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Abstract

This paper gathers the supplementary material to Tan and Zhang (2017). Section 1 establishes

the connection between our tail restrictions and the information of α. Section 2 derives consistent

estimators of the EV indices of ε. Section 3 collects additional simulation results. Section 4 and 5

contain the proofs of Theorems 1.1 and 2.1 in this supplementary material, respectively. Section

6 contains the proof of Theorem 4.1 in Tan and Zhang (2017). All technical lemmas are collected

in Section 7.

1 Tail Conditions and the Efficiency Bound

Khan and Tamer (2010) pointed out that α is irregularly identified because its Fisher information

is zero. Following Chamberlain (1986), the next theorem recalculates the Fisher information of α,

using a different subpath from the one used in Khan and Tamer (2010). The new result sheds light

on the direct connection between the Fisher information and the tail behaviors of V and ε.

Theorem 1.1. If Assumptions 1(2)–1(4) hold, and for any δ > 0, there exists a function Cδ(·) :

< 7→ < such that

E(1− Cδ(α+ V ))2 ≤ δ (1.1)

and

ECδ(ε) = 0, (1.2)

then α has zero information.
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Theorem 1.1 illustrates the direct link between the information and the tail conditions. Let Cδ(t) = 1

when |t| < Mδ for some Mδ →∞ as δ → 0. If Cδ(t) was bounded from below when |t| ≥ Mδ, then

(1.2) would not hold because P (|ε| > Mδ) → 0 as Mδ → ∞. Therefore, we need Cδ(t) → −∞
as |t| → ∞ so that the negative part of Cδ(t) at the tails (|t| ≥ Mδ) can cumulate and cancel the

positive part of Cδ(t) in the middle (|t| < Mδ). On the other hand, (1.1) implies C2
δ (t) diverges to

−∞ slower than the decay rate of fV (t) as t→∞. Therefore, the existence of such Cδ implies that,

heuristically,

decay rate of fV (t) > divergence rate of C2
δ (t)

> divergence rate of Cδ(t) = decay rate of fε(t),

i.e., V has thinner tails than ε does. This case is ruled out by our Assumption 5. Intuitively,

Assumption 5 requires the tails of V to be thicker than the tails of ε.

2 Estimating the Tail Index of the Unobservable

In this section, we propose an estimator of the EV index of the unobservable ε, and show it is

consistent. For simplicity, we consider the model without covariates:

Y = 1{α+ V − ε ≥ 0}

where V ⊥⊥ ε. Denote the CDF of ε−α as Fε−α. Then, the conditional expectation of Y given V = v

is Fε−α(v). By finding q(τn) such that Fε−α(q(τn)) = τn, we obtain the τn-th quantile F←ε (τn) of ε

as q(τn)+α. Note that, for any m > 0, l > 0, and some positive integer r, F←ε (mlrτn)−F←ε (lrτn) =

q(mlrτn) − q(lrτn). By replacing the CDF of ε − α by its nonparametric estimator F̂ε−α, we can

estimate q(τn) by q̂(τn) = F̂←ε−α(τn). We estimate F̂ε−α(v) by

F̂ε−α(v) =

(
1

nh

n∑
i=1

YiK(
Vi − v
h

)

)
/

(
1

nh

n∑
i=1

K(
Vi − v
h

)

)

for v ∈ Ŝn, where Ŝn is the same as is defined in Section 3.2 of Tan and Zhang (2017).

We focus on the left EV index λl. Let R and {ωr}Rr=1 be some positive integer and a set of positive

weights, respectively. Then, we estimate λl by

λ̂l =
R∑
r=1

−ωr
log(l)

log

(
q̂(mlrτn)− q̂(lrτn)

q̂(mlr−1τn)− q̂(lr−1τn)

)
.

Theorem 2.1. If Assumptions 1–4 and 6 hold, the PDF of ε is monotone in the lower tail, and τn

is chosen such that τn → 0, τnn → ∞, and (Lnn
(1+σ)ρ/(nh))1/2/τn → 0 where ρ = ρl(1 + ξl), then

λ̂l
p−→ λl.
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Two comments are in order. First, under Assumption 6, (Lnn
(1+σ)ρ/(nh))1/2 → 0. Therefore, there

always exists a sequence of τn that satisfies the condition in Theorem 2.1. Second, in order to

construct a rigorous statistical test for the EV index, one has to establish the limiting distribution

of λ̂l. This is left as a useful research direction.

3 Additional Simulations

In this section, we report the coverage of the true parameter α using t-statistics constructed based

on our estimator α̂. The simulation designs and choices of tuning parameters are exactly the same

as in Section 5 of Tan and Zhang (2017). We found that for the first five designs, in which the

tail restrictions hold and there exists a regular estimator of the intercept, the coverage rate of our

estimators, Ex and L, is close to the nominal rate as well as those of the untrimmed estimator (L4).

In design 6, in which there does not exist any regular estimator, our estimators as well as other

trimmed and untrimmed estimators all perform poorly even when the sample size is as large as

6,400. The coverage rate of the untrimmed estimator is closer to the nominal rate than those of the

rest. Note that the asymptotic bias is defined as the ratio between the raw bias and the standard

error of the estimator. Then the smaller the asymptotic bias, the better the coverage. When there

is no trimming at all, the bias becomes the smallest, while the variance becomes the largest. Both

facts help in terms of reducing the asymptotic bias, and improving the coverage. However, the

root-mean-square errors in Table 6 of Tan and Zhang (2017) indicate that the untrimmed estimator

achieves the best coverage by sacrificing precision, i.e., the confidence interval for the untrimmed

estimator is the widest among all estimators.

Design 1

N Ex L L1 L2 L3 L4

200 0.910 0.933 0.921 0.951 0.951 0.951
400 0.933 0.941 0.904 0.951 0.951 0.951
800 0.962 0.969 0.886 0.968 0.969 0.969

1,600 0.962 0.965 0.798 0.965 0.966 0.966
3,200 0.964 0.964 0.631 0.963 0.965 0.965
6,400 0.964 0.964 0.362 0.962 0.964 0.964

Table 1: 95% coverage

Design 2
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N Ex L L1 L2 L3 L4

200 0.863 0.886 0.856 0.906 0.907 0.907
400 0.887 0.894 0.816 0.902 0.907 0.907
800 0.913 0.923 0.662 0.924 0.928 0.928

1,600 0.903 0.910 0.510 0.905 0.912 0.912
3,200 0.937 0.947 0.209 0.920 0.951 0.951
6,400 0.930 0.932 0.021 0.889 0.930 0.932

Table 2: 95% coverage

Design 3

N Ex L L1 L2 L3 L4

200 0.947 0.942 0.776 0.948 0.948 0.948
400 0.965 0.964 0.716 0.964 0.965 0.965
800 0.978 0.979 0.575 0.979 0.979 0.979

1,600 0.983 0.983 0.375 0.983 0.983 0.983
3,200 0.989 0.989 0.143 0.988 0.989 0.989
6,400 0.985 0.984 0.016 0.984 0.984 0.984

Table 3: 95% coverage

Design 4

N Ex L L1 L2 L3 L4

200 0.897 0.920 0.947 0.958 0.958 0.958
400 0.939 0.950 0.955 0.971 0.971 0.971
800 0.968 0.969 0.958 0.971 0.971 0.971

1,600 0.981 0.981 0.951 0.981 0.981 0.981
3,200 0.970 0.970 0.937 0.970 0.970 0.970
6,400 0.978 0.978 0.913 0.978 0.978 0.978

Table 4: 95% coverage

Design 5
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N Ex L L1 L2 L3 L4

200 0.870 0.873 0.592 0.874 0.874 0.874
400 0.908 0.908 0.438 0.905 0.908 0.908
800 0.916 0.916 0.244 0.911 0.916 0.916

1,600 0.940 0.940 0.052 0.932 0.940 0.940
3,200 0.943 0.943 0.006 0.938 0.943 0.943
6,400 0.943 0.943 0.000 0.927 0.943 0.943

Table 5: 95% coverage

Design 6

N Ex L L1 L2 L3 L4

200 0.745 0.805 0.791 0.900 0.900 0.900
400 0.787 0.840 0.656 0.894 0.905 0.905
800 0.731 0.788 0.371 0.856 0.891 0.891

1,600 0.719 0.781 0.129 0.780 0.881 0.883
3,200 0.776 0.827 0.010 0.742 0.886 0.900
6,400 0.749 0.810 0.000 0.521 0.854 0.885

Table 6: 95% coverage

4 Proof of Theorem 1.1

Let g0(t) = P (ε ≤ t) and the subpath be

gδ(t) = g0(t) + δη(t),

where η is a function from < to < such that η(+∞) = η(−∞) = 0. In addition, we assume

η(t) = o( 1
|t|) as |t| → ∞. Since Eε = 0, we need

∫
tg′δ(t)dt = 0, or equivalently,∫

tη′(t)dt = 0.

By integration by parts, we have ∫
tη′(t)dt = −

∫
η(t)dt = 0.

Denote ψα(y, v) and ψδ(y, v) as the scores for α and δ, respectively. Khan and Tamer (2010) showed

that

ψα(y, v) =
1

2
{yg0(α+ v)−1/2 − y(1− g0(α+ v))−1/2}g′0(α+ v)
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and

ψδ(y, v) =
1

2
{yg0(α+ v)−1/2 − y(1− g0(α+ v))−1/2}η(α+ v).

Then, as Equation (5) of Chamberlain (1986), Iα is the information of α where

Iα =

∫
(ψα(y, v)− ψδ(y, v))2dµ(y, v)

=

∫
(g′0(α+ v)− η(α+ v))2

g0(α+ v)(1− g0(α+ v))
fV (v)dv.

Let η(t) = g′0(t)C(t) for some C(t) such that∫
C(t)g′0(t)dt = EC(ε) = 0.

Then

Iα =

∫
(g′0(α+ v))2

g0(α+ v)(1− g0(α+ v))
(1− C(α+ v))2fV (v)dv.

Khan and Tamer (2010) has shown that
(g′0(α+v))2

g0(α+v)(1−g0(α+v)) is bounded by some constant M uniformly

over v ∈ <. Therefore, by letting C(t) = Cδ(t) which is assumed to exist by the assumption in

Theorem 1.1, we have

Iα ≤M
∫

(1− Cδ(t+ α))2fV (t)dt = ME(1− Cδ(V + α))2 ≤Mδ.

Therefore, we can conclude the proof by letting δ → 0.

5 Proof of Theorem 2.1

By Lemma 7.4, we know Ŝn is nested by S+
n w.p.a.1. Next, we divide the proof into three steps.

First, we bound F̂ε−α(v)−Fε−α(v) uniformly over v ∈ S+
n . Second, we derive the order of magnitude

of q̂(τn)− q(τn). Last, we prove the desired result.

Step 1

Denote F1(v) and F̂1(v) as Fε−α(v)f(v) and 1
nh

∑n
i=1 YiK(Vi−vh ), respectively, where f(·) is the PDF

of V . Then we have

F̂ε−α(v)− Fε−α(v) =
F̂1(v)− F1(v)

f̂(v)
+ Fε−α(v)

f(v)− f̂(v)

f̂(v)
. (5.1)

By Lemma 7.9,

sup
v∈S+

n

|f(v)− f̂(v)|
f̂(v)

= Op

(
(Lnn

(1+σ)ρ/(nh))1/2

)
.

For the first term of (5.1), denote G = {Y K(V−vh )/(hf(v)(1−σ)/2) : v ∈ S+
n } with envelope CLnn

(1−σ)ρ/2/h.
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Then, by Lemma 7.9,

sup
v∈S+

n

|F̂1(v)− F1(v)|
f̂(v)

≤ sup
v∈S+

n

|F̂1(v)− F1(v)|
f(v)(1 + op(1))

≤n(1+σ)ρ/2Ln||Pn − P||G + nρLnh
ν = Op

(
(Lnn

(1+σ)ρ/(nh))1/2

)
where the last equality is by Corollary 5.1 of Chernozhukov, Chetverikov, and Kato (2014) and the

fact that

sup
g∈G

Eg2 ≤ sup
v∈S+

n

EK2(
V − v
h

)/(h2f(v)1−σ) . h−1.

Therefore, denote rn = (Lnn
(1+σ)ρ/(nh))1/2,

sup
v∈S+

n

|F̂ε−α(v)− Fε−α(v)| = Op(rn).

Step 2

Next, we invert F̂ε−α(·) at τn, i.e., finding q̂(τn) ∈ Ŝn1 such that

F̂ε−α(q̂n) ≥ τn ≥ F̂ε−α(q̂n − r2
n).

Let q(τn) = F←ε−α(τn). Then

Fε−α(q̂(τn))− Fε−α(q(τn)) ≤Fε−α(q̂(τn))− F̂ε−α(q̂(τn)− r2
n)

≤Fε−α(q̂(τn))− Fε−α(q̂(τn)− r2
n) + sup

v∈S+
n

|Fε−α(v)− F̂ε−α(v)|

=Op(rn).

Similarly, we can obtain the inequality for the other direction that

Fε−α(q̂(τn))− Fε−α(q(τn)) ≥ Op(rn).

This implies that, for Rn = Fε−α(q̂(τn))− Fε−α(q(τn)), Rn = Op(rn). Therefore,

q̂(τn)− q(τn) = F←ε−α(τn +Rn)− F←ε−α(τn) = τn

∫ 1+Rn/τn

1

dm

fε−α(F←ε−α(mτn))
.

Multiplying fε−α(F←ε−α(τn)) on both sides, we have

fε−α(F←ε−α(τn))(q̂(τn)− q(τn)) = τn

∫ 1+Rn/τn

1

fε−α(F←ε−α(τn))dm

fε−α(F←ε−α(mτn))
∼ Rn.

1By choosing a proper τn, such q̂(τn) exists w.p.a.1. This is because Fε−α(l+n )→ 0 where l+n is the lower endpoint
of S+

n . So τn > Fε−α(l+n ) suffices.
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In addition, by Proposition 0.7 of Resnick (2007) (for the regularly varying case) or Lemma 4.2

of D’Haultfoeuille, Maurel, and Zhang (2016) (for the rapidly varying case), fε−α(F←ε−α(τn)) =

O(τn/(F
←
ε−α(eτn)− F←ε−α(τn))). Therefore,

q̂(τn)− q(τn) = Op(
rn
τn

(F←ε−α(eτn)− F←ε−α(τn))) = Op(
rn
τn

(q(eτn)− q(τn))).

Step 3

For any m > 0 and l > 0,

q̂(mτn)− q̂(lτn)

q(eτn)− q(τn)
=
q(mτn)− q(lτn)

q(eτn)− q(τn)
+
q̂(mτn)− q(mτn)

q(eτn)− q(τn)
+
q(lτn)− q̂(lτn)

q(eτn)− q(τn)

=
q(mτn)− q(lτn)

q(eτn)− q(τn)
+Op(rn/τn)

So λ̂l =
∑R

r=1
−ωr
log(l) log

(
q(mlrτn)−q(lrτn)

q(mlr−1τn)−q(lr−1τn)

)
+Op(rn/τn) = λl + op(1).

6 Proof of Tan and Zhang (2017, Theorem 4.1)

We decompose Φ̂ which is defined in (4.3).

Φ̂ =
1

n

n∑
i=1

Zi(Yi − 1{Vi > 0})
f(Ui)

In,i +
1

n

n∑
i=1

Zi(Yi − 1{Vi > 0})
f(Ui)2

In,i(f(Ui)− f̃(Ûi)) +Rn,1 +Rn,2 +Rn,3

in which Ûi = Vi − S′iγ̂,

Rn,1 =
1

n

n∑
i=1

(
Zi(Yi − 1{Vi > 0})

f(Ui)

)
(Ĩn,i − In,i),

Rn,2 =
1

n

n∑
i=1

(
Zi(Yi − 1{Vi > 0})

f(Ui)

)(
f(Ui)− f̃(Ûi)

f̃(Ûi)

)
(Ĩn,i − In,i),

Rn,3 =
1

n

n∑
i=1

[
Zi(Yi − 1{Vi > 0})

f(Ui)

][
(f(Ui)− f̃(Ûi))

2

f(Ui)f̃(Ûi)

]
In,i.

By Lemma 7.10,
3∑
j=1

Rn,j = op(
1√
n

).

Hence,

Φ̂ =
1

n

n∑
i=1

Zi(Yi − 1{Vi > 0})
f(Ui)

In,i +
1

n

n∑
i=1

Zi(Yi − 1{Vi > 0})
f(Ui)2

In,i(f(Ui)− f̃(Ûi)) + op(
1√
n

). (6.1)
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Next, we further decompose f(Ui)− f̃(Ûi). Define f̂(Ui) = 1
(n−1)h

∑
j 6=iK(

Uj−Ui
h ) in which h is the

tuning parameter defined in Assumption 12. Then, we have

f(Ui)− f̃(Ûi) = f(Ui)− f̂(Ui) + f̂(Ui)− f̃(Ûi)

= f(Ui)−
1

(n− 1)h

∑
j 6=i

K(
Uj − Ui

h
) +

1

(n− 1)h

∑
j 6=i

(K(
Uj − Ui

h
)− k(

Ûj − Ûi
h

))

= f(Ui)−
1

(n− 1)h

∑
j 6=i

K(
Uj − Ui

h
) +

1

(n− 1)h2

∑
j 6=i

K ′(
Uj − Ui

h
)(Uj − Ui − (Ûj − Ûi))

+
1

2(n− 1)h3

∑
j 6=i

K
′′
(
Ũj − Ũi

h
)(Uj − Ui − (Ûj − Ûi))2,

where Ũj − Ũi is between Ûj − Ûi and Uj − Ui.

Since

max
1≤i≤n

|Ui − Ûi| = max
1≤i≤n

|Z ′i(γ̂ − γ)| = Op

(
1√
n

)
and h = n−H for H < 1

4 , we have, uniformly over 1 ≤ i ≤ n,

max
i≤n
| 1

2(n− 1)h3

∑
j 6=i

K
′′
(
Ũj − Ũi

h
)(Uj − Ui − (Ûj − Ûi))2|

.
1

n2h3

∑
j 6=i

(
|K ′′( Ũj − Ũi

h
)−K ′′(Uj − Ui

h
)|+ |K ′′(Uj − Ui

h
)|
)

=Op(
1

n3/2h4
) +

1

n2h3
sup
u

n∑
i=1

(
|K ′′(Uj − u

h
)| − E|K ′′(Uj − u

h
)|
)

+
1

nh3
sup
u

E|K ′′(Uj − u
h

)|

=Op(
1

n3/2h4
+

1

n3/2h7/2
+

1

nh2
)

=op(
1√
n

).

This implies∣∣∣∣ 1n
n∑
i=1

[
Zi(Yi − 1{Vi > 0})

f(Ui)2
In,i

(
1

2(n− 1)h3

∑
j 6=i

K
′′
(
Ũj − Ũi

h
)(Uj − Ui − (Ûj − Ûi))2

)]∣∣∣∣
.

1

n

n∑
i=1

|Yi − 1{Vi > 0}|
f(Ui)2

In,iop(
1√
n

) . op(
1√
n

),

in which the last inequality is because 1
n

∑n
i=1

∣∣∣Yi−1{Vi>0}
f(Ui)2

∣∣∣ = Op(1) by Lemma 7.12(2) or 7.13(2).
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Then, we can simplify (6.1) as

Φ̂ =
1

n

n∑
i=1

Zi(Yi − 1{Vi > 0})
f(Ui)

In,i +
1

n

n∑
i=1

[
Zi(Yi − 1{Vi > 0})

f(Ui)2
In,i

(
f(Ui)−

1

(n− 1)h

∑
j 6=i

K(
Uj − Ui

h
)

)]

+
1

n

n∑
i=1

[
Zi(Yi − 1{Vi > 0})

f(Ui)2
In,i

(
1

(n− 1)h2

∑
j 6=i

K ′(
Uj − Ui

h
)(Uj − Ui − (Ûj − Ûi))

)]
+ op(

1√
n

)

= δ̃n,1 + δ̃n,2 + δ̃n,3 + op(
1√
n

).

To compute δ̃n,2, we follow the same steps in the proof of Theorem 3.1 which we will not repeat.

The key condition for applying the same argument is that G(u) ∈ L2(f(u)1−σdu) where

G(u) =
E(Zi(Yi − 1{Vi > 0})|Ui = u)

f(u)
1{u ∈ Sn}.

To see this, we note that∣∣∣∣∫ G2(u)f(u)1−σdu

∣∣∣∣ =

∣∣∣∣EE(Zi(Yi − 1{Vi > 0})|Ui)
f(Ui)2+σ

1{Ui ∈ Sn}
∣∣∣∣

. E
∣∣∣∣Yi − 1{Vi > 0}

f(Ui)2+σ

∣∣∣∣ <∞,
in which the second last inequality is because Zi is bounded and the last inequality is by Lemma

7.12(2) or 7.13(2). Then, we obtain

δ̃n,2 = − 1

n

n∑
i=1

E(Zi(Yi − 1{Vi > 0})|Ui)
f(Ui)

In,i + E
E(Zi(Yi − 1{Vi > 0})|Ui)

f(Ui)
In,i + op(

1√
n

).

By Lemma 7.12(1) or 7.13(1), we have

E
E(Zi(Yi − 1{Vi > 0})|Ui)

f(Ui)
In,i = E

E(Zi(Yi − 1{Vi > 0})|Ui)
f(Ui)

+ o(
1√
n

) = Σzxβ + o(
1√
n

).

So

δ̃n,2 = − 1

n

n∑
i=1

E(Zi(Yi − 1{Vi > 0})|Ui)
f(Ui)

In,i + Σzxβ + op(
1√
n

). (6.2)

Now let us turn to δ̃n,3, whose presence is due to the fact that Ui is estimated by Ûi. Let Wi =

(Yi, Si, Ui). Then, we write

δ̃n,3 = Un,3(γ̂ − γ),

in which

Un,3 = (C2
n)−1

n−1∑
i=1

n∑
j=i+1

Pn,3(Wi,Wj)
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and

Pn,3(Wi,Wj)

=
1

2

[
Zi(Yi − 1{Vi > 0})

f(Ui)2
In,i

1

h2
K ′
(
Uj − Ui

h

)
(Sj − Si)′ +

Zj(Yj − 1{Vj > 0})
f(Uj)2

In,j
1

h2
K ′
(
Ui − Uj

h

)
(Si − Sj)′

]
.

Later we will show

Un,3 = −E
(
Zi(Yi − 1{Vi > 0})f ′(Ui)(ESi − Si)′

f(Ui)2

)
+ op(1) (6.3)

and

E
∣∣∣∣(Zi(Yi − 1{Vi > 0})f ′(Ui)(ESi − Si)′

f(Ui)2

)∣∣∣∣ <∞. (6.4)

Given (6.3), (6.4), and the fact that

γ̂ − γ =
1

n

n∑
i=1

φi + op(
1√
n

),

in which φi = Σ−1
ss SiUi, we have

δ̃n,3 = E(
Zi(Yi − 1{Vi > 0})f ′(Ui)(Si − ESi)′

f(Ui)2
)
1

n

n∑
i=1

φi + op(
1√
n

). (6.5)

For (6.4), by Lemma 7.12(2) or 7.13(2), we have

E
∣∣∣∣(Zi(Yi − 1{Vi > 0})f ′(Ui)(ESi − Si)′

f(Ui)2

)∣∣∣∣ . E
∣∣∣∣Yi − 1{Vi > 0}

f(Ui)2

∣∣∣∣ <∞.
To show (6.3), we first show V ar(Un,3) = o(1). This implies Un,3 = EUn,3 + op(1). To see that

V ar(Un,3) = o(1), we note

E|Pn,3(Wi,Wj)|2

.E
|Zi(Yi − 1{Vi > 0})|2

f(Ui)4
In,i

1

h4
E
(
|K ′(Uj − Ui

h
)|2|Sj − Si|2|Wi

)
.E
|(Yi − 1{Vi > 0})|

f(Ui)3+σ
In,i

1

h3

.
Ln
h3

E
∣∣∣∣(Yi − 1{Vi > 0})

f(Ui)3+σ

∣∣∣∣
.
Ln
h3
,

11



where the second inequality is because

E
(
|K ′(Uj − Ui

h
)|2|Sj − Si|2|Wi

)
. h

∫
f(Ui + hu)[K ′(u)]2du . hf(Ui)

1−σ

and the last inequality is because of Lemma 7.12(2) or 7.13(2). In addition, since H < 1/3,

Ln
h3

= o(n)

and thus

E|Pn,3(Wi,Wj)|2 = o(n). (6.6)

By Lemma A of (Serfling, 2009, Chapter 5), (6.6) implies the desired result

V ar(Un,3) ≤ 2

n
E|Pn,3(Wi,Wj)|2 = o(1).

Next, we compute EUn,3. Since U ⊥ S, we have E(Sj |Uj) = E(Sj) and

EUn,3 = EPn,3(Wi,Wj)

= E
{[

Zi(Yi − 1{Vi > 0})
f(Ui)2

]
In,i

(
ESj − Si

h2

)
E
(
K ′(

Uj − Ui
h

)|Wi

)}
.

First, note
1

h2
E
(
K ′(

Uj − Ui
h

)|Wi

)
=

1

h

∫
K ′(η)f(Ui + hη)dη

= −f ′(Ui) +Rn(Ui)

in which |Rn(Ui)| . hν . Because
√
nhν →∞ and

E
∣∣∣∣Zi(Yi − 1{Vi > 0})(ESj − Si)

f(Ui)2
In,i

∣∣∣∣ <∞,
we have

EUn,3 = E
Zi(Yi − 1{Vi > 0})f ′(Ui)(Si − ESj)′

f(Ui)2
In,i + o(

1√
n

).

In addition, we have

Zi(Yi − 1{Vi > 0})f ′(Ui)(Si − ESj)′

f(Ui)2
In,i

p−→ Zi(Yi − 1{Vi > 0})f ′(Ui)(Si − ESj)′

f(Ui)2

and ∣∣∣∣Zi(Yi − 1{Vi > 0})f ′(Ui)(Si − ESj)′

f(Ui)2
In,i

∣∣∣∣ . ∣∣∣∣Yi − 1{Vi > 0}
f(Ui)2

∣∣∣∣ .

12



Hence, by the dominated convergence theorem,

E
Zi(Yi − 1{Vi > 0})f ′(Ui)(Si − ESj)

f(Ui)2
In,i = E

Zi(Yi − 1{Vi > 0})f ′(Ui)(Si − ESj)
f(Ui)2

+ o(1),

and thus,

Un,3 = EUn,3 + op(1) = E
Zi(Yi − 1{Vi > 0})f ′(Ui)(Si − ESj)

f(Ui)2
+ op(1).

This verifies (6.3). So (6.5) holds. Combining (6.1), (6.2) and (6.5), we have

Φ̂− Σzxβ =
1

n

n∑
i=1

Zi(Yi − 1{Vi > 0})
f(Ui)

In,i −
1

n

n∑
i=1

E(Zi(Yi − 1{Vi > 0})|Ui)
f(Ui)

In,i

+E
(
Zi(Yi − 1{Vi > 0})f ′(Ui)(Si − ESi)′

f(Ui)2

)
1

n

n∑
i=1

φi + op(
1√
n

).

By Lemma 7.12(1) or 7.13(1) and the Markov’s inequality,

1

n

n∑
i=1

Zi(Yi − 1{Vi > 0})
f(Ui)

(1− In,i)−
1

n

n∑
i=1

E(Zi(Yi − 1{Vi > 0})|Ui)
f(Ui)

(1− In,i) = op(
1√
n

).

Hence, Φ̂− Σzxβ = 1
n

∑n
i=1 Ψi + op(

1√
n

) where

Ψi =
Zi(Yi − 1{Vi > 0})

f(Ui)
− E(Zi(Yi − 1{Vi > 0})|Ui)

f(Ui)
+ E

(
Zi(Yi − 1{Vi > 0})f ′(Ui)(Si − ESi)′

f(Ui)2

)
φi.

(6.7)

Last, it is easy to see that EΨi = 0 and

E|Ψi|3 . E
∣∣∣∣Zi(Yi − 1{Vi > 0})

f(Ui)

∣∣∣∣3 + E|φi|3

. E
∣∣∣∣Yi − 1{Vi > 0}

f(Ui)3

∣∣∣∣+ E|φi|3 <∞.

This implies the Lindeberg condition holds. Then, we have

√
n(β̂ − β) = (Σ′zxWΣzx)−1Σ′zxW

1√
n

n∑
i=1

(Ψi − (ZiX
′
i − Σzx)β) + op(1) N (0,Σβ),

in which

Σβ = (Σ′zxWΣzx)−1Σ′zxWΣ0WΣzx(Σ′zxWΣzx)−1

and

Σ0 = E(Ψi − (ZiX
′
i − Σzx)β)(Ψi − (ZiX

′
i − Σzx)β)′.

13



7 Technical Lemmas

7.1 Notations

Throughout this section, we denote C as a generic positive constant, whose value may differ in

different contexts. Ln is a generic function of n, which is slowly varying as n→∞, i.e., Lkn
Ln
→ 1 as

n→∞ for any k > 0.

7.2 Lemmas for Tan and Zhang (2017, Theorem 3.1)

Note that În,i = 1{Vi ∈ Ŝn} in which Ŝn = (l̂n, r̂n). The unusual feature of our trimming function

is that the two endpoints are random. In order to deal with the randomness, we next propose two

non-random intervals S−n and S+
n such that S−n ⊂ Ŝn ⊂ S+

n w.p.a.1. We define

ρ = max(ρr(1 + ξr), ρl(1 + ξl)), S+
n = (−Mn,l + ln,Mn,r + rn), and S−n = (Mn,l + ln,−Mn,r + rn),

in which the two positive sequences Mn,r and Mn,l are chosen in Lemma 7.4. Then, by letting

An = {|r̂n − rn| ≤Mn,r} ∩ {|l̂n − ln| ≤Mn,l},

Lemma 7.4(1) shows P (An)→ 1, and on An, În,i ≤ 1{Vi ∈ S+
n } and

|În,i − In,i| ≤ 1{Vi ∈ S+
n } − 1{Vi ∈ S−n } ≤ min

(
1− 1{Vi ∈ S−n },1{Vi ∈ S+

n }
)
. (7.1)

We derive bounds for various terms by replacing the random interval Ŝn with two non-random

intervals S−n and S+
n . This has been done in Lemmas 7.6–7.9. These bounds are applied to derive

the desired results in Lemma 7.1.

Lemma 7.1. Under the assumptions of Theorem 3.1, we have

Rn,1 +Rn,2 +Rn,3 = op(
1√
n

).

Proof. First, on An, we have

|Rn,1| ≤
1

n

n∑
i=1

∣∣∣∣Yi − 1{Vi > 0}
f(Vi)

∣∣∣∣ (1− 1{Vi ∈ S−n }).
Lemma 7.6(1) or 7.7(1) shows

E
∣∣∣∣Yi − 1{Vi > 0}

f(Vi)

∣∣∣∣ (1− 1{Vi ∈ S−n }) = o(
1√
n

).
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Hence, by Markov’s inequality, we have

Rn,1 = op(
1√
n

).

Similarly, on An, we have

|Rn,2| ≤
1

n

n∑
i=1

∣∣∣∣Yi − 1{Vi > 0}
f(Vi)

∣∣∣∣ (1− 1{Vi ∈ S−n })
∣∣∣∣∣f(Vi)− f̂(Vi)

f̂(Vi)

∣∣∣∣∣1{Vi ∈ S+
n }.

Lemma 7.9 shows

max
1≤i≤n

∣∣∣∣∣f(Vi)− f̂(Vi)

f̂(Vi)

∣∣∣∣∣1{Vi ∈ S+
n } ≤max

v∈S+
n

∣∣∣∣∣ f(v)− f̂(v)

f(v)(1 + op(1))

∣∣∣∣∣ = Op

(
(
log(n)nρ(1+σ)

nh
)1/2

)
= op(1).

Hence,

|Rn,2| ≤ |
1

n

n∑
i=1

∣∣∣∣Yi − 1{Vi > 0}
f(Vi)

∣∣∣∣ (1− 1{Vi ∈ S−n })|op(1) = op(
1√
n

).

For Rn,3, we have, by Lemma 7.9,

√
n|Rn,3| ≤

1

n

n∑
i=1

∣∣∣∣Yi − 1{Vi > 0}
f(Vi)2+σ

∣∣∣∣
[
√
n

∣∣∣∣∣ (f(Vi)− f̂(Vi))
2

f(Vi)1−σ(1 + op(1))
In,i

∣∣∣∣∣
]
.

By Lemma 7.7(2),

1

n

n∑
i=1

∣∣∣∣Yi − 1{Vi > 0}
f(Vi)2+σ

∣∣∣∣ =
1

n

n∑
i=1

∣∣∣∣Yi − 1{Vi > 0}
f(Vi)

∣∣∣∣2+σ

= Op(1).

In addition, by Lemma 7.9 and the fact that H < 1/2,

max
1≤i≤n

∣∣∣∣∣√n(f(Vi)− f̂(Vi))
2

f(Vi)1−σ In,i

∣∣∣∣∣ = Op(n
−1/2h−1Ln) = op(1).

This implies Rn,3 = op(
1√
n

).

Lemma 7.2.

δ̃n,2 = − 1

n

n∑
i=1

P (Vi)− 1{Vi > 0}
f(Vi)

In,i + op(
1√
n

).

Proof. We first claim

E(P 2
n(Wi,Wj)) = o(n). (7.2)

To see this, first recall that, by Lemma 7.4(2), on Vi ∈ Sn ⊂ S+
n , f(Vi) ≥ Cn−ρLn. Second, by
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Lemma 7.6(2) or 7.7(2),

E
∣∣∣∣Yi − 1{V > 0}

f(V )

∣∣∣∣2+σ

= O(1).

Last, by Assumption 2(3), f(v + hu) ≤ Cf(v)1−σ. Combining the above three facts, we have

E
[
Yi − 1{Vi > 0}

f(Vi)2
(f(Vi)−

1

h
K(

Vi − Vj
h

))In,i

]2

=E
|Yi − 1{Vi > 0}|2

f(Vi)4

(
f(Vi)

2 − 2f(Vi)

∫
K(u)f(Vi + hu)du+

∫
K2(u)

h
f(Vi + hu)du

)
In,i

≤CE(Yi − 1{Vi > 0})2

f(Vi)3+σ

1

h
In,i

=CE
∣∣∣∣Yi − 1{Vi > 0}

f(Vi)

∣∣∣∣2+σ

nρ
Ln
h

=O(
nLn
n1−ρh

) = o(n).

Define

Ûn = θn +
2

n

n∑
i=1

(rn(Wi)− θn),

in which rn(Wi) = E(Pn(Wi,Wj)|Wi), θn = Ern(Wi), and Wi = (Yi, Vi). Because (7.2) holds, we

can apply Lemma 3.1 in Powell, Stock, and Stoker (1989) and obtain

√
n(δ̃2,n − Ûn) = op(1). (7.3)

Next, we compute rn(Wi). Note that

rn(Wi) =
1

2
(rn,1(Wi) + rn,2(Wi)),

in which

rn,1(Wi) = E
(
Yi − 1{Vi > 0}

f(Vi)2
(f(Vi)−

1

h
K(

Vi − Vj
h

))In,i|Wi

)
and

rn,2(Wi) = E
(
Yj − 1{Vj > 0}

f(Vj)2
(f(Vj)−

1

h
K(

Vi − Vj
h

))In,j |Wj

)
.

By the mean-value theorem and Assumption 2(2), we have

rn,1(Wi) =
Yi − 1{Vi > 0}

f(Vi)2
In,if(Ṽi)

(ν)hv.

Thus, by Lemma 7.6(2) or Lemma 7.7(2),

√
n|θn| ≤

√
nE|rn,1(Wi)| ≤ C

√
nhvE(

Y − 1{V > 0}
f(V )

)2In,i = O((nh2v)
1
2 ) = o(1), (7.4)

16



where the last equality is because H > 1+ρr(1+ξr)
1+2ν > 1+ρr

1+2ν >
1
2ν .

Hence,

1

n

n∑
i=1

(rn,1(Wi)− θn) = op(
1√
n

). (7.5)

Now, we define P (v) = E(Yi|Vi = v). For rn,2(Wi), we have

rn,2(Wi) = E
Yj − 1{Vj > 0}

f(Vj)
In,j −G ∗Kh(Vi) = E

Yj − 1{Vj > 0}
f(Vj)

In,j −G(Vi)− Tn,i,

in which ∗ means convolution,2

G(v) =
P (v)− 1{v > 0}

f(v)
1{v ∈ Sn},

Kh(v) =
1

h
K(

v

h
),

and

Tn,i = G ∗Kh(Vi)−G(Vi).

Then,

rn,2(Wi)−θn = −
[
P (Vi)− 1{Vi > 0}

f(Vi)
1{Vi ∈ Sn} − E

(
P (Vi)− 1{Vi > 0}

f(Vi)
1{Vi ∈ Sn}

)]
−(Tn,i−E(Tn,i)).

If ET 2
n,i = o(1), then we have

1

n

n∑
i=1

(rn,2(Wi)− θn) = − 1

n

n∑
i=1

[
P (Vi)− 1{Vi > 0}

f(Vi)
In,i − E

(
P (Vi)− 1{Vi > 0}

f(Vi)
In,i

)]
+ op(

1√
n

).

(7.6)

Next, we compute ET 2
n,i. By Minkowski’s inequality, we have

ET 2
n,i =

∫
(

∫
(G(v − hu)−G(v))K(u)du)2f(v)dv

≤(

∫
(

∫
(G(v − hu)−G(v))2f(v)dv)

1
2K(u)du)2.

(7.7)

By Lemma 7.8, we have, for each fixed u,∫
(G(v − hu)−G(v))2f(v)dv → 0

2For two generic functions f and g, f ∗ g(t) =
∫
u∈< f(t− u)g(u)du.
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as h→ 0 and ∫
(G(v − hu)−G(v))2f(v)dv ≤

∫
(G2(v − hu) +G2(v))f(v)dv ≤ C,

where C is a positive constant independent of u. Therefore, by the dominated convergence theorem,

the RHS of (7.7) vanishes as h→ 0; that is,[∫ (∫
(G(v − hu)−G(v))2f(v)dv

) 1
2

K(u)du

]2

→ 0.

This concludes the claim ET 2
n,i = o(1).

Lemma 7.3. Denote

Tn,1 =
1

n

n∑
i=1

2

(
Yi − 1{Vi > 0}

f̂(Vi)

)2

(În,i − In,i)In,i, Tn,2 =
1

n

n∑
i=1

(
Yi − 1{Vi > 0}

f̂(Vi)

)2(
f(Vi)− f̂(Vi)

f̂(Vi)

)
În,i,

Tn,3 =
1

n

n∑
i=1

(
Yi − 1{Vi > 0}

f(Vi)

)2

(În,i − In,i)2, and Tn,4 =
1

n

n∑
i=1

(
Yi − 1{Vi > 0}

f(Vi)

)2
(
f(Vi)− f̂(Vi)

f̂(Vi)

)2

În,i.

Then, Tn,j = op(1), j = 1, · · · , 4.

Proof. Since

1

n

n∑
i=1

(
Yi − 1{Vi > 0}

f(Vi)

)2

In,i
p−→ E

(
Yi − 1{Vi > 0}

f(Vi)

)2

<∞,

we have

E|Tn,1| → 0 and Tn,1 = op(1).

Second,

|Tn,2| ≤
1

n

n∑
i=1

(
Yi − 1{Vi > 0}

f(Vi)

)2

op(1) = op(1).

Similarly, Tn,3 and Tn,4 are asymptotically negligible, i.e.,

Tn,3 = op(1), Tn,4 = op(1).

Therefore, we have

1

n

n∑
i=1

Z2
n,i

p−→ E
(
Yi − 1{Vi > 0}

f(Vi)

)2

.
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In addition, 1
n

∑n
i=1 Zn,i

p−→ α. So we have shown

Σ̂ =
1

n

n∑
i=1

Z2
n,i −

[
1

n

n∑
i=1

Zn,i

]2
p−→ Σ.

Lemma 7.4. For ln, rn, l̂n and r̂n defined in Section 3.2, if Assumption 2 holds, then there exist

two positive sequences Mn,r and Mn,l such that for S+
n = (−Mn,l + ln,Mn,r + rn), S−n = (Mn,l +

ln,−Mn,r + rn), and

An = {|r̂n − rn| ≤Mn,r} ∩ {|l̂n − ln| ≤Mn,l},

we have (1) P (An)→ 1 and on An, S−n ⊂ Ŝn ⊂ S+
n , and (2) for any v ∈ S+

n , f(v) ≥ cn−ρLn.

Lemma 7.4(1) states that the feasible random interval Ŝn nests and is nested by two deterministic

intervals S−n and S+
n , respectively, w.p.a.1. Lemma 7.4(2) shows that, on interval S+

n , the decay rate

of the density f(v) is controlled by tuning parameters ρr and ρl.

We first introduce a lemma on the asymptotic properties of extremal quantile estimators l̂n and r̂n,

derived by Dekkers and De Haan (1989). Recall that F is the CDF of the special regressor V . Let

U = ( 1
1−F )←, V (t) = U(et). Then, we have V ′(t) = U ′(et)et. By Assumption 4, U ′(t) ∈ RVξr−1(∞).

Denote E
(n)
(1) ≤ E

(n)
(2) ≤ · · ·E

(n)
(n) as the ascending order statistics of E1, E2, · · ·En, where E1, E2, · · ·En

are i.i.d. standard exponential random variables.

Lemma 7.5. For m(n)→∞ and m = bm(n)c, we have

(1) {V (n)
(n−i+1), i = 1, 2, · · ·n} d

= {V (E
(n)
(n−i+1)), i = 1, 2, · · ·n}.

(2) If m(n)
n → 0, m(n)→∞, Let r̂n = V n

(n−m+1), then

√
2m

(
r̂n − rn

V n
(n−m+1) − V

n
(n−2m+1)

)
 N (0, σ2(ξr))

where σ(ξr) is a constant that only depends on ξr.

(3)

√
2m

V (E
(n)
(n−m+1))− V (E

(n)
(n−2m+1))

2ξrV ′(E
(n)
(n−2m+1))

− 1− 2−ξr

ξr

 N (0, 1).

(4)

V ′(E
(n)
(n−2m+1))

V ′(log( n
2m))

− 1 =
ξr(V (E

(n)
(n−2m+1))− V (log( n

2m)))

V ′(log( n
2m))

+ op(
1√
2m

) = Op(
1√
2m

) = op(1).
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In our definition, for the right tail, mr = n1−ρr for some 0 < ρr < 1. The convergence rate for r̂n is

√
2mr

V n
(n−mr+1) − V

n
(n−2mr+1)

∼ C
√

2mr

V ′(E
(n)
(n−2mr+1))

∼ C
√

2mr

V ′(log( n
2mr

))
,

where the first and second equivalences are by Lemmas 7.5(3) and 7.5(4), respectively. Similarly,

for the left tail, the convergence rate for l̂n is
√

2ml
V ′(log(2ml))

where ml = n1−ρl .

Proof of Lemma 7.4. We only show the results for the right tail. The argument for the left tail is

symmetric.

For (1), by Lemma 7.5, we have r̂n − rn = Op(
√

2mr
V ′(log( n

2mr
))) where mr = n1−ρr . Let Mn be some

deterministic sequence such that Mn → ∞. We define Mn,r =
MnV ′(log( n

2m
))√

2m
. Then we have |r̂n −

rn| = op(Mn,r).

For (2), because of the monotonicity of f , for z ∈ S+
n , we have

f(z)

f(rn)
≥ f(rn +Mn,r)

f(rn)
=
f((1− F )←(1− F (rn +Mn,r)))

f((1− F )←(1− F (rn)))
.

By Proposition 0.7 of Resnick (2007) (for the regularly varying case) or Lemma 4.2 of D’Haultfoeuille

et al. (2016) (for the rapidly varying case), Assumption 4 implies f((1 − F )←) ∈ RVξr+1(0). In

addition, since V has unbounded support, ξr ≥ 0 and ξr + 1 ≥ 1. If

1− F (rn +Mn,r)

1− F (rn)
→ 1, (7.8)

then
f(rn+Mn,r)

f(rn) → 1 and thus f(z) > Cf(rn) = Cf((1 − F )←(n−ρr)) = Cn−ρr(ξr+1)Ln. Therefore

we only need to verify (7.8). The proof is divided into two cases.

Case (1): ξr > 0, 1 − F is regularly varying. We only have to prove
rn+Mn,r

rn
→ 1 or equivalently,

Mn,r

rn
→ 0. Note by the choice of Mn,r, we have

Mn,r

rn
= Mn

U ′(nρr)nρr

n
1−ρr

2 (1− F )←(n−ρr)

=
Mn

n
1−ρr

2 Ln
.

Since ρr < 1, the denominator diverges to infinity. Thus, there exists a sequence Mn such that

Mn →∞ and
Mn,r

rn
→ 0.

Case (2): ξr = 0, then by Assumption 4, the right tail of F is in the attraction domain of type

1 EV distribution. By Proposition 0.10 of Resnick (2007), it implies 1
1−F is Γ-varying with an
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auxiliary function f0(t) = 1−F (t)
f(t) .3 In addition, we can write

1−F (rn+Mn,r)
1−F (rn) =

1−F (rn+
Mn,r
f0(rn)

f0(rn))

1−F (rn) .

If
Mn,r

f0(rn) → 0, then by the definition of Γ-varying function (Equation 0.47 in Resnick (2007)), (7.8)

holds. Since f(1− F )← ∈ RV1(0),

f0(rn) = f0((1− F )←)(n−ρr) ∼ (1− F )(1− F )←(n−ρr)

f(1− F )←(n−ρr)
∼ 1

Ln
,

f0(rn) is slowly varying. Therefore,
Mn,r

f0(rn)
∼ MnLn

n
1−ρr

2

. (7.9)

Furthermore, ρr < 1, we have Ln

n
1−ρr

2

→ 0. Thus there exists a sequence of Mn, e.g., Mn = n
1−ρr

4 →

∞, such that
Mn,r

f0(rn) → 0. This is the desired result.

The next two lemmas verify the high level assumptions that ensure the
√
n-consistency of α̂: (1) the

asymptotic bias vanishes faster than
√
n and (2) the Lindeberg condition.

Lemma 7.6. If Assumption 5(1) or (3) holds and the tuning parameters h and ρr are chosen as in

Assumption 6, then the following statements hold:

(1)
√
nE|Yi−1{Vi>0}

f(Vi)p
|(1− 1{Vi ∈ S−n })→ 0 for any p > 0;

(2) E|Yi−1{Vi>0}
f(Vi)

|p <∞ for any p > 0.

Proof. We only prove the results for the right tail. The proof for the left tail is symmetric. We note

that, because the special regressor V is supported on the whole real line, V can only have type 1

or type 2 tails, i.e., its EV indices are nonnegative. If V has type 1 tails, then (1 − F )← is slowly

varying, while if it has type 2 tails, then (1− F )← is regularly varying.

For part (1), under Assumption 5(1), (1−F )←(z) is a regularly varying function and for any qr > 0,

(1 − Fε)←(zqr) is slowly varying as z → 0. Therefore, we have (1−F )←(z)
(1−Fε)←(zqr ) → ∞ as z → 0. Under

Assumption 5(3), for any qr > 0, and as z → 0,

(1− F )←(z)

(1− Fε)←(zqr)
=

T←r (− log(z))

D←r (−qr log(z))

= (− log(z))
1

d1,r
− 1
d2,r Ln(− log(z))→∞.

In addition, (1−Fε)←(zqr)→∞ as z → 0. Therefore, under either Assumption 5(1) or Assumption

5(3), for any qr > 0 and any constant C independent of n, when z is sufficiently close to zero,

C + (1− F )←(z)

(1− Fε)←(zqr)
≥ 1. (7.10)

3A non-decreasing function U is Γ-varying if U is defined on an interval (xl, x0), limx↑x0 U(x) =∞ and there exists

a positive function f0 defined on (xl, x0) such that for all x, limt→x0
U(t+xf0(t))

U(t)
= exp(x).
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We define

Bn,1 =

∫ ∞
rn−mn,r

1− Fε(α+ v)

f(v)p−1
dv

and

Bn,2 =

∫ −rn,l+mn,l
−∞

Fε(α+ v)

f(v)p−1
dv.

Then we have E|Yi−1{Vi>0}
f(Vi)p

|(1− 1{Vi ∈ S−n }) = Bn,1 +Bn,2. Similar to the proof of Lemma 7.4, we

have
1−F (rn−Mn,r)

1−F (rn) → 1. Therefore, there exists a constant C such that, for n sufficiently large,

(1− F (rn −Mn,r)) ≤ C(1− F (rn)) = C((1− F )((1− F )←(n−ρr))) = Cn−ρrLn. (7.11)

(7.11) implies {z : (1 − F )←(z) ≥ rn −Mn,r} ⊂ {z : z ≤ Cn−ρrLn}. Let v = (1 − F )←(z). By the

change of variables, we have, for an arbitrary qr > 0,

√
nBn,1 ≤

√
n

∫ Cn−ρrLn

0

(1− Fε)(α+ (1− F )←(z))

f((1− F )←(z))p
dz

≤
√
n

∫ Cn−ρrLn

0

zqr

f((1− F )←(z))p
dz

≤
√
n

∫ Cn−ρrLn

0
zqr−p(ξr+1)L(z)dz

= O(n
1
2
−ρr(qr−p(ξr+1)+1)Ln),

in which L(z) is a slowly varying function. The second and third inequalities in the above display

are by (7.10) and Assumption 4, respectively. Since qr is arbitrary, we can choose it to be sufficiently

large so that 1
2 − ρr(qr− p(ξr + 1) + 1) < 0. This means

√
nBn,1 = o(1). Similarly, we can show that

√
nBn,2 = o(1). This concludes lemma 7.6(1).

For part (2), we note

E|Yi − 1{Vi > 0}
f(Vi)

|p ≤ C
∫
Fε(α+ v)(1− 1{v > 0}) + 1{v > 0}(1− Fε(α+ v))

f(v)p−1
dv

= C(

∫ ∞
0

1− Fε(α+ v)

f(v)p−1
dv +

∫ 0

−∞

Fε(α+ v)

f(v)p−1
dv).

We now only consider the integrability in the right tail. Let z = (1 − F )←(v). By the change of

variables, we have∫ ∞
0

1− Fε(α+ v)

f(v)p−1
dv =

∫ c

0

1− Fε(α+ v)

f(v)p−1
dv +

∫ ∞
c

1− Fε(α+ v)

f(v)p−1
dv

≤ C +

∫ c

0

(1− Fε)(α+ (1− F )←(z))

(f(1− F )←(z))p
dz

≤ C +

∫ c

0
zqr−p(ξr+1)L(z)dz.
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Since qr is arbitrary, we can choose qr sufficiently large so that qr − p(ξr + 1) + 1 > 0. This implies

the integral is finite.

Lemma 7.7. If Assumption 5(2) holds and the tuning parameters h and ρr are chosen as in As-

sumption 6, then the following statements hold:

(1)
√
nE|Yi−1{Vi>0}

f(Vi)
|(1− 1{Vi ∈ S−n })→ 0;

(2) For an arbitrary η > 0, E|Yi−1{Vi>0}
f(Vi)

|2+max(σ,η) <∞.

Proof. For part (1), we first let qr be some positive constant such that qr <
ξr
λr

. Then by Assumption

4(2), for any arbitrary constant C,

C + (1− F )→(z)

(1− Fε)→(zqr)
∼ zqrλr−ξrL(z)→∞

as z →∞ in which L(z) is a slowly varying function.

In addition, by Assumption 6, we have λr
2ξr(1−λr) < ρr or equivalently, ρr(

ξr
λr
− ξr) > 1

2 . It implies

that the qr we previously chose can further satisfy ρr(qr − ξr) > 1
2 . Therefore, the same calculation

in the proof of Lemma 7.6(1) with the new qr and p = 1 leads to part (1).

For part (2), when σ > 0, we have

ξr
λr
− (2 + σ)(ξr + 1) + 1 = (ξr + 1)(

ξr(1− λr)
λr(1 + ξr)

− (1 + σ)) > 0,

in which the last inequality is by Assumption 5. Therefore, it implies that the qr we previously chose

can further satisfy qr − (2 + σ)(ξr + 1) + 1 > 0. Then the same argument in the proof of Lemma

7.6(2) with the new qr and p = 2 + σ leads to part (2).

If σ = 0, then
ξr
λr
− 2(ξr + 1) + 1 = (ξr + 1)(

ξr(1− λr)
λr(1 + ξr)

− 1) > 0.

Therefore, we can always find an η > 0 such that

ξr
λr
− (2 + η)(ξr + 1) + 1 > 0.

This concludes the proof.

Lemma 7.8. Let G(v) = P (v)−1{v>0}
f(v) 1{v ∈ Sn} where P (v) = P (Y = 1|V = v) and f(·) is the

density of V . If Assumption 2(3) holds, then for any fixed u ∈ [−1, 1] and h→ 0, we have

(1)
∫
G2(v − hu)f(v)dv ≤ CE|Y−1{V >0}

f(V ) |2+σ ≤ C;

(2)
∫

(G(v − hu)−G(v))2f(v)dv → 0 as h→ 0.
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Proof. For part (1), we have∫
G2(v − hu)f(v)dv =

∫
G2(v)f(v + hu)dv

≤ C
∫

(
P (v)− 1{v > 0}

f(v)
)2f(v)1−σdv

= CE(E
Y − 1{V > 0}
f(V )1+σ

2

|V )2

≤ CE(Y − 1{V > 0})2

f(V )2+σ

= CE
∣∣∣∣Y − 1{V > 0}

f(V )

∣∣∣∣2+σ

≤ C,

in which the first equality is by the change of variables and the fact that V has full support, the first

inequality is by Assumption 2(3), the second inequality is by Jansen’s inequality, the third equality

is because |Y − 1{V > 0}| only take value 0 or 1, and the last inequality is by Lemma 7.6(2) or

7.7(2).

For part (2), we will follow the proof of Lemma (0.12) in Folland (1995). BecauseG(v) ∈ L2(f(v)1−σdv),

for any δ > 0, we can pick a continuous function g with compact support, such that∫
(G(v)− g(v))2f(v)1−σdv < δ.

This implies ∫
(G(v)− g(v))2f(v)dv < c1δ

where c1 = supv f(v)σ. Second, because g is continuous with compact support, we have∫
(g(v − hu)− g(v))2f(v)dv ≤ δ,

for h sufficiently small. Last, we have∫
(G(v − hu)− g(v − hu))2f(v)dv =

∫
(G(v)− g(v))2f(v + hu)dv

≤ c2

∫
(G(v)− g(v))2f(v)1−σdv

≤ c2δ.

Combining the three inequalities, we have∫
(G2(v − hu)−G2(v))f(v)dv ≤ (c1 + 1 + c2)δ.

Since δ is arbitrary, this concludes the proof.
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Lemma 7.9. If Assumptions 1–4 hold, then

sup
S+
n

|f̂(v)− f(v)|/f(v)(1−σ)/2 = Op((
log(n)

nh
)
1
2 ),

inf
S+
n

f̂(v)f(v)−(1−σ)/2 ≥ cn−ρ(1+σ)/2Ln w.p.a.1,

and

1− op(1) = inf
S+
n

|f̂(v)/f(v)| ≤ sup
S+
n

|f̂(v)/f(v)| = 1 + op(1).

Proof. Let G = { 1
hK( ·−vh )f(v)−(1−σ)/2 : v ∈ S+

n }. By Lemma 7.4, for any v ∈ S+
n , f(v) ≥ cn−ρLn.

Therefore, G has an envelope G = Cnρ(1−σ)/2Lnh
−1.

sup
v∈S+

n

|f̂(v)− f(v)|f(v)−(1−σ)/2 ≤ ||Pn − P||G + nρ(1−σ)/2Ln sup
v∈S+

n

|E1

h
K(

Vi − v
h

)− f(v)|

. ||Pn − P||G + nρ(1−σ)/2Lnh
ν .

Because H > 1+ρ
1+2ν , the second term in the RHS is O(( log(n)

nh )
1
2 ). We now focus on bounding the first

term. Note

sup
g∈G

Eg2 . h−1 sup
v∈S+

n

∫
f(v + hu)

f(v)1−σ K2(u)du . h−1.

In addition, G is a VC-class with a fixed VC-index. Therefore, by Corollary 5.1 of Chernozhukov

et al. (2014),

E||Pn − P||G . (log(n)/(nh))1/2 + log(n)nρ(1−σ)/2/nh . (log(n)/(nh))1/2,

in which the last inequality holds because H < 1− (1 + σ)ρ ≤ 1− (1− σ)ρ. This leads to the first

result.

For the second result, we note that, w.p.a.1,

inf
S+
n

|f̂(v)|f(v)−(1−σ)/2 = inf
S+
n

∣∣∣∣f(v)(1+σ)/2 + f(v)−(1−σ)/2(f̂(v)− f(v))

∣∣∣∣
≥cn−ρ(1+σ)/2Ln −Op

(
(
log(n)

nh
)1/2

)
≥cn−ρ(1+σ)/2Ln,

where the last inequality is due to H < 1− (1 + σ)ρ.

For the last result, note

sup
S+
n

| f̂(v)− f(v)

f(v)
| ≤ sup

S+
n

|f̂(v)− f(v)|
f(v)(1−σ)/2

1

infS+
n
f(v)(1+σ)/2

= Op

(
(
log(n)nρ(1+σ)

nh
)1/2

)
= op(1),
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where the last equality is due to H < 1− (1 + σ)ρ. Therefore,

inf
S+
n

|f̂(v)/f(v)| ≥ 1− sup
S+
n

|(f̂(v)− f(v))/f(v)| = 1− op(1).

The upper bound can be established by a similar argument.

7.3 Lemmas for Tan and Zhang (2017, Theorem 4.1)

Lemma 7.10. If the assumptions in Theorem 4.1 hold, then, for Rn,j, j = 1, 2, 3 defined in the

proof of Theorem 4.1, we have
3∑
j=1

Rn,j = op(
1√
n

).

The key of the proof is to find two deterministic sequences Mn,r and Mn,l such that for

An = {|l̃n − ln| ≤Mn,l ∩ |r̃n − rn| ≤Mn,r},

we have P (An)→ 1. This has been done in Lemma 7.11.

Next, we define S+
n = (−Mn,l + ln, rn +Mn,r), S

−
n = (Mn,l + ln, rn −Mn,r), I

+
n,i = 1{Ui ∈ S+

n }, and

I−n,i = 1{Ui ∈ S−n }. On An, we have

I−n,i < Ĩn,i < I+
n,i

for all i = 1, · · · , n. This implies

I−n,i − 1 ≤ I−n,i − In,i ≤ Ĩn,i − In,i ≤ I
+
n,i − In,i ≤ min(1− I−n,i, I

+
n,i). (7.12)

We derive bounds for various terms by replacing Ĩn,i by the nonrandom upper and lower bounds.

This has been done in Lemmas 7.12–7.14. Given Lemmas 7.11–7.14, we next prove Lemma 7.10.

Proof. By Lemma 7.11(1), on An, we have

|Ĩn,i − In,i| ≤ 1− 1{Ui ∈ S−n },

and P (An)→ 1. Then, by Lemma 7.12(1) or 7.13(1), on An,

E|Rn,1| ≤ E
∣∣∣∣Yi − 1{Vi > 0}

f(Ui)

∣∣∣∣ (1− 1{Ui ∈ S−n }) = o(
1√
n

).

This implies Rn,1 = op(
1√
n

). For Rn,2, on An, we have

|Rn,2| ≤
1

n

n∑
i=1

∣∣∣∣Yi − 1{Vi > 0}
f(Ui)

∣∣∣∣ (1− 1{Ui ∈ S−n })
∣∣∣∣∣f(Ui)− f̃(Ûi)

f̃(Ûi)

∣∣∣∣∣1{Ui ∈ S+
n }.
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By Lemma 7.14, we have

max
1≤i≤n

∣∣∣∣∣f(Ui)− f̃(Ûi)

f̃(Ûi)

∣∣∣∣∣1{Ui ∈ S+
n } = op(1),

Furthermore, we have already shown in Lemma 7.12(1) or 7.13(1) that

1

n

n∑
i=1

∣∣∣∣Yi − 1{Vi > 0}
f(Ui)

∣∣∣∣ (1− 1{Ui ∈ S−n }) = op(
1√
n

).

This implies Rn,2 = op(
1√
n

). For Rn,3, on An, we have

|Rn,3| ≤
1

n

n∑
i=1

∣∣∣∣Yi − 1{Vi > 0}
f(Ui)3

∣∣∣∣
∣∣∣∣∣
√
n(f(Ui)− f̃(Ûi))

2

1 + op(1)

∣∣∣∣∣1{Ui ∈ Sn}.
By Lemma 7.12(1) or 7.13(1),

1

n

n∑
i=1

∣∣∣∣Yi − 1{Vi > 0}
f(Ui)3

∣∣∣∣ = Op(1)

and
max

1≤i≤n
(f(Ui)− f̃(Ûi))

2

≤ max
1≤i≤n

[f(Ui)− f̂(Ui)]
2 + max

1≤i≤n
(f̃(Ûi)− f̂(Ui))

2

≤Op(
log(n)

nh
) + max

1≤i≤n

(
1

n− 1

∑
j 6=i

K ′(
Ũj − Ũi

h
)/(
√
nh)

)2

= Op(
1

nh2
) = op(

1√
n

).

This concludes that Rn,3 = op(
1√
n

).

Lemma 7.11. There exist positive sequences Mn,l and Mn,l such that for

An = {|l̃n − ln| ≤Mn,l ∩ |r̃n − rn| ≤Mn,r},

S+
n = (−Mn,l + ln, rn + Mn,r), S

−
n = (Mn,l + ln, rn −Mn,r), S̃

+
n = (−2Mn,l + ln, rn + 2Mn,r), and

S̃−n = (2Mn,l + ln, rn − 2Mn,r), we have (1) P (An)→ 1 and on An,

{Ûi ∈ S̃−n } ⊂ {Ui ∈ S−n } ⊂ {Ûi ∈ S̃n} ⊂ {Ui ∈ S+
n } ⊂ {Ûi ∈ S̃+

n }

for i = 1, · · · , n, and (2) for u ∈ S+
n , f(u) ≥ cn−ρLn, where ρ = max(ρr(1 + ξr), ρl(1 + ξl)).

Proof. The only difference between Lemma 7.11 and Lemma 7.4 is that, here, Ui is unobservable. We

27



propose to replace it by the residual Ûi. Then the feasible trimming points l̃n and r̃n are computed

as order statistics of Ûi. By Assumption 9 and the fact that γ̂ is
√
n-consistent, we have

max
1≤i≤n

|Ûi − Ui| ≤ max
1≤i≤n

|Si||γ̂ − γ| = Op(
1√
n

).

Since the convergence rate for the estimator of intermediate order statistics is slower than
√
n, it is

expected that the convergence rates of l̃n and r̃n to their true values will not be affected by using Ûi

for estimation. In particular, for the left tail, let τn,l = n−ρl , ml = bnτn,lc, αn,l =
√

n
τn,l

f(F←(τn,l)).

We can show that

Û
(n)
(ml)
− ln = Op(

1

αn,l
). (7.13)

Similarly, for the right tail, we have

Û
(n)
(n−mr+1) − rn = Op(

1

αn,r
), (7.14)

in which τn,r = n−ρr , mr = bnτn,rc, and αn,r =
√

n
τn,r

f((1 − F )←(τn,r)). Given (7.13) and (7.14),

for any sequence Mn →∞, we have

Mn
√
n

αn,r
∼ Mn

τ
1
2

+ξr
n,r Ln

→∞, Mn
√
n

αn,l
∼ Mn

τ
1
2

+ξl
n,l Ln

→∞.

Then w.p.a.1,

{Ûi ≤ r̃n} ⊂ {Ûi ≤ rn + |rn − r̃n|}

⊂ {Ui ≤ rn +
Mn

αn,r
+ max

i≤n
|Ui − Ûi|}

⊂ {Ui ≤ rn +
Mn

αn,r
+

C√
n
}

⊂ {Ui ≤ rn +
2Mn

αn,r
}.

Similarly,

{Ûi ≤ r̃n} ⊃ {Ui ≤ rn −
2Mn

αn,r
}.

We can further show

{Ui ≤ rn −
2Mn

αn,r
} ⊃ {Ûi ≤ rn −

4Mn

αn,r
} and {Ui ≤ rn +

2Mn

αn,r
} ⊂ {Ûi ≤ rn +

4Mn

αn,r
}.

This implies we can choose Mn,r = 2Mn
αn,r

for any Mn →∞ for the right tail. Similarly, we can choose

Mn,l = 2Mn
αn,l

. Therefore, given (7.13) and (7.14), we have already proven part (1) of the lemma.

Part (2) and (3) follow the same argument of Lemma 7.4 which we will not repeat. Now, we turn

to (7.13) and (7.14).
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We focus on the left tail and show (7.13). (7.14) can be derived in the same manner. Let ρτ (u) be

the check function defined as ρτ (u) = u(τ − 1{u ≤ 0}). Then,

Û
(n)
(ml)
∈ arg min

q

n∑
i=1

ρτn,l(Ûi − q).

Define z = αn,l(q − ln), Ẑn = αn,l(Û
(n)
(ml)
− ln), and

Q(τn,l, z) =
αn,l√
nτn,l

n∑
i=1

[ρτn,l(Ui − ln −
z

αn,l
+ Ûi − Ui)− ρτn,l(Ui − ln)].

Then Ẑn minimizes Q(τn,l, z).

In the following, we show that, Q(τn,l, z), the rescaled version of the objective function, weakly

converges to a limiting process

Q∞(z) = −zW +
z2

2
,

where W ∼ N (0, 1). Then we can apply the Convexity lemma and the same argument in the proof

of Pollard (1991, Theorem 1) to derive the desired result

Ẑn  W = Op(1).

By equation (9.44) of Chernozhukov (2005),

Q(τn,l, z) =
−z
√
nτn,l

n∑
i=1

(τn,l − 1{Ui ≤ ln}) +
αn,l√
nτn,l

n∑
i=1

(Ui − Ûi)(τn,l − 1{Ui ≤ ln})

+
αn,l√
nτn,l

n∑
i=1

∫ z
αn,l

+Ui−Ûi

0
[1{Ui − ln ≤ s} − 1{Ui − ln ≤ 0}]ds.

(7.15)

Next, we aim to show

1
√
nτn,l

n∑
i=1

(τn,l − 1{Ui ≤ ln}) W, (7.16)

αn,l√
nτn,l

n∑
i=1

(Ui − Ûi)(τn,l − 1{Ui ≤ ln}) = op(1), (7.17)

and
αn,l√
nτn,l

n∑
i=1

∫ z
αn,l

+Ui−Ûi

0
[1{Ui − ln ≤ s} − 1{Ui − ln ≤ 0}]ds p−→ z2

2
. (7.18)

(7.16) holds because of the triangular array CLT such as Theorem 3.4.5 in Durrett (2010). Here,

the Lyapunov condition for the CLT holds because nτn →∞.
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For (7.17), we have

αn,l√
nτn,l

n∑
i=1

(Ui − Ûi)(τn,l − 1{Ui ≤ ln}) =

[
1

√
nτn,l

n∑
i=1

(τn,l − 1{Ui ≤ ln})Z ′i

]
[αn,l(γ̂ − γ)]

= Op

(
αn,l√
n

)
= Op(L(τn,l)τ

ξl+0.5
n,l ) = op(1),

in which the second last equality is because f(F←(τn,l)) ∈ RVξl+1(0), and L(τ) is a slowly varying

function at 0 such that L(kτ)
L(τ) → 1 for any k > 0 as τ → 0.

Before proving (7.18), we first define d̂ =
√
n(γ̂−γ). Then Ui−Ûi = Zi

d̂√
n

. Since γ̂ is
√
n-consistent,

d̂ = Op(1). Next we consider

Λn(z, d) =
αn,l√
nτn,l

n∑
i=1

∫ z
αn,l

+Zi
d√
n

0
[1{Ui − ln ≤ s} − 1{Ui − ln ≤ 0}]ds

=
1

√
nτn,l

n∑
i=1

∫ z+Zi
dαn,l√

n

0
[1{Ui − ln ≤

s

αn,l
} − 1{Ui − ln ≤ 0}]ds,

and show Λn(z, d)
p−→ z2

2 uniformly over |z| ≤ B, |d| ≤ B, for any B > 0. To see this, we note that

EΛn(z, d) =

√
n

τn,l
E
∫ z+

αn,l√
n
Zid

0
[1{Ui − ln ≤

s

αn,l
} − 1{Ui − ln ≤ 0}]ds

=

√
n

τn,l
E
∫ z+

αn,l√
n
Zid

0
[F (ln +

s

αn,l
)− F (ln)]ds

=

√
n

τn,l
E
∫ z+

αn,l√
n
Zid

0
f(ln +

s̃

αn,l
)
s

αn,l
ds

in which s̃ is between 0 and z+
αn,l√
n
Zid. Since |z| < B, |d| < B, |Zi| < B and

αn,l√
n
→ 0, s̃ is bounded.

Then by Equation (9.57) of Chernozhukov (2005), we have

f(ln +
s̃

αn,l
) ∼ f(ln).

Hence we have, uniformly over z, d,

EΛn(z, d) ∼
√
τn,l
n

f(ln)

αn,l

1

2
E(z +

αn,l√
n
Zid)2 → s2

2
.

Next, we show

sup
|d|<B,|z|<B

|Λn(z, d)− EΛn(z, d)| p−→ 0.
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Let us consider the class of functions

F =

 1
√
τn,l

∫ z+Zi
dαn,l√

n

0

[
1{Ui − ln ≤

s

αn,l
} − 1{Ui − ln ≤ 0}

]
ds : |d| < B, |z| < B


with an envelope Fe = C√

τn,l
. It is easy to see that F satisfies the uniform entropy condition, that is,

sup
Q
N(ε||Fe||Q,2,F , || · ||Q,2) ≤

(a
ε

)v
, ∀ε ∈ (0, 1].

In addition, since Zi is bounded, for σ2
n = supf∈F Ef2, we have

σ2
n . τ

−1
n,l E

[
1

{
Ui ≤ ln +

B + |Zi|B
αn,l√
n

αn,l

}
− 1

{
Ui ≤ ln −

B + |Zi|B
αn,l√
n

αn,l

}]
. τ−1

n,l f(ln)
1

αn,l
=

1
√
nτn,l

,

in which the second inequality is by Equation (9.57) of Chernozhukov (2005). Then by Corollary

5.1 of Chernozhukov et al. (2014), we have

E sup
|d|<B,|z|<B

|Λn(z, d)− EΛn(z, d)|

= E||
√
n(Pn − P)||F

.

√
σ2
n log(

||Fe||P,2
σn

) +
1

√
nτn,l

log(
||Fe||P,2
σn

)

.

√
log(n)
√
nτn,l

→ 0.

This implies sup|d|<B,|z|<B |Λn(z, d)− EΛn(z, d)| p−→ 0. Thus

Λn(z, d)
p−→ z2

2

uniformly in |z| < B, |d| < B. Then uniformly over |z| < B,

Λn(z, d̂)
p−→ z2

2

and thus (7.18) holds. Combining (7.16)–(7.18), we have

Q(τn,l, z) −zW +
z2

2
.
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Since the RHS is uniquely minimized at z = W , by the same argument of the proof of Pollard (1991,

Theorem 1), we have

αn,l(Û
(n)
(ml)
− ln) W and thus (Û

(n)
(ml)
− ln) = Op(

1

αn,l
).

This concludes the proof.

Lemma 7.12. If Assumption 11(1) or (3) holds and the tuning parameters h and (ρr, ρl) are chosen

as in Assumption 12, then the following statements hold:

(1)
√
nE
∣∣∣Yi−1{Vi>0}

f(Ui)p

∣∣∣ (1− 1{Ui ∈ S−n })→ 0 for any p > 0;

(2) E
∣∣∣Yi−1{Vi>0}

f(Ui)p

∣∣∣ <∞ for any p > 0.

Proof. For part (1), we have 1−1{u ∈ S−n } = 1{u > rn−Mn,r}+1{u < ln+Mn,l}. We focus on the

right tail. Since Si has bounded support, Ui > rn−Mn,r, and
Mn,r

rn
→ 0, we have Vi = Ui +S′iγ > 0.

Therefore,
√
nE
∣∣∣∣Yi − 1{Vi > 0}

f(Ui)p

∣∣∣∣1{Ui > rn −Mn,r}

≤
√
nE
(

1− 1{εi ≤ X ′iβ + Z ′iγ + Ui}
f(Ui)p

)
1{Ui > rn −Mn,r}

≤
√
nE
(

1− 1{εi ≤ Ui − C}
f(Ui)p

)
1{Ui > rn −Mn,r}

≤
√
n

∫ ∞
rn−Mn,r

(1− Fε)(u− C)

f(u)p−1
du.

The RHS of the above display is o(1) by the same argument in the proof of Lemma 7.6.

For part (2), we can choose C1 such that when Ui > C1, Vi > 0 and when Ui < −C1, Vi < 0. On

|Ui| ≤ C1, the integrand |Yi−1{Vi>0}
f(Ui)p

| is bounded. So we only have to check the integrability at ±∞.

We focus on the right tail.

E
∣∣∣∣Yi − 1{Vi > 0}

f(Ui)p

∣∣∣∣1{Ui > C1}

≤C +

∫ ∞
C1

(1− Fε)(u− C)

f(u)p−1
du

≤C +

∫ c

0

(1− Fε)((1− F )←(z)− C)

f((1− F )←(z))p
dz <∞.

The last inequality holds by the same argument in the proof of part (2) of Lemma 7.6.

Lemma 7.13. If Assumption 11(2) holds and the tuning parameters h and (ρr, ρl) are chosen as in

Assumption 12(2), then the following statements hold:
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(1)
√
nE
∣∣∣Yi−1{Vi>0}

f(Ui)

∣∣∣ (1− 1{Ui ∈ S−n })→ 0;

(2) E
∣∣∣Yi−1{Vi>0}

f(Ui)3+σ

∣∣∣ <∞.

Proof. For part (1), by repeating the proof of Lemma 7.12 with p = 1, for the right tail, we have

√
nE

∣∣∣∣Yi − 1{Vi > 0}
f(Ui)

∣∣∣∣1{Ui > rn −Mn,r} ≤
√
n

∫ ∞
rn−Mn,r

(1− Fε)(u− C)du.

In order for the RHS to vanish, as in the proof of Lemma 7.7, we need ρr(
ξr
λr
− ξr) > 1

2 which holds

by Assumption 12.

For part (2), by repeating the proof of Lemma 7.12 with p = 3 + σ, for the right tail, we have

E
∣∣∣∣Yi − 1{Vi > 0}

f(Ui)3+σ

∣∣∣∣1{Ui > C1} ≤
∫ c

0

(1− Fε)((1− F )←(z)− C)

f((1− F )←(z))2+σ
dz. (7.19)

Then, following the proof of Lemma 7.7, the RHS of (7.19) is finite because ξr
λr
−(3+σ)(ξr+1)+1 > 0

by Assumption 11(2).

Lemma 7.14.

max
1≤i≤n

|[f̃(Ûi)− f(Ui)]/f(Ui)|1{Ui ∈ S+
n } = op(1),

1− op(1) ≤ min
1≤i≤n

|f̃(Ûi)/f(Ui)|1{Ui ∈ S+
n } ≤ max

1≤i≤n
|f̃(Ûi)/f(Ui)|1{Ui ∈ S+

n } = 1 + op(1),

and

|f̃(Ûi)|1{Ui ∈ S+
n } & n−ρLn1{Ui ∈ S+

n },

where ρ = max(ρr(1 + ξr), ρl(1 + ξl)).

Proof. For the first result, we note

f̃(Ûi)− f(Ui) =f̃(Ûi)− f(Ûi) + f(Ûi)− f(Ui)

=f̂(Ûi)− f(Ûi) + f(Ûi)− f(Ui) + f̃(Ûi)− f̂(Ûi),

in which f̂(Ûi) = 1
(n−1)h

∑
j 6=iK(

Uj−Ûi
h ). By Lemma 7.9, we have, w.p.a.1,

max
1≤i≤n

|f̂(Ûi)− f(Ûi)|/f(Ûi)1{Ui ∈ S+
n } ≤ sup

v∈S̃+
n

|f̂(v)− f(v)|/f(v) = op(1).

So we only need to prove

max
1≤i≤n

|f(Ûi)− f(Ui)|/f(Ui)1{Ui ∈ S+
n } = op(1) (7.20)

and

max
1≤i≤n

|f̃(Ûi)− f̂(Ûi)|/f(Ûi)1{Ui ∈ S+
n } = op(1). (7.21)
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We first prove (7.20). Let Ui = Q(τi) where Q(·) is the quantile function of U . By the construction

of S+
n , for any l < 1, we have S+

n ∈ (Q(lτn,l), Q(1− lτn,r)). To see this, notice the lower end point of

S+
n is Q(τn,l)− 2Mn/αn,l. We claim that Q(τn,l)− 2Mn/αn,l > Q(lτn,l) for any l < 1, and therefore,

Ui ≥ Q(lτn,l). The claim is equivalent to

αn,l(Q(τn,l)−Q(lτn,l)) > 2Mn.

Note for the intermediate order quantile, the convergence rate is

αn,r ∼ c
√
nτn,l/(Q(eτn,l)−Q(τn,l)).

Therefore, the above inequality is equivalent to

c
√
ml > 2Mn (7.22)

where c is a generic constant. We can choose Mn in Lemma 7.11 such that (7.22) holds. Similarly,

we can show

Q(1− τn,r) + 2Mn/αn,r ≤ Q(1− lτn,r).

Furthermore, max1≤i≤n |Ui − Ûi| ≤ max1≤i≤n |Si||γ̂ − γ| = Op(
1√
n

). Hence, for any δn such that
√
nδn →∞ and any l < 1,

max
1≤i≤n

|f(Ûi)− f(Ui)|/f(Ui)1{Ui ∈ S+
n } ≤ sup

|∆|≤δn,τ∈(lτn,l,1−lτn,r)
|f(Q(τ) + ∆)− f(Q(τ))|/f(Q(τ)).

We want to show the RHS decays to zero by checking the limits of all possible convergent sub-

sequences. Note that τ = τn ∈ (lτn,l, 1 − lτn,r). As n → ∞, we have three possibilities: (1)

τn → τ0 ∈ (0, 1); (2) τn → 0; and (3) τn → 1. For case (1), by the mean value theorem, we have

|f(Q(τn) + ∆)− f(Q(τn))|/f(Q(τn)) ≤ c|∆| → 0.

For case (2), we first claim that for any L > 1, there exists some sequence δn such that δn → 0,
√
nδn →∞, and ∆ ≤ δn ≤ Q(Lτn)−Q(τn).

To see the claim, note that, if ξl = 0, then Q(Lτn) − Q(τn) is slowly varying. But δn can decay

to zero at a rate arbitrarily close to 1/2. Therefore the claim holds. On the other hand, if ξl > 0,

Q(Lτn) − Q(τn) diverges to infinity while δn will decay to zero. Again, the claim holds. Similarly,

we can show that

∆ ≥ Q(τn)−Q(τn/L).
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Given the density of U is monotonic in the tails, we have

|f(Q(τn) + ∆n)− f(Q(τn))|
f(Q(τn))

≤max

(
f(Q(Lτn))− f(Q(τn))

f(Q(τn))
,
f(Q(τn))− f(Q(τn/L))

f(Q(τn))

)
→max(Lξ+1 − 1, 1− L−(ξ+1)),

where the second line is because f(Q(τ)) is regularly varying with varying index ξ + 1 > 0. Since

L > 1 is arbitrary, by letting L→ 1, we have shown that, as τn → 0,

|f(Q(τn) + ∆n)− f(Q(τn))|
f(Q(τn))

→ 0.

Similarly, we can show that, for case (3),

|f(Q(τn) + ∆n)− f(Q(τn))|
f(Q(τn))

→ 0.

Hence there exists some sequence δn → 0 for which
√
nδn →∞ and

sup
|∆|≤δn,τ∈(lτn,l,1−lτn,r)

|f(Q(τ) + ∆)− f(Q(τ))|/f(Q(τ))→ 0.

Thus (7.20) holds.

Next, we turn to (7.21). Since 1{Ui ∈ S+
n } ≤ 1{Ûi ∈ S̃+

n } and (7.20), in order to show (7.21), it

suffices to show

sup
v∈S̃+

n

|f̃(v)− f̂(v)|/f(v) = op(1).

By Lemma 7.9, we have

sup
v∈S̃+

n

|f(v)− f̂(v)|/f(v) = op(1).

So we can focus on proving

sup
v∈S̃+

n

|f̃(v)− f(v)|/f(v) = op(1).

Since Ûj = Uj − S′j(γ̂ − γ) and (γ̂ − γ) = Op(
1√
n

), it suffices to show

sup
v∈S̃+

n ,|π|≤M
| 1

nh

n∑
j=1

K(
Uj − S′jπ/

√
n− v

h
)− f(v)|/f(v) = op(1).
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Let fs be the PDF of S. Since U ⊥⊥ S, we have

|EK(
Uj − S′jπ/

√
n− v

h
)/h− f(v)|/f(v) =|

∫ ∫
fs(s)f(v + hu− s′π/

√
n)dsK(u)du− f(v)|/f(v)

≤
∫ ∫

fs(s)
|f(v + hu− s′π/

√
n)− f(v)|

f(v)
dsK(u)du.

By the same proof of (7.20), it can be shown that

sup
v∈S̃+

n ,|π|≤M,s∈Supp(S)

|f(v + hu− s′π/
√
n)− f(v)|

f(v)
→ 0.

Therefore,

sup
v∈S̃+

n ,|π|<M
|EK(

Uj − S′jπ/
√
n− v

h
)/h− f(v)|/f(v) = o(1).

Let G = {K(U−S
′π/
√
n−v

h )/hf(v)(1−σ)/2 : |π| ≤M, v ∈ S̃+
n } with envelope Ch−1Lnn

ρ(1−σ)/2. We can

repeat the proof of Lemma 7.9 and show

||Pn − P||G = Op((log(n)/(nh))1/2).

This is because

sup
G

Eg2 ≤ h−1 sup
v∈S̃+

n ,|π|<M,s∈Supp(S)

∫ ∫
fs(s)f(v + hu− s′π/

√
n)dsK2(u)du/f(v)1−σ . h−1.

Given this and the fact that 1−H − (1 + σ)ρ > 0, we have

sup
v∈S̃+

n ,|π|≤M
| 1

nh

n∑
j=1

K(
Uj − S′jπ/

√
n− v

h
)− EK(

Uj − S′jπ/
√
n− v

h
)/h|/f(v) = op(1).

This implies (7.21) holds, and, thus, the first result of the lemma. The second result follows imme-

diately. The third result holds by noticing f(v) ≥ cn−ρLn for v ∈ S+
n .
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