
Supplement: Combining Estimates of CTE

SUPPLEMENTAL DOCUMENT FOR COMBINING ESTIMATES OF

CONDITIONAL TREATMENT EFFECTS

This supplemental document has two parts: a theoretical justification for TEEM and

additional simulation studies comparing TEEM to other model selection and combination

methods. Section S1 develops a risk bound for an alternative version of the TEEM algo-

rithm. TEEMA, a version of TEEM intended for theoretical development (see Section 3.2 of

the main article for a discussion of the differences in the algorithms), is presented, and a risk

bound for its estimator’s performance under squared error loss is given. Section S2 presents

three sets of simulation results. In Section S2.1, all candidate models to be combined are

misspecified; in Section S2.1.3, the error distributions are misspecified as well. Finally,

Section S2.2 demonstrates how applying ideas of sufficient dimension reduction prior to the

pairing step (see Section 3.3 of the main article for details) may improve the performance

of TEEM. As in Sections 4 and 5 of the main article, the version of TEEM used in Section

S2.1 is the nearest-neighbor version described in Section 3.1 of the main article.

S1. TEEM FOR THEORETICAL DEVELOPMENT

In this section, we present a version of the TEEM algorithm for theoretical development,

as opposed to the version of TEEM presented in Section 3.1 of the main article that is rec-

ommended for practical use. Section 3.2 of the main article discusses the major differences

between the two algorithms and the motivations for both.

S1.1 THE TEEMA ALGORITHM

Here we describe in detail the version of the TEEM algorithm with independent pairs for

which we derive the risk bound in Section S1.2. For our theoretical development, the support

of the covariates U is assumed to be a compact subset of Rp and the covariate distribution

PU is assumed to have a density bounded below by a constant c > 0 on U almost surely.
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Without further loss of generality, we set U = [0, 1]p. Note that these restrictions on U and

PU are not required or assumed for the version of the algorithm described in Section 3.1 of

the main article.

Step 0. Select a fraction ρ ∈ (0, 1) of the n observations that will be used to fit the

models. Denote bρn+ 0.5c by n1; n1 is the number of observations used to fit the models.

Similarly denote the size of the evaluation set, n− n1, by n2. Note that asymptotically, n1

and n2 are both of order n.

Step 1. Randomly permute the order of the n observations; call this permutation π.

Split the resulting ordered data into two parts: the training part Z(1) = (Yi, Ti,Ui)
n1
i=1 and

the evaluation part Z(2) = (Yi, Ti,Ui)
n
i=n1+1.

Step 2. Within the evaluation data Z(2), let nt2 denote the number of observations

for which Ti = t and nc2 the number for which Ti = c. Let n∗2 = min(nt2 , nc2). Partition

U = [0, 1]p into hypercubes each with side length h such that

1

h
=

⌊(
cn∗2

2 log n∗2

)1/p
⌋
. (1)

Let ñ2 denote the number of these hypercubes containing at least one realized covariate

value from each treatment group in Z(2). Within each of these ñ2 cells, randomly select a

pair of observations (i, i∗) such that Ti = t and Ti∗ = c. Use the indices i from these pairs

to create the ordering m = 1, . . . , ñ2, where each m represents the treatment-control pair

(i, i∗) with the mth-smallest value of i among the pairs created in this step. Using this

index, hereafter denote the treatment and control observations (i, i∗) in pair m by (mt,mc).

Step 3. For each resulting matched pair (mt,mc), create approximate treatment effects

δ̃m = Ymt − Ymc . These approximate local treatment effects will be used to evaluate the

candidate procedures and assign them weights.

Step 4. Fit the J candidate procedures ψ1, . . . , ψJ to the data Z(1) to obtain J es-

timates of the treatment effect function (denoted by ∆̂n1,1, . . . , ∆̂n1,J). Let σ̂
δ̃m,n1,j

=√
σ̂2
t,n1,j

(Umt) + σ̂2
c,n1,j

(Umc) denote the estimated standard deviation of δ̃m from proce-
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dure j applied to Z(1).

Step 5. For each procedure indexed by j = 1, 2, . . . , J , assign initial weights (or prior

probabilities) W1,j = ωj , where the ωj ’s are positive numbers that sum to 1. Then for

2 ≤ m ≤ ñ2, let

Wm,j =
ωj
∏m−1
l=1 φ

{[
δ̃l − ∆̂n1,j(Ult)

]
/σ̂

δ̃l,n1,j

}
/σ̂

δ̃l,n1,j∑J
k=1 ωk

∏m−1
l=1 φ

{[
δ̃l − ∆̂n1,k(Ult)

]
/σ̂

δ̃l,n1,k

}
/σ̂

δ̃l,n1,k

, (2)

where φ is the pdf of the error distribution. Note that
∑

j≥1Wm,j = 1 for each m =

1, . . . , ñ2.

Step 6. For m = 1, . . . , ñ2, let

∆̃m(u) =
J∑
j=1

Wm,j∆̂n1,j(u). (3)

Step 7. For every cell m containing at least one treatment-control pair, let Um denote

the region of the covariate space representing the cell. Then let

˜̃
∆π(u) =


∆̃m(Umt) if u ∈ Um

0 if the cell containing u has no treatment-control pair in Z(2).

The subscript π indicates the estimator’s dependence on the permutation π applied in Step

1.

Step 8. Repeat Steps 1-7 a total of P times for some P ≥ 1, and average the resulting˜̃
∆π to obtain the TEEMA estimator

∆̂(u) =
1

P

P∑
p=1

˜̃
∆πp(u), (4)

where for each iteration 1 ≤ p ≤ P , πp denotes the permutation applied in Step 1 of the

iteration.

The partition size given in Step 2 is not a bandwidth in the traditional sense. It takes

the form given in (1) so that, asymptotically, the partition becomes finer (allowing for more

precise estimation of local treatment effects) while each cell continues to contain at least
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one treatment-control pair with high probability. The technical aspect of this partition in

establishing the risk bound for the TEEM algorithm can be understood from the proof.

Equation (2) gives the formula for the combining weight of each procedure j in cell

m. Intuitively, the numerator in (2) represents the product of the predictive densities

(likelihoods) of the first m−1 treatment-control pairs in the evaluation set given procedure

j. The greater the likelihoods, the more trustworthy the procedure, and the higher the

weight in (2). The denominator in (2) scales the weights so that they sum to one. The

weight of each procedure Wm,j in (2) depends on the arbitrary ordering of the treatment-

control pairs done in Step 2. However, the effect of the ordering is averaged out by repeating

Steps 1-7 over P independent random permutations.

Whether or not the weight of the best procedure goes to one (and thus the method

reduces to model selection) asymptotically depends on the relationship between n1 and n2

and the relative performance of the candidate procedures; see Rolling and Yang (2014) for

a related discussion regarding the ability to identify the best treatment effect estimation

procedure among the candidates. Unlike in Rolling and Yang (2014), the current work does

not require one of the candidate procedures to be asymptotically better than the others in

order for the main theoretical result (presented in the next section) to hold.

S1.2 Risk Bound for the TEEMA Estimator

In this section we bound the risk of the estimator produced by the TEEMA algorithm

described in Section S1.1. Our proof uses the following assumptions on the data-generating

process:

Regularity Conditions

1. Covariates of treatment and control groups: Let PUt and PUc denote the covariate

distributions, conditional on treatment status, for the treatment and control groups,

respectively. Note that we allow treatment to be associated with covariates, as is
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the case in many observational studies, so PUt and PUc may differ from each other.

We assume that the realizations Ui|Ti = t are i.i.d. from PUt and, similarly, that

Ui|Ti = c are i.i.d. from PUc . We assume that PUt and PUc are continuous and

bounded above and below by c <∞ and c > 0, respectively, on U .

2. Size of treatment and control groups: For n large enough, there exist constants (a, b)

not depending on n such that 0 < a < nt/n < b < 1, where nt is the number of the n

observations for which Ti = t.

3. Error distribution: The error density φ has the property that for each pair 0 < s0 < 1

and T > 0, there exists a constant B0 (depending on s0 and T ) such that∫
φ(x) log

φ(x)

(1/s)φ[(x− t)/s]
dx ≤ B0[(1− s)2 + t2]

for all s0 ≤ s ≤ 1/s0 and −T < t < T (see Assumption A2 in Yang, 2001). Many

distributions satisfy this condition, including the Gaussian, t (with degrees of freedom

greater than 2), and double-exponential (Laplace) distributions.

4. Boundedness: The regression functions ft and fc are uniformly bounded in absolute

value by A < ∞, and the standard deviation functions σt and σc each are bounded

above and below by σ < ∞ and σ > 0, respectively. We assume correspondingly

that the estimators ∆̂l,j , σ̂t,l,j , and σ̂c,l,j satisfy ‖∆̂l,j‖∞ ≤ 2A, σ̂t,l,j ∈ [σ, σ], and

σ̂c,l,j ∈ [σ, σ], for each l ≥ 1 and j ≥ 1.

5. Smoothness: The regression functions for the treatment and control groups, ft and fc,

and the estimators ∆̂l,j for l ≥ 1 and j ≥ 1 have all p first-order partial derivatives,

and each of these first-order partial derivatives is upper bounded in absolute value

by a constant L on U . The same smoothness is assumed for the standard deviation

functions σt and σc and their corresponding estimators.

The theorem below bounds the risk of the TEEMA estimator in terms of the minimum
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risks of the individual candidate procedures, the dimension of the covariate vector, and the

size of the evaluation set.

Theorem 1. Under regularity conditions 1-5, the risk of ∆̂ from the TEEMA algorithm

described in Section S1.1 has the following bound:

E‖∆− ∆̂‖22 ≤ C

{(
log n2

n2

)1/p

+ inf
j

[(
log n2

n2

)
log

1

ωj
+ E‖σt − σ̂t,n1,j‖22 + E‖σc − σ̂c,n1,j‖22 + E‖∆− ∆̂n1,j‖22

]}
,

where the constant C depends on a, b, c, c, σ, σ, A, p, and L (but not on n).

Proof. A detailed proof is provided in the Appendix of this supplemental document.

Remarks

1. By choosing a fixed fraction of n to fit the estimators and using the remainder to

construct the combining weights, n1 and n2 both are of order n. Therefore, if one of

the candidate models (say j∗) is a correctly specified parametric representation of the

data-generating process, then E‖∆− ∆̂n1,j∗‖22, E‖σt− σ̂t,n1,j∗‖22, and E‖σc− σ̂c,n1,j∗‖22

each will converge to zero at a rate of n−1. In this case, if p = 1, the risk of the

combined estimator will converge to zero at rate (log n)n−1, almost as fast as an

oracle that knows the true model in advance.

2. The finite-sample performance of the method may be sensitive to ρ, the proportion

of observations used for training data. In our experience, a 50/50 splitting of the

data into estimation and evaluation provides a good balance for achieving the goals of

estimating ∆ and evaluating competing procedures for estimating ∆. More discussion

regarding the allocation between training and testing data can be found in Yang (2007)

and Zhang and Yang (2015). The number of permutations P should be as large as

computationally feasible to average out the variability due to data splitting, but as is
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typical for resampling methods, accuracy gains are subject to diminishing returns for

large P . We use P = 100 in our numerical work.

3. Increasing the dimension of U slows the convergence of the combined estimator due

to the “curse of dimensionality” in constructing the treatment-control pairs. This

suggests that more efficient estimation can be achieved by reducing the dimension of

the covariate vector before constructing the pairs if the dimension reduction does not

result in any loss of information about ∆. See Sections 3.3 and S2.2 for more details

about applying dimension reduction techniques to improve the performance of TEEM

in high-dimensional settings.

4. The risk bound of TEEM can be simplified if one is willing to assume the error

variances for the treatment and control groups are the same and are homoscedastic

with respect to U, as in the following corollary.

Corollary 1. Assuming homoscedastic errors (that is, σt and σc are equal constants)

and regularity conditions 1-5, the risk bound of ∆̂ can be expressed as

E‖∆− ∆̂‖22 ≤ C

{(
log n2

n2

)1/p

+ inf
j

[(
log n2

n2

)
log

1

ωj
+ E(σ − σ̂n1,j)

2 + E‖∆− ∆̂n1,j‖22
]}

,

where σ = σt = σc and the constant C depends on a, b, c, c, σ, σ, A, p, and L (but

not on n).

Proof. The proof follows a similar path as that of Theorem 1.

5. In the setting of Corollary 1, with homoscedastic errors and smoothness conditions

on ft and fc, the standard deviation can be estimated at rate n−1
1 independently of

the candidate procedures (see, e.g., Rice, 1984). Thus, the term E(σ − σ̂n1,j)
2 could

be removed from the risk bound by incorporating this independent estimation of σ
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into the algorithm. However, in practice, separate model-based estimators of σ often

are helpful in assigning proper weights to each of the candidate procedures.

6. Under the regularity conditions of Theorem 1 (and Corollary 1), the minimax rate of

convergence for ∆ is n−2/(2+p). This rate can be achieved by a procedure j∗∗ that

sets ∆̂j∗∗ = f̂t − f̂c, where f̂t and f̂c are appropriate nonparametric estimators that

converge to ft and fc, respectively, at the minimax rate for each regression function.

By including such a procedure j∗∗ among the candidates and utilizing independent

estimation of σ (see Remark 5), TEEM can automatically achieve the minimax rate

for ∆ when p = 1. However, because of the term ((log n2)/n2)1/p in the risk bound,

when p > 1 inclusion of such a j∗∗ is not sufficient to guarantee that the TEEM

estimator will converge to ∆ at the minimax rate.

S2. Additional Simulation Studies

S2.1 Misspecified Models

Nonlinearity in conditional treatment effects may exist but be difficult to detect through

exploratory data analysis. For example, the effectiveness of a retailer’s marketing treatment

may depend on a customer’s level of engagement with the retailer, and the treatment

may be most effective for those moderately engaged; very occasional customers may ignore

communications from the retailer, while very loyal customers may purchase regardless of the

marketing treatment. Such a relationship cannot be captured by linear interaction terms,

but this can be difficult to observe graphically. In such situations, it is possible that all

candidate models may be misspecified, and that models best for predicting the response

may not be best for estimating the treatment effect.
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S2.1.1 Setup

We generate data from the following process:

Yi = 0.5U2
i,1 + 0.5Ui2 + I(Ti = t) ∗ (0.5Ui,1 + 0.5U2

i,2) + εi, (A.1)

where (Ui,1, Ui,2, εi) are i.i.d. N(0, I3) and the Ti are i.i.d. with P (Ti = t) = 0.5. The nine

candidate models contain different subsets of the two covariates and their interactions with

treatment; they are enumerated in Table 1. The candidate models are hierarchical in the

sense that if a treatment-covariate interaction is included in the model, the main effect of

that covariate also is included.

Table 1: Candidate models for the simulation study in Section S2.1.

Model Number Model Terms

1 T,U1, U2, T ∗ U1, T ∗ U2

2 T,U1, U2, T ∗ U1

3 T,U1, U2, T ∗ U2

4 T,U1, U2

5 T,U1, T ∗ U1

6 T,U1

7 T,U2, T ∗ U2

8 T,U2

9 T

We create 100 realizations of (A.1) at each of two sample sizes: n = 100 and n = 300. For

each realization, we use the model selection and combination methods described in Section

4.3 to choose a model/combination and use the chosen model/combination to estimate ∆.

The squared L2 risks (for ∆) for each candidate model and for each selection/combination

method at each sample size are estimated by averaging the risks over the 100 realizations,
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where each realization-risk is estimated from the sample mean of (∆(Ui)− ∆̂(Ui))
2 based

on an independent evaluation data set of 1 million independent draws from the distribution

of (Ui,1, Ui,2).

S2.1.2 Results

In this setting, there is a conflict between the goals of estimating the full regression

function and estimating the treatment effect. For example, Model 5 is a relatively effective

model for treatment effect estimation, because it contains the linear interaction term be-

tween T and U1, but it is not effective for estimating the full regression function because it

omits the main effect for U2. Because of this conflict, we should expect that the selection

and combination methods targeted toward ∆ will perform better than the methods targeted

toward the full regression function.

Table 2 shows the risks of the model selection and combination methods, as well as the

risks of the individual models, at n = 100 and n = 300. Among the model selection methods,

TECV performs the best at both sample size levels. Its performance is much better than

that of traditional CV at both sample sizes. Overall, the TEEM algorithm features the

lowest risk among all nine methods of selection and combination methods. At n = 100,

TEEM results in much better performance than any of the model selection methods due to

the high model selection instability at this sample size. At n = 300, the methods targeted

to treatment effect estimation that do not assume the true model is among the candidates

(TECV and TEEM) feature the lowest estimated risks for ∆.

S2.1.3 Misspecified Error Distribution

Because it is a likelihood-based method, our algorithm TEEM requires the error distri-

bution to be known. Of course, knowing the true error distribution is unlikely in practice.

To evaluate the robustness of our method to incorrect specification of the error distribu-

tion, the simulation described in this section was repeated with the random errors being
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Table 2: Section S2.1 results with Gaussian errors.

Estimated Risk of ∆̂ (SE)

Model/Method n = 100 n = 300

Candidate Models

Model 1 0.835 (0.025) 0.631 (0.010)

Model 2 0.712 (0.017) 0.587 (0.009)

Model 3 0.961 (0.024) 0.825 (0.007)

Model 4 0.824 (0.009) 0.779 (0.003)

Model 5 0.732 (0.019) 0.588 (0.009)

Model 6 0.827 (0.010) 0.780 (0.004)

Model 7 0.970 (0.023) 0.829 (0.007)

Model 8 0.831 (0.009) 0.781 (0.004)

Model 9 0.833 (0.010) 0.781 (0.004)

Model Selection

Methods

AIC 0.847 (0.025) 0.629 (0.012)

BIC 0.856 (0.021) 0.656 (0.013)

CV 0.858 (0.021) 0.682 (0.014)

wFIC 0.860 (0.023) 0.633 (0.012)

TECV 0.834 (0.017) 0.622 (0.012)

Model Combination

Methods

cAIC 0.805 (0.021) 0.627 (0.011)

BMA 0.790 (0.018) 0.644 (0.011)

ARM 0.733 (0.016) 0.635 (0.009)

TEEM 0.714 (0.015) 0.607 (0.009)
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generated from a double-exponential (Laplace) distribution with variance one, instead of a

normal distribution. The model selection and combination methods all incorrectly assume

that the errors follow a Gaussian distribution in this study.

The results of the analysis with a misspecified error distribution are shown in Table

3. In this setting, the performance of TEEM is fairly robust to the misspecification of

the error distribution. Among the model selection and combination methods considered,

TEEM again features the lowest mean squared error, which is close to that of the best

candidate procedure, at both sample sizes. This example shows that TEEM can estimate

the conditional treatment effect with similar accuracy as the best candidate, even when all

candidate model forms and the assumed error distribution are incorrectly specified.

S2.2 TEEM with Dimension Reduction

According to Theorem 1, the risk bound of TEEM may grow with the number of covari-

ates p. This property, common to nonparametric methods, is due to the increased difficulty

of finding nearby neighbors in high-dimensional space. As discussed in Section 3.3 of the

main article, one solution to this problem when p is moderate or large is to estimate a

dimension reduction subspace for ∆ and create the pairings necessary for TEEM using the

projection of U onto this lower-dimensional subspace. This section demonstrates the use of

dimension reduction techniques with TEEM.

S2.2.1 Setup

In this simulation study, we set n = 500 and p = 10; these are fairly moderate values

typical of what one might encounter in an observational study. While a setting with p = 10

may not typically be considered high-dimensional, a sample size much higher than n = 500

often is needed to reliably find nearby neighbors in 10-dimensional space. Applying a

dimension reduction technique prior to identifying neighbors may therefore be beneficial.

The p = 10 covariates are mean-zero normal with covariance matrix Σij = 0.7|i−j|. We
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Table 3: Section S2.1 results with Laplacea errors.

Estimated Risk of ∆̂ (SE)

Model/Method n = 100 n = 300

Candidate Models

Model 1 0.848 (0.034) 0.610 (0.010)

Model 2 0.733 (0.028) 0.573 (0.008)

Model 3 0.974 (0.027) 0.812 (0.006)

Model 4 0.834 (0.015) 0.774 (0.003)

Model 5 0.759 (0.030) 0.576 (0.009)

Model 6 0.844 (0.016) 0.777 (0.003)

Model 7 0.979 (0.027) 0.814 (0.006)

Model 8 0.837 (0.014) 0.775 (0.003)

Model 9 0.847 (0.016) 0.776 (0.003)

Model Selection

Methods

AIC 0.854 (0.033) 0.603 (0.010)

BIC 0.881 (0.030) 0.632 (0.013)

CV 0.893 (0.029) 0.644 (0.013)

wFIC 0.860 (0.033) 0.603 (0.010)

TECV 0.845 (0.025) 0.592 (0.010)

Model Combination

Methods

cAIC 0.816 (0.030) 0.602 (0.009)

BMA 0.824 (0.028) 0.621 (0.009)

ARM 0.748 (0.021) 0.617 (0.009)

TEEM 0.717 (0.019) 0.586 (0.008)

a The model selection and combination methods, including TEEM, that require

the specification of an error distribution incorrectly assume Gaussian errors

in this study.
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allow the probability that T = t to depend on the covariates in this example; specifically,

P (Ti = t) =
exp

(
1
10

∑10
j=1 Uij

)
1 + exp

(
1
10

∑10
j=1 Uij

) . (A.2)

The outcome Yi is generated according to

Yi = 2

6∑
j=1

Uij + I(Ti = t)

3∑
j=1

Uij + εi, (A.3)

where the εi are i.i.d. normal with σ = 10. The 20 candidate models considered are linear

regressions with different subsets, including 10 main-effects only models with progressively

larger numbers of covariates,

T,U1

T,U1, U2

...

T,U1, U2, U3, . . . , U10,

and the same models with interaction terms between the treatment variable and each co-

variate in the model,

T,U1, T ∗ U1

T,U1, T ∗ U1, U2, T ∗ U2

...

T,U1, T ∗ U1, U2, T ∗ U2, U3, T ∗ U3, . . . , U10, T ∗ U10.

As in the previous section, we compare the estimated risks of model selection and com-

bination methods for estimating ∆ by selecting one of, or combining, these models. All

methods that require the specification of an error distribution assume normal errors. The

sample size available for selecting or combining models is n = 500, and 100 independent

realizations of such samples are generated. For each method-realization, the sample mean
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of (∆(Ui)− ∆̂(Ui))
2 is calculated for an independent evaluation data set of 1 million draws

from the distribution of U. These estimated mean squared errors are averaged over the 100

realizations to estimate the risks of each method. The TEEM algorithm with a dimension

reduction step (described below) is compared with the basic TEEM algorithm and the same

competitors studied elsewhere in this paper.

For TEEM with dimension reduction, the observations in the treatment and control

groups are used to create f̂t = β̂Tt U and f̂c = β̂Tc U, respectively, via OLS regression

using all 10 covariates. Assuming the regression functions under treatment and control are

linear (which they are in this case), the two-column matrix (βTt U, βTc U) contains all of the

information about ∆ contained in the original 10-column U. Let β̂tc denote the 10 × 2

matrix with columns β̂t and β̂c. If β̂t and β̂c are accurate estimates of their targets, then

β̂tcU will be an approximate dimension reduction subspace for ∆. Thus in the pairing

step of TEEM with dimension reduction, the distance between two observations Ui and

Ui′ is measured by d(β̂tcUi, β̂tcUi′), and for each observation the nearest neighbor in the

other treatment group with respect to this distance is used as its pair. The same dimension

reduction prior to pairing is used for the TECV algorithm, in addition to the usual TECV

with no dimension reduction.

S2.2.2 Results

The boxplot of Figure 1 shows that model combination is generally more effective than

model selection in this setting because of the small signal-to-noise ratio. Among the model

combination methods, ARM and TEEM achieve the highest accuracy in this setting. For

TEEM and TECV, the dimension reduction step prior to pairing is effective in producing

pairs that are more similar with respect to ∆(u), thereby enabling more effective model

combination and selection for the purpose of accurately estimating ∆.
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Figure 1: Results of the dimension-reduction simulation setting of Section S2.2.
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APPENDIX

Proof of Theorem 1

First let P = 1, where P is the number of permutations from Step 8 of the algorithm.

For each pair m created in Step 2 of the algorithm, let δ̃m = Ymt − Ymc and σ
δ̃m

=√
σ2
t (umt) + σ2

c (umc). Conditional on (Umt ,Umc) = (umt ,umc), the density of δ̃m under

∆, fc, σ
2
t and σ2

c can be expressed as

p∆,fc,σ2
t ,σ

2
c
(δ̃m|umt ,umc) =

1

σ
δ̃m

φ

{
δ̃m −∆(umt)− [fc(umt)− fc(umc)]

σ
δ̃m

}
.

The estimated density of δ̃m under ∆̂, σ̂2
t , σ̂

2
c , and supposing fc(umt) = fc(umc) is

p
∆̂,σ̂2

t ,σ̂
2
c
(δ̃m|umt ,umc) =

1

σ̂
δ̃m

φ

{
δ̃m − ∆̂(umt)

σ̂
δ̃m

}
,

where σ̂
δ̃m

=
√
σ̂2
t (umt) + σ̂2

c (umc).

Define

q1(δ̃1|u1t ,u1c) =

J∑
j=1

ωjp∆̂n1,j
,σ̂2

t,n1,j
,σ̂2

c,n1,j
(δ̃1|u1t ,u1c),

and for 2 ≤ m ≤ ñ2, define

qm(δ̃m|umt ,umc) =∑J
j=1 ωj

[∏m−1
l=1 p

∆̂n1,j
,σ̂2

t,n1,j
,σ̂2

c,n1,j
(δ̃l|ult ,ulc)

]
p

∆̂n1,j
,σ̂2

t,n1,j
,σ̂2

c,n1,j
(δ̃m|umt ,umc)∑J

j=1 ωj
∏m−1
l=1 p

∆̂n1,j
,σ̂2

t,n1,j
,σ̂2

c,n1,j
(δ̃l|ult ,ulc)

.

The error density φ has mean 0; therefore, given π, Z(1), (ult ,ulc , ylt , ylc)
m−1
l=1 , and (umt ,umc),

qm(δ̃m|umt ,umc) has mean
∑

jWm,j∆̂n1,j(umt) = ∆̃m(umt), where Wm,j represent the

weights defined in Step 5 of the TEEMA algorithm.

Let

gj

[
(δ̃m)ñ2

m=1

]
=

ñ2∏
m=1

p
∆̂n1,j

,σ̂2
t,n1,j

,σ̂2
c,n1,j

(δ̃m|umt ,umc),

and let

g̃
[
(δ̃m)ñ2

m=1

]
=

J∑
j=1

ωjgj

[
(δ̃m)ñ2

m=1

]
.
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Note that
∏ñ2
m=1 qm(δ̃m|umt ,umc) = g̃

[
(δ̃m)ñ2

m=1

]
. One can view qm(δ̃m|umt ,umc) as an

estimator of the conditional density of δ̃m given (umt ,umc). The cumulative risk, under the

Kullback-Leibler divergence, of qm(δ̃m|umt ,umc) at the design points (umt ,umc)
ñ2
m=1 can

be bounded in terms of the risks of the individual procedures using an idea from Barron

(1987). Letting Eπ denote the expectation conditional on the permutation π and D(f ||g)

the Kullback-Leibler divergence of g from f , we have

ñ2∑
m=1

EπD[p∆,fc,σ2
t ,σ

2
c
(δ̃m|umt ,umc)||qm(δ̃m|umt ,umc)]

=

ñ2∑
m=1

Eπ
∫
p∆,fc,σ2

t ,σ
2
c
(δ̃m|umt ,umc) log

p∆,fc,σ2
t ,σ

2
c
(δ̃m|umt ,umc)

qm(δ̃m|umt ,umc)
dδ̃m

=

ñ2∑
m=1

Eπ
∫ { ñ2∏

m=1

p∆,fc,σ2
t ,σ

2
c
(δ̃m|umt ,umc)

}
log

p∆,fc,σ2
t ,σ

2
c
(δ̃m|umt ,umc)

qm(δ̃m|umt ,umc)
dδ̃m

=Eπ
∫ { ñ2∏

m=1

p∆,fc,σ2
t ,σ

2
c
(δ̃m|umt ,umc)

}{
ñ2∑
m=1

log
p∆,fc,σ2

t ,σ
2
c
(δ̃m|umt ,umc)

qm(δ̃m|umt ,umc)

}
dδ̃1 · · · dδ̃ñ2

=Eπ
∫ { ñ2∏

m=1

p∆,fc,σ2
t ,σ

2
c
(δ̃m|umt ,umc)

}
log

∏ñ2
m=1 p∆,fc,σ2

t ,σ
2
c
(δ̃m|umt ,umc)∏ñ2

m=1 qm(δ̃m|umt ,umc)
dδ̃1 · · · dδ̃ñ2

=Eπ
∫ { ñ2∏

m=1

p∆,fc,σ2
t ,σ

2
c
(δ̃m|umt ,umc)

}
log

∏ñ2
m=1 p∆,fc,σ2

t ,σ
2
c
(δ̃m|umt ,umc)

g̃
[
(δ̃m)ñ2

m=1

] dδ̃1 · · · dδ̃ñ2
.

Since φ is a positive-valued function and log(x) is an increasing function, we have that

for any j ≥ 1,

Eπ
∫ { ñ2∏

m=1

p∆,fc,σ2
t ,σ

2
c
(δ̃m|umt ,umc)

}
log

∏ñ2
m=1 p∆,fc,σ2

t ,σ
2
c
(δ̃m|umt ,umc)

g̃
[
(δ̃m)ñ2

m=1

] dδ̃1 · · · dδ̃ñ2

≤ Eπ
∫ { ñ2∏

m=1

p∆,fc,σ2
t ,σ

2
c
(δ̃m|umt ,umc)

}
log

∏ñ2
m=1 p∆,fc,σ2

t ,σ
2
c
(δ̃m|umt ,umc)

ωjgj

[
(δ̃m)ñ2

m=1

] dδ̃1 · · · dδ̃ñ2

= log
1

ωj

+ Eπ
∫ { ñ2∏

m=1

p∆,fc,σ2
t ,σ

2
c
(δ̃m|umt ,umc)

}
log

∏ñ2
m=1 p∆,fc,σ2

t ,σ
2
c
(δ̃m|umt ,umc)

gj

[
(δ̃m)ñ2

m=1

] dδ̃1 · · · dδ̃ñ2
.

The last term in the preceding equation is the cumulative risk, under the Kullback-Leibler

divergence, of p
∆̂n1,j

,σ̂2
t,n1,j

,σ̂2
c,n1,j

at the design points (umt ,umc)
ñ2
m=1, given the permutation
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π. This is because

Eπ
∫ { ñ2∏

m=1

p∆,fc,σ2
t ,σ

2
c
(δ̃m|umt ,umc)

}
log

∏ñ2
m=1 p∆,fc,σ2

t ,σ
2
c
(δ̃m|umt ,umc)

gj

[
(δ̃m)ñ2

m=1

] dδ̃1 · · · dδ̃ñ2

=Eπ
∫ [{ ñ2∏

m=1

p∆,fc,σ2
t ,σ

2
c
(δ̃m|umt ,umc)

}

×


ñ2∑
m=1

log
p∆,fc,σ2

t ,σ
2
c
(δ̃m|umt ,umc)

p
∆̂n1,j

,σ̂2
t,n1,j

,σ̂2
c,n1,j

(δ̃m|umt ,umc)


]
dδ̃1 · · · dδ̃ñ2

=

ñ2∑
m=1

Eπ
∫
p∆,fc,σ2

t ,σ
2
c
(δ̃m|umt ,umc) log

p∆,fc,σ2
t ,σ

2
c
(δ̃m|umt ,umc)

p
∆̂n1,j

,σ̂2
t,n1,j

,σ̂2
c,n1,j

(δ̃m|umt ,umc)
dδ̃m

=

ñ2∑
m=1

EπD[p∆,fc,σ2
t ,σ

2
c
(δ̃m|umt ,umc)||p∆̂n1,j

,σ̂2
t,n1,j

,σ̂2
c,n1,j

(δ̃m|umt ,umc)].

By definition,

D[p∆,fc,σ2
t ,σ

2
c
(δ̃m|umt ,umc)||p∆̂n1,j

,σ̂2
t,n1,j

,σ̂2
c,n1,j

(δ̃m|umt ,umc)]

=

∫ (
1

σ
δ̃m

φ

{
δ̃m −∆(umt)− [fc(umt)− fc(umc)]

σ
δ̃m

}

× log
(1/σ

δ̃m
)φ
({
δ̃m −∆(umt)− [fc(umt)− fc(umc)]

}
/σ

δ̃m

)
(1/σ̂

δ̃m,n1,j
)φ
{[
δ̃m − ∆̂n1,j(umt)

]
/σ̂

δ̃m,n1,j

} )
dδ̃m.

Letting

z =
δ̃m −∆(umt)− [fc(umt)− fc(umc)]

σ
δ̃m

,

we perform an integral transformation to obtain

D[p∆,fc,σ2
t ,σ

2
c
(δ̃m|umt ,umc)||p∆̂n1,j

,σ̂2
t,n1,j

,σ̂2
c,n1,j

(δ̃m|umt ,umc)]

=

∫
φ(z) log

[
σ̂
δ̃m,n1,j

σ
δ̃m

× φ(z)

φ
{(
σ
δ̃m
z + ∆(umt)− ∆̂n1,j(umt) + [fc(umt)− fc(umc)]

)
/σ̂

δ̃m,n1,j

}]dz.
Using the condition provided for the error distribution φ and taking

s0 = σ/σ, s = σ̂
δ̃m,n1,j

/σ, T = 4A/(
√

2σ), and
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t = −


[
∆(umt)− ∆̂n1,j(umt)

]
+
[
fc(umt)− fc(umc)

]
σ
δ̃m

 ,

it follows that

D[p∆,fc,σ2
t ,σ

2
c
(δ̃m|umt ,umc)||p∆̂n1,j

,σ̂2
t,n1,j

,σ̂2
c,n1,j

(δ̃m|umt ,umc)]

≤ B0

{1−
σ̂
δ̃m,n1,j

σ
δ̃m

}2

+


[
∆(umt)− ∆̂n1,j(umt)

]
+
[
fc(umt)− fc(umc)

]
σ
δ̃m


2
 ,

for a constant B0 depending on A, σ, and σ. Using (σ
δ̃m

)2 ≥ 2σ2 and the parallelogram

law, we obtain that for any j ≥ 1,

D[p∆,fc,σ2
t ,σ

2
c
(δ̃m|umt ,umc)||p∆̂n1,j

,σ̂2
t,n1,j

,σ̂2
c,n1,j

(δ̃m|umt ,umc)]

≤ B0

σ2

{
1

2

[
σ
δ̃m
− σ̂

δ̃m,n1,j

]2
+
[
∆(umt)− ∆̂n1,j(umt)

]2
+
[
fc(umt)− fc(umc)

]2
}
.

By the reverse triangle inequality,[
σ
δ̃m
− σ̂

δ̃m,n1,j

]2
=
[√

σ2
t (umt) + σ2

c (umc)−
√
σ̂2
t,n1,j

(umt) + σ̂2
c,n1,j

(umc)
]2

≤
[
σt(umt)− σ̂t,n1,j(umt)

]2
+
[
σc(umc)− σ̂c,n1,j(umc)

]2
.

Thus we have shown

1

ñ2

ñ2∑
m=1

EπD[p∆,fc,σ2
t ,σ

2
c
(δ̃m|umt ,umc)||qm(δ̃m|umt ,umc)]

≤ B0

σ2ñ2

ñ2∑
m=1

Eπ
[
fc(umt)− fc(umc)

]2
+ inf

j

(
1

ñ2
log

1

ωj

+
B0

σ2

{
1

2ñ2

ñ2∑
m=1

Eπ
([
σt(umt)− σ̂t,n1,j(umt)

]2
+
[
σc(umc)− σ̂c,n1,j(umc)

]2
)

+
1

ñ2

ñ2∑
m=1

Eπ
[
∆(umt)− ∆̂n1,j(umt)

]2
})

. (A.4)

Let d2
H(f, g) =

∫
(
√
f − √g)2dν denote the squared Hellinger distance between the

densities f and g with respect to the measure ν. The squared Hellinger distance is upper

bounded by the K-L divergence, so

1

ñ2

ñ2∑
m=1

Eπd2
H [p∆,fc,σ2

t ,σ
2
c
(δ̃m|umt ,umc), qm(δ̃m|umt ,umc)]
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is bounded above by (A.4).

As mentioned earlier, for each m, given π, Z(1), (ult ,ulc , ylt , ylc)
m−1
l=1 , and (umt ,umc),

qm(δ̃m|umt ,umc) has mean ∆̃m(umt) with respect to δ̃m. For this estimator, we have[∫
δ̃mp∆,fc,σ2

t ,σ
2
c
(δ̃m|umt ,umc)dδ̃m −

∫
δ̃mqm(δ̃m|umt ,umc)dδ̃m

]2

=

{∫
δ̃m

[
p∆,fc,σ2

t ,σ
2
c
(δ̃m|umt ,umc)− qm(δ̃m|umt ,umc)

]
dδ̃m

}2

=

{∫
δ̃m

[√
p∆,fc,σ2

t ,σ
2
c
(δ̃m|umt ,umc) +

√
qm(δ̃m|umt ,umc)

]
×
[√

p∆,fc,σ2
t ,σ

2
c
(δ̃m|umt ,umc)−

√
qm(δ̃m|umt ,umc)

]
dδ̃m

}2

≤
∫
δ̃2
m

[√
p∆,fc,σ2

t ,σ
2
c
(δ̃m|umt ,umc) +

√
qm(δ̃m|umt ,umc)

]2

dδ̃m

×
∫ [√

p∆,fc,σ2
t ,σ

2
c
(δ̃m|umt ,umc)−

√
qm(δ̃m|umt ,umc)

]2

dδ̃m

≤2

[ ∫
δ̃2
mp∆,fc,σ2

t ,σ
2
c
(δ̃m|umt ,umc) +

∫
δ̃2
mqm(δ̃m|umt ,umc)dδ̃m

]
×
∫ [√

p∆,fc,σ2
t ,σ

2
c
(δ̃m|umt ,umc)−

√
qm(δ̃m|umt ,umc)

]2

dδ̃m

=2

[
E(δ̃2

m|umt ,umc) +

∫
δ̃2
mqm(δ̃m|umt ,umc)dδ̃m

]
× d2

H

[
p∆,fc,σ2

t ,σ
2
c
(δ̃m|umt ,umc), qm(δ̃m|umt ,umc)

]
=2

{[
E(δ̃m|umt ,umc)

]2
+ σ2

t (umt) + σ2
c (umc) +

∫
δ̃2
mqm(δ̃m|umt ,umc)dδ̃m

}
× d2

H

[
p∆,fc,σ2

t ,σ
2
c
(δ̃m|umt ,umc), qm(δ̃m|umt ,umc)

]
=2

{[
∆(umt) + fc(umt)− fc(umc)

]2
+ σ2

t (umt) + σ2
c (umc) +

∫
δ̃2
mqm(δ̃m|umt ,umc)dδ̃m

}
× d2

H

[
p∆,fc,σ2

t ,σ
2
c
(δ̃m|umt ,umc), qm(δ̃m|umt ,umc)

]
,

where the first and second inequalities follow from the Cauchy-Schwarz inequality and the

parallelogram law, respectively.

By the fourth regularity condition, [∆(umt) + fc(umt) − fc(umc)]
2 ≤ (4A)2. Now∫

δ̃2
mqm(δ̃m|umt ,umc)dδ̃m = Eqm(δ̃2

m|umt ,umc) ≤ [Eqm(δ̃m|umt ,umc)]
2 + (2σ)2, and

qm(δ̃m|umt ,umc) is a convex combination of J densities in the location-scale family φ[(x−
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b)/a]/a, each with mean ∆̂n1,j(umt) with respect to δ̃m. Therefore,
∫
δ̃2
mqm(δ̃m|umt ,umc)dδ̃m

is bounded above by (2A)2 + (2σ)2. It follows that[∫
δ̃mp∆,fc,σ2

t ,σ
2
c
(δ̃m|umt ,umc)dδ̃m −

∫
δ̃mqm(δ̃m|umt ,umc)dδ̃m

]2

≤ (40A2 + 16σ2)d2
H

[
p∆,fc,σ2

t ,σ
2
c
(δ̃m|umt ,umc), qm(δ̃m|umt ,umc)

]
.

Together with∫
δ̃mp∆,fc,σ2

t ,σ
2
c
(δ̃m|umt ,umc)dδ̃m = E(δ̃m|umt ,umc) = ∆(umt) + fc(umt)− fc(umc)

and ∫
δ̃mqm(δ̃m|umt ,umc)dδ̃m = ∆̃m(umt),

we have, for each 1 ≤ m ≤ ñ2,

[
∆(umt) + fc(umt)− fc(umc)− ∆̃m(umt)

]2

≤ (40A2 + 16σ2)d2
H

[
p∆,fc,σ2

t ,σ
2
c
(δ̃m|umt ,umc), qm(δ̃m|umt ,umc)

]
. (A.5)

The expression (A.5) also is an upper bound for
{

∆(umt)− [fc(umt)− fc(umc)]− ∆̃m(umt)
}2

.

So by the parallelogram law, (A.5) is an upper bound for
[
∆(umt)− ∆̃m(umt)

]2
. Then by

using the earlier risk bound on the average squared Hellinger distance and combining con-

stants, we obtain

1

ñ2

ñ2∑
m=1

Eπ
[
∆(umt)− ∆̃m(umt)

]2

≤ B2

(
1

ñ2

ñ2∑
m=1

Eπ
[
fc(umt)− fc(umc)

]2
+ inf

j

{
1

ñ2
log

1

ωj

+
1

ñ2

ñ2∑
m=1

Eπ
([
σt(umt)− σ̂t,n1,j(umt)

]2
+
[
σc(umc)− σ̂c,n1,j(umc)

]2
)

+
1

ñ2

ñ2∑
m=1

Eπ
[
∆(umt)− ∆̂n1,j(umt)

]2
})

, (A.6)

where B2 depends on σ, σ, and A.
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Now we connect the global risk of the estimator
˜̃
∆π to the average risk of the individual

estimators ∆̃m at the design points. Let Dπ denote the event that ñ2 = (1/h)p; that is, the

event that every cell in the partition of U contains at least one treatment-control pair from

Z(2) after the permutation π. Let Um denote the cell in the partition containing the mth

treatment-control pair. Conditional on Dπ,

Eπ‖∆−
˜̃
∆π‖22

= Eπ
∫
U

[
∆(u)− ˜̃∆π(u)

]2

dPU

= Eπ
ñ2∑
m=1

∫
Um

[
∆(u)− ˜̃∆π(u)

]2

dPU.

By the definition of
˜̃
∆π, for any u ∈ Um,

˜̃
∆π(u) = ∆̃m(umt). Therefore, for u ∈ Um,[

∆(u)− ˜̃∆π(u)

]2

=
{[

∆(u)−∆(umt)
]

+
[
∆(umt)− ∆̃m(umt)

]}2

≤ 2
[
∆(u)−∆(umt)

]2
+ 2
[
∆(umt)− ∆̃m(umt)

]2
.

Combining the previous two displays and using the fact that for any m,
∫
Um dPU ≤ c/ñ2,

we have

Eπ‖∆−
˜̃
∆π‖22

≤ 2Eπ

{
ñ2∑
m=1

∫
Um

[
∆(u)−∆(umt)

]2
dPU +

c

ñ2

ñ2∑
m=1

[
∆(umt)− ∆̃m(umt)

]2
}
. (A.7)

For the first summation on the right-hand side of (A.7), by the Mean Value Theorem for

integrals and the fact that every cell Um has volume 1/ñ2, we have

ñ2∑
m=1

∫
Um

[
∆(u)−∆(umt)

]2
dPU =

1

ñ2

ñ2∑
m=1

f(u∗m)
[
∆(u∗m)−∆(umt)

]2
,

where u∗m is some point in the hypercube Um and f(u∗m) represents the design density at this

point. The smoothness conditions on ft and fc imply that ∆ satisfies a Lipschitz condition
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with Lipschitz constant
√
pL. Thus for any m, since the distance between u∗m and umt is

at most
√
ph, ∆(u∗m)−∆(umt) ≤ pLh. Thus we have

ñ2∑
m=1

∫
Um

[
∆(u)−∆(umt)

]2
dPU ≤ c(pLh)2. (A.8)

Combining (A.6), (A.7), and (A.8), we have established

Eπ
[
‖∆− ˜̃∆π‖22

∣∣∣Dπ

]
≤ 2c(pLh)2 + 2cB2

(
1

ñ2

ñ2∑
m=1

Eπ
[
fc(umt)− fc(umc)

]2

+ inf
j

{
1

ñ2
log

1

ωj
+

1

ñ2

ñ2∑
m=1

Eπ
([
σt(umt)− σ̂t,n1,j(umt)

]2
+
[
σc(umc)− σ̂c,n1,j(umc)

]2
)

+
1

ñ2

ñ2∑
m=1

Eπ
[
∆(umt)− ∆̂n1,j(umt)

]2
})

. (A.9)

Next we relate the global risk of each ∆̂n1,j to its average risk at the design points.

Again using the Mean Value Theorem for integrals and conditioning on Dπ, we have for

any j ≥ 1,

1

ñ2

ñ2∑
m=1

Eπ
[
∆(umt)− ∆̂n1,j(umt)

]2
− Eπ‖∆− ∆̂n1,j‖22

≤ c∗

ñ2
Eπ

ñ2∑
m=1

{[
∆(umt)− ∆̂n1,j(umt)

]2
−
[
∆(u∗m)− ∆̂n1,j(u

∗
m)
]2
}
,

where c∗ is a constant bounded by max(1/c, c) that exists by the boundedness of PU. The

difference in the squared differences after the summation can be bounded for each m by the

smoothness of ∆ and ∆̂n1,j .

Indeed, for each m we have

[
∆(umt)− ∆̂n1,j(umt)

]2
−
[
∆(u∗m)− ∆̂n1,j(u

∗
m)
]2

=
{[

∆(umt)− ∆̂n1,j(umt)
]

+
[
∆(u∗m)− ∆̂n1,j(u

∗
m)
]}

×
{[

∆(umt)− ∆̂n1,j(umt)
]
−
[
∆(u∗m)− ∆̂n1,j(u

∗
m)
]}

.
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Since ∆ and ∆̂n1,j both are bounded between −2A and 2A,

[
∆(umt)− ∆̂n1,j(umt)

]
+
[
∆(u∗m)− ∆̂n1,j(u

∗
m)
]
≤ 4A.

Meanwhile, the smoothness of ∆ and ∆̂n1,j ensure that both satisfy a Lipschitz condition

with Lipschitz constant
√
pL. Thus for any m, since each Um has diameter

√
ph,

[
∆(umt)− ∆̂n1,j(umt)

]
−
[
∆(u∗m)− ∆̂n1,j(u

∗
m)
]

=
[
∆(umt)−∆(u∗m)

]
+
[
∆̂n1,j(u

∗
m)− ∆̂n1,j(umt)

]
≤ 2pLh.

Therefore, conditional on Dπ,

1

ñ2
Eπ

ñ2∑
m=1

[
∆(umt)− ∆̂n1,j(umt)

]2
≤ Eπ‖∆− ∆̂n1,j‖22 + 8c∗ApLh. (A.10)

Because σt and σc and their corresponding estimators also are bounded and smooth

(conditions 4 and 5), we can apply similar arguments to obtain, conditional on Dπ,

1

ñ2
Eπ

ñ2∑
m=1

[σt(umt)− σ̂t,n1,j(umt)]
2 ≤ Eπ‖σt − σ̂t,n1,j‖22 + 4c∗σpLh (A.11)

and

1

ñ2
Eπ

ñ2∑
m=1

[σc(umc)− σ̂c,n1,j(umc)]
2 ≤ Eπ‖σc − σ̂c,n1,j‖22 + 4c∗σpLh. (A.12)

Thus combining (A.10), (A.11) and (A.12) with (A.9), we have established that

Eπ
[
‖∆− ˜̃∆π‖22

∣∣∣∣Dπ

]
≤ 8c∗pLh(A+ σ) + c(pLh)2 +B2

{
1

ñ2

ñ2∑
m=1

Eπ
[
fc(umt)− fc(umc)

]2

+ inf
j

[
1

ñ2
log

1

ωj
+ Eπ‖σt − σ̂t,n1,j‖22 + Eπ‖σc − σ̂c,n1,j‖22 + Eπ‖∆− ∆̂n1,j‖22

]}
.

Using the Lipschitz condition for fc within each cell, in a similar fashion as before, we can

show that

1

ñ2

ñ2∑
m=1

Eπ
[
fc(umt)− fc(umc)

]2
≤ (pLh)2.
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Thus we have

Eπ
[
‖∆− ˜̃∆π‖22

∣∣∣∣Dπ

]
≤ 8c∗pLh(A+ σ) +B3

{
(pLh)2

+ inf
j

[
1

ñ2
log

1

ωj
+ Eπ‖σt − σ̂t,n1,j‖22 + Eπ‖σc − σ̂c,n1,j‖22 + Eπ‖∆− ∆̂n1,j‖22

]}
,

(A.13)

for a constant B3 depending on σ, σ, A, and c.

Now,

Eπ‖∆−
˜̃
∆π‖22 ≤ Eπ

[
‖∆− ˜̃∆π‖22

∣∣∣∣Dπ

]
+ Eπ

[
‖∆− ˜̃∆π‖22

∣∣∣∣Dc
π

]
× P (Dc

π). (A.14)

By the boundedness of ∆ and
˜̃
∆π between −2A and 2A,

Eπ
[
‖∆− ˜̃∆π‖22

∣∣∣∣Dc
π

]
≤ 16A2. (A.15)

To use (A.14), we need to bound P (Dc
π). Denote the event that all cells in our partition

contain at least one observation from the treatment group by Dπ,t, and let Dπ,c denote the

corresponding event for the control group. Since Dπ = Dπ,t ∩ Dπ,c, P (Dc
π) ≤ P (Dc

π,t) +

P (Dc
π,c).

Let Ug denote an arbitrary cell in the partition. By the first regularity condition, the

probability that any observation from the treatment group falls into Ug is at least chp.

Since the covariate values of the nt2 treatment observations are i.i.d., the probability that

Ug contains no treatment observations from Z(2) is at most

(1− chp)nt2 = ent2 log(1−chp) ≤ e−nt2ch
p
,

where the last inequality results from the fact that log x ≤ x− 1.

Since Ug is arbitrary and there are (1/h)p such cells in the partition of U , the probability

that any of them contain no treatment observations is at most

(1/h)pe−nt2ch
p

= exp[−nt2chp + p log(1/h)].
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By the choice of h in Step 2 of the TEEMA algorithm, h ≥ [2 log(n∗2)/cn∗2]1/p. Therefore,

− nt2chp + p log(1/h)

≤ −2nt2 log(n∗2)

n∗2
+ log

(
cn∗2

2 log n∗2

)
≤ log

(
c

2n∗2 log n∗2

)
≤ log

(
c

2ñ2 log ñ2

)
.

The second inequality in the above expression results from nt2 ≥ n∗2. Thus

P (Dc
π,t) ≤ exp

[
log

(
c

2n∗2 log n∗2

)]
=

(
c

2n∗2 log n∗2

)
.

The same bound may be established for P (Dc
π,c); therefore,

P (Dc
π) ≤ c

n∗2 log n∗2
. (A.16)

Using (A.14) together with (A.13), (A.15), and (A.16), and using the fact that h =

B4{log(n∗2)/n∗2}1/p for some B4 depending on c and p, we have

Eπ‖∆−
˜̃
∆π‖22

≤ 8c∗pL(A+ σ)B4

(
log n∗2
n∗2

)1/p

+B3(B4pL)2

(
log n∗2
n∗2

)2/p

+ 16A2c

(
1

n∗2 log n∗2

)
+B3 inf

j

[
1

ñ2
log

1

ωj
+ Eπ‖σt − σ̂t,n1,j‖22 + Eπ‖σc − σ̂c,n1,j‖22 + Eπ‖∆− ∆̂n1,j‖22

]
.

(A.17)

With the exception of small n∗2,

1

n∗2 log n∗2
≤
(

log n∗2
n∗2

)2/p

≤
(

log n∗2
n∗2

)1/p

,

so we can rewrite expression (A.17) as

Eπ‖∆−
˜̃
∆π‖22 ≤ B5

{(
log n∗2
n∗2

)1/p

+ inf
j

[
1

ñ2
log

1

ωj
+ Eπ‖σt − σ̂t,n1,j‖22 + Eπ‖σc − σ̂c,n1,j‖22 + Eπ‖∆− ∆̂n1,j‖22

]}
,
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for a constant B5 depending on c, c, σ, σ, A, p, and L.

Now n∗2 and ñ2, which heretofore we have treated as fixed, are random variables deter-

mined by the values of (Ui, Ti)
n
i=1 and the permutation π. By the iterated expectation law,

unconditional on the permutation π,

E‖∆− ˜̃∆π‖22 = E
(
Eπ‖∆−

˜̃
∆π‖22

)
≤ B5

{
E

[(
log n∗2
n∗2

)1/p
]

+ inf
j

[
E

1

ñ2
log

1

ωj
+ E‖σt − σ̂t,n1,j‖22 + E‖σc − σ̂c,n1,j‖22 + E‖∆− ∆̂n1,j‖22

]}
.

(A.18)

Let α ∈ (0, 1) be a fixed constant and let Hα,π denote the event that P (n∗2 ≥ αn2). Since

(log n∗2/n
∗
2)1/p ≤ 1, we have

E

[(
log n∗2
n∗2

)1/p
]
≤ E

[(
log n∗2
n∗2

)1/p
∣∣∣∣∣Hα,π

]
+ P (Hc

α,π)

≤ α−1/p

(
log n2

n2

)1/p

+ P (Hc
α,π).

For P (Hc
α,π), the exponential bound on the upper tail probability of the hypergeometric

distribution established by Chvátal (1979) can be used to show that we can find α ∈ (0, 1)

depending on a and b from the second regularity condition such that

P (Hc
α,π) ≤ B6e

−n2 ,

for a constant B6 depending on a and b. Thus

E

[(
log n∗2
n∗2

)1/p
]
≤ B7

(
log n2

n2

)1/p

, (A.19)

for B7 depending on a and b.

For E(1/ñ2), conditional on Dπ,

1

ñ2
= hp =

{⌊(
cn∗2

2 log n∗2

)1/p
⌋}−p

≤ B8

(
log n∗2
n∗2

)
≤ B7B8

(
log n2

n2

)
, (A.20)
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for a constant B8 depending on c. As established earlier in this proof, P (Dc
π) converges

faster than O(1/n∗2) = O(1/n2).

Using (A.19) and (A.20) to replace the random variables in (A.18) with fixed constants,

we obtain a bound for the risk of
˜̃
∆π:

E‖∆− ˜̃∆π‖22

≤ B9

{(
log n2

n2

)1/p

+ inf
j

[(
log n2

n2

)
log

1

ωj
+ E‖σt − σ̂t,n1,j‖22 + E‖σc − σ̂c,n1,j‖22 + E‖∆− ∆̂n1,j‖22

]}
,

(A.21)

for a constant B9 depending on a, b, c, c, σ, σ, A, p, and L.

For P > 1, the estimator ∆̂ from Step 8 of the algorithm is the average (over the set

of P permutations) of
˜̃
∆πp . Therefore, by the convexity of the L2 loss, an application of

Jensen’s inequality gives us

E‖∆− ∆̂‖22 ≤
1

P

P∑
p=1

E‖∆− ˜̃∆πp‖22. (A.22)

The permutation π used to establish the bound in (A.21) was arbitrary; therefore, by (A.22),

the bound in (A.21) also holds for E‖∆− ∆̂‖22. This completes the proof of the theorem. �
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