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This supplemental appendix provides some auxiliary materials for "Nonparametric Two-Step Sieve

M Estimation and Inference"(cited as HLR in this appendix). Section 1 provides su�cient conditions

for Assumptions 3.2 and 3.4 in HLR which are the key high-level conditions for asymptotic normality

of the two-step sieve M estimator. Section 2 presents some lemmas which are used in proving Theorem

5.1 in HLR. Section 3 contains veri�cation of the high-level assumptions for asymptotic normality in the

nonparametric triangular simultaneous equation model. Section 4 contains some extra simulation results.

Section 5 establishes general theory on the consistency and convergence rate of the nonparametric two-

step sieve M estimator.

1 Su�cient Conditions for Assumptions 3.2 and 3.4 in HLR

In this section, we provide su�cient conditions for the high-level assumptions (Assumptions 3.2 and 3.4)

of the asymptotic normality of the nonparametric two-step sieve M estimator. These su�cient conditions

are veri�ed in the nonparametric triangular simultaneous equation model in Section 3 of the Appendix.

We assume that the data fZigni=1 is i.i.d. in this section.

Assumption 1.1 (i) For any z2 2 Z2, any � 2 N� and any vg;1; vg;2 2 V2, the following directional

derivatives exist

� (z2; �)[vg;1] =
@ (z2; g + �vg;1; h)

@�

����
�=0

and r ;g(z2; �)[vg;1; vg;2] =
@� (z2; g + �vg;2; h)[vg;1]

@�

����
�=0

;
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(ii) there exists �1;n(z2) with E [�1;n(Z2)] � C such that

sup
�2Nn

�� (z2; g�; h)�  (z2; �)�� (z2; �)[��nu�gn ]� �
2
nr ;g(z2; �)[u

�
gn ; u

�
gn ]
�� � �2n�1;n(z2);

(iii) there exists �2;n(z2) with E [�2;n(Z2)] � C such that

sup
�2Nn

��r ;g(z2; �)[u�gn ; u�gn ]� r ;g(z2; �o)[u�gn ; u�gn ]�� � �2;n(z2);
(iv) E

���r ;g(Z2; �o)[u�gn ; u�gn ]��� � C; (v) E
�
r ;h(Z2; �o)[ho;n � ho; u�gn ]

�
= o(n�1=2).

Assumption 1.2 (i) For any z2 2 Z2, any � 2 N�, any vh 2 V1 and any vg 2 V2, the following

directional derivative exists

@� (z2; g; h+ �vh)[vg]

@�

����
�=0

= r ;h(z2; �)[vg; vh];

(ii) there exists �3;n(z2; �) such that for any � 2 Nn,

��� (z2; g; h)[u
�
gn ]�� (z2; go; h)[u

�
gn ]� r ;g(z2; go; h)[g � go; u

�
gn ]
�� � �3;n(z2; �);

(iii) there exists �4;n(z2; �) such that for any � 2 Nn,

��� (z2; go; h)[u
�
gn ]�� (z2; go; ho)[u

�
gn ]� r ;h(z2; go; ho)[h� ho; u

�
gn ]
�� � �4;n(z2; �);

(iv) there exists �5;n(z2; �) such that for any � 2 Nn,

��r ;g(z2; go; h)[g � go; u�gn ]� r ;g(z2; go; ho)[g � go; u�gn ]�� � �5;n(z2; �);
(v) maxj=3;4;5 sup�2Nn n

�1=2Pn
i=1 �j;n(Z2;i; �) = op(1); (vi) maxj=3;4;5 sup�2Nn E [�j;n(Z2; �)] = o(n1=2).

By Assumption 1.1.(i) and the de�nition of k�k , we have

hvg;1; vg;2i = E [r ;g(Z2; �o)[vg;1; vg;2]]

for any vg;1; vg;2 2 V2. By Assumption 1.2.(i), we have

�(�o) [vh; vg] = E [r ;h(Z2; �o)[vh; vg]]
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for any vh 2 V1 and any vg 2 V2.

Suppose that F is a class of functions of Z. Let F denote an envelope of F ,

F (z) � sup
f2F

jf(z)j for any z 2 Z

where Z denotes the support of Z. For a probability measure Q and a constant q, such that kFkQ;q > 0

(where k�kQ;q denotes the Lq-norm under Q), we use N(" kFkQ;q ;F ; k�kQ;q) to denote the minimal number

of k�kQ;q-balls of radius " kFkQ;q needed to cover F . The supremum of N(" kFkQ;q ;F ; k�kQ;q) over all

�nitely-discrete probability measures Q, is a uniform entropy number of F .

De�ne

F�1;n =
�
z2 7! r ;h(z2; �o)[h� ho;n; u�gn ] : h 2 Nh;n

	
;

F�2;n =
�
z2 7! r ;g(z2; �o)[g � go;n; u�gn ] : g 2 Ng;n

	
;

where ho;n 2 Hn and go;n 2 Gn are such that kho;n � hokH = O(��1;n) and kgo;n � gokG = O(��2;n).

Assumption 1.3 (i) E
���r ;h(Z2; �o)[ho;n � ho; u�gn ]��� = o(n�1=2); (ii) let F �1;n denote an envelope of

F�1;n, then

sup
Q
N("

F �1;nQ;2 ;F�1;n; L2(Q)) � (C=")CL for any " 2 (0; 1];
(iii) E

���r ;g(Z2; �o)[go;n � go; u�gn ]��� = o(n�1=2); (iv) let F �2;n denote an envelope of F�2;n, then

sup
Q
N("

F �2;nQ;2 ;F�2;n; L2(Q)) � (C=")CK for any " 2 (0; 1];

(v) maxj=1;2;(supf2F�j;n E
�
f2
�
+ (K + L) supz22Z2 jF 2j;n(z2)j log(n)n�1)1=2((K + L) log(n))1=2 = o(1).

Lemma 1.1 Under Assumptions 1.1-1.3, Assumption 3.2 in HLR holds.

Proof of Lemma 1.1. By Assumptions 1.1.(i)-(ii), and the triangle inequality,

sup
�2Nn

������n�1
nX
i=1

24  (Z2;i; g
�; h)�  (Z2;i; g; h)

�� (Z2;i; g; h)[��nu�gn ]� �2nr ;g(Z2;i; g; h)[u�gn ; u�gn ]

35������ � C�2nn
�1

nX
i=1

�1;n(Z2;i) (1.1)
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which together with E [�1;n(Z2)] � C and the Markov inequality implies that

sup
�2Nn

������n�1
nX
i=1

24  (Z2;i; g
�; h)�  (Z2;i; g; h)

�� (Z2;i; g; h)[��nu�gn ]� �2nr ;g(Z2;i; g; h)[u�gn ; u�gn ]

35������ = Op(�
2
n): (1.2)

Similarly, by Assumptions 1.1.(i)-(ii), and the triangle inequality,

sup
�2Nn

������E
24  (Z2; g

�; h)�  (Z2; g; h)

�� (Z2; g; h)[��nu�gn ]� �2nr ;g(Z2; g; h)[u�gn ; u�gn ]

35������ = O(�2n); (1.3)

which together with (1.2) implies that

sup
�2Nn

�������n
8<:  (Z2; g

�; h)�  (Z2; g; h)

�� (Z2; g; h)[��nu�gn ]� �2nr ;g(Z2; g; h)[u�gn ; u�gn ]

9=;
������ = Op(�

2
n): (1.4)

By Assumptions 1.1.(iii), the triangle inequality and the Markov inequality,

sup
�2Nn

���n �r ;g(Z2; �)[u�gn ; u�gn ]� r ;g(Z2; �o)[u�gn ; u�gn ]	�� = Op(1) (1.5)

which together with Assumptions 1.1.(iv), the triangle inequality and the Markov inequality implies that

sup
�2Nn

���n �r ;g(Z2; �)[u�gn ; u�gn ]	�� = Op(1): (1.6)

Combining the results in (1.4) and (1.6), and then applying the triangle inequality, we prove condition

(12) of Assumption 3.2.(i) in HLR.

By Assumptions 1.2.(ii), 1.2.(v)-(vi), the triangle inequality and the Markov inequality,

sup
�2Nn

���n �� (Z2; g; h)[u
�
gn ]�� (Z2; go; h)[u

�
gn ]� r ;g(Z2; go; h)[g � go; u

�
gn ]
	�� = op(n

�1=2): (1.7)

Similarly, by Assumptions 1.2.(iv)-(vi), the triangle inequality and the Markov inequality,

sup
�2Nn

���n �r ;g(Z2; go; h)[g � go; u�gn ]� r ;g(Z2; go; ho)[g � go; u�gn ]	�� = op(n
�1=2): (1.8)

By Assumption 1.3.(iii), the triangle inequality and the Markov inequality,

���n �r ;g(Z2; �o)[go;n � go; u�gn ]	�� = op(n
�1=2): (1.9)
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By Assumptions 1.3.(iv)-(v), we can use Lemma 22 in Belloni, et. al (2016) to show that

sup
g2Ng;n

���n �r ;g(Z2; �o)[g � go;n; u�gn ]	�� = op(n
�1=2); (1.10)

which together with (1.9) implies that

sup
g2Ng;n

���n �r ;g(Z2; �o)[g � go; u�gn ]	�� = op(n
�1=2): (1.11)

Collecting the results in (1.7), (1.8) and (1.11), we get

sup
�2Nn

���n �� (Z2; g; h)[u
�
gn ]�� (Z2; go; h)[u

�
gn ]
	�� = op(n

�1=2): (1.12)

By Assumptions 1.2.(iii), 1.2.(v)-(vi), the triangle inequality and the Markov inequality,

sup
�2Nn

���n �� (Z2; go; h)[u
�
gn ]�� (Z2; �o)[u

�
gn ]� r ;h(Z2; �o)[h� ho; u

�
gn ]
	�� = op(n

�1=2): (1.13)

By Assumption 1.3.(i), the triangle inequality and the Markov inequality,

���n �r ;h(Z2; �o)[ho;n � ho; u�gn ]	�� = op(n
�1=2): (1.14)

By Assumptions 1.3.(ii) and 1.3.(v), we can use Lemma 22 in Belloni, et. al (2016) to show that

sup
h2Nh;n

���n �r ;h(Z2; �o)[h� ho;n; u�gn ]	�� = op(n
�1=2); (1.15)

which together with (1.14) implies that

sup
g2Ng;n

���n �r ;h(Z2; �o)[h� ho; u�gn ]	�� = op(n
�1=2): (1.16)

Collecting the results in (1.13) and (1.16), we get

sup
�2Nn

���n �� (Z2; go; h)[u
�
gn ]�� (Z2; �o)[u

�
gn ]
	�� = op(n

�1=2): (1.17)

Combining the results in (1.12) and (1.17), and then applying the triangle inequality, we immediately

prove condition (13) of Assumption 3.2.(i) in HLR.
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By Assumptions 1.1.(ii)-(iv),

E [ (Z2; g�; h)�  (Z2; g; h)] = ��nE
�
� (Z2; g; h)[u

�
gn ]
�
+O(�2n); (1.18)

uniformly over � 2 Nn. As E
�
� (Z2; go; ho)[u

�
gn ]
�
= 0, by Assumptions 1.2.(ii)-(iv) and 1.2.(vi)

E
�
� (Z2; g; h)[u

�
gn ]
�

= E
�
� (Z2; g; h)[u

�
gn ]�� (Z2; go; h)[u

�
gn ]� r ;g(Z2; go; h)[g � go; u

�
gn ]
�

+ E
�
� (Z2; go; h)[u

�
gn ]�� (Z2; go; ho)[u

�
gn ]� r ;h(Z2; go; ho)[h� ho; u

�
gn ]
�

+ E
�
r ;g(Z2; go; h)[g � go; u�gn ]� r ;g(Z2; go; ho)[g � go; u

�
gn ]
�

+ E
�
r ;g(Z2; go; ho)[g � go; u�gn ]

�
+ E

�
r ;h(Z2; go; ho)[h� ho; u�gn ]

�
= E

�
r ;g(Z2; �o)[g � go; u�gn ]

�
+ E

�
r ;h(Z2; �o)[h� ho; u�gn ]

�
+ o(n�1=2)

= hg � go; u�gni + �(�o)
�
h� ho; u�gn

�
+ o(n�1=2) (1.19)

where the second equality is by the de�nition of the inner product h�; �i and the functional �(�o) [�; �].

By Assumption 1.1.(v), (1.18), (1.19) and the de�nition of K (g; h), we have

K (g; h)�K (g
�; h) = ��n

�
hg � go; u�gni + �(�o)

�
h� ho;n; u�gn

��
+O(�2n): (1.20)

By the de�nition of jj � jj and Assumption 1.1.(iv),

jjg� � gojj2 � jjg � gojj2 
2

= hg � go;��nu�gni +O(�
2
n): (1.21)

Collecting the results in (1.20) and (1.21), we immediately prove Assumption 3.2.(ii) in HLR.

We next provide su�cient conditions for Assumptions 3.2 and 3.4 in HLR when the criterion function

in the second-step M estimation takes the following form

 (Z2; g; h) = �(Z1; h) 
�(Z2; g; h): (1.22)

We will assume that Assumptions 1.1.(i) and 1.2.(i) hold for  �(Z2; g; h). De�ne

�� (z2; �)[vg;1] =
@ �(z2; g + �vg;1; h)

@�

����
�=0

and r� ;g(z2; �)[vg;1; vg;2] =
@�� (z2; g + �vg;2; h)[vg;1]

@�

�����
�=0

;

6



for any z2 2 Z2, any � 2 N� and any vg;1; vg;2 2 V2. Then we have

� (z2; �)[vg;1] = �(z1; h)�
�
 (z2; �)[vg;1] and r ;g(z2; �)[vg;1; vg;2] = �(z1; h)r

�
 ;g(z2; �)[vg;1; vg;2]

for any � 2 N� and any vg;1; vg;2 2 V2. De�ne

r ;h(z2; �)[vh; vg] = �(z1; h)r
�
 ;h(z2; �)[vh; vg];

where

r� ;h(z2; �)[vh; vg] =
@�� (z2; g; h+ �vh)[vg]

@�

�����
�=0

:

Let �n denote a non-decreasing real positive sequence, and �
�
�;n denote a real positive sequence.

Assumption 1.4 (i) supz12Z1;h2Nh;n [j�(z1; h)j+ j�(z1; ho)j] � C; (ii) Assumptions 1.1.(i)-(ii) and 1.1.(v)

hold; (iii) equation (19) in HLR holds; (iv) �� (z2; �)[vg] satis�es Assumption 1.2.(i); (v) Assumptions

1.2.(ii) and 1.2.(v)-(vi) hold; (vi) supz12Z1 E
h
(�� (Z2; �o)[u

�
gn ])

2
���Z1 = z1

i
� �2n; (vii)

sup
h2Nh;n

n�1
nX
i=1

(�(Z1;i; h)� �(Z1;i; ho))2 = Op(�
�
�;n)

where ���;n�
2
n = o(1).

Assumption 1.5 (i) there exists �6;n(z2; �) such that for any � 2 Nn

���(z1; h) �r� ;g(z2; go; h)[g � go; u�gn ]� r� ;g(z2; �o)[g � go; u�gn ]��� � �6;n(z2; �);
(ii) there exists �7;n(z2; �) such that for any � 2 Nn

���(z1; h) ��� (z2; go; h)[u�gn ]��� (z2; �o)[u�gn ]� r� ;h(z2; �o)[h� ho; u�gn ]��� � �7;n(z2; �);
(iii)

sup
h2Nh;n

��E �(�(Z1; h)� �(Z1; ho))r� ;h(Z2; �o)[h� ho; u�gn ]��� = o(n�1=2);

(iv)

sup
�2Nn

��E �(�(Z1; h)� �(Z1; ho))r� ;g(Z2; �o)[g � go; u�gn ]��� = o(n�1=2);
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(v) there exists �8;n(z2) with E [�8;n(Z2)] � C

sup
�2Nn

���(z1; h)(r� ;g(z2; �)[u�gn ; u�gn ]� r� ;g(z2; �o)[u�gn ; u�gn ])�� � �8;n(z2);
(vi) E

h���r� ;g(Z2; �o)[u�gn ; u�gn ]���i � C; (vii) maxj=6;7 sup�2Nn n
�1Pn

i=1 �j;n(Z2;i; �) = op(n
�1=2); (viii)

maxj=6;7 sup�2Nn E [�j;n(Z2; �)] = o(n�1=2).

De�ne

F�3;n =
�
z2 7! �(z1; h)r

�
 ;h(z2; �o)[h� ho;n; u�gn ] : h 2 Nh;n

	
;

F�4;n =
�
z2 7! �(z1; h)r

�
 ;g(z2; �o)[g � go;n; u�gn ] : h 2 Nh;n; g 2 Ng;n

	
:

Assumption 1.6 (i) E[jr� ;h(Z2; �o)[ho;n�ho; u�gn ]j] = o(n�1=2); (ii) let F �3;n denote an envelope of F�3;n,

then

sup
Q
N("

F �3;nQ;2 ;F�3;n; L2(Q)) � (C=")CL for any " 2 (0; 1];
(iii) E

h���r� ;g(Z2; �o)[go;n � go; u�gn ]���i = o(n�1=2); (iv) let F �4;n denote an envelope of F�4;n, then

sup
Q
N("

F �4;nQ;2 ;F�4;n; L2(Q)) � (C=")C(L+K) for any " 2 (0; 1];
(v) maxj=3;4(supf2F�j;n E

�
f2
�
+ (K + L) supz22Z2 jF �j;n(z2)j log(n)n�1)1=2((K + L) log(n))1=2 = o(1).

By de�nition, we have hvg;1; vg;2i = E
h
�(Z1; ho)r

�
 ;g(z2; �o)[vg;1; vg;2]

i
for any vg;1; vg;2 2 V2. More-

over, by (19) in HLR,

�(�o) [vh; vg] = E
�
�(Z1; ho)r

�
 ;h(Z2; �o)[vh; vg]

�
for any vh 2 V1 and any vg 2 V2.

Lemma 1.2 Under Assumptions 1.4-1.6, condition (13) of Assumption 3.2, Assumption 3.2.(ii) and

Assumption 3.4 in HLR holds.

Proof of Lemma 1.2. By Assumptions 1.1.(i)-(ii), we can use the same arguments in the proof of

Lemma 1.1 to show that

sup
�2Nn

�������n
8<:  (Z2; g

�; h)�  (Z2; g; h)

�� (Z2; g; h)[��nu�gn ]� �2nr ;g(Z2; g; h)[u�gn ; u�gn ]

9=;
������ = Op(�

2
n): (1.23)

8



By Assumptions 1.5.(v), 1.5.(vii)-(viii), the triangle inequality and the Markov inequality,

sup
�2Nn

���n ��(Z1; h)(r� ;g(Z2; �)[u�gn ; u�gn ]� r� ;g(Z2; �o)[u�gn ; u�gn ])	�� = Op(1): (1.24)

By Assumptions 1.4.(i) and 1.5.(vi), the triangle inequality and the Markov inequality, which together

with (1.24) and the triangle inequality implies that

sup
�2Nn

���n ��(Z1; h)r� ;g(Z2; �o)[u�gn ; u�gn ]	�� = Op(1): (1.25)

Combining the results in (1.23)-(1.25), and then applying the triangle inequality, we prove condition (13)

of Assumption 3.2.(i) in HLR.

By Assumption 1.5.(v),

sup
�2Nn

��E ��(Z1; h)(r� ;g(Z2; �)[u�gn ; u�gn ]� r� ;g(Z2; �o)[u�gn ; u�gn ])��� = O(1): (1.26)

By Assumptions 1.4.(i) and 1.5.(vi),

sup
h2Nh;n

��E �(�(Z1; h)� �(Z1; ho))r� ;g(Z2; �o)[u�gn ; u�gn ]��� = O(1) (1.27)

and ��E ��(Z1; ho)r� ;g(Z2; �o)[u�gn ; u�gn ]��� = O(1); (1.28)

which together with (1.26) and the triangle inequality implies that

sup
�2Nn

��E �r ;g(Z2; �)[u�gn ; u�gn ]��� = O(1): (1.29)

By Assumptions 1.1.(ii), (1.29) and the triangle inequality,

E [�(Z1; h) [ �(Z2; g�; h)�  �(Z2; g; h)]] = ��nE
�
�(Z1; h)�

�
 (Z2; g; h)[u

�
gn ]
�
+O(�2n); (1.30)
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uniformly over � 2 Nn. By E[�(Z1; h)�� (Z2; �)[u�gn ]] = 0, Assumptions 1.4.(v), 1.5.(i)-(iv) and 1.5.(viii),

E
�
�(Z1; h)�

�
 (Z2; g; h)[u

�
gn ]
�

= E
�
�(Z1; h)�

�
 (Z2; go; h)[u

�
gn ]
�

+ E
�
�(Z1; h)r

�
 ;g(Z2; go; h)[g � go; u�gn ]

�
+ o(n�1=2)

= E
�
�(Z1; h)r

�
 ;h(z2; �o)[h� ho; u�gn ]

�
+ E

�
�(Z1; h)r

�
 ;g(Z2; �o)[g � go; u�gn ]

�
+ o(n�1=2)

= E
�
r ;h(z2; �o)[h� ho; u�gn ]

�
+ E

�
r ;g(Z2; �o)[g � go; u�gn ]

�
+ o(n�1=2)

= �(�o)
�
h� ho; u�gn

�
+ hg � go; u�gni + o(n

�1=2); (1.31)

where the last equality is by the de�nitions of the inner product h�; �i and the functional �(�o) [�; �]. By

Assumption 1.1.(v), (1.30), (1.31) and the de�nition of K (g; h), we have

K (g; h)�K (g
�; h) = ��n

�
hg � go; u�gni + �(�o)

�
h� ho;n; u�gn

��
+O(�2n): (1.32)

By the de�nition of jj � jj , Assumptions 1.4.(i) and 1.5.(vi),

jjg� � gojj2 � jjg � gojj2 
2

= hg � go;��nu�gni +O(�
2
n): (1.33)

Collecting the results in (1.32) and (1.33), we immediately prove Assumption 3.2.(ii) in HLR.

We next verify Assumption 3.4 in HLR. Assumptions 3.4.(i)-(ii) are assumed directly. By de�nition,

� (z2; g; h)[u
�
gn ]�� (z2; go; h)[u

�
gn ]

= �(z1; h)r
�
 ;g(z2; �o)[g � go;n; u�gn ]

+ �(z1; h)r
�
 ;g(z2; �o)[go;n � go; u�gn ]

+
�
� (z2; g; h)[u

�
gn ]�� (z2; go; h)[u

�
gn ]� r ;g(z2; go; h)[g � go; u

�
gn ]
�

+ �(z1; h)
�
r� ;g(z2; go; h)[g � go; u�gn ]� r

�
 ;g(z2; �o)[g � go; u�gn ]

�
: (1.34)

By Assumptions 1.4.(v), 1.2.(v)-(vi), 1.5.(i) and 1.5.(vii)-(viii), and the Markov inequality,

sup
�2Nn

�������n
8<: � (Z2; g; h)[u

�
gn ]�� (Z2; go; h)[u

�
gn ]

�r ;g(Z2; go; h)[g � go; u�gn ]

9=;
������ = op(n

�1=2); (1.35)
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and

sup
�2Nn

�������n
8<:�(Z1; h)

0@ r� ;g(Z2; go; h)[g � go; u�gn ]

�r� ;g(Z2; go; ho)[g � go; u�gn ]

1A9=;
������ = op(n

�1=2): (1.36)

By Assumptions 1.4.(i), 1.6.(iii) and the Markov inequality,

sup
�2Nn

���nf�(Z1; h)r� ;g(Z2; �o)[go;n � go; u�gn ]g�� = op(n
�1=2): (1.37)

By Assumptions 1.6.(iv)-(v), we can use Lemma 22 in Belloni, et. al (2016) to show that

sup
h2Nh;n

���n ��(Z1; h)r� ;g(Z2; �o)[g � go;n; u�gn ]	�� = op(n
�1=2): (1.38)

Collecting the results in (1.34)-(1.38), and then applying the triangle inequality, we get

sup
h2Nh;n

���n �� (Z2; g; h)[u
�
gn ]�� (Z2; go; h)[u

�
gn ]
	�� = op(n

�1=2); (1.39)

which proves condition (20) in Assumption 3.4.(iii). By de�nition,

�(z1; h)(�
�
 (z2; go; h)[u

�
gn ]��

�
 (z2; go; ho)[u

�
gn ])

= �(z1; h)r
�
 ;h(z2; �o)[h� ho;n; u�gn ]

+ �(z1; h)r
�
 ;h(z2; �o)[ho;n � ho; u�gn ]

+ �(z1; h)(�
�
 (z2; go; h)[u

�
gn ]��

�
 (z2; �o)[u

�
gn ]� r

�
 ;h(z2; �o)[h� ho; u�gn ]): (1.40)

By Assumptions 1.5.(ii), 1.5.(vii)-(viii), the Markov inequality and the triangle inequality,

sup
h2Nh;n

�������n
8<: �(Z1; h)(�

�
 (Z2; go; h)[u

�
gn ]��� (Z2; �o)[u�gn ]

�r� ;h(Z2; �o)[h� ho; u�gn ])

9=;
������ = op(n

�1=2): (1.41)

By Assumptions 1.4.(i), 1.6.(i), the Markov inequality and the triangle inequality,

sup
�2Nn

���nf�(Z1; h)r� ;h(Z2; �o)[ho;n � ho; u�gn ]g�� = op(n
�1=2): (1.42)

By Assumptions 1.6.(ii)-(iii), we can use Lemma 22 in Belloni, et. al (2016) to show that

sup
h2Nh;n

���nf�(Z1; h)r� ;h(Z2; �o)[h� ho;n; u�gn ]g�� = op(n
�1=2): (1.43)
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Collecting the results in (1.40)-(1.43), and then applying the triangle inequality, we get

sup
h2Nh;n

���n ��(Z1; h)(�� (Z2; go; h)[u�gn ]��� (Z2; go; ho)[u�gn ])	�� = op(n
�1=2); (1.44)

which proves condition (21) in Assumption 3.4.(iii). Finally, Assumptions 3.4.(iv) in HLR follows by

Assumptions 1.4.(vi)-(vii).

2 Some Auxiliary Lemmas for Theorem 5.1 of HLR

For the completeness of this section, we list the su�cient conditions of Theorem 5.1 in HLR. To facilitate

the presentation, we �rst review some notations introduced in Section 5 and Appendix D of HLR. Recall

that the basis functions used in the �rst-step and second-step M estimations are L � 1 vector R(x)

and K � 1 vector P (") respectively. For j = 1; 2, we de�ne �j;K = sup"2E�
@jP (")0�o;K, where E� =

[a � �; b + �] for some a < b and small � > 0, and �o;K 2 RK is de�ned in Assumption 2.2.(iii) below.

Let Ng;n = fg 2 Gn : kg � gok2 � ��2;n log(log(n))g denote the local neighborhood of go, where Gn denotes

the sieve space of estimating go, �
�
2;n = K1=2n�1=2 + K��g + �1;K�

�
h;n and ��h;n = L1=2n�1=2 + L��h .

For any column vector a, let kak denote its `2-norm; for any square matrix A, the operator norm is

denoted by jjAjj; !max(A) and !min(A) denote the largest and smallest eigenvalues of a square matrix A,

respectively. We use C to denote some generic �nite positive constant larger than 1. For d a nonnegative

integer, let jgjd = maxj� j�d sup"2E j@�g(")j for any g 2 G where G is the function space containing go. Let

k�k1 denote the uniform norm. For any function f , �n(f) = n�1
Pn

i=1 [f(Zi)� E [f(Zi)]] denotes the

empirical process indexed by f .

Assumption 2.1 (i) The data fyi; xi; signi=1 is i.i.d.; (ii) E
�
"4i
��xi� < C and E["2i

��xi] > C�1; (iii) there

exist �h > 0 and o;L 2 RL such that

kho;L � hok1 = O(L��h)

where ho;L (�) � R (�)0 o;L; (iv) the eigenvalues of QL are between C�1 and C for all L; (v) there exists

a nondecreasing sequence �L such that supx2X kR(x)k � �L.

Assumption 2.2 (i) E[u4i
�� "i] < C and E[u2i

�� "i] > C�1; (ii) go(") is twice continuously di�erentiable;
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(iii) there exist �g > 0 and �o;K 2 RK such that

jgo;K � gojd = O(K��g)

where go;K (�) = P (�)0 �o;K and d = 1; (iv) the eigenvalues of QK are between C�1 and C for all K; (v)

for j = 0; 1; 2, there exists a nondecreasing sequence �j;K such that sup"2E�
@jP (") � �j;K .

Assumption 2.3 (i) jjv�gn jj2 � C for all n; (ii) the functional �(�) satis�es

sup
g2Ng;n

�����(g)� �(go)� @�(go)[g � go]kv�nksd

���� = o(n�1=2);

(iii)
���kv�nk�1sd @�(go)[go;n � go]��� = o(n�1=2); (iv) supg2Ng;n k@�(g)[P ]� @�(go)[P ]k = o(1).

Assumption 2.4 The following conditions hold:

(i) n�1=2(K + L)1=2(�0;K + �L)(log(n))
1=2 = o(1);

(ii) n�1(L�21;K log(n) + �L�1;K) = o(1);

(iii) n�1=2�L(L�2;K + L
1=2�1;K)(n

�1=2K1=2 +K��g + v1;Kn
�1=2L1=2) log(n) = o(1);

(iv) n�1=2�L(L+ L
1=2v1;K + Lv2;K) log(n) = o(1);

(v) nL1�2�h +K��g = o(1).

Assumption 2.5 The following conditions hold:

(i) jjv�gn jj2 � C for all n.

(ii) (n�1K�21;K + (�
2
L + �

2
0;K + �

2
1;K)K

�2�g) log(n) = o(1);

(iii) n�1(�2L + �
2
0;K + �

2
1;K)�

2
1;KL log(n) = o(1).

Lemma 2.1 Under Assumptions 2.1, 2.2.(iv)-(v), 2.4.(i) and 2.4.(v), we have

 bQn;K �QK = Op(�
2
1;K�

�2
h;n + �1;K�

�
h;n + n

�1=2�0;K(logK)
1=2);

where ��h;n = L1=2n�1=2 + L��h.

Proof of Lemma 2.1. Let BK = f�K 2 RK : �0K�K = 1g. Under Assumptions 2.1.(i), 2.2.(iv)-(v) and

2.4.(i), we can invoke Lemma 6.2 of Belloni, et al. (2015) to get

sup
�K2BK

�����n�1
nX
i=1

h���0KP ("i)��2i� E h���0KP ("i)��2i
����� = Op(n

�1=2�0;K(logK)
1=2); (2.1)
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which (together with Assumption 2.4.(i)) further implies that

kQn;K �QKk = op(1) (2.2)

Under Assumptions 2.1 and 2.4.(i), arguments in the proof of Theorem 4.1 in Belloni et al. (2015) show

that

kbn � o;Lk = Op(�
�
h;n); (2.3)

which together with Assumptions 2.1.(iii)-(iv), and (2.52) below (which is proved under Assumptions 2.1

and 2.4.(i)) implies that

n�1
nX
i=1

����bhn(xi)� ho(xi)���2� � 2n�1 nX
i=1

����bhn(xi)� ho;L(xi)���2�+ 2n�1 nX
i=1

h
jho;L(xi)� ho(xi)j2

i
= 2(bn � o;L)0Qn;L(bn � o;L) +O(L�2�h)
� !min(Qn;L) kbn � o;Lk2 +O(L�2�h) = Op(�

�2
h;n): (2.4)

Then by (2.4), and the de�nition of b"i,
n�1

nX
i=1

h
jb"i � "ij2i = n�1

nX
i=1

����bhn(xi)� ho(xi)���2� = Op(�
�2
h;n): (2.5)

Using (2.3), Assumptions 2.1.(iii), (v) and 2.4.(i), 2.4.(v), we have

bhn � ho
1
�
bhn � ho;K

1
+ kho;K � hok1

=
R(x)0(bn � o;L)1 +O(K��h)

� �L kbn � o;Lk+O(K��h) = Op(�L�
�
h;n); (2.6)

which implies that

max
i�n

jb"i � "ij = max
i�n

���bhn(xi)� ho(xi)��� � bhn � ho
1
= op(1): (2.7)
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For any �K 2 BK , by the mean value expansion, the triangle inequality and the Cauchy-Schwarz inequal-

ity,

������0KP (b"i)��2 � ���0KP ("i)��2��� � ���0K(P (b"i)� P ("i))��2 + 2 ���0K(P (b"i)� P ("i))�0KP ("i)��
=
���0K@P (e"i)(b"i � "i)��2 + 2 ���0K@P (e"i)�0KP ("i)(b"i � "i)��

� k@P (e"i)k2 jb"i � "ij2 + 2 k@P (e"i)k ���0KP ("i)(b"i � "i)�� (2.8)

where e"i is between b"i and "i for each �K 2 RK . By (2.5), Assumption 2.2.(v) and e"i 2 E� for all i � n

wpa1 (which is implied by (2.7)),

maxi�n k@P (e"i)k2
n

nX
i=1

jb"i � "ij2 = Op(�
2
1;K�

�2
h;n): (2.9)

By the Cauchy-Schwarz inequality,

sup
�K2BK

maxi�n k@P (e"i)k
n

nX
i=1

���0KP ("i)(b"i � "i)��
� sup

�K2BK
max
i�n

k@P (e"i)k n�1 nX
i=1

jb"i � "ij2!1=2 n�1 nX
i=1

���0KP ("i)��2
!1=2

= Op(�1;K�
�
h;n); (2.10)

where the equality is by (2.9) and sup�K2BK n
�1Pn

i=1 j�0KP ("i)j
2 = Op(1) which is implied by (2.1),

�0;K(logK)
1=2n�1=2 = o(1) and sup�K2BK E

h
j�0KP (")j

2
i
� !max(QK) � C. By (2.8), (2.9) and (2.10),

sup
�K2BK

�����n�1
nX
i=1

h���0KP (b"i)��2i� n�1 nX
i=1

h���0KP ("i)��2i
����� = Op(�

2
1;K�

�2
h;n + �1;K�

�
h;n) (2.11)

which together with (2.1) proves the claim of the Lemma.

Lemma 2.2 Suppose that Assumptions 2.1, 2.2, 2.4.(i)-(ii) and 2.4.(v) hold. Then we have

b�n � �o;K = Op(K
1=2n�1=2 +K��g + �1;K�

�
h;n);

where �1;K = sup"2E� j@P (")0�o;K j.
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Proof of Lemma 2.2. Let Gn = [go("1); : : : ; go("n)]
0, bGK;n = [go;K(b"1); : : : ; go;K(b"n)]0 and Un =

[u1; : : : ; un]
0. By de�nition,

b�n = n�1 bQ�1n;K bP 0n(Gn + Un) = �o;K + n
�1 bQ�1n;K bP 0n h(Gn �Gn;K) + (Gn;K � bGn;K) + Uni ; (2.12)

where bQn;K = n�1 bP 0n bPn and Gn;K = [go;K("1); : : : ; go;K("n)]
0. By Assumptions 2.4.(ii) and 2.4.(v),

�1;K�
�
h;n = o(1) which together with Assumption 2.4.(i) and Lemma 2.1 implies that

(2C)�1 < !min( bQn;K) � !max( bQn;K) < 2C wpa1. (2.13)

By (2.13) and Assumption 2.2.(iii),

n�2(Gn �GK;n)0 bPn bQ�2n;K bP 0n(Gn �GK;n)
� !�1min(

bQn;K)n�2(Gn �GK;n)0 bPn bQ�1n;K bP 0n(Gn �GK;n)
= !�1min(

bQn;K)n�1(Gn �GK;n)0 bPn( bP 0n bPn)�1 bP 0n(Gn �GK;n)
� Op(1)n

�1
nX
i=1

h
jgo("i)� go;K("i)j2

i
= Op(K

�2�g); (2.14)

where the �rst equality is by the de�nition of bQn;K , the second inequality is by the fact that bPn( bP 0n bPn)�1 bP 0n
is an idempotent matrix. Similarly

n�2(GK;n � bGK;n)0 bPn bQ�2n;K bP 0n(GK;n � bGK;n)
� Op(1)n

�1(GK;n � bGK;n)0 bPn( bP 0n bPn)�1 bP 0n(GK;n � bGK;n)
� Op(1)n

�1
nX
i=1

h
jgo;K("i)� go;K(b"i)j2i : (2.15)

By the mean value expansion and the Cauchy-Schwarz inequality,

jgo;K("i)� go;K(b"i)j = ��@P (e"i)0�o;K(b"i � "i)�� � max
i�n

��@P (e"i)0�o;K�� jb"i � "ij ; (2.16)

where e"i is between "i and b"i. Using (2.16), we get
n�1

nX
i=1

h
jgo;K("i)� go;K(b"i)j2i � max

i�n

��@P (e"i)0�o;K��2 n�1 nX
i=1

h
jb"i � "ij2i = Op(�

2
1;K�

�2
h;n); (2.17)
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where the equality is by (2.5) and maxi�n j@P (e"i)0�o;K j2 = Op(�
2
1;K) which is implied by the de�nition

of �1;K and e"i 2 E� for all i � n wpa1 (which is implied by (2.7)). Combining the results in (2.15) and

(2.17), we get

n�2(GK;n � bGK;n)0 bPn bQ�2n;K bP 0n(GK;n � bGK;n) = Op(�
2
1;K�

�2
h;n): (2.18)

By Assumptions 2.1.(i) and 2.2.(i)

E
h
n�2U 0n bPn bQ�1n;K bP 0nUn��� fxi; signi=1i

= tr
�
n�2 bPn bQ�1n;K bP 0nE �UnU 0n��xi; signi=1��

� C

n
tr
� bQ�1n;K bP 0n bPn=n� = O(Kn�1) (2.19)

which together with (2.13) and the Markov inequality implies that

n�2U 0n bPn bQ�2n;K bP 0nUn = Op(Kn
�1): (2.20)

Collecting the results in (2.12), (2.14), (2.18) and (2.20), we prove the claim of the Lemma.

Lemma 2.3 Suppose that Assumptions 2.1, 2.2, 2.3 and 2.4 hold. Then Assumption 3.1 in HLR holds.

Proof of Lemma 2.3. The the de�nition of kv�nk
2
sd, Assumptions 2.2.(i) and 2.3.(i),

kv�nk
2
sd =

v��n(x)"22 + v�gn(")u22 � v�gn(")u22 � C�1
v�gn22 � C�1 (2.21)

for all n, which veri�es Assumption 3.1.(i) in HLR. Assumption 3.1.(ii) in HLR is directly assumed in

Assumption 2.3.(ii). By Lemma 2.2, we know that ��2;n = n�1=2K1=2 +K��g + �1;K�
�
h;n, where �1;K =

sup"2E� j@P (")0�o;K j. Let gn = go;K , then by Assumption 2.2.(iii), we have kgn � gok2 = O(K��g) =

O(��2;n). By the de�nitions of k�k' and k�k , we can set c' = 1 and c = 1 such that kvhk' � c' kvhkH
and kvgk � c kvgkG for any vh 2 V1 and vg 2 V2. This veri�es Assumption 3.1.(iii) in HLR. Assumption

3.1.(iv) in HLR is assumed in Assumptions 2.3.(iii).

Lemma 2.4 Suppose that Assumptions 2.1, 2.2, 2.3 and 2.4 hold. Then Assumption 3.2 in HLR holds.
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Proof of Lemma 2.4. For ease of notation, we de�ne "h = s� h(x). By de�nition,

 (Z2; g
�; h)�  (Z2; g; h)�� (Z2; g; h)[��nu�gn ]

= �1
2

h��y � g("h)� �nu�gn(")��2i+ 12 hjy � g("h)j2i� [y � g("h)] (��nu�gn)
= �1

2
�2n(u

�
gn("))

2: (2.22)

By Assumption 2.2.(i),

E
�
(u�gn("))

2
�
=

E
h
jv�g;n(")j2

i
v��n(x)"22 + v�gn(")u22 �

E
h
jv�g;n(")j2

i
v��n(x)"22 + C�1 v�gn(")22 � C (2.23)

which together with the Markov inequality, Assumption 2.1.(i) and (2.22) veri�es Assumption 3.2.(i) in

HLR.

By de�nition,

� (Z2; g; h)[u
�
gn ]�� (Z2; go; ho)[u

�
gn ] = (go(")� g("h))u

�
gn : (2.24)

Recall that Nh;n = fh 2 Hn : kh� hok2 � �1;ng, where �1;n = ��h;n log(log(n)). It is clear that for any

h(�) = R(�)0L 2 Nh;n, we have

kh� hok1 � kh� ho;Lk1 + kho;L � hok1

�
R(x)0(L � o;L)1 + CL��h

� �L kL � o;Lk+ CL��h

� �L!
�1=2
min (QL)((L � o;L)

0QL(L � o;L))1=2 + CL��h

= �L!
�1=2
min (QL) kh� ho;Kk2 + CL

��h

� �L!
�1=2
min (QL)

�
kh� hok2 + kho;K � hok2

�
+ CL��h � C�L�1;n (2.25)

where the last inequality is by Assumption 2.1.(iii)-(iv) and the de�nition of �1;n. De�ne

Fn =
�
f(s; x; h; g) : f(s; x; h; g) = (go(")� g("h))u�gn("), g 2 Ng;n, h 2 Nh;n

	
;

where Ng;n = fg 2 Gn : kg � gok2 � �2;ng and �2;n = ��2;n log(log(n)). By Assumptions 2.4.(i) and 2.4.(v),

�L�1;n = o(1). Hence by (2.25) we can let n su�ciently large such that �L�1;n < �=2 and "h 2 E� for any

h 2 Nh;n. By the mean value expansion, g("h)� g(") = @P (e"h)0�("h � ") where e"h is between "h and ".
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As "h 2 E� for any h 2 Nh;n, we have e"h 2 E�. Hence for any g (�) = P (�)0� with g (�) 2 Ng;n and any

h 2 Nh;n, we have

jg("h)� g(")j �
��@P (e"h)0(� � �o;K)("h � ")��+ ��@P (e"h)0�o;K("h � ")��

=
��@P (e"h)0(� � �o;K)(h(x)� ho(x))��+ ��@P (e"h)0�o;K(h(x)� ho(x))��

�
�
k@P (e"h)k k� � �o;Kk+ ��@P (e"h)0�o;K��� kh� hok1

� (�1;K�2;n + �1;K)�L�1;n � (�1;K�1;n + 1)�L�2;n � C�L�2;n (2.26)

where the �rst inequality is by the mean value expansion and the triangle inequality, the equality is by

the de�nitions of "h and ", the second inequality is by the Cauchy-Schwarz inequality, the third inequality

is by Assumption 2.2.(v), (2.25), the de�nitions of �1;K and Nh;n, and

k� � �o;Kk � !�1min(QK)
�
kg � gok2 + kgo � go;Kk2

�
� C�2;n (2.27)

which is implied by Assumption 2.2.(iii) and the de�nition of Ng;n, the fourth inequality is because

�1;K�1;n � �2;n by de�nition, the last inequality in (2.26) is by �1;K�1;n = O(1) which is implied by

Assumptions 2.4.(ii) and 2.4.(v). By the triangle inequality and the Cauchy-Schwarz inequality,

jg(")� go(")j � k� � �o;Kk �0;K + kgo � go;Kk1 � C�0;K�2;n (2.28)

where the last inequality is by Assumption 2.2.(iii) and (2.27). By the de�nition of u�gn , Assumptions

2.2.(iv)-(v) and (2.21),

sup
"2E

��u�gn(")��2 � �20;K@�(go) [P ]
0Q�2K @�(go) [P ]

C�1
v�gn22 =

C�20;K@�(go) [P ]
0Q�2K @�(go) [P ]

@�(go)[P ]0Q
�1
K @�(go) [P ]

� C�20;K : (2.29)

Combining the results in (2.26), (2.28) and (2.29), we get

sup
f2Fn

kfk1 � sup
g2Ng;n, h2Nh;n, "2E

[jg("h)� g(")j+ jg(")� go(")j] sup
"2E

��u�gn(")��
� C(�L + �0;K)�0;K�2;n �Mn: (2.30)
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For any f 2 Fn, by (2.26) and (2.28),

E
�
f2
�
� 2E

h
(g("h)� g("))2 (u�gn("))

2
i
+ 2E

h
(g(")� go("))2 (u�gn("))

2
i

� C(�2L + �
2
0;K)�

2
2;nE

�
(u�gn("))

2
�
� C(�2L + �

2
0;K)�

2
2;n � d2n (2.31)

where the last inequality is by (2.23). For any f1 = f(�; h1; g1) and any f2 = f(�; h2; g2) where h1; h2 2 Nh;n
and g1; g2 2 Ng;n, by the triangle inequality,

jf1 � f2j �
��(g1("h1)� g1("h2))u�gn(")��+ ��(g1("h2)� g2("h2))u�gn(")��

�
��@P (e"h)0�1("h1 � "h2)u�gn(")��+ �0;K ��u�gn(")�� k�1 � �2k

=
��@P (e"h)0 [(�1 � �o;K) + �o;K ] (h1(x)� h2(x))u�gn(")��+ �0;K ��u�gn(")�� k�1 � �2k

�
�
k@P (e"h)k k�1 � �o;Kk+ ��@P (e"h)0�o;K��� ��R(x)0(1 � 2)�� ��u�gn(")��+ �0;K ��u�gn(")�� k�1 � �2k

� [�1;K�2;n + �1;K ] �L
��u�gn(")�� k1 � 2k+ �0;K ��u�gn(")�� k�1 � �2k

� Fn(")(k�1 � �2k+ k1 � 2k); (2.32)

where Fn(") = C(�1;K�L�2;n + �1;K�L + �0;K)
��u�gn(")��, the equality is by the de�nitions of "h1 and "h2 ,

the fourth inequality is by k@P (e"h)k � �1;K and k�1 � �o;Kk � �2;n for any h1; h2 2 Nh;n, and

��R(x)0(1 � 2)�� � kR(x)k k1 � 2k � �L k1 � 2k (2.33)

which is implied by the triangle inequality and the de�nition of �L. By (2.23), kFnk2 � C(�1;K�L�2;n +

�1;K�L + �0;K) � �Fn . Let H[] (u;Fn; k�k2) denote the u-bracketing entropy number of the function space

Fn under the L2-norm. By Example 19.7 in Van der Vaart (1998), H[] (u kFnk2 ;Fn; k�k2) � (Cu�1)L+K

for all u 2 (0; 1). Hence

J[] (dn;Fn; k�k2) =
Z dn

0
(logH[] (u;Fn; k�k2))

1=2du � C(K + L)1=2(log(n))1=2dn (2.34)
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where the inequality is by d�1n � Cn and �Fn � Cn which are implied by Assumption 2.4. By (2.30),

(2.31), (2.34) and Lemma 19.36 in Van der Vaart (1998),

E
�
sup
�2Nn

���n �� (Z2; g; h)[u
�
gn ]�� (Z2; go; ho)[u

�
gn ]
	���

�
J[] (dn;Fn; k�k2)

n1=2

�
1 +

J[] (dn;Fn; k�k2)
d2nn

1=2
Mn

�
� C

(K + L)1=2(log(n))1=2

n1=2
dn

 
1 +

(K + L)1=2(log(n))1=2

dnn1=2
Mn

!

� C
(K + L)1=2(log(n))1=2dn

n1=2

 
1 +

(K + L)1=2�0;K(log(n))
1=2

n1=2

!
= op(1) (2.35)

where the equality is by Assumptions 2.4.(i), and 2.4.(v). Using (2.35) and the Markov inequality, we get

sup
�2Nn

���n �� (Z2; g; h)[u
�
gn ]�� (Z2; go; ho)[u

�
gn ]
	�� = op(n

�1=2); (2.36)

which veri�es Assumption 3.2.(ii) in HLR.

By Assumption 2.2.(i), (2.23) and E [uj "] = 0,

K (g; h)�K (g
�; h) = E

�
�1
2
jy � g("h)j2

�
� E

�
�1
2
jy � g�("h)j2

�
= E

�
�1
2
jy � g("h)j2

�
� E

�
�1
2

��y � g("h)� �nu�gn(")��2�
= E

"
�2n
(u�gn("))

2

2
� �nu�gn(")u� �nu

�
gn(")(g("h)� go("))

#
= ��nE

�
u�gn(")(g("h)� go("))

�
+O(�2n): (2.37)

By the second order expansion, g("h) � g(") = @g(")("h � ") + @2g(e"h)("h � ")2, where e"h 2 E� for any
h 2 Nh;n. For any g (�) = P (�)0 � 2 Ng, we have

k�k � k� � �o;Kk+ k�o;Kk � C�2;n + k�o;Kk � C (2.38)

where the second inequality is (2.27), Assumptions 2.4.(i)-(ii) and 2.4.(v), the third inequality is by

k�o;Kk � !�1min(QK) kgo;Kk2 � !�1min(QK)
�
kgo;K � gok2 + kgok

�
� C (2.39)
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where the third inequality is by Assumptions 2.2.(ii)-(iv). Note that for any g(�) = P (�)0�K 2 Ng;n, we

have kg � gok2 � �2;n, which together with Assumption 2.2.(iii) and the de�nition of �2;n implies that

kg � go;Kk2 � kg � gok2 + kgo;K � gok2 � 2�2;n: (2.40)

By (2.40) and Assumption 2.2.(iv),

k� � �o;Kk2 � !�1min(QK)(� � �o;K)
0QK(� � �o;K) = !�1min(QK) kg � go;Kk

2
2 � C�2;n: (2.41)

By (2.38),
��@2g(e"h)�� � C�2;K , which together with (2.23), (2.4), (2.6) and (2.41) implies that

E
���@2g(e"h)("h � ")2u�gn(")��� � E ���@2P (e"h)0(� � �o;K)("h � ")2u�gn(")���

+ E
���@2P (e"h)0�o;K("h � ")2u�gn(")���

� (�2;K k� � �o;Kk+ �2;K)E
���("h � ")2u�gn(")���

� (�2;K�2;n + �2;K) �L�1;nE
���("h � ")u�gn(")���

� (�2;K�2;n + �2;K) �L�21;n = o(n�1=2) (2.42)

for any g 2 Ng;n and h 2 Nh;n, where the equality is by Assumptions 2.4.(iii)-(v). By (2.42),

E
�
u�gn(")(g("h)� g("))

�
= ��nE

�
u�gn(")@g(")("h � ")

�
+ o(n�1=2): (2.43)

By Jensen's inequality, the Holder inequality, (2.23), Assumptions 2.1.(iii), 2.2.(ii), 2.4.(v) and the de�-

nition of ho;n,

��E �u�gn(")@g(")("ho;n � ")��� = ��E �u�gn(")@g(")(ho � ho;n)���
� C(E

�
(u�gn("))

2
�
E
�
(ho � ho;n)2

�
)1=2

� C(E
�
(ho � ho;n)2

�
)1=2 = o(n�1=2): (2.44)

Combining the results in (2.37), (2.43) and (2.44), we get

K (g; h)�K (g
�; h) = ��n�(�o)

�
h� ho;n; u�gn

�
� �nE

�
u�gn(")(g(")� go("))

�
+ o(n�1): (2.45)
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By the de�nition of k�k and (2.23),

jjg� � gojj2 � jjg � gojj2 
2

= ��nE
�
u�gn(")(g(")� go("))

�
+ op(n

�1) (2.46)

which together with (2.45) veri�es Assumption 3.2.(iii) in HLR.

Lemma 2.5 Suppose that Assumptions 2.1, 2.2, 2.3 and 2.4 hold. Then Assumption 3.3 in HLR holds.

Proof of Lemma 2.5. As the functional value �(go) only depends on go, we know that u
�
hn
= 0. By

Assumption 2.1.(i),

E
�
(u��n(x))

2
�
�

v��n(x)22v��n(x)22C�1 + v�gn(")u22 � C; (2.47)

which together with the H�older inequality and Assumption 2.1.(iii) implies that

��hho;L � ho; u��ni'�� � kho;L � hok2 u��n2 = O(L��h): (2.48)

By the de�nition of bhn,
hbhn � ho;L; u��ni' = E �u��n(x)R(x)0� �RnR0n��1Rn(Sn �Hn;L); (2.49)

where Hn;L = [ho;L(x1); : : : ; ho;L(xn)]
0. By the Cauchy-Schwarz inequality and the H�older inequality, we

have E �u��n(x)R(x)�2 � E �(u��n(x))2�E �R(x)0R(x)� � CL (2.50)

where the second inequality is by (2.47) and Assumption 2.1.(iv). Under Assumptions 2.1 and 2.4.(i), we

can invoke Lemma 6.2 of Belloni, et al. (2015) to get

kQL �Qn;Lk = Op(�L(logL)
1=2n�1=2); (2.51)

where Qn;L = n�1RnR0n, which together with Assumption 2.4.(i) implies that

(2C)�1 < !min(Qn;L) � !max(Qn;L) < 2C wpa1. (2.52)
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By the Cauchy-Schwarz inequality, (2.50), (2.52) and Assumption 2.1.(iii)

���E �u��n(x)R(x)0� �RnR0n��1Rn(Hn �Hn;L)
���2

�
E �u��n(x)R(x)�2 (Hn �Hn;L)

0R0n
�
RnR

0
n

��2
Rn(Hn �Hn;L)

� Op(Ln
�1)(Hn �Hn;L)

0(Hn �Hn;L) = Op(L
1�2�h); (2.53)

which together with Sn � Hn;L = (Hn � Hn;L) + en (where en = ["1; : : : ; "n]
0), (2.49) and Assumption

2.4.(v) implies that

hbhn � ho;L; u��ni' = E �u��n(x)R(x)0� �RnR0n��1Rnen + op(n�1=2): (2.54)

By Assumptions 2.1.(i)-(ii) and 2.1.(iv), and (2.52),

E
hn�1Q�1L Rnen

2��� fxigni=1i = E �n�2e0nR0nQ�2L Rnen
�� fxigni=1�

� n�2!�2min(QL)tr
�
R0nE

�
ene

0
n

�� fxigni=1�Rn�
� Cn�2!�2min(QL)tr

�
RnR

0
n

�
� Cn�1!�2min(QL)tr (Qn;L) = Op(Ln

�1) (2.55)

which together with the Markov inequality implies that

n�1Q�1L Rnen
 = Op(L

1=2n�1=2): (2.56)

By the Cauchy-Schwarz inequality,

����E �u��n(x)R(x)0�Q�1L;nRnenn � E
�
u��n(x)R(x)

0�n�1Q�1L Rnen

����2
=
���E �u��n(x)R(x)0�Q�1L;n (QL;n �QL)n�1Q�1L Rnen

���
�
E �u��n(x)R(x)0�Q�1L;n kQL;n �QLkn�1Q�1L Rnen


= Op(�L(logL)

1=2Ln�1) = op(n
�1=2) (2.57)
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where the second equality is by (2.50), (2.51), (2.52) and (2.55), the last equality is by Assumption

2.4.(iv). Collecting the results in (2.54) and (2.57), we get

hbhn � ho;L; u��ni' = E �u��n(x)R(x)0�Q�1L Rnen
n

+ op(n
�1=2): (2.58)

By the de�nition of u��n(x),

E
�
u��n(x)R(x)

0�Q�1L Rnen
n

= E
�
@go(")v

�
gn(")R(x)

0�Q�1L Rnen
n kv�nksd

; (2.59)

and moreover

�'(Z1;i; ho)[u
�
�n ] = E

�
@go(")v

�
gn(")R(x)

0�Q�1L R(xi)"i
kv�nksd

: (2.60)

Hence we have

�n
�
�'(Z1; ho)[u

�
�n ]
	
= E

�
u��n(x)R(x)

0�Q�1L Rnen
n

(2.61)

which together with (2.48), (2.58) and Assumption 2.4.(v) veri�es Assumption 3.3.(i) in HLR.

By de�nition,

�'(Z1; ho)[u
�
�n ] + � (Z2; go; ho)[u

�
gn ] =

v��n(x)"+ v
�
gn(")u

kv�nksd
: (2.62)

By the Cauchy-Schwarz inequality, Assumptions 2.1.(iv)-(v), 2.2.(ii) and (2.21),

supx2X
��v��n(x)��2

kv�nk
2
sd

=
�2L

!2min(QL)

E �@go(")v�gn(")R(x)�2
kv�nk

2
sd

� C�2L
!2min(QL)

E
�
(@go(")v

�
gn("))

2
�
E [R(x)0R(x)]v�gn22

� C�2L sup"2E(@go("))
2

!2min(QL)

E
�
(v�gn("))

2
�
E [R(x)0R(x)]v�gn22 = O(L�2L): (2.63)
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By Assumptions 2.1.(ii), 2.2.(i), 2.4.(i) and 2.4.(iv), and the results in (2.23), (2.29), (2.47) and (2.63),

E
h��v��n(x)"+ v�gn(")u��4i

n kv�nk
4
sd

� 8
E
h��v��n(x)"��4i+ E h��v�gn(")u��4i

n kv�nk
4
sd

� C
E
h��v��n(x)��4i+ E h��v�gn(")��4i

n kv�nk
4
sd

� Cn�1(�20;K + L�
2
L)
�
E
h��u��n(x)��2i+ E h��u�gn(")��2i�

= O(�20;Kn
�1 + L�2Ln

�1) = o(1); (2.64)

which together with Assumption 2.1.(i) and the Linderberge CLT veri�es Assumption 3.3.(ii) in HLR.

The condition "2;n = O(�n) and �n�
��1
2;n = o(1) in Assumption 3.3.(iii) of HLR hold by "2;n = 0 and by

n�1=2���12;n = O(1) respectively. Moreover jju�gn jj2 � C by the de�nition of k�k and (2.23). This veri�es

Assumption 3.3.(iii) in HLR.

Recall that Nh;n = fh 2 Hn : kh� hok2 � ��h;n log(log(n))g and Nn = Nh;n � Ng;n. In Section 4 of

HLR, we de�ne W1;n = fh 2 V1;n : khk2 � 1g and W2;n = fg 2 V2;n : kgk2 � 1g.

Lemma 2.6 Suppose that Assumptions 2.1, 2.2, 2.3, 2.4 and 2.5 hold. Then Assumptions 4.1 and 4.2

in HLR hold.

Proof of Lemma 2.6. Assumptions 4.1.(i) and 4.1.(ii) in HLR hold by the de�nition of h�; �i . By the

Cauchy-Schwarz inequality,

sup
�2Nn

sup
vg1 ;vg22W2;n

�����n�1
nX
i=1

r (Z2;i; �)[vg1 ; vg2 ]� E [r (Z2; �o)[vg1 ; vg2 ]]
�����

= sup
vg1 ;vg22W2;n

�����n�1
nX
i=1

vg1("i)vg2("i)� E [vg1(")vg2(")]
�����

� kQn;K �QKk = Op(�0;K(logK)
1=2n�1=2) = op(1) (2.65)

where the second equality is by (2.1), the third equality is by Assumption 2.4.(i). This means that

Assumption 4.1.(iii) in HLR holds. Assumption 4.1.(iv) in HLR is assumed in Assumption 2.3.(iv). This

veri�es Assumption 4.1 in HLR.

26



Assumptions 4.2.(i) and 4.2.(ii) in HLR hold by the de�nition of h�; �i'. By the Cauchy-Schwarz

inequality,

sup
h2Nh;n

sup
vh1 ;vh22W1;n

�����n�1
nX
i=1

r'(Z1;i; h)[vh1 ; vh2 ]� E [r'(Z1; ho)[vh1 ; vh2 ]]
�����

= sup
vh1 ;vh22W1;n

�����n�1
nX
i=1

vh1(xi)vh2(xi)� E [vh1(x)vh2(x)]
�����

� kQn;L �QLk = Op(�L(logL)
1=2n�1=2) = op(1) (2.66)

where the second equality is by (2.51), and the third equality is by Assumption 2.4.(i). This means that

Assumption 4.2.(iii) in HLR holds. As @�(�)[vh] = 0 for any � in this example, Assumption 4.2.(iv) in

HLR holds.

Under Assumptions 2.4.(v) and 2.5,

�1;K�2;n � �1;K(K
1=2n�1=2 +K��g + �1;KL

1=2n�1=2) log(log(n)) = o(1): (2.67)

By de�nition, for any � 2 Nn, we have

�n(�) [vh; vg]� �(�o) [vh; vg]

= n�1
nX
i=1

[@g("h;i)� @g("i)] vh(xi)vg("i)

+ n�1
nX
i=1

[@g("i)� @go("i)] vh(xi)vg("i)

+ n�1
nX
i=1

@go("i)vh(xi)vg("i)� E [@go(")vh(x)vg(")] : (2.68)

By the Cauchy-Schwarz inequality,

sup
vh2W1;n,vg2W2;n

�����n�1
nX
i=1

jvh(xi)vg("i)j
�����
2

� sup
vh2W1;n,vg2W2;n

"
n�1

nX
i=1

jvh(xi)j2 � n�1
nX
i=1

jvg("i)j2
#

� kQL;nk kQK;nk = Op(1) (2.69)
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where the equality is by Assumptions 2.1.(iv), 2.2.(iv), and results in (2.1) and (2.51). Recall that

B�2;n � fv 2 V2;n :
v � v�gn v�gn�1 � �vg ;ng, where �vg ;n = o(1) is some positive sequence such thatbv�gn 2 B�2;n wpa1. For any vg 2 B�2;n, we have

���kvgk2 v�gn�12 � 1
��� � vg � v�gn2 v�gn�12 = o(1) (2.70)

which implies that

sup
vg2B�2;n

kvgk2
v�gn�12 � 2 (2.71)

for all large n. By (2.71), the mean value expansion, the triangle inequality and the Cauchy-Schwarz

inequality,

sup
vh2W1;n,vg2B�2;n

�����n�1
nX
i=1

[@g("h;i)� @g("i)] vh(xi)vg("i)
�����

� 2
v�gn2 sup

vh2W1;n,vg2W2;n

�����n�1
nX
i=1

@P (e"h;i)0(� � �o;K)("h;i � "i)vh(xi)vg("i)
�����

+ 2
v�gn2 sup

vh2W1;n,vg2W2;n

�����n�1
nX
i=1

@P (e"h;i)0�o;K("h;i � "i)vh(xi)vg("i)
�����

� C
v�gn2 [�1;K k� � �o;Kk+ �1;K ] �L�1;n

 
sup

vh2W1;n,vg2W2;n

n�1
nX
i=1

jvh(xi)vg("i)j
!

� C
v�gn2 [�1;K�2;n + �1;K ] �L�1;n

 
sup

vh2W1;n,vg2W2;n

n�1
nX
i=1

jvh(xi)vg("i)j
!
; (2.72)

for any h 2 Nh;n and any g 2 Ng;n, where the second inequality is by (2.25), the third inequality is by

(2.41). Equation (2.72) together with Assumptions 2.5.(iii)-(v), (2.67), and (2.69) implies that

sup
�2Nn

sup
vh2W1;n,vg2B�2;n

�����n�1
nX
i=1

[@g("h;i)� @g("i)] vh(xi)vg("i)
�����

= Op((�1;K�2;n + �1;K)�L�1;n)

= Op(n
�1=2L1=2�L�1;K(n

�1=2K1=2 +K��g + �1;Kn
�1=2L1=2) + n�1=2L1=2�L�1;K) = op(1): (2.73)
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By the triangle inequality, the Cauchy-Schwarz inequality, Assumption 2.2.(iii) and 2.2.(v)

sup
"2E

j@g(")� @go(")j � sup
"2E

j@g(")� @go;K(")j+ sup
"2E

j@go;K(")� @go(")j

� �1;K k� � �o;Kk+K��g ; (2.74)

which together with the de�nition of Nn and (2.27) implies that

sup
g2Ng;n

sup
"2E

j@g(")� @go(")j � C�1;K�2;n +K
��g = o(1) (2.75)

where the equality is by Assumption 2.4.(v) and (2.67). Using (2.75) and the triangle inequality

sup
g2Ng;n

sup
vh2W1;n,vg2B�2;n

�����n�1
nX
i=1

[@g("i)� @go("i)] vh(xi)vg("i)
�����

� sup
g2Ng;n

sup
"2E

j@g(")� @go(")j � sup
vh2W1;n,vg2B�2;n

n�1
nX
i=1

jvh(xi)vg("i)j

� C
v�gn2 (�1;K�2;n +K��g)

 
sup

vh2W1;n,vg2W2;n

n�1
nX
i=1

jvh(xi)vg("i)j
!
= op(1) (2.76)

where the equality is by Assumption 2.5.(i) and (2.69). By Assumptions 2.1.(i), 2.1.(v) 2.2.(ii), 2.2.(iv)

and the Cauchy-Schwarz inequality,

E
h�n �@go(")R(x)P (")0	2i � n�1E

h
j@go(")j2

��P (")0R(x)��2i � CK�Ln
�1 = o(1) (2.77)

where the equality is by Assumption 2.4.(i). By the Cauchy-Schwarz inequality,

sup
vh2W1;n,vg2B�2;n

j�n f@go(")vh(x)vg(")gj

� 2
v�gn2 sup

vh2W1;n,vg2W2;n

j�n f@go(")vh(x)vg(")gj

� 2
v�gn2 �n �@go(")R(x)P (")0	 = op(1) (2.78)

where the equality is by Assumption 2.5.(i), (2.77) and the Markov inequality. Collecting the results in

(2.68), (2.73), (2.76) and (2.78), we get

sup
�2Nn

sup
vh2W1;n,vg2B�2;n

j�n(�) [vh; vg]� �(�o) [vh; vg]j = op(1): (2.79)
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By the H�older inequality and Assumption 2.2.(ii)

sup
vh2W1;n,vg2B�2;n

���(�o) �vh; vg � v�gn���
� C

v�gn2 sup
vh2W1;n,vg2B�2;n

h
kvhk2

vg � v�gn2 v�gn�12 i
� C

v�gn2 kQLk sup
vg2B�2;n

vg � v�gn2 v�gn�12 = o(1) (2.80)

where the equality is by Assumption 2.5.(i), Assumption 2.1.(iv) and the de�nition of B�2;n. Combining

the results in (2.79) and (2.80), we verify Assumption 4.2.(v) in HLR.

Lemma 2.7 Suppose that Assumptions 2.1, 2.2, 2.3, 2.4 and 2.5 hold. Then Lemma C.3 in HLR holds..

Proof of Lemma 2.7. By de�nition for any h 2 Nh;n,

�2'(Z1; h)[vh] = "2v2h(x) + (h(x)� ho(x))2v2h(x)� 2"v2h(x)(h(x)� ho(x)): (2.81)

By the de�nitions of W1;n and the operator norm,

sup
vh2W1;n

���n �"2v2h(x)	�� � �n �"2R(x)R(x)0	 : (2.82)

By Assumptions 2.1 and the Cauchy-Schwarz inequality,

E
h�n �"2R(x)R(x)0	2i � n�1E

h
"4
��R(x)0R(x)��2i � L�2Ln

�1 (2.83)

which together with (2.82), the Markov inequality and Assumption 2.4.(i) implies that

sup
vh2W1;n

���n �"2v2h(x)	�� = op(1): (2.84)

By the de�nition of Nh;n,

sup
h2Nh;n

sup
vh2W1;n

n�1
nX
i=1

(h(xi)� ho(xi))2v2h(xi)

�
 
sup

h2Nh;n
kh� hok21

! 
sup

vh2W1;n

n�1
nX
i=1

v2h(xi)

!
= Op(�

2
L�
2
h;n) = op(1) (2.85)
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where ��2h;n = Ln�1 + L�2�h , the �rst equality is by (2.25) and

sup
vh2W1;n

n�1
nX
i=1

v2h(xi) = Op(1); (2.86)

which follows by arguments in showing (2.69), the second equality is by Assumptions 2.4.(i) and 2.4.(v).

By the Cauchy-Schwarz inequality,

sup
h2Nh;n

sup
vh2W1;n

�����n�1
nX
i=1

"iv
2
h(xi)(h(xi)� ho(xi))

�����
2

�
 
sup

h2Nh;n
kh� hok21

! 
sup

vh2W1;n

n�1
nX
i=1

"2i v
2
h(xi)

! 
sup

vh2W1;n

n�1
nX
i=1

v2h(xi)

!
: (2.87)

By Assumptions 2.1.(ii) and 2.1.(iv),����� sup
vh2W1;n

E
�
"2i v

2
h(xi)

������ � E �"2R(x)R(x)0� � C (2.88)

which together with (2.84) implies that

sup
vh2W1;n

n�1
nX
i=1

"2i v
2
h(xi) = Op(1): (2.89)

By (2.86), (2.87), (2.89) and the de�nition of Nh;n,

sup
h2Nh;n

sup
vh2W1;n

�����n�1
nX
i=1

"iv
2
h(xi)(h(xi)� ho(xi))

�����
2

= Op(�
2
L�
2
h;n) = op(1) (2.90)

where ��2h;n = Ln�1 + L�2�h , the second equality is by Assumptions 2.4.(i) and 2.4.(v). Collecting the

results in (2.81), (2.84), (2.85) and (2.90), we show that Lemma C.3.(i) in HLR holds.

By de�nition

n�1
nX
i=1

�2 (Z2;i; �)[vg]� E
�
�2 (Z2; �o)[vg]

�
= �n

�
u2v2g(")

	
+ n�1

nX
i=1

(g("h;i)� go("i))2v2g("i)

� 2n�1
nX
i=1

ui(g("h;i)� go("i))v2g("i): (2.91)
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Using similar arguments in showing (2.84), we can show that

sup
vg2W2;n

�n
�
u2v2g(")

	
= Op(K�0;Kn

�1) = op(1); (2.92)

where the equality is by Assumption 2.4.(i). By (2.26) and (2.28),

sup
�2Nn

sup
vg2W2;n

n�1
nX
i=1

(g("h;i)� go("i))2v2g("i)

� C(�2L + �
2
0;K)�

2
2;n sup

vg2W2;n

n�1
nX
i=1

v2g("i)

= o(1) sup
vg2W2;n

n�1
nX
i=1

v2g("i) = op(1) (2.93)

where the �rst equality is by

(�2L + �
2
0;K)�

2
2;n = o(1); (2.94)

which is implied by Assumption 2.4.(i), 2.4.(v) and (�2L + �20;K)�
2
1;KLn

�1 = o(1) (which is implied by

Assumption 2.5), the second equality in (2.93) is by

sup
vg2W2;n

n�1
nX
i=1

v2g("i) = Op(1) (2.95)

which follows by arguments in showing (2.69). Similarly by (2.26) and (2.28),

sup
�2Nn

sup
vg2W2;n

�����n�1
nX
i=1

ui(g("h;i)� go("i))v2g("i)
�����
2

� C(�2L + �
2
0;K)�

2
2;n sup

vg2W2;n

n�1
nX
i=1

u2i v
2
g("i) sup

vg2W2;n

n�1
nX
i=1

v2g("i)

= op(1) sup
vg2W2;n

n�1
nX
i=1

u2i v
2
g("i) = op(1) (2.96)

where the �rst equality is by (2.94) and (2.95), the second equality is by

sup
vg2W2;n

n�1
nX
i=1

u2i v
2
g("i) = Op(1) (2.97)

which follows by similar arguments in showing (2.89). Collecting the results in (2.91), (2.92), (2.93) and

(2.96), we show that Lemma C.3.(ii) in HLR holds.
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By de�nition

�'(Z1; h)[vh]� (Z2; �)[vg]� EZ [�'(Z1; ho)[vh]� (Z2; �o)[vg]]

= u"vg(")vh(x)� E [u"vg(")vh(x)]

+ (h(x)� ho(x))uvh(x)vg(") + (g("h)� go("))"vh(x)vg(")

+ (g("h)� go("))(h(x)� ho(x))vh(x)vg("); (2.98)

for any � 2 Nn. By the Cauchy-Schwarz inequality and Assumptions 2.1.(i)-(ii), 2.1.(v), 2.2.(i) and

2.2.(v),

E
h�n �u"R(x)P (")0	2i = n�1E

�
u2"2P (")0P (")R(x)0R(x)

�
� n�1

r
E
h
(u2P (")0P ("))2

ir
E
h
("2R(x)0R(x))2

i
� n�1

q
�20;KE [P (")0P (")]

q
�2LE [R(x)0R(x)]

� Cn�1�L�0;KL
1=2K1=2 � Cn�1(L+K)(�2L +K

2) = o(1); (2.99)

where the third inequality is by E [P (")0P (")] � tr(QK) = O(K) and E [R(x)0R(x)] � tr(QL) = O(L),

and the last equality is by Assumption 2.4.(i). By the Cauchy-Schwarz inequality, the Markov inequality

and (2.99), we have

sup
vh2W1;n;vg2W2;n

�n fu"vg(")vh(x)g = op(1): (2.100)

By (2.26), (2.28) and the Cauchy-Schwarz inequality,

sup
�2Nn

sup
vh2W1;n;vg2W2;n

�����n�1
nX
i=1

(g("h;i)� go("i))"ivh(xi)vg("i)
�����
2

� C(�2L + �
2
0;K)�

2
2;n

 
sup

vh2W1;n

n�1
nX
i=1

"2i v
2
h(xi)

! 
sup

vg2W2;n

n�1
nX
i=1

v2g("i)

!
= op(1) (2.101)

where the equality is by (2.94), (2.89) and (2.95). By the Cauchy-Schwarz inequality,

sup
h2Nh;n

sup
vh2W1;n;vg2W2;n

�����n�1
nX
i=1

(h(xi)� ho(xi))uivh(xi)vg("i)
�����
2

� sup
h2Nh;n

kh� hok21

 
sup

vh2W1;n

n�1
nX
i=1

v2h(xi)

! 
sup

vg2W2;n

n�1
nX
i=1

uiv
2
g("i)

!
= op(1) (2.102)
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where the equality is by (2.86), (2.97) and suph2Nh;n kh� hok
2
1 = �2L�

2
1;n = o(1) which is implied by

Assumption 2.4.(i). Similarly,

sup
�2Nn

sup
vh2W1;n;vg2W2;n

�����n�1
nX
i=1

(h(xi)� ho(xi))(g("h;i)� go("i))vh(xi)vg("i)
�����
2

� C(�2L + �
2
0;K)�

2
2;n sup

h2Nh;n
kh� hok21

�
 

sup
vh2W1;n

n�1
nX
i=1

v2h(xi)

! 
sup

vg2W2;n

n�1
nX
i=1

v2g("i)

!

= Op((�
2
L + �

2
0;K)�

2
L�
2
1;n�

2
2;n) = op(1) (2.103)

where the �rst equality is by (2.86), (2.95) and suph2Nh;n kh� hok
2
1 = �2L�

2
1;n, the second equality is by

(2.94), and �2L�
2
1;n = o(1) which is implied by Assumption 2.4.(i). Collecting the results in (2.98), (2.100),

(2.101), (2.102) and (2.103), we show that Lemma C.3.(iii) in HLR holds.

Lemma 2.8 Suppose that Assumptions 2.1, 2.2, 2.3 and 2.4 hold. Then Assumption 4.3.(iv) in HLR

holds.

Proof of Lemma 2.8. By the de�nition of �'(Z1; ho)[vh], we have

sup
vh2W1;n

E
h
j�'(Z1; ho)[vh]j2

i
�
E �"2R(x)R(x)0� � C kQLk � C (2.104)

where the second inequality is by Assumption 2.1.(ii), the third inequality is by Assumption 2.1.(iv).

Similarly,

sup
vg2W2;n

E
h
j� (Z2; �o)[vg]j2

i
�
E �u2P (")P (")0� � C kQKk � C (2.105)

where the second inequality is by Assumption 2.2.(i), the third inequality is by Assumption 2.2.(iv). By

v�hn = 0, (2.21), (2.23) and (2.47),

(
v�hn' + v��n' + v�gn ) kv�nk�1sd = u��n2 + u�gn2 � C; (2.106)

which veri�es (4.10) in HLR. By (2.104), (2.105) and (2.106), Assumption 4.3.(iv) in HLR is veri�ed.
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3 Veri�cation of Assumptions 3.2 and 3.4 in Example 2.1

In this section, we use the nonparametric triangular simultaneous equation model in Newey, Powell and

Vella (1999) to illustrate the high-level su�cient conditions for the asymptotic normality of the two-step

sieve estimator.

The �rst step nonparametric estimation takes the following form:

bhn = arg max
h2Hn

� 1

2n

nX
i=1

(xi � h (w1;i))2 (3.1)

where Hn = fh : h (�) = R(�)0,  2 RL(n)g. Let R(w1;i) =
�
r1(w1;i); : : : ; rL(n)(w1;i)

�0
for i = 1; : : : ; n, and

Rn = [R(w1;1); : : : ; R(w1;n)]. The �rst step M estimator bhn has a closed form expression

bhn(�) = R(�)0
�
RnR

0
n

��1
RnXn = R(�)0bn (3.2)

where Xn = [x1; : : : ; xn]
0. To de�ne the second step M estimation, let P (w) =

�
p1(w); : : : ; pK(n)(w)

�0
be a vector of approximating functions of w = (x;w02; u)

0 such that each pk(w) depends on (x;w2) or

on u, but not both. From the �rst step estimator, we calculate bui = xi � bhn(w1;i) for i = 1; : : : ; n.

Let P ( bwi) = [p1( bwi); : : : ; pK(n)( bwi)]0 and bPn = [b�1P ( bw1); : : : ; b�nP ( bwn)]0, where bwi = (xi; w
0
2;i; bui)0 andb�i =Qdw2+2

j=1 Ifaj � bwj;i � bjg for i = 1; : : : ; n, where dw2 denotes the dimension of w2 and bwj;i is the j-th
component of bwi for j = 1; : : : ; dw2 + 2. Let go(w) = mo(x;w2) + �o (u) and � = y �mo(x;w2)� �o (u).

By the de�nition of �o (u), and the conditional moment restrictions in (3) of HLR, we have

E[�jx;w1] = 0: (3.3)

Let Tw = fw : �(w) = 1g where �(w) =
Qdw2+2
j=1 Ifaj � wj;i � bjg. The second step M estimator (of go)

is bgn = argmax
g2Gn

�n�1
nX
i=1

b�i(yi � g( bwi))2 (3.4)

where Gn = fg (�) : g (�) = �(�)P (�)0�, � 2 RK(n)g. The second step M estimator bgn also has a closed form
expression bgn(w) = P (w)0( bP 0n bPn)�1 bP 0nYn = P (w)0b�n (3.5)

for any w 2 Tw, where Yn = [y1; : : : ; yn]0. The plug-in estimator of �(go) is �(bgn), where �(�) is a linear
functional of g.
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We next list the low level su�cient conditions for the asymptotic normality of �(bgn). These assump-
tions are from Newey, Powell and Vella (1999).

Assumption 3.1 f(yi; xi; w1;i)gni=1 is i.i.d., var(xjw1) and var(yjx;w1) are bounded.

Assumption 3.2 w1 is continuously distributed with density that is bounded away from zero on its sup-

port, and the support of w1 is a cartesian product of compact, connected intervals. Also w is continuously

distributed and its density is bounded away from zero on Tw, and Tw is contained in the interior of the

support of w.

Assumption 3.3 ho (w1) is continuously di�erentiable of order s1 on the support of w1 and mo(x;w2)

and �o(u) are Lipschitz and continuous di�erentiable of order s on Tw.

In the rest of the section, we write L and K for L(n) and K(n) respectively for notational simplicity.

Following Newey, Powell and Vella (1999), we consider two types of approximating functions for R(w1)

and P (w): the power series and splines.

Assumption 3.4 Either (a) for power series, (K3 + K2L)(L1=2n�1=2 + L�s1=dw1 ) = o(1); or (b) for

splines, (K2 +KL)(L1=2n�1=2 + L�s1=dw1 ) = o(1).

By Assumption 3.3, there exists o;L 2 RL such that

sup
w12W1

jho;L(w1)� ho(w1)j � CL�s1=dw1 ; (3.6)

where ho;L(w1) = R(w1)
0o;L, W1 denotes the support of w1 and dw1 denotes the dimension of w1, and

there exists �o;K 2 RK such that

sup
w2Tw

jgo;K(w)� go(w)j � CK�s=d (3.7)

where go;K(w) = P (w)0�o;K and d denotes the dimension of (x;w02)
0.

We next calculate the Riesz representors v�gn and v��n . Let Z1;i = (xi; w
0
1;i)

0 and ' (Z1;i; h) =

� (xi � h (w1;i))2 =2. By de�nition, hvh1 ; vh2i' = E [vh1(w1)vh2(w1)] for any vh1 ; vh2 2 V1. Let Z2;i =

(yi; xi; w
0
1;i)

0, uh;i = xi � h(w1;i) and wh;i = (xi; w
0
2;i; uh;i)

0. The criterion function of the second step

estimation is

 (Z2;i; g; h) = ��(wh;i) (yi �m (xi; w2;i)� � (xi � h(w1;i)))2 =2:
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By de�nition, hvg1 ; vg2i = E [�(w)vg1(w)vg2(w)] for any vg1 ; vg2 2 V2. By some simple calculation, we

get

v�gn(�) = �(�)P (�)0Q�1K �(PK);

where QK = E [�(w)P (w)P (w)0] and �(PK) = [�(p1); : : : ; �(pK)]0. Moreover, by the conditional moment

condition (3.3), we have

�(�o) [vh; vg] = E [�(w)@ugo(w)vh(w1)vg(w)]

where @ugo(w) = @go(w)=@u, which implies that

v��n(�) = R(�)0Q�1L E
�
�(w)@ugo(w)v

�
gn(w)

�
= R(�)0Q�1L HQ�1K �(PK);

where H = E [�(w)@ugo(w)R(w1)P (w)0] and QL = E [R(w1)R(w1)0]. Using the sieve Riesz representors

v�gn and v
�
�n
, and the i.i.d. assumption, we have

kv�nk
2
sd = Var

h
n�

1
2

Xn

i=1

�
uiv

�
�n(w1;i) + �i�(wi)v

�
gn(wi

�
)
i

= E
�
u2(v��n(w1))

2
�
+ E

�
�2�(w)(v�gn(w))

2
�

(3.8)

where the second equality is by (3.3). Let �K = E
�
�2�(w)P (w)P (w)0

�
and �L = E

�
u2R(w1)R(w1)

0�.
By the explicit expressions of v�gn and v

�
�n
,

kv�nk
2
sd = �(PK)

0Q�1K H 0Q�1L E
�
u2R(w1)R(w1)

0�Q�1L HQ�1K �(PK)

+ �(PK)
0Q�1K E

�
�2�(w)P (w)P (w)0

�
Q�1K �(PK)

= �(PK)
0Q�1K

�
�K +H

0Q�1L �LQ
�1
L H

�
Q�1K �(PK)

which is the same as the variance-covariance matrix V of the two-step estimator de�ned on page 596 of

Newey, Powell and Vella (1999).

Assumption 3.5 �2(x;w1) = var(yjx;w1) is bounded away from zero, E[�4jx;w1] is bounded, and

E[u4jx;w1] is bounded. Also go(w) is twice continuously di�erentiable in u with bounded �rst and second

derivatives.

Assumption 3.6 There exists v�g(w) and �v;K such that E[�(w)
��v�g(w)��2] <1, �(go) = E[�(w)v�g(w)go(w)],

�(pk) = E[�(w)v�g(w)pk(w)] and E[�(w)
��v�g(w)� P (w)0�v;K��2]! 0 as K !1.
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For any dw � 1 vector a of nonnegative integers, let jaj =
Pdw

j=1 aj , @
ag(w) = @jajg(w)=@w1 � � � @wdw .

Let ��;K (� = 0; 1) and �L be nondecreasing sequences such that maxjaj�� supw2Tw k@aP (w)k � ��;K and

supw12W1
kR(w1)k � �L respectively. The following assumption is on the numbers of generic approximat-

ing functions in the �rst step and second step estimations.

Assumption 3.7 n1=2K�s=d = o(1) and n1=2L�s1=dw1 = o(1), and

�20;K(L
2 +K2) log(n)n�1 + �20;K�

2
LL(�

2
LL+ �

2
0;KK)n

�1 + �21;KLKn
�1 = o(1): (3.9)

When the power series are used in the two-step estimation, we have �L � CL and ��;K � CK1+2�

(� = 0; 1). Under the conditions that n1=2K�s=d = o(1) and n1=2L�s1=dw1 = o(1), the su�cient condition

for (3.9) becomes

(K7L+K5L3 +K2L6)n�1 = o(1)

which is implied by Assumption 8 in Newey, Powell and Vella (1999). When the splines are used in the

two-step estimation, we have �L � CL1=2 and ��;K � CK1=2+� (� = 0; 1). Under the conditions that

n1=2K�s=d = o(1) and n1=2L�s1=dw1 = o(1), the su�cient condition for (3.9) becomes

(K4L+K3L2 +KL4)n�1 = o(1)

which is also implied by Assumption 8 in Newey, Powell and Vella (1999).

Theorem 3.1 Under Assumptions 3.1-3.7, we have

p
n [�(bgn)� �(go)]

kv�nksd
!d N(0; 1): (3.10)

Proof of Theorem 3.1. De�ne �h;n = ��h;n%n and �g;n = ��g;n%n where �
�
h;n = L1=2n�1=2 + L�s1=dw1 ,

��g;n = K1=2n�1=2 + K�s=d + ��h;n and f%ngn is a slowly divergent real positive sequence. Let N;n =

f 2 RL: jj � o;Ljj � �h;ng where �h;n = ��h;n%n and f%ngn is a slowly divergent real positive sequence.

Similarly, de�ne N�;n = f� 2 RK : jj� � �o;K jj � �g;ng where �g;n = ��g;n%n. By Lemma 3.2.(b) and

Lemma 3.2.(d), we have bn 2 N;n and b�n 2 N�;n wpa1. De�ne Nh;n = fh (�) = R (�)0 :  2 N;ng and

Ng;n = fg (�) = P (�)0 �: � 2 N;ng.1 By Lemma 3.2.(b) and Lemma 3.2.(d), we have bhn 2 Nh;n and
1Let khk2 = (E

�
h(w1)

2
�
)1=2 denote the L2-norm and kgk2;� = (E

�
�(w)g(w)2

�
)1=2 denote the restricted L2-norm. One

may also de�ne the local neighborhoods of ho and go as: N 0
h;n = fh (�) = R (�)0 : kh� hok2 � �h;L%

0
ng and N 0

g;n = fg (�) =
P (�)0 �: kg � gok2;� � �g;L%

0
ng respectively, where f%0ngn is a slowly divergent real sequence. For any h = R (�)0 h 2 N 0

h;n,
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bgn 2 Ng;n wpa1. The proof of the theorem is divided into three steps.

Step 1. We verify Assumption 3.1 in HLR. By Assumptions 3.5 and 3.6, Lemma 3.1 implies that

kv�nksd ! E
�
�2�(w)(v�g(w))

2
�
+ E

�
u2(v��(w1))

2
�

(3.11)

as K ! 1 and L ! 1, where v��(w1) = E
�
�(w)v�g(w)@ugo(w)jw1

�
. The above limit is the same

as the asymptotic variance de�ned in (5.7) of Newey, Powell and Vella (1999). By Assumption 3.5,

E
�
�2jx;w1

�
> C� where C� is a �nite positive constant. This means that

E
�
�2�(w)(v�g(w))

2
�
� C�E

�
�(w)(v�g(w))

2
�
> 0 (3.12)

where the last inequality is by the fact that �(go) is an unknown value. If E
�
�(w)(v�g(w))

2
�
= 0, we

have �(w)(v�g(w))
2 = 0 almost surely which together with (5.6) in Newey, Powell and Vella (1999) implies

that �(g) = 0 for any g 2 G, where G includes all additive functions satisfying Assumptions 3.3 and 3.5.

In such a case, �(go) will be a known (to zero) value. Combining the results in (3.11) and (3.12) we

have lim infn kv�nksd > 0, which veri�es Assumption 3.1.(i). Because �(�) is a linear functional and kv�nksd
is bounded away from zero, Assumption 3.1.(ii) holds trivially. The strong norms k�kH and k�kG used

to establish the convergence rate of bhn and bgn respectively are the L2-norm khk2 = (E
�
(h(w1))

2
�
)1=2

and the restricted L2-norm kgk2;� = (E
�
�(w)(g(w))2

�
)1=2 respectively (see footnote 1 for details). By

the de�nitions of k�k' and k�k , we can set c' = 1 and c = 1 such that kvhk' � c' kvhkH and

kvgk � c kvgkG for any vh 2 V1 and vg 2 V2. Under Assumptions 3.1-3.4, we can use Lemma 4.1 of

Newey, Powell and Vella (1999) to get

kbgn(w)� gokG = ��2;n (3.13)

where ��2;n = K1=2n�1=2 +K�s=d + L1=2n�1=2 + L�s1=dw1 . Let gn (�) = go;K (�) where go;K is de�ned in

(3.7). Then by (3.7) we have

kgn � gokG = kgo;K � gokG � sup
w2Tw

jgo;K(w)� go(w)j = O(��2;n); (3.14)

by the triangle inequality,
kh� ho;nk � kh� hok+ kho;n � hok � 2�h;L%0n

which implies that jjh�o;Ljj � 2!�1min(QL)�h;L%0n, where !min(QL) denotes the smallest eigenvalue of QL which is bounded
away from zero by Assumption 3.2. Hence if we let %n = 2!�1min(QL)%

0
n, then h 2 N;n which implies that h 2 Nh;n and

hence N 0
h;n � Nh;n. Similarly, we can appropriately choose %n such that N 0

g;n � Ng;n. This means the high-level su�cient
conditions veri�ed under Nh;n and/or Ng;n holds for their counterparts under N 0

h;n and/or N 0
g;n.
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which �nishes veri�cation of Assumption 3.1.(iii). For Assumption 3.1.(iv), as �(g) is linear and it only

depends on g, it is su�cient to show that

1

kv�nksd
j�(go;n � go)j = o(n�

1
2 ) (3.15)

where go;n denotes the projection of go on the �nite dimensional sieve space with respect to the restricted

L2-norm k�k2;� . By (5.6) in Newey, Powell and Vella (1999),

j�(go;n � go)j2 =
��E ��(w)v�g(w)(go;n(w)� go(w))���2

� E
�
�(w)(v�g(w))

2
�
E
�
�(w)(go;n(w)� go(w))2

�
� E

�
�(w)(v�g(w))

2
�
E
�
�(w)(go;K(w)� go(w))2

�
= O(K�2s=d) (3.16)

where the �rst inequality is by H�older's inequality, the second inequality is by the de�nition of go;n, the

last equality is by (3.7) and Assumption 3.6. By Assumption 3.1.(i) (which has already been veri�ed),

(3.16) and Assumption 3.7, we prove (3.15) and hence Assumption 3.1.(iv).

Step 2. We verify Assumption 3.2 of HLR. Let uh = x� h(w1) and wh = (x;w02; uh)0. By de�nition

 (Z2; g
�; h)�  (Z2; g; h)�� (Z2; g; h)[��nu�gn ]

= �
�(wh)(y � g(wh)� �nu�gn(w))2

2

+
�(wh)(y � g(wh))2

2
� �(wh)(y � g(wh))(��nu�gn)

= ��
2
n

2
�(wh)(u

�
gn(w))

2; (3.17)

where u�gn(w) = v�gn(w)= kv�nksd and kv�nksd is de�ned in (3.8). By the triangle inequality, Lemma 3.3.(e)-

(f) and (3.17),

sup
h2Nh;n;g2Ng;n

���n � (Z2; g�; h)�  (Z2; g; h)�� (Z2; g; h)[��nu�gn ]
	��

� �2n
2
n�1

nX
i=1

(u�gn(wi)
2 + E[u�gn(w)

2]) = Op(�
2
n) (3.18)

which veri�es the �rst condition (12) of Assumption 3.2.(i) in HLR. Instead of verifying (13) of Assumption

3.2.(i) in HLR, we show that Assumption 3.4 holds. Assumption 3.4.(i) is implied by Assumption 3.1.
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Let �(Z1; h) = �(wh) and �
�
 (Z2; g; h)[u

�
gn ] = (y � g(wh))u�gn(w). By de�nition,

� (Z2; g; h)[u
�
gn ] = �(wh)(y � g(wh))u�gn(w) = �(Z1; h)�

�
 (Z2; g; h)[u

�
gn ]: (3.19)

Therefore equation (18) of HLR holds. By de�nition, �(wh) and u
�
gn(w) only depend on (x;w1). By (3.3),

E
�
�� (Z2; go; ho)[u

�
gn ]
��Z1� = E �(y � go(w))u�gn(w)��x;w1� = u�gn(w)E [�jx;w1] = 0 (3.20)

which veri�es (19) of HLR. By (3.19) and (3.20) we show that Assumption 3.4.(ii) of HLR holds. By

de�nition,

� (Z2; g; h)[u
�
gn ]�� (Z2; go; h)[u

�
gn ] = �(wh)(go(wh)� g(wh))u�gn(w); (3.21)

and

�(Z2; h)(�
�
 (Z2; go; h)[u

�
gn ]�� (Z2; go; ho)[u

�
gn ]) = �(wh)(go(w)� go(wh))u�gn(w): (3.22)

Hence Assumption 3.4.(iii) follows by Lemmas 3.6 and 3.7. By Assumption 3.5 and Lemma 3.3.(f) we

have for any h

(�(Z1; h)� �(Z1; ho))2E
�
(�� (Z2; go; ho)[u

�
gn ])

2
��Z1�

= (�(wh)� �(w))2(u�gn(w))E
�
�2
��Z1� � C�20;K(�(wh)� �(w))2; (3.23)

which together with Lemma 3.3.(d) implies that

sup
h2Nh;n

n�1
nX
i=1

(�(Z1;i; h)� �(Z1;i; ho))2E
�
(�� (Z2;i; go; ho)[u

�
gn ])

2
��Z1;i�

� C�20;K sup
h2Nh;n

n�1
nX
i=1

(�(Z1;i; h)� �(Z1;i; ho))2 = Op(�
2
0;K�L�h;n) (3.24)

where the �20;K�L�h;n = o(1) by Assumption 3.7. This proves Assumption 3.4.(iv) and hence �nishes

veri�cation of Assumption 3.4.

We next verify Assumption 3.2.(ii) of HLR. By de�nition,

 (Z2; g; h)�  (Z2; g�; h) = �(wh)(y � g(wh))(��nu�gn) +
�2n
2
�(wh)(u

�
gn(w))

2; (3.25)
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which together with Lemma 3.3.(e) and the de�nition of K (g; h) implies that

K (g; h)�K (g
�; h) = ��nE

�
�(wh)(y � g(wh))u�gn(w)

�
+O(�2n): (3.26)

By (3.3),

E
�
(�(wh)� �(w))(y � go(w))u�gn(w)

�
= 0 (3.27)

which implies that

E
�
�(wh)(y � g(wh))u�gn(w)

�
= E

�
�(wh)(go(w)� go(wh))u�gn(w)

�
+ E

�
�(wh)(go(wh)� g(wh))u�gn(w)

�
: (3.28)

Using the second order expansion in (3.111),

sup
h2Nh;n

��E ��(wh)(go(w)� go(wh)� @ugo(w)(h(w1)� ho(w1)))u�gn(w)���
� C sup

w
ju�gn(w)j sup

h2Nh;n
E
�
(h(w)� ho(w))2

�
� C�0;K�

2
h;n = op(n

�1=2); (3.29)

where the second inequality is by Lemma 3.3.(b) and 3.3.(f), the equality is by Assumption 3.7. By

Assumption 3.5, (3.6), Lemma 3.2.(c) and 3.3.(g) and the de�nition of Nh;n,

sup
h2Nh;n

��E �(�(wh)� �(w))@ugo(w)(h(w1)� ho(w1))u�gn(w)���
� C sup

w

��u�gn(w)��
 
sup

h2Nh;n
sup
w1
jh(w1)� ho(w1)j

!
sup

h2Nh;n
E [j�(wh)� �(w)j]

� C�0;K�L�h;n

 
�L sup

2N;n
k � o;Lk+ CL�s1=dw1

!
� C�0;K�

2
L�
2
h;n = op(n

�1=2); (3.30)

where the equality is by Assumption 3.7. By (3.29), (3.30) and the triangle inequality,

E
�
�(wh)(go(w)� go(wh))u�gn(w)

�
= E

�
�(w)@ugo(w)(h(w1)� ho(w1))u�gn(w)

�
+ op(n

�1=2); (3.31)
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uniformly over (h; g) 2 Nn. By (3.120) in the proof of Lemma 3.7,

sup
h2Nh;n;g2Ng;n

E
����(wh)(go(wh)� g(wh)� go(w) + g(w))u�gn(w)���

� �1;K sup
�2N�;n

k� � �o;Kk sup
h2Nh;n

E
���u�gn(w)(h(w1)� ho(w1))���

� �1;K�g;n
u�gn2 sup

h2Nh;n
kh� hok2

� �1;K�g;n�h;n = op(n
�1=2); (3.32)

where the second inequality is by H�older's inequality and the de�nition of N�;n, the third inequality is by

Lemma 3.3.(e) and the de�nition of Nh;n, the equality is by Assumption 3.7. Similarly by (3.7), Lemma

3.3.(b), 3.3.(c) and 3.3.(g),

sup
h2Nh;n;g2Ng;n

E
���(�(wh)� �(w))(go(w)� g(w))u�gn(w)���

� sup
w

��u�gn(w)�� sup
g2Ng;n

sup
w
jg(w)� go(w)j sup

h2Nh;n
E [j�(wh)� �(w)j]

� C�0;K�L�h;n sup
�2N�;n

h
�0;K k� � �o;Kk+ CK�s=d

i
� C�20;K�L�g;n�h;n = op(n

�1=2); (3.33)

where the equality is by Assumption 3.7. By (3.32), (3.33) and the triangle inequality,

E
�
�(wh)(go(wh)� g(wh))u�gn(w)

�
= E

�
�(w)(go(w)� g(w))u�gn(w)

�
+ op(n

�1=2); (3.34)

uniformly over (h; g) 2 Nn. Collecting the results in (3.26), (3.28), (3.31) and (3.34), we deduce that

K (g; h)�K (g
�; h) = E

�
�(wh)(y � g(wh))(��nu�gn(w))

�
= E

�
�(w)@ugo(w)(h(w1)� ho(w1))(��nu�gn(w))

�
+ E

�
�(w)(go(w)� g(w))(��nu�gn(w))

�
+ op(n

�1=2) (3.35)

uniformly over (h; g) 2 Nn. By de�nition,

�(�o)
�
h� ho; u�gn

�
= E

�
�(w)@ugo(w)(h(w1)� ho(w1))u�gn(w)

�
; (3.36)
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for any h 2 Nh;n. By Jensen's inequality, (3.6), Assumptions 3.5, 3.7 and the de�nition of ho;n,

���(�o) �ho;n � ho; u�gn��� � E ����(w)@ugo(w)(h(w1)� ho(w1))u�gn(w)���
� C(E[jh(w1)� ho(w1)j2])1=2 = o(n�1=2): (3.37)

Moreover,

jjg� � gojj2 � jjg � gojj2 
2

= E
�
(g(w)� go(w))(��nu�gn(w))

�
+
�2n
2
E
�
u�gn(w)

2
�

= E
�
(g(w)� go(w))(��nu�gn(w))

�
+Op(�

2
n) (3.38)

uniformly over g 2 Ng;n, where the second equality is by Lemma 3.3.(e). Collecting the results in (3.35),

(3.36), (3.37) and (3.38) proves Assumption 3.2(ii).

Step 3. We verify Assumption 3.3 of HLR. As �(g) does not depend on h, we only need to show that

���hbhn � ho; u��ni' � �n ��'(Z1; ho)[u
�
�n ]
	��� = Op(�n): (3.39)

By de�nition

hbhn � ho; u��ni' = hbhn � ho;L; u��ni' + hho;L � ho; u��ni': (3.40)

By H�older's inequality, (3.6), Lemma 3.3.(h) and Assumption 3.7,

��hho;L � ho; u��ni'�� � u��n kho;L � hok = o(n�1=2): (3.41)

By de�nition,

bhn(w1)� ho;L(w1) = R(w1)
0 �RnR0n��1Rn(Hn �HL;n) +R(w1)

0 �RnR0n��1RnUn (3.42)

where Hn = (ho(w1;1); : : : ; ho(w1;n))
0, HL;n = (ho;L(w1;1); : : : ; ho;L(w1;n))

0 and Un = (u1; : : : ; un)
0. By

de�nition

hbhn � ho;L; u��ni' = kv�nk�1sd �(PK)0Q�1K H 0(RnR
0
n)
�1RnUn

+ kv�nk
�1
sd �(PK)

0Q�1K H 0(RnR
0
n)
�1Rn(Hn �HL;n): (3.43)
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By the Cauchy-Schwarz inequality,

���kv�nk�1sd �(PK)0Q�1K H 0(RnR
0
n)
�1Rn(Hn �HL;n)

���2
=
���n�1 kv�nk�1sd �(PK)0Q�1K H 0( bQn;L)�1Rn(Hn �HL;n)

���2
� �(PK)

0Q�1K H 0( bQn;L)�1HQ�1K �(PK)

kv�nksd

� (Hn �HL;n)
0R0n(RnR

0
n)
�1Rn(Hn �HL;n)

n

� !�1min(
bQn;L)!max(QL) sup

w1
jho(w1)� ho;L(w1)j

�(PK)
0Q�1K H 0Q�1L HQ�1K �(PK)

kv�nksd

� C!�1min(
bQn;L)!max(QL)L�2s1=dw1 E

h��v��n(w)��2i
kv�nksd

= op(n
�1) (3.44)

where bQn;L = n�1RnR0n, the second inequality is by the fact that R
0
n(RnR

0
n)
�1Rn is an idempotent

matrix, the third inequality is by (3.6) and the de�nition of v��n , the last equality is by Lemma 3.2.(a),

3.3.(h) and Assumption 3.7. Hence we have

kv�nk
�1
sd �(PK)

0Q�1K H 0(RnR
0
n)
�1Rn(Hn �HL;n) = op(n

�1=2): (3.45)

By the i.i.d. assumption, Assumption 3.5 and Lemma 3.2.(a),

E
hn�1Q�1L RnUn

2��� fw1;igni=1i � E �u2��w1�n�1tr(Q�1L bQn;L) = Op(n
�1); (3.46)

which together with the Markov inequality implies that

n�1Q�1L RnUn
 = Op(n

�1=2): (3.47)

By the de�nition of v��n , Assumption 3.5, Lemma 3.2.(a) and 3.3.(h),

kv�nk
�2
sd �(PK)

0Q�1K H 0( bQn;L)�2HQ�1K �(PK)

� kv�nk
�2
sd !

�2
min(

bQn;L)!max(QL)�(PK)0Q�1K H 0Q�1L HQ�1K �(PK)

� kv�nk
�2
sd !

�2
min(

bQn;L)!max(QL)E �(v��n(w1))2� = Op(1): (3.48)
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By Lemma 3.2.(a), (3.47), (3.48) and the Cauchy-Schwarz inequality

���(n kv�nksd)�1�(PK)0Q�1K H 0(( bQn;L)�1 �Q�1L )RnUn���
=
���(n kv�nksd)�1�(PK)0Q�1K H 0( bQn;L)�1( bQn;L �QL)Q�1L RnUn

���
�
kv�nk�1sd �(PK)0Q�1K H 0( bQn;L)�1 bQn;L �QLn�1Q�1L RnUn


= Op(�LL

1=2n�1) = op(n
�1=2) (3.49)

where the last equality is by Assumption 3.7. By (3.40), (3.41), (3.43), (3.44) and (3.49),

hbhn � ho; u��ni' = (n kv�nksd)�1�(PK)0Q�1K H 0QKQ
�1
L RnUn + op(n

�1=2)

= (n kv�nksd)
�1

nX
i=1

v��n(w1;i)ui + op(n
�1=2)

= �n
�
�'(Z1; ho)[u

�
�n ]
	
+ op(n

�1=2) (3.50)

where the second equality is by the de�nition of v��n , and the third equality is by the de�nition of

�'(Z1; ho)[u
�
�n
]. This veri�es Assumption 3.3.(i) in HLR. To verify Assumption 3.3.(ii) in HLR, we

notice that

n�
1
2

nX
i=1

�
�'(Z1;i; ho)[u

�
�n ] + � (Z2;i; go; ho)[u

�
gn ]
	

= n�
1
2

nX
i=1

�
u��n(w1;i)ui + u

�
gn(wi)�i

	
: (3.51)

To show the asymptotic normality of the above partial sum, we apply the Lindbergh-Feller CLT. By the

Cauchy-Schwarz inequality, Assumption 3.5, Lemma 3.3.(h)

supw12W1

��v��n(w1)��2
kv�nk

2
sd

� �2L kv�nk
�2
sd

Q�1L HQ�1K �(PK)
2

� !�1min(QL)�
2
L kv�nk

�2
sd �(PK)

0Q�1K H 0Q�1L HQ�1K �(PK)

=
C�2L

!min(QL)

E
�
(v��n(w1))

2
�v�gn22 = O(�2L); (3.52)
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where the �rst equality is by the de�nition of v��n . By Assumption 3.5, (3.52), Lemma 3.3.(f)-3.3.(h),

E
�
(v��n(w1)u+ v

�
gn(w)�)

4
�

n kv�nk
4
sd

� 8
E
�
(v��n(w1)u)

4
�
+ E

�
(v�gn(w)�)

4
�

n kv�nk
4
sd

� 8C
E
�
(v��n(w1))

4
�
+ E

�
(v�gn(w))

4
�

n kv�nk
4
sd

� 8C
supw1(v

�
�n
(w1))

2 + supw(v
�
gn(w))

2

n kv�nk
2
sd

E
�
(v��n(w1))

2
�
+ E

�
(v�gn(w))

2
�

kv�nk
2
sd

= O((�2L + �
2
0;K)n

�1) = o(1) (3.53)

where the equality is by Assumption 3.7. This veri�es the Lindbergh's condition. Hence Assumption

3.3.(ii) in HLR follows by the i.i.d. assumption and the Lindbergh-Feller CLT. Finally, we verify As-

sumption 3.3.(iii) in HLR. First, we have "2;n = 0 because the estimators in both the �rst step and the

second step have closed form expressions. By de�nition, ��2;n = K1=2n�1=2+K�s=d+L1=2n�1=2+L�s1=dw1

which together with K !1 and L!1 implies that n1=2(��2;n)
�1 = o(1). Moreover by Lemma 3.3.(e),

jju�gn jj = (E
�
(v�gn(w))

2
�
)1=2 kv�nk

�1
sd = O(1) which �nishes veri�cation of Assumption 3.3.(iii) in HLR.

Corollary 3.2 Under Assumptions 3.1-3.7, Assumptions 1.4-1.6 hold.

Proof of Lemma 3.1. We �rst verify Assumption 1.4. By de�nition,

z12Z1;h2Nh;n [j�(z1; h)j+ j�(z1; ho)j] � 2 (3.54)

which shows that Assumption 1.4.(i) holds. By de�nition,  �(z2; �) = �1
2(y � g(wh))

2, which implies

that

�� (z2; �)[vg;1] = (y � g(wh))vg;1 (3.55)

and

r� ;g(z2; �)[vg;1; vg;2] = �vg;1vg;2 (3.56)

47



for any vg;1, vg;2 2 V2, which implies that Assumption 1.1.(i) holds. Moreover

 (z2; g
�; h)�  (z2; �)�� (z2; �)[��nu�gn ]� �

2
nr ;g(z2; �)[u

�
gn ; u

�
gn ]

= �(z1; h)

24  �(z2; g�; h)�  �(z2; �)

��� (z2; �)[��nu�gn ]� �2nr� ;g(z2; �)[u�gn ; u�gn ]

35 = 0; (3.57)

for any � 2 Nn and any z2 2 Z2. This means that Assumption 1.1.(ii) holds for  (z2; �) with �1;n(z2) = 0.

By de�nition,

�(�o)
�
h� ho; u�gn

�
= E

�
�(w)@ugo(w)(h(w1)� ho(w1))u�gn(w)

�
= E

�
�(w)r� ;h(Z2; �o)[ho;n � ho; u�gn ]

�
: (3.58)

Therefore, Assumption 1.1.(v) has been veri�ed in (3.37) above. By (3.3) and (3.55),

E
�
�� (Z2; go; ho)[u

�
gn ]
��Z1� = E ��u�gn(w)��x;w1� = u�gn(w)E [�jx;w1] = 0 (3.59)

which veri�es Assumption 1.4.(iii). By de�nition,

r� ;h(z2; �)[vg; vh] = @ug(wh)vgvh (3.60)

for any z2 2 Z2, any � 2 N�, any vh 2 V1 and any vg 2 V2, which implies that Assumption 1.4.(iv) holds.

By the triangle inequality, (3.7) and (3.120) in the proof of Lemma 3.7, for any � 2 Nn,

��� (z2; g; h)[u
�
gn ]�� (z2; go; h)[u

�
gn ]� r ;g(z2; go; h)[g � go; u

�
gn ]
��

=
���(wh)u�gn(w) ((y � g(wh))� (y � go(wh)) + (g(w)� go(w)))��

=
���(wh)u�gn(w) ((go(wh)� g(wh)) + (g(w)� go(w)))��

�
���(wh)u�gn(w) ((go;K(wh)� g(wh))� (go;K(w)� g(w)))��

+
���(wh)u�gn(w) ((go;K(wh)� go(wh))� (go;K(w)� go(w)))��

� �1;K k� � �o;Kk
��(h(w1)� ho(w1))u�gn��+ CK�s=dju�gn j

� �1;K�g;n
��(h(w1)� ho(w1))u�gn��+ CK�s=dju�gn j: (3.61)

Let �3;n(z2; �) = �1;K�g;n
��(h(w1)� ho(w1))u�gn��+CK�s=dju�gn j. By Lemma 3.3.(a), 3.3.(f) and Assump-
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tion 3.7,

sup
h2Nh;n

nX
i=1

�3;n(Z2;i; �) = op(n
�1=2): (3.62)

Similarly, by Lemma 3.3.(b), 3.3.(e) and Assumption 3.7,

sup
h2Nh;n

E [�3;n(Z2; �)] = o(n�1=2): (3.63)

This veri�es Assumption 1.4.(v). By de�nition,

E
�
(�� (Z2; �o)[u

�
gn ])

2
��Z1 = z1

�
= (u�gn(w))

2E
�
�2
��Z1 = z1

�
� C�20;K (3.64)

where the inequality is by Assumption 3.5 and Lemma 3.3.(g). By Lemma 3.3.(d), Assumption 1.4.(vii)

holds with ���;n = �L�h;n, and �
�
�;n�

2
0;K = o(1) follows by Assumption 3.7.

We next verify Assumption 1.5. By (3.56), Assumption 1.5.(i) holds with �6;n(z2; �) = 0 for any

z2 2 Z2 and any � 2 Nn. This also means that Assumptions 1.5.(vii)-(viii) also hold for �6;n(z2; �). By

Assumption 3.3, (3.55) and (3.60),

���� (z2; go; h)[u�gn ]��� (z2; �o)[u�gn ]� r� ;h(z2; �o)[h� ho; u�gn ]��
=
��u�gn(w) ((y � go(wh))� (y � go(w)) + @ugo(w)(h(w)� ho(w)))��

=
��u�gn(w) ((go(w)� go(wh))� @ugo(w)(ho(w)� h(w)))��

� C
��u�gn(w)(h(w)� ho(w))2�� : (3.65)

Let �7;n(z2; �) = C
��u�gn(w)(h(w)� ho(w))2��. Then by Lemma 3.3.(a) and 3.3.(g), and Assumption 3.7,

sup
h2Nh;n

nX
i=1

�7;n(Z2;i; �) = op(n
�1=2): (3.66)

Similarly, by Lemma 3.3.(b) and 3.3.(g), and Assumption 3.7,

sup
h2Nh;n

E [�7;n(Z2; �)] = op(n
�1=2): (3.67)
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This shows that Assumptions 1.5.(ii) and 1.5.(vii)-(viii) hold. For any h 2 Nh;n,

��(�(Z1; h)� �(Z1; ho))r� ;h(Z2; �o)[h� ho; u�gn ]��
=
��(�(wh)� �(w))@ugo(w)(h(w1)� ho(w1))u�gn��

� C�L�0;K�h;n j�(wh)� �(w)j (3.68)

where the inequality is by Assumption 3.5, (3.91) in the proof of Lemma 3.3 and Lemma 3.3.(g). By

(3.68), Lemma 3.3.(c) and Assumption 3.7,

sup
h2Nh;n

��E �(�(Z1; h)� �(Z1; ho))r� ;h(Z2; �o)[h� ho; u�gn ]��� � C�2L�0;K�
2
h;n = o(n�1=2); (3.69)

which veri�es Assumption 1.5.(iii). By (3.7) and Lemma 3.2.(d), for any g 2 Ng;n

sup
w

��(g(w)� go(w))u�gn(w)��
= sup

w

���(w)(g(w)� go(w))u�gn(w)��
� sup

w2Tw

���(w)(g(w)� go;K(w))u�gn(w)��+ sup
w2Tw

���(w)(go;K(w)� go(w))u�gn(w)��
� sup

w

��u�gn(w)�� sup
w2Tw

jg(w)� go;K(w)j

+ sup
w

��u�gn(w)�� sup
w2Tw

jg(w)� go;K(w)j

� C�0;K(k� � �o;Kk �0;K +K�s=d) � C�20;K�g;n (3.70)

where the �rst equality is by �(w)2 = �(w), the �rst inequality is by the triangle inequality, the third

inequality is by (3.7) and Lemma 3.3.(g), and the last inequality is by the de�nition of Ng;n. For any

� 2 Nn,

��(�(Z1; h)� �(Z1; ho))r� ;g(Z2; �o)[g � go; u�gn ]��
=
��(�(wh)� �(w))(g(w)� go(w))u�gn��

� C�20;K�g;n j�(Z1; h)� �(Z1; ho)j (3.71)
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where the inequality is by (3.70) and the de�nition of Nn. By (3.68), Lemma 3.3.(c) and Assumption 3.7,

sup
h2Nh;n

��E �(�(Z1; h)� �(Z1; ho))r� ;g(Z2; �o)[g � go; u�gn ]��� � C�L�
2
0;K�h;n�g;n = o(n�1=2); (3.72)

which veri�es Assumption 1.5.(iv). By (3.56), Assumption 1.5.(v) holds with �8;n(z2; �) = 0 for any

z2 2 Z2 and any � 2 Nn. By (3.56) and Lemma 3.3.(e), Assumption 1.5.(vi) also holds. Assumptions

1.5.(vii) and 1.5.(viii) have been veri�ed together with Assumptions 1.5.(i) and 1.5.(ii).

Finally, we verify Assumption 1.6. Let ho;n = ho;L. By (3.60), 3.6), Assumption 3.7 and Lemma

3.3.(e)

E
���r� ;h(Z2; �o)[ho;L � ho; u�gn ]���
= E

���@ugo(w)(ho;L � ho)u�gn���
� C(E

���(ho;L � ho)2���)1=2(E ���(u�gn)2���)1=2
� CL�s1=dw1 = o(n�1=2) (3.73)

which veri�es Assumption 1.6.(i). Assumption 1.6.(ii) can be veri�ed using the same arguments of the

proof of Lemma 3.4. Let go;n = go;K . By (3.56), (3.7), Assumption 3.7 and Lemma 3.3.(e)

E
���r� ;g(Z2; �o)[go;K � go; u�gn ]���
= E

���(go;K � go)u�gn���
� C(E

���(go;K � go)2���)1=2(E ���(u�gn)2���)1=2
� CL�s=d = o(n�1=2) (3.74)

which veri�es Assumption 1.6.(iii). For any h 2 Nh;n,

E
�
�(Z1; h)

2(r� ;h(z2; �o)[h� ho;L; u�gn ])
2
�

= E
�
�(wh)

2(@ugo(w)(h� ho;L)u�gn)
2
�

� C sup
w12W1

��(h(w1)� ho;L(w1))2��E �(u�gn)2� � C�2L�
2
h;n (3.75)

where the �rst inequality is by �(wh)
2 < 1 for any h 2 Nh;n and Assumption 3.5, the last inequality is
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by (3.91) and Lemma 3.3.(e). Moreover, for any f 2 F�3;n,

sup
z22Z2

jf(z2)j �
 
sup

h2Nh;n
sup

w12W1

��(h(w1)� ho;L(w1))2��!� sup
w2W

��(u�gn(w))2��� � C�20;K�
2
L�
2
h;n; (3.76)

which together with (3.75) and Assumption 3.7 implies that

( sup
f2F�3;n

E
�
f2
�
+ (K + L) sup

z22Z2
jF �3;n(z2)j log(n)n�1)(K + L) log(n)

� C(�2L�
2
h;n(K + L) + (K + L)2�20;K�

2
L�
2
h;n log(n)n

�1) log(n) = o(1): (3.77)

This veri�es Assumption 1.6.(v) for F�3;n. For any h 2 Nh;n and g 2 Ng;n,

�(z1; h)r
�
 ;g(z2; �o)[g � go;K ; u�gn ] = �(wh)u

�
gn(w)P (w)

0(� � �o;K): (3.78)

Hence Assumption 1.6.(iv) can be veri�ed using the same arguments of Lemma 3.5. For any h 2 Nh;n and

g 2 Ng;n,

E
�
�(Z1; h)

2(r� ;g(z2; �o)[g � go;K ; u�gn ])
2
�

= E
�
�(wh)

2((g � go;K)u�gn)
2
�

� C sup
w12W1

���(w)(g(w)� go;K(w))2��E �(u�gn)2� � C�20;K�
2
g;n (3.79)

where the �rst inequality is by �(w)2 = �(w) and �(wh)
2 < 1 for any w and any h 2 Nh;n, the second

inequality is by the de�nition of Ng;n and Lemma 3.3.(e). Moreover, for any f 2 F�4;n,

sup
z22Z2

jf(z2)j �
 
sup

g2Nh;n
sup
w2Tw

��(g(w)� go;K(w))2��!� sup
w2W

��(u�gn(w))2��� � C�40;K�
2
g;n; (3.80)

which together with (3.79) and Assumption 3.7 implies that

( sup
f2F�4;n

E
�
f2
�
+ (K + L) sup

z22Z2
jF �4;n(z2)j log(n)n�1)(K + L) log(n)

� C(�20;K�
2
g;n(K + L) + (K + L)2�40;K�

2
g;n log(n)n

�1) log(n) = o(1): (3.81)

This veri�es Assumption 1.6.(v) for F�3;n.
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Lemma 3.1 Let v��(w1) = E
�
�(w)v�g(w)@ugo(w)jw1

�
. Under Assumptions 3.5 and 3.6, we have

(a) E[�(w)jv�gn(w)� v�g(w)j2]! 0 as K !1;

(b) E
�
�2�(w)(v�gn(w))

2
�
! E

�
�2�(w)(v�g(w))

2
�
as K !1;

(c) E
�
jv��n(w1)� v

�
�(w1)j2

�
! 0 as K !1 and L!1;

(d) E
�
u2(v��n(w1))

2
�
! E

�
u2(v��(w1))

2
�
as K !1 and L!1.

Proof of Lemma 3.1. (a) By the de�nition of v�gn and Assumption 3.6,

E[�(w)P (w)(v�gn(w)� v
�
g(w))] = 0K�1 (3.82)

which immediately implies that

E[�(w)jP (w)0�g;K � v�g(w)j2]

= E[�(w)jP (w)0�g;K � v�gn(w)j
2] + E[�(w)jv�gn(w)� v

�
g(w)j2]

� E[�(w)jv�gn(w)� v
�
g(w)j2] (3.83)

for any �g;K 2 RK . Hence as K !1,

E[�(w)jv�gn(w)� v
�
g(w)j2] � E[�(w)jP (w)0�v;K � v�g(w)j2]! 0; (3.84)

where �v;K is de�ned in Assumption 3.6.

(b) By Assumption 3.5, Jensen's inequality and H�older's inequality,

��E ��2�(w)(v�gn(w)� v�g(w))v�g(w)���
� CE

�
�(w)

��(v�gn(w)� v�g(w))v�g(w)���
� C(E

�
�(w)

��(v�gn(w)� v�g(w))2���E ��(w)(v�g(w))2�)1=2 (3.85)

which together with Assumption 3.6 and the result proved in (a) implies that

��E ��2�(w)(v�gn(w)� v�g(w))v�g(w)���! 0 as K !1: (3.86)
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By the triangle inequality,

��E ��2�(w)(v�gn(w))2�� E ��2�(w)(v�g(w))2���
� E

�
�2�(w)(v�gn(w)� v

�
g(w))

2
�

+ 2
��E ��2�(w)(v�gn(w)� v�g(w))v�g(w)��� ; (3.87)

which combined with the results in (3.84), (3.85) and (3.86) proves the claim (b).

(c) Let v��;L(w1) = R(�)0Q�1L E
�
R(w1)�(w)@ugo(w)v

�
g(w)

�
. Then

v��n(w1)� v
�
�;L(w1) = R(�)0Q�1L E

�
R(w1)�(w)@ugo(w)(v

�
gn(w)� v

�
g(w))

�
: (3.88)

By the (matrix) Cauchy-Schwarz inequality, Assumption 3.5 and the result proved in (a),

E
�
jv��n(w1)� v

�
�;L(w1)j2

�
� E

�
�(w)(@ugo(w))

2(v�gn(w)� v
�
g(w))

2
�

� CE
�
�(w)(v�gn(w)� v

�
g(w))

2
�
! 0 (3.89)

as K !1. Using the same arguments after display (A.9) of Newey, Powell and Vella (1999) (their bL(z)

and �(z) are v��;L(w1) and v
�
�(w1) here respectively), we can show that

E
�
jv��;L(w1)� v��(w1)j2

�
! 0 as L!1. (3.90)

Combining the results in (3.89) and (3.90), we immediately prove the claim in (c).

(d) The proof follows similar arguments in the proof of claim (b) and hence is omitted.

Let bQn;L = n�1RnR0n and bQn;K = n�1 bP 0n bPn, which are the estimators of QL = E [R(w1)R(w1)0] and
QK = E [�(w)P (w)P (w)0] respectively. The following Lemma is useful to verify the high-level conditions

for the asymptotic normality. The proof of the results in Lemmas 3.2.(a) and 3.2.(b) are in Newey (1997)

and the proof of the remaining results are in Newey, Powell and Vella (1999).

Lemma 3.2 Let ��h;n = L1=2n�1=2+L�s1=dw1 and ��g;n = K1=2n�1=2+K�s=d+ ��h;n. Under Assumptions

3.1-3.4, we have

(a) jj bQn;L �QLjj = Op(�LL
1=2n�1=2);

(b) jjbn � o;Ljj = Op(�
�
h;n);

(c) jj bQn;K �QK jj = Op(�
2
1;K(�

�
h;n)

2 +K1=2�1;K�
�
h;n + �

2
0;K�L�

�
h;n);
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(d) jjb�n � �o;K jj = Op(�
�
g;n);

(e) n�1
Pn

i=1 jb�i � �ij = Op(�L�
�
h;n).

Recall that N;n = f 2 RL: jj � o;Ljj � �h;ng and N�;n = f� 2 RK : jj� � �o;K jj � �g;ng where

�h;n = ��h;n%n, �g;n = ��g;n%n and f%ngn is a slowly divergent real positive sequence. By Lemma 3.2.(b) and

Lemma 3.2.(d), we have bn 2 N;n and b�n 2 N�;n wpa1. De�ne Nh;n = fh (�) = R (�)0 :  2 N;ng and

Ng;n = fg (�) = P (�)0 �: � 2 N;ng. The following Lemma is useful to verify the high-level conditions.

Lemma 3.3 Under Assumptions 3.1-3.6, we have

(a) sup2N;n n
�1Pn

i=1

h
jR(w1)0 � ho(w1)j2

i
= Op(�

2
h;n);

(b) sup2N;n E
h
jR(w1;i)0 � ho(w1;i)j2

i
= O(�2h;n);

(c) suph2Nh;n E [j�(wh)� �(w)j] � C�L�h;n;

(d) suph2Nh;n n
�1Pn

i=1 [j�(wh;i)� �(wi)j] = Op(�L�h;n);

(e) E
�
(v�gn(w))

2
�
� C kv�nk

2
sd;

(f) n�1
Pn

i=1(v
�
gn(wi))

2 kv�nk
�2
sd = Op(1);

(g) supw

���v�gn(w) kv�nk�1sd ��� � C�0;K ;

(h) E
h��v��n(w1)��2i � C kv�nk

2
sd.

Proof of Lemma 3.3. Following Newey (1997) we assume without loss of generality that QL = IL and

QK = IK . Such an assumption can be veri�ed under Assumption 3.2 for the power series and splines

using the arguments in the proof of Theorem 4 and Theorem 7 of Newey (1997) respectively.

(a) By Assumption 3.4, Lemma 3.2.(a), QL = IL, the Cauchy-Schwarz inequality, the de�nition of

N;n and (3.6),

sup
2N;n

n�1
nX
i=1

h��R(w1;i)0 � ho(w1;i)��2i
� 2 sup

2N;n
n�1

nX
i=1

h��R(w1;i)0 � ho;L(w1;i)��2i+ 2 sup
2N;n

n�1
nX
i=1

h
jho;L(w1;i)� ho(w1;i)j2

i
� 2 sup

2N;n
( � o;L)0 bQn;L( � o;L) + 2Ck�s1=dw1

� 2!max( bQn;L) sup
2N;n

k � o;Lk2 + 2Ck�s1=dw1 = Op(�
2
h;n);

which proves the claim in (a).

(b) The proof follows similar arguments to those in the proof of (a) and is omitted.
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(c) For any h (�) = P (�)0 2 Nh;n,

jh(w1)� ho(w1)j �
��P (w1)0 � ho;L(w1)��+ jho;L(w1)� ho(w1)j

� �L k � o;Lk+ CL�s1=dw1 � C�L�h;n (3.91)

which implies that

j�(wh)� �(w)j �
��I �u � b+ P (w1)

0 � ho(w1)
	
� Ifu � bg

��
+
��I �u � a+ P (w1)

0 � ho(w1)
	
� Ifu � ag

��
� I

�
ju� bj �

��P (w1)0 � ho(w1)��	
+ I

�
ju� aj �

��P (w1)0 � ho(w1)��	
� I fju� bj � C�L�h;ng+ I fju� aj � C�L�h;ng ; (3.92)

where �L�h;n = o(1) by Assumption 3.7. As the density of u is bounded in the local neighborhoods of a

and b (which is assumed in Lemma A3 of Newey, Powell and Vella (1999)), by (3.92) we get

E

"
sup

h2Nh;n
j�(wh)� �(w)j

#
� C�L�h;n (3.93)

which �nishes the proof.

(d) By (3.93) and the Markov inequality we immediately get the asserted result.

(e) By the de�nition of � and Assumption 3.5, E
�
�2jx;w1

�
� C� where C� is a �nite positive constant.

Thus

E[(v�gn(w))
2 kv�nk

�2
sd ] =

E[(v�gn(w))
2]

E
�
u2(v��n(w1))

2
�
+ E

�
�2�(w)(v�gn(w))

2
�

�
E[(v�gn(w))

2]

E
�
u2(v��n(w1))

2
�
+ C�E

�
�(w)(v�gn(w))

2
�

=
E[�(w)(v�gn(w))

2]

E
�
u2(v��n(w1))

2
�
+ C�E

�
�(w)(v�gn(w))

2
� � C�1� (3.94)

where the second equality is by the de�nition of v�gn and �(w)
2 = �(w).

(f) The asserted result follows by (e) and the Markov inequality.

56



(g) By the Cauchy-Schwarz inequality and Assumption 3.5,

��v�gn(w)��2 kv�nk�2sd =
���(w)P (w)0Q�1K �(PK)

��2
E
�
u2(v��n(w1))

2
�
+ E

�
�2�(w)(v�gn(w))

2
�

� �(PK)
0Q�2K �(PK) k�(w)P (w)k2

E
�
u2(v��n(w1))

2
�
+ C�E

�
�(w)(v�gn(w))

2
�

�
�20;K�(PK)

0Q�2K �(PK)

E
�
u2(v��n(w1))

2
�
+ C�E

�
�(w)(v�gn(w))

2
�

�
�20;K!

�1
min(QK)E

�
�(w)(v�gn(w))

2
�

E
�
u2(v��n(w1))

2
�
+ C�E

�
�(w)(v�gn(w))

2
�

� �20;K!
�1
min(QK)C

�1
� (3.95)

for any w. This combined with QK = IK immediately proves the claim.

(h) By Lemmas 3.1.(b) and 3.1.(d),

E[
��v��n(w1)��2 kv�nk�2sd ]! E

�
(v��(w1))

2
�

E
�
�2�(w)(v�g(w))

2
�
+ E

�
u2(v��(w1))

2
� (3.96)

as K ! 1 and L ! 1, where v��(w1) = E
�
�(w)v�g(w)@ugo(w)jw1

�
. By Assumption 3.5 and Jensen's

inequality,

E
�
(v��(w1))

2
�
� CE

�
(E
�
�(w)v�g(w)jw1

�
)2
�
� CE

�
�(w)(v�g(w))

2
�
: (3.97)

By Assumption 3.5, E
�
�2jx;w1

�
� C� where C� is a �nite positive constant, which together with (3.97)

implies that

E
�
�(w)(v�g(w))

2
�

E
�
�2�(w)(v�g(w))

2
�
+ E

�
u2(v��(w1))

2
�

�
E
�
�(w)(v�g(w))

2
�

C�E
�
�(w)(v�g(w))

2
�
+ E

�
u2(v��(w1))

2
� � C�1� : (3.98)

The asserted claim follows from (3.96) and (3.98).

Lemma 3.4 De�ne F1;n = f(x;w1) 7! @ugo(w)�(wh)(h(w1) � ho(w1))u
�
gn(w) : h 2 Nh;ng. Then the

uniform entropy numbers of F1;n satis�es

sup
Q
N(" kF1;nkQ;2 ;F1;n; L2(Q)) � (C=")

CL for any " 2 (0; 1]; (3.99)
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where C is a �nite �xed constant, Q ranges over all �nitely-discrete probabilities measures and F1;n

denotes the envelope of F1;n.

Proof of Lemma 3.4. Let �(x;w2) =
Qdw2+1
j=1 Ifaj � wj � bjg, a = adw2+2 and b = bdw2+2. Then by

de�nition,

�(wh) = �(x;w2)Ifa � x� h(w1) � bg: (3.100)

De�ne

F11;n = f(x;w1) 7! Ifx � b+R(w1)
0 :  2 N;ng; (3.101)

F12;n = f(x;w1) 7! Ifx � a+R(w1)
0 :  2 N;ng; (3.102)

F13;n = f(x;w1) 7! �(x;w2)@ugo(w)(R(w1)
0 � ho(w1))u�gn(w) :  2 N;ng: (3.103)

Then by Lemmas 2.6.15 and 2.6.18 in van der Vaart and Wellner (1996), the VC-dimentions of F11;n,

F12;n and F13;n are of order L. By Theorem 2.6.7 in van der Vaart and Wellner (1996), the uniform

entropy number of F1j;n satis�es

sup
Q
N(" kF1j;nkQ;2 ;F1j;n; L2(Q)) � (C=")

CL for any " 2 (0; 1]; (3.104)

where C is a universal constant and F1j;n denotes the envelope of F1j;n for j = 1; 2; 3. Because

F1;n � ff1f2f3 : f1 2 F11;n; f2 2 F12;n; f3 2 F13;ng; (3.105)

by (A.6) and (A.7) in Andrews (1994),

sup
Q
N(" kF11;nF12;nF13;nkQ;2 ;F1;n; L2(Q))

�
Y3

j=1
sup
Q
N(" kF1j;nkQ;2 =3;F1j;n; L2(Q)) � (C=")

CL (3.106)

where the second inequality is by (3.104). This proves (3.99) with F1;n = F11;nF12;nF13;n.

Lemma 3.5 De�ne F2;n = f(x;w1) 7! �(wh)u
�
gn(w)P (w)

0� : h 2 Nh;n, � 2 SK�1g, where SK�1 = f� 2

RK : �0� = 1g. Then the uniform entropy numbers of F2;n satis�es

sup
Q
N(" kF2;nkQ;2 ;F2;n; L2(Q)) � (C=")

C(L+K) for any " 2 (0; 1]; (3.107)
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where C is a �nite �xed constant, Q ranges over all �nitely-discrete probabilities measures and F2;n

denotes the envelope of F2;n.

Proof of Lemma 3.5. De�ne

F21;n = f(x;w1) 7! �(x;w2)u
�
gn(w)P (w)

0� : � 2 SK�1g; (3.108)

where �(x;w2) is de�ned in the proof of Lemma 3.4. Then by Lemmas 2.6.15 and 2.6.18 in van der Vaart

and Wellner (1996), the VC-dimension of F21;n is of order K. By Theorem 2.6.7 in van der Vaart and

Wellner (1996), the uniform entropy number of F21;n satis�es

sup
Q
N(" kF21;nkQ;2 ;F21;n; L2(Q)) � (C=")

CK for any " 2 (0; 1]; (3.109)

where C is a universal constant and F21;n denotes the envelope of F21;n. The rest of the proof is the same

as Lemma 3.4, because

F2;n � ff1f2f3 : f1 2 F11;n; f2 2 F12;n; f3 2 F21;ng; (3.110)

where F11;n and F12;n are de�ned in (3.101) and (3.102) respectively. Hence (3.107) holds with F2;n =

F11;nF12;nF21;n.

Lemma 3.6 Under Assumptions 3.1-3.7,

sup
h2Nh;n

���n ��(wh)(go(w)� go(wh))u�gn(w)	�� = op(n
�1=2):

Proof of Lemma 3.6. Let uh = x � h(w1). As u = x � ho(w1), we have u � uh = h(w1) � ho(w1) by

de�nition. By Assumption 3.5,

jgo(w)� go(wh)� @ugo(w)(h(w1)� ho(w1))j � C jh(w1)� ho(w1)j2 (3.111)
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which together with the triangle inequality, Lemmas 3.3.(a), 3.3.(b) and 3.3.(g) implies that

sup
h2Nh;n

���n ��(wh)(go(w)� go(wh)� @ugo(w)(h(w1)� ho(w1)))u�gn(w)	��
� C sup

h2Nh;n
n�1

nX
i=1

h
jh(w1;i)� ho(w1;i)j2 ju�gn(wi)j

i
+ C sup

h2Nh;n
E
h
jh(w1)� ho(w1)j2 ju�gn(w)j

i
� C sup

w

��u�gn(w)�� sup
h2Nh;n

n�1
nX
i=1

h
jh(w1;i)� ho(w1;i)j2

i
+ C sup

w

��u�gn(w)�� sup
h2Nh;n

E
h
jh(w1;i)� ho(w1;i)j2

i
= Op(�0;K�

2
h;n): (3.112)

By Assumption 3.7, �0;K�
2
h;n = o(n�1=2). Hence by (3.112) we have

sup
h2Nh;n

���n ��(wh)(go(w)� go(wh)� @ugo(w)(h(w1)� ho(w1)))u�gn(w)	�� = op(n
�1=2): (3.113)

We next show that

sup
h2Nh;n

���n ��(wh)@ugo(w)(h(w)� ho(w))u�gn(w)	�� = op(n
�1=2): (3.114)

Let F1;n = f(x;w1) 7! @ugo(w)�(wh)(h(w1) � ho(w1))u
�
gn(w) : h 2 Nh;ng. By Assumption 3.5, Lemmas

3.3.(b) and 3.3.(g),

sup
f2F1;n

E
�
f2
�
= sup

h2Nh;n
E
�
(@ugo(w)�(wh)(h(w1)� ho(w1))u�gn(w))

2
�

� C sup
h2Nh;n

E
�
((h(w1)� ho(w1))u�gn(w))

2
�

� C sup
w

��u�gn(w)��2 sup
h2Nh;n

E
�
(h(w1)� ho(w1))2

�
� C�20;K�

2
h;n: (3.115)
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Moreover, by the de�nition of N;n, (3.6), Assumption 3.5, Lemmas 3.3.(b) and 3.3.(g),

sup
h2Nh;n

��@ugo(w)�(wh)(h(w1)� ho(w1))u�gn(w)��
� C sup

h2Nh;n

��(h(w1)� ho(w1))u�gn(w)��
� C sup

w

��u�gn(w)�� sup
h2Nh;n

[jh(w1)� ho;L(w1)j+ jho;L(w1)� ho(w1)j]

� C sup
w

��u�gn(w)�� sup
2N;n

h
�0;K k � o;Lk+ CL�s1=dw1

i
� C�20;K�h;n: (3.116)

By Assumption 3.7,

L�20;K�
2
h;n log(n) + �

2
0;K�h;nL

2(log(n))2n�1 = o(1): (3.117)

Collecting the results in Lemma 3.4, (3.115), (3.116) and (3.117), we can use Lemma 22 of Belloni et. al

(2016) to show that

sup
h2Nh;n

���n �@ugo(w)�(wh)(h(w1)� ho(w1))u�gn(w)	�� = op(n
�1=2): (3.118)

The asserted result follows by (3.114), (3.118) and the triangle inequality.

Lemma 3.7 Under Assumptions 3.1-3.7,

sup
h2Nh;n;g2Ng;n

���n ��(wh)(go(wh)� g(wh))u�gn	�� = op(n
�1=2):

Proof of Lemma 3.7. By the triangle inequality, (3.7), Lemmas 3.3.(e)-(f)

sup
h2Nh;n;g2Ng;n

���n ��(wh)(go(wh)� go;K(wh))u�gn(w)	��
� CK�s=dn�1

nX
i=1

���u�gn(wi)��+ E ���u�gn(wi)���� = op(n
�1=2); (3.119)

where the equality is by Assumption 3.7. By the �rst order expansion and the Cauchy-Schwarz inequality,
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for any g 2 Ng;n,

���(wh)(go;K(wh)� g(wh)� go;K(w) + g(w))u�gn(w)��
=
���(wh)(� � �o;K)0(P (wh)� P (w))u�gn(w)��

� �1;K k� � �o;Kk
��u�gn(w)(h(w1)� ho(w1))�� (3.120)

which together with the de�nition of Nh;n, the triangle inequality and Lemmas 3.3.(a) and 3.3.(f) implies

that

sup
h2Nh;n;g2Ng;n

n�1
nX
i=1

���(wi;h)(go;K(wi;h)� g(wi;h)� go;K(wi) + g(wi))u�gn(wi)��
� �1;K�g;n sup

h2Nh;n
n�1

nX
i=1

��u�gn(wi)(h(w1;i)� ho(w1;i))��
� �1;K�g;n sup

h2Nh;n

 
n�1

nX
i=1

��u�gn(wi)��2 n�1 nX
i=1

jh(w1;i)� ho(w1;i)j2
!1=2

= Op(�1;K�g;n�h;n) = op(n
�1=2) (3.121)

where the equality is by Assumption 3.7. Similarly, we can show that

sup
h2Nh;n;g2Ng;n

E
����(wi;h)(go;K(wi;h)� g(wi;h)� go;K(wi) + g(wi))u�gn(wi)��� = o(n�1=2); (3.122)

which together with (3.121) implies that

sup
h2Nh;n;g2Ng;n

���n ��(wh)(go;K(wh)� g(wh)� go;K(w) + g(w))u�gn(w)	�� = op(n
�1=2): (3.123)

Recall that F2;n = f(x;w1) 7! �(wh)u
�
gn(w)P (w)

0� : h 2 Nh;n, � 2 SK�1g, where SK�1 = f� 2 RK :

�0� = 1g. By Lemma 3.3.(g) and �(w)2 = �(w),

sup
f2F2;n

E
�
f2
�
= sup

h2Nh;n;�2SK�1
E
�
(�(wh)u

�
gn(w)P (w)

0�)2
�

� sup
w
(u�gn(w))

2 sup
�2SK�1

E
�
(�(w)P (w)0�)2

�
� C�20;K : (3.124)

Similarly,

sup
h2Nh;n;�2SK�1

���(wh)u�gn(w)P (w)0��� � sup
�2SK�1

��u�gn(w)P (w)0��� � C�20;K : (3.125)
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Collecting the results in Lemma 3.5, (3.124) and (3.125), we can use Lemma 22 of Belloni et. al (2016)

to show that

sup
h2Nh;n;�2SK�1

���n ��(wh)u�gn(w)P (w)0�	�� = Op((L+K)
1=2�0;K(log(n))

1=2n�1=2): (3.126)

By the de�nition of Ng;n and (3.126),

sup
h2Nh;n;g2Ng;n

���n ��(wh)(go;K(w)� g(w))u�gn(w)	��
� sup

h2Nh;n;�2SK�1

���n ��(wh)u�gn(w)P (w)0�	�� sup
�2N�;n

k� � �o;Kk

= Op(�g;n(L+K)
1=2�0;K(log(n))

1=2n�1=2) = op(n
�1=2) (3.127)

where the second equality is by Assumption 3.7. Collecting the results in (3.119), (3.123) and (3.127),

and applying the triangle inequality, we immediately prove the asserted result.

4 Extra Simulation Results

In this section, we study the �nite sample performance of the two-step nonparametric M estimator and

the proposed inference method when the nonparametric regressor may have unbounded support. The

simulated data is from the following model

yi = w1;i�o +mo(ho(xi)) + ui; (4.1)

si = ho(xi) + "i; (4.2)

where �o = 1; ho(x) = 2 cos(�x), mo(w2) = sin(�w2) and w2 = ho(x). For i = 1; : : : ; n, we independently

draw (w1;i; x�;i; ui; "i)0 from N(0; I4) and then calculate

xi = 2
�1=2(w1;i + x�;i): (4.3)

The data fyi; si; w1;i; xigni=1 are generated using the equations in (4.1) and (4.2).

The �rst-step and second-step nonparametric estimators and the consistent variance estimator take

the same forms as their counterparts in Section 7 of HLR and hence are omitted here. We consider

sample sizes n = 100, 250 and 500 in this simulation study. For each sample size, we generate 10000
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simulated samples to evaluate the performances of the two-step sieve estimator and the proposed inference

procedure. For each simulated sample, we calculate the sieve estimator of (�o;mo), and the 0.90 con�dence

interval of �o for each combination of (L;K) where L = 2; : : : ; 16 and K = 2; : : : ; 21. The simulation

results are reported in Figures 4.1 and 4.2.

The properties of the two-step sieve M estimator and the proposed con�dence interval are similar to

what we found in the other DGP employed in HLR. We list some important di�erences. First, when the

unknown function estimated in the �rst-step has unbounded support, the optimal L which produces a

two-step M estimator with the smallest MSE is much larger. Second, the ratio between the MSE of the

cross-validated estimator of mo and the optimal MSE does not seem to converge to 1 in all the sample

sizes we considered. However, the MSE of the cross-validated estimator of �o does approach the optimal

value quickly as the sample size increases. Third, when L is small (e.g., L = 4), the proposed con�dence

interval over-covers the unknown parameter �o and its length diverges with increasing K. Fourth, the

coverage probability of the con�dence interval based on the cross-validated sieve estimator is almost

identical to the nominal level even when the sample size is small (e.g., n = 100).

5 Consistency and Convergence Rate

In this appendix, we �rst derive the consistency of the second-step sieve M estimator bgn under the metric
k�kG de�ned on G. Given the consistency, we then focus on a local neighborhood of go to calculate the

convergence rate of bgn. Under mild conditions, the �rst-step sieve M estimator bhn is consistent (see,
e.g., Theorem 3.1 of Chen, 2007), and also has rate of convergence under a pseudo-metric k�kH.2 Let

��h;n = O("1;n) be a small positive number that goes to zero as n ! 1. Without loss of generality we

denote jjbhn�hojjH = Op(�
�
h;n) as the convergence rate. Hence we can assume that

bhn belongs to a shrinking
neighborhood Nh;n = fh 2 Hn : kh� hokH � �h;ng of ho wpa1, where �h;n = ��h;n log(log(n)) = o(1).

5.1 Consistency of the second step sieve M estimation

The following conditions are su�cient for the consistency of bgn under k�kG .
Assumption 5.1 (i) E [ (Z2; go; ho)] > �1 and if E [ (Z2; go; ho)] =1, then E [ (Z2; g; ho)] <1 for

all g 2 Gnn fgog and for all n � 1; (ii) for all " > 0, there exists some non-increasing positive sequence

2See, e.g., Shen and Wong (1994) and Chen and Shen (1998) for the convergence rate of the one-step (approximate) sieve
M estimator for i.i.d. data and weakly dependent data respectively.
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Figure 4.1. The Mean Squared Errors of the Two-step Sieve M Estimators of mo and �o (DGP2)

Figure 4.1: 1. The left panel represents the MSEs of the two-step sieve estimator of mo for sample sizes n=100,
250 and 500 respectively; 2. the right panel represents the MSEs of the two-step sieve estimator of �o for sample
sizes n=100, 250 and 500 respectively; 3. L� and K� denote the numbers of the series terms which produce sieve
estimator of mo with the smallest �nite sample MSE (in the left panel) or sieve estimator of �o with the smallest
�nite sample MSE (in the left panel); 4. the dotted line represents the MSE of the two-step sieve M estimator with
L = L� and K = K�; 5. the solid line represents the MSE of the two-step sieve M estimator with L and K selected
by 5-fold cross-validation.
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Figure 4.2. The Convergence Probability and the Average Length of the Con�dence Interval of �o (DGP2)

Figure 4.2: 1. The left panel presents the coverage probability of the con�dence interval of �o for sample sizes
n=100, 250 and 500 respectively; 2. the right panel presents the average length of the con�dence interval of �o for
sample sizes n=100, 250 and 500 respectively; 3. the dotted line in the left panel is the 0.90 line which represents the
nominal coverage of the con�dence interval; 4. the solid line represents the coverage probability of the con�dence
interval based on the two-step sieve estimator with K and L selected by 5-fold cross-validation.
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cn(") such that for all n � 1

E [ (Z2; go; ho)]� sup
fg2Gn: jjg�gojjG�"g

E [ (Z2; g; ho)] � cn(") (5.1)

and lim infn cn(") > 0 for all " > 0.

Assumption 5.1 is the identi�cation uniqueness condition for go. For sieve M estimation a similar

condition can be found in White and Wooldridge (1991). This assumption is stronger than Condition

3.1 of Theorem 3.1 in Chen (2007) and Condition a of Lemma A.2 in Chen and Pouzo (2012), because it

requires cn(") to be bounded away from zero for all large n. It essentially requires that the second step

sieve M estimation is well-posed under the strong metric k�kG .

Assumption 5.2 (i) go 2 G and k�kG is a metric de�ned on G or some metric space containing G; (ii)

Gn � Gn+1 � G for all n � 1 and there exists some gn 2 Gn such that

jE [ (Z2; gn; ho)�  (Z2; go; ho)]j = O(�2;n) (5.2)

where �2;n is some �nite positive non-increasing sequence.

Assumption 5.2 imposes conditions on the sieve spaces. It is essentially Condition b of Lemma A.2 in

Chen and Pouzo (2012). It is also implied by Conditions 3.2 and 3.3 of Theorem 3.1 in Chen (2007). The

condition in (5.2) is clearly implied by the convergence rate of the sieve approximation error of kgn � goks;2
and the continuity of the criterion function E [ (Z2; g; ho)] for all g 2 Gn in the local neighborhood of go.

In the following we denote �n [ (Z2; g; h)] � 1
n

Pn
i=1 f (Z2;i; g; h)� E [ (Z2; g; h)]g.

Assumption 5.3 (i) supg2Gn;h2Nh;n j�n [ (Z2; g; h)]j = Op(�0;n) where f�0;ng is some �nite positive non-

increasing sequence going to zero; (ii) there is a �nite positive non-increasing sequence f�1;ng going to

zero such that

sup
g2Gn;h2Nh;n

jE [ (Z2; g; h)�  (Z2; g; ho)]j = O(�1;n):

Assumption 5.3 is similar to Condition 3.5 of Theorem 3.1 in Chen (2007) and the �rst part of

Condition d of Lemma A.2 in Chen and Pouzo (2012). Assumption 5.3.(i) can be veri�ed by applying

a standard empirical process result. Assumption 5.3.(ii) can be veri�ed by the convergence rate of the

�rst-step sieve M estimator bhn and the continuity of the criterion function E [ (Z2; g; h)] in h 2 Nh;n
uniformly over g 2 Gn.
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Theorem 5.1 Let Assumptions 5.1, 5.2 and 5.3 hold. If

max
�
�0;n; �1;n; �2;n; "

2
2;n

	
= o(1) (5.3)

then the second-step sieve M estimator is consistent under k�kG, i.e. kbgn � gokG = op(1).

Proof of Theorem 5.1. Let Qn (g; h) � 1
n

Pn
i=1  (Z2;i; g; h) and Q (g; h) � E [ (Z2; g; h)]. Let In(") �

Pr
�
kbgn � gokG > "

�
. For any " > 0, by the de�nition of bgn, we have
In(") � Pr

 
sup

fg2Gn: jjg�gojjG�"g
Qn(g;bhn) � Qn(gn;bhn)�Op �"22;n�

!
: (5.4)

Rewrite the inequality inside the parentheses on the RHS as

�
h
Qn(gn;bhn)�Q (go; ho)i+Op �"22;n� � Q (go; ho)� sup

fg2Gn: jjg�gojjG�"g
Qn(g;bhn): (5.5)

Note that the �rst two terms on the LHS of the above inequality can be rewritten as

�
h
Qn(gn;bhn)�Q (go; ho)i

= ��n
h
 (Z2; gn;bhn)i� hQ(gn;bhn)�Q (gn; ho)i� [Q (gn; ho)�Q (go; ho)]

which implies that if bhn 2 Nh;n with probability approaching 1 (wpa1), then
�
h
Qn(gn;bhn)�Q (go; ho)i � I1;n + I2;n + I3;n; (5.6)

where

I1;n � sup
g2Gn;h2Nh;n

j�n [ (Z2; g; h)]j ;

I2;n � sup
g2Gn;h2Nh;n

jQ (g; h)�Q (g; ho)j ;

I3;n � jQ(gn; ho)�Q(go; ho)j :
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Similarly if bhn 2 Nh;n wpa1, then for any g 2 Gn,
Qn(g;bhn) = �n

h
 (Z2; g;bhn)i+ hQ(g;bhn)�Q(g; ho)i+Q(g; ho)

� sup
g2Gn;h2Nh;n

j�n [ (Z2; g; h)]j+ sup
g2Gn;h2Nh;n

jQ(g; h)�Q(g; ho)j+Q(g; ho)

= I1;n + I2;n +Q(g; ho): (5.7)

Therefore when bhn 2 Nh;n wpa1, we may note that the term on the RHS of (5.5) is such that

Q(go; ho)� sup
fg2Gn: jjg�gojjG�"g

Qn(g;bhn)
� �I1;n � I2;n +Q(go; ho)� sup

fg2Gn: jjg�gojjG�"g
Q(g; ho): (5.8)

From (5.4), (5.5), (5.6) and (5.8), we get

In(") � Pr

0@2 3X
j=1

Ij;n +Op("
2
2;n) � Q(go; ho)� sup

fg2Gn: jjg�gojjG�"g
Q(g; ho)

1A+ Pr�bhn =2 Nh;n� : (5.9)

If Q(go; ho) =1, then using Assumption 5.1.(i), we have

Q(go; ho)� sup
fg2Gn: jjg�gojjG�"g

Q(g; ho) =1: (5.10)

However, from Assumption 5.2.(ii) and 5.3, we get maxfI1;n; I2;n; I3;ng = Op(1), which together with

(5.9), (5.10), "2;n = o(1) and the de�nition of Nh;n implies that

In(") � Pr
�bhn =2 Nh;n�! 0 as n!1.

On the other hand, if Q(go; ho) <1, then using (5.9) and Assumption 5.1.(ii), we get

In(") � Pr
 
2I1;n + 2I2;n + 2I3;n +Op("

2
2;n)

cn(")
� 1
!
+ Pr

�bhn =2 Nh;n� : (5.11)

Assumption 5.1.(ii), Assumption 5.2.(ii), Assumption 5.3 and the condition (5.3) imply that

2I1;n + 2I2;n + 2I3;n +Op("
2
2;n)

cn(")
= op(1)
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for any " > 0. Combining this result with (5.11) and the de�nition of Nh;n, we conclude that In(")! 0

as n goes to in�nity. This �nishes the proof.

5.2 Rate of convergence of the second step sieve M estimation

After the consistency of the second-step sieve M estimator bgn is established, we can focus on the local
neighborhood of go to compute the convergence rate of bgn under k�kG . Let K2 be a generic �nite and

positive constant and de�ne

N2;K2 � fg 2 Gn : jjg � gojjG � K2g ;

then by the consistency of bgn, we have bgn 2 N2;K2 wpa1. Moreover, given the convergence rate �
�
1;n of

the �rst-step sieve M estimator bhn, we can de�ne
N1;K1 �

�
h 2 Hn : jjh� hojjH=��h;n � K1

	
such that for any small constant ! > 0, there is a �nite constant K! > 0 such that

Pr(bhn =2 N1;K!) � ! for all n. (5.12)

The following general conditions are su�cient for deriving the convergence rate of bgn.
Assumption 5.4 There are some �nite, positive and non-increasing sequences �1;n, �2;n and �n that go

to zero as n!1 such that the following hold for any �xed �nite constants K1 > 0; K2 > 0: (i)

sup
h2N1;K1

jE [ (Z2; gn; h)�  (Z2; go; h)]j = O(�22;n); (5.13)

(ii) for any small constant �; e� > 0 and for any g 2 N2;K2 with 0 <
e� < kg � gokG < �

sup
h2N1;K1

E [ (Z2; g; h)�  (Z2; go; h)] � cK1;1�1;n� � cK1;2�
2; (5.14)

where cK1;1 and cK1;2 > 0 are �nite constants only depending on K1; (iii)

sup
g2N2;K2 ;h2N1;K1

j�n [ (Z; g; h)�  (Z; g; ho)]j = Op(�
2
n); (5.15)
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(iv) for all n large enough and for any su�ciently small �,

E

24 sup
fg2N2;K2 : kg�gokG��g

j�n [ (Z; g; ho)�  (Z; go; ho)]j

35 � c1�n(�)p
n

(5.16)

where c1 > 0 is some �nite constant and �n(�) is some function such that ���n(�) is a decreasing

function for some  2 (0; 2).

Assumption 5.4.(i) imposes local smoothness condition on the function E [ (Z2; �; h)] uniformly over

h in some shrinking neighborhood. The rate �2;n is determined by the convergence rates of the sieve ap-

proximation error of go and the �rst step sieve estimator bhn. Assumption 5.4.(ii) is a local identi�cation
condition. The term �1;n on the right side of the inequality (5.14) represents the e�ect of �rst-step estima-

tion on the second-step sieve estimate bgn. In Assumption 5.4.(i), (ii) and (iii), the uniform convergence

is imposed over local neighborhoods N1;K1 and/or N2;K2 . That is particularly useful for establishing the

convergence rate of bgn, because by the consistency of bgn and the convergence rate of bhn, we can bound
the probabilities of the events fbgn =2 N2;K2g and fbhn =2 N1;K1g in �nite samples by choosing su�ciently

large K1 and K2. Assumption 5.4.(iv) is a stochastic equicontinuity condition which is similar to the one

in Theorem 3.4.1 of Van der Vaart and Wellner (1996).

Theorem 5.2 Suppose that the conditions in Theorem 5.1 and Assumption 5.4 are satis�ed. Further-

more, if kgn � gokG = O(��2;n) where �
�
2;n is de�ned below and there is a �nite, positive and non-increasing

sequence �g;n such that

(�g;n)
�2 �n(�g;n) � c2

p
n; (5.17)

then we have kbgn � gokG = Op
�
��2;n
�
, where ��2;n � max f�1;n; �2;n; �n; �g;n; "2;ng.

Proof of Theorem 5.2. Let ! > 0 be some arbitrarily small constant. Because bgn is consistent, we can
choose a su�ciently large constant KM > 0 such that

Pr (jjbgn � gojjG > KM ) � !: (5.18)

By kgn � gokG = o(1), we deduce that there is some su�ciently large Kgo such that jjgn � gojjG � Kgo .

Let K�
M = maxfKM ;Kgog,

Gn(M) �
�
g 2 Gn : 2M��2;n < jjg � gojjG � K�

M
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and IM;n (!) � Pr
�
jjbgn � gojjG > 2M��2;n�. Note that by (5.18), we have

IM;n (!) = Pr (bgn 2 Gn (M)) + Pr (jjbgn � gojjG > K�
M ) � Pr (bgn 2 Gn (M)) + !: (5.19)

We will prove that

IM;n (!) �
X

j�M;2j�1��2;n�K�
M

c1c2
�
(2j+1) +K

"

�
jcK1;22

2j �K � cK1;12
j j + 5! (5.20)

where c1 and c2 are de�ned in Assumption 5.4.(iv) and (5.17), cK1;1, cK1;2, K" and K are some �xed

�nite constants which may depend on !, and  2 (0; 2) is de�ned in Assumption 5.4.(iv). As  < 2, we

can choose M su�ciently large such that

X
j�M;2j�1��2;n�K�

M

c1c2
�
(2j+1) +K

"

�
jcK1;22

2j �K � cK1;12
j j < !;

which together with (5.20) implies that IM;n(!) � 6!. As we can let ! arbitrarily small, this would

establish that jjbgn � gojjG = Op
�
��2;n
�
. Equation (5.20) is established by combining (5.21), (5.31) and

(5.33) below, which are proved in several steps.

Step 1: We prove that

IM;n(!) � Pr
 

sup
g2Gn(M);h2N1;K1

[I1;n(g; ho) + I2;n(g; h)] +K�
�2
2;n � 0

!
+ 5! (5.21)

where K1 is a �xed constant such that Pr
�bhn =2 N1;K1

�
� ! for all n, K is some �xed constant de�ned

below,

I1;n (g; ho) � �n [ (Z2; g; ho)�  (Z2; gn; ho)] ;

and I2;n (g; h) � Q(g; h)�Q(go; h):

For this purpose, we �rst note that by the de�nition of bgn, we can choose some su�ciently large constant
K1 > 0 such that

Pr
�
Qn(bgn;bhn)�Qn(gn;bhn) +K1"

2
2;n < 0

�
� !: (5.22)
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Combining (5.19) and (5.22), we have

IM;n (!) � Pr
 

sup
g2Gn(M)

Qn(g;bhn)�Qn(gn;bhn) +K1"
2
2;n � 0

!
+ 2!: (5.23)

It is clear that the term inside the parentheses on the RHS of (5.23) is such that

Qn(g;bhn)�Qn(gn;bhn)
= �n

h
 (Z2; g;bhn)�  (Z2; gn;bhn)i+Q(g;bhn)�Q(gn;bhn)

= �n

h
 (Z2; g;bhn)�  (Z2; g; ho)i+ �n h (Z2; gn; ho)�  (Z2; gn;bhn)i

+ �n [ (Z2; g; ho)�  (Z2; gn; ho)] +Q(g;bhn)�Q(go;bhn)
+Q(go;bhn)�Q(gn;bhn);

and therefore,

Qn(g;bhn)�Qn(gn;bhn)
= �n

h
 (Z2; g;bhn)�  (Z2; g; ho)i+ �n h (Z2; gn; ho)�  (Z2; gn;bhn)i

+Q(go;bhn)�Q(gn;bhn) + I1;n (g; ho) + I2;n(g;bhn): (5.24)

From Assumption 5.4.(iii), we can choose some constant K2 su�ciently large such that

Pr

 
sup

g2Gn(M)
�n

h
 (Z2; g;bhn)�  (Z2; g; ho)i � K2�

2
n;
bhn 2 N1;K1

!

� Pr

0@ sup
g2N2;K�

M
;h2N1;K1

j�n [ (Z2; g; h)�  (Z2; g; ho)]j � K2�
2
n

1A � !: (5.25)

Combining (5.23), (5.24), and (5.25), we obtain

IM;n (!) � Pr

26666664

0BBBBBB@
�n

h
 (Z2; gn; ho)�  (Z2; gn;bhn)i
+Q(go;bhn)�Q(gn;bhn)

+ supg2Gn(M)

h
I1;n (g; ho) + I2;n(g;bhn)i

+K1"
2
2;n +K2�

2
n

1CCCCCCA � 0;bhn 2 N1;K1

37777775+ 4!: (5.26)
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By the de�nition of N2;K�
M
, we have gn 2 N2;K�

M
, which together with Assumption 5.4.(iii) implies

that

Pr
�
�n

h
 (Z2; gn; ho)�  (Z2; gn;bhn)i � K2�

2
n;
bhn 2 N1;K1

�
� Pr

0@ sup
g2N2;K�

M
;h2N1;K1

j�n [ (Z2; g; ho)�  (Z2; g; h)]j � K2�
2
n

1A � !: (5.27)

By the same argument that led to (5.26), we obtain

IM;n (!) � Pr

26664
0BBB@

Q(go;bhn)�Q(gn;bhn)
+ supg2Gn(M)

h
I1;n (g; ho) + I2;n(g;bhn)i

+K1"
2
2;n + 2K2�

2
n

1CCCA � 0;bhn 2 N1;K1

37775+ 5!: (5.28)

From Assumption 5.4.(i), we can choose some constant K3 su�ciently large such that

sup
h2N1;K1

jE [ (Z2; go; h)�  (Z2; gn; h)]j < K3�
2
2;n

which implies that

Pr
�
Q(go;bhn)�Q(gn;bhn) � K3�

2
2;n;
bhn 2 N1;K1

�
� Pr

 
sup

h2N1;K1
jE [ (Z2; go; h)�  (Z2; gn; h)]j � K3�

2
2;n

!
= 0: (5.29)

By the same argument that led to (5.28), we obtain

IM;n (!) � Pr

240@ supg2Gn(M)

h
I1;n (g; ho) + I2;n(g;bhn)i

+K1"
2
2;n + 2K2�

2
n +K3�

2
2;n

1A � 0;bhn 2 N1;K1

35+ 5!: (5.30)

Recalling ��2;n � max f�1;n; �n; �2;n; �g;n; "2;ng, we obtain

IM;n (!) � Pr
 

sup
g2Gn(M);h2N1;K1

[I1;n(g; ho) + I2;n(g; h)] +K�
�2
2;n � 0

!
+ 5!;

where K = 4�maxfK1;K2;K3g, which proves (5.21).
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Step 2: Now we prove that

Pr

 
sup

g2Gn(M);h2N1;K1
[I1;n(g; ho) + I2;n(g; h)] +K�

�2
2;n � 0

!

�
X

j�M;2j�1��2;n�K�
M

Pr

 
sup
g2Gn;j

I1;n(g; ho) �
�
cK1;22

2j �K � cK1;12
j
�
��22;n

!
(5.31)

where cK1;1 and cK1;2 are some �xed constants de�ned below,

Gn;j �
�
g : 2j��2;n < jjg � gojjG � 2j+1��2;n

	
:

We start by noting that we can divide Gn(M) into in�nite (but countably) many disjoint pieces, i.e.

Gn(M) = [1j=MGn;j , where it is clear that Gn;j \ Gn;j0 = ? for any j; j0 � M and j 6= j0. By the

sub-additivity of the probability measure,

Pr

 
sup

g2Gn(M);h2N1;K1
[I1;n(g; ho) + I2;n(g; h)] +K�

�2
2;n � 0

!

�
X

j�M;2j�1��2;n�K�
M

Pr

 
sup

g2Gn;j ;h2N1;K1
[I1;n(g; ho) + I2;n(g; h)] +K�

�2
2;n � 0

!
: (5.32)

By Assumption 5.4.(ii) and the de�nition of ��2;n, we have

sup
g2Gn;j ;h2N1;K1

I2;n(g; h) = sup
g2Gn;j ;h2N1;K1

[Q(g; h)�Q(go; h)]

� cK1;1�1;n
�
2j��2;n

�
� cK1;2

�
2j��2;n

�2
�
�
cK1;12

j � cK1;22
2j
�
��22;n;

which together with (5.32) implies (5.31).

Step 3: We now prove that

Pr

 
sup
g2Gn;j

I1;n(g; ho) �
�
cK1;22

2j �K � cK1;12
j
�
��22;n

!
�

c1c2
�
(2j+1) +K

"

�
jcK1;22

2j �K � cK1;12
j j (5.33)
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where c denotes the generic constant de�ned in (5.16) or (5.17), and K" is some �xed constant de�ned

below. For this purpose, we start by using Markov inequality and the triangle inequality to deduce that

Pr

 
sup
g2Gn;j

I1;n(g; ho) �
�
cK1;22

2j �K � cK1;12
j
�
��22;n

!

�
E
h
supg2Gn;j j�n [ (Z2; g; ho)�  (Z2; gn; ho)]j

i
���(cK1;22

2j �K � cK1;12
j) ��22;n

���
�
E
h
supg2Gn;j j�n [ (Z2; g; ho)�  (Z2; go; ho)]j

i
jcK1;22

2j �K � cK1;12
j j ��22;n

+
E [j�n [ (Z2; gn; ho)�  (Z2; go; ho)]j]

jcK1;22
2j �K � cK1;12

j j ��22;n
: (5.34)

Using Assumption 5.4.(iv), we deduce that

E
h
supg2Gn;j j�n [ (Z2; g; ho)�  (Z2; go; ho)]j

i
jcK1;22

2j �K � cK1;12
j j ��22;n

�
c1�n(2

j+1��2;n)p
n jcK1;22

2j �K � cK1;12
j j ��22;n

=
c1(2

j+1��2;n)


p
n jcK1;22

2j �K � cK1;12
j j ��22;n

�n(2
j+1��2;n)

(2j+1��2;n)


� c1(2
j+1)

jcK1;22
2j �K � cK1;12

j j
�n(�

�
2;n)p

n��22;n
� c1c2(2

j+1)

jcK1;22
2j �K � cK1;12

j j ; (5.35)

where the last inequality uses the fact that �n(�)=�
 is a decreasing function such that

�n(�
�
2;n)p

n��22;n
=

1p
n

�n(�
�
2;n)

��2;n

1

�
�(2�)
2;n

� 1p
n

�n(�g;n)

�g;n

1

�
(2�)
g;n

=
�n(�g;n)p
n�2g;n

� c2:
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From jjgn � gojjG = O(��2;n), we can choose K" > 1 large enough such that jjgn � gojjG � K"�
�
2;n. Using

Assumption 5.4.(iv) and similar arguments in showing (5.35), we deduce that

E [j�n [ (Z2; gn; ho)�  (Z2; go; ho)]j]
jcK1;22

2j �K � cK1;12
j j ��22;n

�

E

24������ sup
fg2Gn:jjg�gojjG�K"��2;ng

�n [ (Z2; g; ho)�  (Z2; go; ho)]

������
35

jcK1;22
2j �K � cK1;12

j j ��22;n

�
c1(K"�

�
2;n)



p
n jcK1;22

2j �K � cK1;12
j j ��22;n

�n(K"�
�
2;n)

(K"��2;n)


� c1K

"

jcK1;22
2j �K � cK1;12

j j
�n(�

�
2;n)p

n��22;n
=

c1c2K

"

jcK1;22
2j �K � cK1;12

j j : (5.36)

From (5.34), (5.35) and (5.36), we get (5.33).

Theorem 5.2 indicates that the convergence rate of the second-step sieve M estimator is determined by

the convergence rate maxf�1;n; �ng of the estimation error introduced by the �rst-step sieve estimation,

the rate �2;n of the sieve approximation error of go, the convergence rate "2;n of the optimization error

and the measure �g;n of the complexity of the sieve space Gn.

Let 	n;� �
�
 (Z2; g; ho)�  (Z2; go; ho) : kg � gokG � �; g 2 N2;K

	
and let H[] (u;	n;�; k�k2) denote

the bracket entropy of the function class 	n;� with respect to the L2(dFZ)-norm k�k2. De�ne

J[] (�;	n;�; k�k2) =
Z �

0
H[] (u;	n;�; k�k2) du:

Assumption 5.4.(iii) and (iv) can be replaced by the following low level conditions.

Assumption 5.5 (i) The data are i.i.d.; (ii)

sup
fg2N2;K : kg�gokG��g

E
h
j (Z; g; ho)�  (Z; go; ho)j2

i
� c�2;

(iii) for any small � > 0, there exists a constant s1 2 (0; 2) such that

sup
fg2N2;K : kg�gokG��g

j (Z; g; ho)�  (Z; go; ho)j � �s1U(Z)
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where E [jU(Z)js2 ] � c for some s2 � 2; (iv) there is a sequence of positive numbers �g;n such that

�g;n = inf

�
� 2 (0; 1) :

J[] (�;	n;�; k�k2)p
n�2

� c

�
;

where ��J[] (�;	n;�; k�k2) is a decreasing function for some  2 (0; 2).

Assumption 5.5.(i), (ii) and (iii) are directly from the su�cient conditions of Theorem 3.2 in Chen

(2007) which establishes the convergence rate of one-step sieve M estimation with i.i.d. or m-dependent

data. The low level conditions in Assumption 5.5 are easy to verify in practice. However, the advantage of

the high level assumption (5.16) is that it integrates the data structure and the metric entropy restriction

into one simple stochastic equicontinuity condition. As a result, the convergence rate of the second-step

sieve M estimator derived in this paper applies to the general scenario with time series observation.

Corollary 5.3 Suppose that the conditions in Theorem 5.1, Assumption 5.4.(i), (ii) and 5.5 are satis�ed.

Furthermore, if kgn � gokG = O(��2;n), then we have kbgn � gokG = Op(�
�
2;n), where �

�
2;n is de�ned in

Theorem 5.2.

Proof of Corollary 5.3. By Assumption 5.5.(iii), we know that for any small number ! > 0, there

exists a su�ciently large constant Mn such that

Pr(jU(Zi)j > Mn for all i � n) �
nX
i=1

Pr(jU(Zi)j > Mn)

�
nX
i=1

E [jU(Z)js2 ]
M s2
n

� cnM�s2
n � !;

where the �rst inequality is by the Bonferroni inequality, and the second inequality is by the Markov

inequality.

Now, conditioning on the event fjU(Zi)j �Mn for all i � ng and using Assumption 5.5.(iii), we have

j (Zi; g; ho)�  (Zi; go; ho)j � �s1Mn
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for all i � n and for any  (Z; g; ho) �  (Z; go; ho) 2 	n;�, which together with Assumption 5.5.(i) and

(ii), enables us to invoke Lemma 19.36 in Van der Vaart (1998) to get

E

24 sup
fg2Gn: kg�gokG��g

j�n [ (Z; g; ho)�  (Z; go; ho)]j

35
�
cJ[] (�;	n;�; k�k2)p

n

�
1 +

J[] (�;	n;�; k�k2)p
n�2

Mn

�
� �n(�)p

n
:

By Assumption 5.5.(iv), we know that the above function �n(�) satis�es the requirement (5.17) in The-

orem 5.2. The rest of the proof is the same as that of Theorem 5.2 and hence is omitted.
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