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Università di Verona

October 17, 2017

Abstract

This document provides proofs for selected lemmas and theorems of the paper “Nonparametric Stochas-
tic Volatility”.

Below, in order not to burden the notation, we will work with f(σ2) = σ2 and, with the exception of
the variance (resp. price) jump component, we will dispense with the superscript/subscript σ2 (resp. r).
The case of a general variance transformation f(.) satisfying Assumption 5 (a.4) is immediate given the
following treatment and the discussion in the main Appendix. We will be explicit about the left limit of
the variance process and write σ2t− only when needed for clarity.

Proof of Lemma 2. We prove the result working with
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for some constant CK deriving from the boundedness of the kernel function (c.f., Assumption 3). The
notation M(.) was defined in the statement of Assumption 5.
Using Itô’s lemma, we obtain
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where we employed the notation K = Km.
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where the last inequality derives from the Lipschitz property of the kernel function (whose first derivative
is bounded, see Assumption 3) and that of the function m (from Assumption 5 (a.0)). Ignoring constants
and integrating by parts, we have
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where E((ξσ)2) is the uniform bound on the second moment of the variance jumps (c.f., Assump-
tion 5 (a.3)). Given the integrability of the jump intensity with respect to the variance invariant
density (c.f., again, Assumption 5 (a.3)), the probability order, i.e., v(T ), of the additive functional∑n
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As for Φa4,n,T , its variance can be written as follows:
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where the first equality depends on the uncorrelatedness of the increments of the discontinuous portion of
the variance process and the expression following the “asymptotic equivalence” sign hinges on Nummelin
splitting, see Lemma 1 of Bandi and Moloche (2017). We recall (from Lemma 1 in this paper) that the
notation {Rm : m ≥ 1} denotes the regeneration times of the variance process. As in the main Appendix,
the symbol NT is used to represent the random number of regenerations up to time T . Since, E[NT ] ∼
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)
1

hn,T v(T )

∫ T
0 K

(
σ2
s−x
hn,T

)
ds

= Op

(
∆∗
n,T

h2n,T

)
.

The result follows from the fact that 1
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=
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], as in the main Appendix. Now, write V1,n,T =
∑n−1
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have Ei∆n,T
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wi∆n,T ,(i+1)∆n,T

]
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Cov(wi∆n,T ,(i+1)∆n,T
, wj∆n,T ,(j+1)∆n,T
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for all j < i. Thus, the variance of V1,n,T can be expressed as follows:
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i∆n,T

Eξ((ξ
σ)2)λσ

2
(σ2s)ds

])2


≤ E

 1

h2n,T v
2(T )

n−1∑
i=1

K4

(
σ2i∆n,T

− x

hn,T

)
Ei∆n,T

(∫ (i+1)∆n,T

i∆n,T

Eξ((ξ
σ)2)λσ

2
(σ2s)ds

)2


≤ E

(
∆n,T

h2n,T v
2(T )

n−1∑
i=1

K4

(
σ2i∆n,T

− x

hn,T

)
Ei∆n,T

(∫ (i+1)∆n,T

i∆n,T

(
Eξ((ξ

σ)2)
)2 (

λσ
2
(σ2s)

)2
ds

) )

= C
∆n,T

hn,T v(T )
E

(
∆n,T

hn,T v(T )

n−1∑
i=1

K4

(
σ2i∆n,T

− x

hn,T

))

= Op

(
∆n,T

hn,T v(T )

)
, (1)

where the last inequality is Jensen’s and the order term derives from the boundedness of the jump intensity
and the second moment of the jumps (Assumption 5 (a.3)). The term V2,n,T is the dominating term in
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Vn,T . We turn to it. Write

V2,n,T =
1

hn,T v(T )

n−1∑
i=1

K2

(
σ2i∆n,T

− x

hn,T

)∫ (i+1)∆n,T

i∆n,T

(Eξ,σ2
s
((ξσ)2)λσ

2
(σ2s)− Eξ,σ2

i∆n,T

((ξσ)2)λσ
2
(σ2i∆n,T

))ds

+
∆n,T

hn,T v(T )

n−1∑
i=1

K2

(
σ2i∆n,T

− x

hn,T

)
Eξ,σ2

i∆n,T

((ξσ)2)λσ
2
(σ2i∆n,T

)

= Va
2,n,T +Vb

2,n,T ,

where the subscripts in Eξ,σ2
s
((ξσ)2) and Eξ,σ2

i∆n,T

((ξσ)2) make the (possible) dependence between the mo-

ments of the jumps and the variance level explicit (c.f., again, Assumption 5 (a.3)). Now, in order to sim-
plify the notation, we write λE(σ

2
s) = Eξ,σ2

s
((ξσ)2)λσ

2
(σ2s) and λE(σ

2
i∆n,T

) = Eξ,σ2
i∆n,T

((ξσ)2)λσ
2
(σ2i∆n,T

).

By the twice differentiability of the jump intensity and the moments of the jump sizes (Assumption 5
(a.3)), we have

Va
2,n,T =

1

hn,T v(T )

n−1∑
i=1

K2

(
σ2i∆n,T

− x

hn,T

)∫ (i+1)∆n,T

i∆n,T

(
λE(σ

2
s)− λE(σ

2
i∆n,T

)
)
ds

=
1

hn,T v(T )

n−1∑
i=1

K2

(
σ2i∆n,T

− x

hn,T

)∫ (i+1)∆n,T

i∆n,T

(∫ s

i∆n,T

λ′E(σ
2
v)m(σ2v)dv

)
ds

+
1

2hn,T v(T )

n−1∑
i=1

K2

(
σ2i∆n,T

− x

hn,T

)∫ (i+1)∆n,T

i∆n,T

(∫ s

i∆n,T

λ′′E(σ
2
v)Λ

2(σ2v)dv

)
ds

+
1

hn,T v(T )

n−1∑
i=1

K2

(
σ2i∆n,T

− x

hn,T

)∫ (i+1)∆n,T

i∆n,T

(∫ s

i∆n,T

λ′E(σ
2
v)Λ(σ

2
v)dW

σ
v

)
ds

+
1

hn,T v(T )

n−1∑
i=1

K2

(
σ2i∆n,T

− x

hn,T

)∫ (i+1)∆n,T

i∆n,T

 ∑
∆σ2

v ̸=0, i∆n,T≤v<s

(
λE
(
σ2v− +∆σ2v

)
− λE

(
σ2v−

))ds

= Ω1,n,T +Ω2,n,T +Ω3,n,T +Ω4,n,T .

We note that Ω1,n,T = Op(∆
∗
n,T ) and Ω2,n,T = Op(∆

∗
n,T ) using the same method of proof as for term

Φ1,n,T in Lemma 2. Similarly, Ω3,n,T = Op

(
∆∗

n,T

h
1/2
n,T v

1/2(T )

)
and Ω4,n,T = Op

(
∆∗

n,T

h
1/2
n,T v

1/2(T )

)
using the same

method of proof as for term Φ3,n,T in Lemma 2. Turning to Vb
2,n,T , by Lemma 2, after replacing m with

λE, we may write

Vb
2,n,T =

∆n,T

hn,T v(T )

n−1∑
i=1

K2

(
σ2i∆n,T

− x

hn,T

)
λE(σ

2
i∆n,T

)

=
1

hn,T v(T )

∫ T

0
K2

(
σ2s − x

hn,T

)
λE(σ

2
s)ds+Op

(
∆∗
n,T

h2n,T

)
. (2)

The sum of the conditional fourth moments of the ui∆n,T ,(i+1)∆n,T
s is

Qn,T =
1

h2n,T v
2(T )

n−1∑
i=1

K4

(
σ2i∆n,T

− x

hn,T

)
Ei∆n,T

(∫ (i+1)∆n,T

i∆n,T

∫
ξ
ξσvσ(ds,dξ

σ)

)4

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=
1

h2n,T v
2(T )

n−1∑
i=1

K4

(
σ2i∆n,T

− x

hn,T

)
Ei∆n,T

(∫ (i+1)∆n,T

i∆n,T

Eξ((ξ
σ)4)λσ

2
(σ2s)ds

)

=
1

h2n,T v
2(T )

n−1∑
i=1

K4

(
σ2i∆n,T

− x

hn,T

)[
Ei∆n,T

(∫ (i+1)∆n,T

i∆n,T

Eξ((ξ
σ)4)λσ

2
(σ2s)ds

)
−
∫ (i+1)∆n,T

i∆n,T

Eξ((ξ
σ)4)λσ

2
(σ2s)ds

]

+
1

h2n,T v
2(T )

n−1∑
i=1

K4

(
σ2i∆n,T

− x

hn,T

)∫ (i+1)∆n,T

i∆n,T

Eξ((ξ
σ)4)λσ

2
(σ2s)ds

= Q1,n,T +Q2,n,T .

Notice that Q1,n,T and Q2,n,T can be treated as V1,n,T and V2,n,T , respectively. In particular, Q2,n,T =

Op

(
1

hn,T v(T )

)
= op(1), since hn,T v(T ) → ∞. As in the case of V1,n,T , which is such that V1,n,T =

op (V2,n,T ) , we have Q1,n,T = op (Q2,n,T ) .
Now, by Theorem 1 in Touati (1992), as n, T → ∞ (jointly, in such a way that ∆n,T → 0 and hn,T → 0),
we have stable convergence of pairs so that

(Vn,T ,Un,T )

⇒
stably

(
Cσ2Eξ((ξ

σ)2)λσ
2
(x)s(x)

(∫
S
K2(u)du

)
gα,

√
Cσ2Eξ((ξσ)2)λσ

2(x)s(x)

(∫
S
K2(u)du

)
N ◦ gα

)
,

(3)

where N ◦ gα is a Gaussian mixture with variance gα and Cσ2 is a process-specific constant. We note that

Vn,T ⇒ Cσ2Eξ((ξ
σ)2)λσ

2
(x)s(x)

(∫
S
K2(u)du

)
gα

is also a consequence of Lemma 1, given Eq. (2).
Consistent with the statement of Lemma 4 in the main Appendix, Eq. (3) can, also, be written as follows: Vn,T

∆n,T

hn,T v(T )

∑n
i=1K

(
σ2
i∆n,T

−x
hn,T

) , Un,T√
∆n,T

hn,T v(T )

∑n
i=1K

(
σ2
i∆n,T

−x
hn,T

)
⇒

(
Ṽ,
(√

Ṽ
)
N
)
.

In fact, given Eq. (2), we have

Vn,T

∆n,T

hn,T v(T )

∑n
i=1K

(
σ2
i∆n,T

−x
hn,T

) =

1
hn,T v(T )

∫ T
0 K2

(
σ2
s−x
hn,T

)
Eξ((ξ

σ)2)λσ
2
(σ2s)ds+Op

(
∆∗

n,T

h2n,T

)
1

hn,T v(T )

∫ T
0 K

(
σ2
s−x
hn,T

)
ds+Op

(
∆∗

n,T

h2n,T

)
p→ Eξ((ξ

σ)2)λσ
2
(x)

∫
S
K2(u)du = Ṽ,

where convergence in probability is a consequence of the same arguments as in the proof of Theorem 4
of Bandi and Moloche (2017). This concludes the proof of point 1 in the statement of Lemma 4. Point 2
can be proved in just the same way.
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Proof of Lemma 5. Define, as in the proof of Lemma 4, the martingale difference arrays

ui∆n,T ,(i+1)∆n,T
=

1√
v(T )hn,T

K

(
σ2i∆n,T

− x

hn,T

)[∫ (i+1)∆n,T

i∆n,T

∫
ξ
ξσvσ(ds,dξ

σ)

]
and

u′i∆n,T ,(i+1)∆n,T
=

1√
v(T )hn,T

K

(
σ2i∆n,T

− x

hn,T

)[∫ (i+1)∆n,T

i∆n,T

Λ(σ2s)dW
σ
s

]
.

Lemma 4 yields the result once we take into account that the covariance between the ui∆n,T ,(i+1)∆n,T
s

and the u′j∆n,T ,(j+1)∆n,T
s is zero for all i and j by the assumed independence between the jumps and the

driving Brownian shocks.

Proof of Lemma 6. Write

1
hn,T

∑n−1
i=1 K

(
σ2
i∆n,T

−x
hn,T

)(
σ2(i+1)∆n,T

− σ2i∆n,T

)
∆n,T

hn,T

∑n
i=1K

(
σ2
i∆n,T

−x
hn,T

) −θσ2,1(x) =

1
hn,T

∑n−1
i=1 K

(
σ2
i∆n,T

−x

hn,T

)(
σ2
(i+1)∆n,T

−σ2
i∆n,T

)
1

hn,T

∫ T
0 K

(
σ2
s−x

hn,T

)
ds

∆n,T
hn,T

∑n
i=1 K

(
σ2
i∆n,T

−x

hn,T

)
1

hn,T

∫ T
0 K

(
σ2
s−x

hn,T

)
ds

−θσ2,1(x).

Next, we compensate the measure vσ(ds,dξ
σ) and write m(σ2s) = m(σ2s)+Eξ(ξ

σ)λσ
2
(σ2s). We also employ

Lemma 3 to express the denominator in the previous expression as

∆n,T

hn,T

∑n
i=1K

(
σ2
i∆n,T

−x
hn,T

)
1

hn,T

∫ T
0 K

(
σ2
s−x
hn,T

)
ds

= 1 +Op

(
∆n,T

h2n,T

)
.

Therefore,

1
hn,T

∑n−1
i=1 K

(
σ2
i∆n,T

−x

hn,T

)(
σ2
(i+1)∆n,T

−σ2
i∆n,T

)
1

hn,T

∫ T
0 K

(
σ2
s−x

hn,T

)
ds

1 +Op

(
∆n,T

h2n,T

) −
θσ2,1(x)

1 +Op

(
∆n,T

h2n,T

) −
θσ2,1(x)Op

(
∆n,T

h2n,T

)
1 +Op

(
∆n,T

h2n,T

)

=

1
hn,T

∑n−1
i=1 K

(
σ2
i∆n,T

−x

hn,T

)∫ (i+1)∆n,T
i∆n,T

m(σ2
s)ds

1
hn,T

∫ T
0 K

(
σ2
s−x

hn,T

)
ds

1 +Op

(
∆n,T

h2n,T

) +

1
hn,T

∑n−1
i=1 K

(
σ2
i∆n,T

−x

hn,T

)∫ (i+1)∆n,T
i∆n,T

Λ(σ2
s)dW

σ
s

1
hn,T

∫ T
0 K

(
σ2
s−x

hn,T

)
ds

1 +Op

(
∆n,T

h2n,T

)

+

1
hn,T

∑n−1
i=1 K

(
σ2
i∆n,T

−x

hn,T

)∫ (i+1)∆n,T
i∆n,T

∫
ξ ξ

σvσ(ds,dξσ)

1
hn,T

∫ T
0 K

(
σ2
s−x

hn,T

)
ds

1 +Op

(
∆n,T

h2n,T

) −
θσ2,1(x)

1 +Op

(
∆n,T

h2n,T

) −
θσ2,1(x)Op

(
∆n,T

h2n,T

)
1 +Op

(
∆n,T

h2n,T

)
9



=



1
hn,T

∫ T
0 K

(
σ2
s−x

hn,T

)
m(σ2

s)ds

1
hn,T

∫ T
0 K

(
σ2
s−x

hn,T

)
ds

1 +Op

(
∆n,T

h2n,T

) −
θσ2,1(x)

1 +Op

(
∆n,T

h2n,T

)
+

1
hn,T

∑n−1
i=1 K

(
σ2
i∆n,T

−x

hn,T

)∫ (i+1)∆n,T
i∆n,T

Λ(σ2
s)dW

σ
s

1
hn,T

∫ T
0 K

(
σ2
s−x

hn,T

)
ds

1 +Op

(
∆n,T

h2n,T

)

+

1
hn,T

∑n−1
i=1 K

(
σ2
i∆n,T

−x

hn,T

)∫ (i+1)∆n,T
i∆n,T

∫
ξ ξ

σvσ(ds,dξσ)

1
hn,T

∫ T
0 K

(
σ2
s−x

hn,T

)
ds

1 +Op

(
∆n,T

h2n,T

) +

Op

(
∆∗

n,T

h2n,T

)
1 +Op

(
∆n,T

h2n,T

)
= Ψ1,n,T +Ψ2,n,T +Ψ3,n,T +Op

(
∆∗
n,T

h2n,T

)
,

where the order symbol
Op

(
∆∗
n,T

h2
n,T

)

1+Op

(
∆n,T

h2
n,T

) derives from the result

1
hn,T

∑n−1
i=1 K

(
σ2
i∆n,T

−x
hn,T

)∫ (i+1)∆n,T

i∆n,T
m(σ2s)ds

1
hn,T

∫ T
0 K

(
σ2
s−x
hn,T

)
ds

−
1

hn,T

∫ T
0 K

(
σ2
s−x
hn,T

)
m(σ2s)ds

1
hn,T

∫ T
0 K

(
σ2
s−x
hn,T

)
ds

= Op

(
∆∗
n,T

h2n,T

)
, (4)

which we prove next. Notice that

1
hn,T

∑n−1
i=1 K

(
σ2
i∆n,T

−x
hn,T

)∫ (i+1)∆n,T

i∆n,T
m(σ2s)ds

1
hn,T

∫ T
0 K

(
σ2
s−x
hn,T

)
ds

−
1

hn,T

∫ T
0 K

(
σ2
s−x
hn,T

)
m(σ2s)ds

1
hn,T

∫ T
0 K

(
σ2
s−x
hn,T

)
ds

=

1
hn,T

∑n−1
i=1 K

(
σ2
i∆n,T

−x
hn,T

)∫ (i+1)∆n,T

i∆n,T
m(σ2s)ds

1
hn,T

∫ T
0 K

(
σ2
s−x
hn,T

)
ds

−

∆n,T

hn,T

∑n−1
i=1 K

(
σ2
i∆n,T

−x
hn,T

)
m
(
σ2i∆n,T

)
1

hn,T

∫ T
0 K

(
σ2
s−x
hn,T

)
ds

(5)

+

∆n,T

hn,T

∑n−1
i=1 K

(
σ2
i∆n,T

−x
hn,T

)
m
(
σ2i∆n,T

)
1

hn,T

∫ T
0 K

(
σ2
s−x
hn,T

)
ds

−
1

hn,T

∫ T
0 K

(
σ2
s−x
hn,T

)
m(σ2s)ds

1
hn,T

∫ T
0 K

(
σ2
s−x
hn,T

)
ds

. (6)

However, by Lemma 2, Eq. (6) is such that

∆n,T

hn,T

∑n−1
i=1 K

(
σ2
i∆n,T

−x
hn,T

)
m
(
σ2i∆n,T

)
1

hn,T

∫ T
0 K

(
σ2
s−x
hn,T

)
ds

−
1

hn,T

∫ T
0 K

(
σ2
s−x
hn,T

)
m(σ2s)ds

1
hn,T

∫ T
0 K

(
σ2
s−x
hn,T

)
ds

= Op

(
∆∗
n,T

h2n,T

)
.

Hence, one only has to show that Eq. (5) is of smaller (or equal) asymptotic order than Op

(
∆∗

n,T

h2n,T

)
. After
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standardizing by v(T ), write

1
hn,T v(T )

∑n−1
i=1 K

(
σ2
i∆n,T

−x
hn,T

)∫ (i+1)∆n,T

i∆n,T
m(σ2s)ds

1
hn,T v(T )

∫ T
0 K

(
σ2
s−x
hn,T

)
ds

−

∆n,T

hn,T v(T )

∑n−1
i=1 K

(
σ2
i∆n,T

−x
hn,T

)
m
(
σ2i∆n,T

)
1

hn,T v(T )

∫ T
0 K

(
σ2
s−x
hn,T

)
ds

.

The numerator can be expressed as

1

hn,T v(T )

n−1∑
i=1

K

(
σ2i∆n,T

− x

hn,T

)∫ (i+1)∆n,T

i∆n,T

(
m(σ2s)−m(σ2i∆n,T

)
)
ds

=
1

hn,T v(T )

n−1∑
i=1

K

(
σ2i∆n,T

− x

hn,T

)∫ (i+1)∆n,T

i∆n,T

(∫ s

i∆n,T

m′(σ2v)m(σ2v)dv

)
ds

+
1

2hn,T v(T )

n−1∑
i=1

K

(
σ2i∆n,T

− x

hn,T

)∫ (i+1)∆n,T

i∆n,T

(∫ s

i∆n,T

m′′(σ2v)Λ
2(σ2v)dv

)
ds

+
1

hn,T v(T )

n−1∑
i=1

K

(
σ2i∆n,T

− x

hn,T

)∫ (i+1)∆n,T

i∆n,T

(∫ s

i∆n,T

m′(σ2v)Λ(σ
2
v)dW

σ
v

)
ds

+
1

hn,T v(T )

n−1∑
i=1

K

(
σ2i∆n,T

− x

hn,T

)∫ (i+1)∆n,T

i∆n,T

 ∑
∆σ2

v ̸=0, i∆n,T≤v<s

(
m
(
σ2v− +∆σ2v

)
−m

(
σ2v−

)) ds

= Υ1,n,T +Υ2,n,T +Υ3,n,T +Υ4,n,T ,

where the asymptotic orders of the terms Υq,n,T , with q = 1, ..., 4, are the same as those of the terms
Ωq,n,T , with q = 1, ..., 4, in the proof of Lemma 3. Hence, Υ1,n,T = Υ2,n,T = Op(∆

∗
n,T ) and Υ3,n,T =

Υ4,n,T = Op

(
∆∗

n,T

h
1/2
n,T v

1/2(T )

)
. Eq. (5) is, therefore, of smaller order than Op

(
∆∗

n,T

h2n,T

)
(since its denominator

is Op(1), given Lemma 1).
Now, as in the proof of Theorem 4 of Bandi and Moloche (2017), we have

Ψ1,n,T =

1
hn,T

∫ T
0 K

(
σ2
s−x

hn,T

)
m(σ2

s)ds

1
hn,T

∫ T
0 K

(
σ2
s−x

hn,T

)
ds

− θσ2,1(x)

1 +Op

(
∆n,T

h2n,T

)

=

h2n,T
(∫

S s
2K(s)ds

)(∂θσ2,1(x)

∂x
∂s(x)/∂x
s(x) + 1

2

∂2θσ2,1(x)

∂x∂x

)
+ op(h

2
n,T )

1 +Op

(
∆n,T

h2n,T

) . (7)

Also, by Lemmas 4 and 5,

Ψ2,n,T =

1
v(T )hn,T

∑n−1
i=1 K

(
σ2
i∆n,T

−x

hn,T

)∫ (i+1)∆n,T
i∆n,T

Λ(σ2
s)dW

σ
s

1
v(T )hn,T

∫ T
0 K

(
σ2
s−x

hn,T

)
ds

1 +Op

(
∆n,T

h2n,T

) =

Op

(
1√

v(T )hn,T

)
1 +Op

(
∆n,T

h2n,T

) ,

11



and

Ψ3,n,T =

1
v(T )hn,T

∑n−1
i=1 K

(
σ2
i∆n,T

−x

hn,T

)∫ (i+1)∆n,T
i∆n,T

∫
ξ ξ

σvσ(ds,dξσ)

1
v(T )hn,T

∫ T
0 K

(
σ2
s−x

hn,T

)
ds

1 +Op

(
∆n,T

h2n,T

) =

Op

(
1√

v(T )hn,T

)
1 +Op

(
∆n,T

h2n,T

) .

Thus,

1
hn,T

∑n−1
i=1 K

(
σ2
i∆n,T

−x
hn,T

)(
σ2(i+1)∆n,T

− σ2i∆n,T

)
∆n,T

hn,T

∑n
i=1K

(
σ2
i∆n,T

−x
hn,T

) −θσ2,1(x) = Op(h
2
n,T )+Op

(
1√

hn,T v(T )

)
+Op

(
∆∗
n,T

h2n,T

)
.

The last expression can be written as follows

Op(h
2
n,T ) +Op

 1√
hn,T L̂σ2(T, x)

+Op

(
∆∗
n,T

h2n,T

)
,

since, when
∆n,T

h2n,T
→ 0, which is implied by

∆∗
n,T

h2n,T
→ 0, L̂σ2(T, x) and 1

hn,T

∫ T
0 K

(
σ2
s−x
hn,T

)
ds are asymptoti-

cally equivalent (Lemma 3). Finally, recall that 1
hn,T

∫ T
0 K

(
σ2
s−x
hn,T

)
ds = Op(v(T )) by Remark 11, a result

which was used repeatedly above.

Proof of Lemma 7. As in the proof of Lemma 6, write

√
hn,T L̂σ2(T, x)



1
hn,T

∑n−1
i=1 K

(
σ2
i∆n,T

−x

hn,T

)∫ (i+1)∆n,T
i∆n,T

m(σ2
s)ds

1
hn,T

∫ T
0 K

(
σ2
s−x

hn,T

)
ds

1 +Op

(
∆n,T

h2n,T

) +

1
hn,T

∑n−1
i=1 K

(
σ2
i∆n,T

−x
hn,T

)∫ (i+1)∆n,T

i∆n,T
Λ(σ2s)dW

σ
s

∆n,T

hn,T

∑n
i=1K

(
σ2
i∆n,T

−x
hn,T

)

+

1
hn,T

∑n−1
i=1 K

(
σ2
i∆n,T

−x
hn,T

)∫ (i+1)∆n,T

i∆n,T

∫
ξ ξ

σvσ(ds,dξ
σ)

∆n,T

hn,T

∑n
i=1K

(
σ2
i∆n,T

−x
hn,T

) −
θσ2,1(x)

1 +Op

(
∆n,T

h2n,T

) −
θσ2,1(x)Op

(
∆n,T

h2n,T

)
1 +Op

(
∆n,T

h2n,T

)


=

√
hn,T L̂σ2(T, x)



1
hn,T

∑n−1
i=1 K

(
σ2
i∆n,T

−x

hn,T

)∫ (i+1)∆n,T
i∆n,T

m(σ2
s)ds

1
hn,T

∫ T
0 K

(
σ2
s−x

hn,T

)
ds

− θσ2,1(x)

1 +Op

(
∆n,T

h2n,T

) −
θσ2,1(x)Op

(
∆n,T

h2n,T

)
1 +Op

(
∆n,T

h2n,T

)


+

1√
hn,T

∑n−1
i=1 K

(
σ2
i∆n,T

−x
hn,T

)∫ (i+1)∆n,T

i∆n,T
Λ(σ2s)dW

σ
s√

∆n,T

hn,T

∑n
i=1K

(
σ2
i∆n,T

−x
hn,T

) +

1√
hn,T

∑n−1
i=1 K

(
σ2
i∆n,T

−x
hn,T

)∫ (i+1)∆n,T

i∆n,T

∫
ξ ξ

σvσ(ds,dξ
σ)√

∆n,T

hn,T

∑n
i=1K

(
σ2
i∆n,T

−x
hn,T

)

12



=

√
hn,T L̂σ2(T, x)



1
hn,T

∫ T
0 K

(
σ2
s−x

hn,T

)
m(σ2

s)ds

1
hn,T

∫ T
0 K

(
σ2
s−x

hn,T

)
ds

− θσ2,1(x)

1 +Op

(
∆n,T

h2n,T

) +

Op

(
∆∗

n,T

h2n,T

)
1 +Op

(
∆n,T

h2n,T

)


+

1√
hn,T

∑n−1
i=1 K

(
σ2
i∆n,T

−x
hn,T

)∫ (i+1)∆n,T

i∆n,T
Λ(σ2s)dW

σ
s√

∆n,T

hn,T

∑n
i=1K

(
σ2
i∆n,T

−x
hn,T

) +

1√
hn,T

∑n−1
i=1 K

(
σ2
i∆n,T

−x
hn,T

)∫ (i+1)∆n,T

i∆n,T

∫
ξ ξ

σvσ(ds,dξ
σ)√

∆n,T

hn,T

∑n
i=1K

(
σ2
i∆n,T

−x
hn,T

) ,

where the order term in the denominators was derived in Lemma 3 and the order term inside the paren-

thesis derives from Eq. (4). If h5n,T L̂σ2(T, x)
p→ C, hn,T L̂σ2(T, x)

p→ ∞ and
∆∗

n,T

h2n,T

√
hn,T L̂σ2(T, x)

p→ 0, the

result now follows from Lemma 5 and Eq. (7).

Proof of Lemma 8. Using Itô’s lemma,(
σ2(i+1)∆n,T

− σ2i∆n,T

)R
= R

∫ (i+1)∆n,T

i∆n,T

(
σ2s − σ2i∆n,T

)R−1
m(σ2s)ds

+R

∫ (i+1)∆n,T

i∆n,T

(
σ2s − σ2i∆n,T

)R−1
Λ(σ2s)dW

σ
s

+
1

2
R(R− 1)

∫ (i+1)∆n,T

i∆n,T

(
σ2s − σ2i∆n,T

)R−2
Λ2(σ2s)ds

+
∑

∆σ2
s ̸=0, i∆n,T≤s<(i+1)∆n,T

[(
σ2s− +∆σ2s − σ2i∆n,T

)R
−
(
σ2s− − σ2i∆n,T

)R]
.

Also, by a straightforward application of the binomial identity,∑
∆σ2

s ̸=0 i∆n,T≤s<(i+1)∆n,T

[(
σ2s− +∆σ2s − σ2i∆n,T

)R
−
(
σ2s− − σ2i∆n,T

)R]

=

R−1∑
k=0

(
R
k

)∫ (i+1)∆n,T

i∆n,T

∫
ξ

(
σ2s − σ2i∆n,T

)k
(ξσ)(R−k) vσ(ds,dξ

σ).

Next, breaking up the summation above into the first term, i.e., k = 0, and the summation
∑R−1

k=1 , we
can write

1
hn,T

∑n−1
i=1 K

(
σ2
i∆n,T

−x
hn,T

)(
σ2(i+1)∆n,T

− σ2i∆n,T

)R
∆n,T

hn,T

∑n
i=1K

(
σ2
i∆n,T

−x
hn,T

)

=

1
hn,T

∑n−1
i=1 K

(
σ2
i∆n,T

−x
hn,T

)
R
∫ (i+1)∆n,T

i∆n,T

(
σ2s − σ2i∆n,T

)R−1
m(σ2s)ds

∆n,T

hn,T

∑n
i=1K

(
σ2
i∆n,T

−x
hn,T

)
13



+

1
hn,T

∑n−1
i=1 K

(
σ2
i∆n,T

−x
hn,T

)
R
∫ (i+1)∆n,T

i∆n,T

(
σ2s − σ2i∆n,T

)R−1
Λ(σ2s)dW

σ
s

∆n,T

hn,T

∑n
i=1K

(
σ2
i∆n,T

−x
hn,T

)

+

1
hn,T

∑n−1
i=1 K

(
σ2
i∆n,T

−x
hn,T

)
1
2R(R− 1)

∫ (i+1)∆n,T

i∆n,T

(
σ2s − σ2i∆n,T

)R−2
Λ2(σ2s)ds

∆n,T

hn,T

∑n
i=1K

(
σ2
i∆n,T

−x
hn,T

)

+

1
hn,T

∑n−1
i=1 K

(
σ2
i∆n,T

−x
hn,T

)∑R−1
k=1

(
R
k

)∫ (i+1)∆n,T

i∆n,T

(
σ2s − σ2i∆n,T

)k ∫
ξ(ξ

σ)R−kvσ(ds,dξ
σ)

∆n,T

hn,T

∑n
i=1K

(
σ2
i∆n,T

−x
hn,T

)

+

1
hn,T

∑n−1
i=1 K

(
σ2
i∆n,T

−x
hn,T

)∫ (i+1)∆n,T

i∆n,T

∫
ξ(ξ

σ)Rvσ(ds,dξ
σ)

∆n,T

hn,T

∑n
i=1K

(
σ2
i∆n,T

−x
hn,T

)
= Ξ1,R,n,T + Ξ2,R,n,T + Ξ3,R,n,T + Ξ4,R,n,T + Ξ5,R,n,T .

Now, notice that supi∆n,T≤s≤(i+1)∆n,T

∣∣∣σ2s − σ2i∆n,T

∣∣∣R = Op

(√
∆∗
n,T

)
for all R ≥ 1. We begin with R = 1.

By triangle inequality,

supi∆n,T≤s≤(i+1)∆n,T

∣∣∣σ2s − σ2i∆n,T

∣∣∣ ≤ supi∆n,T≤s≤(i+1)∆n,T

∣∣∣∣∣
∫ s

i∆n,T

(m(σ2u) + Eξ(ξ
σ)λσ

2
(σ2u))du

∣∣∣∣∣
+supi∆n,T≤s≤(i+1)∆n,T

∣∣∣∣∣
∫ s

i∆n,T

Λ(σ2u)dW
σ
u

∣∣∣∣∣
+supi∆n,T≤s≤(i+1)∆n,T

∣∣∣∣∣
∫ s

i∆n,T

∫
ξ
ξσvσ(du,dξ

σ)

∣∣∣∣∣ .
But,

supi∆n,T≤s≤(i+1)∆n,T

∣∣∣∣∣
∫ s

i∆n,T

m(σ2u)du

∣∣∣∣∣ ≤
∫ (i+1)∆n,T

i∆n,T

∣∣m(σ2u)
∣∣ du = Op(E(M(|m|))∆n,T ) = Op(∆

∗
n,T ),

where, again, m(σ2u) = m(σ2u) + Eξ(ξ
σ)λσ

2
(σ2u). Also,

E

(
sup

i∆n,T≤s≤(i+1)∆n,T

∣∣∣∣∣
∫ s

i∆n,T

Λ(σ2u)dW
σ
u

∣∣∣∣∣
)

≤ CE

(∫ (i+1)∆n,T

i∆n,T

Λ2(σ2u)du

)1/2

≤ C

(
∆n,TE

(
sup
u≤T

Λ2(σ2u)

))1/2

∼
(
∆∗
n,T

)1/2
,
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where the first inequality is BDG’s and the second is Jensen’s. Thus, by Markov’s inequality, the second

term is Op

(√
∆∗
n,T

)
. The remaining term can be treated as follows:

E

(
sup

i∆n,T≤s≤(i+1)∆n,T

∣∣∣∣∣
∫ s

i∆n,T

∫
ξ
ξσvσ(du,dξ

σ)

∣∣∣∣∣
)

≤ CE

 ∑
i∆n,T≤u≤(i+1)∆n,T

(
∆σ2u

)21/2

≤ C

(
E

(∫ (i+1)∆n,T

i∆n,T

Eξ((ξ
σ)2)λσ

2
(σ2u)du

))1/2

∼ (∆n,T )
1/2 ,

where the first inequality is Meyer’s version of BDG’s inequality for possibly discontinuous local mar-
tingales, the second is Jensen’s and the order term depends on the boundedness of the jump intensities

(Assumption 5 (a.3)). We conclude that supi∆n,T≤s≤(i+1)∆n,T

∣∣∣σ2s − σ2i∆n,T

∣∣∣ = Op

(√
∆∗
n,T

)
.

Next, consider supi∆n,T≤s≤(i+1)∆n,T

∣∣∣σ2s − σ2i∆n,T

∣∣∣2. Using Itô’s lemma, once more, we have

sup
i∆n,T≤s≤(i+1)∆n,T

∣∣∣σ2s − σ2i∆n,T

∣∣∣2
= sup

i∆n,T≤s≤(i+1)∆n,T

(∣∣∣∣∣2
∫ s

i∆n,T

(σ2u − σ2i∆n,T
)m(σ2u)du+ 2

∫ s

i∆n,T

(σ2u − σ2i∆n,T
)Λ(σ2u)dW

σ
u +

∫ s

i∆n,T

Λ2(σ2u)du

+

∫ s

i∆n,T

∫
ξ
(ξσ)2vσ(du,dξ

σ) + 2

∫ s

i∆n,T

∫
ξ
(σ2u − σ2i∆n,T

)ξσvσ(du,dξ
σ)

∣∣∣∣∣
)
,

which is, again, Op

(√
∆∗
n,T

)
since the leading order term is

∫ s
i∆n,T

∫
ξ(ξ

σ)2vσ(du,dξ
σ). By induction, we

obtain the same result for supi∆n,T≤s≤(i+1)∆n,T

∣∣∣σ2s − σ2i∆n,T

∣∣∣R with R > 2.

It is, therefore, clear that - when R > 2 - the probability limit of the infinitesimal moment estimator is
given by the compensation of the term Ξ5,R,n,T . If R = 2, instead, the limit is given by Ξ3,2,n,T along with
the compensation of the term Ξ5,2,n,T .
After compensating,

Ξ5,R,n,T =

1
hn,T

∑n−1
i=1 K

(
σ2
i∆n,T

−x
hn,T

)∫ (i+1)∆n,T

i∆n,T

∫
ξ (ξ

σ)R vσ(ds,dξ
σ)

∆n,T

hn,T

∑n
i=1K

(
σ2
i∆n,T

−x
hn,T

)

+

1
hn,T

∑n−1
i=1 K

(
σ2
i∆n,T

−x
hn,T

)∫ (i+1)∆n,T

i∆n,T
Eξ

(
(ξσ)R

)
λσ

2
(σ2s)ds

∆n,T

hn,T

∑n
i=1K

(
σ2
i∆n,T

−x
hn,T

)

=

1
v(T )hn,T

∑n−1
i=1 K

(
σ2
i∆n,T

−x

hn,T

)∫ (i+1)∆n,T
i∆n,T

∫
ξ(ξ

σ)Rvσ(ds,dξσ)

1
v(T )hn,T

∫ T
0 K

(
σ2
s−x

hn,T

)
ds

1 +Op

(
∆n,T

h2n,T

)
15



+

1
hn,T

∫ T
0 K

(
σ2
s−x

hn,T

)
Eξ((ξσ)R)λσ

2
(σ2

s)ds

1
hn,T

∫ T
0 K

(
σ2
s−x

hn,T

)
ds

+Op

(
∆∗

n,T

h2n,T

)

1 +Op

(
∆n,T

h2n,T

)

=

Op

(
1√

v(T )hn,T

)
1 +Op

(
∆n,T

h2n,T

) +

1
hn,T

∫ T
0 K

(
σ2
s−x

hn,T

)
Eξ((ξσ)R)λσ

2
(σ2

s)ds

1
hn,T

∫ T
0 K

(
σ2
s−x

hn,T

)
ds

+Op

(
∆∗

n,T

h2n,T

)

1 +Op

(
∆n,T

h2n,T

)
p→ Eξ

(
(ξσ)R

)
λσ

2
(x),

where the second “equal” sign derives from the same method of proof leading to Eq. (4) and the order

term Op

(
1√

v(T )hn,T

)
derives from the same method of proof leading to the findings in Lemma 4. Finally,

Eξ

(
(ξσ)R

)
λσ

2
(x) = θσ2,R(x) if R > 2. If R = 2, instead, Ξ3,2,n,T

p→ Λ2(x) by the arguments in Lemma

2 and Ξ3,2,n,T + Ξ5,2,n,T
p→ Λ2(x) + Eξ

(
(ξσ)2

)
λσ

2
(x) = θσ2,2(x).

Proof of Lemma 9. The result follows from the same argument as in the proof of Lemma 7 after recog-
nizing that, for R ≥ 2, the term driving the limiting distribution is the compensated term Ξ5,R,n,T , which
was defined in Lemma 8. The limiting distribution of the compensated term Ξ5,R,n,T follows from the
same method of proof as for Lemma 4. The jump compensation of Ξ5,R,n,T (along with Ξ3,R,n,T - which
is also defined in Lemma 8 - when R = 2) drives the bias term.
It is, then, sufficient to notice that, as in the proof of Lemma 7, the condition

∆∗
n,T

h2n,T

√
hn,T L̂σ2(T, x) =

∆∗
n,T

√
L̂σ2(T, x)

h
3/2
n,T

p→ 0

eliminates the discretization error asymptotically. The condition

h2n,T

√
hn,T L̂σ2(T, x)

p→ C

or, equivalently,
h5n,T L̂σ2(T, x)

p→ C

leads to an MSE-optimal rate by preserving the bias term (of order h2n,T ) in the limiting distribution.

Proof of Theorems 3 and 4. For conciseness, we focus on the two functions in points 1 and 2 of the
statement of Theorem 3 (i.e., µξ(x) and λσ

2
(x)). The other functions can be treated analogously. The

estimation error induced by the spot variance estimates is handled as in proof of Theorem 2. By the
Cramér-Wold theorem, the limiting multivariate normal distribution of the infinitesimal moment estimates
is derived immediately. By the delta method, write

µ̂ξ(x)− µξ(x)
d
=

(
θ̂σ2,4(x)− θσ2,4(x)

)
4θσ2,3(x)

−
θσ2,4(x)

(
θ̂σ2,3(x)− θσ2,3(x)

)
4
(
θσ2,3(x)

)2 .
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Thus, √
hn,T L̂σ2(T, x) {µ̂ξ(x)− µξ(x)}

⇒ N

(
0,

θσ2,8(x)

16
(
θσ2,3(x)

)2 +

(
θσ2,4(x)

)2
θσ2,6(x)

16
(
θσ2,3(x)

)4 − 2
θσ2,4(x)θσ2,7(x)

16θσ2,3(x)
(
θσ2,3(x)

)2
)
.

Similarly,

λ̂σ
2
(x)− λσ

2
(x)

d
=

(
θ̂σ2,4(x)− θσ2,4(x)

)
24µ4ξ(x)

−
4θσ2,4(x) (µ̂ξ(x)− µξ(x))

24µ5ξ(x)

=

(
θ̂σ2,4(x)− θσ2,4(x)

)
24µ4ξ(x)

−
4θσ2,4(x)

24µ5ξ(x)


(
θ̂σ2,4(x)− θσ2,4(x)

)
4θσ2,3(x)

−
θσ2,4(x)

(
θ̂σ2,3(x)− θσ2,3(x)

)
4
(
θσ2,3(x)

)2


=

(
4(24)µ5ξ(x)θσ2,3(x)− 4(24)µ4ξ(x)θσ2,4(x)

4(24)2µ9ξ(x)θσ2,3(x)

)(
θ̂σ2,4(x)− θσ2,4(x)

)
+

4
(
θσ2,4(x)

)2
24µ5ξ(x)4

(
θσ2,3(x)

)2 (θ̂σ2,3(x)− θσ2,3(x)
)
.

Therefore,√
hn,T L̂σ2(T, x)

{
λ̂σ

2
(x)− λσ

2
(x)
}

⇒ N

0,

(
4(24)µ5ξ(x)θσ2,3(x)− 4(24)µ4ξ(x)θσ2,4(x)

4(24)2µ9ξ(x)θσ2,3(x)

)2

θσ2,8(x) +

(
4
(
θσ2,4(x)

)2
24µ5ξ(x)4

(
θσ2,3(x)

)2
)2

θσ2,6(x)

+2

(
4(24)µ5ξ(x)θσ2,3(x)− 4(24)µ4ξ(x)θσ2,4(x)

4(24)2µ9ξ(x)θσ2,3(x)

)(
4
(
θσ2,4(x)

)2
24µ5ξ(x)4

(
θσ2,3(x)

)2
)
θσ2,7(x)

)
.

Replacing the infinitesimal moments in the limiting variances with their closed-form expressions leads to
the stated results for point 1 and point 2 of Theorem 3. Point 3 and point 4 follow similarly. The proof
of Theorem 4 is identical.

Proof of Theorem 6. For consistency with f(σ2) = σ2, which is the case explicitly discussed in this Sup-

plement, we assume ξσ
d
= exp(µξ) as above. The case f(σ2) = log σ2, with ξσ

d
= N(0, σ2ξ ), can be handled

analogously.
Define the feasible estimator of the infinitesimal covariance (C(x)) as

Ĉ(x) =

n−1∑
i=1

K̂i∆n,T

(
log p(i+1)∆n,T

− log pi∆n,T

)(
σ̂2(i+1)∆n,T

− σ̂2i∆n,T

)
∆n,T

n∑
i=1

K̂i∆n,T

,
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where the notation Ki∆n,T
and K̂i∆n,T

was introduced in the proof of Theorem 2 in the main Appendix.
The symbol C∗(x) denotes the same (infeasible) estimator computed with true variances.
As in the proof of Theorem 2, we begin by separating the measurement error and write, using the
abbreviation ∆ log pi∆n,T = log p(i+1)∆n,T

− log pi∆n,T
,

Ĉ(x)− C∗(x)

=

n−1∑
i=1

Ki∆n,T

(
∆log pi∆n,T

) (
σ2(i+1)∆n,T

− σ2i∆n,T

)
∆n,T

n∑
i=1

K̂i∆n,T

−

n−1∑
i=1

Ki∆n,T

(
∆log pi∆n,T

) (
σ2(i+1)∆n,T

− σ2i∆n,T

)
∆n,T

n∑
i=1

Ki∆n,T

+

n−1∑
i=1

K̂i∆n,T

(
∆log pi∆n,T

) (
σ2(i+1)∆n,T

− σ2i∆n,T

)
∆n,T

n∑
i=1

K̂i∆n,T

−

n−1∑
i=1

Ki∆n,T

(
∆log pi∆n,T

) (
σ2(i+1)∆n,T

− σ2i∆n,T

)
∆n,T

n∑
i=1

K̂i∆n,T

+

n−1∑
i=1

K̂i∆n,T

(
∆log pi∆n,T

) (
σ̂2(i+1)∆n,T

− σ̂2i∆n,T

)
∆n,T

n∑
i=1

K̂i∆n,T

−

n−1∑
i=1

K̂i∆n,T

(
∆log pi∆n,T

) (
σ2(i+1)∆n,T

− σ2i∆n,T

)
∆n,T

n∑
i=1

K̂i∆n,T

= Π1,n,T,k,ϕ +Π2,n,T,k,ϕ +Π3,n,T,k,ϕ.

We focus on Π1,n,T,k,ϕ first. Using the mean-value theorem as in the proofs of Theorem 1 and Theorem
2, we have

Π1,n,T,k,ϕ = −

n−1∑
i=1

Ki∆n,T

(
∆log pi∆n,T

) (
σ2(i+1)∆n,T

− σ2i∆n,T

)
∆n,T

n∑
i=1

Ki∆n,T

×
∆n,T

(
n∑
i=1

K̂i∆n,T
−

n∑
i=1

Ki∆n,T

)
∆n,T

n∑
i=1

K̂i∆n,T

≤ |C∗(x)|
max
1≤i≤n

∣∣∣∣ σ̂2
i∆n,T

−σ2
i∆n,T

hn,T

∣∣∣∣ ∆n,T

v(T )hn,T

∑n
i=1

∣∣∣∣K′
i∆n,T

(
σ2
i∆n,T

+Op(Mn,k,T,ϕ)−x
hn,T

)∣∣∣∣
∆n,T

v(T )hn,T

n∑
i=1

K̂i∆n,T

= Op

(
Mn,k,T,ϕ

hn,T

)
.

Itô’s lemma, now, yields(
log p(i+1)∆n,T

− log pi∆n,T

)(
σ2(i+1)∆n,T

− σ2i∆n,T

)
=

∫ (i+1)∆n,T

i∆n,T

(
σ2s − σ2i∆n,T

)
µ(σ2s)ds+

∫ (i+1)∆n,T

i∆n,T

(
σ2s − σ2i∆n,T

)
σsdW

r
s

+

∫ (i+1)∆n,T

i∆n,T

∫
ψ

(
σ2s − σ2i∆n,T

)
ψrvr(ds,dψ

r) +

∫ (i+1)∆n,T

i∆n,T

(
log ps − log pi∆n,T

)
m(σ2s)ds

+

∫ (i+1)∆n,T

i∆n,T

(
log ps − log pi∆n,T

)
Λ(σ2s)dW

σ
s +

∫ (i+1)∆n,T

i∆n,T

∫
ξ

(
log ps − log pi∆n,T

)
ξσvσ(ds,dξ

σ)
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+
∑

i∆n,T≤s≤(i+1)∆n,T

(
∆log ps∆σ

2
s

)
+

∫ (i+1)∆n,T

i∆n,T

ρ(σ2s)σsΛ(σ
2
s)ds, (8)

where ∆ log ps = log ps − log ps− and ∆σ2s = σ2s − σ2s−. Thus,

Π2,n,T,k,ϕ =

n−1∑
i=1

(
K̂i∆n,T

−Ki∆n,T

) (
∆log pi∆n,T

) (
σ2(i+1)∆n,T

− σ2i∆n,T

)
∆n,T

n∑
i=1

K̂i∆n,T

≤
max
1≤i≤n

∣∣∣∣ σ̂2
i∆n,T

−σ2
i∆n,T

hn,T

∣∣∣∣ 1
v(T )hn,T

n−1∑
i=1

∣∣∣∣K′
i∆n,T

(
σ2
i∆n,T

+Op(Mn,k,T,ϕ)−x
hn,T

)∣∣∣∣ ∣∣∣(∆log pi∆n,T

) (
σ2(i+1)∆n,T

− σ2i∆n,T

)∣∣∣
∆n,T

v(T )hn,T

n∑
i=1

K̂i∆n,T

= Op

(
Mn,k,T,ϕ∆

∗
n,T

hn,T∆n,T

)
.

Using Eq. (8), the probability order follows from the same steps leading to the result in Theorem 2 after
recognizing that there are no co-jumps, by the assumed independence between price and variance jumps,
with probability one (e.g., Cont and Tankov, 2004, Proposition 5.3).
Finally, turning to Π3,n,T,k,ϕ, we have

Π3,n,T,k,ϕ ≤

n−1∑
i=1

K̂i∆n,T

∣∣∆log pi∆n,T

∣∣ ∣∣∣(σ̂2(i+1)∆n,T
− σ̂2i∆n,T

)− (σ2(i+1)∆n,T
− σ2i∆n,T

)
∣∣∣

∆n,T

n∑
i=1

K̂i∆n,T

= Op

Mn,k,T,ϕ∆
∗
n,T

∆
3/2
n,T

 .

In sum, given Assumption 4.2 in the main text, the estimation error for the infinitesimal covariance
estimator has the following order:

Ĉ(x)− C∗(x) = Π1,n,T,k,ϕ +Π2,n,T,k,ϕ +Π3,n,T,k,ϕ = Op

Mn,k,T,ϕ∆
∗
n,T

∆
3/2
n,T

 .

We now focus on the estimator based on the true variance process, i.e., C∗(x). Compensating the random
measures vr(ds,dψ

r) and vσ(ds,dξ
σ) and writing, as earlier, m(σ2s) = m(σ2s) + Eξ(ξ

σ)λσ
2
(σ2s) in place of

m(σ2s) and µ(σ
2
s) = µ(σ2s) + Eψ(ψ

r)λr(σ2s) in place of µ(σ2s), we have(
log p(i+1)∆n,T

− log pi∆n,T

)(
σ2(i+1)∆n,T

− σ2i∆n,T

)
=

∫ (i+1)∆n,T

i∆n,T

(
σ2s − σ2i∆n,T

)
µ(σ2s)ds+

∫ (i+1)∆n,T

i∆n,T

(
σ2s − σ2i∆n,T

)
σsdW

r
s

+

∫ (i+1)∆n,T

i∆n,T

∫
ψ

(
σ2s − σ2i∆n,T

)
ψrvr(ds,dψ

r) +

∫ (i+1)∆n,T

i∆n,T

(
log ps − log pi∆n,T

)
m(σ2s)ds

+

∫ (i+1)∆n,T

i∆n,T

(
log ps − log pi∆n,T

)
Λ(σ2s)dW

σ
s +

∫ (i+1)∆n,T

i∆n,T

∫
ξ

(
log ps − log pi∆n,T

)
ξσvσ(ds,dξ

σ)

+
∑

i∆n,T≤s≤(i+1)∆n,T

(
∆log ps∆σ

2
s

)
+

∫ (i+1)∆n,T

i∆n,T

ρ(σ2s)σsΛ(σ
2
s)ds
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= Θi,1,n,T +Θi,2,n,T +Θi,3,n,T +Θi,4,n,T +Θi,5,n,T +Θi,6,n,T +Θi,7,n,T +Θi,8,n,T . (9)

Next, we consider all terms one by one. Using the same method of proof as for Lemma 2, we have

n−1∑
i=1

Ki∆n,T
Θi,8,n,T

∆n,T

n∑
i=1

Ki∆n,T

=

∫ T
0 K

(
σ2
s−x

hn,T

)
ρ(σ2

s)σsΛ(σ
2
s)ds∫ T

0 K

(
σ2
s−x

hn,T

)
ds

+Op

(
∆∗

n,T

h2n,T

)

1 +Op

(
∆n,T

h2n,T

) .

Clearly,

n−1∑
i=1

Ki∆n,T
Θi,1,n,T

∆n,T

n∑
i=1

Ki∆n,T

and

n−1∑
i=1

Ki∆n,T
Θi,4,n,T

∆n,T

n∑
i=1

Ki∆n,T

are of smaller order. Notice also that

n−1∑
i=1

Ki∆n,T
Θi,7,n,T

∆n,T

n∑
i=1

Ki∆n,T

= 0,

almost surely, once more, by the independence of the price and variance jumps.
Now, write

Cn,T =

1
hn,T

n−1∑
i=1

Ki∆n,T
Θi,2,n,T

∆n,T

hn,T

n∑
i=1

Ki∆n,T︸ ︷︷ ︸
C1,n,T

+

1
hn,T

n−1∑
i=1

Ki∆n,T
Θi,5,n,T

∆n,T

hn,T

n∑
i=1

Ki∆n,T︸ ︷︷ ︸
C2,n,T

and

Jn,T =

1
hn,T

n−1∑
i=1

Ki∆n,T
Θi,3,n,T

∆n,T

hn,T

n∑
i=1

Ki∆n,T︸ ︷︷ ︸
J1,n,T

+

1
hn,T

n−1∑
i=1

Ki∆n,T
Θi,6,n,T

∆n,T

hn,T

n∑
i=1

Ki∆n,T︸ ︷︷ ︸
J2,n,T

.

We begin with C2,n,T . The quantities{(√
hn,T
∆n,T

)
1

hn,T
Ki∆n,T

Θi,5,n,T ,Fi∆n,T
, 1 ≤ i ≤ n− 1, n ≥ 2

}

constitute a martingale difference array. Express the sum of the conditional variances of the standardized

(by
√

hn,T

∆n,T
) numerator of C2,n,T , i.e.,

(√
hn,T

∆n,T

)
1

hn,T

n−1∑
i=1

Ki∆n,T
Θi,5,n,T , as

VCnum
2,n,T

=
1

hn,T∆n,T

n−1∑
i=1

K2
i∆n,T

Ei∆n,T

{∫ (i+1)∆n,T

i∆n,T

(
log ps − log pi∆n,T

)2
Λ2(σ2s)ds

}
.

Using the notation ∆i log ps = log ps − log pi∆n,T
, Itô’s lemma gives

(∆i log ps)
2 = 2

∫ s

i∆n,T

(∆i log pu)µ(σ
2
u)du+ 2

∫ s

i∆n,T

(∆i log pu)σudW
r
u +

∫ s

i∆n,T

∫
ψ
(ψr)2vr(du,dψ

r)

+ 2

∫ s

i∆n,T

∫
ψ
(∆i log pu)ψ

rvr(du,dψ
r) +

∫ s

i∆n,T

σ2udu+

∫ s

i∆n,T

Eψ((ψ
r)2)λr(σ2u)du,
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and, as a consequence,∫ (i+1)∆n,T

i∆n,T

(
log ps − log pi∆n,T

)2
ds = 2

∫ (i+1)∆n,T

i∆n,T

(∫ s

i∆n,T

(∆i log pu)µ(σ
2
u)du

)
ds

+2

∫ (i+1)∆n,T

i∆n,T

(∫ s

i∆n,T

(∆i log pu)σudW
r
u

)
ds+

∫ (i+1)∆n,T

i∆n,T

(∫ s

i∆n,T

∫
ψ
(ψr)2vr(du,dψ

r)

)
ds

+2

∫ (i+1)∆n,T

i∆n,T

(∫ s

i∆n,T

∫
ψ
(∆i log pu)ψ

rvr(du,dψ
r)

)
ds

+

∫ (i+1)∆n,T

i∆n,T

(∫ s

i∆n,T

{
(σ2u + Eψ((ψ

r)2)λr(σ2u))− (σ2i∆n,T
+ Eψ((ψ

r)2)λr(σ2i∆n,T
))
}
du

)
ds

+

(∫ (i+1)∆n,T

i∆n,T

(∫ s

i∆n,T

du

)
ds

)
(σ2i∆n,T

+ Eψ((ψ
r)2)λr(σ2i∆n,T

)).

Noting that∫ (i+1)∆n,T

i∆n,T

(
log ps − log pi∆n,T

)2
Λ2(σ2s)ds = Λ2(σ2i∆n,T

)

∫ (i+1)∆n,T

i∆n,T

(
log ps − log pi∆n,T

)2
ds

+

∫ (i+1)∆n,T

i∆n,T

(
log ps − log pi∆n,T

)2
(Λ2(σ2s)− Λ2(σ2i∆n,T

))ds,

we have, because
(∫ (i+1)∆n,T

i∆n,T

(∫ s
i∆n,T

du
)
ds
)
=

∆2
n,T

2 , that

∫ (i+1)∆n,T

i∆n,T

(
log ps − log pi∆n,T

)2
Λ2(σ2s)ds

= 2Λ2(σ2i∆n,T
)

∫ (i+1)∆n,T

i∆n,T

(∫ s

i∆n,T

(∆i log pu)µ(σ
2
u)du

)
ds

+2Λ2(σ2i∆n,T
)

∫ (i+1)∆n,T

i∆n,T

(∫ s

i∆n,T

(∆i log pu)σudW
r
u

)
ds

+Λ2(σ2i∆n,T
)

∫ (i+1)∆n,T

i∆n,T

(∫ s

i∆n,T

∫
ψ
(ψr)2vr(du,dψ

r)

)
ds

+2Λ2(σ2i∆n,T
)

∫ (i+1)∆n,T

i∆n,T

(∫ s

i∆n,T

∫
ψ
(∆i log pu)ψ

rvr(du,dψ
r)

)
ds

+Λ2(σ2i∆n,T
)

∫ (i+1)∆n,T

i∆n,T

(∫ s

i∆n,T

{
(σ2u + Eψ((ψ

r)2)λr(σ2u))− (σ2i∆n,T
+ Eψ((ψ

r)2)λr(σ2i∆n,T
))
}
du

)
ds

+
1

2
∆2
n,T (σ

2
i∆n,T

+ Eψ((ψ
r)2)λr(σ2i∆n,T

))Λ2(σ2i∆n,T
)

+

∫ (i+1)∆n,T

i∆n,T

((
log ps − log pi∆n,T

)2
(Λ2(σ2s)− Λ2(σ2i∆n,T

))
)
ds

= Σi,1,n,T +Σi,2,n,T +Σi,3,n,T +Σi,4,n,T +Σi,5,n,T +Σi,6,n,T +Σi,7,n,T .
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Now, we recognize that

1

hn,T∆n,T v(T )

n−1∑
i=1

K2
i∆n,T

Ei∆n,T
{Σi,6,n,T }

=
1

hn,T∆n,T v(T )

n−1∑
i=1

K2
i∆n,T

Ei∆n,T

{
1

2
∆2
n,T (σ

2
i∆n,T

+ Eψ((ψ
r)2)λr(σ2i∆n,T

))Λ2(σ2i∆n,T
)

}

=
∆n,T

hn,T v(T )

n−1∑
i=1

1

2
K2
i∆n,T

(σ2i∆n,T
+ Eψ((ψ

r)2)λr(σ2i∆n,T
))Λ2(σ2i∆n,T

)

=
1

2

1

hn,T v(T )

∫ T

0
K2

(
σ2s − x

hn,T

)
Λ2(σ2s)

[
σ2s + Eψ((ψ

r)2)λr(σ2s)
]
ds+Op

(
∆∗
n,T

h2n,T

)
, (10)

using the same method of proof leading to the result in Lemma 2. Next, we turn to Σi,3,n,T . Integrating
by parts, we have∫ (i+1)∆n,T

i∆n,T

(∫ s

i∆n,T

∫
ψ
(ψr)2vr(du,dψ

r)

)
ds = −

∫ (i+1)∆n,T

i∆n,T

(∫ s

i∆n,T

du

)∫
ψ
(ψr)2vr(ds,dψ

r)

+

(∫ (i+1)∆n,T

i∆n,T

du

)∫ (i+1)∆n,T

i∆n,T

∫
ψ
(ψr)2vr(ds,dψ)

=

∫ (i+1)∆n,T

i∆n,T

((i+ 1)∆n,T − s)

∫
ψ
(ψr)2vr(ds,dψ).

Hence, Ei∆n,T
{Σi,3,n,T } = 0. Similarly, Ei∆n,T

{Σi,2,n,T } = Ei∆n,T
{Σi,4,n,T } = 0. Consider, now,

1

2
Σi,1,n,T = Λ2(σ2i∆n,T

)

∫ (i+1)∆n,T

i∆n,T

(∫ s

i∆n,T

(∆i log pu)µ(σ
2
u)du

)
ds

= Λ2(σ2i∆n,T
)

∫ (i+1)∆n,T

i∆n,T

(∫ s

i∆n,T

(∫ u

i∆n,T

µ(σ2v)dv

)
µ(σ2u)du

)
ds

+Λ2(σ2i∆n,T
)

∫ (i+1)∆n,T

i∆n,T

(∫ s

i∆n,T

(∫ u

i∆n,T

σvdW
r
v

)
µ(σ2u)du

)
ds

+Λ2(σ2i∆n,T
)

∫ (i+1)∆n,T

i∆n,T

(∫ s

i∆n,T

(∫ u

i∆n,T

∫
ψ
ψrvr(dv, dψ

r)

)
µ(σ2u)du

)
ds

= Σi,1,1,n,T +Σi,1,2,n,T +Σi,1,3,n,T .

Notice that

Ei∆n,T
(Σi,1,1,n,T ) ≤ Ei∆n,T

(
Λ2(σ2i∆n,T

)

∫ (i+1)∆n,T

i∆n,T

(∫ s

i∆n,T

(∫ u

i∆n,T

|µ(σ2v)|dv

)
|µ(σ2u)|du

)
ds

)

≤ Ei∆n,T

Λ2(σ2i∆n,T
)∆n,T

(∫ (i+1)∆n,T

i∆n,T

|µ(σ2s)|ds

)2


≤ Ei∆n,T

(
∆2
n,TΛ

2(σ2i∆n,T
)

(∫ (i+1)∆n,T

i∆n,T

µ2(σ2s)ds

))
.
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Hence,

1

hn,T∆n,T v(T )

n−1∑
i=1

K2
i∆n,T

Ei∆n,T
{Σi,1,1,n,T }

≤
∆2
n,T

hn,T∆n,T v(T )

n−1∑
i=1

K2
i∆n,T

Λ2(σ2i∆n,T
)Ei∆n,T

(∫ (i+1)∆n,T

i∆n,T

µ2(σ2s)ds

)

≤
∆2
n,T

hn,T∆n,T v(T )

n−1∑
i=1

K2
i∆n,T

Λ2(σ2i∆n,T
)Ei∆n,T

(∫ (i+1)∆n,T

i∆n,T

(
µ2(σ2s)− µ2(σ2i∆n,T

)
)
ds

)

+
∆3
n,T

hn,T∆n,T v(T )

n−1∑
i=1

K2
i∆n,T

Λ2(σ2i∆n,T
)µ2(σ2i∆n,T

).

Using standard, by now, arguments (see, e.g., the proof of Lemma 2), the dominating term is the second
one, for which we have

∆3
n,T

hn,T∆n,T v(T )

n−1∑
i=1

K2
i∆n,T

Λ2(σ2i∆n,T
)µ2(σ2i∆n,T

) = Op(∆
∗
n,T ) +Op

(
∆∗2
n,T

h2n,T

)
.

By Holder’s inequality, Jensen’s inequality, and BDG’s inequality, we obtain

Ei∆n,T
(Σi,1,2,n,T )

≤ Λ2(σ2i∆n,T
)

∫ (i+1)∆n,T

i∆n,T

Ei∆n,T

((∫ s

i∆n,T

∣∣µ(σ2u)∣∣du
)(

sup
u≤s

∣∣∣∣∣
∫ u

i∆n,T

σvdW
r
v

∣∣∣∣∣
))

ds

≤ Λ2(σ2i∆n,T
)

∫ (i+1)∆n,T

i∆n,T

√√√√Ei∆n,T

(∫ s

i∆n,T

|µ(σ2u)|du

)2

Ei∆n,T

(
sup
u≤s

∣∣∣∣∣
∫ u

i∆n,T

σvdW r
v

∣∣∣∣∣
)2

ds

≤ CΛ2(σ2i∆n,T
)

∫ (i+1)∆n,T

i∆n,T

√√√√∆n,TEi∆n,T

(∫ (i+1)∆n,T

i∆n,T

|µ(σ2u)|
2 du

)
Ei∆n,T

(∫ (i+1)∆n,T

i∆n,T

σ2vdv

)
ds

≤ CΛ2(σ2i∆n,T
)∆

3/2
n,T

(
Ei∆n,T

(∫ (i+1)∆n,T

i∆n,T

∣∣µ(σ2u)∣∣2 du
))1/2(

Ei∆n,T

(∫ (i+1)∆n,T

i∆n,T

σ2vdv

))1/2

.

Employing the bound
√
a+ b ≤

√
a+

√
b twice, we have

1

hn,T∆n,T v(T )

n−1∑
i=1

K2
i∆n,T

Ei∆n,T
{Σi,1,2,n,T } ≤

C

hn,T∆n,T v(T )

n−1∑
i=1

K2
i∆n,T

Λ2(σ2i∆n,T
)∆

3/2
n,T

(
Ei∆n,T

(∫ (i+1)∆n,T

i∆n,T

∣∣µ(σ2u)∣∣2 du
))1/2(

Ei∆n,T

(∫ (i+1)∆n,T

i∆n,T

σ2vdv

))1/2

≤ C

hn,T∆n,T v(T )

n−1∑
i=1

K2
i∆n,T

Λ2(σ2i∆n,T
)∆

3/2
n,T

(
Ei∆n,T

(∫ (i+1)∆n,T

i∆n,T

(µ2(σ2u)− µ2(σ2i∆n,T
))du

))1/2

×

×

(
Ei∆n,T

(∫ (i+1)∆n,T

i∆n,T

σ2vdv

))1/2
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+
C

hn,T∆n,T v(T )

n−1∑
i=1

K2
i∆n,T

Λ2(σ2i∆n,T
)∆2

n,Tµ(σ
2
i∆n,T

)

(
Ei∆n,T

(∫ (i+1)∆n,T

i∆n,T

σ2vdv

))1/2

≤ C

hn,T∆n,T v(T )

n−1∑
i=1

K2
i∆n,T

Λ2(σ2i∆n,T
)∆

3/2
n,T

(
Ei∆n,T

(∫ (i+1)∆n,T

i∆n,T

(µ2(σ2u)− µ2(σ2i∆n,T
))du

))1/2

×

×

(
Ei∆n,T

(∫ (i+1)∆n,T

i∆n,T

σ2vdv

))1/2

+
C

hn,T∆n,T v(T )

n−1∑
i=1

K2
i∆n,T

Λ2(σ2i∆n,T
)∆2

n,Tµ(σ
2
i∆n,T

)

(
Ei∆n,T

(∫ (i+1)∆n,T

i∆n,T

(σ2v − σ2i∆n,T
)dv

))1/2

+
C

hn,T∆n,T v(T )

n−1∑
i=1

K2
i∆n,T

Λ2(σ2i∆n,T
)∆

5/2
n,Tµ(σ

2
i∆n,T

)σi∆n,T
.

The dominating term is the last one, giving

C

hn,T∆n,T v(T )

n−1∑
i=1

K2
i∆n,T

Λ2(σ2i∆n,T
)∆

5/2
n,Tµ(σ

2
i∆n,T

)σi∆n,T
= Op

(
∆

1/2
n,T

∆∗
n,T

∆n,T

)
+Op

∆
∗3/2
n,T

h2n,T

 .

Recall that
∆∗

n,T

∆
1/2
n,T

= E
(
M(F )∆

1/2
n,T

)
→ 0, as implied by Assumption 5 (a.2). Thus, Op

(
∆

1/2
n,T

∆∗
n,T

∆n,T

)
=

op(1).
Next, the term Σ1,3,i,n,T can be handled in just the same way as Σ1,2,i,n,T . As for Σi,5,n,T , it is clear that

1

hn,T∆n,T v(T )

n−1∑
i=1

K2
i∆n,T

Ei∆n,T
{Σi,5,n,T }

is dominated by Eq. (10).

The sum of the conditional fourth moments of the terms
(√

hn,T

∆n,T

)
1

hn,T
Ki∆n,T

Θi,5,n,T can be treated like

the term VCnum
2,n,T

above and it is easily shown to vanish asymptotically. Using the same method of proof

as for Lemma 4, as n, T → ∞ and ∆n,T , hn,T → 0 jointly, along with
∆∗

n,T

h2n,T
→ 0, we therefore have√hn,T L̂σ2(T, x)

∆n,T

 Cnum
2,n,T

L̂σ2(T, x)
⇒

(√
K2

1

2
(x+ Eψ((ψr)2)λr(x)) Λ2(x)

)
N(0, 1),

and, similarly,√hn,T L̂σ2(T, x)

∆n,T

 Cnum
1,n,T

L̂σ2(T, x)
⇒

(√
K2

1

2

(
Λ2(x) + Eξ((ξσ)2)λσ

2(x)
)
x

)
N(0, 1).

In addition, the asymptotic covariance term can be expressed as

Cov

√hn,T L̂σ2(T, x)

∆n,T

Cnum
1,n,T

L̂σ2(T, x)
,

√
hn,T L̂σ2(T, x)

∆n,T

Cnum
2,n,T

L̂σ2(T, x)


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p→
T,n→∞, ∆n,T ,hn,T→0

1

2
K2ρ

2(x)xΛ2(x).

We, then, have √
hn,T L̂σ2(T, x)

∆n,T
Cn,T ⇒


√√√√√K2

 1
2λ

σ2
(x)Eξ((ξ

σ)2)x
+1

2λ
r(x)Eψ((ψ

r)2)Λ2(x)
+
(
1 + ρ2(x)

)
xΛ2(x)


N(0, 1).

By the same reasoning (combined with the independence of the jumps), we obtain√
hn,T L̂σ2(T, x)

∆n,T
Jn,T ⇒


√√√√K2

2

(
(Λ2(x) + λσ

2
(x)Eξ((ξ

σ)2))λr(x)Eψ((ψ
r)2)

+
(
x+ λr(x)Eψ((ψ

r)2)
)
λσ

2
(x)Eξ((ξ

σ)2)

)N(0, 1).

Now, write the (standardized) estimation error decomposition of Ĉ(x), excluding the bias term, as

√
hn,T L̂σ2(T, x)

∆n,T


n−1∑
i=1

Ki∆n,T
Θi,1,n,T

∆n,T

n∑
i=1

Ki∆n,T

+

n−1∑
i=1

Ki∆n,T
Θi,4,n,T

∆n,T

n∑
i=1

Ki∆n,T

+

n−1∑
i=1

Ki∆n,T
Θi,7,n,T

∆n,T

n∑
i=1

Ki∆n,T

+Cn,T + Jn,T +Op

Mn,k,T,ϕ∆
∗
n,T

∆
3/2
n,T


=

√
hn,T L̂σ2(T, x)

∆n,T

Op(∆∗1/2
n,T )

(
1 +Op

(
∆∗
n,T

h2n,T

))
+Cn,T + Jn,T +Op

Mn,k,T,ϕ∆
∗
n,T

∆
3/2
n,T


=

√
hn,T L̂σ2(T, x)

∆n,T
Op(∆

∗1/2
n,T )

(
1 +Op

(
∆∗
n,T

h2n,T

))
+

√
hn,T L̂σ2(T, x)

∆n,T
{Cn,T + Jn,T }

+Op

√hn,T L̂σ2(T, x)

∆n,T

Mn,k,T,ϕ∆
∗
n,T

∆
3/2
n,T

 .

Finally, consider the bias term

n−1∑
i=1

Ki∆n,T
Θi,8,n,T

∆n,T

n∑
i=1

Ki∆n,T

− ρ(x)
√
xΛ(x)

=

n−1∑
i=1

Ki∆n,T

∫ (i+1)∆n,T

i∆n,T
(ρ(σ2s)σsΛ(σ

2
s))ds

∆n,T

n∑
i=1

Ki∆n,T

− ρ(x)
√
xΛ(x)

=

∫ T
0 Ksρ(σ2

s)σsΛ(σ
2
s)ds∫ T

0 Ksds
− ρ(x)

√
xΛ(x) +Op

(
∆∗

n,T

h2n,T

)
1 +Op

(
∆n,T

h2n,T

) −
(ρ(x)

√
xΛ(x))Op

(
∆n,T

h2n,T

)
1 +Op

(
∆n,T

h2n,T

)
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=
ΓC(x)

1 +Op

(
∆n,T

h2n,T

) +

Op

(
∆∗

n,T

h2n,T

)
1 +Op

(
∆n,T

h2n,T

) .
Naturally, C(.) = ρ(.)

√
.Λ(.). As in the proof of Theorem 4 of Bandi and Moloche (2017), we have

ΓC(x) = h2n,TK1

(
∂C(x)

∂x

∂s(x)/∂x

s(x)
+

1

2

∂2C(x)

∂x∂x

)
+ op(h

2
n,T ).

Thus, √
hn,T L̂σ2(T, x)/∆n,T

{
Ĉ(x)− C(x)− ΓC(x)

}
⇒ N(0,K2θC(x)) ,

with

θC(x) = Λ2(x)x(1 + ρ2(x)) + xλσ
2
(x)Eξ((ξ

σ)2)

+Λ2(x)λr(x)Eψ((ψ
r)2) + λσ

2
(x)Eξ((ξ

σ)2)λr(x)Eψ((ψ
r)2),

if hn,T L̂σ2(T, x)
∆∗

n,T

∆n,T

p→ 0,
hn,T L̂σ2 (T,x)

∆n,T

p→ ∞,
h5n,T L̂σ2 (T,x)

∆n,T

p→ C,
∆∗

n,T

h2n,T

√
hn,T L̂σ2 (T,x)

∆n,T

p→ 0,
∆∗

n,T

h2n,T
→ 0 and√

hn,T L̂σ2 (T,x)

∆n,T

(
g(n,T,k,ϕ)hn,T∆∗

n,T

∆
3/2
n,T

)
p→ 0.

Given hn,T L̂σ2(T, x)
∆∗

n,T

∆n,T

p→ 0, however, the condition
h5n,T L̂σ2 (T,x)

∆n,T
=

h5n,T L̂σ2 (T,x)∆∗
n,T

∆n,T∆∗
n,T

= Op(1) implies

h4n,T

∆∗
n,T

→ ∞. Thus,
∆∗

n,T

h4n,T
→ 0 and the requirement

∆∗
n,T

h2n,T

√
hn,T L̂σ2(T, x)

∆n,T
=

∆∗
n,T

h2n,T∆
∗1/2
n,T

√
hn,T L̂σ2(T, x)∆∗

n,T

∆n,T
=

∆
∗1/2
n,T

h2n,T︸ ︷︷ ︸
→0

√
hn,T L̂σ2(T, x)∆∗

n,T

∆n,T︸ ︷︷ ︸
p→0

p→ 0

is satisfied. Next, by the delta method, after defining (Λ∗(x))2 as the infeasible estimator of Λ2(x), we
obtain

ρ̂(x)− ρ(x)

=
Ĉ(x)

√
xΛ̂(x)

− C(x)√
xΛ(x)

p∼ C∗(x)− C(x)√
xΛ(x)

−
C(x)

(
(Λ∗(x))2 − Λ2(x)

)
2
√
xΛ3(x)

+Op

Mn,k,T,ϕ∆
∗
n,T

∆
3/2
n,T

+Op

Mn,k,T,ϕ∆
∗
n,T

∆
3/2
n,Thn,T


p∼
Op(h

2
n,T ) +Op

(√
∆n,T

hn,T L̂σ2 (T,x)

)
+Op(∆

∗1/2
n,T )

(
1 +Op

(
∆∗

n,T

h2n,T

))
+Op

(
∆∗

n,T

h2n,T

)
√
xΛ(x)

− ρ(x)

Op(h
2
n,T ) +Op

(√
1

hn,T L̂σ2 (T,x)

)
+Op

(
∆∗

n,T

h2n,T

)
2Λ2(x)

+Op

Mn,k,T,ϕ∆
∗
n,T

∆
3/2
n,Thn,T

 .
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Hence, if hn,T L̂σ2(T, x)
p→ ∞, hn,T L̂σ2(T, x)∆∗

n,T

p→ 0 and
∆∗

n,T

h2n,T

√
hn,T L̂σ2(T, x)

p→ 0, the asymptotic

distribution of the leverage estimator is driven by (Λ∗(x))2 − Λ2(x) and has a limiting variance given by

Ṽ(ρ̂(x)) =
ρ2(x)

4Λ4(x)

(
Ṽ
(
Λ̂2(x)

))
=

ρ2(x)

4Λ4(x)

(
40K2λ

σ2
(x)µ2ξ(x)

hn,T L̂σ2(T, x)

)
.

Also, if h5n,T L̂σ2(T, x)
p→ 0, ρ̂(x)−ρ(x) has a vanishing asymptotic bias. Now, notice that the requirement

∆∗
n,T

h2n,T

√
hn,T L̂σ2(T, x) =

∆∗
n,T

√
L̂σ2(T, x)

h
3/2
n,T

p→ 0

can be re-written as follows
∆∗
n,T L̂σ2(T, x)hn,T

h
5/2
n,T L̂

1/2
σ2 (T, x)

p→ 0.

Thus, the condition for a vanishing bias, i.e., h5n,T L̂σ2(T, x)
p→ 0, implies that ∆∗

n,T L̂σ2(T, x)hn,T
p→ 0.

We can therefore dispense with hn,T L̂σ2(T, x)∆∗
n,T

p→ 0.
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