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Abstract

This appendix contains detailed proofs of several of the supporting results in the paper, “Block
bootstrap consistency under weak assumptions.” As we have stated elsewhere these proofs
are fundamentally identical to existing proofs in this literature, but our indexing changes the
presentation slightly. We are not in any way trying to take credit for the insight that led to these
results; they are presented only for readers’ reference and convenience.

Lemma 7. Suppose the conditions of Theorem 1 hold. For any positive δ, there exist positive
and finite constants C, n0, and ε such that, for all n > n0, m = 1, . . . , n, τ = 0, . . . ,m, and
` = 1, . . . ,m− 1,

E
∣∣∣ bn/mc−1∑

i=0

[
Z ′n(τ + im,m− `)2 − E

(
Z ′n(τ + im,m− `)2

)]∣∣∣
≤ 2δ + C ·

(
m
n

)1/2( m
`1+ε

)1/2
. (44)

Also, there exists a constant C and bounded function D(x) with D(x)→ 0 as x→∞ such that, for
large enough n,

E
∣∣∣ bn/mc−1∑

i=0

E(Z ′n(τ + im,m− `)2 − σ2
∣∣∣ ≤ C D(`). (45)

Results (44) and (45) are direct extensions of De Jong’s (1997) Lemmas 5 and 4, respectively,
replacing De Jong’s implicit use of inequalities with explicit inequalities. We can assume that µnt = 0

without loss of generality in these proofs.
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Proof of (44). Define h(x,B) = x 1{|x| ≤ B}+sgn(x)B 1{|x| > B}. Since Lemma 7 ensures uniform
integrability, we can choose B large enough that

E
∣∣∣ bn/mc−1∑

i=0

(
Z ′n(τ + im,m− `)2n/m− h(Z ′n(τ + im,m− `), B

√
m/n)2

)∣∣∣ < δ,

so it suffices to bound

E
∣∣∣ bn/mc−1∑

i=0

(
h(Z ′n(τ + im,m− `), B

√
m/n)2 − Eh(Z ′n(τ + im,m− `), B

√
m/n)2

)∣∣∣.
As in De Jong’s proof, h(Z ′n(τ + im,m− `), B

√
m/n)2 is L2 NED with respect to

V i+jn,i−j = σ(Vn,τ+(i−j−1)m+`+1, . . . , Vn,τ+(i+j)m).

This can be seen through the sequence of inequalities (for j > 0):

‖h(Z ′n(τ + im,m− `), B
√
m/n)2 − E(h(Z ′n(τ + im,m− `), B

√
m/n)2 | V i+jn,i−j)‖2

≤ 2B
√

m
n ‖h(Z ′n(τ + im,m− `), B

√
m/n)

− E(h(Z ′n(τ + im,m− `), B
√
m/n) | V i+jn,i−j)‖2

≤ 2B
√
m
n

∑
t∈In(τ+im,m−`)

‖Xnt − E(Xnt | V i+jn,i−j)‖2

≤ 2B
√
m
n

∑
t∈In(τ+im,m−`)

dntvj`

= 2BDm3/2

n (`j)−1/2−ε

for some ε > 0 and D ≥ maxt dnt. For j = 0, we have

‖h(Z ′n(τ + im,m− `), B
√
m/n)2 − E(h(Z ′n(τ + im,m− `), B

√
m/n)2 | V in,i)‖2

≤ 2B
√

m
n ‖Z

′
n(τ + im,m− `)‖2

≤ 2BDm
n

with the last inequality holding by Lemma 7.
These NED inequalities further imply that h(Z ′n(τ + im,m − `))2 is an L2-mixingale of size

−1/2. Define
Hnk = σ(Vn,τ+km, Vn,τ+(k−1)m, . . . )
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For j > 0,

‖h(Z ′n(τ + im,m− `, B
√
m/n))2 − E(h(Z ′n(τ + im,m− `), B

√
m/n)2 | Hn,i−2j)‖2

≤ ‖h(Z ′n(τ + im,m− `), B
√
m/n)2

− E(h(Z ′n(τ + im,m− `), B
√
m/n)2 | Vn(i+ j, i− j))‖2

+ ‖E(h(Z ′n(τ + im,m− `), B
√
m/n)2 | Vn(i+ j, i− j))

− E(h(Z ′n(τ + im,m− `), B
√
m/n)2 | Hn,i−2j)‖2

≤ 2BDm3/2

n (`j)−1/2−ε + 2BDm
n ψ(j`)

where ψ(x) = x1/2−1/r if Vnt is strong mixing and ψ(x) = x1−1/r if Vnt is uniform mixing. By
assumption, ψ(x) = O(x−1/2−ε

′
) for some ε′ > 0. Assume without loss of generality that the ε we

defined earlier satisfies this requirement as well, so ψ(j`) ≤ D′(j`)−1/2−ε for some constant D′ > 1.
For the rest of the mixingale inequalities, let j ≥ 0 and then

‖h(Z ′n(τ + im,m− `, B
√
m/n))2 − E(h(Z ′n(τ + im,m− `), B

√
m/n)2 | Hn,i+2j)‖2

≤ ‖h(Z ′n(τ + im,m− `), B
√
m/n)2

− E(h(Z ′n(τ + im,m− `), B
√
m/n)2 | Vn(i+ j, i− j))‖2

≤ 2BDm3/2

n (`j)−1/2−ε,

completing the argument that h(Z ′n(τ + im,m− `, B
√
m/n))2 is an L2-mixingale of size −1/2.

Now let C = 4BDD′. We can now apply De Jong’s Lemma 2 (originally presented in McLeish,
1975a) to this mixingale, giving

∥∥∥ bn/mc−1∑
i=0

(
h(Z ′n(τ + im,m− `, B

√
m/n))2 − Eh(Z ′n(τ + im,m− `), B

√
m/n)2

)∥∥∥
2

≤

( bn/mc−1∑
i=0

(
Cm
n
m1/2

`1/2+ε

)2)1/2

≤ C
(
m
n

)1/2 m1/2

`1/2+ε

which gives the final result.
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Proof of (45). Observe that

∣∣∣ bn/mc−1∑
j=0

bn/mc−1∑
i=j+1

EZ ′n(τ + im,m− `)Z ′n(τ + jm,m− `)
∣∣∣

≤ 1
n

bn/mc−1∑
j=0

bn/mc−1∑
i=j+1

(j+1)m∑
t=jm+`+1

(i+1)m−t∑
k=im+`+1−t

1{k ≥ `}E|XntXn,t+k|

≤ 1
n

n∑
t=1

n−t∑
k=0

1{k ≥ `}
∞∑
v=0

(
E∆1n(t, v)E∆2n(t, k, v)

)1/2 (A1)

+ 1
n

n∑
t=1

n−t∑
k=0

1{k ≥ `}
∞∑
v=1

(
E∆3n(t, v)E∆4n(t, k, v)

)1/2 (A2)

by De Jong’s Lemma 3, with

∆1n(t, v) = (Et−vXnt)
2 − (Et−v−1Xnt)

2

∆2n(t, k, v) = (Et−vXn,t+k)
2 − (Et−v−1Xn,t+k)

2

∆3n(t, v) = (Xnt − Et+v−1Xnt)
2 − (Xnt − Et+vXnt)

2

∆4n(t, k, v) = (Xn,t+k − Et+v−1Xn,t+k)
2 − (Xn,t+k − Et+vXn,t+k)

2

Both (A1) and (A2) can be bounded by very similar arguments, so we just present the first. Now

1
n

n∑
t=1

n−t∑
k=0

1{k ≥ `}
∞∑
v=0

(
E∆1n(t, v)E∆2n(t, k, v)

)1/2 ≤
∞∑
v=0

{(
1
n

n∑
t=1

E∆1n(t, v)
)1/2(

1
n

n∑
t=1

( n−t∑
k=0

1{k ≥ `}(E∆2n(t, k, v))1/2
)2)1/2}

by the Cauchy-Schwarz inequality. By the same inequality, we have

1
n

n∑
t=1

( n−t∑
k=0

1{k ≥ `}(E∆2n(t, k, v))1/2
)2

≤ (C/n)
n∑
t=1

n−t∑
k=`

k log(k)2 E∆2n(t, k, v)

≤ (C/n)
n∑
t=1

c2nt

(
` log(`)2ψ(`)2 +

∞∑
k=`

log(k)2ψ(k)2
)

where C is any constant that bounds
∑∞

k=1 k
−1 log(k)−2 and ψ is defined as ψ(k) ≡ vk + 6α

1/p−1/r
k/2

(if the underlying mixing process is strong mixing with coefficients αk) or ψ(k) ≡ vk + 6φ
1−1/r
k/2 (if
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the underlying process is uniform mixing with coefficients φk).1 Notice that this last expression does
not depend on v.

Similarly,

∞∑
v=0

(
1
n

n∑
t=1

E∆1n(t, v)
)1/2

≤
(

(C/n)
n∑
t=1

(
E∆1n(t, 0) +

∞∑
v=1

log(v)2 E∆1n(t, v)
))1/2

≤
(

(C/n)

n∑
t=1

c2nt

(
ψ(0)2 +

∞∑
v=1

log(v)2ψ(v)2
))1/2

.

So we can bound (A1) with

const×D(`) =
(

(C/n)
n∑
t=1

c2nt

)
×
(
` log(`)2ψ(`)2 +

∞∑
k=`

log(k)2ψ(k)2
)1/2(

ψ(0)2 +
∞∑
v=1

log(v)2ψ(v)2
)1/2

and D(`)→ 0 as `→∞. A similar proof holds for (A2), so (45) holds with

D(`) =
(
` log(`)2ψ(`)2 +

∞∑
k=`

log(k)2ψ(k)2
)1/2

.

Lemma 8. Under the conditions of Theorem 1,

lim
C→0

lim sup
n→∞

sup
τ=0,...,n−1
m′=1,...,n

E
((

max
m=1,...,m′

Z ′n(τ,m)2n/m′
)
× 1{ max

m=1,...,m′
Z ′n(τ,m)2n/m′ > C}

)
= 0. (46)

Proof of Lemma 8. The argument follows McLeish (1975b, Lemma 6.5) and McLeish (1977, Lemma
3.5) almost exactly and is also presented as Theorem 16.13 in Davidson (1994). We present the proof
here to show that it continues to hold under our indexing strategy.

Let ε be an arbitrary positive number. Without loss of generality, assume that Xnt has mean
zero for all n and t. Define wn(τ,m′)2 =

∑
t∈In(τ,m′) c

2
nt and separate Xnt into three components,

Xnt = Unt + Tnt + Ynt

1Note that these values of ψ(k) are the mixingale indices corresponding to our NED array. See Davidson (1994,
Theorem 17.15) for details.
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with

Unt = Xnt − Et+kXnt + Et−kXnt

Tnt = Et+kXnt 1{|Xnt| > C ′cnt} − Et−kXnt 1{|Xnt| > C ′cnt}

Ynt = Et+kXnt 1{|Xnt| ≤ C ′cnt} − Et−kXnt 1{|Xnt| ≤ C ′cnt}

where k and C ′ are arbitrary constants that will be constrained later in the proof — this representation
holds for any value of these constants. For convenience, define

xn(τ,m′) = max
m∈1,...,m′

( ∑
t∈In(τ,m)

Xnt

)2/
wn(τ,m′)2

un(τ,m′) = max
m∈1,...,m′

( ∑
t∈In(τ,m)

Unt

)2/
wn(τ,m′)2

yn(τ,m′) = max
m∈1,...,m′

( ∑
t∈In(τ,m)

Ynt

)2/
wn(τ,m′)2

and

zn(τ,m′) = max
m∈1,...,m′

( ∑
t∈In(τ,m)

Tnt

)2/
wn(τ,m′)2.

Using the Cauchy-Schwarz inequality and basic algebra, we have for any τ and m′ the inequality

xn(τ,m′) ≤ 3
(
un(τ,m′) + yn(τ,m′) + zn(τ,m′)

)
which, along with a well known inequality (Theorem 9.29 in Davidson, 1994) gives the bounds

E(xn(τ,m′) 1{xn(τ,m′) > C})

≤ 6
(
E(un(τ,m′) 1{un(τ,m′) > C/6}) + E(yn(τ,m′) 1{yn(τ,m′) > C/6})

)
+ E(zn(τ,m′) 1{zn(τ,m′) > C/6})

≤ 6
(
Eun(τ,m′) + E(yn(τ,m′) 1{yn(τ,m′) > C/6}) + E zn(τ,m′)

)
for any positive C.

Now observe that ‖Et−l Unt‖2 ≤ dntvmax(k,l) and ‖Unt−Et+l Unt‖2 ≤ dntvmax(k,l)+1 for positive l,
making Unt an L2-mixingale of size −1/2. Consequently, for any fixed τ and m′ satisfying τ +m′ ≤ n,
we can apply Theorem 1.6 of McLeish (1975a) to get the bound

Eun(τ,m′) ≤ 8
(

(k + 1)k−1−δ +
∞∑

s=k+1

s−1−δ
)(
v2k k

1+δ + 2
∞∑

s=k+1

v2s s
δ
)
, (A3)

where δ > 0 satisfies vk = O(k−1/2−δ). (This δ must exist because of our assumptions on the size of
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the NED array.) This bound is O(k−δ) as k →∞ uniformly in n, m′, and τ . When τ +m′ > n, we
have (from the Cauchy-Schwarz inequality)

Eun(τ,m′) ≤ 4 max
(
Eun(τ, n− τ),Eun(0,m′ + τ − n)

)
,

and both terms individually satisfy (A3). As a result, we can choose k large enough that

Eun(τ,m′) ≤ ε/2

for all n, m′, and τ .
We can apply essentially the same argument to zn(τ,m′). For positive l, we have

‖Et−l Tnt‖2 =
(
E[(Et−min(l,k) Tnt)

2 − (Et−k Tnt)2]
)1/2

≤
(
E(X2

nt/c
2
nt 1{|Xnt/cnt| > C ′})

)1/2
1{l < k}

and

‖Tnt − Et+l Tnt‖2 =
(
E[(Et+k Tnt)2 − (Et+min(l,k) Tnt)

2]
)1/2

≤
(
E(X2

nt/c
2
nt 1{|Xnt/cnt| > C ′})

)1/2
1{l < k}

so Tnt is an L2-mixingale as well. Applying the same steps for zn(τ,m′) as for un(τ,m′) gives the
upper bound

E zn(τ,m′) ≤ 16(k + 1) max
t∈In(τ,m′)

E
(
X2
nt/c

2
nt 1{|Xnt/cnt| > C ′}

)
≤ 16(k + 1) max

t=1,...,n
E
(
X2
nt/c

2
nt 1{|Xnt/cnt| > C ′}

)
for any τ , m′, and n satisfying τ +m′ ≤ n, and

E zn(τ,m′) ≤ 4 max
(
E zn(τ, n− τ),E zn(0,m′ + τ − n)

)
when τ +m′ > n. Since X2

nt/c
2
nt is uniformly integrable, set C ′ large enough that this upper bound

is less than ε/2 for all n, m′, and τ as well.
Finally, to bound E(yn(τ,m′) 1{yn(τ,m′) > C/6}), use the inequality

E(yn(τ,m′) 1{yn(τ,m′) > C/6}) ≤ 6E yn(τ,m′)2/C.

We can write Ynt =
∑k

l=1−k ξn(t, l), where

ξn(t, l) = Et+lXnt 1{|Xnt| ≤ C ′cnt} − Et+l−1Xnt 1{|Xnt| ≤ C ′cnt},
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and {ξn(t, l),Fn,t+l} forms a martingale difference array for each l. Then, when τ +m′ ≤ n, we have

E yn(τ,m′)2 = E max
m=1,...,m′

∣∣∣ ∑
t∈In(τ,m)

k∑
l=1−k

ξn(t, l)
∣∣∣4/wn(τ,m′)4

≤
k∑

l=1−k
E max
m=1,...,m′

∣∣∣ ∑
t∈In(τ,m)

ξn(t, l)
∣∣∣4/wn(τ,m′)4

≤ 44(2k + 1)3

34wn(τ,m′)4

k∑
l=1−k

E
∣∣∣ ∑
t∈In(τ,m′)

ξn(t, l)
∣∣∣4

where the second inequality follows from a maximal inequality for MDSes (Davidson, 1994, Theorem
16.8). Since the ξn(τ, l) are all bounded by 2cntC

′, we can expand the expectation recursively to
derive the bound

E
∣∣∣ ∑
t∈In(τ,m′)

ξn(t, l)
∣∣∣4 ≤ 11(2C ′)4wn(τ,m′)4,

(For details, see Davidson, 1994, Equations 16.69–16.72) giving

E yn(τ,m′)2 ≤ 11× 46 (2k + 1)4C ′4

34
.

When τ +m′ > n, the same bound holds, but with 47 replacing 46. Then, as C →∞, this quantity
converges to zero, completing the proof of (46).
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