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This supplemental appendix provides some auxiliary materials for ”Nonparametric Two-Step Sieve
M Estimation and Inference” (cited as HLR in this appendix). Section 1 provides sufficient conditions
for Assumptions 3.2 and 3.4 in HLR which are the key high-level conditions for asymptotic normality
of the two-step sieve M estimator. Section 2 presents some lemmas which are used in proving Theorem
5.1 in HLR. Section 3 contains verification of the high-level assumptions for asymptotic normality in the
nonparametric triangular simultaneous equation model. Section 4 contains some extra simulation results.
Section 5 establishes general theory on the consistency and convergence rate of the nonparametric two-

step sieve M estimator.

1 Sufficient Conditions for Assumptions 3.2 and 3.4 in HLR

In this section, we provide sufficient conditions for the high-level assumptions (Assumptions 3.2 and 3.4)
of the asymptotic normality of the nonparametric two-step sieve M estimator. These sufficient conditions
are verified in the nonparametric triangular simultaneous equation model in Section 3 of the Appendix.

We assume that the data {Z;};", is i.i.d. in this section.

Assumption 1.1 (i) For any zp € 25, any a € N, and any vg1,v42 € Vo, the following directional

derivatives exist

0Y(z2,9 + Tvg 1, h) 0Ny (22,9 + Tvg 2, h)[vg 1]
Ay (22, 0)[vg1] = 5 J and ry 4(22, @)[vg,1,vg,2] = L o g g ;
T7=0
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(1) there exists Ay p(z2) with E[A1,(Z2)] < C such that

sup W(Zz,g*a h) - ¢(z2a Oé) - Aw<227 O‘)[iﬁnu;n] - H%Tw,g(z% O!)[UZTL, uan < RiAl,n(ZQ);

OéeNn

(iit) there exists Ao (22) with Bi[As,(Z2)] < C such that

Sli\I; ‘T’d,g z2’ )[ Zn’uZn] - T¢79(Z2,a0)[uzn,uzn]‘ < AQ,TL(ZQ);
(eSS

(’l’l}) B Hrwg ZQ,aO)[ Ugn> QH]H <C; (U) B [T¢ h(Z27a0)[ho,n - hovu;nu = 0(77/71/2).

Assumption 1.2 (i) For any z2 € 25, any a € Ny, any vy, € Vi and any vy € Vo, the following

directional derivative exists

aA’ll)(ZQ? g, h + th)[vg]
or 7=0

= Ty,n(22, @) [vg, vnl;
(ii) there exists Az (22, ) such that for any o € Ny,
| Ay (22,9, B)[ug, ] — Ay (22, 9o, W)y, ] = 79.9(22, 9o W) [g — o, ug, 1| < Az (22, 0);
(iii) there exists Ay (22, ) such that for any o € Ny,
‘Ad,(zz,go,h)[u;n] — Ay (22, 9o, ho)[ug, | — Ty 1 (225 Gos ho) [h — hoy uy,, | < Agn(z2, );
(iv) there exists As (22, ) such that for any o € Ny,
74,9(22, 9o, D)9 — Gos s ] — T.g(22, 9o ho)[g — Goy 1y, | < As (22, @);

(v) max;—3 4 5 SUPLepr, n~1/2 Yo Njn(Zai, o) = 0p(1); (vi) maxj—3 45 SUPuen, B [Ajn(Z2,a)] = o(n 1/2)

By Assumption ( ) and the definition of ||-[|,,, we have

(Vg,1,09.2) ¢ = Blryg(Za, ao)[vg,1,vg,2]]

for any vg.1,v42 € V2. By Assumption |1. ( ), we have

L(ao) [vn, vg] = B [ry,n(Z2, ao)[vn, vg]]
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for any vy, € V1 and any vy € Vo.
Suppose that F is a class of functions of Z. Let F' denote an envelope of F,

F(z) > sup |f(2)| for any z € Z
feF

where Z denotes the support of Z. For a probability measure @) and a constant g, such that || F' HQq >0
(where ||| , denotes the Lg-norm under Q), we use N (¢ || F|lq ., F,[|‘llg,,) to denote the minimal number
of |||l ,-balls of radius || F|, , needed to cover F. The supremum of N(e||Fllg,,F, |/g,) over all
finitely-discrete probability measures @, is a uniform entropy number of F.

Define

Fin= {22 1y p(22, 20) [ — homsug, ] h € Nin} s

Fon = {22 1y g(22,00)[g — gom 1y 1 : g € Ny},
where hon € Hy and gon € Gy, ave such that [[hon — holly, = O(67 ;) and [|gon — gollg = O(33,,)-

Assumption 1.3 (i) E [|ryn(Z2, @) [hon — ho,ufy 1|] = o(n=Y2); (ii) let FY,, denote an envelope of

*_, then

1,n

up N(e [Pl g Fims L2(Q)) < (C/2)F for any e € (0,1];

(iii) B [|T¢79(Z2,ao)[go,n - go,ugn]ﬂ = o(n~12); (iv) let F3,, denote an envelope of F3,,, then
sup N (e [l g o Fom L2(Q)) < (C/e)°X for any e € (0, 1];

(v) lrrlaszl,g,(supfej_-j*ﬂ1 E[f?] + (K + L)sup,,cz, ]F]2n(22)| log(n)n=1)Y2((K + L)log(n))'/? = o(1).
Lemma 1.1 Under Assumptions[I.1{1.3, Assumption 3.2 in HLR holds.

Proof of Lemma By Assumptions [1.1}(i)-(ii), and the triangle inequality,

" Z I3 *7h - Z 2 7h
wp 1Y V(Za, 9 h) — V(22,95 h)

OtENn =1 _Aiﬁ(ZQ,’L'? g, h’) [iKnU;n] - K%TWSJ(Z?J? 9, h) [u;n’ u;n]

< Cr2n™! ZAl,n(ZQ,i) (1.1)
i1



which together with E [A; ,,(Z2)] < C and the Markov inequality implies that

Z2iy 9% h) —(Za4,9,h
sup |n 12 ¢( 2,is 9 ) w( 2,is 9 ) _ Op(lﬁli) (1 2)
acNu| 3| ~Ay(Zai, g, h)[ERauy, | — Kty g(Za, 9, B)[ug,  up ]
Similarly, by Assumptions [1.1}(i)-(ii), and the triangle inequality,
Za,g*, h) —(Za, g, h
sup |B V(Z2,9",h) = ¥(Z2, 9, h) _0(2), (1.3)
€N _Aw(Z% 9, h) [:l:’%nu;n] - “?ﬂ“w,g(z% 9 h’) [u;n7 u;n]
which together with (1.2)) implies that
w(Z27 9*7 h) - 1/}(227 g, h)
sup |fin ) = 0,(K2). (1.4)
a€Nn —Aw(Zg, g, h) [:I:K“nu;n] - ’%nrw,g(Z?v 9, h) [u;n> u;n]
By Assumptions (iii), the triangle inequality and the Markov inequality,
sup |tn {19 (Z2, ) [, ug, | = 1y9(Z2, o) [, ug, 1} = Op(1) (1.5)

OéEn

which together with Assumptions (iv), the triangle inequality and the Markov inequality implies that

5up |Nn {ng Za, o) Ug,, s gn }‘ Op(1). (1.6)

aEn

Combining the results in (1.4]) and (1.6)), and then applying the triangle inequality, we prove condition
(12) of Assumption 3.2.(i) in HLR.
By Assumptions [1.2](ii), (v)-(vi), the triangle inequality and the Markov inequality,

sup | { A (Z2, g, 1) [y ] — Ay (Za, go, W), ] = T g (Z2, Gos B)[G — Gor iy 1 }| = 0p(n™ 1), (1.7)

aENn

Similarly, by Assumptions (iv)-(vi), the triangle inequality and the Markov inequality,

Sl.l/\li; |/1Jn {Tw,g(ZQa Yo, h) [g — Yo, u;n] - Tw,g(ZQa Yo, ho)[g — Yo, u;n] }| = Op(n_l/Q)' (18)

aeNn

By Assumption [1.3](iii), the triangle inequality and the Markov inequality,

‘M” {7"11179(227 @o)[Gon = o, “Zn]H = Op(n_l/z)- (1.9)



By Assumptions [1.3](iv)-(v), we can use Lemma 22 in Belloni, et. al (2016) to show that

. Vi (ol 0010~ st} = o™,
QENg,n

which together with (1.9) implies that

sup |H’n {Tw,g(ZQ,O[O)[g - go,u;n]}| = Op(n_1/2).

9€Ngn

Collecting the results in ((1.7]), (1.8]) and (1.11)), we get

D i { A (Z2: 9, W5, ) = Ao(Za, 9o, W), 1} = 0p(n /%)

By Assumptions [1.2](iii), [1.2] (v)-(vi), the triangle inequality and the Markov inequality,

Sup. [jin { Ay (2, 6o [, ] = Dy Z2, )15, ] = 7 (Z2, 00) [h = hoy w5, 13| = 0p(n117).

aENn

By Assumption (i), the triangle inequality and the Markov inequality,

‘:Um {Tw,h(Z2, ao)[hon — o, u;n]}‘ — Op(n_l/Q)_

By Assumptions [1.3](ii) and [1.3](v), we can use Lemma 22 in Belloni, et. al (2016) to show that

sup i (172,00~ 5,1} = o7,

heNp n

which together with (1.14)) implies that

sup {Mn {Tw,h(Z% ao)[h — ho, u;n]}} = Op(n_l/z),
geNq,n

Collecting the results in (1.13)) and (1.16[), we get

sup |in { Ay (Za, go, B) [}, ] — Dy (Z2, o) [l ]| = 0p(n3).

(1.10)

(1.11)

(1.12)

(1.13)

(1.14)

(1.15)

(1.16)

(1.17)

Combining the results in (1.12) and (1.17), and then applying the triangle inequality, we immediately

prove condition (13) of Assumption 3.2.(i) in HLR.



By Assumptions (ii)-(iv),
E [¢<Z2>g*7 h) - Z/)(Z% g, h’)] = :I:K'TLE [AUJ(ZQ?gv h)[uzn]] + O(’%%)? (118)
uniformly over oo € Nyp. As B [Ay(Za, go, ho)[uf;, 1] = 0, by Assumptions [1.2}(ii)-(iv) and (vi)

E [Ay(Za, g, h)[ug,]]

=B [Ay(Z2,9,M)[uy, ] — Ay(Za, go, D)y ] = 7.g(Z2, 9oy h)[g — g0, 13, 1]

+ B [Ay(Za, go, W[y, ] — ADy(Z2, go, ho)[ugy, ] = 74.1(Z2, Gos Bio) [h — ho, ul ]]
+ B [ry,g(Z2, 9o, B)[g — o, ] = T4p.9(Z2, Gos ho)[g — o, ufy 1]

+ B [ry,g(Z2. 9o, ho)lg — gosus, 1| + B [ry.n(Z2, gor ho)[h — ho, ul 1]

=E [ry,g(Z2, 00)[9 — go, u;nﬂ + B [ryn(Z2, ao)[h — ho, u;nﬂ + o(n~1/?)

= (9= gorul )y + Do) [h — o, il | + 0o(n™/?) (1.19)

where the second equality is by the definition of the inner product (-,-), and the functional I'(a) [+, -].

By Assumption (V), (1.18)), (1.19) and the definition of Ky/(g,h), we have
K¢(97 h) - Kw(g*, h) = +Kn [<g — Yo, u;n>¢ =+ 1—\(050) [h - ho,na u;n” + O(H%) (1‘20)

By the definition of || - ||, and Assumption [L.1}(iv),

9" = goll2 ~ llg — 9ol

5 (9 = o, Thnul Yy + O(k1). (1.21)

Collecting the results in ((1.20)) and (1.21]), we immediately prove Assumption 3.2.(ii) in HLR. =

We next provide sufficient conditions for Assumptions 3.2 and 3.4 in HLR when the criterion function

in the second-step M estimation takes the following form
sz)(Z2agah’) :T(Zlvh)w*(z%gvh)' (122)

We will assume that Assumptions [1.1} (i) and [1.2} (i) hold for ¢*(Z2, g, k). Define

OAY (22,9 + Tvg 2, h)[vg1]
and 1y, (22, a)[vg1,vg2] = u o7 ! ! ;
T=0 7=0

O* (22,9 + Tvg1, h)
or

Ap(z2; @)[vga] =



for any z3 € Z9, any a € N, and any Vg,1,Vg,2 € V2. Then we have
Ay(22, a)[vg,1] = 7(21, B) A (22, @) [vg1] and 1y g(22, @) [vg,1,vg,2] = T(21, B)1y 4 (22, @) [vg,1, Vg,2]
for any a € N, and any vg1,vg2 € Vo. Define
Ty.n(22, @) [Up, vg) = T(21, h)'/";z’h(ZQ,OZ) (VR vg),

where

OAY (22,9, h + 704) v,
or

7y (22, @) [vn; vg] =

7=0

Let &, denote a non-decreasing real positive sequence, and 47, denote a real positive sequence.

Assumption 1.4 (i) sup. ez, nen, , [IT(21, h)| + [7(21, ho)[] < C; (i) Assumptzons. 1.1} (1)-(i1) cmd. 1.1} (v)
hold; (iii) equation (19) in HLR holds; (iv) Ay (22, a)[vg] satisfies Assumption |1.2 . (i); (v) Assumptions
[1-4(ii) and1.9.(0)-(0i) hold; (v1) sup.,cz, B [ (Ay(Zo,00)lus, 2] 21 = 2] < & (vid)

sup n 12 (Zvrioh) = T(Z1i ho))? = Op(65% )
hENhn

where 0% &2 = o(1).

Assumption 1.5 (i) there exists Ag (22, ) such that for any o € N,

|T(Z17h) (Tq?7g(227907h)[g - 90771‘;”] - r’j},g(227a0)[g - goau;n])‘ < Aﬁ,n(227a);

(ii) there exists A (22, ) such that for any o € Ny,
|7 (21, B) (A (22, 9o, B[y, ] — A (22, @0)[ug, ] — 77, 4 (22, @0) [h = hoyug, 1) | < A7n(22, @)

(iii)

henh |E [(7(Z1,h) — 7(Z1, ho))r j(Z2, o) [h — ho, i, 1] | = o(n™?);

(iv)

S%\p/’ |E [(7(Z1,h) — 7(Z, ho))Ty.4(Z2, )9 — go,uzn]] ’ = o(n~Y2),
aENp



(v) there exists Agp(z2) with E[Ag,(Z2)] < C

sup [7(z1, h)(r], (2, @) [ug, g, | = 1 g (2, o) [t 3, )] < Asn(22);
acNn

(vi) B (|52, co)lug, 3, )| | < €3 (vid) mas—sz supaens, 7 S0y Ajn(Zaise) = op(nY2); (ui)

maX;—e,7 SUPyc A/, E [A]’,n(ZQ, a)] = o(n—l/Q)'

Define

Fi = {22 = 7(21, W), (22, 00) [0 — hom,ul | h € Ny }

Fin= {z0— (21, W)y, o (22, )9 — Goms vy, ]+ h € Nin, g € Ny, nt

Assumption 1.6 (i) EHT‘Z w(Z2,00)[hom — ho,uznm = o(n*1/2); (ii) let Fy,, denote an envelope offg‘jn,
then
sup N(e [F5nll gz Fam L2(Q)) < (C/e)F for any e € (0, 1];

} = o(n~12); (iv) let Fy,, denote an envelope of Fj,,, then

(iii) E [

7":;’9(227 ao) [go,n — Yo, U;n]

up N [[Finll g s Fins L2(Q)) < (C/e)°UHR) for any e € (0, 1];

(v) maxj—sa(supsez: B [f?] + (K + L) sup.,ez, |F}, (22)|log(n)n™")?((K + L)log(n))"/? = o(1).

By definition, we have (vg1,vg2)y = E [T(Zl, h())’f';zyg(ZQ, Qo) [vg 1, 11972]] for any vg1,vg,2 € Va. More-
over, by (19) in HLR,
F(O[o) [vha vg] = E [T(Zlv hO)T;Zﬁ(ZZa O[O)[’Uh, UQH

for any vy, € V1 and any vy € Vs.

Lemma 1.2 Under Assumptions 1.0, condition (13) of Assumption 3.2, Assumption 3.2.(ii) and
Assumption 8.4 in HLR holds.

Proof of Lemma By Assumptions . (ii), we can use the same arguments in the proof of
Lemma [[.1] to show that
1/}(2279*7}7’) _¢(227gv h) 2

SUp |y = Op(ry)- (1.23)

€Ny —Ay(Z2,g,h) [innu;n] — n%w,g(ZQ, g,h) [u;n, u;n]
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By Assumptions [L.5](v), [L.5] (vii)-(viii), the triangle inequality and the Markov inequality,

sup |pn {7(Z1, h)(ry,.g(Z2, o) [uy, s ug. | — 13, o(Z2, ao)[us s us 1} = O0p(1). (1.24)

« EML

By Assumptions [L.4](i) and [L.5|(vi), the triangle inequality and the Markov inequality, which together
with ([1.24) and the triangle inequality implies that

sup | pn {T(Zl,h)r;zy(Zg,ozo)[u;n,u;n]}‘ = 0p(1). (1.25)

O46-/\/n

Combining the results in ((1.23))-(1.25)), and then applying the triangle inequality, we prove condition (13)
of Assumption 3.2.(i) in HLR.

By Assumption [L.5](v),

Seu/\l; ‘E [T(Zl, h) (13, o(Za, Q) [uy, s ug, | — 15 (22, ao)[u;n,u;n])] ‘ =0(1). (1.26)

By Assumptions [1.4] (i) and [L.5] (vi),

sup |E[(7(Z1,h) — (2, ho))r o(Za, ao)uy ub 1] = O0(1) (1.27)
heNp n,

and

|E [7(Z1, ho)r, o(Z2, o) [, us 1]| = O(1), (1.28)

which together with (1.26)) and the triangle inequality implies that
sup |B [ryg(Z2, a)[u) ,ul 1]| = O(1). (1.29)
OéEML

By Assumptions (ii), (1.29) and the triangle inequality,

E[r(Z1,h) [V*(Z2, 9", h) — " (Z2, g, W] = £5B [7(Z1, h) AY(Z2, 9. h) [y, ]] + O(k7), (1.30)



uniformly over a € Ny,. By E[7(Z1, h)A},(Z2, )[uy, ]] = 0, Assumptions (v), (i)-(iv) and (Viii),

B [7(Zy, h)A)(Z2, 9, 1) [ug, ]
=B [7(Z1,h)A}(Z2, 9o, h)[uy, ]
+ B [7(Z1, b)), 4(Z2, gos h)]g — g0 w5y, ]| + 0o(n™'/?)
= E [7(Z1, )}, (22, @o)[h = ho, s, ]
+E [7(Z1, h)r}, 4 (Z2, 06)[g — gouj) ]| + 0(n™1/?)
— B [ryn(2, 00 = oy, ] + B [rg (Z2, 00)lg — gos i ]] + 0(n™"/2)

=) [h = hoyuz, | + (9 = goyug, )i + 0(n™1/?), (1.31)

where the last equality is by the definitions of the inner product (-,-), and the functional I'(a,) [-, -]. By

Assumption (V), (1.30)), (1.31)) and the definition of Ky(g,h), we have
Klb(g) h) - Klll(g*a h) = FEn [<g — Yo, u;n>¢ + F(ao) [h - ho,'m U;n” + O(K‘%) (132)

By the definition of || - ||, Assumptions [1.4}(i) and [1.5(vi),

9" — goll2 — llg — 9ol
: _

(9 = go» £ Yy + O(K3). (1.33)

Collecting the results in ((1.32) and (1.33]), we immediately prove Assumption 3.2.(ii) in HLR.

We next verify Assumption 3.4 in HLR. Assumptions 3.4.(i)-(ii) are assumed directly. By definition,

Ay (22,9, h)[ug, ] — Ay (22, 90, h)[ug, |

= 7(21, h)T:L,g(Zz, @)[9 = Gon u;n]

+ 7 (21, h)ry, o (22, %) [Gon — Gos Uy, |

+ [Ay(z2, 9, M) [uy, ] = Ay(22, 9o, h)[ugy, ] = 74.g(22, 9or B9 — o, 1]

+ T(Zlv h) (T;Z,g(z% Yo, h) [g — Yo u;n] - T'L);J,g(z% 040)[9 — Yo ’U,Zn]) : (134)
By Assumptions [L.4](v), (v)-(vi), [1.5 (i) and [1.5}(vii)-(viii), and the Markov inequality,

A (Z27gvh)[u*n]_A (ZQ)goah)[u*n] —
sup |in{ " ! v ! = op(n"/?), (1.35)

aENy, —7"1/;,9(227 Yo, h) [g — Yo u;n]
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and

7“:2)79(22,90,]1)[9 _goau;n] _1/2)'

sup |in § 7(Z1,h) = op(n

acNn —7";2’9(22, Yo, ho)[g — Yo, uZn]

By Assumptions [1.4](i), [1.6] (iii) and the Markov inequality,

Sub |#n{T(Z1’ h)r:;hg(Z?v ®)[Go,n — Yoo U;JH = Op(n_l/Q)-

aEN,

By Assumptions [L.6](iv)-(v), we can use Lemma 22 in Belloni, et. al (2016) to show that

hsup \n {7(Z1, B)1, ) (Z2, 20)[g — Gom,u, 1} = 0p(n1/2).

ENh,n

Collecting the results in ((1.34)-(1.38)), and then applying the triangle inequality, we get

hes}\lfp ’Nn {Ay(Za, 9, h)[ug, | = Ay(Z2, go, h)[u;n]H - Op(n—l/Q)’
h,n

which proves condition (20) in Assumption 3.4.(iii). By definition,

T(Z17 h’)(A:Z)(Z% Yo, h)[u;n] - A:Z)(z% Yo, ho)['u;n])
=7(z1, h)7“127h(2127 ao)[h — hop, u;n]
+ T(Zl, h)T;h(ZZa ao)[ho,n — ho, u;n}

+7(21, W) (A (22, 9o, h) g, | — A% (22, ao)[ug, | — 7y 1 (22, @) [h = ho, g, ]).
By Assumptions (ii), (vii)-(viii), the Markov inequality and the triangle inequality,

(21, D) (A (22, 9o, W) lug, ] — A3 (Z2, o) ug, ] -
sup | fin Y 9 (4 9 = op(n 1/2)'

heNp n =1 1(Z2,00)[h = oy uy, ])

0y g7L

By Assumptions (i), 1.61(i), the Markov inequality and the triangle inequality,

sup "u’”{T(Zh h’)r;z,h(z% ao)[ho,n — ho, U;n]}‘ = op(nfl/Q).

aEN,

By Assumptions [1.6] (ii)-(iii), we can use Lemma 22 in Belloni, et. al (2016) to show that

up jon {7 (21, B 52, 00 = o, 1} = 0y 772)

hEth

11
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(1.37)

(1.38)

(1.39)

(1.40)

(1.41)

(1.42)

(1.43)



Collecting the results in ([1.40)-(1.43)), and then applying the triangle inequality, we get

,Sup |t (21, ) (A (Z2, 9o, D), ] = A (Z2, gos ho)lug, 1) }| = 0p(n~1/2), (1.44)
h,n

which proves condition (21) in Assumption 3.4.(iii). Finally, Assumptions 3.4.(iv) in HLR follows by
Assumptions [1.4] (vi)-(vii). =

2 Some Auxiliary Lemmas for Theorem 5.1 of HLR

For the completeness of this section, we list the sufficient conditions of Theorem 5.1 in HLR. To facilitate
the presentation, we first review some notations introduced in Section 5 and Appendix D of HLR. Recall

that the basis functions used in the first-step and second-step M estimations are L x 1 vector R(x)

and K x 1 vector P(e) respectively. For j = 1,2, we define v; x = sup.c¢, HE?J'P(s)’ﬁo,K

, where &, =
[a —n,b+ n) for some a < b and small n > 0, and B, i € RE is defined in Assumption (iii) below.
Let Ny ={9 € Gn : |9 — golly < 05, 10g(log(n))} denote the local neighborhood of g,, where G,, denotes
the sieve space of estimating g,, 05, = KY2p=12 4 K—rs 4 ULK(S}*W and 5}*1771 = [V2p Y2 4 [=pn,
For any column vector a, let ||a|| denote its fo-norm; for any square matrix A, the operator norm is
denoted by ||A||; wmax(A) and wmin(A) denote the largest and smallest eigenvalues of a square matrix A,
respectively. We use C' to denote some generic finite positive constant larger than 1. For d a nonnegative
integer, let |g|; = max|;|<gsup.c¢ [07g(e)| for any g € G where G is the function space containing g,. Let
||l o, denote the uniform norm. For any function f, u,(f) = n= 2> " [f(Z)) —E[f(Z;)]] denotes the

empirical process indexed by f.

Assumption 2.1 (i) The data {y;, z;, si}iy is i.i.d.; (i) B [e}| zi] < C and Ble?|x;] > C1; (iii) there

exist py, > 0 and 7,1, € RY such that
HhO,L - hOHOO = O(L_ph)

where hop (-) = R(-) Yo,; () the eigenvalues of Q, are between C~1 and C for all L; (v) there exists

a nondecreasing sequence (y, such that sup,cy ||R(2)| < (L.

Assumption 2.2 (i) E[u}|e;] < C and E[u?|&;] > C™*; (ii) go(€) is twice continuously differentiable;

12



(iii) there exist p; > 0 and Bo x € RE such that
‘go,K - 90|d = O(Kipg)

where go i () = P (-)' Box and d = 1; (iv) the eigenvalues of Qr are between C~1 and C for all K; (v)

for j =0,1,2, there exists a nondecreasing sequence &; ¢ such that SUp.cg, H@JP H <&k

Assumption 2.3 (i) |[v; ||2 > C for all n; (ii) the functional p(-) satisfies

p(9) = P(go) — Op(9o)lg — 9ol | _ o(n=112);

sup
97 15

9E€ENGn

(i) |[1v7 153 9p(90)[gom — gol| = o(n™'2); (iv) supgen;, , 19p(9)[P] = Dp(go) [PIl| = o(1).

Assumption 2.4 The following conditions hold:
(i) n2(K + L)Y2(¢o,x + ¢2)(log(n)) /% = o(1);
(i1) n_l(LfiK log(n) + ¢ré1,x) = o(1);
(iii) n=V2C (Lég i + LY2&1 1) (n™YV2KY2 4 K9 vy en™Y2L1/2) log(n) = o(1);
() n=Y2¢L (L + LY?vy i + Lvg i) log(n) = o(1);
(v) nL'=2Ph 4+ K=Ps = o(1).

Assumption 2.5 The following conditions hold:
(i) |lvg,ll2 < C for all n.
(ii) (N K€ ¢ + (G + &8 i + & k) K ?9) log(n) = o(1);
(iii) n 1 (CF + &8k + &7 g )vi i L log(n) = o(1).

Lemma 2.1 Under Assumptions 2.3 (iv)-(v), [2.4) (i) and[2.4] (v), we have
HQTLK QKH = flK(shn+£1K(5hn+n 1/2§0K(10gK)1/2)

where 5}’;7n = L1212 L [=pn,

Proof of Lemma [2.1] -. Let B = {Ag € RE : Mo\ = 1}. Under Assumptions . .(1V) (v) and
(i), we can invoke Lemma 6.2 of Belloni, et al. (2015) to get

n

nEIMPwHIW&HMﬂ

=1

sup = 0,(n "¢k (log K)'/?), (2.1)

Ak EBK

13



which (together with Assumption [2.4}(i)) further implies that

1@n,x — Qkll = 0p(1) (2.2)

Under Assumptions and [2.4] (i), arguments in the proof of Theorem 4.1 in Belloni et al. (2015) show
that

[7n = Yo.Lll = Op(05,n), (2.3)

which together with Assumptions [2.1}(iii)-(iv), and (2.52)) below (which is proved under Assumptions
and [2.4](i)) implies that

n

T (225) — ho(:) 2] <2 'y [ Pn(@) = ho,r(2:)

2] +2on7! z": “ho,L(xi) - ho(mi)ﬂ

=1 i=1
- 2(3/\71 - 70,L)/Qn,L(;Y\n - ’Yo,L) + O(L—2Ph)
< Wmnin(@n,z) [n — 707L”2 + O(L72ph) = Op((g;;?n)- (2.4)

Then by (2.4), and the definition of &;,

(@) — ho(:)

SO CERGEERD o]

=1

} — 0,52, (2.5)

Using (2.3), Assumptions [2.1}(iii), (v) and [2.4](i), (v), we have

hpn — ho

"

<

Ton = ||+ o = Bl
o0

= [|R@) G = 70,2 | o, + O ")

< CLAn = Yo.Lll + O(K™"") = Op(CL0p n), (2.6)

which implies that

max |g; — g;| = max ?Ln(xz) — ho(xi)
i<n i<n

B — ho|| = 0p(1). (2.7)

o0

<]
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For any Ag € Bk, by the mean value expansion, the triangle inequality and the Cauchy-Schwarz inequal-

ity,

XePEI = NP | < [N (PE) — P +2 Nk (PE) — Ple)Xie P(eo)]
= [NxOP(E)(E — & } + 2| NgOP(E) N P(e:) (8 — &)

< |0P@E)I 8 — el + 2[10PE)I [N P(e) (8 — &4)| (2.8)

where &; is between &; and ¢; for each A\g € RX. By 1) Assumption (v) and g; € &, for all i < n
wpal (which is implied by (2.7)),

maxz<n||3P )l Z‘A gl = Op(fiK‘SZ?n)- (2.9)

By the Cauchy-Schwarz inequality,

~ n
sup 2z [OPEN 57 v e -2

/\KEBK n i=1
1/2 n 1/2
< sup max||oP(E)|| 1Z|61—61| n 3 [N Pler)|?
Ak EBK i<n =1
= Op(&1.505,), (2.10)

where the equality is by 1) and supy, e, T > [N P(e &) =0 »(1) Wthh is 1mphed by (2 ,
6o.1c(l0g K)/2n1% = o(1) and supy e B [N P(O)?] < wmax(Qc) < C. By and (2.10)),

n

w3 [NePE)] - *12[\)\’KP& ?]

=1

sup

= Op(&8 kO + €110, ) (2.11)
Ak EBg

which together with (2.1)) proves the claim of the Lemma. m

Lemma 2.2 Suppose that Assumptions 2.4 (i)-(ii) and[2.4) (v) hold. Then we have

B = Box | = Op(BM 2012 4 K700 0y 165,

where v,k = supcg, |OP (€)' Bo k|-
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Proof of Lemma Let G = [90(¢1)s---90(en)]s Ckm = 9ok (E1)s- -1 Gox(En)] and U, =

[u1,...,u,]". By definition,
B =n71Q, 1, Ph(Go + Un) = Boic +17'Q, 5 P [(Gn — Gui) + (Gug — Gox) + Un] . (212)

where @nK = nLP/P, and Gnrk = [9ox(e1),---,90k(en)]. By Assumptions (ii) and (v),
€1,i65, ,, = o(1) which together with Assumption [2.41(i) and Lemma 2.1 implies that

(20) ™" < Winin (Qn.k) < Wimax(Qn.x) < 2C wpal. (2.13)

By (2.13) and Assumption (iii),

77/72(Gn - GK,n)/ﬁn@;’QKﬁyll(Gn - GK,n)

= Wr;iln(@n,K)n_l(Gn - GK,n),ﬁn(ﬁ;Lﬁn)_lﬁ/m(Gn - GK,n)

< O3 [l90(e0) = goic ()] = Op(K29), (2.14)
=1

where the first equality is by the definition of @n K, the second inequality is by the fact that P,(P.P,) "1 P!

is an idempotent matrix. Similarly

n
<O Y [lgoke (=) — g0 (B (2.15)
=1
By the mean value expansion and the Cauchy-Schwarz inequality,
190,5(€0) = go.xc (Ei)] = |OP(Ei) Bo,xc (Bi = &i)| < max [0P(E) Bo x| €5 — &l (2.16)
where £; is between ¢; and &;. Using ([2.16[), we get
n 9 n
n Y [0k (E) = 9ok E)P] < max [OPEY Boe | n Y [I6 = l?] = O xdiZ),  (217)
i=1 = i=1
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where the equality is by 1' and max;<,, |0P(&;)’ S, K]2 = Op(vi i) which is implied by the definition
of vi, g and & € &, for all i < n wpal (which is implied by (2.7))). Combining the results in (2.15]) and

BT, we get
2 (Gren = Cren) PaQy 5 Pa(Gircn = Grcn) = Opl(0d x07). (2.18)

By Assumptions [2.1] (i) and [2.2](i)

B 0720, PaQy k PhU

{zi, Si}?:1]

=tr (n‘%%@;lKﬁ;bE [UnUH Ti, si}?zl])

< %tr (@;7}13,’113,1/71) = O(Kn™Y) (2.19)

which together with (2.13)) and the Markov inequality implies that

02U P Q5 PhUn = Op(En 1), (2.20)

Collecting the results in (2.12)), (2.14)), (2.18)) and (2.20)), we prove the claim of the Lemma. m

Lemma 2.3 Suppose that Assumptions (2.3, 2.3 and [24] hold. Then Assumption 3.1 in HLR holds.
Proof of Lemma The the definition of ||v||2;, Assumptions (1) and (i),

o312 = [[of, @)el; + [|vg, ()ully > [|vg, (©)ull; > 7 |vg, |5 > €7 (2.21)

for all n, which verifies Assumption 3.1.(i) in HLR. Assumption 3.1.(ii) in HLR is directly assumed in
Assumption (ii). By Lemma we know that 55‘771 =n12KY2 4 Kre 4 Uvié;:,n’ where vy g =
sup.cg, |OP (€)' Bo,k|- Let gn = go,i, then by Assumption (iii), we have [|gn — golly, = O(K~P9) =
0(d3,,). By the definitions of [|-||, and [|-[|,,, we can set ¢, =1 and ¢y, = 1 such that |[vp|[, < ¢y [Jvnlly
and [|vgll,, < ¢y [lvgllg for any v, € Vi and vy € V,. This verifies Assumption 3.1.(iii) in HLR. Assumption
3.1.(iv) in HLR is assumed in Assumptions [2.3](iii). m

Lemma 2.4 Suppose that Assumptions and[2.4] hold. Then Assumption 3.2 in HLR holds.

17



Proof of Lemma For ease of notation, we define e, = s — h(x). By definition,

@/)(Z% 9*7 h) - ¢<Z27 g, h) - Aiﬁ(ZQ?gv h)[i’%nuzn]
= 5 [y =90 = sz, @] + 5 [l — 9] — by — (o] G,

(u;n (5))2. (2.22)
By Assumption (i>>

E | lo* 2 E |lo* 2
E [(u}, (¢))*] = [’ 29’"(8) ] 5 < L' 60 } <C (2.23)
[of, (@)elly + [lvs, @ully — llof, @ell, + 7 vz, @),

which together with the Markov inequality, Assumption [2.1}(i) and verifies Assumption 3.2.(i) in
HLR.
By definition,
Ay(Z2,9,h)[ug, ] — Ay(Z2, 9o, ho)[uy, ] = (9o(€) — g(en)) uy, - (2.24)
Recall that Np, = {h € Hp : [[h = holly < d1,n}, where &1, = 0, log(log(n)). It is clear that for any
h(-) = R(-)'vr € Nhn, we have

1B = holla < 1h = ho,Lll o + lIo,r = hollo
<||R@)' (e —vo,L)|| o, + CL™"
< llve = vorll + CL™P"
< Cwnt@Qu) (v = Y0.Y QL — Your)) /2 + CL ™
= Crwnit QL) Ih — hoxlly + CL™"

< it Q1) [Ih = holly + llho.ic — holly] + CL™P < C¢L1 (2.25)
where the last inequality is by Assumption (iii)-(iv) and the definition of §; ,,. Define
Fo={f(s,2,h,9) : f(s,2,h,9) = (go(€) — glen)) ug, (€), 9 € Ny, h € Nipn}

where Ny n = {9 € Gn : [|g — golly < d2n} and 02, = J5,, log(log(n)). By Assumptions (1) and (V),
Cr01,n = o(1). Hence by (2.25) we can let n sufficiently large such that (191, < n/2 and ¢}, € &, for any

h € N . By the mean value expansion, g(ep) — g(¢) = OP(£},)'B(en, — €) where &, is between ¢, and e.
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As gy, € &, for any h € N, we have &), € &,. Hence for any g(-) = P(:)'8 with g(-) € N, and any

h € Nh,n, we have

lg(en) — g(e)| < |OPER) (B — Bo,i)(en — €)| + |OP(En) Bo,ic (e — )|
= ‘ap(gh),(ﬂ - Bo,K)(h(m) - ho($))’ + {ap(gh)/ﬁo,K(h(m) - ho(x))}
< [10PEWINIB — Bo,xcll + |0P(ER) Boic|] 1 = holl o

< (&1,x02,n + V1,K)CL010 < (€1,501,n + 1)CLo2n < C(Lo2p (2.26)

where the first inequality is by the mean value expansion and the triangle inequality, the equality is by
the definitions of €, and ¢, the second inequality is by the Cauchy-Schwarz inequality, the third inequality
is by Assumption (v), (2.25)), the definitions of vy x and N}, ,,, and

18 = Borc|l < Wik (Qx) (19 = olla + 190 — Go.xc|ly) < Coon (2.27)

which is implied by Assumption (iii) and the definition of N ,, the fourth inequality is because
v1,k01,n < 025, by definition, the last inequality in (2.26)) is by & xd1, = O(1) which is implied by

Assumptions (ii) and (v) By the triangle inequality and the Cauchy-Schwarz inequality,

l9(e) — go(€)| < 1B = Bo,ic || 0,56 + 1190 — Go,k || oo < C0,502,n (2.28)

where the last inequality is by Assumption (iii) and (2.27). By the definition of uj , Assumptions
B3 (iv)-(v) and (E21),

o2 Co.x0(g0) [P QP0p(90) [P)  CE& 10p(90) [P Qi 0p(go) [P]
sup [ug, (¢)|” < =

cet Cfoz, |I2 p(90) [PV Q5 9p(go) [P

<8y (229

Combining the results in (2.26)), (2.28]) and (2.29)), we get

sup || f|[o < sup [lg(en) — g(e)] +1g(€) — go(e)[] sup |uy, ()|
fEFn 9ENg n, heN}, 1, €€EE e€&
< CO(Cr + &o,x)80,k 02,0 = My. (2.30)
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For any f € Fy, by (2:26) and (2:25),

B (2] < 2B |(g(en) - 9(0))” (uf, (9))?] + 2B [(9(6) — 90())* (w5, (<))?

< C(CL + & k)05 B [(ug, (€))?] < C(CE + &5 )03, = (2.31)

where the last inequality is by (2.23). For any f1 = f(-, h1,91) and any fo = f(-, ha, g2) where h1, hg € N,
and g1, g2 € Ny, by the triangle inequality,

1 = fol < [(91(en,) — 91(eny)) ug, ()] + [(91(eny) — 92(eny)) g, (2)]
< [0P(E1) Br(eny, — eny)ug, ()] + o |uy, ()] 181 — B2
= 0P ER) [(B1 — Bo,ic) + Bo,ic) (ha (@) — ha(x))uy, (€)] + &0, |ug, ()] 161 — Bl
< [loPE)IB1 = Bo,xc|l + [OP(ER) Bo,ic|] |R(2) (71 — v2)]| [, (€)| + o, [, ()| 1181 — B
< [&1,x02,n + v1,&] CL ugy (€)] 71 — 72l + &o,x |y, (€)] 1181 — Ba|

< Fu() (181 = Bell + lIv1 = 22D), (2.32)

where F, () = C(&,kCro2n + v1,5CL + &0,K) ‘uzn (€)|, the equality is by the definitions of €, and ep,,

the fourth inequality is by ||0P(Ep)|| < &1,x and |1 — Bok || < b2, for any hi, hy € N}, ,,, and

|R(x) (71 = 72)| < IR@)| 71 =72l < <o v — 22l (2.33)

which is implied by the triangle inequality and the definition of (;. By , | Fnlly < C(&1,xCL02,m +
v1,kCr +&0,x) = &F,- Let Hy (u, Fn, ||||;) denote the u-bracketing entropy number of the function space
Fn under the Lo-norm. By Example 19.7 in Van der Vaart (1998), Hyj (u || Fnlly , Fos [-]l5) < (Cu—h)E+K
for all w € (0,1). Hence

dn
Iy (dn, Fs [I-1l5) = / (log Hy (u, Fo, |I-[12))2du < C(K + L)' (log(n))'/?d, (2.34)
0
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where the inequality is by d;' < Cn and £z, < Cn which are implied by Assumption n By ( -,
(2.31)), (2.34) and Lemma 19.36 in Van der Vaart (1998),

B sup o {807,900, - AmzZ,go,ho)[u;n]}@

aeNn

J[} (dnaj:m HHz) J[] (dm}—n: HH2)
= nl/2 <1 + d%nl/Q M”)

< o E+ )P (log(m)'? - (1 L (K + L)!(log(n)'* Mn)

nl/2 d nl/2

. C<K + L)V2(log(n))"/2d,, ( (K+ L)Y/2¢, i (log(n ))1/2) = 0,(1) (2.35)

nl/2 nl/2

where the equality is by Assumptions n , and [2.4] . ). Using (2.35)) and the Markov inequality, we get

Sp. [pn { 82,9, W05, ] = Ay(Z2: 9o, ho)lug, 1} = op(n~'1?), (2.36)

acNn

which verifies Assumption 3.2.(ii) in HLR.
By Assumption 2.2} (i), (2.23) and E [u|g] =0

Kolg 1) = Kolg® 1) =B | =3y = gen)| ~ B[ -5l = o" ()]

=E —% ly — 9(811)!2} ~B [—; v —glen) F ”n“Zn(E)‘Q]

IR NCRC *
- HnT + K’nugn (g)u + H’ﬂugn (8) (Q(Eh) - 90(8))

= £rnB [uy, (€)(9(en) — go(€))] + O(x3). (2.37)

By the second order expansion, g(ep,) — g(e) = 9g(e)(en, — €) + a2g(gh)(€h . 8)27 where &, € &, for any
h € Nh,n- For any 9() = P('),ﬁ S Ng, we have

1B <118 = Bore || + 1Bo, i | < Cozn + [|Bo,rc || < C (2.38)

where the second inequality is - Assumptions (ii) and |2 . , the third inequality is by

1806 | < wiein(Qi) 9o.s¢ |l < wiin(@) [0, = Golly + llgol] < € (2.39)
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where the third inequality is by Assumptions [2.2](ii)-(iv). Note that for any g(-) = P(-)'8k € Ny, we
have ||g — golly < 62,1, which together with Assumption [2.2}(iii) and the definition of 0z, implies that

Hg - go,KHz < Hg - go||2 + Hgo,K - 90”2 < 252,71- (2-40)
By (2.40) and Assumption [2.2](iv),
18 = Bo.ic|I” < wint(QK)(B = Bo.ic) Qi (B = Bo.ic) = Wity (Qc) |9 = Go.rc |5 < Clap (2.41)

By , 102g(€n)| < C&, i, which together with , , and implies that

E [|0%9(En)(en — €)?uyy, ()] < E[|0°PEn) (B — Bo.x)(en — €)*u;, (¢)]]
+E [|0*P(En) o,k (en — €)%uj (€)]]
< (bo,x 1B = Boi | + v2,) B [| (e — €)%, (¢)]]

< (&2,02m + v2,5) CLOLE [|(en — €)uf, ()]

< (fo,x020 + v2,5) (101, = 0(n™/?) (2.42)
for any g € Ny, and h € N}, ,,, where the equality is by Assumptions (iii)-(v). By -,
E [u;, (¢)(g(en) — 9(€))] = £ral [u} (£)Dg(e)(en — €)] + o(n~/?). (2.43)

By Jensen’s inequality, the Holder inequality, (2.23]), Assumptions (iii), (i), (v) and the defi-

nition of A, p,

‘E [u;n (a)ag(s)(aho’n — 5)] ‘ = !E [u;n (€)9g(g)(ho — ho’n)”
<C(E [(u;n (5))2] E [(ho - hO,n)z])l/Q
< C(E [(ho — hon)*])/? = o(n=1/?). (2.44)

Combining the results in (2.37)), (2.43]) and (2.44])), we get

Ky(g:h) = Ky(g*,h) = Frnl (o) [b = hom, wy, ] + B [ug (€)(9(e) = go(e))] +0(n™1).  (2.45)
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By the definition of [|-[|,, and (2.23),

Hg* _goHi - ||g_go|’12/;
2

= 1, [uy, (¢)(g(€) = go(€))] + 0p(n ™) (2.46)

which together with (2.45]) verifies Assumption 3.2.(iii) in HLR. m

Lemma 2.5 Suppose that Assumptions and[2.4] hold. Then Assumption 3.3 in HLR holds.

Proof of Lemma As the functional value p(g,) only depends on g¢,, we know that up =0. By
Assumption (i),

< <c, (2.47)
ot @] + |5, @)l

which together with the Hélder inequality and Assumption [2.1}(iii) implies that
|(Po.i. = ho b, Y| < llPo,r. = holly [[uf, ||, = O(L™"™). (2.48)

By the definition of En,

o~

(B = hor b Vo = B [uf (2)R(z)] (RaRY) ™" Ru(Sn — Hp1), (2.49)

where Hy, 1, = [ho(%1), - - -, hor(zn)]'. By the Cauchy-Schwarz inequality and the Hélder inequality, we
have

B [uf, @) R@)]| < E [(uf, (2))*] B [R() R@)] < CL (2.50)

where the second inequality is by (2.47) and Assumption [2.1](iv). Under Assumptions [2.1]and 2.4} (i), we
can invoke Lemma 6.2 of Belloni, et al. (2015) to get

1Qz = Qu.rll = Op(Crllog L)' /*n~1/2), (2.51)
where Q,, 1, = n~ 'R, R/,, which together with Assumption (1) implies that

(20)71 < Wmin(Qn,L) < wmax(Qn,L) <2C wpal. (252)
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By the Cauchy-Schwarz inequality, (2.50), (2.52)) and Assumption [2.1](iii)

‘E [uf (2)R(z)'] (Rnlw’u;)*1 R, (Hy — Hn,L)‘Q

-2

< ||E [uf, () ]|| (Hn — Hn,1)' Ry, (RaR),) " Ry(Hy — Hy 1)

< Op(Ln Y (H, — H, 1) (H, — H, 1) = Op(L* 721, (2.53)

which together with S,, — H,, 1, = (H, — Hp 1) + en (wWhere e, = [e1,...,¢&,]"), (2.49) and Assumption
(v) implies that

(= hoo i, o = B [uf, (2)R@)] (RuR,) ™" Rues + 0pfn™Y/). (254)
By Assumptions [2.1}(i)-(ii) and [2.1}(iv), and (2.52)),

B[ |l Q7! Rueal| @] = B [0 261, R Q72 Ruen| {:}1]
< n- wmm(QL)tr (R/ E [6716;1‘ {IZ}?ZI] Rn)
<Cn~ wmm(QL)tr (R R )

< Ol 2 (Qr)tr (Qn,n) = Op(LnY) (2.55)
which together with the Markov inequality implies that
|n'QL  Ruen|| = Op(LY/*n~1/2). (2.56)

By the Cauchy-Schwarz inequality,

2
1R€n

B (i, ()R] Q1% 4% — B[, (o) Rla)) Q5 e

= [Buf, (0)R)] Q1) (@ua — Qu)n™'Q; Ruca
< |[B[ut, @) R@YT Q54| 1@Ln — Qull Q5 Ruea|

= 0p(Cr(log L) 2 Ln") = 0,(n~"?) (2.57)
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where the second equality is by (2.50), (2.51), (2.52) and (2.55)), the last equality is by Assumption

2.4 (iv). Collecting the results in (2.54) and (2.57)), we get

0N * * - Rne” —
(hn — ho,r,ur, ) =E [ul“n (:L')R(*T)l] L1 n + op(n 1/2)-

By the definition of uy. (),

E [uf, (z)R(z)] Qzl% =& [0go(e)v;, (e)R(z)'] Q21%7
and moreover
Ap(Zris ho)lut, ] = B [0go(e)v;, () R(2)] Qr TH)
Hence we have
in { Do (Z1,ho)[ut, ]} = B [uf, (2)R(z)] Q" R?f"

which together with (2.48)), (2.58) and Assumption [2.4}(v) verifies Assumption 3.3.(i) in HLR.

By definition,
. . up, (z)e + vy (e)u
A2 o)l )+ Aol Za.go )l | = T
nllsd

By the Cauchy-Schwarz inequality, Assumptions 2.1} (iv)-(v), 2.2} (ii) and (2.21)),

swp,ex v, (@ G [[E[9g0(e)v, ()R ()]
o1, w2in(QL) o5 124
C¢ E[(990()v}, () E[R(z) R(x)]
" wiin(@r) o115
C¢? sup,cg(99,(2))? E (v}, (¢))?] B[R(x) R(x)]
Winin(QL) v

K
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= O(L(7).

(2.58)

(2.59)

(2.60)

(2.61)

(2.62)

(2.63)



By Assumptions [2.1}(ii), (i), 2.4 (i) and 2.4 (iv), and the results in ([2.23)), (2.29), (2.47) and (2.63),

E [‘vl’in (x)e + v, (e)uﬂ

4
n ||U7>l’<L“sd

E vain(w)eﬂ +E Uv;n(a)uﬂ
n (vl
B[t @|'] +B [[v;, ()]

n vkl
< Cn_l(fg,K + L¢3) <E Uul’in(x)ﬂ +E [‘u;n(S)ﬂ)

=0 xn "+ Ln ) = o(1), (2.64)

<8

IN

which together with Assumption [2.1](i) and the Linderberge CLT verifies Assumption 3.3.(ii) in HLR.
The condition 2, = O(ky) and f@nég;bl = o(1) in Assumption 3.3.(iii) of HLR hold by €3, = 0 and by
n~/ 25;7;1 = O(1) respectively. Moreover Hu;nHi < C by the definition of [-[|,, and . This verifies
Assumption 3.3.(iii) in HLR. m

Recall that N, = {h € Hy @ [|h = holl, < 65, log(log(n))} and N, = Npp X Nypn. In Section 4 of

HLR, we define Wi ,, = {h € Vi, : ||h]], < 1} and Wa,, = {g € Vo : [lg]ly < 1}

Lemma 2.6 Suppose that Assumptions and [2.5 hold. Then Assumptions 4.1 and 4.2
in HLR hold.

Proof of Lemma Assumptions 4.1.(i) and 4.1.(ii) in HLR hold by the definition of (-, -),. By the

Cauchy-Schwarz inequality,

sup sup
a€Ny Vg Wge EWa

n! Z Ty (Z2,i, @) gy, Vg,] — B [ry(Z2, o) [vg, s vgs|]
=1

n

= sup nt Z Vg1 (€i)vgs (€i) — B [vg, (€)vg, (€)]
Vgq Vg5 €W2,n i=1
< 1Qux — Qxll = Op(&o,x (log K)'/*n~1%) = 0,(1) (2.65)

where the second equality is by (2.1]), the third equality is by Assumption (1) This means that
Assumption 4.1.(iii) in HLR holds. Assumption 4.1.(iv) in HLR is assumed in Assumption [2.3](iv). This
verifies Assumption 4.1 in HLR.
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Assumptions 4.2.(1) and 4.2.(ii) in HLR hold by the definition of (-, -)

By the Cauchy-Schwarz
inequality,

n
sup sup
heNh,n Uh1+Vhy EW1n

n! Z Ttp(Zl,ia h) [Uhl ) Uh2] - E [T@(Zlv ho)[vhwvhzﬂ
i=1

sup
UhqVhg €EWLn

nN wny () vny () — B [0, (2)vny (2)]
i=1

< Qn,r. — Q| = Op(Cr(log L) 2n71/2) = 0,(1) (2.66)

where the second equality is by (2.51]), and the third equality is by Assumption (i). This means that

Assumption 4.2.(iii) in HLR holds. As dp(«a)[vy] = 0 for any « in this example, Assumption 4.2.(iv) in
HLR holds.

Under Assumptions [2.4](v) and

€1.k09m < ELr(KY 20~ YV2 4 K=Ps 4 vy i LY207Y2) log(log(n)) = o(1)

(2.67)
By definition, for any a € N,,, we have
L (a) [vn, vg] — T'(ao) [vn, vg]
=n"")_[0g(ens) — Og(ei)] vn(wi)vg(e:)
i=1
+n7 Y " [0g(ei) — Dgo(ei)] vn(wi)vg(e:)
i=1
S D)o @)y 51) — B [0gole)on ()00 (6)]. (2.68)
i=1
By the Cauchy-Schwarz inequality,
n 2
-1
sup n vp(zi)v, (g
o 17 D )
< sup n1 lop ()2 x n~ lug(es)?
vaWLn,UQGWQm [ 'LZI zzl g
<@Ll Rkl = Op(1) (2.69)
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where the equality is by Assumptions [2.1](iv), 2.2/(iv), and results in (2.1) and (2.51)). Recall that
B3, = {v eV, : Hv — v;nHw Hv;;nH;l < dy,n}, where &y, , = o(1) is some positive sequence such that

v, € B3, wpal. For any v, € B3 ,,, we have

g
ol o 15" =1 < llog =, 1o, 15" = o) (2.70)
which implies that
sup Joglly [0z, [, < 2 (2.71)
’Uge ;,n

for all large n. By (2.71), the mean value expansion, the triangle inequality and the Cauchy-Schwarz

inequality,

n

n~ " [0g(eni) — Og(ei)] va(wi)vg(e:)

sup
UhEWl,n,UgEB;m

i=1
n
<ollill, s (Tt SC0PER (B — Bo)(eni — 2ol (e:)
VR EWIL 0, 0gEW2 n i=1
n
+2{[vg, ||, sup nt Y OPEna) Box (eni — ei)un(wi)vg(ei)
VR EWL 0, 0gEWa i=1

<C HU;HH2 (1,5 |18 — Bo,x || +v1,x] CLo1m < sup n~t Z \Uh(ﬂci)vg(ffi)!)
i1

VR EWL n,vg€EW2

<C Hv;n H2 (€1, k02,0 + V1,K] CLO1n ( sup n~t Z |vh(mi)vg(€i)|> , (2.72)
i=1

VR EWL, n,vgEW2 n

for any h € Ny, and any g € Ny, where the second inequality is by (2.25)), the third inequality is by
(2.41). Equation (2.72)) together with Assumptions [2.5(iii)-(v), (2.67)), and (2.69) implies that

sup sup
aENy VREW, v €EBS

= Op((&1,k62.n + v1,K)CL01,n)

= 0p(n YV2LV2¢1 81 e (n V2KV 4 K=Ps 0y o V2LY2) 4 07 V2LV2C 00 1) = 0p(1). (2.73)

n~t Z; [0g(en,i) — Og(ei)] vn(wi)vg(ei)
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By the triangle inequality, the Cauchy-Schwarz inequality, Assumption [2.2}(iii) and [2.2](v)

sup [g(g) — dgo(e)| < sup|dg(e) — 8907K<5>‘ + sup ‘690,1((5) — 09o(e)]
ce€ ee€ ee&

<&k 18— Boxl + K9, (2.74)
which together with the definition of N, and (2.27) implies that

sup sup|dg(e) — 0go(e)| < C& kd2n + K P9 = 0(1) (2.75)
gENG n €E

where the equality is by Assumption n and (| . Using (2.75) and the triangle inequality

n! Z [0g(i) — Dgo(gi)] vi(zi)vg(ei)

sup sup
9ENGn v EW1n,vg€BS

< sup sup|dg(e) — Igo(e)| x sup 1Zlvh i)vg(e3)]
gENy n €€EE v EWL,n,0g€BS
< O}, [, (61,502 + E0) ( ap Y \vhm)vg(ai)r) o) (276)
'Uhewl,n7vgew2,n i—

where the equality is by Assumption [2.5/(i) and (2.69). By Assumptions [2.1](i), (v) (i), (iv)

and the Cauchy-Schwarz inequality,
2 _ 2 _
E [H 1tn {090(€)R(z)P(e)'}| } <n 'E [|0go(6)|2 |P(e) R(z)| } < CK¢n~' = o(1) (2.77)
where the equality is by Assumption (1) By the Cauchy-Schwarz inequality,

sup  [pn {0go(e)vn(x)vg(e) }|

VR EWI Vg EB;}n

< 2|lv;, |, sup | {090 ()vn (x)vg(€) }|
vhewl,nyvgewln

< 2]} |, ln {090(e) R(z) P(e)' }|| = 0p(1) (2.78)

where the equality is by Assumption (i), (2.77) and the Markov inequality. Collecting the results in

(2.68]), (2.73), (2.76)) and (2.78)), we get

sup sup ITn(a) [vn, vg] — T'(w) [vn, vg]| = 0p(1). (2.79)
QENp v EWI v €8S
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By the Holder inequality and Assumption [2.2] (ii)

1—\ _ *
e T (o) [vn,vg = vg,]]

-1
A g LA PR AN CAY

<Ol 1ul sup [l — w5, .1 = of0)

Vg 2,n

(2.80)

where the equality is by Assumption (i), Assumption (iv) and the definition of B3,. Combining

the results in (2.79) and (2.80)), we verify Assumption 4.2.(v) in HLR. m

Lemma 2.7 Suppose that Assumptions[2.1], and[2.5 hold. Then Lemma C.3 in HLR holds..

Proof of Lemma By definition for any h € N,

AZ(Z1, h)lvn] = €205 (x) + (h(@) = ho(@))*vh(2) — 2evi(2) (h(2) — ho(2)).

By the definitions of W, and the operator norm,

W {n@)}| < flim {2 R@ R

v EW

By Assumptions [2.1] and the Cauchy-Schwarz inequality,
E [H,un {EZR(CU)R(Z)/}HQ} <n'E [54 |R(z)'R(z)| ] < Léin™!

which together with (| - the Markov inequality and Assumption ( ) implies that

= 1).
vhselil/\;pl n ‘,un {6 vh }| Op( )

By the definition of N, ,,

n

sup sup n ! Z(h(%) - ho(xz‘))%izl(l’i)

he-/\/h,n Uhewl,n i=1
< (o) (o Yokt - 0,62 = 00)
hENh,n v, EW1 n
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where 5;;271 = Ln~! + L2 the first equality is by 1) and

-1
sup n vj.(x;) = Op(1), (2.86)
VREWIL R Z 4

which follows by arguments in showing (2.69)), the second equality is by Assumptions n ) and [2.4 .

By the Cauchy-Schwarz inequality,

2

sup sup
heNy n VREWL

< < sup Hh—ho||§o> ( sup n 125 vi( a:Z) ( sup n Ith (i ) (2.87)

heNp n VREWI,n VREWIL R

nt Z&U%(xz)(h(fm) = ho(z:))

By Assumptions n ii) and [2.1] . iv)

sup B [eFv](z:)]| < |E [°R(z)R(z)'] |<C (2.88)
vLEW1 n
which together with (2.84)) implies that
sup n 125 vi () = Op(1). (2.89)

VR EWL n

By (2.86)), (2.87)), (2.89) and the definition of A, p,

n 2
sup sup |n= S0 2R (i) — ho2)| = Op(GER,0) = 0y(1) (290)
hENh,n Vh 6Vvl,n ;
where 072 = Ln~! + L721 the second equality is by Assumptions (1) and E(v) Collecting the
results in (2.81)), (2.84), (2.85) and ([2.90)), we show that Lemma C.3.(i) in HLR holds.
By definition

n~t Z A,?l}(ZQ’i, Oz)['l)g] —E [Ai(Z% ao)[vg]]
= Un {’LL Vg } +n -1 Z Ehz go 52))2 3(51)

—on~! Zui(g(em) — go(e0))v2 (1) (2.91)
i=1
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Using similar arguments in showing (|2.84]), we can show that

sup fin {uzvg(e)} = Op(K& xgnt) = 0,(1), (2.92)
vgEW2

where the equality is by Assumption [2.4}(i). By (2.26)) and (2.28)),

n

sup sup nt Z(Q(&m‘) — gol&i))*v2 (&)

aEN, ngWQ n i=1

<C(<L+£OK)52TL sup n 12“ €;)

vg€W2,n =1
-1
=o sup n vi(ei) = (2.93)
( vgEWa Z
where the first equality is by
(C% + 5(2),1{)5%,71 - 0(1)7 (294)

which is implied by Assumption (i), (v) and (¢? + 537 K)vi wIn™t = o(1) (which is implied by
Assumption , the second equality in (2.93)) is by

n

sup n! Z vg(si) = 0,(1) (2.95)

vgEW2 i—1

which follows by arguments in showing (2.69). Similarly by (2.26)) and (2.28]),

2
sup sup -1 Zuz Ehz 90(51)) 2<52)
aENp vgEWS

n

<O+ & K)05, sup n IZU (¢i) sup n‘lzvﬁ(ei)

Ug€W2 n i=1 ngWQ,n i=1

=o0p(1) sup n 1Zu op(1) (2.96)

VgEWa n

where the first equality is by (2.94) and (2.95]), the second equality is by

sup n 1Zu Op(1) (2.97)

vgEW2

which follows by similar arguments in showing (2.89). Collecting the results in (2.91f), (2.92), (2.93) and
(2.96]), we show that Lemma C.3.(ii) in HLR holds.
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By definition

Ap(Zy1, h)[vp] Ay (Z2, a)[vg] — Bz [Ap(Z1, ho)[vn] Ay (Z2, o) [vg]]
= uevg(e)vp(z) — B [uevg(e)vp ()]

+ (h(z) = ho(x))uvn(z)vg(€) + (9(en) — go(€))vn(2)vy(€)

+ (9(en) = go(€)) (h(x) — ho(z))vn(x)vy(e),

(2.98)

for any o € N,. By the Cauchy-Schwarz inequality and Assumptions [2.1] (i)-(ii), (v), (i) and

(v),

B [l1n {usR()PE)}|*] = n™'B [w?e2P(e) P(e) R(x) R(a)]
< n—l\/E [(u2p(a)/P(5))2] \/E [(523(3;)'3(:(;))2]
<074/ (BIP(e) P(e)l\/GE [R(x) R(x)]

< Cn~Yp&o g LY2KY? < On YL + K) (¢ + K?) = o(1),

where the third inequality is by E[P(e) P(¢e)] < tr(Qr) = O(K) and E [R(z)'R(x)] < tr(Qr)

(2.99)

and the last equality is by Assumption (1) By the Cauchy-Schwarz inequality, the Markov inequality

and (2.99), we have

s g {uzuy()en(@)} = 0p(1).
’UhGWlA’n,UQGWZn

By (2.26), (2.28)) and the Cauchy-Schwarz inequality,

n 2

n (9(eni) = gol€i))eivn(@i)vg(e:)

i=1

SC(C%%—&%}K)(S%H( sup n 125 vh xl>< sup n 121} 5,)-01, (1)

U}LEWl n 'UgGWQ n

sup sup
€Ny v EWL 1, 0gEW

where the equality is by (2.94)), (2.89)) and (2.95). By the Cauchy-Schwarz inequality,

2

sup sup
heML,n Vh ewl,n ,Vg EW2,n

< sup ”h_h0H(2)0< sup n 1th mz>< sup n 1Zu, Z)— »(1)

hENh,n v €EW1 n vgEW2 n

-1 Z — ho(®;))uivn(zi)vg(ei)
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(2.101)
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where the equality is by 1' 1’ and suppep, | — ol = (701, = o(1) which is implied by
Assumption (i). Similarly,

2

sup sup
acEN, v EWY nyVg GWQJL

<C(CL+§0K)52nhSUP lh — ho ||

n” Z(h(-’ri) = ho(2:))(9(eni) — go(€i))vn(wi)vg (i)

h,n
~1 ~1 2
X | sup n vy () sup n vy (&)
(Uhewl n Z " ) <U96W2,n Zz; ! >
= Op((CL + §O,K)CL51,n52,n) = 0p(1) (2.103)
where the first equality is by and suppen;, Ilh — ho H 25%,” the second equality is by

,and (7 2 52 = o(1) which is 1rnp11ed by Assumptlon. . Collecting the results in () (2.100)),

(2.101)), (2.102)) and (2.103)), we show that Lemma C.3.(iii) in HLR holds. =

Lemma 2.8 Suppose that Assumptions and hold. Then Assumption 4.3.(iv) in HLR
holds.

Proof of Lemma By the definition of A,(Z1, ho)[vp], we have

_sup B [|A¢(zl,ho)[vh]|2} < |[B[2R@)R@)]|| < CQull < C (2.104)

where the second inequality is by Assumption ( i), the third inequality is by Assumption ( V).
Similarly,
sup E [|A¢,(Zg,ao)[vg]|2} < ||E [u2P(e)P()]|| < C Qx| < C (2.105)

vgEWa n
where the second inequality is by Assumption (i), the third inequality is by Assumption (iv). By

v, =0, @21). @23) and (@7,
o, -+ Wi, + gl ) Wl = Tl + il < (2.106)

which verifies (4.10) in HLR. By (2.104)), (2.105)) and (2.106]), Assumption 4.3.(iv) in HLR is verified. m
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3 Verification of Assumptions 3.2 and 3.4 in Example 2.1

In this section, we use the nonparametric triangular simultaneous equation model in Newey, Powell and
Vella (1999) to illustrate the high-level sufficient conditions for the asymptotic normality of the two-step
sieve estimator.
The first step nonparametric estimation takes the following form:
hy, = arg max _ 1 Z (xi —h (wu))2 (3.1)

heH, 2n
=1

where Hy, = {h: h(-) = R(-)"y, v € REM}. Let R(wi;) = [r1(wiy), ... 7oy (wi)] fori=1,...,n, and
R, = [R(w11),..., R(wiy)]. The first step M estimator hy has a closed form expression

a(-) = R() (RaR,) ™

R, X, = R(")'7, (3.2)
where X,, = [21,...,2,). To define the second step M estimation, let P(w) = [pl (W), .-, Pr(n) (w)]’
be a vector of approximating functions of w = (x,w}),u) such that each py(w) depends on (z,ws) or
on u, but not both. From the first step estimator, we calculate u; = x; — ?Ln(wu) fori =1,...,n.
Let P(w;) = [p1(Wi), ..., Px ) (W;)]" and P, = [AP(@y),...,7P(@,)], where @; = (i, wh ;5 U;)" and
T = H?w2+2 IH{a; <wj; < bj}fori=1,...,n, where dy, denotes the dimension of wo and wj;; is the j-th
component of w; for j =1,...,dy, + 2. Let go(w) = mo(x, w2) + Ao (u) and n =y — my(x, w2) — Ao (u).

By the definition of A\, (u), and the conditional moment restrictions in (3) of HLR, we have

E[n|z,w1] = 0. (3.3)

duy+2

Let 7,y = {w : 7(w) = 1} where 7(w) = [[;]

I{a; < w;; <b;}. The second step M estimator (of g,)
is

gn—arggrjré%}{ —n" Zﬁ yi — g(w;))? (3.4)
" i=1

where G, = {g () : g (-) = 7(-)P(-)'3, B € REM}. The second step M estimator §, also has a closed form
expression

Gn(w) = P(w) (P.P,)"'P'Y, = P(w)'Bn (3.5)

for any w € 7, where Y, = [y1,...,yn]'. The plug-in estimator of p(g,) is p(gn), where p(-) is a linear

functional of g.
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We next list the low level sufficient conditions for the asymptotic normality of p(g,). These assump-

tions are from Newey, Powell and Vella (1999).
Assumption 3.1 {(y;, z;, w1;)}; is i.i.d., var(z|lwy) and var(y|r,wr) are bounded.

Assumption 3.2 w; is continuously distributed with density that is bounded away from zero on its sup-
port, and the support of wi is a cartesian product of compact, connected intervals. Also w is continuously
distributed and its density is bounded away from zero on Ty, and Ty, is contained in the interior of the

support of w.

Assumption 3.3 h, (wy) is continuously differentiable of order s1 on the support of wi and me(x,ws)

and M\o(u) are Lipschitz and continuous differentiable of order s on Ty,.

In the rest of the section, we write L and K for L(n) and K (n) respectively for notational simplicity.
Following Newey, Powell and Vella (1999), we consider two types of approximating functions for R(w;)

and P(w): the power series and splines.

Assumption 3.4 Either (a) for power series, (K® + K2L)(L'/?n='/2 4 L=51/%n1) = o(1); or (b) for
splines, (K2 + KL)(L'/?n~Y2 4 L=51/dw1) = o(1).

By Assumption there exists 7,1, € R% such that

sup  |Ro.z(w1) — ho(wy)| < CL™51/duwr (3.6)
w1 EWL

where h, ,(w1) = R(w1)7o,r, W1 denotes the support of w; and d,, denotes the dimension of w, and

there exists (B, x € RE such that

Sup |go,k (w) — go(w)| < CK/ (3.7)

wETw

where g, i (w) = P(w)' B, ;¢ and d denotes the dimension of (z,ws)".

We next calculate the Riesz representors vy and v . Let Z1; = (:cl-,w'lﬂ-)’ and ¢ (Z1;,h) =
—(x; — h(w17i))2 /2. By definition, (vp,,vn,), = B [vp, (w1)vn, (w1)] for any vp,,vp, € V1. Let Zy; =
(yi,mi,w’17i)’, up; = x; — h(wi;) and wp,; = (a:i,wéji,uh,i)’. The criterion function of the second step

estimation is

¥ (Za, 9, h) = —7(wny) (yi —m (23, w2,5) — A (2 — h(wi,)))? /2.
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By definition, (vg,,vg,)y = E[T(w)vg, (w)vg,(w)] for any vg,,vg, € Va. By some simple calculation, we
get
V5, () = TP Qi p(Pr),

where Q = E [r(w)P(w)P(w)'] and p(Px) = [p(p1),...,p(pr)]’. Moreover, by the conditional moment

condition , we have
I'(ao) [vn, vg] = B [7(w)Ougo(w)vn(wi)vg(w)]

where 09,9,(w) = 0g,(w)/0u, which implies that
of, () = R()' QB [1(w)ugo(w)vy, (w)] = R() QL HQR p(Pr),

where H = E [7(w)9yg0(w)R(w1)P(w)'] and Qr, = E[R(w1)R(w)']. Using the sieve Riesz representors

v* and v , and the i.i.d. assumption, we have
gn Ty 9

1 n
logll3g = Var |72 Y (uif, (wi) +mir (w)v, (wi))
i=1 n gn

= E [u? (v, (w1))’] + B [°(w)(v;, (w))?] (3-8)

where the second equality is by (3.3). Let Sk = E [n?7(w)P(w)P(w)'] and X1, = E [u?R(w1)R(w1)'].

By the explicit expressions of vy and vp ,

lonll3a = p(Pr)'Q H'QL'E [u” R(wi) R(w)'] Qp HQ p(Pr)
+p(Pk) QB [n*1(w)P(w) P(w)'] Q' p(Pr)

= p(Pr)' Q%' [Sx + HQ;'S1Q ' H] Q%' p(Prk)

which is the same as the variance-covariance matrix V' of the two-step estimator defined on page 596 of

Newey, Powell and Vella (1999).

Assumption 3.5 o%(z,w1) = var(y|lr,wy) is bounded away from zero, Eln*|z,wi] is bounded, and
Elut|z,w1] is bounded. Also g,(w) is twice continuously differentiable in u with bounded first and second

derivatives.

Assumption 3.6 There exists v (w) and By, such that B[7(w) ‘v;(w)ﬁ < 00, p(go) = Blr(w)v;(w)go(w)],
p(pr) = Blr(w)vy(w)p(w)] and E[r(w) ’v;(w) — P(w)’ﬁmK}Q] — 0 as K — oo.
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For any d,, x 1 vector a of nonnegative integers, let |a| = E?ﬁl a;, 0%g(w) = dllg(w)/ow; - - dw,,.

Let &k (6 = 0,1) and (1, be nondecreasing sequences such that max|, <5 sup,ez, [0 P(w)|| < &5 and

SUDPy, e, ||[R(w1)]| < (r respectively. The following assumption is on the numbers of generic approximat-

ing functions in the first step and second step estimations.

Assumption 3.7 n'/2K~%/% = o(1) and n'/?L=1/%1 = (1), and
& k(L + K?)log(n)n™" + & (CELICEL + &8 s K)n™" + & g LEn™! = o(1). (3.9)

When the power series are used in the two-step estimation, we have (5, < CL and &§ g < CK1+2
(6 =0,1). Under the conditions that n'/2K~%/¢ = o(1) and n/2L=51/%1 = o(1), the sufficient condition

for (3.9) becomes
(KTL+ K°L3 + K2LSn™! = o(1)

which is implied by Assumption 8 in Newey, Powell and Vella (1999). When the splines are used in the
two-step estimation, we have ¢;, < CL'/? and & < CK'Y?t9 (§ = 0,1). Under the conditions that
n'/2K=/4 = o(1) and n'/2L=%1/41 = o(1), the sufficient condition for (3.9) becomes

(K'L+ K3L? + KLY ™! = 0(1)
which is also implied by Assumption 8 in Newey, Powell and Vella (1999).

Theorem 3.1 Under Assumptions|3.1 we have

\/’E [p(/.dn) — p(go)] —y N(O, 1) (310)

[0l sa

Proof of Theorem (3.1, Define 65, = 0, ,0n and oy, = 04 ,0n Where of , = LY2p=1/2 4 [=s1/dwy |

Ogn = KY2p=12 4 g—s/d 4 0y, and {on}n is a slowly divergent real positive sequence. Let N, =

{yeR™: Iy =01
Similarly, define N3, = {8 € RE: ||8 — Bo k|| < g} where &y, = 0y n0n- By Lemma (b) and
Lemma (d)7 we have 7, € N, and Bn € Ns.n, wpal. Define Nj,,, = {h(-) = R(-)'v: v € N} and
Nygn ={9() =P()B: BeEN n} By Lemma (b) and Lemma (d), we have hy, € N, and

"Let ||h], = (E [h(11)1)2])1/2 denote the Lz-norm and ||g|, , = (E [T(w)g(w)z])1/2 denote the restricted Le-norm. One
may also define the local neighborhoods of h, and g, as: Nj,,, = {h(-) = R(:)'v: |h — holly < n,L0n,} and Ny ,, = {g () =
P () B: [lg = golly., < 04,00} respectively, where {g,}n is a slowly divergent real sequence. For any h = R(-) vn € N,

| < hn} where 0p, = 95 ,0n and {0, }, is a slowly divergent real positive sequence.
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Gn € Ny wpal. The proof of the theorem is divided into three steps.
Step 1. We verify Assumption 3.1 in HLR. By Assumptions [3.5] and Lemma [3.1] implies that

vl g = B [T (w) (v (w))?] + B [u?(vf (w1))?] (3.11)

*

g
as the asymptotic variance defined in (5.7) of Newey, Powell and Vella (1999). By Assumption

as K — oo and L — oo, where vji(w1) = E [7(w)v}(w)dugo(w)|wi]. The above limit is the same

E [n?|z,wi] > Cy where Cy, is a finite positive constant. This means that

E [ (w) (v ()] > Oy [7(w)() ())?] > 0 (3.12)

where the last inequality is by the fact that p(g,) is an unknown value. If E [T(U})(’U; (w))?] =0, we

have 7(w)(v}(w))? = 0 almost surely which together with (5.6) in Newey, Powell and Vella (1999) implies
that p(g) = 0 for any g € G, where G includes all additive functions satisfying Assumptions and
In such a case, p(g,) will be a known (to zero) value. Combining the results in and we
have liminf,, ||v}||,; > 0, which verifies Assumption 3.1.(i). Because p(-) is a linear functional and ||v};||,
is bounded away from zero, Assumption 3.1.(ii) holds trivially. The strong norms ||-|[,; and ||-|; used
to establish the convergence rate of h, and g, respectively are the Ly-norm |hlly = (B [(h(wl))Q])l/2
and the restricted Lo-norm |[|gll,, = (E [7(w) (g(w))?])}/? respectively (see footnote 1 for details). By
the definitions of [|-[|, and |-[[,, we can set ¢, = 1 and ¢y, = 1 such that [lop, < ¢y [lonlly and

||vg|]¢ < ¢y ||vg|]g for any v, € Vi and vy € V5. Under Assumptions we can use Lemma 4.1 of
Newey, Powell and Vella (1999) to get

H?n(w) - Qng = 5;,71 (313)

where 65, = K1Y 2p~Y2 4 g=s/d 4 [12p=1/2 4 [=s1/dwy Let g, (1) = 9o,k (-) where g, k is defined in
(3.7). Then by (3.7) we have

gn = gollg = l190,x — gollg < Sup |Go, i (w) — go(w)| = O(63,,), (3.14)
we w

by the triangle inequality,
lh = honll < b= Roll + [lho,n = hol| < 20n,Len
-1

which implies that ||y, —vo,r|| < 2w (QL)0h, L0, Where wmin(Q 1) denotes the smallest eigenvalue of @, which is bounded
away from zero by Assumption Hence if we let o, = 2w;‘i1n(QL)g;“ then 75, € N, which implies that h € A}, , and
hence N}, ,, C Np,n. Similarly, we can appropriately choose gn such that N , C Ngy,. This means the high-level sufficient
conditions verified under A » and/or Ny, holds for their counterparts under A}, ,, and/or Ay ,,.
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which finishes verification of Assumption 3.1.(iii). For Assumption 3.1.(iv), as p(g) is linear and it only

depends on g, it is sufficient to show that

1 _1
i |P(gon — go)| = o(n"2) (3.15)
107 |5

where g, , denotes the projection of g, on the finite dimensional sieve space with respect to the restricted

Ly-norm |||, .. By (5.6) in Newey, Powell and Vella (1999),

10(gom — go)|* = |B [ (w)v} () (gon (w) — go(w))]|”
[7(w) (0} ()] B [7(w) (gon (w) — go(w))?]
[7(w) (v (w))?] B [7(w) (g0,k (w) — go(w))?] = O(K~2/9) (3.16)

where the first inequality is by Holder’s inequality, the second inequality is by the definition of g, 5, the
last equality is by (3.7) and Assumption By Assumption 3.1.(i) (which has already been verified),

(3.16) and Assumption we prove (§3.15)) and hence Assumption 3.1.(iv).

Step 2. We verify Assumption 3.2 of HLR. Let u;, =  — h(w1) and wy, = (x, wh, up)'. By definition

¢(Z259*) h) - 1/1(2279, h) - Aw(Z%ga h)[i’inu;n]

_ 7(wn)(y — g(wn) F rnug, (w))?
2
7(w — g(wp))?
g Tl g o)y — g ()
/62
= ) g, ()2 (3.17)

where uy (w) = vy (w)/ [|vy g and [lv]],4 is defined in (3.8). By the triangle inequality, Lemma(e)—

gn

(f) and (3.17),

sSup }/-/Jn {¢(227 g*a h) - sz)(ZQa 9, h) - A¢(225 9, h’) [iﬁnu;n]}‘
hENp 1, 9ENG n

/{2 -
7"71_1 > (uy, (wi)* + Blug, (w)?]) = Op(x?) (3.18)
i=1

<

which verifies the first condition (12) of Assumption 3.2.(i) in HLR. Instead of verifying (13) of Assumption
3.2.(1) in HLR, we show that Assumption 3.4 holds. Assumption 3.4.(i) is implied by Assumption

40



Let 7(Z1,h) = 7(wp) and A} (Z2, g, h)[ug,| = (y — g(wn))ug, (w). By definition,

g, (W
Ay (22,9, h)[ug,] = 7(wn)(y — g(wn))ug, (w) = 7(Z1, h) Ay (Z2, g, h)[ug, |. (3.19)

Therefore equation (18) of HLR holds. By definition, 7(wp) and uj (w) only depend on (z,w;). By ,
E [A}(Z2, 9o, ho)lug, 1| Z1] = E [(y — go(w))ug, (w)| z,w1] = vy, (w)E [n|z,w1] =0 (3.20)

which verifies (19) of HLR. By (3.19) and (3.20)) we show that Assumption 3.4.(ii) of HLR holds. By

definition,
Ay(Z2, g, h)[ug, ] = Ay(Z2, go, h)lug, | = 7(wh)(go(wn) — g(wh))uy, (w), (3:21)
and

7(Z2, h)(Ay(Z2, 9o, h)[ug, | — By(Z2; go, ho)[ug, 1) = T(wn)(go(w) — go(wn))uy, (w). (3.22)

Hence Assumption 3.4.(iii) follows by Lemmas and By Assumption and Lemma 3.3 (f) we

have for any h

(7(Z1,h) = 7(Z1,h0))’E [ (A}(Z2, 9o, ho)[u, ])?| Z1]

= (r(wn) — 7(w))*(uy, (W)E [11°| Z1] < CE& k(7 (wp) — 7(w))?, (3.23)

which together with Lemma [3.3](d) implies that

hS}\lfp nt Z (Z1i,h) = T(Z13, ho))’B [(AL(Z2,, Goo ho)[ugs. 1)? | Z1,4]
ENh,n

< 050 K SUP n~t Z T(Z1i h) = T(Z14, ho))? = Op(fg,KCL(Sh,n) (3.24)

heNh,n i=1

where the &2 ,(10p, = o(1) by Assumption This proves Assumption 3.4.(iv) and hence finishes
verification of Assumption 3.4.

We next verify Assumption 3.2.(ii) of HLR. By definition,

2

P(Z2,9,h) = (22,97, h) = T(wn)(y — g(wn)) (Frnug, ) + %T(wh)(uzn (w))?, (3.25)
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which together with Lemma [3.3(e) and the definition of Ky(g, ) implies that
Ky(g,h) = Ky (9" h) = FrnB [7(wn)(y — g(wn))u,, (w)] + O(x3). (3.26)

By (3.3),
E [(7(wn) — 7(w))(y — go(w))uy, (w)] =0 (3.27)

which implies that

+ B [7(wn)(go(wn) — g(wn))uy, (w)] . (3.28)
Using the second order expansion in (3.111)),

sup |E [7(wp)(go(w) — go(wn) — Dugo(w) (h(w1) — ho(w1)))uy, (w)]]
heNpn,

< Csup uj, (w)| sup B[(h(w) = ho(w))?] < Cordl, = op(n”2), (3.29)

E-/V'hn

where the second inequality is by Lemma [3.3] E ) and (3.3} . , the equality is by Assumption By
Assumption [3.5 u .0)), Lemma [3.2] E ) and [3.3] . ) and the definition of N}, ,,

sup | [(7(wp) — 7(w))Bugo(w) (h(w1) — ho(w1))uy, (w)]|
heN

< Csupluz, ()] | sup suplh(wn) — ho(wn)] | sup Bir(wn) - 7(w)]
w heth, w1 he h,n

< C&,kCL0nn (cL sup |17 — Yol +C L—51/dw1>

YENn

< C&,k(E0h = 0p(n™ /), (3.30)
where the equality is by Assumption E 3.7 By (3.29] - and the triangle inequality,

E [7(wn)(go(w) — go(wn))ug, (w)] = B [7(w)dugo(w) (h(wr) — ho(wr))ug, (w)] +op(n~ /%), (3.31)
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uniformly over (h,g) € N,. By (3.120) in the proof of Lemma

sup B [|7(wn)(go(wn) — g(wn) — go(w) + g(w))ug, (w)]]
heNy n,9ENg n

<& sup [B—LBorl sup E |y (w)(h(wi) = ho(wr))|]

BENg,n hGNh,n

<t [, sop =l

h,n

< &1,k0g.n0nn = op(n1/?), (3.32)

where the second inequality is by Hélder’s inequality and the definition of N3 ,, the third inequality is by
Lemma (e) and the definition of AV}, 5, the equality is by Assumption Similarly by (3.7), Lemma
(b), B-3}(c) and [3.3}(g),

sup B [|(T(wp) — 7(w))(go(w) — g(w))uy, (w)|]
heNp n,9€ENg n

< supug, (w)] sup sup|g(w) = go(w)| sup Blr(wn) = 7(w)]

gENyn w heNy, »

< C&,kCLohn sup [50,1( 18 — Box || + C'K_S/d]
56-/\/,3,71

< O& kC1Igndnn = 0p(n'/?), (3.33)
where the equality is by Assumption By (3.32)), (3.33) and the triangle inequality,

E [r(wn)(go(wn) = g(wn))uj, (w)] = B [1(w)(go(w) — g(w))ug, (w)] + 0p(n~"/?), (3.34)

uniformly over (h, g) € N,. Collecting the results in (3.26)), (3.28), (3.31)) and (3.34), we deduce that

Ky(g,h) — Ky(g™, h) = B [r(wn)(y — g(wn)) (Frnug, (w))]
= E [7(w)0ugo(w) (h(w1) — ho(w1))(Frnuy, (w))]

+ B [r(w)(go(w) — g(w)) (Frnuy, (w))] + 0p(n~"/?) (3.35)

uniformly over (h, g) € N,,. By definition,

() [h — hy, u;n] =F [T(w)augo(w)(h(wl) — ho(wl))u;n (w)] , (3.36)
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for any h € N}, ,,. By Jensen’s inequality, (3.6]), Assumptions and the definition of h, 5,

IT(cto) [hogn — hoyuy, || < B [|7(w)Ougo(w) (h(w1) — ho(w1))us; (w)|]

< C(EB[|h(w1) — ho(w1)]*])? = o(n™1/?2). (3.37)

Moreover,

lg* = goll? = llg — goll3

2
=E [(9(w) = go(w))(Frnug, (w))] + %E (g, (w)?]
= E [(g(w) = go(w))(Frinug, (w))] + Op(k7) (3.38)

uniformly over g € Ny, where the second equality is by Lemma (e). Collecting the results in (3.35)),

(3.36]), (3.37) and (3.38]) proves Assumption 3.2(ii).
Step 3. We verify Assumption 3.3 of HLR. As p(g) does not depend on h, we only need to show that

[ = hosut o = tin { Do (Z2, h0) [t 1} | = Oplin). (3.39)

By definition

(B = hoyuf Yo = (hn = hor,uf Yo + (hot = hoyuf V. (3.40)

By Hoélder’s inequality, (3.6), Lemma[3.3](h) and Assumption
[(ho,L. = hosuf, Y| < |[ufs, || 1ho,r — holl = o(n™"72). (3.41)

By definition,

1 1

T (w1) = o, (w1) = R(wy) (RaRL) ™ Ro(Hy — Hyp) + R(wn) (RRL) ™ RuUn (3.42)

where Hy, = (ho(w11),. .. ho(wi1,))s Hop = (hor(wii),... hor(wiy,)) and U, = (u1,...,u,). By

)

definition

~

(hn = hor,ut, e = lonllg p(P)' Qi H'(RuRy) ™' RyU,

+ o5 p(Px) Qi H'(RuRy) ™ Ru(Hn — Hrp). (3.43)
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By the Cauchy-Schwarz inequality,

2
lvillod p(Pr) Qi H (RoRY) R (Hy — Hp )

~ 2
= |n il p(Pr) QR H Q)™ R(Hy = i)
< PPx) % H (Qn.) THQR p(Pk)

- ||U';kl||sd
- (Hy = Hy Y B (R R~ Ry (Hy — Hyy)

n

o~ P IQ—lHIQ—lHQ—l P
< wmiln(QTL,L)wmaX(QL) sup |ho(w1) _ hO,L(w1)| p( K) K ||v*ﬁ/ K p( K)
w1 nilsd
n B |[of,, (w)]’
< er;iln(Qn,L)wmax(QL)L_281/dw1 {HU*H} - Op(n_l)
nllsd

(3.44)

where @n,L = n" 'R, R, the second inequality is by the fact that R/ (R,R!)"'R, is an idempotent
matrix, the third inequality is by (3.6) and the definition of v , the last equality is by Lemma (a),

(h) and Assumption Hence we have
lorllsd p(Px)' Qi H' (R Ry,) ™ Ru(Hyy — Hrp) = 0p(n~ /).
By the i.i.d. assumption, Assumption and Lemma (a),
E [HnilQZanUnHQ‘ {wl,i}?zl] <E [u2‘ w | niltr(QzlényL) =Op(n1),
which together with the Markov inequality implies that
[ QL Raly || = Op(n/2).
By the definition of vf, , Assumption Lemma (a) and (h),

o5 p(Pr)' Qi H'(Qn,) > HQ p(Prc)
< 031154 (@, )Jwomax(Qr)p(Pr ) Qi H' Q1 HQ p( Prc)

< o3 l3d Wt (@t )wimax (QL)E [(v, (w1))?] = Op(1).
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By Lemma [3.2](a), (3.47)), (3.48) and the Cauchy-Schwarz inequality

(v ]La) ™ (PR QF H (@)™ = Q7 Rul
= ’(n HU;Hsd)ilp(PK)le_(lH/(@n,L)il(@n,L - QL)QZanUn
< Il p(Pre) QR (@n) 7| | Qe = Qi [ Q7 Rl

= 0,(¢LLY?n™1) = 0,(n71/?) (3.49)

where the last equality is by Assumption By (3.40), (3.41)), (3.43)), (3.44) and (3.49),

~

(hn = hoy Yo = (n |0l .) ™ P(Pr) Qi H' QK Q1 RuUy + 0p(n™?)
= (nllvpll) ™ Z o, (wi)ui + op(n~Y?)
=1

= pin {Ap(Z1, ho)[uf, 1} + 0p(n~1/?) (3.50)

where the second equality is by the definition of vp , and the third equality is by the definition of
Ay(Z1,ho)luf, ] This verifies Assumption 3.3.(1) in HLR. To verify Assumption 3.3.(ii) in HLR, we

notice that

R ) )
n"2 > {A(Z1i ho)lub, ] + Ay(Zai, goo ho)uss, 1}
=1

n
1

=n" 2 Z {ur, (wri)us + uy (wi)ni} . (3.51)
i=1

To show the asymptotic normality of the above partial sum, we apply the Lindbergh-Feller CLT. By the
Cauchy-Schwarz inequality, Assumption Lemma (h)

SUPy, eWsy ‘Uf‘n (wl) ‘2

9
(s |

< ¢ il QT HQR p(Px)

< wph QL) villod p(Pr) QR H' QL HQ W p(Pr)

_CG B[, )]
wmin(@1) oy, [

= 0(¢1); (3.52)
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where the first equality is by the definition of vf, . By Assumption (3.52), Lemma (f) (h),

E [(vf (w1)u+ v} (w)n)?]
n |zl
E [(vf, (w)u)*] + B (05 (w)n)?]
n vk llog
E [(vf, (w1))*] + B [(v}, (w))*]
n vzl
sup,,, (vf, (w1))? + sup,, (v; (w))* B [(vf, (w1))?] + B [(v;, (w))?]

2 2
n v llsa v lsa

= O((CL + & x)n™") = o(1) (3.53)

<8C

where the equality is by Assumption [3.7]1 This verifies the Lindbergh’s condition. Hence Assumption
3.3.(ii) in HLR follows by the i.i.d. assumption and the Lindbergh-Feller CLT. Finally, we verify As-
sumption 3.3.(iii) in HLR. First, we have €3, = 0 because the estimators in both the first step and the
second step have closed form expressions. By definition, 63, = KY2p=12 L K=s/dp [12p=12 L [=s1/dwy
which together with K — oo and L — oo implies that n1/2(6§‘7n)*1 = o(1). Moreover by Lemma (e),

g [y = (B (v (w))?] )12 ||lvk|lo; = O(1) which finishes verification of Assumption 3.3.(iii) in HLR. m

Corollary 3.2 Under Assumptions Assumptions hold.

Proof of Lemma We first verify Assumption By definition,

a€21,heNs,, [[T(21, R)| + |7(21, ho)|] < 2 (3.54)

which shows that Assumption (1) holds. By definition, 1*(22,) = —1(y — g(wy))?, which implies
that

Ay (22, 0)[vga] = (y — g(wn))vg,1 (3.55)

and

T5,9(72, @) [g,1,vg.2] = —Vg,10g2 (3.56)
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for any vg,1, vg2 € V2, which implies that Assumption [1.1}(i) holds. Moreover

V(229" h) = (22, @) = Ay(z2, @) [Ernug, | = rnrpg (22, 0)[ug, , ug, |

— 7(21, h) ¥z g% h) — 97 0) —0, (3.57)

=AY (22, a) [£rpug, | — KZ?.L'I";Z’Q(ZQ, a)ug ,uy |

for any a € N,, and any zp € Z5. This means that Assumption[L.1}(ii) holds for ¢ (22, o) with Ay ,,(22) = 0.
By definition,

(o) [h = hoyuy, | = B [7(w)ugo(w) (h(w1) — ho(w1))ug, (w)]
niF

= E [1(w)ry, 1(Z2, @0)[hon — ho, (3.58)
Therefore, Assumption (v) has been verified in above. By and ,
B [A%(Za, gor ho)lut, ]| Z1] = B [, (w)| 2, w1] =, (w)E [1] 7, w1] = 0 (3.59)
which verifies Assumption (iii). By definition,
T 1 (22, @)[vg, vh] = Oug(wp)vgvp (3.60)

for any zo € Z5, any o € Ny, any v;, € V1 and any vy € Vo, which implies that Assumption (iv) holds.
By the triangle inequality, (3.7]) and (3.120)) in the proof of Lemma for any a € N,

}Aw Zg,g,h)[ ] Al/}(z2vgoah)[ gn] rwg('z?agoa [g Yo gn]

h)
(y = g(wn)) = (¥ = go(wn)) + (9(w) — go(w)))]
(g0(wn) = g(wn)) + (g(w) — go(w)))

(9o, (wn) = g(wn)) = (go,x(w) — g(w)))]

+ [ (wn)ug, (w) ((go.xc (wh) = go(wn)) = (go.x (W) = go(w))))]

< &k 118 = Bouxcll [ (h(w1) — holw))ug, | + CK =/ |

< &1 k0 | (R(wr) — ho(wl))u;n’ + K |. (3.61)

Let A3’n(22, Oé) = §1,K5 ,n

(h(wy) — ho(wl))u;n‘ + C’K*S/d|u;n|. By Lemma (3.3 (a), (f) and Assump-
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tion [3.7]

n
sup > Agn(Zas,a) = op(n~Y?). (3.62)
hE./\/—h,n i=1

Similarly, by Lemma [3.3}(b), (e) and Assumption

sup E[Az,(Z2,a)] = o(n"/?). (3.63)
hEth

This verifies Assumption [1.4](v). By definition,

E [ (A}, (Za, ao)[u;n])Q‘ 7y =z1) = (u, (w))*E [772} Zy =2z < Cfg,K (3.64)

where the inequality is by Assumption and Lemma (g) By Lemma (d), Assumption (vii)
holds with 67, = (.0n,,, and (5:771{37 x = o(1) follows by Assumption

We next verify Assumption By (3.56)), Assumption (1) holds with Ag,(22,) = 0 for any
zp € Z5 and any o € N,,. This also means that Assumptions [1.5] (vii)-(viii) also hold for Ag (22, ). By

Assumption (3.55) and (3.60),

| A% (22, Gos W[, ] = AT (22, o) [y, ] = 77, 1, (22, @00) [B = hoy ]

= [uz, (W) ((y = go(wn)) — (4 — go(w)) + Dugo(w) (h(w) — ho(w)))|

= |uj, (W) ((go(w) = go(wn)) = Bugo(w)(ho(w) — h(w)))|

< C'uj, (w)(h(w) = ho(w))?| . (3.65)

Let A7p(22,a) = Clul (w)(h(w) — ho(w))?|. Then by Lemma (a) and (g), and Assumption
sup A7 (Zo4,a) =0 n~1/2). 3.66
WP ; ( ) = op(n="7) (3.66)

Similarly, by Lemma [3.3](b) and [3.3](g), and Assumption

sup B [A7,(Z2,a)] = op(n~Y?). (3.67)
hGNh,n
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This shows that Assumptions (ii) and (vii)—(viii) hold. For any h € Nj p,

(7(Z1, h) = 7(Z1, ho)) 1 (Za, o) [h = hoy i |

= |(7(wn) = 7(w0))Ougo(w) (h(w1) — ho(w1))ug, |

< OCréo,x0nn | T(wp) — T(w)] (3.68)

where the inequality is by Assumption (3.91) in the proof of Lemma and Lemma (g) By
(3.68), Lemma [3.3] (c) and Assumption

sup (B [(7(Z1,h) = (21, ko)) (Za, o)l = hoyug, ]| < CCiéokh, = o(n'?), (3.69)
S h,n

which verifies Assumption (iii). By (3.7) and Lemma (d), for any g € Ny,

SUp |(g(w) = go(w))ug, (w)|
= sup|r(w) (g(w) — go(w))uj, (w)|

< sup |7(w)(g(w) = go,x (w))ug, (w)| + sup |7(w)(go,x () — go(w))uy, (w)]
weTy, weTy,

< sup |u;n (w)] sup |g(w) = go,rc(w)]

we'fw

+sup |ul, (w)] sup |g(w) — go,x ()|
w ’U}ET'LU
< C& k(|18 = Box || €0, + K™/ < CE (g (3.70)

where the first equality is by 7(w)? = 7(w), the first inequality is by the triangle inequality, the third

inequality is by (3.7) and Lemma (g), and the last inequality is by the definition of N, ,. For any
RS Nn,

((7(Z1, h) = 7(Z1, ho))T, o (Za, 000) g — gos i, ]|
= [(T(wp) — 7(w))(g(w) — go(w))u;, |
< C& g |T(Z1,h) — 7(Z1, ho)| (3.711)
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where the inequality is by (3.70)) and the definition of A;,. By (3.68)), Lemma [3.3](c) and Assumption

hs_}\lfp ‘E [(T(Zla h) - T(Zla ho))T;Z,g(Zg, CEO)[Q — Yo, u;n]] | < CCL&(QLK(Sh,n(Sg,n = O(n_l/Q)a (3'72)
S h,n

which verifies Assumption [L5|(iv). By (3.56), Assumption [L.5/(v) holds with Agy(z2,) = 0 for any
29 € Z9 and any a € N,. By and Lemma [3.3](e), Assumption [L.5|(vi) also holds. Assumptions
1.5] (vii) and [1.5] (viii) have been verified together with Assumptions [1.5](i) and [L.5(ii).

Finally, we verify Assumption Let hon = hor. By , , Assumption and Lemma
(e)

E [|T1>27h(Z2, ao)[hoJJ — ho,uzn]u
=K Haugo(w)(ho’L — ho)uZnH
< C(B [|(ho — ho)*[])Y/2(B [| (ug,)2[])*2

< CL_Sl/dwl = O(n_l/z) (373)

which verifies Assumption [L.6](i). Assumption [1.6](ii) can be verified using the same arguments of the

proof of Lemma Let gon = 9go,x- By (3.56), (3.7)), Assumption and Lemma (e)

B [|75.4(Z2, 20) 9o,k — go»uy, ]

=B [|(go.1c — 90)uy, |]

< C(B [|(go,x — 90)?[)"/2(B [| (g, )*|])M?

< CL™%4 = o(n~1/?) (3.74)

which verifies Assumption (iii). For any h € N p,

E [7(Z1, B)2(r, (22, o) — ho,py i, )7
= B [7(wn)*(Dugo(w)(h — ho )3 )?]

<C sup |(h(w) o (w0))? B [(u,)°) < CGEE,, (3.75)

where the first inequality is by 7(wp)? < 1 for any h € A} h,n and Assumption the last inequality is
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by (3.91) and Lemma (e). Moreover, for any f € F3,,

sup [f(22)] < < sup sup |(h(w:) —h07L(w1))2|> <Sup !(uzn(W))z\) < C& k(6 (3.76)
22€Z5 heN}, ., w1EWL weEW

which together with (3.75)) and Assumption implies that
(sup E [fZ] + (K + L) sup |F§"n(22)|log(n)n*1)(K+ L)log(n)
feF;, 2E2s

< C(CE07 (K + L) + (K + L)*&§ (16} , log(n)n ') log(n) = o(1). (3.77)
This verifies Assumption (V) for 3 ,,. For any h € Ny, and g € Ny,
7(21, h)r;z?g(zg, ao)g — 9o i u;n] = T(wh)u;n (w)P(w)' (8 — Bo,k)- (3.78)

Hence Assumption(iv) can be verified using the same arguments of Lemma For any h € N}, ,, and
g € Ny,

E [T(Zh h)2(7’;27g(2'27 ao)[g — Jo,K uzn])z]
=E [7(wn)*((9 = go,i)usy,)?]

<O sup [r(w)(g(u) ~ gose(w)?| B [(15,)7] < C& i3, (3.79)

2

where the first inequality is by 7(w)? = 7(w) and 7(wp,)? < 1 for any w and any h € N}, the second

inequality is by the definition of Ny, and Lemma (e). Moreover, for any f € Fj,,

sup |f(z2)] < ( sup  sup |(g(w) —go,K<w>>2\> <535V Ku@(w))"’!) < C& k67 (3.80)

290€ 2o gethn wETy

which together with (3.79) and Assumption implies that

( sup E [f2] + (K + L) sup |Fj7n(22)|log(n)n*1)(K+ L)log(n)
feFy, 29€2,

< O(& 82 (K + L) + (K + L)*€h 152, log(n)n ") log(n) = o(L). (3.81)

This verifies Assumption (V) for 75,. =
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Lemma 3.1 Let vfi(w1) = E [7(w)v}(w)0ugo(w)|w1]. Under Assumptions and|3.6, we have

g
(a) Blr(w)|v; (w) — v;‘(w)P] — 0 as K — oo;
(b) E [n? w))z] —E [7727'(’(0)(’();(111))2] as K — oo;

n°T(w)
(w

[ (
(c) B[ 1)

Vg (
—vf(w1)[*] = 0 as K — 0o and L — oo;
(d) B [u*(vf (w1))?] = B [u?(vf(w1))?] as K — oo and L — oc.

o,

Proof of Lemma (a) By the definition of v; and Assumption
E[r(w)P(w)(v, (w) — v} (w))] = 0xx1 (3.82)
which immediately implies that

Er(w)| P(w) By.x — vg(w)[’]
= E[r(w)|P(w) Bg.x — vy, (w) "] + Blr(w)|vy, (w) — vg(w)]]
)

> EBlr(w)|v} (w) — v (w

> on 1’ (3.83)

for any 8y K € RX. Hence as K — oo,

E[r(w)lvg, (w) — vj(w)[*] < Blr(w)| P(w) Bu,x — vj(w)[*] = 0, (3.84)

where 3, k is defined in Assumption
(b) By Assumption Jensen’s inequality and Hoélder’s inequality,

B [n*7(w)(vy, (w) — vg(w))vy (w)]]

< CE [r(w) [(v;,, (w) = vy (w))vy(w)]]

< C(E [1(w) | (v}, (w) = v} (w))*|] B [r(w)(vy(w))*])*/? (3.85)
which together with Assumption and the result proved in (a) implies that

|E [nQT(w)(v;n (w) — v} (w))vi(w)]| — 0 as K — oo. (3.86)
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By the triangle inequality,

|E [n*7(w) (v, ())?] — B [n*7(w) (v (w))?]|
< E [’ (w)(v5, (w) — vy (w))?]
(vg

+2|E [P (w)(v], (w) — vj(w))vy(w)]], (3.87)

which combined with the results in (3.84)), (3.85)) and (3.86) proves the claim (b).
(0) Let v, (w1) = R()QEE [R(w1)r(w)ugo(w)v(w)]. Then

op, (w1) = op g (wi) = R(-)' Q7B [R(wi)7(w)dugo(w) (v, (w) — vy (w))] - (3.88)

By the (matrix) Cauchy-Schwarz inequality, Assumption and the result proved in (a),

E (v, (w1) = of 1 (w)*] < B [7(w)(9ugo(w))*(vy, (w) — v5(w))?]

< CE [T(U))(’U;n (w) — v;(w))2] — 0 (3.89)

as K — oco. Using the same arguments after display (A.9) of Newey, Powell and Vella (1999) (their b7 (2)

and p(z) are vf. ; (w1) and vf(w1) here respectively), we can show that
E [|v . (w1) — vf(w1)[’] — 0 as L — oo. (3.90)

Combining the results in and (3.90), we immediately prove the claim in (c).

(d) The proof follows similar arguments in the proof of claim (b) and hence is omitted. m

Let Qnz = n 'R, R, and @n,K = n~1P! P,, which are the estimators of Qp, = E [R(w1)R(w;)'] and
Qx = E[r(w)P(w)P(w)’] respectively. The following Lemma is useful to verify the high-level conditions
for the asymptotic normality. The proof of the results in Lemmas (a) and (b) are in Newey (1997)

and the proof of the remaining results are in Newey, Powell and Vella (1999).

Lemma 3.2 Let 0, = LY 2p=12 4 [=s1/dw1 gnd Ogn = KY2p=1/2 4 g=s/d ¢ Op.n- Under Assumptions
we have

(@) [|Qn,r = Qull = Op(CLLY*n=1/2);

(0) [An = Yo,Ll| = Op(8}, 1)

() 1Qnx — QI = Opl&]  (5;,,)* + KV 2E1 16}, + & CL0} )5
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(@) 1Bn = Boxc|| = Op(5% )
(e) n™t 320y 7 — 7il = Op(CLo}, )

Recall that NV, ,, = {y € RL: ||y — Yol < 0nn} and N, = {8 € RE: ||8 — Bo k|| < 0y} where
Ohm = 5,*17719,1, dgn = 0y n0n and {on}n is a slowly divergent real positive sequence. By Lemma(b) and
Lemma (d), we have 3, € N, ,, and 3, € N3, wpal. Define Ny, = {h(-) = R(-): v € N} and
Nyn=1g()=P()B: B€N,,}. The following Lemma is useful to verify the high-level conditions.

Lemma 3.3 Under Assumptions 3.0, we have
(a) supyer, , 7 S0y [[R(wn)'y = ho(wn)P] = Op(8F,,);
(b) supsen, , B [[R(w10)"y = holw1)?] = O(F,,);
(c) suppey, , Bll7(wn) — 7(w)[] < CCLonn;
(d) supneps, , 7t 2oi [T (wni) — 7(wi)]] = Op(CLonn):
(¢) B [(vj, ())?] < Clvnl s
(f) n=t 2 (0, (wi)? [lo | o = Op(1);
(9) sup,, |vi, (w) [l | < Céok:
(0) B [Jvg, (wn)|*] < C il

Proof of Lemma Following Newey (1997) we assume without loss of generality that Q1 = I, and
Qg = Ix. Such an assumption can be verified under Assumption for the power series and splines

using the arguments in the proof of Theorem 4 and Theorem 7 of Newey (1997) respectively.
(a) By Assumption Lemma (a), Q1 = I;, the Cauchy-Schwarz inequality, the definition of

N and (3.6),

n

-t R(w1 )y = ho(w1,; 2}
72}\1[5’”” ZZ} [‘ (wii)'y (wr, )’

n

<2 sup n! Z [ (w1,4)'y = ho,(w1,1)| } +2 sup n Yy |:|ho,L(w1,i) - ho(wl,i)lg}
WEN’Y n ’YGN’y,n i=1

<2 sup (Y= o.0) Qu.p(y — Yor.) + 2Ck ™51/ %1
'YEN’y,n

< meax(@n,L) sup ||7 - 70,LH2 + QCkisl/dwl = Op((s/%,n)a
’YEN'y,n

which proves the claim in (a).

(b) The proof follows similar arguments to those in the proof of (a) and is omitted.
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(c) For any h () = P(-)"y € Npn,

[A(w1) = ho(wi)] < [P(w1)"y = ho,p(w1)| + [ho,L(w1) = o(w1)]

< (oY = Yol + CL™*Y/ %1 < CCronp (3.91)
which implies that

7 (wp) = 7(w)| < I {u < b+ P(wr)"y = ho(wr)} — I{u < b}
+ [T {u>a+ P(w)y — ho(w1)} — I{u > a}|
< I {|u =0 < [P(w)'y = ho(wr)|}

+ 1 {Ju—a| < [P(w1)"y — ho(wr)|}

< IHfu = b < CCLonn} + I{|u—al < CCLonn}, (3.92)

where (1,0, = o(1) by Assumption As the density of u is bounded in the local neighborhoods of a
and b (which is assumed in Lemma A3 of Newey, Powell and Vella (1999)), by (3.92) we get

E| sup |r(wp) —7(w)|| < CCLonn (3.93)
hENh,n

which finishes the proof.

(d) By (3.93) and the Markov inequality we immediately get the asserted result.

(e) By the definition of 1 and Assumption E [n?|z, w1] > Cy where Cy, is a finite positive constant.
Thus

El(v;, (w))* v} ]l47 =

= <ot (3.94)

2

where the second equality is by the definition of v; and 7(w)* = 7(w).

(f) The asserted result follows by (e) and the Markov inequality.
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(g) By the Cauchy-Schwarz inequality and Assumption

|7 (w) P(w) Q' p(Prc)
E [u?(vf, (w1))?] + B [n?7(w)(v;, (w))?]
p(Pr)' Q2 p(Prc) || m(w) P(w)|?
= E[u?(vf, (w1))?] + CyE [7(w)(v}, (w))?]
fo KP(PK) QK p(Prk
~E [u2(vF (w1))?] + CuE [7(w)

2 -2
v, (W)[" lv3llsa =

vy w))]

)
(
(
(

B QuE [rw)(, ()]
~ E [u?(vg (w ))]—I—C’E[T(w vi (w))?]
< gO meln( ) (395)
for any w. This combined with Qx = [x immediately proves the claim.
(h) By Lemmas [3.1(b) and [3.1}(d)
\ e E [(vf(w1))?
EHUFn (w1)|2 anHsdQ] g [nQT(w)(U;(ZE))l;] —|—1E [}UQ(UF(wl)P] (3.96)

as K — oo and L — oo, where vfi(w;) = E [T(w)v;(w)augo(wﬂwl]. By Assumption and Jensen’s
inequality,

E [(vf:(w1))?] < CE[(E [T(w)v;(w)]wl])Q] < CE [T(w)(v;(w))Q] . (3.97)

By Assumption E [772\3:, wl] > C, where (), is a finite positive constant, which together with 1D
implies that

<c-L (3.98)

The asserted claim follows from (3.96]) and (| - []

Lemma 3.4 Define F1, = {(x,w1) + Ougo(w)7(wn)(h(w1) — ho(wr))uy (w) : h € Nyyn}. Then the

uniform entropy numbers of F1,, satisfies

SgpN(g ||F1,n”Q72 7F17n7L2(Q)) S (C/g)CL fOT any € € (07 ”7 (399)
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where C is a finite fived constant, Q) ranges over all finitely-discrete probabilities measures and Fip,

denotes the envelope of Fi .

Proof of Lemma Let 7(z,wy) = H?wQH Haj < wj <bj}, a=aq,,+2 and b = by, 2. Then by

definition,
T(wp) = 7(z,w2)l{a <z — h(w1) < b}. (3.100)
Define
Firn = {(@,w1) = Haz <b+ R(wi)'y v € Ny s (3.101)
Frap = {(z,w1) = H{z = a+ R(w1)'y 1 v € Ny ks (3.102)
f137n = {(x>w1) = T(;U, wZ)augo(w)(R(wl) v—h (wl)) ( ) v e ./V:y n} (3103)

Then by Lemmas 2.6.15 and 2.6.18 in van der Vaart and Wellner (1996), the VC-dimentions of Fiq ,
Fi2n and Fi3p are of order L. By Theorem 2.6.7 in van der Vaart and Wellner (1996), the uniform

entropy number of 77, , satisfies
sgp N(e HFlj,nHQ,z s Fijm, L2(Q)) < (C/a)oL for any ¢ € (0,1], (3.104)
where C' is a universal constant and F;, denotes the envelope of Fi;, for j = 1,2, 3. Because
Fin C{fifofs: f1 € Fiin, fo € Fian, f3 € Fizn}, (3.105)
by (A.6) and (A.7) in Andrews (1994),

Slclgp N(e[FiinFiznFisnllg o Fin, L2(Q))
1L, sp N (e [ Fiylg /3, i, L2(@) < (C/2)°" (3.106)

where the second inequality is by (3.104). This proves (3.99) with Fy,, = Fi1nFi2,F13,. ®

Lemma 3.5 Define Fa, = {(z,w1) — 7(wp)ul (w)P(w)'o: h € Nyp, a € SK71}, where S~ = {a €

RE : o/ = 1}. Then the uniform entropy numbers of Fo,n satisfies
C(L+K)
D N (e [Fanllg, P L2(Q) < €/ for amy e € 0,1] (3.107)
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where C is a finite fived constant, Q) ranges over all finitely-discrete probabilities measures and Fy

denotes the envelope of Fa .

Proof of Lemma [3.5l Define

Form = {(z,w1) = 7(z, wo)ul, (w)P(w)'o: o€ SH1Y, (3.108)

where 7(z,ws) is defined in the proof of Lemma [3.4 Then by Lemmas 2.6.15 and 2.6.18 in van der Vaart
and Wellner (1996), the VC-dimension of F»; , is of order K. By Theorem 2.6.7 in van der Vaart and

Wellner (1996), the uniform entropy number of Fa; 5, satisfies
sup N(elFarnllgg» Form La(Q)) < (C/e)“™ for any e € (0, 1], (3.109)

where C'is a universal constant and F»; , denotes the envelope of F21 . The rest of the proof is the same

as Lemma [3.4] because

Fon C{fifofs: f1 € Fiin, fo € Fian, f3 € Foin}, (3.110)

where F11, and Fig, are defined in (3.101)) and (3.102) respectively. Hence (3.107) holds with Fy, =

Fi1nF120F21. ®

Lemma 3.6 Under Assumptions 5.7
sup | pn {7(wn)(go(w) — go(wp))u, (w)}| = op(n~*/3).

hENh n

Proof of Lemma Let up =  — h(wy). As u =z — hy(wy), we have u — up = h(wy) — ho(w1) by
definition. By Assumption

190(w) — go(wh) — Ougo(w)(h(w1) — ho(w1))| < C |h(wr) — ho(wr)|? (3.111)
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which together with the triangle inequality, Lemmas (a), 3.3} (b) and 3.3|(g) implies that

sup | {7(wn)(go(w) = go(wn) — Bugo(w)(h(wr) — ho(wr)))uy, (w)}|
heNy n,

n

<C sup w3 [Ihwng) — holwn) ? u, (1)
heML,7L i=1

+C sup E [\h(wﬂ - ho(wl)|2 |u;n(w)|}

heML,n
< Csup ‘u;n (w)| sup nt Z [[h(wl,i) — ho(wi4) 2]
w heML,n i=1
+ C'sup [ug, ()] Sup E [\h(wl,z‘) —ho(sz’)lQ} = Op(&0,K6 ) (3.112)
w he h,n

By Assumption §O,K5}2L,n = o(n~1/2). Hence by (3.112) we have

sup [ {7(wn) (90(w) = go(wn) = Dugo(w) (h(wr) = ho(w1)))uj (w)}| = 0p(n~""?). (3.113)

hENh,n

We next show that

5P | {7 (wh)ugo(w) (A(w) — ho(w))uj, (w)}| = 0p(n~"?). (3.114)

Let F1n = {(z,w1) = Ougo(w)T(wn)(h(w1) — ho(wr))uy, (w) : h € Npy}. By Assumption Lemmas
B3 () and B3 (o),

sup [E [f2] = sup E [(ﬁugo(w)T(wh)(h(wl) — ho('wl))u;n (w))Q]

fe€EF1n hGNhyn
< C sup B [((h(wi) = ho(wr))uy, (w))?]
hGNhﬁn
< Csup [u}, (w)|” sup B [(h(wr) — ho(wn))?] < C€3 (82 (3.115)
w € h,n
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Moreover, by the definition of N, 5, (3.6]), Assumption Lemmas (b) and (g),

sup | Gugo(w)7(wn) (h(wi) — ho(w1))uy, (w)]
heNy »

<C sup |(h(wy)— ho(wl))uzn(W)}

heN
< C'sup ‘u;n(w)‘ sup [|h(w1) — o r(w1)| + |ho,r.(w1) — ho(w1)]]
w heNh.n
< O'sup [u, (w)| Sup [éo,K I = oLl + OL—Sl/dw] < C& K Onn- (3.116)
o
By Assumption [3.7]
L& k67 log(n) + &5 xnnL?(log(n))*n ™" = o(1). (3.117)

Collecting the results in Lemma (3.115)), (3.116)) and (3.117)), we can use Lemma 22 of Belloni et. al
(2016) to show that

sup |;¢n {0ugo(w)T(wp) (h(wr) — ho(w1))uy, (w)}’ = op(n_l/Q). (3.118)

hE/\/‘h,n

The asserted result follows by (3.114)), (3.118)) and the triangle inequality. =

Lemma 3.7 Under Assumptions

sup | {T(wn) (g0 (wn) — glwn))ul, }| = 0p(n~"/?).
heN} 1,9€Ng n

Proof of Lemma By the triangle inequality, (3.7), Lemmas [3.3] (e)-(f)

he/\/h,sﬁge/\/g,n }un {T(wh)(go(wh) - go,K(wh))u;n (w)}{

< CK~%/dp~1 Z Hu;n(wz)‘ +E Hu;n('wz)m = 0,(n"1/?), (3.119)
i=1

where the equality is by Assumption [3.7] By the first order expansion and the Cauchy-Schwarz inequality,
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for any g € Ny,

*

|7 (wn) (9o, i (wh) — g(wh) = go,ic (w) + g(w))uy, (w)]
= |7 (wn)(B — Bo,x)'(P(wp) — P(w))uy, (w)]
< &k 18 = Box | |ug, (w)(h(wr) — ho(wr))] (3.120)

which together with the definition of A}, ,, the triangle inequality and Lemmas (a) and (f ) implies
that

n
sup 7Y T (win) (o, (win) — g(win) = go, i (ws) + g(w;))uf, (w;)]
heNh n,9€Ng,n i=1

<&1.K0gn hsjt\lfp nt Z g (wi) (h(wii) — ho(wi))]

ENhn i=1
n n 1/2
<&1K0gn SUp (nl Z ‘u;n (wi)‘2 nt Z |h(w1,;) — ho(wl,i)|2>
heNhn i=1 i=1
= Op(&1,Kx8g,n0n,0) = 0p(n~"/?) (3.121)

where the equality is by Assumption Similarly, we can show that

sup B [|7(win)(Go,k (win) = g(win) = go.ic(wi) + g(wi))uj, (w)[] = o(n™?), (3.122)
heNy n,.96Ng.n

which together with (3.121)) implies that

sup | {7(wn) (G0, (wn) — 9(wn) = go.xc(w) + glw))us, (w)}| = 0p(n~?).  (3.123)
heN}, n,9€ENg.n

Recall that Fo, = {(z,w1) — 7T(wp)u}, (w)P(w)a : h € Ny, a € SK71}, where SK71 = {a € RF :
o’a=1}. By Lemma (g) and 7(w)? = 7(w),

sup E [fQ] = sup E [(T(wh)u;n (w)P(w)'a)2]
fe€Fon hEN, n, 0 ESKE—1
< sup(uy, (w))? sup E [(T(w)P(w)/a)Z] < C’ﬁg’K. (3.124)
w aeSK-1
Similarly,
sup ‘T(wh)u;;n(w)P(w)'a‘ < sup }u;n (w)P(w)'a} < Cfg}K. (3.125)
heN}, ,,acSE-1 aeSk-1
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Collecting the results in Lemma (3.124) and (3.125)), we can use Lemma 22 of Belloni et. al (2016)

to show that

sup |/«4n {T(’LU}L)U;L(’LU)P(w)/a}} — Op((L + K)1/2€07K(10g(n))1/271_1/2).

heN}, ,,aeSEK-1
By the definition of N, and (3.126)),

RN GEN [ {7 (wn) (9o, i (w) — g(w))ug, (w)}|

< sup | {r(wp)u, (w)P(w)a}| sup ||B = Boxl
REN, n,a€SK—1 BENsn

= Op(ég,n(L + K)1/2§O7K(10g(n))1/2n*1/2) = Op(nfl/Q)

(3.126)

(3.127)

where the second equality is by Assumption Collecting the results in (3.119)), (3.123]) and (3.127)),

and applying the triangle inequality, we immediately prove the asserted result. m

4 Extra Simulation Results

In this section, we study the finite sample performance of the two-step nonparametric M estimator and

the proposed inference method when the nonparametric regressor may have unbounded support. The

simulated data is from the following model

Yi = wl,ieo + mo(ho(xi» + u;, (41)

S; = ho(:ci) + &4, (4.2)

where 0, = 1; ho(z) = 2 cos(mx), my(ws2) = sin(mwsy) and we = hy(x). For i = 1,...,n, we independently
draw (w1, Ts i, ui, €)' from N(0, I4) and then calculate

T; = 271/2(11)17,‘ + .’L'*J'). (43)

The data {y;, si, w1, x;};_, are generated using the equations in (4.1)) and (4.2).

The first-step and second-step nonparametric estimators and the consistent variance estimator take

the same forms as their counterparts in Section 7 of HLR and hence are omitted here. We consider

sample sizes n = 100, 250 and 500 in this simulation study. For each sample size, we generate 10000
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simulated samples to evaluate the performances of the two-step sieve estimator and the proposed inference
procedure. For each simulated sample, we calculate the sieve estimator of (6,,m,), and the 0.90 confidence
interval of 6, for each combination of (L, K) where L = 2,...,16 and K = 2,...,21. The simulation
results are reported in Figures 4.1 and 4.2.

The properties of the two-step sieve M estimator and the proposed confidence interval are similar to
what we found in the other DGP employed in HLR. We list some important differences. First, when the
unknown function estimated in the first-step has unbounded support, the optimal L which produces a
two-step M estimator with the smallest MSE is much larger. Second, the ratio between the MSE of the
cross-validated estimator of m, and the optimal MSE does not seem to converge to 1 in all the sample
sizes we considered. However, the MSE of the cross-validated estimator of 6, does approach the optimal
value quickly as the sample size increases. Third, when L is small (e.g., L = 4), the proposed confidence
interval over-covers the unknown parameter 6, and its length diverges with increasing K. Fourth, the
coverage probability of the confidence interval based on the cross-validated sieve estimator is almost

identical to the nominal level even when the sample size is small (e.g., n = 100).

5 Consistency and Convergence Rate

In this appendix, we first derive the consistency of the second-step sieve M estimator g, under the metric
|llg defined on G. Given the consistency, we then focus on a local neighborhood of g, to calculate the
convergence rate of g,. Under mild conditions, the first-step sieve M estimator ﬁn is consistent (see,
e.g., Theorem 3.1 of Chen, 2007), and also has rate of convergence under a pseudo-metric ””HEI Let
Z,n = O(e1,n) be a small positive number that goes to zero as n — oo. Without loss of generality we
denote ||En_ho| I = Op( ;n) as the convergence rate. Hence we can assume that En belongs to a shrinking

neighborhood N, , = {h € Hp ¢ [|h — hollyy < dpn} of ho Wpal, where 0y, = &} , log(log(n)) = o(1).
5.1 Consistency of the second step sieve M estimation
The following conditions are sufficient for the consistency of g, under |[|-||5.

Assumption 5.1 (i) E[¢ (Z2, go, ho)] > —o0 and if B [tp (Z2, go, ho)] = 00, then B[y (Za, g, ho)] < oo for

all g € Go\ {90} and for all m > 1; (ii) for all € > 0, there exists some non-increasing positive sequence

2See, e.g., Shen and Wong (1994) and Chen and Shen (1998) for the convergence rate of the one-step (approximate) sieve
M estimator for i.i.d. data and weakly dependent data respectively.

64



Figure 4.1. The Mean Squared Errors of the Two-step Sieve M Estimators of m, and 6, (DGP2)

1. MSE of 2-Step Estimator of m, 2. MSE of 2-Step Estimator of 0y
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Figure 4.1: 1. The left panel represents the MSEs of the two-step sieve estimator of m, for sample sizes n=100,
250 and 500 respectively; 2. the right panel represents the MSEs of the two-step sieve estimator of 6, for sample
sizes n=100, 250 and 500 respectively; 3. L* and K* denote the numbers of the series terms which produce sieve
estimator of m, with the smallest finite sample MSE (in the left panel) or sieve estimator of 6, with the smallest
finite sample MSE (in the left panel); 4. the dotted line represents the MSE of the two-step sieve M estimator with
L = L* and K = K*; 5. the solid line represents the MSE of the two-step sieve M estimator with L and K selected
by 5-fold cross-validation.
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Figure 4.2. The Convergence Probability and the Average Length of the Confidence Interval of 6, (DGP2)

1. Coverage Probability of the Confidence Interval 2. Average Length of the Confidence Interval
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Figure 4.2: 1. The left panel presents the coverage probability of the confidence interval of 6, for sample sizes
n=100, 250 and 500 respectively; 2. the right panel presents the average length of the confidence interval of 6, for
sample sizes n=100, 250 and 500 respectively; 3. the dotted line in the left panel is the 0.90 line which represents the
nominal coverage of the confidence interval; 4. the solid line represents the coverage probability of the confidence
interval based on the two-step sieve estimator with K and L selected by 5-fold cross-validation.
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cn(€) such that for allm > 1

E ¢ (Z2; 9o, ho)] — sup E [ (Z2,9,ho)] 2 cn(e) (5.1)
{9€Gn: |lg—gollg>e}

and liminf,, ¢, (¢) > 0 for all e > 0.

Assumption [5.1] is the identification uniqueness condition for g,. For sieve M estimation a similar
condition can be found in White and Wooldridge (1991). This assumption is stronger than Condition
3.1 of Theorem 3.1 in Chen (2007) and Condition a of Lemma A.2 in Chen and Pouzo (2012), because it
requires ¢y (g) to be bounded away from zero for all large n. It essentially requires that the second step

sieve M estimation is well-posed under the strong metric ||-||5-

Assumption 5.2 (i) g, € G and ||-||g is a metric defined on G or some metric space containing G; (ii)

Gn C Gpt1 CG for alln > 1 and there exists some g, € G, such that

B [¥(Z2, gn, ho) — (22, gos ho)l| = O(n2,1) (5.2)

where 12, s some finite positive non-increasing sequence.

Assumption [5.2] imposes conditions on the sieve spaces. It is essentially Condition b of Lemma A.2 in
Chen and Pouzo (2012). It is also implied by Conditions 3.2 and 3.3 of Theorem 3.1 in Chen (2007). The

condition in (5.2)) is clearly implied by the convergence rate of the sieve approximation error of ||g, — go

s,2

and the continuity of the criterion function E [¢ (Za, g, ho)] for all g € G,, in the local neighborhood of g,.
In the following we denote i, [¢) (Z2,9,h)] = % Yoiy { (Z24, 9, h) — B¢ (Za, g, h)]}.

Assumption 5.3 (i) supycg, nen, , |Hn [¥(Z2, 9, h)]| = Op(non) where {no .} is some finite positive non-
increasing sequence going to zero; (ii) there is a finite positive non-increasing sequence {nin} going to
zero such that

sup |E[w(Z27gah) —¢(Z279, ho)” = O(T]l,n)
gng,hEth

Assumption is similar to Condition 3.5 of Theorem 3.1 in Chen (2007) and the first part of
Condition d of Lemma A.2 in Chen and Pouzo (2012). Assumption (i) can be verified by applying
a standard empirical process result. Assumption (ii) can be verified by the convergence rate of the
first-step sieve M estimator hy, and the continuity of the criterion function E [y (Z2,g,h)] in h € Npp

uniformly over g € G,.
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Theorem 5.1 Let Assumptions and [5.3 hold. If
max {no,nv 771,11’ 772,717 5%,7),} = 0(1) (53)

then the second-step sieve M estimator is consistent under ||-[|g, i.e. |[gn — gollg = 0p(1).

Proof of Theorem [5.1] Let Q,, (9,h) = 2 3% ¥ (Za4,9,h) and Q (g, h) = B[ (Z2, 9, h)]. Let I,,(¢)

n

Pr ([gn — gollg > €). For any € > 0, by the definition of g,, we have

I,(e) < Pr < sup Qn(g, hn) = Qnlgn, hn) — Op (5%,71)) . (5.4)

{9€Gn: llg—gollg>¢}
Rewrite the inequality inside the parentheses on the RHS as

~

= [Qn(gus ) = Q90:10)| + 0y (3,) 2 Qg ) = swp Qulg,h). (55)
{9€Gn: llg—gollg =}

Note that the first two terms on the LHS of the above inequality can be rewritten as

— | @u(ga: ) = Q g0, h0)|
= —ttn [¥(Z2, 90 )| = [ Q90 Fn) = @ (90, ho) | = [@ (90 ho) = Q (90, o)

which implies that if hy € N with probability approaching 1 (wpal), then

~ [ @ulgns ) = Q (gos o) | < T + T + T, (5.6)
where
Il,n = sup |MTL [¢ (227gvh)]| )
9€Gn heNy, 1,
[2,715 sup ’Q (g7h) _Q(g7h0>|7
gegnthNh,n

I3, = |Q(gn, ho) — Q(Ggo, ho)| -
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Similarly if I € Nhi.n wpal, then for any g € Gy,

Qulg,hn) = o [¥(Z2, 9. ) | + [Q(9.Fn) = Qlg. ho)| + Qg: o)

< sup  pa [ (Z2,g,h)l[+  sup  |Q(g,h) — Q(g, ho)| + Q(g, ho)
9€Gn,heNp n 9€Gn,heNy

= Il,n + IZ,n + Q(ga ho)- (57)

Therefore when ﬁn € N, wpal, we may note that the term on the RHS of 1} is such that

~

Q(9os ho) — sup Q@n(g,hn)
{9€Gn: llg—gollg =€}
Z _Il,n - I2,n + Q(gm ho) - sup Q(gv ho)- (58)

{9€Gn: |lg—9gollg>¢}

From , , and , we get

3
I,(e) <Pr|2 ij,n + Op(sg,n) > Q(go, ho) — sup Q(g,ho) | +Pr (lAln ¢ Nh,n> . (5.9)
j=1 {9€Gn: |lg—9gollg>€}

If Q(go, ho) = 00, then using Assumption (i), we have

Q(go, ho) — sup Q(g, ho) = oco. (5.10)
{9€Gn: llg—gollg>e}

However, from Assumption [5.2}(ii) and we get max{l n,I2n,I3,} = Op(1), which together with
(5.9), (5.10), e2,n = o(1) and the definition of N}, , implies that

I,(e) < Pr (En ¢ th) — 0 as n — oo.

On the other hand, if Q(g,, ho) < 00, then using (5.9) and Assumption (ii), we get

20 + 2Ly + 2135, + Op (<3 ~
In(€> < Pr 1Ln 2n 3,n p( 2,n) >1| +pr (hn ¢Nh,n> . (5.11)
cn(e)
Assumption (ii), Assumption (ii), Assumption and the condition ([5.3)) imply that

201 + 205 + 2135 + Op(c3,)

cn(€)

= op(1)
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for any & > 0. Combining this result with (5.11)) and the definition of N}, ,,, we conclude that I,,(¢) — 0

as n goes to infinity. This finishes the proof. m

5.2 Rate of convergence of the second step sieve M estimation

After the consistency of the second-step sieve M estimator g, is established, we can focus on the local
neighborhood of g, to compute the convergence rate of g, under [|-[|5. Let K3 be a generic finite and

positive constant and define

Nog, ={9 € Gn : 1|9 — gollg < Ka},

then by the consistency of g,, we have g, € N3 g, wpal. Moreover, given the convergence rate 01, of

the first-step sieve M estimator En, we can define
Mk, = {h € Hp : [|h = holl# /04, < Kl}
such that for any small constant w > 0, there is a finite constant K, > 0 such that
Pr(h, ¢ M k,) <w for all n. (5.12)

The following general conditions are sufficient for deriving the convergence rate of g,.

Assumption 5.4 There are some finite, positive and non-increasing sequences 01y, 02, and 0y that go

to zero as n — oo such that the following hold for any fized finite constants K1 > 0, Ko > 0: (i)

sup  |B [)(Z2, g, h) — ¥ (Z2, 9o, h)]| = O(63,,); (5.13)
hGNl,Kl

(ii) for any small constant (5,g> 0 and for any g € Na g, with 0 < 5 < 19— gollg <9

sup E W (Zg,g, h) - ¢ (Z27 Yo, h)] < CK17151,7L6 - CK1,2527 (5'14)
heNl,Kl

where ci, 1 and ci, 2 > 0 are finite constants only depending on Ky ; (iii)

sup |t [0(Z, 9, 1) = (Z, 9, ho)]| = Op(62); (5.15)
gENQ’KQ,hGNLKl
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(iv) for all n large enough and for any sufficiently small 9§,

Pn(9)
E sup ltin [V(Z, 9, ho) — W(Z, go, ho)]|| < c1
{9€Ns K57 lg—g0llg <5} NG

(5.16)

where ¢ > 0 is some finite constant and ¢, (-) is some function such that 6 7¢,(0) is a decreasing

function for some v € (0,2).

Assumption [5.4] (i) imposes local smoothness condition on the function E [ (Z3, -, h)] uniformly over
h in some shrinking neighborhood. The rate ds, is determined by the convergence rates of the sieve ap-
proximation error of g, and the first step sieve estimator ﬁn Assumption (ii) is a local identification
condition. The term ¢y ,, on the right side of the inequality represents the effect of first-step estima-
tion on the second-step sieve estimate g,. In Assumption [5.4](i), (ii) and (iii), the uniform convergence
is imposed over local neighborhoods Nl, K, and/or /\/2, K,- That is particularly useful for establishing the
convergence rate of g,, because by the consistency of g, and the convergence rate of ﬁn, we can bound
the probabilities of the events {g, ¢ N3 k,} and {h, ¢ M K, } in finite samples by choosing sufficiently
large K7 and K5. Assumption (iv) is a stochastic equicontinuity condition which is similar to the one
in Theorem 3.4.1 of Van der Vaart and Wellner (1996).

Theorem 5.2 Suppose that the conditions in Theorem and Assumption are satisfied. Further-
more, if |gn — gollg = O(85,,) where &5 ,, is defined below and there is a finite, positive and non-increasing

sequence Oy, such that

(5g,n)72 Pn(dg,n) < cav/'n, (5.17)

then we have ||gn — gollg = Op (55’71), where 3 , = max {61,020, 6n,0gn> €20 }-

Proof of Theorem Let w > 0 be some arbitrarily small constant. Because g, is consistent, we can

choose a sufficiently large constant Kj; > 0 such that
Pr(|[gn — gollg > Km) < w. (5.18)

By |lgn — gollg = o(1), we deduce that there is some sufficiently large K, such that [[gn, — go|lg < Ky,
Let K3, = max{K, Ky, },

Gn(M) ={g € Gyn:2M65, <|lg—gollg < K3/}
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and Iy (w) = Pr (||gn — gollg > 2M5§7n). Note that by (5.18), we have
Ingn () = Pr(gn € Gn (M)) + Pr(||gn — gollg > K3y) < Pr(gn € Gn (M) + w. (5.19)

We will prove that

Z C1C9 [(2j+1)’y + KQ]

1 < - .
Mn (w) — |CK1’222] _ K _ CK1712‘7|

+ 5w (5.20)

J>M2i-165 <K},
where ¢; and ¢y are defined in Assumption [5.4}(iv) and (5.17)), ¢k, 1, ¢k, 2, K. and K are some fixed
finite constants which may depend on w, and v € (0,2) is defined in Assumption [5.4}(iv). As v < 2, we

can choose M sufficiently large such that

Z creg [(2771) + K2

- — < W
’CK1,222] - K- CK1,12J| ’

=M 218 <Ky

which together with (5.20)) implies that Ip/,(w) < 6w. As we can let w arbitrarily small, this would

establish that ||g, — gollc = O, (6’57”). Equation 1} is established by combining 1' 1) and

(5.33) below, which are proved in several steps.
Step 1: We prove that

Inppn(w) < Pr sup [11.n(9, ho) + I2.5(g, h)] + K(Sé‘?n >0 |+ 5w (5.21)
9EGn(M),heNT K,

where K is a fixed constant such that Pr (ﬁn ¢ N, K1) < w for all n, K is some fixed constant defined

below,

Il,n (g) ho) = Un W(ng, ho) - w(Z%gn? hO)] )

and In,, (g,h) = Q(g,h) — Q(go, h).

For this purpose, we first note that by the definition of g,,, we can choose some sufficiently large constant

K7 > 0 such that
Pr (Qn(/g\m/}zn) - Qn(gm/ﬁn) + K15%7n < 0) <w. (5.22)
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Combining (5.19) and (5.22)), we have

Inp (W) < Pr sup Qn(g,?z\n) — Qn(gn,ﬁn) + Klzs%,n >0+ 2w.
9EGn (M)

It is clear that the term inside the parentheses on the RHS of (5.23)) is such that

Qn(ga/ﬁn) - Qn(gn;/}zn)
= Hn {1/1(22,9,%) - w(Z27gn7ﬁn):| + Q(gaﬁn) - Q(gnj\ln)

o~ ~

= tin [V(Z2,9 Fn) = (Z2,9.ho)| + in [ (Z2, G o) = (Z2, G )
+ Mn [w (22797 ho) - w (Z27 g’nu ho)] + Q(g7/f;n) - Q(gm};n)

+ Q(gmﬁn) - Q(Qmﬁn)v

and therefore,

Qn(gaﬁn) - Qn(gna/ﬁn)
= Hn |:w(227ga/}{n) - ¢ (ZQ’ga h‘o):| + Hn [’Qb (Z27gn7 ho) - w(ZQagn’/ﬁn)

+ Q(gm};n) - Q(g’m/}zn) + Il,n (gv ho) + 12771(97/};71)-

From Assumption (iii), we can choose some constant K sufficiently large such that

Pr ( sup  pUn [qp(ZQ?g:ﬁn) - w(Z%ga ho)] Z K253L7/}\Ln € Nl,K1>
gegn(M)

<Pr sup i [¥(Za, g, b)) — ¥(Za, g, ho)]| > K02 | < w.
HGNQ,K}\“/IvaNLKl

Combining (5.23), (5.24), and (5.25]), we obtain

[in [¢ (Z2, Gn, ho) — w(Zz,gnﬁn)]
+Q(Gos hn) = Q(gn, n)
+ SUPgeq, (A1 [IM (g, ho) + Igm(g,//{n)}
K3, + Kab2

Ingp (w) < Pr
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By the definition of N3 k: , we have g, € N3 , which together with Assumption (iii) implies
that

Pr (:UJTZ [Tl}(ZQ?gnaho) - w(ZQagn,/ﬁn) > KQéia/ﬁn S Nl,Kl)

< Pr sup |t [(Z2, g, ho) — $(Z2, g, h)]| = K207 | < w. (5.27)
gENZ,K}*W ,heNl,Kl

By the same argument that led to (5.26]), we obtain

~ ~

Q(gou hn) - Q(gn7 hn)
Ingp (w) < Pr + Supgeg, (M) |:[1,n (g9, ho) + Igm(g,/f;n) > O,En €Mk, | +5w. (5.28)
+K15%,n + 2K2(52L

From Assumption (i), we can choose some constant K3 sufficiently large such that

sup ’E hb (227907h) _w(Z27gn7h)]| < K?)(Sg,n
hENl,Kl

which implies that

PI‘ (Q(gm/h\’n) - Q(gn,ﬁn) 2 K36%,n’/}£n S Nl,Kl)

SH( wpﬂW¢@m%ﬁ%ﬂN%JmM]2Kﬁ%>=Q (5.29)
hE./V‘l_’Kl

By the same argument that led to (5.28)), we obtain

Supgegn(M) |:‘[1,n (97 hO) + I2,n(gaﬁn)]

Ingn (w) < Pr >0,hy € N1, | + 5. (5.30)
+K15§,n + QKQ(ST% + Kgfsg,n
Recalling 03, = max {61,n,0n,02n,0¢n,E2.n}, We obtain
Ingp (w) < Pr sup [11,0(9 ho) + Tan(g, )] + K852, > 0 | + 5w,
gegn(M)»hENl,Kl

where K = 4 x max{K, K2, K3}, which proves (5.21)).
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Step 2: Now we prove that

Pr sup [Il,n(ga ho) + IQ,n(g7 h)] + K(;;?n Z 0
gegn(M),heNl,Kl
< > Pr ( sup I1n(9, ho) > (ciy 22% — K — ¢, 127) 5;%) (5.31)
M2l <Ky \ISIn

where cg, 1 and cg, 2 are some fixed constants defined below,
Gnj={9:265, <Ilg — gollg <2765, }.

We start by noting that we can divide G, (M) into infinite (but countably) many disjoint pieces, i.e.
Gn(M) = U2 ,,Gn j, where it is clear that G, ; NG,y = & for any j,7° > M and j # j'. By the

sub-additivity of the probability measure,

Pr sup [I1n(, ho) + I2n(g, )] + K832, > 0
9EGn (M),heNT K,

< > Pr ( sup [T1n(g, o) + I2n(g, h)] + K632 > 0) . (5.32)
M <1, \ISInheNLG

we have

By Assumption (ii) and the definition of 63

2,n

sup  Irn(g,h) = sup [Q(g,h) — Q(go, h)]
9€Gn,j,heN1 K, 9EGn,j,heN1 K,

< ¢k 101n (2j5;,n) —CK;,2 (23‘5;’”)2

j 23 2
S (CK1,12J - CK1,22 ]) 5;,1@5

which together with (5.32) implies (5.31]).

Step 3: We now prove that

) ] 2+ L K
Pr<sur> Fin(0,ho) = (e a2 — K — cgya2) o3, | < — 22|01 + K] (5.33)

<
b - 2 1
9€Gn,j ) |CK1,22 I - K — CK1,12J|
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where ¢ denotes the generic constant defined in (5.16)) or (5.17), and K. is some fixed constant defined

below. For this purpose, we start by using Markov inequality and the triangle inequality to deduce that

Pr ( sup I1,(9,ho) > (CK17222j — K — cK1712j) 5;%)
9€Gn,;

< E [SUPgegw ’Mn [1/}(227 9, ho) - 1/}<Z27 In, hO)]|]
B ‘(CK1’222j - K- CK1712J') 55’211
E [Supgegmj ’Mn [1/1(22, 9, ho) - ¢(Z2, Yo, ho)”}

< - 7
|CK17222j - K- CK1,12]’ 55,71

E H:Un [UJ(ZQ, 9n ho) B T,Z)(ZQ, Yo, ho)m
|CK1’222j — K — CK1712j| 6;,271 ’

n (5.34)

Using Assumption 5.4} (iv), we deduce that

B [supyeg, , lin [¥(Z2, 9, ho) = (Z2, G, o)
e ,22% — K — cx,,129] 052,

_ c16n (277165 ,)
T Vnler, 22% - K — cx,129] 653,

Cl(2j+15;7n)7 ¢n(2]+15;,n)
ek, 225 — K — e, 12] 652, (204105 ,)0

01(2j+1)’y ¢n(6§,n) Clcg(2j+1)7

- |CK17222j — K — CK1’12]'| \/ﬁég?n - |CK1’222j — K — CK1712j”

(5.35)

where the last inequality uses the fact that ¢,,(5)/d7 is a decreasing function such that

Vg YRy, )
1 ¢n(697n) 1 — (an(égan)
Ogm 2 Vndg,

<

S Co.

B
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From ||gn — go|lg = O(d3,,), we can choose K. > 1 large enough such that ||g, — gollg < K:d3,,. Using
Assumption [5.4 (iv) and similar arguments in showing (5.3F]), we deduce that

E Hﬂn W(Z% 9n; hO) - ¢(Z2> Yo, ho)]H
|CK17222j - K- CK1712j| 5;%

E sup Hn [¢<Z27gah0) _w(Z%gth)]
{9€Gn:llg—gollg<K:53,,}

A -
K, 22% — K — ¢y 127 035,

< Cl(Kaés,nyY ¢n(K65§,n)

T Vnlek, 22% — K — cK1712j|6§’2n (Keéin)V

< C1K;Y ¢n(5§,n) _ 0102Kg (5 36)
~ ek, 22% — K — ¢k, 127] \/553"2” lek, 222 — K — ¢, 127] )

From ([5.34)), (5.35)) and (5.36)), we get (5.33). m

Theorem [5.2]indicates that the convergence rate of the second-step sieve M estimator is determined by

the convergence rate max{dj ,,d,} of the estimation error introduced by the first-step sieve estimation,
the rate do,, of the sieve approximation error of g,, the convergence rate €2, of the optimization error
and the measure d,4,, of the complexity of the sieve space G,,.

Let ¥, 5 = {w(Zg,g, ho) — ¥(Z2, 9o, ho) + ||lg — gng <d,9 € N27K} and let Hj (u, ¥ps,|ly) denote

the bracket entropy of the function class W¥,, 5 with respect to the La(dFz)-norm ||-||,. Define

0
Ty 6.5 o) = [ Hy (0 )
Assumption (iii) and (iv) can be replaced by the following low level conditions.

Assumption 5.5 (i) The data are i.i.d.; (ii)

swp B [[0(Z,9,ho) = U(Z, g0, ho)?] < 8,
{9eNs, it l9—90llg <5}

(111) for any small § > 0, there exists a constant s; € (0,2) such that

sup [V(Z, g, ho) —(Z, go, ho)| < 6°U(Z)
{9€N2, K2 1lg—g0llg <6}
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where B [|U(Z)|**] < ¢ for some sy > 2; (i) there is a sequence of positive numbers dq,, such that

J[] (57\Iln,5aH'H2)<c
Vné? -

dgn = inf {(5 € (0,1):
where 67 Jy (6, Wy, 5,-ll5) s a decreasing function for some v € (0,2).

Assumption [5.5] (i), (ii) and (iii) are directly from the sufficient conditions of Theorem 3.2 in Chen
(2007) which establishes the convergence rate of one-step sieve M estimation with i.7.d. or m-dependent
data. The low level conditions in Assumption [5.5|are easy to verify in practice. However, the advantage of
the high level assumption is that it integrates the data structure and the metric entropy restriction
into one simple stochastic equicontinuity condition. As a result, the convergence rate of the second-step

sieve M estimator derived in this paper applies to the general scenario with time series observation.

Corollary 5.3 Suppose that the conditions in Theorem/[5.1], Assumption[5.4) (i), (ii) and[5.5 are satisfied.
Furthermore, if ||gn — gollg = O(93,,), then we have |[gn — gollg = Op(03,,), where 03, is defined in
Theorem [5.2.

Proof of Corollary (5.3l By Assumption (iii), we know that for any small number w > 0, there

exists a sufficiently large constant M, such that

Pr(|U(Z:)| > M, for all i <n) <> Pr(|U(Z)| > My)
=1

n
BIUGZ)™) _ -
<D St <o,
=1

where the first inequality is by the Bonferroni inequality, and the second inequality is by the Markov
inequality.

Now, conditioning on the event {|U(Z;)| < M, for all i« < n} and using Assumption (iii), we have

W}(Ziagv ho) - ¢(Ziagoa ho)| < 581Mn
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for all i < n and for any ¥(Z, g, ho) — ¥(Z, go, ho) € ¥, 5, which together with Assumption (1) and
(ii), enables us to invoke Lemma 19.36 in Van der Vaart (1998) to get

E sup |,Um W)(ngaho) _Q;Z)(ngmho)”
{96gn5 ||9_Qo||g§5}

CJH ((5, ‘I/n75, ||||2) J[} ((57 ‘Iln,év ||||2) _ ¢n(5)
<SG (e ) =

By Assumption (iv), we know that the above function ¢, (J) satisfies the requirement (5.17)) in The-
orem The rest of the proof is the same as that of Theorem [5.2] and hence is omitted. m
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