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S.1 Introduction

This supplement contains supporting material for our paper “Semi-Parametric Seasonal Unit
Root Tests”. Equation references (S.n) for n > 1 refer to equations in this supplement and
other equation references are to the main paper.

The supplement is organised as follows. Proofs of the main theoretical results in the paper
can be found in section S.2. A more detailed outline of the augmented HEGY seasonal unit
root tests are given in section S.3. Section S.4 details the limiting distributions of the lag un-
augmented HEGY seasonal unit root tests which obtain from (2.4) with p* set to zero. These
are shown in Theorem S.1 to be non-pivotal depending on any (un-modelled) serial correlation
present in ug,4s of (2.1b). Seasonal implementations of the PP unit root tests are outlined in
section S.5 and their limiting distributions are given in Theorem S.2 in section S.6. The proofs
of Theorems S.1 and S.2 are provided in section S.7. Additional Monte Carlo results relating to
size unadjusted finite sample power results are reported in section S.8. All additional references

are included at the end of the supplement.

S.2 Proofs of Main Results

S.2.1 Preliminary Results

Before providing the proofs of the main results given in the paper, a number of preliminary
results are needed first. To that end, we first note that under (2.3), xg,4s in (2.1b) can be

written as,
S*
Cs/2
ASOAS/Q | |k:1 Azkxgn+s = USn+s (S.1)

where A’ :==1—apL =1— (1 + SC—?\,) L, ACS%Z =1+agpl=1+ (1 + Cg]/\?) L,and A :=1—
2 cos [wg] axL+ai L? = 1—2 cos [wy] (1 + g—f\,) L+ (1 + SC—}“V)Q L?, for k =1,...,5* Consequently,
(S.1) can be equivalently written as,

*

S
LSn+s = [SO,CO (S’I’L + 5)] [SS/Q,CS/Z (Sn + 5)] |:Hk:1 Sk:,ck (Sn + ‘9):| USn+s (82)

where, for wp = 0 and wg/p = ,

Sn+s
Sic (Sn+s) = cos[((Sn+s) — j)wi] QTSI LS =0, 5/2
j=1

and, for wy = (27k)/S,k=1,...,5%,

Sn+s—1
S, (S +5) = sinfwy] " sin[((Sn+s)+1—7)wg] afnJrs_]LS"“*j

7=0
= sinfwy] " (sin[((Sn + s) + 1) wy] Sge, (Sn+ s)

—cos[((Sn+s)+ 1) wi] S2 (Sn+ s))

k,ck

.2]



with
Sn—+s

Sk, (S +5) := Z cos [jwy] Oé;jnJrS*jLSn—‘,-s—j
j=1
Sn+s . '
Slf,ck (Sn+s) = Z sin [jwg] afn""s_jLS"'*‘s_J.
j=1

In view of the foregoing, the identities given in Gregoir (1999, p. 463) can be extended to the

terms in (2.3) as follows,

Cs/2
AP A5/2 _ 1 (cs/2 —co B
S = 1 () L=1v 0N (S.3)
AT+ (1 —2cos [wg] + L) AP _ o ~ 2cos [wy] (cx — CO)L
2k0(wk) 2k0(wk) SN 2ko(wr) SN
(26}9 - CU) 2 Cz L2

2k0(wi) SN 2n0(wi) (SN)?

- r-o(d)-o()o(3) ro() o

A + (14 2cos [wg] — L) ACSS/; . cs/2 2cos [wy] (csj2 — cx) I
2K.5/2(Wk) 2kg/9(wi) SN 2K.5/2(Wk) SN
(2cc — csp2) o i 12

25/2(wi) SN 2k5/5(wk) (SN)?

- 1eo(d)o(}) +o(3) o) e

and
2cosfwy] — L ,¢;  2coswj]—L .
A J A k
2k (wgj) it 2k (wji) k
_ 4 4 cos [wg] cos [w;] (¢; — ck)L N 2 [cos [wj] <k — cos [wy] S%] 12
2k (w;) SN 2 (wkj)
4 [cos [wi] 5% — cos [w;] $&] 2 2 (¢j—cp) 13
2k (wk;) 2k(wgj) SN
ci \2 cn \2
2 [cos [wi] (s%)" — cos [w;] ($%) } 12 1 (c? - ci) .3
26 (wry) 2k (wrj)  (SN)?
1 1 1 1 1 1
(2 e0(2) 0 (2)-0(2) 0 (d)-o(L) s
where ro(wg) 1= 1 — cos [wy], kg/o(wk) := 1 + cos [wg] and K(wy;) := cos [wy] — cos [wy], j,k =
1., 5%

Consequently, noting that A}*Sy ., (Sn+ s) = 1 and using (S.3)-(S.6), it follows from (S.2)

after some tedious algebra and using the standard trigonometric identities, sin [((Sn + s) 4+ 1) wy]
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= cos [w] sin [(Sn + s) wi|+sin [wg] cos [(Sn + s) wi] and cos [((Sn + s) 4+ 1) wg] = cos [wg] cos [(Sn + s) wi]
— sin [wg] sin [(S1 + s) wg], that zg,4+s can be decomposed into the sum of frequency specific

partial sums plus an asymptotically negligible term (see also Gregoir, 1999); that is,

1 1
LSn+s = gSO,CO (Sn + s) usnts + 555/2,65/2 (Sn + 8) Usn s
p
+§ Z [cos [(Sn + s) wi] i, (S1+5) Usnys
k=1

+sin[(Sn + s)wi] SP, (Sn+ s) u5n+8] +op(1). (S.7)

Defining Xy, := [£g5—(5-1); Lsn—(5-2)s - Ton]s = 0,..., N, and Up 1= [tign—(5-1); Usn—(5-2):
wwsugp)’s n=1,.., N, and noting that 37, exp (5—59\,)8(”_]) Uj =i exp ()" Uj, it will
prove convenient, for the analysis that follows, to re-write (S.7) in the so-called vector-of-seasons

representation:

LI " -
X, = kz::( < >C’kZexp<N) Ui + 0, (1) (S.8)

where §; := 0 for £ = 0 and k£ = S/2 and J; := 1 otherwise, and where C; := Circ[cos [0],
cos [wi] , cos [2wi], ..., cos[(S —1)wi], i = 0,...,[S/2], such that Cy and Cgp are S x
circulant matrices of rank 1, while for w; = 27i/S with i = 1,...,5* C; are S x S circulant

matrices of rank 2. For further details on these circulant matrices see, for example, Osborn and
Rodrigues (2002) and Smith et al. (2009).

Remark S.1: In order to relate (S.8) to (S.7) we have made use of the fact that the circulant
matrices involved can be written as Co = vovo', where vo' := [1,1,1,...,1], Cg/5 = vg/avg/s,
where vgo' := [~1,1,~1,...,1], and for j = 1,...,S*, Cj = v,V and finally the matrix Cj =
Circ[sin [0], sin[(S —1)wj], sin[(S —2)wj], ..., sin[wj]], with Cj = v;v}’, which will be used

later in lemma S.1 where

v [ cos [wj (1 —S)] cosfw; (2—S5)] -+ cos[0] ] . h’ ]
! sinfw; (1= 9)] sinfw; (2—8)] -+ sin[0] h*'
and
o [ —sinfw; (1-8)] —sinfw;(2-S5)] -+ —sin|0] ] B [ —h;f']
! coslw; (1=95)] cos[wj(2—S5)] --- cos[0] h’ ’
j=1,...,5% O

Remark S.2: As shown in Burridge and Taylor (2001), the error process, U,, defined above
(S.8) satisfies the vector M A(co) representation

o0
U= W,E, (S.9)
=0
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where Ep, = [€5p—(5-1), Esn—(5—2), -+ Esn] 18 @ vector of IID errors, and the S x S matrices
Wy, ¥;,j=1,2,..., are given by

1 0 0 0 0
o1 0 0 0
0 0
T (5] (3
3 o 1 1 0
| Ys-1 Ys—2 sz Ps-a - 1]
and ~ _
Pjs Pis—1 Yis—2 Yis—3 o Yis_(s-1)
VYjsi1 is Yis—1 Yis—2 o Yis_(5-2)
¥, - Yjsi2 Pisy1 (I Yis—1 o is_(s-3) .
Yis+s  Vist2  Yist Yis o Yis_(s-4)
| Yists—1 Yjsts—2 Vis+s-3 Vists—a - vis ]
OJ
Next in Lemma S.1 we provide a multivariate invariance principle for er = [ygn_(s_l),

ygn_(S_Q), o ygn]’, where ygn+s = xsn+s—8/25n+s7§, and where it is recalled that the parameter

¢ € {1,2,3} denotes the deterministic Case of interest.

Lemma S.1. Let the conditions of Theorem 4.1 hold. Then, as N — oo,

15/2]
N7 = S (140 (G ()36 (1), e [0,1]
S 2
O¢

S

o
Y(1)Cod, (r) +(=1)Cypade, , (r) + 2; <bz’CiJ§i (r) + a:CiJ5, (7“)>]
(S.10)

where {51'}}56%, are as defined below (S.8); Jﬁk (r) = [‘]fk,l—s (r), Jf}wz_s (r), ...,Jci’o (r)] is
an S x 1 vector OU process such that ngk (r) = chk (r) dr + dW¢ (r) and W& (r) is an S x 1
vector Brownian motion process; a; := Im(y[exp(iw;)]) and b; := Re(y[exp(iw;)]), i = 1, ..., 5%,
with Re(:) and Im(-) denoting the real and imaginary parts of their arguments, respectively;
and Cy, Cg/, C; and Ci,i=1,...,8% are the S x S circulant matrices defined in Remark

S.1. Finally, with OLS de-trending:

1
T ) = Jea(r) - /0 Jor (r) dr

) = JL ()12 (r _ ;) /01 <r _ ;) [; ZO: JL (r)] dr

1\ /! 1
Jg’kﬁ (r) = Jclk’s (r)—12 (r - 2> /0 <T‘ - 2> Jclk,s (r)dr



and with local GLS de-trending:

Jops (1) o= Jops (1)
2 o 1 : . !
T2 (r) = Jes(r [ SZS (AJ% () +3(1 )\)/0 he, s (h) dh)]
J?k’s (r) = Jegs(r)—r [)\J%S (1) +3(1—X) /1 hJe, s (h) dh}
0

with X := (1 —7¢) / (1 +¢+¢*/3), in all cases for the indices s =1-S,...,0 and k = 0, ..., [ S/2].

Proof of Lemma S.1: Following along the same lines as for the proof of Lemma 1 in del
Barrio Castro, Osborn and Taylor (2012) and Phillips (1988) it follows that, as N — oo,

|[rN|—i
(\T/E*N 3 exp (%) B = I, (), relo1] (S.11)
i=1
1 [rNV] . _1 [rN| )
I a\IM= ¥ () a )M
\/N;GXP(N) Uy = Wi ;exp<N> Ei +o0,(1)
= W(1)J. (r), rel0,1] (S.12)

where E; and U; are as previously defined, dJ., (r) = ¢xJc, (r)dr +dW (r), W(r) isan S x 1
vector standard Brownian motion and J., (r) is an S x 1 vector standard OU process. Next
observe from (S.8) and (S.9), that

L5/2] PN .
vy = 3 (S5 oS e () )
k=0
5/2] (o]
_ 1+ 0y, ey v
- ,;0< S )Cklp Z ( ) E;+o0,(1) (S.13)

where {J} ,Ei/(? J, are as defined below (S.8), and the approximation in (S.13) follows from (S.12)
and using similar arguments to those used in Boswijk and Franses (1996, p.238). From (S.11),
(S.13) and the continuous mapping theorem [CMT] the result in (S.10) follows immediately.
Noting that ®(1) is also a circulant matrix, then by the properties of products of circulant
matrices it can be shown that CoW (1) = 9 (1) Co, Cg/2¥ (1) = ¢ (1) Cg/o, C;¥ (1) = b;C; +
a;C; and C;¥ (1) = —a;Cj+b;C; for j = 1,...S*; see, inter alia, Davis (1979, Theorem 3.2.4),
Gray (2006, Theorem 3.1) and Smith et al. (2009) for further details. The stated result then

follows immediately. [

Remark S.3: Note that the circulant matrices Cp and Cg/, are associated with the auxiliary
variables yg Snts and yg /2, Snts? respectively. Moreover, the circulant matrices C*, k=1, ..., 8*
(see Remark 2 in Smith, Taylor and del Barrio Castro, 2009) defined as:

ok~ Circ S%n [wk]’ sin [ka]7 sin [(S — 1) wg] o sin [2wg] (S.14)
sin [wg]” sin [wg] sin [wy] sin [wy]
_ Ck+cos[“’“]ck, k=1,.. 8"
sin [wg]

[S.6]



where O}, and C}, k = 1,...,S*, are as defined in Remark S.1 and are associated with the
filter AY (L) = sin[wy]” (ES Olsm [(7+1)wg] Lj) in (3.11). Finally the circulant matri-
ces Df and D, , k = 1,..,8% defined as, D := Circ[1,0,0,---,0,e*] and D, :=

Circ [1,0,0, -,0,e” lwk’] are associated with the filters (1 — eika) and (1 — e‘i“’kL), respec-
tively. O

In order to obtain results for the asymptotic distributions of the test statistics discussed in

this paper, the limiting results collected together in the following Lemma will prove useful.

Lemma S.2. Let the conditions of Lemma S.1 hold. Then, as N — oo,

N=YV20ovE LNJ = 0.1 (1) CoJ&, (r) (S.15)
N™ /03/2 |rN| = o (- )Jgs/z (r) (S.16)

cos [wy]

1/2CkY§NJ = o. (Ck+ Ck>\11(1)J§k(r),k:1,...,S* (S.17)

sin [wy]

R o e LA S
\/]VD CYLNJ

—=D, CMYE = 0. CFU (1) T8, (r) = 0utp (e7%) ELESTE (r) k= 1,...,5"  (S.19)

= 0.Cp U (1) I3, (r) = oot () E1, 0335, () k=1,...,8"  (S.18)

\/N
where the vector OU processes, Jgi (r), i =0,...,15/2], and the circulant matrices, C;, i =
,1S/2] and Cy, i =1,...,5*%, are defined in Lemma S.1, C* is defined in (S.14), D:jk =

Circ[1,0,0,---,0,€e*], Dy, := Circ [1,0,0,--- ,0, e—iwk], C;, = Circ [1,e7 157 Dwr o=i(S=Dr ...
Cyf :=Circ[1,el57Dwr el(5=2wn o elon] k=1, 8% & = [1e @k etk e i(5-Dwn]

52_,k = [1,€_i(s_l)wk, e‘i(S—Q)wk, s e—lwk] ’ gii:k . [17 eiwk’ei2wk7 _”’ei(S—l)wk]/ and S;:k; — [1,
el(s—l)Wk’ 61(5—2)“},@7 . eiwk]/'

Proof of Lemma S.2: The results in (S.15) to (S.17) follow immediately from Lemma S.1
using the following identities: CoCo = SCp ,Cyg/2Cg/2 = SCg/2, CxCk = §C’k and C,C), = 6k,
recalling that the matrix products between Cy, Cg/9, C; and C'], j=1,...,5" are all zero
matrices, and that multiplication between circulant matrices is commutative, and finally that
Cck .= (Ck + Cf)s[wk]@k). Consider next the results in (S.18) and (S.19). We first note, using

sin[wg]

Property 1.3 and expression (2) in Gregoir (2006), that

e—iwk _ eiwk
Ch=—— —C +———Cf (S.20)

e—lwi _ piwg elwr — g—iwg

—iw
76 k]?

with C; := Circ [1 e S wk o—i(S-2wk ... e_i‘”k] and C’Jr := Circ [1 el(S—Dwi i(S—2)wie ... ,eiwk].

Moreover, D, C;” = D cr =0, WD+ C, =C,, and mD CiF = C;f, each
of which follows from the properties of the product of circulant matrices. Also, because ¥ (1)
is a circulant matrix, by the properties of products of circulant matrices it further holds that
CrV (1) =4 (e“r) Cp and CF ¥ (1) = ¢ (e7k) Cf. Finally as both C; and C; are S x S
circulant matrices of rank 1 we can write C} = 51_7 kSi ,’C and C = Sff ké’; ,’c The stated results

then follow immediately. [J



S.2.2 Proof of Theorem 4.1

Using the results that Cp and Cg/, are symmetric and orthogonal both to one another and to
C;and C;, i =1,...,5%, and the fact that C;C;C; = SQC’j for j = 0,.5/2, then appealing to the

multivariate invariance principle in (S.10) and using an application of the CMT we have that

=3 (snies) = QZS( LACYar) +0p (1)
=1-

n=1s S
o2 ¢ (cos[w;])?
S2 S

1
= o2y (cosluy])? / 3E (1) €38 () dr,j = 0,8/2 (S.21)
0

1
/0 JE (r) C;C;C435, (r) dr

where wg = 0, wg/y = 7 and Jg;k (r) = ﬁ‘]gj (r) for j =0,5/2.

Using Remark S.1, together with the results in (S.15) and (S.16), for the zero and Nyquist
frequencies, applications of the multivariate FCLT and CMT establish that, as N — oo,

N2 Gnges = 0eVSU (1) Ve TJEO (r) =t 0:v/5% (1) viJg (1)
= 0.V S (1) I, (r) (S.22)
N_l/ng/Z,SLrNJ+s = Usf@b( ) ( ) VS/2 \}EJES/Q (T) =: Us\/§¢ (_1> (_1)8 V:S‘/QJE;Q (T)
::aw@¢p4ﬂ—niﬁﬂ%ﬂw) (S.23)

where v| and v/ /o are defined in Remark S.1, and Jéco( ) and Jg 9.5 (r) are as defined in

Theorem 4.1. Consequently, for the MZy, k = 0,5/2 tests we obtain from (S.22) and (S.23)
that,

(SN)~1* yo sy = 0 (1) G, () (5.24)

(SN 2yl gy = 0 (-1 (1) TG, (D). (S.25)

Using the results in (S.24), (S.25) and (S.21) and the fact that A3 5 ¢2¢ (1)* and )\5/2
o) (—1)2, it therefore follows that,

¢ 2 ¢ ?
020 (coslun])? JE.,, (12 — o0 (cosfn])® [T (D] —1

MZ, = 5 = 5
2029 (cos|w]) fo {Jk e r)} dr 2f0 {ka (1")] dr

 k=0,5/2 (S.26)

where wg = 0 and wg/y = 7. The results for the MSBy, k = 0, S/2, statistics are obtained
straightforwardly from (S.21). Combining the results for MSBy, with (S.26), the limit of M2,
then follows straightforwardly.
Turning to the harmonic frequency statistics, note first that the vector of seasons repre-
. : Dh h h h
sentations of (3.9) and (3.10) with Y,fﬂ? = [yi gn (5—1) yli gn_(s 2y ,yi gn h € {a,b},



based on (S.18) and (S.19) are such that, for k =1, ..., 5%,

1 a 0 i iw - g iw i
\/SiNYIjﬁ"NJ = \/%7/) (6 wk) (e kl) 52,1{3J<€:k (r) = 7%¢ (e k) Le wkglJtlchgk (r)
= %5 () 1 | —ee € (r) +ihY —JE (1)
V2 Ve NETP R
g iw, [ ¥
= 50 ()1 I o)+ (o)
g, iw [ . *
()1 5, ()T, ) 57
and
1 £,Db O¢ —iwp —iwy, +r 3¢ o —iwp, —iwg o—1 7€
mYk,LrNJ = \/Ew (e )(e 1) SZ,kJCk (r) = \/§¢ (e )16 gl,kJCk (r)

R FV LV R

— \/iw(e )l_hkack(T) ihj; \/57/2J6k(7“)]
- % (7)1 [BJEf (1) —my' 3¢ ()]
_ %w(e_i‘“’“)l}f,ick (r) ~iJg%, ()] (5.28)

respectively, where 1 is an S x 1 vector of ones, hy and hj, are defined in Remark S.1, J Ek (r)

and JEZ (r) are defined in Lemma S.1, and where Jg, o (1) and J,g*% (r) are as defined in Theorem
4.1.

Using the consistency of the estimators S\k,AR = s{l — [qub(ei“’k)]}_l and S‘Z,AR = 5e{1 —
[(fﬁ\(e*iwk)]}*l of 0.1 (ei“’k) and 0.1 (e*i‘*’k), respectively, k = 1,..., 5%, it is then possible to

show that, in each case for k =1, ..., 5%,

(1) 455, ()] =t =T, ()

o 1
)\2 T —1/2 ¢,Da JC
( k,AR ) [ ﬁ

Yr.S|rN|+s =~ 3 ke

S x _ 1 .k 1 —
NZamD) ™2y slon s = 7 [ng,ck (r) —iJgs, (’“)} = 5Tka (),

Noting that the auxiliary variables yﬁgfl 4 and yfngf ', defined in (3.14) and (3.15) are free
from nuisance parameters, it is then straightforward to obtain the representations given for
the asymptotic distributions of the K-M2Zj, K-MSB, and K-M2Z;, statistics in (4.4), (4.5)
and (4.6), together with the results for the joint frequency statistics from section 3.3 given in

Corollary 4.1 OJ

Remark S.4: Note that the deterministic kernels considered for the de-meaning and de-
trending of the variables, have different impacts on the frequency specific OU processes. These

set of processes at each frequency for each case are summarised for convenience as follows,

Case 1 (£=1) : Jy. (r), J51'/2,cs/2 (r), Ji., (r), J (r),i=1,..,5"

Case 2 (£ =2) : J&CO (r), Jé/Q cs)s (r), J}’Ci (r), le,:l (r),i=1,..,5"
Case 3 (€=3) : Ji. (r), JZ /2052 (r), o, (r), J (r), i=1,..,5

[5.9]



where it is to be recalled that ( = 1 and { = 2 correspond to de-meaned and de-trended OU
processes, respectively. These are defined as: Jéco (r):= V/ng(’)k (r), Jg/Q css (r):= Vfg/QJgZ/Q (r),

Ty (1) =0 I (r) and J ¥ (r) = hy' 38 (r) for k=1,..., 5", O

S.3 Augmented HEGY Seasonal Unit Root Tests

Unit roots at the zero, Nyquist and harmonic seasonal frequencies imply that mo = 0, 7g/; =0
and m, = 7; =0, k = 1,..., 5%, respectively, in (2.4); see Smith et al. (2009). Consequently,
tests for the presence or otherwise of a unit root at the zero and Nyquist frequencies are
conventional lower tailed regression t-tests, denoted ¢y and tg/5, for the exclusion of ya Snts—1
and yg /2, Snts—17 respectively, from (2.4). Notice that for S = 1, ¢ is the standard non-seasonal
ADF unit root test statistic. Similarly, the hypothesis of a pair of complex unit roots at the kth
harmonic seasonal frequency may be tested by the lower-tailed ¢; and two-tailed ¢; regression
t-tests from (2.4) for the exclusion of yi’ Snts_1 and yz’gsn +s_1» respectively, or by the (upper-
tailed) regression F-test, denoted Fj, for the exclusion of both y,ﬁ Snts—1 and yzgsn 4s_q lrom
(2.4). Ghysels et al. (1994) also consider the joint frequency (upper-tail) regression F-tests
from (2.4), F_|g/2) for the exclusion of yg/2,8n+s—1’ {y§,8n+s—1}3‘tl and {y;§sn+s_1}£;1, and
Fy..1s/2] for the exclusion of yasnﬁ_l, yg/2,5n+s—1’ {y§,5n+s—1}}i1 and {nySn+s_1}f;1. The
former tests the null hypothesis of unit roots at all of the seasonal frequencies, defined as
Hp seas == ﬂ,ES:/ 12 I Hy 1., while the latter tests the null hypothesis of unit roots at the zero and all
of the seasonal frequencies, defined as Hy := ﬂ,&i/OQ ! Hy . Observe that a(L) = Ag under Hy.
The limiting null distributions of the OLS de-trended HEGY statistics are given for the
case where 1(z) = 1 in (2.1b) and accordingly p* = 0 in (2.4) by Smith and Taylor (1998). In
the case where 1)(z) is invertible with (unique) inverse ¢(z), with ¢(z) a pth order, 0 < p < oo,
lag polynomial, Burridge and Taylor (2001) and Smith et al. (2009) show that the limiting
null distributions of the OLS de-trended o, tg/; and Fy, k = 1,..., 5%, statistics from (2.4) are
as for p = 0, provided p* > p in (2.4). They show that this is not true, however, for the ¢
and t7, k = 1,..., 5, statistics whose limit distributions depend on functions of the parameters
characterising the serial dependence in ug,+s in (2.1b). Representations for the corresponding
limiting distributions under near seasonally integrated alternatives are given in Rodrigues and
Taylor (2004) and again shown to be free of nuisance parameters with the exception of the ¢
and t3, k = 1,...,.5%, statistics. Corresponding results for the local GLS de-trended HEGY-type
statistic are given in Rodrigues and Taylor (2007) and here it is also the case that the harmonic
frequency t-statistics depend on nuisance parameters arising from the serial correlation in wgy, .
Where ¢(z) is (potentially) infinite-ordered, del Barrio Castro et al. (2012) show that provided
the lag length p* in (2.4) is such that 1/p*+ (p*)3/T — 0, as T — oo, then limiting distributions
of the OLS and local GLS de-trended HEGY statistics will be of the same form as derived for

those statistics under finite p.

[S.10]



S.4 Limiting Distributions of the Lag Un-augmented HEGY
Statistics

In Theorem S.1 we now provide representations for the limiting distributions of the normalised
OLS estimates together with the corresponding regression t- and F-statistics computed from
the un-augmented HEGY regression given by (2.4) with the lag augmentation length, p*, set to
zero. These representations are again indexed by the parameter ¢ which has exactly the same

meaning as was given prior to Theorem 4.1.

Theorem S.1. Let yg,+s be generated by (2.1) under Hy o and let Assumption 1 hold. Then
the HEGY-type statistics computed from (2.4) with p* = 0 are such that, as T — oo,

(r) + 0

Jo Tie, ()5, (1) + Dy [ g5 (r)dJg =

k,cp
2
L Dk {fol k,ck (r) dr—l—Dka |:Jlg*ck( )} dT}
* * AE2
f() Jlg Ck (r)d‘]lg Ck fO kck d‘]lg Ck( ) kzki’m

H [Jé,cgr)} iy [, o) arf

Thy =  k=0,..,15/2] (S.29)

and
¢ 1 7Cx C* A2—10
A f kc )d‘]k,c (7’) +Dkf Jk,c )d‘]kc ( ) 2
t . 0 hen ‘ 0 - 1/22“ =1 k=0,...|8/2]
g .
0 {fo B 7«} dr + Dy Jy [ I, ()] dr}
(S.31)
. N )\*2_70)
f Jlgc )d‘]k:c f ch )d‘]]gc ( ) ( 5 2
g oo k20 The ‘ Db ‘ e o, k=1, 515.32)

Yo {fo [ her r} dr+f0 [J,g*% ’I“)] dr}l/z

where Dy, == 0, for k =0, S/2 and Dy, == 1, for k = 1,...,5%, N2 1= v + 2>, sin(wyi)Vk,
k=1,...,5% and where the limiting processes, J&CO (r), JS (r), J,g o, (1) and J,gik (r), k=

5/2,65/2
1,...,5%, are as defined in Theorem 4.1.

Remark S.5. Representations for the limiting distributions of the corresponding joint F
statistics, Fy, k =1,...,5%, F|_|g/2) and Fy_|g/2| are given by the average of the squares of the
limiting distributions for the t-statistics involved in their formulation given in Theorem S.1. So
that, for example, F}, => 3 (Ti)z + (Tzc)Q], k=1,.., 5% O

Remark S.6. The results in Theorem S.1 (and consequently also in Remark S.5) show that the
limiting distributions (under both null and local alternatives) of the uncorrected un-augmented
HEGY tests depend on nuisance parameters which arise when ug, s is weakly dependent.
When wugy, s is IID, which occurs where 9(z) = 1, then the true lag order in (2.4) is p* = 0,
and the representations in (S.29)-(S.32) are pivotal because here A2 = o, k = 0,...,S5/2],
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and )\22 =, k =1,...,5" Indeed, these pivotal forms, for the statistics at the zero and
Nyquist frequencies and for all of the F-type tests coincide with those which obtain from
the appropriately augmented HEGY tests discussed in section S.3. Relative to these pivotal
distributions, we see that in the presence of weak dependence in ug, s the un-augmented HEGY
statistics have limiting distributions whose numerator includes an additional term arising from
the difference between the short run variance of ug,+s and the long run variance(s) of ugy+s
at the frequency component relating to that statistic and, in the case of the t-statistics (and,
hence, the F-statistics), are also scaled by the ratio of the long and short run variances of ugy s

at that frequency. O

The representations given for the limiting distributions of the un-augmented HEGY statis-
tics in Theorem S.1 are useful because they enable us to see immediately how, given consistent
estimators for 7o, A7, k = 0,...,[5/2], and A\;?, k = 1,...,S*, these statistics can be trans-
formed to obtain modified statistics whose limiting distributions coincide with those which
obtain in the case where ¢(z) = 1. To that end in section S.5 we now propose seasonal ana-

logues of the non-seasonal PP tests.

S.5 Phillips-Perron-Type Seasonal Unit Root Tests

The finite sample size control of seasonal Phillips-Perron type tests under weak dependence was
found to be very poor relative to both augmented HEGY tests and the seasonal M tests; see
the accompanying working paper, del Barrio Castro, Rodrigues and Taylor (2015).

Computation of seasonal versions of the non-seasonal PP unit root tests will require con-
sistent estimators of the nuisance parameters which feature in the limit distributions, given in
Theorem S.1, of the un-augmented HEGY statistics which obtain from estimating (2.4) with
p* set to zero. Consistent sums-of-covariances and ASD estimators for )\z, kE=0,...,15/2],
were discussed in section 3.2. Corresponding estimators for )\}:,2, k=1,...,5% which are also
consistent under the conditions given in section 3.2, can be defined as follows, where notation
is the same as used in section 3.2. First, the sum-of-covariances estimators

T-1

MNiya = > w(i/m)jcos(n/2+wri),  k=1,...,5". (S.33)
j=—T+1

Second the corresponding ASD estimators

2
A2, = Se k=1,...,8"%

kAR *— . - 2 . - 27
(1= dycos ([jun+3]) )+ {2 by sin ([jer + 7)) }

(S.34)
Based on the estimators 5\37,1, 5‘%/27h’ S\%h and X,’fh, h=WA, AR, k = 1,...,5%, defined
in (3.3), (S.33), (3.4), (3.5) and (S.34), seasonal analogues of the non-seasonal PP unit root

statistics can be derived from the functional forms of the limit distributions of the un-augmented
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HEGY statistics given in Theorem S.1, as follows:

()1 ¢ R
._ X ! ¢ _
Zii= Thy— TQS—s—Zl (Vhisnrer) |+ F=0,.18/2) (835)
(X,’fh —’?0) [ T 9] -
Zim  Tii—— o Y (Wsue) | - K=1.08" (8.36)
L Sn+s=1 J
and
1/2 A2 _%> M52 T ;172
— T ( kih k.h 3 _
Zy= Pt D> (e . k=0,...,[S/2/(S.37)
k,h L Sn+s=1 J
1/2 (5\*2 _%) M52 T .12
x Yo s kh k,h * *
zr = g Y <y,fSn+S_1> . k=1,...,5 (S.38)
A 2 T :
k.h L Sn+s=1 J

where g is the OLS residual variance estimate from estimating (2.4) with p* set to zero.

Remark S.7. Notice that for S =1, Z, in (S.35) and Z;, in (S.37) reduce to the non-seasonal

unit root tests proposed in PP and defined in section 3.1. g

Remark S.8. PP-type analogues of the F-type statistics Fy, k = 1,...,5%, Fy |g5/2 and
F,...|s/2) discussed in section S.3 can also be constructed using the corrected normalised coef-
ficient estimate statistics in (S.35) and (S.36). With an obvious notation we will denote these
statistics as Fppg, k =1,...,5%, Fpp1..s/2), and Fpp..|s/2)- These statistics can be defined

generically as follows: )
Fpp:= —(RZ) [RAY'YR'] (RZ) (S.39)
v
where v denotes the number of restrictions being tested; Z := [Zy, Z1, Z{, Z2, Z5, ..., Zg=, Z s, ZS/Q]’

is S x 1Y = [yoly1lyilyz2ly3| - .- [ys+|ye-
T x 1 vectors with generic element nynJrS_l, and y; and y;, 7 =1,...,5" are T' x 1 vectors with

yg/z] is a T x S matrix where y;, ¢ = 0,.5/2, are

generic elements yf Sngs_1 and y:gn o1, respectively; A is an S x S diagonal matrix such that,
A= T*de‘ag{1/A37h,1/A§,h,1/A§7h,1/A§7h,1/A37h ...,1/)\2%,1/)\2*7,1,1//\%/2’,1}, and finally

R is the relevant v x S selection matrix; for example, setting

Jo1o00 .0
“loo 10 ...0]

yields the Fpp statistic, whilst setting R = Ig, where I, denotes the ¢ x ¢ identity matrix for
any positive integer ¢, results in Fppg. |s5/2]- O

S.6 Asymptotic Results for the Seasonal PP Tests

In Theorem S.2 we now present the large sample distributions of the seasonal PP-type unit root
test statistics proposed in section S.5. In particular, we show that these have pivotal limiting
distributions whose form coincides with those which obtain in the case where the shocks are

serially uncorrelated.
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Theorem S.2. Let the conditions of Theorem 4.1 hold. Then, as T — oo, the PP-type coeffi-

cient statistics introduced in section S.2 and Remark S.4 satisfy,
(Do) [y T (VAT (1) + Di fy T, ()T, ()]
S [ (r)]er—f—Dk s, o) ar
S [ R e R o
fo [ E,ck 7"} dr‘*’fo [‘]Ig*ck )} dr

while the corresponding t- and F—type statistics satisfy

1 * *
fO Jlg,ck (T)d‘]lg,ck( +Dk fO Jlgck )d‘]lgck( ) =4

Zk:>

L k=0,...,15/2(S.40)

o 1 2 9 12 ko k=0,..5/2] (S.42)
{fo [T <7">] dr+Ds fy {Jé’;k< ) dr}
Zt*k fO kck kck f() kck k.ci ( ) ::7;'{7 k‘:l,...,S* (8.43)

{f(]l [Jlg’ck (T)] dr + fo [Jlg*ck )}2 dr}1/2

Fppp = ;{(7;4)2+(7;*<)2], k=1,...,5° (S.44)
Lo, s )
Fppj..|s;2 = 5= Z <7Z<> "‘Z(ﬁ*C) , 7=0,1 (S.45)
i=j k=1

where Dy, = 0, for k =0,5/2 and Dy =1, for k =1,...,S*, and the limiting processes, ng (r),
JS (r) and Jgik(r), k=1,...,5* are as defined in Theorem 4.1.

TS 3.05, s Ty
Remark S.9: The limiting null distributions of the PP-type statistics from section S.5 are
obtained on setting ¢ = 0 (so that, correspondingly, Hy; holds) in the representations given
in Theorem S.2. These limiting null distributions coincide with those reported in Smith et al.
(2009) and Rodrigues and Taylor (2007), for OLS and local GLS de-trending respectively, for
the corresponding HEGY statistics from (2.4) in the case where ug,,+5 is serially uncorrelated.
Notice also that, contrary to what is shown in, inter alia, Burridge and Taylor (2001) and del
Barrio Castro, Osborn and Taylor (2012), for the corresponding ¢; and ¢; augmented HEGY
statistics from (2.4), when wug,;s is serially correlated the limiting null distributions of the

harmonic frequency PP-type test statistics Zy, Z;,, Z; and Z; , k = 1,...,5%, are free from

th?
nuisance parameters. Indeed, the asymptotic null dlStI‘lbuthn: of Z;; and Zj, coincide with
those reported for the augmented HEGY ¢, and ¢}, statistics, k = 1,...,.5*, in Burridge and
Taylor (2001) and del Barrio Castro, Osborn and Taylor (2012) for the case where a; = 0
and b; = 1; that is, in the absence of serial correlation in ug,+s. The foregoing asymptotic
equivalence results between the HEGY and corresponding PP-type statistics also hold under

the local alternative, Hi . O
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Remark S.10: Selected critical values for tests based on the statistics in (S.40)-(S.43) and
(S.44)-(S.45) (for the quarterly, S = 4, and monthly, S = 12, cases) are provided for the case of
OLS de-trended tests in HEGY, Ghysels et al. (1994) and Smith and Taylor (1998), and for GLS
de-trended tests in Rodrigues and Taylor (2007). Notice that the limiting null distribution in
(S.40) for both k = 0 and k = |.S/2] coincides with the limiting null distribution of the standard
normalised bias statistic of Dickey and Fuller (1979), with relevant critical values provided in
Fuller (1996). Furthermore, the limiting null distribution in (S.40), for k = 1, ..., S*, coincides
with the limiting null distribution of the Dickey et al. (1984) unit root test statistic, from where

relevant critical values can be obtained. O

S.7 Proofs of Theorems S.1 and S.2

First re-write (2.4) with p* set to zero in vector form, viz, y = Y/, + u, where y is a T' x 1

vector with generic element Agygwrs; Y = [yoly1|yilyalys| - lys|y&- |y5/2] is a T'x S matrix
where y;, i =0, ..., [S/2] are T' x 1 vectors with generic elements y§5n+8_1, andy;,i=1,..,5"
are T x 1 vectors with generic elements yf%n 451, respectively, and [y = [0, M7}, T2, T3,
...,7r5*,7r§*,7r5/2’]/. The OLS estimator from the un-augmented form of (2.4), may then be
defined via,

Thy == [T72Y'Y] " [T'Yy]. (S.46)

Because T72Y'Y weakly converges to an S x S diagonal matrix, this as a consequence of the
asymptotic orthogonality of the HEGY auxiliary variables discussed previously, we may there-
fore separately derive the large sample behavior of the OLS estimators of 7, j = 0, ..., |S/2],

and 77, i = 1,...,5* To that end, the so-called normalised bias statistics then satisfy the

following,
T-1y/ 715N 0 - y§ Asyi
37 T2 12 sm1-5 (yj,5n+s—1)
(S.47)
and
Ty TN S0 v 1 Asyt
T%\:ﬂ _ = y*z/ y* +0p (1) _ Zn 1 Zs 1-S J4,Sn+s—1 S;H—s +Op (1)7 i — 1’ ,S*
Ty’ 9N 0
Yi¥i T2 anl Zs:l—S (yzgn—l-s—l)
(S.48)
Consider first the numerators of (S.47) and (S.48). For (S.47) observe first that,
N 0 N
TS N e 1Bt =T Y Yl \CGASYE + A +0, (1), j=0,5/2 (S.49)
n=1s=1-5 n=1

where A := §~1 25;11 (S — i) cos [iw;] N7t ij:l (ugﬂnugn), and where AgY; := [Asygn_(s_l),
Ag ygn_(s_Q), vy Ag ygn]/. Notice then that A; — ¥, = S§~1 Zf:_ll (S — i) cos [iw;] ~; for
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wj =2, j =0,5/2. Similarly, for j = 1,...,5*, we have that

N 0
Ty
n=1s=1-S5
N 0 N
— * — & = -~
T lz Z yjfgn—l—s—lAsygn—i-s = T 1ZYnl_10jA5YnE+Aj+0p(1) (S.51)
n=1s=1-5

n=1

N
_ 13
y§,5n+s—1Asygn+s =T ! Z Yn,—lchSY;? + Aj + Op (1) (850)

n=1

where A := §~! 25—1 (S —i)cos [iwj] N"T N (ug mugn> and A := —S~1 Zf:_ll (S — 1) sin [iwj]

D DN (ufq musn> We observe that A; — \Ill St Zf:_ll (S — i) cos [iw;] v and Aj —

2. =8~ Zi:l (S — i) sin [iw;] v; for w; = 2;5], j=1...,5%

Again using (S.10), applications of the CMT, the identities CxCyCy = S?Cy, for k = 0, 5/2,

2 — 2 — = 2 — = = 2

and C3C;C; Ez(é) Gy, GiCiC5 = (2%) €505 GG = ;(%) Cj, C; GiC; = (ﬁ)ﬁ Cj,
CiC;C = (3)° Cj, CjC;C4= ~ (5)” ;. C5C5C; = (5)” Cj and T5C,C; = (3)° C; for
j =1,...,5"% the orthogonality between the circulant matrices and Theorem 2.6 in Phillips
(1988), the following results are obtained:
i) For the zero and Nyquist frequencies (k = 0, .5/2),

N 2 1 00
_ ¢ oz 1) (cos|wyg
T3 Y CAsYE = 5(32”) / 35 (r) CLCKCKE (1) dIE, (r g (Uf’c Uﬁ)
n=1 G=
% (cosn))? [ JE () Cad (r)+1§:E(Uf’c vf)
g k 0 Cre kGJdc, S < - 1 VYkY
]:
1 oo
* * 1
— o2y (cosfuw])? /0 35 ) Gt () + g S B (UFO0)  (85)
j=2
where wy = 0 and wg/, = 7.
ii) For the harmonic frequencies (5 = 1,...,5%),
N ¢ o2 [2\2 1
T‘len’_leAsY§ = ? <S> bj/ (r)' CiC; (b;C + a;C;) dIs (1)
n=1 0
0'2 2 2 1 A=, >
+5 <s> aj/o 3 (1) T,C; (b;C) + a,C) d Skz (v7e;ur)
2 1 2 1
- %fb? / JE, (r) CddE, (r)+%fajbj / JE, (r) CjdJe, (r)
0 0
92 o (M5 (voart (- Tan [ ¢
+—=a Jo. (r) CjdJI. () a;b; (r) C,;dJs. (r)
S ) S
1 & £ 3
+§ZE<U1’C]Uk)
k=2
2 2 2
oz \aj + b5 ! 1 & 3 ¢
_ 7( . >/0 3¢ ()’ C;a38! (r)+§ZE(U1’CjUk>, (S.53)
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1
JE (r) CiC; (b;C5 + a;C;) dIE, (r)
n=1

1}: & Ug
Y IC ASY = ?
2
€

N ~—r
[\

S

o\

_ %y [ 5 oy Tart PO BT
- ? i 0 ¢; (T) J89¢; (T) - ? j g 0 ¢ (T) J8d¢; (T)

1 o2 -
oty [0 0 Coant )+ % [ 98 0 Tyt 0

o (a?+02) f1 %
_ a<]2 ’>/ 38 (r) Cjd3 (r Z (vfe,us)
0 :
where J&! () == ﬁ 5 ().
Moreover, for k =0 and k = S/2,
1 € e - , 1,5
g ZE <U1 C’kUj> + Uy, = Zcos [iwg] i = 5(/\k — Vi) (S.55)
j=2 i=1
and for j =1,2,...,5%,
1 00 00 ' 1
5 Y E (Uf’@U,f) +0) = D cos[(S—i)wj]yi = Z()\? — ) (S.56)
k=2 =1
EZE (Uf/CjU/g) —i—\I/? = —Zsm[(S—z)wj] i = Z(/\jz - 70) (S.57)
k=2 i=1
with w; = ng.

In the case of the denominator of (S.47) the required results for j = 0 and j = S/2 are
collected in (S.21). Consider next the denominators of (S.47) and (S.48) over the values 1, ..., S*
of the index parameters j and i, respectively. Here we have the results that C;, ¢ = 1, ..., 5%, is
symmetric and that U; = —C,;, and noting also that C; and C; are orthogonal to Cp and Cs/2
and that C;C;C; = (5)* ¢y, GiCiCi = (5)° Ty, T0iC; = — (5)7 T, and T0,C; = (5)° .

Using these results we have that,

—2 - - 3 2 -2 al S & 1
T Z Z (yi,Sn-&-s—l) =T Z 9 (Yn—lci Yn—l) + 0p (1)
n=1s=1-5 n=1
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2 1
L _ 1 _
) aj/o (1) T5C5 (6,Cy +a;C5) d3E, (1) + 5 Y B (UF'C,Uf )
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- _- —& [ = 2 .-
T ;<2>( 1CiYoy) S2<2>bz <s> 3L 0) GO () drt
2 2 1
e (S (2 / ¢ (Y CLOTLTE
<2 <2> bia; (S) ; Je, (1) CiCiCJe, (r) dr +
2 2 1
2 (SN (2 / $ (T OO
o2 <2> bia; (S) ; Je, (1) CyCiCJe, (r) dr +
o2 (S\ 5 (2 2t ¢
5Q<2>ai<s)té 3 () T.OTIE (r)d
2 (2 402) [1
= W/ Jgr (r)'CiJgr (r)dr (S.58)
0
where i = 1,..., 5% and J&/ (r) := —2=3%, (»).

Combining the results in (S.49)-(S.57) with (S.21) and (S.58) we establish that for k = 0
(wo =0) and k = S/2 (wg/s = 7),

Jo J& (r) Crddé: (r) + (3252 cos [iwg] 7:) /o2 [ (cos[wi]))?

T, = S.59
g JE3E () CRIE () dr (5.59)
and for j = 1,..., 5 that,
o2 (a +b%) € (ry &t i~ :
SEATRE VAR C;dJE! > S — i) wil v
% = fo = ib (7 ) (Z 2, cos [(S — 1) wj]vi) (5.60)
fo I& () ;38 (r) dr
o (a +b7) € ( & o :

7 “”’ fOJfT CJfT()dr

Next observe that the corresponding t-statistics from the un-augmented form of (2.4) can be

written as

N 0
,\—12 —
tk = /Tﬂk T 22 Z (ykSnJrS)

n=1s=1-5

1/2
+op(1), k=0,...[8/2]  (S.62)

—_

N 0
* /\*1/2 % —2
ti = TT(' T Z Z (yzSn—l—s)
=1-

L n=1s

1/2
+op(1), i=1,...,5" (S.63)

where 7 is the usual OLS variance estimator from the un-augmented form of (2.4); that is, 7p :=
VD D 222175(ﬁ§n+5)2. Observe from the results in (S.59)-(S.61) that ﬁj =0y (1) and 7} =
0p (1), and hence 7y := T~1 27]:[:1 Zgzl_S(Asy§n+s)2 +o0p (1) so that 7y RN oz (1 + Z] 1 1/}2>
Substituting the result that 7g 2 o? (1 + Z;’il 1/)]2-), the results in Remark S.1, and the
results in (S.59)-(S.61), (S.21) and (S.58) into (S.62)-(S.63) and using applications of the CMT,
after some simple manipulations, we finally obtain the stated results in Theorem S.1, where we
have defined the independent standard OU processes Jf’cl, (r) = vgJEj (r),i=0,5/2, J;:Cj (r) =
h}Jgr (r) and J]@:Zj (r) = h;“Jg (r) where h’ and h}’ are the first and second rows of v’
respectively, for j = 1,...,5* (see Remarks S.1 and S.3). The proof of Theorem S.2 then
follows directly from these results and the consistency properties of the long and short run

variance estimators used in the construction of the PP-type statistics. [
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S.8 Additional Monte Carlo Results

Figures S.1-S.4 report complementary finite sample local power figures to those given in Figures
3-6 in the main text for the case where the tests are not size-adjusted but rather were run using
the relevant asymptotic critical values (obtained from the sources given in Remarks 4.2 and
4.3). The Monte Carlo DGP and set-up of these experiments were otherwise exactly as detailed

in Section 5.2.
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