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Abstract

This document provides a proof to Theorem 4.2 in the author’s paper “On Nonparametric

Inference in the Regression Discontinuity Design”.

KEYWORDS: Regression discontinuity design, uniform testing.

JEL classification codes: C12, C14.

A Additional Notation

Let Z(n) = {Zi : 1 ≤ i ≤ n} denote the observed sample of the random variable Z. Let an - bn denote

an ≤ Abn, where an and bn are deterministic sequences and A is a positive constant uniform in P. Let | · |
denote the Euclidean matrix norm. As we use the notion of convergence in probability under the sequence

of distributions Pn, let An = oPn
(1) denote

Pn(|An| > ε)→ 0 as n→∞ ,

for a sequences of random variables An ∼ Pn, where ε is any constant such that ε > 0. Further, in Table 1

below, we introduce additional notation to keep our arguments concise.

H(hn) diag(1,h−1n ,h−2n )

r(Zi/hn) (1, Zi/hn, (Zi/hn)2)′

Zn(hn) (r(Z1/hn), . . . , r(Zn/hn))′

k(u) (1− u)1{0 ≤ u ≤ 1}
K(u) k(−u)1{u < 0}+ k(u)1{u ≥ 0}

Khn(u) K(u/hn)/hn
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W+,n(hn) diag(1{Z1 ≥ 0}Khn
(Z1), . . . , 1{Zn ≥ 0}Khn

(Zn))

Γ+,n(hn) Zn(hn)′W+,n(hn)Zn(hn)/n

Sn(hn) ((Z1/hn)3, . . . , (Zn/hn)3)′

ν+,n Zn(hn)′W+,n(hn)Sn(hn)/n

e (1, 0, 0)′

µ(z, P ) EP [Y |Z = z]

µ+(P ) limz→0+ µ(z, P )

µ−(P ) limz→0− µ(z, P )

µv(z, P ) dvµ(z, P )/dzv

µv
+(P ) limz→0+ µ

v(z, P )

σ2(z, P ) V arP [Y |Z = z]

Σn(P ) diag(σ2(Z1, P ), . . . , σ2(Zn, P ))

Ψ+,n(hn, P ) Zn(hn)′W+,n(hn)Σn(P )W+,n(hn)Zn(hn)/n

Yn (Y1, . . . , Yn)′

β̂+,n H(hn)Γ−1+,n(hn)Zn(hn)′W+,n(hn)Yn/n

Table 1: Important Notation

Next, we provide an extended description of the test statistic used. For our null hypothesis as stated in

the paper, the test statistic can be rewritten as

TCCT
n =

µ̂+,n + µ̂−,n − (µ+(P )− µ−(P ))

Ŝn

, (A-1)

where µ+(P ) − µ−(P ) = θ0, µ̂+,n and µ̂−,n are bias corrected local linear estimates of µ+(P ) and µ−(P ),

and

Ŝn =

√
V̂+,n + V̂−,n ,

where V̂+,n and V̂+,n are plug-in estimates conditional on Z(n) of the variances of µ̂+,n and µ̂−,n; see (C-13)

for the plug-in estimator used. The bias of both estimates are estimated using local quadratic estimators.

Furthermore, for all estimates, we use the triangular kernel, i.e. k(u) in Table 1, and a deterministic

sequence of bandwidth choices denoted by hn. Throughout this document, we provide results for quantities

with subscript (+) as arguments for those with subscript (−) follow symmetrically. In addition, as noted

in Calonico et al. (2014a, Remark 7), we exploit the fact that in our simple version of the test statistic the

estimates are numerically equivalent to those from a non-bias-corrected local quadratic estimator. In turn,

we can write

µ̂+,n = e′β̂+,n , (A-2)

which reduces the length of the proof presented below. Further, as stated in the paper, note that

Q = {Q ∈ QW : Q satisfies Assumption 4.1} , (A-3)

and that

P = {QM−1 : Q ∈ Q} , (A-4)

where QW , M−1 and Assumption 4.1 are as defined in the paper.
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B Auxiliary Lemmas

Lemma B.1. Let Q be defined as in (A-3), P be as in (A-4) and Pn ∈ P for all n ≥ 1. If nhn → ∞ and

hn → 0, then

(i) Γ+,n(hn) = Γ̃+,n(hn) + oPn
(1), where Γ̃+,n(hn) =

∫∞
0
K(u)r(u)r(u)′fPn

(uhn)du ∈ [ΓL,ΓU ] .

(ii) ν+,n(hn) = ν̃+,n(hn) + oPn(1), where ν̃+,n(hn) =
∫∞
0
K(u)r(u)u2fPn(uhn)du ∈ [νL, νU ].

(iii) hnΨ+,n(hn, Pn) = Ψ̃+,n(hn) + oPn
(1), where Ψ̃+,n(hn) =

∫∞
0
K(u)2r(u)r(u)′σ2

Pn
(uhn)fPn

(uhn)du ∈
[ΨL,ΨU ].

Proof. For (i), a change of variables gives us

EPn
n

[Γ+,n(hn)] = EPn

[
1

nhn

n∑
i=1

1{Zi ≥ 0}K(Zi/hn)r(Zi/hn)r(Zi/hn)′

]

=
1

hn

∫ ∞
0

K(z/hn)r(z/hn)r(z/hn)′fPn
(z)dz

=

∫ ∞
0

K(u)r(u)r(u)′fPn
(uhn) ≡ Γ̃+,n(hn) .

Further, since hn < κ̃ for large enough n, we have that L̃ ≤ fPn
(z) ≤ Ũ by Assumption 4.1, which implies

that

ΓL ≡ L̃
∫ ∞
0

K(u)r(u)r(u)′du ≤ Γ̃+,n(hn) ≤ Ũ
∫ ∞
0

K(u)r(u)r(u)′du ≡ ΓU ,

and that

EPn
n

[|Γ+,n(hn)− EPn
[Γ+,n(hn)]|2] ≤ 1

h2n
EPn

[
|1{Zi ≥ 0}K(Zi/hn)r(Zi/hn)r(Zi/hn)′|2

]
=

1

nhn

∫ ∞
0

K(u)2|r(u)|4fPn
(uhn)du

≤ Ũ

nhn

∫ ∞
0

K(u)2|r(u)|4du

= O(n−1h−1n ) = o(1) .

It then follows by Markov’s Inequality that Γ+,n(hn) = Γ̃+,n(hn) + oPn(1). Analogously, closely following

Calonico et al. (2014b, Lemma S.A.1), we can show Lemma B.1(ii)-(iii).

Lemma B.2. Let Q be defined as in (A-3), P be as in (A-4) and Pn ∈ P for all n ≥ 1. If nhn → ∞ and

hn → 0, then

(i) EPn
n

[µ̂+,n|Z(n)] = µ+(Pn) +OPn
(h3n) .

(ii) VPn
n

[µ̂+,n|Z(n)] = n−1e′Γ−1+,n(hn)Ψ+,n(hn, Pn)Γ−1+,n(hn)e ≡ V+,n(hn, Pn) .

(iii) (V+,n(hn, Pn))
−1/2 (

µ̂+,n − EPn
n

[µ̂+,n|Z(n)]
) d−→ N (0, 1) .

3



Proof. For (i), by taking the conditional on Z(n) expectation, we have

EPn
n

[µ̂+,n|Z(n)] = e′H(hn)Γ−1+,n(hn)Zn(hn)′W+,n(hn)EPn
n

[Yn|Z(n)]/n .

Further, as hn < κ̃ for large enough n, we have by the required differentiability in Assumption 4.1 and a

Taylor expansion for 0 < Z < hn that

EPn
[Y |Z] = µ+(Pn) + Zµ1

+(Pn) + (Z/2)2µ2
+(Pn) +OPn

(h3n) .

It then follows from Lemma B.1 and the previous two expressions that

EPn
n

[µ̂+|Z(n)] = µ+(Pn) +OPn(h3n) .

For (ii), a simple calculation gives us

VPn
n

[µ̂+(hn)|Z(n)] = e′H(hn)Γ−1+,n(hn)Zn(Hn)′W+,n(hn)Σn(Pn)W+,n(hn)Zn(hn)Γ−1+,n(hn)H(hn)e/n2

= n−1e′Γ−1+,n(hn)Ψ+,n(hn, Pn)Γ−1+,n(hn)e ≡ V+,n(hn, Pn) .

For (iii), first note that from Lemma B.1 we have V+,n(hn, Pn) = Ṽ+,n(hn) + oPn(1) , where

Ṽ+,n(hn) = (nhn)−1e′Γ̃−1+,n(hn)Ψ̃+,n(hn)Γ̃−1+,n(hn)e .

Then rewrite as follows

µ̂+,n − EPn
n

[µ̂+,n|Z(n)]√
V+,n(hn, Pn)

=

(
Ṽ+,n(hn, Pn)

V+,n(hn, Pn)

)1/2 (
Ṽ+,n(hn)

)−1/2
e′Γ−1+,n(hn)Γ̃+,n(hn)Ã1/2

n ξn , (B-5)

where

ξn =

n∑
i=1

ωn,iεn,i ,

εn,i = Yi − EPn [Yi|Zi] ,

Ãn = (nhn)−1Γ̃−1+,n(hn)Ψ̃+,n(hn)Γ̃−1+,n(hn) , and

ωn,i = Ã−1/2n Γ̃−1+,n(hn)Khn
(Zi/hn)r(Zi/hn)/n .

Next note that for any a ∈ R3 we have that {a′ωn,iεn,i : 1 ≤ i ≤ n} is a triangular array of independent

random variables with EPn
n

[a′ξn] = 0 and VPn
n

[a′ξn] = a′a. Further, this triangular array satisfies the

Lindeberg condition. To see why, first note that by Lemma B.1 we have

|Ãn| ≥ (nhn)−1|ÃL| , (B-6)

for some value ÃL ∈ R, which is uniform in P. We then have by Lemma B.1 and a change of variables that

n∑
1=1

EPn
[|a′ωn,iεi|4] - (nhn)2

n∑
1=1

EPn

[
|a′Khn

(Z/hn)r(Z/hn)/n|4
]

- (nhn)2n−3h−4n

∫ ∞
0

|a′K(z/hn)r(z/hn)|4 fPn(z)dz

- (nhn)2n−3h−3n = O
(
(nhn)−1

)
= o(1)
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and hence, using the Lindeberg-Feller CLT, we have that a′ξn
d−→ N (0, a′a) as n → ∞. Since this holds for

any a ∈ R3, the Cramér-Wold theorem implies that ξn
d−→ N (0, I3) as n→∞, where I3 denotes the identity

matrix of size three. Furthermore, analogous to V+(hn, Pn) = Ṽ+(hn) + oPn(1), we can show that

V+,n(hn, Pn)

Ṽ+,n(hn)
= 1 + oPn

(1) . (B-7)

Further, by Lemma B.1 we have that

Γ−1+,n(hn)Γ̃+,n(hn) = I3 + oPn
(1) . (B-8)

Substituting the above results in (B-5) concludes the proof.

C Proof of Theorem 4.2

Here we show only that

µ̂+,n − µ+(Pn)√
V̂+,n

d−→ N (0, 1) ,

since under similar arguments it will follow that

µ̂n,− − µ−(Pn)√
V̂n,−

d−→ N (0, 1) ,

and then due to independence we can conclude that TCCT
n

d−→ N (0, 1) as n→∞. To this end, first rewrite

µ̂+,n − µ+(Pn)√
V̂+,n

=
µ̂+,n − µ+(Pn)√
V+,n(hn, Pn)

·
√
V+,n(hn, Pn)

V̂+,n

.

Step 1. We show that

µ̂+,n − µ+(Pn)√
V+,n(hn, Pn)

d−→ N (0, 1) . (C-9)

To begin, first rewrite the above as

µ̂+,n − EPn
n

[µ̂+,n|Z(n)]√
V+,n(hn, Pn)

+

(
Ṽ+,n(hn)

V+,n(hn, Pn)

)1/2
EPn

n
[µ̂+,n|Z(n)]− µ+(Pn)√

Ṽ+,n(hn)
.

In Lemma B.2 (iii), we showed that

µ̂+,n − EPn
n

[µ̂+,n|Z(n)]√
V+,n(hn, Pn)

d−→ N (0, 1) and
Ṽ+,n(hn)

V+,n(hn, Pn)
= 1 + oPn

(1) .

It then remains to show that

EPn
n

[µ̂+,n|Z(n)]− µ+(Pn)√
Ṽ+,n(hn)

= oPn(1) ,
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to conclude. To this end, note that by Lemma B.2 and (B-6), it follows that∣∣EPn
n

[µ̂+,n|Z(n)]− µ+(Pn)
∣∣√

Ṽ+,n(hn)
= O

(
(nhn)1/2

)
OPn(h3n) = OPn

(
(nh7n)1/2

)
= oPn(1)

as hn → 0, nhn →∞ and nh7n → 0.

Step 2. We show that

V+,n(hn, Pn)

V̂+,n

= 1 + oPn
(1) . (C-10)

To begin note that

nhn

(
V+,n(hn, Pn)− V̂+,n

)
= e′Γ−1+,n(hn) · hn

(
Ψ+,n(hn, Pn)− Ψ̂+,n(hn)

)
· Γ−1+,n(hn)e , (C-11)

where

hn

(
Ψ+,n(hn, Pn)− Ψ̂+,n(hn)

)
= hnZn(hn)′W+,n(hn)

(
Σn(Pn)− Σ̂n

)
W+,n(hn)Zn(hn)/n , (C-12)

and

Σ̂+,n = diag(ε̂2+,n,1, . . . , ε̂
2
+,n,n) , (C-13)

such that ε̂+,n,i = Yi − µ̂+,n. Further, note that by construction, we can write

Yi = µ(Zi, Pn) + εn,i , (C-14)

such that EPn
[εn,i] = 0 and V arPn

[εn,i|Z = z] = σ2(z, Pn). This in turn implies

ε̂+,n,i = εn,i + µ(Zi, Pn)− µ+(Pn) + µ+(Pn)− µ̂+,n . (C-15)

We can then expand (C-12) to get the following

hn

(
Ψ+,n(hn, Pn)− Ψ̂+,n(hn)

)
=hn

n∑
i=1

1{Zi ≥ 0}(σ2(Zi, Pn)− ε2n,i)Khn
(Zi)

2r(Zi/hn)r(Zi/hn)′/n︸ ︷︷ ︸
≡B1,n , (a)

− hn
n∑

i=1

1{Zi ≥ 0}(µ(Zi, Pn)− µ̂+,n)2Khn
(Zi)

2r(Zi/hn)r(Zi/hn)′/n︸ ︷︷ ︸
≡B2,n , (b)

+ 2hn

n∑
i=1

1{Zi ≥ 0}εn,i(µ(Zi, Pn)− µ̂+,n)Khn
(Zi)

2r(Zi/hn)r(Zi/hn)′/n︸ ︷︷ ︸
≡B3,n , (c)

.

For quantity (a), since Assumption 2.1 (i), Assumption 2.1 (ii) and Assumption 2.1 (iv) are satisfied with

the required uniform constants, we have by a change of variables that

EPn

[
|B1,n|2

]
- (nhn)−1

∫ ∞
0

K(u)4|r(u)|4du

= O((nhn)−1) = o(1) ,
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which implies by Markov’s Inequality that Bn,1 = oPn
(1). For quantity (b), note that first we can rewrite it

as

Bn,2 =hn

n∑
i=1

1{Zi ≥ 0}(µ(Zi, Pn)− µ+(Pn))2Khn
(Zi)

2r(Zi/hn)r(Zi/hn)′/n︸ ︷︷ ︸
≡Bn,21

+ (µ+(Pn)− µ̂+,n)2 · hn
n∑

i=1

1{Zi ≥ 0}Khn(Zi)
2r(Zi/hn)r(Zi/hn)′/n︸ ︷︷ ︸

≡Bn,22

+ 2(µ+(Pn)− µ̂+,n) · hn
n∑

i=1

1{Zi ≥ 0}(µ(Zi, Pn)− µ+(Pn))Khn(Zi)
2r(Zi/hn)r(Zi/hn)′/n︸ ︷︷ ︸

≡Bn,23

,

Next, since Assumption 2.1 (i) and Assumption 2.1 (iii) are satisfied with the required uniform constants,

we have by a Taylor approximation and a change of variables that

EPn
[|Bn,21|2] - n−1h3n

∫ ∞
0

K(u)4|r(u)|4du

= O(n−1h3n) = o(1) ,

which implies by Markov’s inequality that Bn,21 = oPn
(1). Further, since Assumption 2.1 (i) is satisfied with

the required uniform constants, we have by a change of variables that

EPn [|Bn,22|2] - (nhn)−1
∫ ∞
0

K(u)4|r(u)|4du

= O((nhn)−1) = o(1) ,

which implies by Markov’s inequality that Bn,22 = oPn(1). Finally, since Assumption 2.1 (i) and Assumption

2.1 (iii) are satisfied with the required uniform constants, we have by a Taylor approximation and a change

of variables that

EPn

[
|Bn,23|2

]
- (n)−1hn

∫ ∞
0

K(u)4|r(u)|4du

= O(n−1hn) = o(1) ,

which implies by Markov’s inequality that Bn,23 = oPn(1). Since µ+(Pn)− µ̂+,n = oPn(1) by (C-9), we can

conclude for quantity (b) that Bn,2 = oPn(1). For quantity (c), using analogous arguments, we can conclude

that Bn,3 = oPn(1), and hence

hn

(
Ψ+,n(hn, Pn)− Ψ̂+,n(hn)

)
= oPn(1) . (C-16)

In addition, since from Lemma B.1 we have that Γ−1+,n(hn) = Γ̃−1+,n(hn), it then follows that

nhn

(
V+,n(hn, Pn)− V̂+,n

)
= oPn(1) . (C-17)

To conclude, first rewrite (C-17) as

V+,n(hn, Pn)− V̂+,n

Ṽ+,n(hn)
= oPn(1) ,

and our result then follows from (B-7).
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