, p, and L.

For P > 1, the estimator Z from Step 8 of the algorithm is the average (over the set
of P permutations) of ﬁwp. Therefore, by the convexity of the Lo loss, an application of
Jensen’s inequality gives us

= 1 P =
E|A - A3 < 5 SEIA - A (A.22)
p=1
The permutation 7 used to establish the bound in (A.21) was arbitrary; therefore, by (A.22),

the bound in (A.21) also holds for E||A — XH% This completes the proof of the theorem. W
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