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A.1 Proofs of Results

The notation is collected in the next subsection so that the reader can refer to it when needed.

A.1.1 Preliminary Lemmas and Notation

Write L0 := L (B0,Θ,W), L̄ := L
(
B̄,Θ,W

)
and L := L (B,Θ,W) for arbitrary, but �xed B.

By Condition 2, the envelope function of L̄, is

sup
g∈L̄

sup
z∈R
|g (z)| ≤ B̄θ̄/w =: ḡ. (A.1)

From the main text, recall that B̄w := B̄/w. Throughout, to keep notation simpler, suppose

that K > 1.

To ease notation, write Λ (t) for
´ t

0 dΛ (s) =
´ t

0 λ (X (s)) ds,
´ t

0 e
gdµ for

´ t
0 e

g(X(s))ds and

similarly for
´ t

0 gdN ,
´ t

0 gdΛ
´ t

0 gdµ, etc., where µ is the Lebesgue measure. Hence, arguments

X (t) and t are dropped, but this should cause no confusion: all integrals here are w.r.t. dN (t),

dµ (t) etc., and the argument of all the functions is X (t). Also, λ (X (s)) = eg0(X(s)), where

ḡ0 := |g0|∞. With no loss of generality, to keep notation simple also suppose that |gB0 |∞ ≤ ḡ0.

If this were not the case, we can just rede�ne ḡ0 to be an upper bound for the uniform norms of

g0 and gB0 (recall the de�nition of B0 in (6)). It then follows from (6) that supB>0 |gB|∞ ≤ ḡ0

because gB is the best uniform approximation for g0 in L (B), and for B ≥ B0, (6) implies

gB = gB0 . These facts will be used freely in the proofs without further mention. De�ne the

following random Hellinger metric dT (g, g0) =
√

1
2

´ T
0

(
eg/2 − eg0/2

)2
dµ. Sometimes, it will

be useful to consider the identity d2
T (g, 0) = 1

2

´ T
0

∣∣eg/2 − 1
∣∣2 dµ.

Lemma 3 Suppose that f, f ′ are functions on RK . Then,

1

8

ˆ T

0

(
f − f ′

)2
ef
′
dµ ≤ d2

T

(
f, f ′

)
. (A.2)

Proof. Multiplying and dividing by ef
′
,

d2
T

(
f, f ′

)
=

1

2

ˆ T

0
ef
′
(
e(f−f ′)/2 − 1

)2
dµ. (A.3)
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Expand the square in the above display(
e(f−f ′)/2 − 1

)2
= e(f−f ′) − 2e(f−f ′)/2 + 1.

By Taylor expansion of the two exponentials, the above is equal to

∞∑
j=0

(f − f ′)j

j!
− 2

∞∑
j=0

(f − f ′)j

j!

(
1

2

)j
+ 1 =

∞∑
j=2

(f − f ′)j

j!

(
1− 1

2j−1

)
≥ (f − f ′)2

4
.

Inserting in (A.3) deduce (A.2).

Lemma 4 Suppose that |gB0 |∞ ≤ ḡ0. Then,

0 ≤
ˆ T

0
[(g0 − gB0) dΛ− (eg0 − egB0 ) dµ] ≤ 1

2
e2ḡ0

ˆ T

0
(g0 − g)2 dΛ.

Proof. By de�nition of dΛ = eg0dµ,

ˆ T

0
[(g0 − g) dΛ− (eg0 − eg) dµ] =

ˆ T

0
[(g0 − g) eg0 − (eg0 − eg)] dµ

=

ˆ T

0

[
(g0 − g) + e−(g0−g) − 1

]
eg0dµ. (A.4)

For any �xed real x, by Taylor series with remainder, for some x∗ in the convex hull of {0, x},

e−x − 1 + x =
x2

2
e−x∗ . (A.5)

Apply this equality to x = g0 − g and insert it in the square brackets on the r.h.s. of (A.4)

to deduce the upper bound in the lemma because |g0 − gB0 |∞ ≤ 2ḡ0. For any x > 0, the

following inequality holds:

0 ≤ (x− lnx− 1) (A.6)

with equality only if x = 1. Apply this inequality to x = exp {− (g0 − gB0)} and insert it in

the square brackets on the r.h.s. of (A.4) to deduce the lower bound in the lemma.

A.1.2 Solution of the Population Likelihood

For simplicity, as in Condition 1 suppose that T0 = 0. Then, by Lemma 2 in Ogata (1978),

L (g) = lim
T

LT (g)

T
= lim

T

1

T

ˆ T

0
(gdN − egdµ) = P (geg0 − eg)

almost surely, where LT is the log-likelihood at time T (e.g., Ogata, 1978, eq.1.3). Taking �rst

derivatives, the �rst order condition is P (heg0 − heg) = 0 for any h ∈ L̄. Hence, if g = g0,
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the condition is satis�ed. To check uniqueness, verify that the second order condition for

concavity, i.e., −Ph2eg < 0, holds for any h 6= 0. Using the lower bound e−ḡ ≤ eg, deduce

that −Ph2eg ≤ −e−ḡPh2 < 0 holds for any h 6= 0 P -almost everywhere. Given that −L (g) is

convex and L̄ is convex and closed, the maximizer of L (g) is unique.

A.1.3 Proof of Theorem 1

The result is derived for the Hellinger distance dT rather than the norm |·|λ,T .
De�ne C2

T := C2 × T max
{
r−2
T , 2e3ḡ0 |g0 − gB̄|

2
∞

}
and the martingale M = N − Λ (Λ in

(1) is the compensator of N). Here, rT is a nondecreasing sequence which will be de�ned in

due course. With the present notation, the last display in the proof of lemma 4.1 in van de

Geer (1995) states that

1

2

ˆ T

0
(g − g0) dM ≥ d2

T (g, g0) +
1

2
LT (g, g0) , (A.7)

where LT (g, g0) := LT (g)− LT (g0) for any g, so also for g = gT . (The above display is only

valid when g0 is the true function, but it is not required that g0 ∈ L (B) for some B.) By

Condition 3, and the inequality LT (gT , gB̄) ≥ LT (gT )− supg∈L̄ LT (g), deduce that

LT (gT , g0) = LT (gT , gB̄) + LT (gB̄, g0) ≥ −
(
C2
T /2

)
+ LT (gB̄, g0) (A.8)

choosing C large enough, in the de�nition of CT . Hence, inserting (A.8) in (A.7), deduce that

Pr (dT (gT , g0) > CT )

≤ Pr

(
1

2

[ˆ T

0
(g − g0) dM − LT (gB̄, g0)

]
≥ d2

T (g, g0)−
C2
T

4
(A.9)

and d2
T (g, g0) > C2

T for some g ∈ L̄
)

To bound the term in the square bracket, add and subtract
´ T

0 gB̄dM and note that LT (gB̄, g0)

can be written as
´ T

0 [(gB̄ − g0) dM + (gB̄ − g0) dΛ− (egB̄ − eg0) dµ]. This implies that

ˆ T

0
(g − g0) dM − LT (gB̄, g0) =

ˆ T

0
[(g − gB̄) + (gB̄ − g0)] dM

−
ˆ T

0
[(gB̄ − g0) dM + (gB̄ − g0) dΛ− (egB̄ − eg0) dµ]

=

ˆ T

0
(g − gB̄) dM +

ˆ T

0
[(g0 − gB̄) dΛ− (eg0 − egB̄ ) dµ]

≤
ˆ T

0
(g − gB̄) dM +

1

2
e2ḡ0

ˆ T

0
(g0 − gB̄)2 dΛ
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using Lemma 4 in the inequality. From the above calculations, and the fact that
´ T

0 (g0 − gB̄)2 dΛ ≤
Teḡ0 |g0 − gB̄|

2
∞, deduce that (A.9) is less than

Pr

(
1

2

ˆ T

0
(g − gB̄) dM ≥ d2

T (g, g0)−
C2
T

4
− 1

2
Te3ḡ0 |gB̄ − g0|2∞

and d2
T (g, g0) > C2

T for some g ∈ L̄
)

≤ Pr

(
1

2

ˆ T

0
(g − gB̄) dM ≥ d2

T (g, g0)−
C2
T

2
and d2

T (g, g0) > C2
T for some g ∈ L̄

)
,

using the de�nition of CT . The above is bounded by Pr
(

supg∈L̄
´ T

0 (g − gB̄) dM ≥ C2
T

)
, which

is further bounded by

1

C2
T

E

∣∣∣∣∣sup
g∈L̄

ˆ T

0
(g − gB̄) dM

∣∣∣∣∣ ≤ 2

C2
T

E

∣∣∣∣∣sup
g∈L̄

ˆ T

0
gdM

∣∣∣∣∣
using Markov inequality and then the triangle inequality because gB̄ ∈ L̄. Write g =

∑
θ bθθ.

Note that

sup
g∈L̄

∣∣∣∣ˆ T

0
gdM

∣∣∣∣ = sup
bθ,θ∈Θ

∣∣∣∣∣
ˆ T

0

(∑
θ

bθθ

)
dM

∣∣∣∣∣ ≤ B̄w sup
θ∈Θ

∣∣∣∣ˆ T

0
θdM

∣∣∣∣
where the supremum runs over all the bθ's such that

∑
θ |bθ| ≤ B̄w. According to these

calculations, to bound (A.9) it is su�cient to bound

2B̄w
C2
T

E sup
θ∈Θ

∣∣∣∣ˆ T

0
θdM

∣∣∣∣ . (A.10)

Let {Πl (ε) : v = 1, 2, .., NΠ} be a partition of Θ intoNΠ (ε) elements such that supθ,θ′∈Πl(ε)
|θ − θ′| ≤

ε. By Condition 2, one can construct such partition with NΠ (ε) . N (ε,Θ) and such that

sup
θ,θ′∈Πl(ε)

∣∣θ − θ′∣∣∞ ≤ |θU,l − θL,l|∞ (A.11)

where [θL,l, θU,l] is an ε-bracket for the functions in Πl, under the uniform norm. It follows

that NΠ

(
2θ̄
)

= 1 because the diameter of Θ under the uniform norm is bounded by 2θ̄. To

bound (A.10), use the following maximal inequality from Nishiyama (1998, Theorem 2.2.3),

which is specialized to the present framework.

Lemma 5 Under Conditions 1 and 2,

E max
t∈[0,T ]

max
θ∈Θ

∣∣∣∣ˆ t

0
θdM

∣∣∣∣ . C1,T

ˆ 2θ̄

0

√
ln (1 +NΠ (ε))dε+

C2,T

θ̄C1,T
(A.12)

4



for any C2,T ≥
´ T

0 θ̄2dΛ, and C1,T ≥ |Θ|Π,T , where

|Θ|Π,T := sup
ε∈(0,θ̄]

max
l≤NΠ(ε)

√´ T
0

(
supθ,θ′∈Πl(ε)

|θ − θ′|
)2
dΛ

ε
.

From the discussion around (A.11) replace NΠ (ε) with N (ε,Θ). The application of Lemma

5 essentially requires to �nd a bound for C1,T and C2,T . Given that λ = dΛ/dµ is bounded

by eḡ0 , from the discussion around (A.11), |Θ|Π,T ≤
√
eḡ0T and we set C1T = C1

√
eḡ0T for

some C1 to be chosen later. Also, deduce that we can choose C2,T = θ̄eḡ0T . This implies that

C2,T /θ̄C1,T =
√
eḡ0T/C1. Hence, the �rst term on the r.h.s. of (A.12) is of no smaller order of

magnitude than the second (i.e., not smaller than a constant multiple of T 1/2). Thus, in what

follows, we can incorporate C2,T /θ̄C1,T into it without further mention. Hence, an application

of Lemma 5 bounds (A.10) by

2B̄w
C2
T

E sup
θ∈Θ

∣∣∣∣ˆ T

0
θdM

∣∣∣∣ . 2B̄w
√
eḡ0T

C2
T

ˆ 2θ̄

0

√
ln (1 +N (ε,Θ))dε. (A.13)

Using the de�nition of CT , and choosing r2
T .

[
e3ḡ0 |g0 − g|2∞

]−1
, the above is a constant

multiple of

r2
T

B̄we
ḡ0/2

T 1/2

ˆ 2θ̄

0

√
ln (1 +N (ε,Θ))dε

which is required to be O (1), as it is an upper bound for (A.9) . This implies

r2
T .

T 1/2

B̄weḡ0/2
´ 2θ̄

0

√
ln (1 +N (ε,Θ))dε

.

But, rT is also required not to go to zero, and in fact it is supposed to diverge to in�nity unless

the approximation error is nonvanishing. Therefore, the r.h.s. of the above display needs to

be bounded away from zero.

To bound the entropy integral, recall that Θ =
⋃K
k=1 Θk. The bracketing number of a

union of sets is bounded above by the sum of the bracketing numbers of the individual sets.

Hence, N (ε,Θ) ≤
∑K

k=1N (ε,Θk). Using the inequality ln (1 + xy) ≤ lnx+ ln (1 + y) for real

x, y ≥ 1, this implies that

ˆ 2θ̄

0

√
ln (1 +N (ε,Θk))dε ≤

ˆ 2θ̄

0
max
k≤K

√
lnK + ln (1 +N (ε,Θk))dε

≤ 2θ̄
√

lnK + max
k≤K

ˆ 2θ̄

0

√
ln (1 +N (ε,Θk))dε.
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Also, given that θ̄ is bounded and the entropy above is decreasing in ε, the above display can

be bounded by a multiple of

√
lnK + max

k≤K

ˆ 1

0

√
ln (1 +N (ε,Θk))dε. (A.14)

Also, we can discard the terms that are bounded, i.e., ḡ0 and θ̄, but kept so far just to highlight

what their contribution might be. Similarly, B̄w can be replaced by B̄ because it enters the

bound as a multiplicative constant. These calculations imply that there is a sequence rT as in

the statement in the theorem such that for C large enough,

Pr

(
r2
T

T
d2
T (gT , g0) > C

)
≤ 1

C2
.

By the relation between d2
T (gT , g0) /T and |gT − g0|2λ,T (see (A.2)), the theorem follows.

A.1.4 Proof of Theorem 2

To ease notation, T = Tn. We adapt the calculations in the proof of Theorem 2 in Tsybakov

(2003). This requires an upper bound for the Kullback-Leibler distance between two intensity

densities, and the construction of a suitable subset of L (1) (using the notation of our theorem).

The result in Tsybakov (2003) will then provide the necessary lower bound as stated in our

Theorem 2.

To this end, let N (1) and N (2) be point processes with intensities eg1 and eg2 such that

|gk|∞ ≤ ḡ, k = 1, 2. Let the sigma algebra generated by the process X = (X (t))t≥0 be denoted

by FX . The Kullback-Leibler distance between two intensity densities eg1 and eg2 , restricted

to [0, T ], and conditioning on FX is

K
(
g1, g2|FX

)
= EX

ˆ T

0
(g1 − g2) dN (1) −

ˆ T

0
(eg1 − eg2) dµ

where EX is the expectation conditional on FX . The above follows noting that conditioning

on FX , durations are exponentially distributed with intensity density exp {g1 (X (t))}). Then,

K
(
g1, g1|FX

)
=

ˆ T

0
(g1 − g2) eg1dµ−

ˆ T

0
(eg1 − eg2) dµ ≤ e3ḡ

2

ˆ T

0
|g1 − g2|2 dµ

using (A.5) and the fact that |gk|∞ ≤ ḡ, k = 1, 2. This provides the necessary upper bound

for the Kullback-Leibler distance, to be used in the proof of Theorem 2 in Tsybakov (2003).

Now, follow Bunea et al. (2007, p. 1693) with minor adjustments. For each k, we shall

construct a function, say fk, in Θk. Let Aj =
∑j

i=1 1 {Ti − Ti−1 ≥ a}, i.e. the number of

durations greater than a amongst the �rst j durations. Throughout, 1 {·} is the indicator

6



function. Clearly, An ≤ n with equality only if a = 0. De�ne

fk (x) = γ
n∑
j=1

φk

(
Aj
An

)
1 {xk = Xk (Tj−1)} 1 {Tj − Tj−1 ≥ a}√

Tj − Tj−1

where γ > 0 is a constant to be chosen in due course, and {φk (s) : k = 1, 2, ...,K} are bounded
functions w.r.t. s ∈ [0, 1], and such that 1

An

∑An
j=1 φk

(
j
An

)
φl

(
j
An

)
= δkl, where δkl = 1 if

k = l, zero otherwise (e.g., mutatis mutandis, as in Bunea et al., 2007, p. 1693). The functions

fk's are uniformly bounded in absolute value by a constant multiple of γ/
√
a. Hence fk ∈ Θk,

for each k, choosing γ small enough. It follows that

ˆ T

0
fk (X (t)) fl (X (t)) dt =

n∑
j=1

fk (X (Tj−1)) fl (X (Tj−1)) (Tj − Tj−1)

= γ2
An∑
j=1

φk

(
j

An

)
φl

(
j

An

)
= γ2Anδkl.

The �rst step follows because X (t) is predictable and only changes after a jump. The second

step follows by the de�nition of the fk's because by continuity of the distribution of X (0)

and stationarity, Pr (X (Ti) = X (Tj)) = 0 for i 6= j. Also, note that unless {Tj − Tj−1 ≥ a}
is true, the jth term in the de�nition of fk will be zero.

Let C be the subset of L (1) which consists of arbitrary convex combinations of m ≤ K/6

of the fk's with weight 1/m so that the weights sum to one. In consequence, for any g1, g2 ∈ C,

ˆ T

0
(g1 − g2)2 dµ � Anγ2/m.

Let pa := Pr (Tj − Tj−1 ≥ a). We claim that Pr (An < npa/2)→ 0 exponentially fast. Hence,

the r.h.s. of the above display is proportional to nγ2/m with probability going to one. This

claim will be veri�ed at the end of the proof.

Now, by suitable choice of small γ, it is possible to follow line by line the argument after eq.

(10) in Tsybakov (2003, proof of Theorem 2). This would give us a result for
´ T

0 (gT − g0)2 dµ

rather than
´ T

0 (gT − g0)2 λdµ and in terms of n rather than T = Tn. To replace n with Tn as

in the statement of the theorem, note that Tn/n converges almost surely to (Pλ)−1, which is

bounded. Finally,
´ T

0 (gT − g0)2 λdµ &
´ T

0 (gT − g0)2 dµ by the conditions of the theorem.

It remains to show that the claim on An holds true. For any positive decreasing func-

tion h on the reals, the sets {An < cn} and {h (An) > h (cn)} are the same; here c ∈ (0, 1)

is a constant to be chosen in due course. Hence, by Markov inequality Pr (An < cn) ≤
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Eh
(
n−1/2An

)
/h
(
cn1/2

)
, which implies the following lower bound

Pr (An ≥ cn) ≥ 1− Eh (An/
√
n)

h (c
√
n)

.

It remains to show that the second term on the r.h.s. goes to zero. To this end, let h (s) = e−ts,

for some �xed t > 0. For pa as previously de�ned in the proof, write

An√
n

=
1√
n

n∑
i=1

(1 {Ti − Ti−1 ≥ a} − pa) +
√
npa.

The �rst term on the r.h.s. is a root-n standardized sum of i.i.d. centered Bernoulli random

variables. Hence, it has a moment generating function which is bounded (use the proof of the

central limit theorem for Bernoulli random variables). By this remark,

Eh (An/
√
n)

h (c
√
n)

=
E exp {−tAn/

√
n}

exp {−tc
√
n}

. e−t(pa−c)
√
n.

Choose c = pa/2 to see that the r.h.s. goes to zero exponentially fast for any t > 0, as

previously claimed.

A.1.5 Proof of Lemma 1 and Corollaries

Proof. [Lemma 1] The proof is a minor re-adaptation of Lemma 4 in Sancetta (2015). Note

that if B ≥ B0, the lemma is clearly true because in this case, L0 ⊆ L := L (B,Θ,W). Hence,

assume B < B0 and w.n.l.g. B = ρB0 for ρ ∈ (0, 1). Write

g0 =
∑
θ∈Θ

bθθ =
∑
θ∈Θ

λθ b̄θ

where the λθ's are nonnegative and add to one, and b̄ =
∑

θ∈Θ |bθ|. Note that the constraint∑
θ∈Θwθ |bθ| ≤ B0 for functions in L0 implies b̄ ≤ B0/w. De�ne g′ (x) = ρg0 (x) for ρ such

that B = ρB0 so that g′ ∈ L. Using this choice of g′, by standard inequalities,

∣∣g0 − g′
∣∣
r
≤

∣∣∣∣∣∑
θ∈Θ

λθ b̄θ −
∑
θ∈Θ

λθρb̄θ

∣∣∣∣∣
r

≤
∣∣b̄ (1− ρ)

∣∣∑
θ∈Θ

λθ |θ|r ≤ b̄ (1− ρ) max
θ∈Θ
|θ|r ≤

θ̄r
w

(B0 −B)

using the de�nition of ρ. This proves the result, because for g′ above, infg∈L |g0 − g|r ≤
|g0 − g′|r.

Proof. [Corollary 2] We need to show that LT (g̃T , gB) ≥ −
(
C2
T /2

)
with CT as in the

proof of Theorem 1 and rT as in (9), e.g., C2
T & B̄

√
T lnK. To this end, recall that L̃T (g) =´ T

0 g
(
X̃ (t)

)
dN (t)−

´ T
0 exp

{
g
(
X̃ (t)

)}
dt, which is the log-likelihood when we use X̃ instead
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of X. Note that the counting process N is still the same whether we use X or X̃, as jumps

are observable. By de�nition, g̃ is the approximate maximizer of L̃T (g), but not necessarily

the maximizer of LT (g). It would be enough to show that LT (g̃T , gB) & −C2
T in probability,

as by a re-de�nition of the constant in CT , the proof in Theorem 1 would go through. Given

these remarks, write

LT (g̃T , gB) ≥ L̃T (g̃T , gB)−
∣∣∣LT (g̃T , gB)− L̃T (g̃T , gB)

∣∣∣ .
Using (11) we have that L̃T (g̃T , gB) & −C2

T as in (A.8). To bound the second term on the

r.h.s. of the above display, it is su�cient to bound a constant multiple of

sup
g∈L̄

∣∣∣LT (g)− L̃T (g)
∣∣∣

= sup
g∈L̄

∣∣∣∣ˆ T

0

[
g (X (t))− g

(
X̃ (t)

)]
dN (t)−

ˆ T

0

[
exp {g (X (t))} − exp

{
g
(
X̃ (t)

)}]
dt

∣∣∣∣
≤ sup

g∈L̄

∣∣∣∣ˆ T

0

[
g (X (t))− g

(
X̃ (t)

)]
dN (t)

∣∣∣∣+ sup
g∈L̄

∣∣∣∣ˆ T

0

[
exp {g (X (t))} − exp

{
g
(
X̃ (t)

)}]
dt

∣∣∣∣
=: I + II.

First, �nd a bound for II. By the mean value theorem in Banach spaces,

II ≤ sup
g∈L̄

eḡ
ˆ T

0

∣∣∣g (X (t))− g
(
X̃ (t)

)∣∣∣ dt. (A.15)

Now,

sup
g∈L̄

ˆ T

0

∣∣∣g (X (t))− g
(
X̃ (t)

)∣∣∣ dt ≤ sup
{bθ:

∑
θ∈Θ|bθ|≤B̄w}

ˆ T

0

∑
θ∈Θ

|bθ|
∣∣∣θ (X̃ (t)

)
− θ (X (t))

∣∣∣ dt
≤ B̄w max

θ∈Θ

ˆ T

0

∣∣∣θ (X̃ (t)
)
− θ (X (t))

∣∣∣ dt
because the supremum over the simplex is achieved at one of its edges. By the conditions

of the corollary, the above display is Op

(
B̄e−ḡ

√
T lnK

)
. Hence, deduce that (A.15) is

Op

(
B̄
√
T lnK

)
= Op (CT ) (recall the notation in (A.1)).

It remains to bound I. Adding and subtracting
´ T

0

[
g (X (t))− g

(
X̃ (t)

)]
dΛ (t) , and

using the triangle inequality,

I ≤ sup
g∈L̄

∣∣∣∣ˆ T

0

[
g (X (t))− g

(
X̃ (t)

)]
dM (t)

∣∣∣∣+ sup
g∈L̄

∣∣∣∣ˆ T

0

[
g (X (t))− g

(
X̃ (t)

)]
dΛ (t)

∣∣∣∣ .
The �rst term in the above display can be incorporated in the l.h.s. of (A.7) and bounded as

9



in the proof of Theorem 1. To bound the second term on the above display by de�nition of

dΛ,

sup
g∈L̄

∣∣∣∣ˆ T

0

[
g (X (t))− g

(
X̃ (t)

)]
exp {g0 (X (t))} dt

∣∣∣∣ ≤ sup
g∈L̄

eḡ0

ˆ T

0

∣∣∣g (X (t))− g
(
X̃ (t)

)∣∣∣ dt.
From the derived bound for II deduce that the r.h.s. is Op

(
C2
T

)
. This completes the

proof of the �rst statement in the corollary, as all the conditions of Theorem 1 are satis-

�ed. To show the last statement of the corollary, use the inequality
∣∣∣g (X (t))− g

(
X̃ (t)

)∣∣∣2 ≤
2ḡ
∣∣∣g (X (t))− g

(
X̃ (t)

)∣∣∣ together with a trivial modi�cation of the previous display.

Proof. [Corollary 4] The approximation error is zero by assumption. Given that Θk

has one single element, the entropy integral is trivially �nite. Hence, (9) simpli�es as in the

statement of the corollary.

Proof. [Corollary 5] De�ne the set

B :=

{
sup
t>0

∣∣∣∣ˆ t

0
(t− s) e−a(t−s)dN (s)

∣∣∣∣ ≤ β}
for some β <∞. In the proof of Theorem 1 write

Pr (dT (gT , g0) > CT , ) ≤ Pr (dT (gT , g0) > CT , and B) + Pr (Bc)

where Bc is the complement of B. We shall apply Corollary 2 to the �rst term on the r.h.s.,

and then show that the last term in the above display is negligible.

At �rst, show that the process with intensity density λ (t) = exp {fa0 (t) + g0 (X (t))} is sta-
tionary. To this end, we apply Theorem 2 in Brémaud and Massoulié (1996). Using their nota-

tion, their nonlinear function φ (·) in their eq.(1) is here de�ned as exp {f (·)} exp {g0 (X (t))},
which is random, unlike their case. However, in the proof of their Theorem 2 they only use

the fact that |φ (y)− φ (y′)| ≤ α |y − y′| for some �nite constant α (see their eq.(23) and �rst

display on p.1580). This is the case here as well. To see this, recall the de�nition of f (see

Section 3.6.2) which is bounded and Lipschitz. Then,

∣∣exp {f (y)} exp {g0 (X (t))} − exp
{
f
(
y′
)}

exp {g0 (X (t))}
∣∣ ≤ exp {ḡ0}

∣∣f (y)− f
(
y′
)∣∣

(recall ḡ0 is the uniform norm of g0). We also need to note that exp {g0 (X (t))} is stationary,
bounded and predictable. This ensures that the intensity λ (t) is bounded and predictable,

which is required in the lemmas used in Brémaud and Massoulié (1996). Hence Condition 1

is satis�ed.

To verify Condition 2, we verify that the entropy integral of the process f̃a is �nite in a

sense to be made clear below. We shall postpone this to the end of the proof.
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Hence, mutatis mutandis, we now verify (10) in Corollary 2. To this end, we bound

cT := Emaxa∈[a,ā]

´ T
0

∣∣∣fa (t)− f̃a (t)
∣∣∣ dt. Corollary 2 requires cT to be O

(
e−B̄w θ̄

√
T lnK

)
. By

the Lipschitz condition and a ∈ [a, ā],

ˆ T

0

∣∣∣fa (t)− f̃a (t)
∣∣∣ dt . ˆ T

0
e−at

(ˆ
(−∞,0)

easdN (s)

)
dt.

Using the fact that Λ is the compensator ofN , and that Λ has bounded density exp {fa0 (t) + g0 (X (t))},
deduce that

E max
a∈[a,ā]

ˆ T

0

∣∣∣fa (t)− f̃a (t)
∣∣∣ dt ≤ E

[(ˆ
(−∞,0)

easdN (s)

)(ˆ T

0
e−atdt

)]

.
1

a
E
ˆ

(−∞,0)
easdΛ (s) .

1

a2
<∞.

This veri�es (10) in Corollary 2.

To verify Condition 2 for f̃a, we need an estimate of the entropy integral for the family of

stochastic processes A :=

{(
f̃a (t)

)
t≥0

: a ∈ [a, ā]

}
. This means that we need to bound

sup
t>0

∣∣∣f̃a (t)− f̃a′ (t)
∣∣∣ . sup

t>0

∣∣∣∣ˆ t

0

(
e−a(t−s) − e−a′(t−s)

)
dN (s)

∣∣∣∣
≤ sup

t>0

∣∣∣∣ˆ t

0
(t− s) e−a(t−s)dN (s)

∣∣∣∣ dt ∣∣a− a′∣∣
using a �rst order Taylor expansion, and the lower bound on a, a′. On B, the above is β |a− a′|.
It is then easy to see that the entropy integral is a constant multiple of β1/2 because the uniform

ε-bracketing number of [aβ, āβ] has size β (ā− a) /ε.

In consequence, we can apply Corollary 2. Let β = O (lnT )). There is no approximation

error, so that r−2
T (rT as in (9)) becomes as in (14). The term

√
lnT , in the numerator of (14),

is proportional to the entropy integral of A.
To conclude, we show that Bc, the complement of B, is such that Pr (Bc)→ 0 as β →∞.

By Markov inequality,

Pr (Bc) ≤
E supt>0

∣∣∣´ t0 (t− s) e−a(t−s)dN (s)
∣∣∣

β
.

Recalling that M = N − Λ, by the triangle inequality, the numerator on the r.h.s. can be

bounded by

E sup
t>0

∣∣∣∣ˆ t

0
(t− s) e−a(t−s)dM (s)

∣∣∣∣+ E sup
t>0

∣∣∣∣ˆ t

0
(t− s) e−a(t−s)dΛ (s)

∣∣∣∣ =: I + II.
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The �rst integral inside the square is a bounded predictable function w.r.t. a martingale, and

is a martingale. By the Burkholder-Davis-Gundy inequality,

I2 . sup
t>0

E
ˆ t

0

∣∣∣(t− s) e−a(t−s)
∣∣∣2 dΛ (s) ≤ eḡ0 sup

t>0

ˆ t

0

∣∣∣(t− s) e−a(t−s)
∣∣∣2 ds = O (1) .

By a similar argument II = O (1). These bounds imply that Pr (Bc)→ 0. The last statement

in the corollary is deduced from the proof of Corollary 4.

Proof. [Corollary 6] By Lemma 1, the approximation error will be zero as soon as B̄ ≥ B0,

which will be eventually the case as B̄ →∞ and B0 is �nite. By the remarks in Section 3.6.3

the entropy integral is �nite. Hence, the bound follows from (9).

Proof. [Corollary 7] By Lemma 2 and (13) the approximation error is a constant multiple

of V −2α + max
{
cα − B̄, 0

}2
. The univariate square uniform approximation rate V −2α follows

by the remarks in Section 3.6.4. Given that there are V elements in each Θk the entropy

integral is a constant multiple of
√

ln (1 + V ). Inserting in (9), the bound is deduced as long

as V > 1. In particular for V & (T/ lnT )1/(4α) the bound simpli�es further.

Proof. [Corollary 8] The proof is the same as for Corollary 7.

Proof. [Corollary 9] As stated in Section 3.6.6, the approximation rate of Bernstein

polynomials under the squared uniform loss is a constant multiple of α2V −1. Hence, by Lemma

2 and (13), the approximation error is a constant multiple of α2V −1 + max
{
B0 − B̄, 0

}2
.

In consequence, as B̄ → ∞, the approximation error is eventually O
(√

α/T
)
when V &

T 1/2α3/2. By the remarks in Section 3.6.6, the entropy integral is α1/2. Inserting in (9) the

bound follows.

A.1.6 Proof of Theorem 3

De�ne h := bθ, and let t ∈ [0, 1]. Let

hm := arg sup
h∈L̄

DT (Fm−1, h− Fm−1) .

By linearity, the maximum is obtained by a function h = bθ with θ ∈ Θk for some k and

|b| ≤ B̄. Hence, it is su�cient to maximize the absolute value of DT w.r.t. θ as the coe�cient

b is not constrained in sign. De�ne,

G (Fm−1) := DT (Fm−1, hm − Fm−1) ,

so that for any g ∈ L̄,
LT (g)− LT (Fm−1) ≤ G (Fm−1) (A.16)

12



by concavity. For m ≥ 0, de�ne ρ̄m = 2/ (m+ 2). By concavity, again,

LT (Fm) = max
ρ∈[0,1]

LT (Fm−1 + ρ (h− Fm−1)) ≥ LT (Fm−1) +DT (Fm−1, h− Fm−1) ρ̄m +
C̄

2
ρ̄2
m

where

C̄ := min
h,g∈L̄,t∈[0,1]

2

t2
[LT (g + t (h− g))− LT (g)−DT (g, t (h− g))] < 0.

The above two displays together with (A.16), imply

LT (Fm)− LT (g) ≥ LT (Fm−1)− LT (g) + ρ̄mG (Fm−1) +
C̄

2
ρ̄2
m

≥ LT (Fm−1)− LT (g) + ρ̄m (LT (g)− LT (Fm−1)) +
C̄

2
ρ̄2
m

= (1− ρ̄m) (LT (Fm−1)− LT (g)) +
C̄

2
ρ̄2
m

≥ 2C̄

m+ 2
(A.17)

for the given choice of ρ̄m (mutatis mutandis, as in the proof of Theorem 1 in Jaggi (2013)).

It remains to bound C̄. By Taylor's expansion in Banach spaces,

LT (g + t (h− g)) = LT (g) +DT (g, t (h− g)) +
1

2
HT

(
g∗, t

2 (h− g)2
)
,

for g∗ = t∗g + (1− t∗)h, and some t∗ ∈ [0, 1], where

HT

(
g, t2 (h− g)

)
= −

ˆ T

0
t2 (h− g)2 egds.

This means that

C̄ ≥ min
h,g∈L̄,t∈[0,1]

2

t2

[
−1

2

ˆ T

0
t2 (h (X (s))− g (X (s)))2 eḡds

]
≥ −4Teḡ ḡ2 ≥ −4TeB̄θ̄/w

(
B̄θ̄/w

)2
using (A.1). Substituting in (A.17) gives the result.

A.1.7 Proof of Proposition 1

Let M := N − Λ and ht := gt − g′t. To ease notation, suppose for the moment that S is an

integer. Then, under the conditions of the proposition (the null hypothesis),

LS
(
g, g′

)
=

S∑
s=1

ˆ s

s−1
ht (X (t)) dM (t) =

S∑
s=1

Ys.
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Then, {Ys : s = 1, 2, ...} is a sequence of martingale di�erences. This follows from the law of

iterated expectations and the fact that ht is a predictable process. Denote the expectation

conditioning on {Yi : i ≤ s} by Es. The result will follow by an application of Theorem 2.3

in McLeish (1974). To this end, it is su�cient to show that (i.) E
∣∣∣ 1
S

∑S
s=1 Y

2
s

∣∣∣ → σ2, (ii.)

limS→∞ Emaxs≤S Y
2
s /S <∞ and (iii.) maxs≤S

∣∣∣Ys/√S∣∣∣→ 0 in probability. Note that

E

∣∣∣∣∣ 1S
S∑
s=1

Y 2
s

∣∣∣∣∣ = E

∣∣∣∣∣ 1S
S∑
s=1

Es−1Y
2
s

∣∣∣∣∣ (A.18)

using iterated expectations and the fact that the elements in the sum are positive. Note that

Es−1Y
2
s = Es−1

[ˆ s

s−1
ht (X (t)) dM (t)

]2

= Es−1

[ˆ s

s−1
h2
t (X (t)) dΛ (t)

]
(e.g., Ogata, 1978, e.q. 2.1). Hence,

1

S

S∑
s=1

Es−1Y
2
s =

[
1

S

S∑
s=1

Es−1

ˆ s

s−1
h2
t (X (t)) dΛ (t)

]
.

By these remarks, (A.18) is equal to

E

∣∣∣∣∣ 1S
S∑
s=1

Es−1

ˆ s

s−1
h2
t (X (t)) dΛ (t)

∣∣∣∣∣ =
1

S

S∑
s=1

E
ˆ s

s−1
h2
t (X (t)) dΛ (t)

= E
1

S

ˆ S

0
h2
t (X (t)) dΛ (t) ,

using the fact that the terms in the sum are positive. By the conditions of the proposition

σ2
S :=

1

S

ˆ S

0
h2
t (X (t)) dΛ (t)→ σ2 > 0

in probability. The sequence
(
σ2
S

)
S≥1

is uniformly bounded. In consequence, convergence in

probability implies convergence in L1, i.e. Eσ2
S → σ2. This veri�es the �rst condition (i.).

Now,

Emax
s≤S

Y 2
s

S
≤ 1

S
E

S∑
s=1

Y 2
s

14



bounding the maximum by the sum. By the previous calculations deduce that the above is

bounded, which then veri�es the second condition (ii.). Finally,

max
s≤S
|Ys| /

√
S =

1√
S

max
s≤S

∣∣∣∣ˆ s

s−1
ht (X (t)) dM (t)

∣∣∣∣
.

1√
S

max
s≤S

∣∣∣∣ˆ s

s−1
dN (t)

∣∣∣∣+
1√
S

max
s≤S

∣∣∣∣ˆ s

s−1
dΛ (t)

∣∣∣∣
=

1√
S

max
s≤S

[N (s)−N (s− 1)] +
1√
S

max
s≤S

Λ ([s− 1, s])

where the inequality uses the fact that ht is bounded. The last term on the r.h.s. is Op
(
S−1/2

)
.

A counting process N is increasing with the intensity. Since λ (X (s)) ≤ eḡ0 uniformly in s,

there is a counting process N ′ with intensity density eḡ0 such Pr (N (s) > n) ≤ Pr (N ′ (s) > n).

In consequence, for any s, E [N (s)−N (s− 1)]4 ≤ E [N ′ (s)−N ′ (s− 1)]4 ≤ C for some

absolute constant C that depends on ḡ0 only. The last inequality follows because N
′ is Poisson

with intensity eḡ0 . By these remarks,

E
1√
S

max
s≤S

[N (s)−N (s− 1)] ≤ 1√
S

(
Emax

s≤S
|N (s)−N (s− 1)|4

)1/4

≤ 1√
S

(
S∑
s=1

E |N (s)−N (s− 1)|4
)1/4

bounding the maximum by the sum. Deduce that the above is (C/S)1/4 = o (1). This veri�es

the third condition (iii.) required for the application of Theorem 2.3 in McLeish (1974).

If S is not an integer, write bSc for its integer part. Then,

1√
S
LS
(
g, g′

)
=

(
bSc
S

)1/2 1√
bSc

bSc∑
s=1

Ys +
1√
S

ˆ S

bSc
ht (X (t)) dM (t) .

Clearly, bSc /S → 1. Moreover, by arguments similar to the ones used to verify the third

condition (iii.) above, we deduce that the last term on the r.h.s. is op (1). This shows the result

using σS as scaling sequence rather than σ̂S . However,
∣∣σ̂2
S − σ2

S

∣∣ =
∣∣∣ 1
S

´ S
0 h2

t (X (t)) dM (t)
∣∣∣→

0 a.s., and we can use σ̂2
S to de�ne the t-statistic. This completes the proof.
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A.2 Details Regarding Section 5.3.1

De�ne Yi := exp {g0 (X (Ti))} and Zi :=
∑

Tj≤Ti e
−a0(Ti−Tj), and recall R (Ti+1) = Ti+1 − Ti.

Note that for t ∈ (Ti, Ti+1], λ (t) =
(
c0 + Zie

−a0(t−Ti)
)
Yi. In consequence,

Λ ((Ti, Ti+1]) =

ˆ Ti+1

Ti

λ (t) dt =

[
c0R (Ti+1) +

Zi
a0

(
1− e−a0R(Ti+1)

)]
Yi

is exponentially distributed with mean one, conditioning on Fi := (Ti, Zi, Yi). Moreover,

Zi = Zi−1e
−a0(Ti−Ti−1) + 1 with Z0 = 1. Hence, de�ne c1 = c0Yi, c2 = YiZi, and simu-

late i.i.d. [0, 1] uniform random variables Ui's. We simulate R (Ti) setting it equal to the

s that solves c1s + c2
a0

(1− e−a0s) = − lnUi. Given an initial guess (2, 1.5) of of the true

(c0, a0) = (2, 1.3) we estimate exp {gT (X (t))}. Given exp {gT (X (t))} we estimate c and a in(
c+

∑
Ti<t

e−a(t−Ti)
)

exp {gT (X (t))}. We perform a second iteration.

Estimation of g is done using the algorithm in Section 3.5. In this case, the relevant part

of the likelihood is
n∑
i=1

g (Ti−1)−
n∑
i=1

exp {g (Ti−1)}∆i

where

∆i = cR (Ti) +
Zi−1

a

(
1− e−aR(Ti)

)
and c and a are set to their guess/estimated values. Estimation of c and a is via maximum

likelihood given exp {gT (X (t))}.
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