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Abstract

This document provides proofs for selected lemmas and theorems of the paper “Nonparametric Stochas-
tic Volatility”.

Below, in order not to burden the notation, we will work with f(0?) = o2 and, with the exception of
the variance (resp. price) jump component, we will dispense with the superscript/subscript o (resp. 7).
The case of a general variance transformation f(.) satisfying Assumption 5 (a.4) is immediate given the
following treatment and the discussion in the main Appendix. We will be explicit about the left limit of
the variance process and write o7 only when needed for clarity.

Proof of Lemma 2. We prove the result working with
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for some constant Ck deriving from the boundedness of the kernel function (c.f., Assumption 3). The
notation M(.) was defined in the statement of Assumption 5.
Using It6’s lemma, we obtain
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where we employed the notation K = Km.
We begin with @1, 7. Integrating by parts (see, e.g., Protter, 2004, Corollary 2, page 68), we have
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Note that, by Lemma 1, setting S = |K'|, we obtain hn% fOT )K’ (%) ‘ ds = Op(v(T)). Hence, @1, 7 =
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By Lemma 1, once more, after setting S = |K”|, we have ®9,, 7 = O, % . Next, write
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It is easy to show that the first and the second term after the last “equal” sign have the same probability
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order (i.e., O, "TU()>) and dominate the third term. Here, we therefore only focus on the first term
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where the last inequality derives from the Lipschitz property of the kernel function (whose first derivative
is bounded, see Assumption 3) and that of the function m (from Assumption 5 (a.0)). Ignoring constants
and integrating by parts, we have
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Let us now compensate the random measure v,(ds,d£?) to obtain
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where E((¢9)%) is the uniform bound on the second moment of the variance jumps (c.f., Assump-
tion 5 (a.3)). Given the integrability of the jump intensity with respect to the variance invariant
density (c.f., again, Assumption 5 (a.3)), the probability order, i.e., v(T), of the additive functional

S ZIA’{)TAH . 7 (02)ds = fOT A% (62)ds derives from a simple application of the Darling-Kac theorem
(see, e.g., Hopfner and Locherbach, 2003, point (ii), page 3).



As for @ ., its variance can be written as follows:
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where the first equality depends on the uncorrelatedness of the increments of the discontinuous portion of
the variance process and the expression following the “asymptotic equivalence” sign hinges on Nummelin
splitting, see Lemma 1 of Bandi and Moloche (2017). We recall (from Lemma 1 in this paper) that the
notation {R,, : m > 1} denotes the regeneration times of the variance process. As in the main Appendix,
the symbol Ny is used to represent the random number of regenerations up to time 7. Since, E[Np] ~
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The result follows from the fact that - W(T) fo (U _x) ds = Op(1) (see Remark 11). O
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where the last inequality is Jensen’s and the order term derives from the boundedness of the jump intensity
and the second moment of the jumps (Assumption 5 (a.3)). The term Vy,, 7 is the dominating term in
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where convergence in probability is a consequence of the same arguments as in the proof of Theorem 4
of Bandi and Moloche (2017). This concludes the proof of point I in the statement of Lemma 4. Point 2
can be proved in just the same way. O



Proof of Lemma 5. Define, as in the proof of Lemma 4, the martingale difference arrays
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A,
140, (5
TN WREEIIN
Wzn 1K< hzqi; >fiAn’T "1 A(o2)dWe

02*23 %

ks 19 (7 ) O(W)

W pu— pu—
27n7T An T An T
14+ 0, m 1+ 0, g

11

Also, by Lemmas 4 and 5,




and

2
ne1 in, 7 G+1)A, 1 o .
TVt it K( e )LART J €770 (ds,de”)
1
1 T o x
" T T o (hiT)ds (m)
3n,T =
A, A
1+ Op <h2T> 1+ O < >
n,T nT
Thus,
n—1 Tinn =" 2 9
Pon,T T i K( Font > <U(i+1)A r it r . o

nT
nT

zAnT
nT

sk (5

%)

~02,1(2) = Op(his 1) +0, (

The last expression can be written as follows

1
Op(hgz,T) +Op = +0p (
hp1Ly2(T, )
L -0, LO.Q (T,z) and 4—

T (5

*
n,T

2
hn,T

),
LK (5

) ds = Op(v(T)) by Remark 11, a result
O

. A,
since, when h2

L — 0, which is implied by h2 ) ds are asymptoti-

cally equivalent (Lemma 3). Finally, recall tha

which was used repeatedly above.
Proof of Lemma 7. As in the proof of Lemma 6, write

2
o
7‘An,T

n— - (+DA, 7
hnl,T iy K< P T ) fiA:LL’T T m(o2)ds
1 —1 A, T (Z+1 n,
. e () e S (T ) UL A
hn’TLO.Q (T, l‘) : + 5 —
1 O n,T An,T n K o—iAn,T r
+0Op R2 . Fon. Dic Fin T
1 A, r (i+1)An 1 o Ay,
+ ) <hnTT> f@AnT fgf Vo (ds,dE?) 0,51(2) 0521 (2)Op <hﬁ;)
Ap T —n GiAn,T - Ay T Ap,T
Pon. T 2i-1 K ( Bn,T > 1+0p (hfm ) 1+0p h2 ¢ )
2% e\
(e
—Us21(T Ap,
— n = fO (as—z>ds 71 00.271($)0p <h% ;1:>
= hmTLUQ (T, .I) N - N ’
1+ 0, (ﬁf) 140, (h;;)
2
1 1 Ay, —* (i+1)A,, 2 o 1 -1 UiAn, - (i+1)A, o= o
\/m Z? 1 K < nz; ) fiAmT ’ A(Us)dWs .1 Z?:l K < hn; sznT ’ fgg Uo dS ,d€ )
+
i, F A, U?Am -z
sy K () ey K (T

12



2\ _
han fOTK(%)m(UE)dS
2 - 902,1(1:) 10) A:L,T
- b, T fO (JS z)ds » h?liT
= \/hn,7Ly2(T, x) :

+
1+ 0, <§;TT> 1+ 0, (ﬁ;;)

2
n—1 Dy F (i+1)Ap, o n—1 U”“An, - (i+1)A,, o= o
/h T ZZ 1 K < ni ) fiAn,T ’ A(Ug)dWs N /hln,T Zizl K ( hn; > iAp T g fgg UU ds dg )

AnT 1 K JiQAn,fo ApT K zAnT -z
hn,T ZZ:I hn,T nT Z’L 1 nT

where the order term in the denominators was derived in Lemma 3 and the order term inside the paren-
thesis derives from Eq. (4). If b ;L2 (T, 2) 5 C, hyrLy2(T,x) = o1 Ly2(T, ) 5 0, the

result now follows from Lemma 5 and Eq. (7). O

Proof of Lemma 8. Using [t6’s lemma,

i+1)A, _
) ) R . DA R-1 (02)d
T(i+1)Anr — Tilnr = » Os =0, r m\og)ds
1An,T

('L+1)An,T R—1
—|—R/ <0§ - UfAn’T) A(J?)de

(i+1)An,T

s

1 . 2 2 R=2 5
+§R(R 1)/ (as UiAn,T> A*(o%)ds

(ZANSE

R R
+ Z [(0?_ + Aa? — UiQAn,T) — (ag_ — O'?AR’T> ] .

A".g?éO, iAn,T§S<(i+1)An,T

Also, by a straightforward application of the binomial identity,

R R
Z |:(O'§ + AO’? - O-Z'QAH,T) - (O-z* - Gi2An,T> :|

Ao’?;ﬁo iAnyT <s< ('H“]-)An,T

I (YN (RN EE R
' 3

k=0 iBnT

Next, breaking up the summation above into the first term, i.e., k = 0, and the summation ZkR:_ll, we
can write

R
n—1 ZAnT 7 2 2

B, Zl 1 K ( hn,T > (U(H'l)An,T - UiAn,T
A TN, T

n,T n Bn, T
hn,T ZZ:I K ( hn T >

2 - : R-1

1 n—1 Tin, rF (+1)An 1 [ 2 2 2
Pt i K <hn,T ) RJ;-A%T 05— Oinn m(oZ)ds
n T ZAn T -
n T ZZ 1 K ( n T )

13
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2 - . R—-1
1 n—1 Tin,r " (i+D)Anr [ 2 2 2 o
hn,T Zz:l K ( hn,T ) R‘[;;An,T Us B O-iAn,T A(US)dWS

" T TN
:T Zl 1 K ( T;T )
1 n—1 Ulzﬁn r "\1 (DA [ 9 2 R=2 2/ 2
YK (m’,T ) SRR =1) [R5 (20 ) A%(02)ds
_I_

nT zAnT z
hon, T Zz 1K <nT>
2 — ) .

n—1 UlAn, T R—1 R (i+1)A,, R i
o i K(’“TT> k=1 ( k >fiAnT ' (U?—UZ-QAH,T) Jo(€) v, (ds, de?)
nT ZAnT T
hon, T Zz 1K <nT>
1 Zn1K< Ay T I) f(z—H "TI(SU)RU (ds dfg’)
B 2i=1 i c »(ds,
nT lAnT z
nT Z’L 1K (n’l’)

= E1RnT + Z2,Rn,T + Z3,Rn,T + Z4,Rn,T + E5Rn,T-

_|_

+

; 2 2
Now, notice that SUP;A,, r<s<(i41)Anr |T5 — Tir, 1

R
=0, <4 /A;;’T) for all R > 1. We begin with R = 1.

By triangle inequality,

2
Og — O-iAn’T

[ o)+ B oDy

iAp T

SUD;A,, 7 <s<(i+1)Ap 1 S OSUPA,, p<s<(i4+1) A r

S

A(o?)dw?

FSUPiA,, 1 <s<(i+1)An 1
Ay T

/i nT/é{"vU(du,dg") .

TSUDA, 1+ <s<(i4+1) A 1

But,

(Z+1)An’T 9
w< [ o] du= Oy (BM(m) A r) = Oy(A% ).

SUPiA,, p<s<(i+1)An,7 A
1RAn,T

where, again, m(02) = m(o2) + Eg(f"))\"2 (02). Also,

/ A(e)daw?

Ay, T

(i4+1)Ap,7 1/2
<CE / A%(o%)du
iAmT
1/2
<C (An,TE (supA%i)))
u<T

~ (A0

E sup
A <s<(i+1) Ay 1

)
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where the first inequality is BDG’s and the second is Jensen’s. Thus, by Markov’s inequality, the second
term is O, (1 [ A T). The remaining term can be treated as follows:

1/2
E( sup / §"vo(du,d§")> < CE 3 (Ac2)”
iAn,TSSS(iJFl)An,T f Z'An,TSUS(i‘i’l)An,T
(i+1)An 7 , 1/2
< ¢ (E ( / Be((6°)?)\ <az>du>>
iAp T
~ (D)2,

where the first inequality is Meyer’s version of BDG’s inequality for possibly discontinuous local mar-
tingales, the second is Jensen’s and the order term depends on the boundedness of the jump intensities

=0 (y20)

. Using It6’s lemma, once more, we have

0.2

(Assumption 5 (a.3)). We conclude that sup;a, ,<s<@+1)a, 1 |05 — Gz'ZAn .

2 2
US - O-iAn,T

Next, consider sup;a, ,<s<(i+1)A,.r

‘ 2

sup
ZAn,TSSS(Z+1)An T

iAp, 7 <s<(i+1)Ap 1 n, .

iAn’T iAnyT iAn,T
4 / / (67205 (du, d€%) + 2 / / (02 — 0% )70, (du, &%) |,
ip JE iAp1 JE ’

which is, again, O, <1 /A;T) since the leading order term is fisA,, . fg(f")QvU(du, d¢9). By induction, we

2 2
US - o’iAn’T

s

R
obtain the same result for SUD;A, p<s<(i+1)Ap 1 ‘02 — U?An’T with R > 2.
It is, therefore, clear that - when R > 2 - the probability limit of the infinitesimal moment estimator is
given by the compensation of the term =5 g, 7. If R = 2, instead, the limit is given by =3 5 ,, 7 along with
the compensation of the term =59, 7.
After compensating,

2
1 1 UiAnY -z (i+1) n,T
i i S () AT ) (s de)
=5,Rn,T = =
nT K iAp, T
nT ZZ 1 < nT )
~1 Tin, r T (+1)A,, R 2
s S (T ) S B ((60)7) 3 o2
n, ZA’rL z
v ()

n— iN, T (i+1)A, .
T L 1K<T> Sl D5 T [ (67) P, (ds,de)

+

b, T An,T

1 T gs—x
WD o (hn, )ds

An,T

140, (5e)
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Cf27(17
hnl,T foTK(hiﬁ)EE((fg)R)Aoz (03)ds AL
1 T crg—z + Op
hn,T fO K( hn,T )dS
Ap,
1+0, <hi ;)
0'27.’1)
T foTK(h‘;ﬁ>Es((5”)R)’\”2 (oF)ds A%
O 1 _ 1 T ag—:c T Op m
P 'U(T)hn,T hn,T f() K( hn,T )ds ,
_|_
A, Ap
o, (32 o (32)

5 Ee ((€)7) A7 @),

where the second “equal” sign derives from the same method of proof leading to Eq. (4) and the order

term O, <(T1)h> derives from the same method of proof leading to the findings in Lemma 4. Finally,
v n,T

E¢ ((f”)R) A7 () = 0,2 p(x) if R > 2. If R =2, instead, Z32,7 2 A2(z) by the arguments in Lemma

2 and Zz .07 + Zsonr 2 A2(x) + B ((50)2) N (@) = 0, 5(2). O

Proof of Lemma 9. The result follows from the same argument as in the proof of Lemma 7 after recog-
nizing that, for R > 2, the term driving the limiting distribution is the compensated term Z5 g, 7, which
was defined in Lemma 8. The limiting distribution of the compensated term =5 r , 7 follows from the
same method of proof as for Lemma 4. The jump compensation of Z5 g, 7 (along with Z3 g, 7 - which
is also defined in Lemma 8 - when R = 2) drives the bias term.

It is, then, sufficient to notice that, as in the proof of Lemma 7, the condition

A* — A* /L2 (T,
2L Lo (T, ) = —1 T2 5

3/2
’ hn,T

eliminates the discretization error asymptotically. The condition
h2 o\ hnrLy2(T,2) 5 C

hS pLy2(T,x) 5 C

or, equivalently,

leads to an MSE-optimal rate by preserving the bias term (of order hiT) in the limiting distribution. [J

Proof of Theorems 3 and 4. For conciseness, we focus on the two functions in points I and 2 of the
statement of Theorem 3 (i.e., pe(x) and A7 *(z)). The other functions can be treated analogously. The
estimation error induced by the spot variance estimates is handled as in proof of Theorem 2. By the
Cramér-Wold theorem, the limiting multivariate normal distribution of the infinitesimal moment estimates
is derived immediately. By the delta method, write

R d (50274(36) - 902,4(1’)> 90274(-%) (@72,3(1') - 90273(.%‘))
fig(x) = pe() = 10,2 5(2) - 4 (0,2 5())" '
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Thus,

\/ nTLa2 T x {,ug(l' )}

2
- N (0’ 028( ) . + (00'2 4( )) 002,64(‘/1") _9 '90'2,4(33)00'2,7(33) 2) '
6 (0,2 3(x)) 16 (0,2 3(z)) 166,2 3(z) (0,2,3(x))

Similarly,

) oy 2P~ 0a®) (0) () = o)

24u§(:c) 24#2(33)
(Bral@) ~ O524(a))
B 24y ()
16,4(0) [ (Po2a() = 024(0))  0p2.4(2) (B 5(0) — O 5(0))
24/12(.%) 40,2 3() 4 (902,3(95))2
420 p2(2)0,2 5(z) — 4(24) 2 (26,2 4 (x -
:< (24) 12 )4(;5;5“)?(3:)9(02;?;)( )02 4( )) (90274(93)_90274(:5))

4 (0,2 4(x))? o )
24413 (2)4 (0,2 5(x)) (902,3( ) — 0,2 5( )>_

Therefore,

VhnrLos (T,2) {37 (2) = X7 ()

4 )2 ()62 5(x) — 424N (2)0,2 4(2) | * 4(004) )
- N(O’ 120 RY(@)0,m5() )9”2’8(:””<24Mg(x)4(902,3<x))2 O 6()

4(24)p (x)902 3(x) —4(2 ),u (2)0,2 4(x) 4(902’4(33))2 )
+2( 4(24)2 112 (2)052 5(x) > <24M§(x)4 (902,3(@)2) 002 ,7( )>.

Replacing the infinitesimal moments in the limiting variances with their closed-form expressions leads to
the stated results for point 7 and point 2 of Theorem 3. Point 8 and point 4 follow similarly. The proof
of Theorem 4 is identical. O

Proof of Theorem 6. For consistency with f(0?) = o2, which is the case explicitly discussed in this Sup-
plement, we assume &7 4 exp(ue) as above. The case f(0?) = logo?, with &7 4 N(0, Ug), can be handled
analogously.

Define the feasible estimator of the infinitesimal covariance (C(x)) as

n—1 __
Z Kz’An’T (10gp(’i+1)An7T - logpiAn7T> (0-(27:+1)An,T - O—iZAmT)
Clz) = =L — :
Anr Y- Kin, 1

i=1
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where the notation Kin, r and I/imn’T was introduced in the proof of Theorem 2 in the main Appendix.
The symbol C*(x) denotes the same (infeasible) estimator computed with true variances.

As in the proof of Theorem 2, we begin by separating the measurement error and write, using the
abbreviation Alogpian,r =108 D1 1)A, + — 108 PiA, 1

~

Cla) - C*(x)

n—1

n—1
3 Kis,; (Blogpia, ;) CATNE N > Kia,r (Blogpia, ) CARNEET NN
1=

no__ n
Anr ) Kin, Anr ) Kin,
i=1 =1

n—1 __ n—1
Zl Kin, , (Alogpia, 1) (U(QHI)AM - U?AH,T> > Kia,r (Alogpia, ;) (U(2i+1)An,T - UzzAn,T)
i— —
+ n__ - n o __
AnaT Z KiAn,T An»T Z KiAn,T
i=1 =1
n—1 __ o AQ n—1 __ 9 9
Zl KZ'An,T (A logpiAn,T) (O-(i'i'l)An,T - 7'An T) Zl KZ'An’T (A logpiAnyT) (O-('L"F]-)An,T - O-iAn,T)
1= 1=

n —~ n o~
Ang 3 Kin, o Ang 3 Kin, o
i=1 =1

= Iinrke +Honrke + Usn ke

We focus on II; ,, 7 ¢ first. Using the mean-value theorem as in the proofs of Theorem 1 and Theorem
2, we have

n—1 noo_. n
E KiAn,T (A log pZAn,T) (0-(274+1)An,T - 0—7;2An,T> Aan (z:l KiAn,T - z KZAn,T)
1=

i=1 i=1
Winrke = — - x —
Aan Z KiAn,T An7T Z KiAn,T
=1 i=1
o )
max Zlnr %ilng | _Anr S IK Titg o tOP Mk 1,6) 2
1<i<TL hn,T U(T)hn,T i=1 ZAn,T hn,T

n/\

An,T .
’U(T) hn,T 7,21 KZATL,T

1t6’s lemma, now, yields

(logp(z‘H)An,T - IOgPiAn,T> (0'(2i+1)An,T - U@'ZA”,T)

(+1)An, 1 ) , . (+1)An T ) )
= /A (05 - O-iAn,T) /’L(Us)ds + /A (08 - UiAn,T) O'SdW;
3

n, T 1Qn,T
(i+1)An,T 9 (i+1)An,T 9
—i—/ / (U — am > Y o (ds,dy") + / (log ps — log pin,, ) m(o7)ds
iAn’T 1ﬁ iAn,T

(i+1)A , (H—l)An,T
+ / (log ps — 1og pia, ) A(02)dWE + /

iAp T iAp T

/g (log ps — log pia, ) €700 (ds, dE7)
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(Z+1)An,T
T (AlogpAd?) + / p(02)0.A(02)ds, (8)

D 7 <s<(i+1)Ap 1 iAn,T

where Alogps = logps — logps_ and Ac? = 02 — 02_. Thus,

n—1 ,
> (KmmT - Kz‘An,T> (Alogpmn,:r) (U(2i+1)An,T - U?A,L,T>

=1
HQ,TL,T,k,d) = noo_o
An»T Z KiAn,T
1=1

52 2 -1 2 4O, (My 1)

O—ZAn T iAp T 1 " !/ UZAn T+ p ok, T,p) 8 2 2
112%}% hn,T v(T)hp,T ZZ iAp,T hn,T (A lnglAn,T) (U(i-i-l)An,T o UiAn,T)

- An,T LAgES
v(T)hp,T l; KzAn,T

hn,TAn,T

Using Eq. (8), the probability order follows from the same steps leading to the result in Theorem 2 after
recognizing that there are no co-jumps, by the assumed independence between price and variance jumps,
with probability one (e.g., Cont and Tankov, 2004, Proposition 5.3).

Finally, turning to Il3,, 7% 4, we have

n—1 __
, . ~2 _ =2 o 2 2
2 Kis,z |Alogpia, | |(Glia, » ~Fians) = (Ofiina,. — Tin,r) M, k1,6 A% 1
= s Ly n,
U3nrre < — =0, | — 7
A’I’L,’I‘ z KlAnJ" TL,T
i=1

In sum, given Assumption 4.2 in the main text, the estimation error for the infinitesimal covariance
estimator has the following order:

M, 1,07 1

3/2
An{T

C(x) = C*(x) = n1ke + Monke + 3nke = Op

We now focus on the estimator based on the true variance process, i.e., C*(x). Compensating the random

measures vy.(ds,dy") and v, (ds,d¢%) and writing, as earlier, m(o2) = m(o2) + Eg(f"))f’?(ag) in place of

m(o?) and fi(0?) = pu(o?) + Ey(¥")A"(02) in place of u(c?), we have

(Ing(iH)An,T - IOgPiAn,T> (U(2¢+1)An,T - U?An,T)

(i+1)An7T 9 9 9 (’i+1)An7T 9 9

17 |17T

= / (Us - O-iAmT) IU,(O'S)dS + / (as - UiAn7T> osd s
iAn,T iAn,T

(i-i-l)An’T (i-ﬁ—l)AmT
—|—/ / (af — A, T> ', (ds, dy") + / (log ps — log pia,, 1) m(o?)ds
i 0 '

An,T iAn,T

(i4+1) A7 (i4+1) A7
+ / (log ps — log pin, ) A(o2)dWS + / / (log ps — log pia,, 1) £70o(ds, dE7)
(AN N iAp,T 13
('H’l)An,T
FY e+ [ ple2)o,A(0?)ds
i <5< (i4+1) Ay 1 iBn,T
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OitnT + Oi2nT +0iznT +OiunT +OisnT +OisnT + OitnT + OignT- 9)

Next, we consider all terms one by one. Using the same method of proof as for Lemma 2, we have

T 0'2793
Kia, ,© ’ O (72,
E A, 7 9,8,n,T f Us % \ds n,T
i=1 ' - 0 B, T
¢ B A
A 3 Kia, s 110, (h)
=1 n,T
-1 n—1 n—1
z KzAnTe'LlnT E KzAnT67,4nT Z K'LAnTez'?nT
Clearly, = and = are of smaller order. Notice also that = = =0,

nTZKzAnT nTZKlAnT nTZKzAnT

=1 =1

almost surely, once more, by the 1ndependence of the price and variance jumps.
Now, write

n—1
1
- i ©i2n,T Pont > Kin, 7©i5nr
C _ =1 + =1
n,T — A, n A n
n7 . n, .
hn,T Z KZA"’T hn,T Z KZAan
=1 =1
Cl,n,T CQ,n,T

and
n—1 1 n—1
ot Z Kz’An,T@m,n,T Pt > KiAn,T@i,G,mT
] =1

Jn,T = + A n
n T n,T .
b, T Z KZA" T hoT Z KZAn,T
i=1 i=1
JinT Jon,T

We begin with Cs,, 7. The quantities

h 1
T 7K’LAn T@i,g),n,TvEAn T 1 S { S n— 17” 2 2
An,T hn,T ’ ’

constitute a martingale difference array. Express the 5um of the conditional variances of the standardized

Z KzAnT@z 5n,T, as

i=

hn,T . hn,T
(by An,T) numerator of Co,, 7, i.€., ( An,T> Pt

('L+1)An,T 2 2 2
Vegum, = nTAnTZK’A oBin, /m” (log ps —logpia,, )" A*(0%)ds o .

Using the notation A;logps = logps — logpia,, 1, [t6’s lemma gives

S S

(Ailog py)? = 2 /

iAp T

° . o T ° 2 ° PN2\\T [ 2
+2/AH,T/¢(AZ 10gpu)¢ Ur(duadd) )‘1‘/ Uudu+/ Ew((’l/J ) ))\ (au)du,

iAp T 1A, T

(Ailog pa) i(02)du + 2 /A

(A log pu) oud W + /A /w (475, (du, dy")
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and, as a consequence,

(i+1) A1 ) (+D)An 1 [ s
/ (logpS —logpiAn’T) ds = 2/ / (A;logpy) (o )du ds

iAnyT ZAAn,T A

(i+1)An T s (Z+1)An T
+2/ / (A;log py) o dW,) ds+/ / / wr Uy (du,dy”) | ds
‘AnT iA nT
(Z+1)AnT
2/ / / (A;log py )" v, (du, dy") | ds
A,

/(H-l) n,T /s
iAo iA
(Z+1)An,T
L, U

{02 + BN (02)) ~ (07, 5 + B0V (0%, )} du> ds
A ’
Noting that

n,T
+
+
T
" d“) ds) (032, + BN (02, ).
n,T

(i4+1)An, 2y ) (i+1)A,, )
/A (logps —logpia, )" A*(og)ds = A*(oia, ) / (logps —logpia,, )" ds
1An,T

(i+1)A 9 5 o 5 o
+ [ (log s — logpia,, ) (A2(02) — A%(02

. 2
we have, because (f.(gtlT)A"’T (fls du) ds) Ag’T, that

i Anr

(+1)An, 2,2/ 2
/ (logps—logpmnyT) A (o2)ds
iAp T

9 9 (’L+1)An’T S 9
= 2A (UiAn,T)/ / (A;logpy) fi(o;)du | ds
iAp T iAp T

9 9 (Z+1)An’T S ,
+2A%(ojA mT)/ / (A;log py) o, dW, | ds

An1 A,

+A* (oA, 1) /(Hl " (/ / ("), (du dW))
I /:H " ( / / (Aslogpu) 9T, (du, dz/ﬂ"))

(+D)An 1 s
%k, ,) [ ( [ {@+ B e - (o, +Ew<<w>2w<ofAn,T>>}du> ds

iAp T iAp T

1 T T
+§A%,T(03AH,T +Ey (W) (07a, ))A (0, 1)

(DA, 2,02/ 2 2/ 2
+ R ((logps — logpiAn’T) (A“(o3) — A (O'Z'An’T))> ds
1RAn,T

= YiinT +XignT +2i3nT + LianT + 2isnT + 2ienT + 267n0,T-
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Now, we recognize that

n—1

1
b o(T) 2 Ko Pt i)
n n "

1 T s
- AT ZKm 2B { 582 (0, BN (0, )N, ) |

n TT’Z)T Z K ZA ,T + E¢((wT) ) ( izAnyT))AQ(O-iQAn,T)
_ 1 1 T2 (08— y2 o1 o N2\ VT (2 AL
i L K (,W ) D [ m PN as v 0, () o)

using the same method of proof leading to the result in Lemma 2. Next, we turn to X; 3, 7. Integrating

by parts, we have
(’i+1)An7T s
-/ [ au) [y asaen
’iAn,T Z'An,T w

/ZH a (/ nT/ Y") 0, (du, dy” ))ds
() [ e

(Z+1)A7L,T
-/ (i Dnr =) [ (00, dv).
P

iAp T

Hence, Eia, , {2i3nr} = 0. Similarly, E;a, . {Zi2n 1} = Eia, 1 {Zian7r} = 0. Consider, now,

1 5 9 (i-i-l)An,T S
sSuar = ANoh,,) [ [ @uogp)miotdu ) as

iA,LT iAn,T
/ u(azmv) u(a%;)du) s
iAnyT

(i-i-l)An,T s
- Xk, [ ( / (
" Jidn iAp1
(+1)An T s u
+A2(U§AnT)/ (/ (/ avdW5> u(ai)du) ds
’ A1 iApr \Jil, 1

5 o (G+1)An T s u )
%ok, ) [ [ [ | aetiu ) as
iAn,T iAn,T iAn,T ¢

= YitinT tXi12nT + 2i13n0T-

Notice that

5 o (+1)An T s u ) )
Einnr(Siint) < Biany (2205, ) / / / 7(02)|dv | [(0?)|du | ds
iAn,T iAnyT iAn,T

9 9 ('L+1)An,T 9 2
< By (805, )80 | [ (0?)]ds

Ay T

2 2 2 (7’+1)An,T 9 9
< Bia, [ A2pA%0R ) /A 2(0%)ds | ).
1An,T
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Hence,

1
oA (T K} i Yilin
hn A TU( Z lAnT iAp T { 1,1, T}
A T (i+1)An 1
< nmt K A2 o} a0 a0y
= hprAp (T Z T) Apr (/ZA”’T (o) 5)
A2 T n—1 (41)An 7
- —=2( 52 2/ 2
= BB ro(T) b0 A, 70(T Z K, oA ’An,T)EiAn,T /iAn,T (M (05) — 1 (UzAn’T)) ds
3
I S An T Z K A2 )ﬁ2 (U'2A )
hn TATL TU n,T 1Ap T

Using standard, by now, arguments (see, e.g., the proof of Lemma 2), the dominating term is the second
one, for which we have

AZ’) . A*QT
n, 2 —2( .2 n
hn TAn TU Z KlAn TA ZAnVT)l'L (O-iAn‘T) = Op( ) + O < h2 ) *

By Holder’s inequality, Jensen S 1nequahty, and BDG’s inequality, we obtain
(t+1) A7 s u
Kok, [ B ([ [ [n]du) (swp| [ aaw]] ) as
T Jing ’ iAo u<s |Jin, v
(+1)A, T s 2 U 2
Kot [ B, ([ laloDldu) Bia,p (swp| [ oy ) as
’ iAn,T iAn,T U/SS iAn,T

(7;+1)An,T (i+1)An,T 2 (Z+1)An,T
CN (o2 ) /A AnrEin, /A A0 du | Bia, / o2dv | ds
1An,T (2

Ein, r(Zi12n1)

IN

IN

IN

n,T lAn,T

L 5o DAz 12 @anr o\
< CA(oia, )A T | Bia, s / |ﬁ(o’u)’ du Eia, 7 / osdv .
’ iAn,T iAn,T

Employing the bound va + b < v/a + Vb twice, we have

1 n—1
——————— ) KA _Eia, {1207} <
hn,TAn,TU(T) Zz; (ZANS Sht n,T{ 1,1,2,n, }

(4 1) Az 1/2 (i41)Ap. 1 1/2
K2, Ao A2 g, / Ti(o2)* d E; / 24
hn TATL TU Z lAn T T) n, T An,T @'A,,L’T }M(UU) ’ u An,T iAnyT 0,dv

2 3/ I 1/2
< — I TAn 0T ZK A,LTA )An,T Ein, r / (u“ (o) — 1 (UiAn,T))du «

7:An,T
(i+1)An,T 1/2
X | Eia, » / agdv
Z'An,T
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. (+)Anr 1/2
Tt hn TAn T'U Z Ay, T zAn’T) n,TN(UzAn,T) Ap,T /’L’AmT 0,dv

3/2 (i+1)A7z,T 9 9 9 9 1/2
e sz A, A (B ([ @0 ~# R, ) )

7:An,T
(i+1)An,T 1/2
X EiAn T / O'g dv
7 iAn T

2 2 (+1)Anr 2 2 v
+ Z K’LA T 1An,T)An,TE(JiAn7T) EiAn,T / (UU - UiAn,T)dv

n TAn TU Ay T

5/2
+ h, TA T'U ZK1A7L T[\2 )An/TILL( )UiAn,T‘

The dominating term is the last one, giving

n—1 * *3/2
¢ 2 2 5/2 ) o 1/2 An,T n,T
hn,TAn,TU(T) ; KiA"’TA (U )A” T’u( )U’An,T - OP <An,T An,T + OP hgz,T

Recall that ?/:5 =E (M(F)Ai/i,%) — 0, as implied by Assumption 5 (a.2). Thus, O, (ATI/;, ii;) =

op(1).
Next, the term X 3;, 7 can be handled in just the same way as 319, 7. As for 3;5 , 7, it is clear that

n—1

1
T A K? Ez Yisn
hnTAn TU( Z 1A, Apr { 19, T}

is dominated by Eq. (10).

The sum of the conditional fourth moments of the terms < Z” L ) 1 Km +0i5n,1 can be treated like

n,T
the term VcnumT above and it is easily shown to vanish asymptotlcally Usmg the same method of proof

A*

as for Lemma 4, as n, T — oo and A, 7, h, 7 — 0 jointly, along with h2

— 0, we therefore have

hn,TEU2 (T7 IL’) ng:"b%
An,T Eoz (T, l‘)

- WKz; (@ + Eu(67)2)X (@) A2<x>> N(. 1),

and, similarly,

h’TL,TEO'Q (T7 :U) C?j:l%
An,T EG.Q (T, iL‘)

= <\/K2§ (A%(z) + E¢((€7)2)A7* (z)) :c) N(0,1).

In addition, the asymptotic covariance term can be expressed as

horLy(T,x) C1%%  [hyqLy(T,z) CH4%
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2 ngp (z)zA%(x).

Tn—oo, Ay 1,hyr—0 2

We, then, have

. 7 (2)Ee((€7)%)x
ko), o | |, T @E (A% | | No1).
n.T + (L + p*(x) 2A?(2)

By the same reasoning (combined with the independence of the jumps), we obtain

M Ko [ (A*(z) + A7 (2)Ee((£7)2))N (2)Ey((¥7)?)
A T (J : (+<w+AT<x>E¢<<w>2>)W(m)Eg«gU)?) )) O

Now, write the (standardized) estimation error decomposition of C(z), excluding the bias term, as

n—1 n—1 n—1
> Kin, 7Oiinr 2 Kin,1Oianr D Kin, +Oitnr

hn,TEJQ (T,z) | = ’ ’ = o =
JANS n w L
d Ant Y Kin, o Ant Y Kin, o Apr Y Kin, 7
]-v-[n,k:,T7 A:;
+Cn,T + JmT + Op #
An T
. hn,TZUQ (T, .%') x1/2 A* Mn,k,Ta¢A:7T
= R N Op(A,7) [ 1+0p h2 +Cnr +Jnr+0p T
hnrLy2 (T, x . Ar hnrLye (T, x
_ oL (Ti2) )op(An%Q) 140, (222 )) 4 [lnrer D) v g, 0
A’I’L,T’ hn}T A”v

_|_O hn,TEO'Q (T’ ‘,r) anszvd)A:L,T
p An’T Ai/j% .

Finally, consider the bias term

n—1

> Kin, +Oignr

L — p(x)VaA(r)

Apr 1‘21 Kin, r

z Kisur fiany " (p(02)o,A(02))d
b Jing, 7 p(o)osA(os))ds

_ ~ p(a)EA ()
An,T ¢Z1 KiAn,T

A*

T 02)os crg S n n
Jy Kf}gé A () aA (@) + Oy (hT) (p(2)v/zA(2)) Op <§2 ’T)
- ods T n,T

L 1+ 0, (5
hn,T n,T
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A*
O n,T
I'c(z) . ? < o )
1+ 0, (ﬁ;f) 1+0, (ﬁ?j)

Naturally, C(.) = p(.),/7A(.). As in the proof of Theorem 4 of Bandi and Moloche (2017), we have

xr S\ X 2 X
Fote) = i, (20000 1B o
Thus,
\/ hoaLo2 (T, )/ Ay {6’(1‘) —C(z) - rc(x)} = N (0, Kafc(z)),
with

bo(z) = A(@)a(l+p*(x) +2A7 (@)Be((€)%)
+A @) (2)Ey (07)%) + 47 (2)Ee (7)) (2)Ey (7)),

. T Al r p han Tigz(TJ) P hy, Tza2 (Tz) »p Al r [k TZU2 (Tyx) » Al
if hop 7 Lg2 (T, ) Bt 0, T A.r 0% TR 7 c, he, ’T AnT =0, ha, 7T — 0 and

hn,TZO-?(Tvm) <g(n7T7k7¢)hnyTA:hT> ﬁ) 0.

Ny A3/2
n,T . .

) -~ A% p .. h3 L 5(Ta) h3 L 2(T.x)AY .
Given hy,1L,2(T, ZL‘)AH,T = 0, however, the condition Aor = A Bty = Op(1) implies
M Ay :

A+~ — 00. Thus, = — 0 and the requirement

n,T n,T

A r | hprLye (T, x) AL \/hn,TEfr?(T7 )AL A:%Z \/hn,TZzﬂ(Ta T)Ay 1 2

2 - *1/2 T2
hn,T An,T hi TAn 7/1 An,T hn,T A'n,,T
b b N /
-0 5o

is satisfied. Next, by the delta method, after defining (A*(z))? as the infeasible estimator of A2(z), we
obtain

_ Cl»)  C)
VIA(z)  VaA(@)

* 2
(@) - O C@(W@F -8@)  (Muredir) | (Musnedir
VIA(x) 2v/z A3 (x) ' NG "\ A hr
A, . ~ Ay
Op(hi: 1) + Oy ( ,MTEZT(TQ:J +0p(AL7) <1 +Op (;ﬁj)) +0p (’"bi;)
V(@)

2 1 Sor
Op(hn,T) + Op ( hn,TZg2 (T,m)) + Op < hin > o) Mn,k,T@A;,T
— p(z) 2A2(x) M W

baS)

p
~
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Hence, if hn,TE(,z(T, x) 2 o, hanfo.z(T, a;)A:‘L = 0 and ”T hn,TE(,z(T,a?) 20, the asymptotic

distribution of the leverage estimator is driven by (A*(x))? AQ( ) and has a limiting variance given by
2 2
Vo) = Sk (¥ () = Al (D),
4% (z) A0 @)\ hp Ly (T, z)
Also, if h?L,TZU2 (T, z) 2 0, p(x) — p(x) has a vanishing asymptotic bias. Now, notice that the requirement

A* A%\ Lo (T, 2)
0L b Lo (T, ) = —2F

h2 3/2
n,T ’I’L T

can be re-written as follows R
A} rLg2 (T,z)hnr

— — 0.
W2LYAT, )

Thus, the condition for a vanishing bias, i.e. hfl TZ 2(T, x) 2 0, implies that AZ,TEO.Z(T,I')hn7T 2o
We can therefore dispense with hn7T-/L\o'2 (T, 2)A;, 7 2. O
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