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S.1 Introduction

This supplement contains supporting material for our paper “Semi-Parametric Seasonal Unit

Root Tests”. Equation references (S.n) for n ≥ 1 refer to equations in this supplement and

other equation references are to the main paper.

The supplement is organised as follows. Proofs of the main theoretical results in the paper

can be found in section S.2. A more detailed outline of the augmented HEGY seasonal unit

root tests are given in section S.3. Section S.4 details the limiting distributions of the lag un-

augmented HEGY seasonal unit root tests which obtain from (2.4) with p∗ set to zero. These

are shown in Theorem S.1 to be non-pivotal depending on any (un-modelled) serial correlation

present in uSn+s of (2.1b). Seasonal implementations of the PP unit root tests are outlined in

section S.5 and their limiting distributions are given in Theorem S.2 in section S.6. The proofs

of Theorems S.1 and S.2 are provided in section S.7. Additional Monte Carlo results relating to

size unadjusted finite sample power results are reported in section S.8. All additional references

are included at the end of the supplement.

S.2 Proofs of Main Results

S.2.1 Preliminary Results

Before providing the proofs of the main results given in the paper, a number of preliminary

results are needed first. To that end, we first note that under (2.3), xSn+s in (2.1b) can be

written as,

∆c0
0 ∆

cS/2
S/2

∏S∗

k=1
∆ck
k xSn+s = uSn+s (S.1)

where ∆c0
0 := 1−α0L = 1−

(
1 + c0

SN

)
L, ∆

cS/2
S/2 := 1+αS/2L = 1+

(
1 +

cS/2
SN

)
L, and ∆ck

k := 1−

2 cos [ωk]αkL+α2
kL

2 = 1−2 cos [ωk]
(
1 + ck

SN

)
L+

(
1 + ck

SN

)2
L2, for k = 1, ..., S∗. Consequently,

(S.1) can be equivalently written as,

xSn+s = [S0,c0 (Sn+ s)]
[
SS/2,cS/2 (Sn+ s)

] [∏S∗

k=1
Sk,ck (Sn+ s)

]
uSn+s (S.2)

where, for ω0 = 0 and ωS/2 = π,

Si,ci (Sn+ s) :=

Sn+s∑
j=1

cos [((Sn+ s)− j)ωi]αSn+s−j
i LSn+s−j , i = 0, S/2

and, for ωk = (2πk)/S, k = 1, ..., S∗,

Sk,ck (Sn+ s) := sin [ωk]
−1

Sn+s−1∑
j=0

sin [((Sn+ s) + 1− j)ωk]αSn+s−j
k LSn+s−j

= sin [ωk]
−1 (sin [((Sn+ s) + 1)ωk]S

α
k,ck

(Sn+ s)

− cos [((Sn+ s) + 1)ωk]S
β
k,ck

(Sn+ s)
)
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with

Sαk,ck (Sn+ s) :=
Sn+s∑
j=1

cos [jωk]α
Sn+s−j
k LSn+s−j

Sβk,ck (Sn+ s) :=
Sn+s∑
j=1

sin [jωk]α
Sn+s−j
k LSn+s−j .

In view of the foregoing, the identities given in Gregoir (1999, p. 463) can be extended to the

terms in (2.3) as follows,

∆c0
0

2
+

∆
cS/2
S/2

2
= 1 +

1

2

(
cS/2 − c0

SN

)
L = 1 +O (1/N) (S.3)

∆ck
k + (1− 2 cos [ωk] + L) ∆c0

0

2κ0(ωk)
= 1− c0

2κ0(ωk)SN
L− 2 cos [ωk]

2κ0(ωk)

(ck − c0)

SN
L

+
(2ck − c0)

2κ0(ωk)SN
L2 +

c2
k

2κ0(ωk) (SN)2L
2

= 1−O
(

1

N

)
−O

(
1

N

)
+O

(
1

N

)
+O

(
1

N2

)
(S.4)

∆ck
k + (1 + 2 cos [ωk]− L) ∆

cS/2
S/2

2κS/2(ωk)
= 1 +

cS/2

2κS/2(ωk)SN
L+

2 cos [ωk]

2κS/2(ωk)

(
cS/2 − ck

)
SN

L

+

(
2ck − cS/2

)
2κS/2(ωk)SN

L2 +
c2
k

2κS/2(ωk) (SN)2L
2

= 1 +O

(
1

N

)
+O

(
1

N

)
+O

(
1

N

)
+O

(
1

N2

)
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and

2 cos [ωk]− L
2κ(ωkj)

∆
cj
j +

2 cos [ωj ]− L
2κ(ωjk)

∆ck
k

= 1− 4 cos [ωk] cos [ωj ]

2κ(ωkj)

(cj − ck)
SN

L+
2
[
cos [ωj ]

cj
SN − cos [ωk]

ck
SN

]
2κ(ωkj)

L2

+
4
[
cos [ωk]

cj
SN − cos [ωj ]

ck
SN

]
2κ(ωkj)

L2 − 2

2κ(ωkj)

(cj − ck)
SN

L3

+
2
[
cos [ωk]

( cj
SN

)2 − cos [ωj ]
(
ck
SN

)2]
2κ(ωkj)

L2 − 1

2κ(ωkj)

(
c2
j − c2

k

)
(SN)2 L3

= 1−O
(

1

N

)
+O

(
1

N

)
+O

(
1

N

)
−O

(
1

N

)
+O

(
1

N2

)
−O

(
1

N2

)
(S.6)

where κ0(ωk) := 1 − cos [ωk], κS/2(ωk) := 1 + cos [ωk] and κ(ωkj) := cos [ωk] − cos [ωj ], j, k =

1, ..., S∗.

Consequently, noting that ∆ck
k Sk,ck (Sn+ s) = 1 and using (S.3)-(S.6), it follows from (S.2)

after some tedious algebra and using the standard trigonometric identities, sin [((Sn+ s) + 1)ωk]
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≡ cos [ωk] sin [(Sn+ s)ωk]+sin [ωk] cos [(Sn+ s)ωk] and cos [((Sn+ s) + 1)ωk] ≡ cos [ωk] cos [(Sn+ s)ωk]

− sin [ωk] sin [(Sn+ s)ωk], that xSn+s can be decomposed into the sum of frequency specific

partial sums plus an asymptotically negligible term (see also Gregoir, 1999); that is,

xSn+s =
1

S
S0,c0 (Sn+ s)uSn+s +

1

S
SS/2,cS/2 (Sn+ s)uSn+s

+
2

S

S∗∑
k=1

[
cos [(Sn+ s)ωk]S

α
k,ck

(Sn+ s)uSn+s

+ sin [(Sn+ s)ωk]S
β
k,ck

(Sn+ s)uSn+s

]
+ op (1) . (S.7)

DefiningXn := [xSn−(S−1), xSn−(S−2), ..., xSn]′, n = 0, ..., N , and Un := [uSn−(S−1), uSn−(S−2),

..., uSn]′, n = 1, ..., N , and noting that
∑n

j=1 exp
(
ck
SN

)S(n−j)
Uj =

∑n
j=1 exp

(
ck
N

)n−j
Uj , it will

prove convenient, for the analysis that follows, to re-write (S.7) in the so-called vector-of-seasons

representation:

Xn =

bS/2c∑
k=0

(
1 + δk
S

)
Ck

n∑
i=1

exp
(ck
N

)n−i
Ui + op (1) (S.8)

where δk := 0 for k = 0 and k = S/2 and δk := 1 otherwise, and where Ci := Circ [cos [0] ,

cos [ωi] , cos [2ωi] , . . . , cos [(S − 1)ωi]] , i = 0, . . . , bS/2c, such that C0 and CS/2 are S × S

circulant matrices of rank 1, while for ωi = 2πi/S with i = 1, . . . , S∗, Ci are S × S circulant

matrices of rank 2. For further details on these circulant matrices see, for example, Osborn and

Rodrigues (2002) and Smith et al. (2009).

Remark S.1: In order to relate (S.8) to (S.7) we have made use of the fact that the circulant

matrices involved can be written as C0 = v0v0
′, where v0

′ := [1, 1, 1, ..., 1], CS/2 = vS/2vS/2
′,

where vS/2
′ := [−1, 1,−1, ..., 1], and for j = 1, ..., S∗, Cj = vjv

′
j and finally the matrix Cj :=

Circ [sin [0] , sin [(S − 1)ωj ] , sin [(S − 2)ωj ] , . . . , sin [ωj ]], with Cj = vjv
∗′
j , which will be used

later in lemma S.1 where

v′j :=

[
cos [ωj (1− S)] cos [ωj (2− S)] · · · cos [0]

sin [ωj (1− S)] sin [ωj (2− S)] · · · sin [0]

]
=:

[
h′j
h∗′j

]

and

v∗′j :=

[
− sin [ωj (1− S)] − sin [ωj (2− S)] · · · − sin [0]

cos [ωj (1− S)] cos [ωj (2− S)] · · · cos [0]

]
=:

[
−h∗′j
h′j

]
,

j = 1, . . . , S∗. �

Remark S.2: As shown in Burridge and Taylor (2001), the error process, Un, defined above

(S.8) satisfies the vector MA(∞) representation

Un =
∞∑
j=0

ΨjEn−j (S.9)
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where En := [εSn−(S−1), εSn−(S−2), ..., εSn]′ is a vector of IID errors, and the S × S matrices

Ψ0, Ψj , j = 1, 2, . . . , are given by

Ψ0 :=



1 0 0 0 · · · 0

ψ1 1 0 0 · · · 0

ψ2 ψ1 1 0 · · · 0

ψ3 ψ2 ψ1 1 · · · 0
...

...
...

...
. . .

...

ψS−1 ψS−2 ψS−3 ψS−4 · · · 1


and

Ψj :=



ψjS ψjS−1 ψjS−2 ψjS−3 · · · ψjS−(S−1)

ψjS+1 ψjS ψjS−1 ψjS−2 · · · ψjS−(S−2)

ψjS+2 ψjS+1 ψjS ψjS−1 · · · ψjS−(S−3)

ψjS+3 ψjS+2 ψjS+1 ψjS · · · ψjS−(S−4)
...

...
...

...
. . .

...

ψjS+S−1 ψjS+S−2 ψjS+S−3 ψjS+S−4 · · · ψjS


, j ≥ 1.

�

Next in Lemma S.1 we provide a multivariate invariance principle for Y ξ
n := [yξSn−(S−1),

yξSn−(S−2), ..., y
ξ
Sn]′, where yξSn+s := xSn+s−δ̂′zSn+s,ξ, and where it is recalled that the parameter

ξ ∈ {1, 2, 3} denotes the deterministic Case of interest.

Lemma S.1. Let the conditions of Theorem 4.1 hold. Then, as N →∞,

N−1/2Y ξ
brNc ⇒

σε
S

bS/2c∑
i=0

(1 + δi)
(
CiΨ (1) Jξci (r)

)
, r ∈ [0, 1]

=
σε
S

[
ψ(1)C0J

ξ
c0 (r) + ψ(−1)CS/2J

ξ
cS/2

(r) + 2

S∗∑
i=1

(
biCiJ

ξ
ci (r) + aiCiJ

ξ
ci (r)

)]
(S.10)

where {δi}bS/2ci=0 , are as defined below (S.8); Jξck (r) := [Jξck,1−S (r) , Jξck,2−S (r) , ..., Jξck,0 (r)]′ is

an S × 1 vector OU process such that dJξck (r) = cJξck (r) dr + dWξ (r) and Wξ (r) is an S × 1

vector Brownian motion process; ai := Im(ψ[exp(iωi)]) and bi := Re(ψ[exp(iωi)]), i = 1, ..., S∗,

with Re(·) and Im(·) denoting the real and imaginary parts of their arguments, respectively;

and C0, CS/2, Ci and Ci, i = 1, . . . , S∗, are the S × S circulant matrices defined in Remark

S.1. Finally, with OLS de-trending:

J1
ck,s

(r) := Jck,s (r)−
∫ 1

0
Jck,s (r) dr

J2
ck,s

(r) := J1
ck,s

(r)− 12

(
r − 1

2

)∫ 1

0

(
r − 1

2

)[
1

S

0∑
s=1−S

J1
ck,s

(r)

]
dr

J3
ck,s

(r) := J1
ck,s

(r)− 12

(
r − 1

2

)∫ 1

0

(
r − 1

2

)
J1
ck,s

(r) dr
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and with local GLS de-trending:

J1
ck,s

(r) := Jck,s (r)

J2
ck,s

(r) := Jck,s (r)− r

[
1

S

0∑
s=1−S

(
λJck,s (1) + 3 (1− λ)

∫ 1

0
hJck,s (h) dh

)]

J3
ck,s

(r) := Jck,s (r)− r
[
λJck,s (1) + 3 (1− λ)

∫ 1

0
hJck,s (h) dh

]

with λ := (1− c) /
(
1 + c+ c2/3

)
, in all cases for the indices s = 1−S, ..., 0 and k = 0, ..., bS/2c.

Proof of Lemma S.1: Following along the same lines as for the proof of Lemma 1 in del

Barrio Castro, Osborn and Taylor (2012) and Phillips (1988) it follows that, as N →∞,

σ−1
ε√
N

brNc∑
i=1

exp
(ck
N

)brNc−i
Ei ⇒ Jck (r) , r ∈ [0, 1] (S.11)

σ−1
ε√
N

brNc∑
i=1

exp
(
ck

N

)brNc−i
Ui =

σ−1
ε Ψ(1)√
N

brNc∑
i=1

exp
(
ck

N

)brNc−i
Ei + op (1)

⇒ Ψ(1)Jck (r) , r ∈ [0, 1] (S.12)

where Ei and Ui are as previously defined, dJck (r) = ckJck (r) dr + dW (r) , W(r) is an S × 1

vector standard Brownian motion and Jck (r) is an S × 1 vector standard OU process. Next

observe from (S.8) and (S.9), that

N−1/2XbrNc =

bS/2c∑
k=0

(
1 + δk
S

)
CkN

−1/2

brNc∑
i=1

exp
(ck
N

)brNc−i
Ui + op (1)

=

bS/2c∑
k=0

(
1 + δk
S

)
CkΨ (1)N−1/2

brNc∑
i=1

exp
(ck
N

)brNc−i
Ei + op (1) (S.13)

where {δk}
bS/2c
k=0 , are as defined below (S.8), and the approximation in (S.13) follows from (S.12)

and using similar arguments to those used in Boswijk and Franses (1996, p.238). From (S.11),

(S.13) and the continuous mapping theorem [CMT] the result in (S.10) follows immediately.

Noting that Ψ(1) is also a circulant matrix, then by the properties of products of circulant

matrices it can be shown that C0Ψ (1) = ψ (1)C0, CS/2Ψ (1) = ψ (−1)CS/2, CjΨ (1) = bjCj +

ajCj and CjΨ (1) = −ajCj+bjCj for j = 1, . . . S∗; see, inter alia, Davis (1979, Theorem 3.2.4),

Gray (2006, Theorem 3.1) and Smith et al. (2009) for further details. The stated result then

follows immediately. �

Remark S.3: Note that the circulant matrices C0 and CS/2 are associated with the auxiliary

variables yξ0,Sn+s and yξS/2,Sn+s, respectively. Moreover, the circulant matrices Ck, k = 1, ..., S∗

(see Remark 2 in Smith, Taylor and del Barrio Castro, 2009) defined as:

Ck := Circ

[
sin [ωk]

sin [ωk]
,
sin [Sωk]

sin [ωk]
,
sin [(S − 1)ωk]

sin [ωk]
, . . . ,

sin [2ωk]

sin [ωk]

]
(S.14)

= Ck +
cos [ωk]

sin [ωk]
Ck, k = 1, ..., S∗

[S.6]



where Ck and Ck, k = 1, ..., S∗, are as defined in Remark S.1 and are associated with the

filter ∆0
k (L) = sin [ωk]

−1
(∑S−1

j=0 sin [(j + 1)ωk]L
j
)

in (3.11). Finally the circulant matri-

ces D+
ωk

and D−ωk , k = 1, ..., S∗, defined as, D+
ωk

:= Circ
[
1, 0, 0, · · · , 0, eiωk

]
and D−ωk :=

Circ
[
1, 0, 0, · · · , 0, e−iωk

]
are associated with the filters

(
1− eiωkL

)
and

(
1− e−iωkL

)
, respec-

tively. �

In order to obtain results for the asymptotic distributions of the test statistics discussed in

this paper, the limiting results collected together in the following Lemma will prove useful.

Lemma S.2. Let the conditions of Lemma S.1 hold. Then, as N →∞,

N−1/2C0Y
ξ
brNc ⇒ σε ψ (1)C0J

ξ
c0 (r) (S.15)

N−1/2CS/2Y
ξ
brNc ⇒ σε ψ (−1) JξcS/2 (r) (S.16)

N−1/2CkY ξ
brNc ⇒ σε

(
Ck +

cos [ωk]

sin [ωk]
Ck

)
Ψ (1) Jξck (r) , k = 1, . . . , S∗ (S.17)

1√
N
D+
ωk
CkY ξ

brNc ⇒ σεC
−
k Ψ (1) Jξck (r) = σεψ

(
eiωk

)
E−1,kE

−′
2,kJ

ξ
ck

(r) , k = 1, . . . , S∗ (S.18)

1√
N
D−ωkC

kY ξ
brNc ⇒ σεC

+
k Ψ (1) Jξck (r) = σεψ

(
e−iωk

)
E+

1,kE
+′
2,kJ

ξ
ck

(r) , k = 1, . . . , S∗ (S.19)

where the vector OU processes, Jξci (r), i = 0, . . . , bS/2c, and the circulant matrices, Ci, i =

0, . . . , bS/2c and Ci, i = 1, . . . , S∗, are defined in Lemma S.1, Ck is defined in (S.14), D+
ωk

:=

Circ
[
1, 0, 0, · · · , 0, eiωk

]
, D−ωk := Circ

[
1, 0, 0, · · · , 0, e−iωk

]
, C−k := Circ

[
1, e−i(S−1)ωk , e−i(S−2)ωk , · · · , e−iωk

]
,

C+
k := Circ

[
1, ei(S−1)ωk , ei(S−2)ωk , · · · , eiωk

]
, k = 1, . . . , S∗, E−1,k := [1, e−iωk , e−i2ωk , ..., e−i(S−1)ωk ]′,

E−2,k := [1, e−i(S−1)ωk , e−i(S−2)ωk , ..., e−iωk ]′, E+
1,k := [1, eiωk , ei2ωk , ..., ei(S−1)ωk ]′ and E+

2,k := [1,

ei(S−1)ωk , ei(S−2)ωk , ..., eiωk ]′.

Proof of Lemma S.2: The results in (S.15) to (S.17) follow immediately from Lemma S.1

using the following identities: C0C0 ≡ SC0 ,CS/2CS/2 ≡ SCS/2, CkCk ≡ S
2Ck and CkCk ≡ S

2Ck,

recalling that the matrix products between C0, CS/2, Cj and Cj , j = 1, . . . , S∗ are all zero

matrices, and that multiplication between circulant matrices is commutative, and finally that

Ck :=
(
Ck + cos[ωk]

sin[ωk]Ck

)
. Consider next the results in (S.18) and (S.19). We first note, using

Property 1.3 and expression (2) in Gregoir (2006), that

Ck =
e−iωk

e−iωk − eiωk
C−k +

eiωk

eiωk − e−iωk
C+
k (S.20)

with C−k := Circ
[
1, e−i(S−1)ωk , e−i(S−2)ωk , · · · , e−iωk

]
and C+

k := Circ
[
1, ei(S−1)ωk , ei(S−2)ωk , · · · , eiωk

]
.

Moreover, D−ωkC
−
k = D+

ωk
C+
k = 0, e−iωk

e−iωk−eiωkD
+
ωk
C−k = C−k , and eiωk

eiωk−e−iωk
D−ωkC

+
k = C+

k , each

of which follows from the properties of the product of circulant matrices. Also, because Ψ (1)

is a circulant matrix, by the properties of products of circulant matrices it further holds that

C−k Ψ (1) = ψ
(
eiωk

)
C−k and C+

k Ψ (1) = ψ
(
e−iωk

)
C+
k . Finally as both C−k and C+

k are S × S
circulant matrices of rank 1 we can write C−k = E−1,kE

−′
2,k and C+

k = E+
1,kE

+′
2,k. The stated results

then follow immediately. �
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S.2.2 Proof of Theorem 4.1

Using the results that C0 and CS/2 are symmetric and orthogonal both to one another and to

Ci and Ci, i = 1, ..., S∗, and the fact that CjCjCj ≡ S2Cj for j = 0, S/2, then appealing to the

multivariate invariance principle in (S.10) and using an application of the CMT we have that

T−2
N∑
n=1

0∑
s=1−S

(
yξj,Sn+s−1

)2
= T−2

N∑
n=1

S
(
Y
ξ′
n−1CjY

ξ

n−1

)
+ op (1)

⇒ σ2
ε

S2

ψ (cos[ωj ])
2

S

∫ 1

0
Jξcj (r)′C ′jCjCjJ

ξ
cj (r) dr

= σ2
εψ (cos[ωj ])

2
∫ 1

0
Jξ∗cj (r)′CjJ

ξ∗
cj (r) dr, j = 0, S/2 (S.21)

where ω0 = 0, ωS/2 = π and Jξ∗cj (r) := 1√
S
Jξcj (r) for j = 0, S/2.

Using Remark S.1, together with the results in (S.15) and (S.16), for the zero and Nyquist

frequencies, applications of the multivariate FCLT and CMT establish that, as N →∞,

N−1/2yξ0,SbrNc+s ⇒ σε
√
Sψ (1) v′1

1√
S

Jξc0 (r) =: σε
√
Sψ (1) v′1J

ξ∗
c0 (r)

=: σε
√
Sψ (1) Jζ0,c0(r) (S.22)

N−1/2yξS/2,SbrNc+s ⇒ σε
√
Sψ (−1) (−1)s v′S/2

1√
S

JξcS/2 (r) =: σε
√
Sψ (−1) (−1)s v′S/2J

ξ∗
cS/2

(r)

=: σε
√
Sψ (−1) (−1)s JζS/2,cS/2

(r) (S.23)

where v′1 and v′S/2 are defined in Remark S.1, and Jζ0,c0(r) and JζS/2,cS/2
(r) are as defined in

Theorem 4.1. Consequently, for the MZk, k = 0, S/2 tests we obtain from (S.22) and (S.23)

that,

(SN)−1/2 yξ0,SN ⇒ σεψ (1) Jζ0,c0(1) (S.24)

(SN)−1/2 yξS/2,SN ⇒ σεψ (−1) (−1)S JζS/2,cS/2
(1). (S.25)

Using the results in (S.24), (S.25) and (S.21) and the fact that λ̂2
0

p→ σ2
εψ (1)2 and λ̂2

S/2

p→
σ2
εψ (−1)2, it therefore follows that,

MZk ⇒
σ2
εψ (cos[ωk])

2 Jζk,ck(1)2 − σ2
εψ (cos[ωk])

2

2σ2
εψ (cos[ωk])

2 ∫ 1
0

[
Jζk,ck(r)

]2
dr

=

[
Jζk,ck(1)

]2
− 1

2
∫ 1

0

[
Jζk,ck(r)

]2
dr
, k = 0, S/2 (S.26)

where ω0 = 0 and ωS/2 = π. The results for the MSBk, k = 0, S/2, statistics are obtained

straightforwardly from (S.21). Combining the results forMSBk with (S.26), the limit ofMZtk
then follows straightforwardly.

Turning to the harmonic frequency statistics, note first that the vector of seasons repre-

sentations of (3.9) and (3.10) with Y ξ,Dh
k,n :=

[
yξ,Dhk,Sn−(S−1), yξ,Dhk,Sn−(S−2), · · · , y

ξ,Dh
k,Sn

]′
, h ∈ {a, b},

[S.8]



based on (S.18) and (S.19) are such that, for k = 1, ..., S∗,

1√
SN

Y ξ,Da
k,brNc ⇒

σε√
S
ψ
(
eiωk

) (
eiωk1

)
E−′2,kJ

ξ
ck

(r) =
σε√
S
ψ
(
eiωk

)
1eiωkE+′

1,kJ
ξ
ck

(r)

=
σε√

2
ψ
(
eiωk

)
1

[
h′k

1√
S/2

Jξck (r) +ih∗′k
1√
S/2

Jξck (r)

]
=

σε√
2
ψ
(
eiωk

)
1
[
h′kJ

ξ†
ck

(r) +ih∗′k Jξ†ck (r)
]

=
σε√

2
ψ
(
eiωk

)
1
[
Jζk,ck (r) +iJζ∗k,ck (r)

]
(S.27)

and

1√
SN

Y ξ,Db
k,brNc ⇒

σε√
S
ψ
(
e−iωk

) (
e−iωk1

)
E+′

2,kJ
ξ
ck

(r) =
σ√
S
ψ
(
e−iωk

)
1e−iωkE−′1,kJ

ξ
ck

(r)

=
σε√

2
ψ
(
e−iωk

)
1

[
h′k

1√
S/2

Jξck (r)−ih∗′k
1√
S/2

Jξck (r)

]
=

σε√
2
ψ
(
e−iωk

)
1
[
h′kJ

ξ†
ck

(r)−ih∗′k Jξ†ck (r)
]

=
σε√

2
ψ
(
e−iωk

)
1
[
Jζk,ck (r)−iJζ∗k,ck (r)

]
, (S.28)

respectively, where 1 is an S × 1 vector of ones, hk and h∗k, are defined in Remark S.1, Jξck (r)

and Jξ†ck (r) are defined in Lemma S.1, and where Jζk,ck (r) and Jζ∗k,ck (r) are as defined in Theorem

4.1.

Using the consistency of the estimators λ̆k,AR := se{1 − [φ̂(eiωk)]}−1 and λ̆∗k,AR := se{1 −
[φ̂(e−iωk)]}−1 of σεψ

(
eiωk

)
and σεψ

(
e−iωk

)
, respectively, k = 1, ..., S∗, it is then possible to

show that, in each case for k = 1, ..., S∗,

(λ̆2
k,ART )−1/2yξ,Dak,SbrNc+s ⇒

1√
2

[
Jζk,ck (r) +iJζ∗k,ck (r)

]
=:

1√
2
Jk,ck(r)

(λ̆∗2k,ART )−1/2yξ,Dbk,SbrNc+s ⇒
1√
2

[
Jζk,ck (r)−iJζ∗k,ck (r)

]
=:

1√
2
Jk,ck(r).

Noting that the auxiliary variables yRe,ξk,Sn+s and yIm,ξk,Sn+s defined in (3.14) and (3.15) are free

from nuisance parameters, it is then straightforward to obtain the representations given for

the asymptotic distributions of the K-MZk, K-MSBk and K-MZtk statistics in (4.4), (4.5)

and (4.6), together with the results for the joint frequency statistics from section 3.3 given in

Corollary 4.1 �

Remark S.4: Note that the deterministic kernels considered for the de-meaning and de-

trending of the variables, have different impacts on the frequency specific OU processes. These

set of processes at each frequency for each case are summarised for convenience as follows,

Case 1 (ξ = 1) : J1
0,c0

(r) , J1
S/2,cS/2

(r) , J1
i,ci

(r) , J1∗
i,ci

(r) , i = 1, ..., S∗

Case 2 (ξ = 2) : J2
0,c0

(r) , J1
S/2,cS/2

(r) , J1
i,ci

(r) , J1∗
i,ci

(r) , i = 1, ..., S∗

Case 3 (ξ = 3) : J2
0,c0

(r) , J2
S/2,cS/2

(r) , J2
i,ci

(r) , J2∗
i,ci

(r) , i = 1, ..., S∗

[S.9]



where it is to be recalled that ζ = 1 and ζ = 2 correspond to de-meaned and de-trended OU

processes, respectively. These are defined as: Jζ0,c0 (r) := v′1J
ξ∗
c0 (r), JζS/2,cS/2

(r) := v′S/2J
ξ∗
cS/2 (r),

Jζk,ck (r) := h′kJ
ξ†
ck (r) and Jζ ∗k,ck (r) := h∗ ′k Jξ†ck (r) for k = 1, . . . , S∗. �

S.3 Augmented HEGY Seasonal Unit Root Tests

Unit roots at the zero, Nyquist and harmonic seasonal frequencies imply that π0 = 0, πS/2 = 0

and πk = π∗k = 0, k = 1, ..., S∗, respectively, in (2.4); see Smith et al. (2009). Consequently,

tests for the presence or otherwise of a unit root at the zero and Nyquist frequencies are

conventional lower tailed regression t-tests, denoted t0 and tS/2, for the exclusion of yξ0,Sn+s−1

and yξS/2,Sn+s−1, respectively, from (2.4). Notice that for S = 1, t0 is the standard non-seasonal

ADF unit root test statistic. Similarly, the hypothesis of a pair of complex unit roots at the kth

harmonic seasonal frequency may be tested by the lower-tailed tk and two-tailed t∗k regression

t-tests from (2.4) for the exclusion of yξk,Sn+s−1 and y∗ξk,Sn+s−1, respectively, or by the (upper-

tailed) regression F -test, denoted Fk, for the exclusion of both yξk,Sn+s−1 and y∗ξk,Sn+s−1 from

(2.4). Ghysels et al. (1994) also consider the joint frequency (upper-tail) regression F -tests

from (2.4), F1...bS/2c for the exclusion of yξS/2,Sn+s−1, {y
ξ
j,Sn+s−1}S

∗
j=1 and {y∗ξk,Sn+s−1}

S∗
k=1, and

F0...bS/2c for the exclusion of yξ0,Sn+s−1, y
ξ
S/2,Sn+s−1, {y

ξ
j,Sn+s−1}S

∗
j=1 and {y∗ξk,Sn+s−1}

S∗
k=1. The

former tests the null hypothesis of unit roots at all of the seasonal frequencies, defined as

H0,seas := ∩bS/2ck=1 H0,k, while the latter tests the null hypothesis of unit roots at the zero and all

of the seasonal frequencies, defined as H0 := ∩bS/2ck=0 H0,k. Observe that α(L) = ∆S under H0.

The limiting null distributions of the OLS de-trended HEGY statistics are given for the

case where ψ(z) = 1 in (2.1b) and accordingly p∗ = 0 in (2.4) by Smith and Taylor (1998). In

the case where ψ(z) is invertible with (unique) inverse φ(z), with φ(z) a pth order, 0 ≤ p <∞,

lag polynomial, Burridge and Taylor (2001) and Smith et al. (2009) show that the limiting

null distributions of the OLS de-trended t0, tS/2 and Fk, k = 1, ..., S∗, statistics from (2.4) are

as for p = 0, provided p∗ ≥ p in (2.4). They show that this is not true, however, for the tk

and t∗k, k = 1, ..., S∗, statistics whose limit distributions depend on functions of the parameters

characterising the serial dependence in uSn+s in (2.1b). Representations for the corresponding

limiting distributions under near seasonally integrated alternatives are given in Rodrigues and

Taylor (2004) and again shown to be free of nuisance parameters with the exception of the tk

and t∗k, k = 1, ..., S∗, statistics. Corresponding results for the local GLS de-trended HEGY-type

statistic are given in Rodrigues and Taylor (2007) and here it is also the case that the harmonic

frequency t-statistics depend on nuisance parameters arising from the serial correlation in uSn+s.

Where φ(z) is (potentially) infinite-ordered, del Barrio Castro et al. (2012) show that provided

the lag length p∗ in (2.4) is such that 1/p∗+(p∗)3/T → 0, as T →∞, then limiting distributions

of the OLS and local GLS de-trended HEGY statistics will be of the same form as derived for

those statistics under finite p.
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S.4 Limiting Distributions of the Lag Un-augmented HEGY

Statistics

In Theorem S.1 we now provide representations for the limiting distributions of the normalised

OLS estimates together with the corresponding regression t- and F -statistics computed from

the un-augmented HEGY regression given by (2.4) with the lag augmentation length, p∗, set to

zero. These representations are again indexed by the parameter ζ which has exactly the same

meaning as was given prior to Theorem 4.1.

Theorem S.1. Let ySn+s be generated by (2.1) under H1,c and let Assumption 1 hold. Then

the HEGY-type statistics computed from (2.4) with p∗ = 0 are such that, as T →∞,

T π̂k ⇒

∫ 1
0 J

ζ
k,ck

(r)dJζk,ck(r) +Dk
∫ 1

0 J
ζ∗
k,ck

(r)dJζ∗k,ck(r) +
λ2k−γ0

2λ2k

(2−Dk)
2

{∫ 1
0

[
Jζk,ck(r)

]2
dr +Dk

∫ 1
0

[
Jζ∗k,ck(r)

]2
dr

} , k = 0, ..., bS/2c (S.29)

T π̂∗k ⇒

∫ 1
0 J

ζ∗
k,ck

(r)dJζk,ck(r)−
∫ 1

0 J
ζ
k,ck

(r)dJζ∗k,ck(r) +
λ∗2k −γ0

2λ2k

1
2

{∫ 1
0

[
Jζk,ck(r)

]2
dr +

∫ 1
0

[
Jζ∗k,ck(r)

]2
dr

} , k = 1, ..., S∗ (S.30)

and

tk ⇒ λk

γ
1/2
0

∫ 1
0 J

ζ
k,ck

(r)dJζk,ck(r) +Dk
∫ 1

0 J
ζ∗
k,ck

(r)dJζ∗k,ck(r) +
λ2k−γ0

2λ2k{∫ 1
0

[
Jζk,ck(r)

]2
dr +Dk

∫ 1
0

[
Jζ∗k,ck(r)

]2
dr

}1/2
=: Υζ

k, k = 0, ..., bS/2c

(S.31)

t∗k ⇒ λk

γ
1/2
0

∫ 1
0 J

ζ∗
k,ck

(r)dJζk,ck(r)−
∫ 1

0 J
ζ
k,ck

(r)dJζ∗k,ck(r) +
(λ∗2k −γ0)

2λ2k{∫ 1
0

[
Jζk,ck(r)

]2
dr +

∫ 1
0

[
Jζ∗k,ck(r)

]2
dr

}1/2
=: Υ∗ζk , k = 1, ..., S∗(S.32)

where Dk := 0, for k = 0, S/2 and Dk := 1, for k = 1, ..., S∗, λ∗2k := γ0 + 2
∑∞

i=1 sin(ωki)γk,

k = 1, ..., S∗, and where the limiting processes, Jζ0,c0(r), JζS/2,cS/2
(r), Jζk,ck(r) and Jζ∗k,ck(r), k =

1, . . . , S∗, are as defined in Theorem 4.1.

Remark S.5. Representations for the limiting distributions of the corresponding joint F

statistics, Fk, k = 1, ..., S∗, F1...bS/2c and F0...bS/2c are given by the average of the squares of the

limiting distributions for the t-statistics involved in their formulation given in Theorem S.1. So

that, for example, Fk ⇒ 1
2

[
(Υζ

k)
2 + (Υ∗ζk )2

]
, k = 1, ..., S∗. �

Remark S.6. The results in Theorem S.1 (and consequently also in Remark S.5) show that the

limiting distributions (under both null and local alternatives) of the uncorrected un-augmented

HEGY tests depend on nuisance parameters which arise when uSn+s is weakly dependent.

When uSn+s is IID, which occurs where ψ(z) = 1, then the true lag order in (2.4) is p∗ = 0,

and the representations in (S.29)-(S.32) are pivotal because here λ2
k = γ0, k = 0, . . . , bS/2c,
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and λ∗2k = γ0, k = 1, . . . , S∗. Indeed, these pivotal forms, for the statistics at the zero and

Nyquist frequencies and for all of the F -type tests coincide with those which obtain from

the appropriately augmented HEGY tests discussed in section S.3. Relative to these pivotal

distributions, we see that in the presence of weak dependence in uSn+s the un-augmented HEGY

statistics have limiting distributions whose numerator includes an additional term arising from

the difference between the short run variance of uSn+s and the long run variance(s) of uSn+s

at the frequency component relating to that statistic and, in the case of the t-statistics (and,

hence, the F -statistics), are also scaled by the ratio of the long and short run variances of uSn+s

at that frequency. �

The representations given for the limiting distributions of the un-augmented HEGY statis-

tics in Theorem S.1 are useful because they enable us to see immediately how, given consistent

estimators for γ0, λ2
k, k = 0, . . . , bS/2c, and λ∗2k , k = 1, . . . , S∗, these statistics can be trans-

formed to obtain modified statistics whose limiting distributions coincide with those which

obtain in the case where ψ(z) = 1. To that end in section S.5 we now propose seasonal ana-

logues of the non-seasonal PP tests.

S.5 Phillips-Perron-Type Seasonal Unit Root Tests

The finite sample size control of seasonal Phillips-Perron type tests under weak dependence was

found to be very poor relative to both augmented HEGY tests and the seasonal M tests; see

the accompanying working paper, del Barrio Castro, Rodrigues and Taylor (2015).

Computation of seasonal versions of the non-seasonal PP unit root tests will require con-

sistent estimators of the nuisance parameters which feature in the limit distributions, given in

Theorem S.1, of the un-augmented HEGY statistics which obtain from estimating (2.4) with

p∗ set to zero. Consistent sums-of-covariances and ASD estimators for λ2
k, k = 0, . . . , bS/2c,

were discussed in section 3.2. Corresponding estimators for λ∗2k , k = 1, . . . , S∗, which are also

consistent under the conditions given in section 3.2, can be defined as follows, where notation

is the same as used in section 3.2. First, the sum-of-covariances estimators

λ̂∗2k,WA :=
T−1∑

j=−T+1

κ(j/m)γ̂j cos(π/2 + ωkj), k = 1, . . . , S∗. (S.33)

Second the corresponding ASD estimators

λ̂∗2k,AR :=
s2
e{

1−
∑p∗

j=1 φ̂
∗
j cos

([
jωk + π

2

])}2
+
{∑p∗

j=1 φ̂
∗
j sin

([
jωk + π

2

])}2 , k = 1, . . . , S∗.

(S.34)

Based on the estimators λ̂2
0,h, λ̂2

S/2,h, λ̂2
k,h and λ̂∗2k,h, h = WA, AR, k = 1, . . . , S∗, defined

in (3.3), (S.33), (3.4), (3.5) and (S.34), seasonal analogues of the non-seasonal PP unit root

statistics can be derived from the functional forms of the limit distributions of the un-augmented
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HEGY statistics given in Theorem S.1, as follows:

Zk := T π̂k −

(
λ̂2
k,h − γ̂0

)
2

[
1

T 2

T∑
Sn+s=1

(
yξk,Sn+s−1

)2
]−1

, k = 0, ..., bS/2c (S.35)

Z∗k := T π̂∗k −

(
λ̂∗2k,h − γ̂0

)
2

[
1

T 2

T∑
Sn+s=1

(
y∗ξk,Sn+s−1

)2
]−1

, k = 1, . . . , S∗ (S.36)

and

Ztk :=
γ̂

1/2
0

λ̂k,h
tk −

(
λ̂2
k,h − γ̂0

)
2

[
λ̂2
k,h

T 2

T∑
Sn+s=1

(
yξk,Sn+s−1

)2
]−1/2

, k = 0, ..., bS/2c(S.37)

Z∗tk :=
γ̂

1/2
0

λ̂k,h
t∗k −

(
λ̂∗2k,h − γ̂0

)
2

[
λ̂2
k,h

T 2

T∑
Sn+s=1

(
y∗ξk,Sn+s−1

)2
]−1/2

, k = 1, . . . , S∗ (S.38)

where γ̂0 is the OLS residual variance estimate from estimating (2.4) with p∗ set to zero.

Remark S.7. Notice that for S = 1, Z0 in (S.35) and Zt0 in (S.37) reduce to the non-seasonal

unit root tests proposed in PP and defined in section 3.1. �

Remark S.8. PP-type analogues of the F -type statistics Fk, k = 1, ..., S∗, F1,...,bS/2c and

F0,...,bS/2c discussed in section S.3 can also be constructed using the corrected normalised coef-

ficient estimate statistics in (S.35) and (S.36). With an obvious notation we will denote these

statistics as FPP,k, k = 1, . . . , S∗, FPP,1...bS/2c, and FPP,0...bS/2c. These statistics can be defined

generically as follows:

FPP :=
1

υ
(RZ)′

[
RΛY′YR′

]
(RZ) (S.39)

where υ denotes the number of restrictions being tested; Z := [Z0, Z1, Z
∗
1 , Z2, Z

∗
2 , . . . , ZS∗ , Z

∗
S∗ , ZS/2]′

is S × 1; Y := [y0|y1|y∗1|y2|y∗2| . . . |yS∗ |y∗S∗ |yS/2
]

is a T × S matrix where yi, i = 0, S/2, are

T ×1 vectors with generic element yξi,Sn+s−1, and yi and y∗i , i = 1, ..., S∗ are T ×1 vectors with

generic elements yξi,Sn+s−1 and y∗ξi,Sn+s−1, respectively; Λ is an S×S diagonal matrix such that,

Λ := T−2diag
{

1/λ̂2
0,h, 1/λ̂

2
1,h, 1/λ̂

2
1,h, 1/λ̂

2
2,h, 1/λ̂

2
2,h . . . , 1/λ̂

2
S∗,h, 1/λ̂

2
S∗,h, 1/λ̂

2
S/2,h

}
, and finally

R is the relevant υ × S selection matrix; for example, setting

R =

[
0 1 0 0 . . . 0

0 0 1 0 . . . 0

]
,

yields the FPP,1 statistic, whilst setting R = IS , where Iq denotes the q × q identity matrix for

any positive integer q, results in FPP,0...bS/2c. �

S.6 Asymptotic Results for the Seasonal PP Tests

In Theorem S.2 we now present the large sample distributions of the seasonal PP-type unit root

test statistics proposed in section S.5. In particular, we show that these have pivotal limiting

distributions whose form coincides with those which obtain in the case where the shocks are

serially uncorrelated.
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Theorem S.2. Let the conditions of Theorem 4.1 hold. Then, as T →∞, the PP-type coeffi-

cient statistics introduced in section S.2 and Remark S.4 satisfy,

Zk ⇒
(1 +Dk)

[∫ 1
0 J

ζ
k,ck

(r)dJζk,ck(r) +Dk
∫ 1

0 J
ζ∗
k,ck

(r)dJζ∗k,ck(r)
]

∫ 1
0

[
Jζk,ck(r)

]2
dr +Dk

∫ 1
0

[
Jζ∗k,ck(r)

]2
dr

, k = 0, . . . , bS/2c(S.40)

Z∗k ⇒
2
[∫ 1

0 J
ζ∗
k,ck

(r)dJζk,ck(r)−
∫ 1

0 J
ζ
k,ck

(r)dJζ∗k,ck(r)
]

∫ 1
0

[
Jζk,ck(r)

]2
dr +

∫ 1
0

[
Jζ∗k,ck(r)

]2
dr

, k = 1, . . . , S∗ (S.41)

while the corresponding t- and F−type statistics satisfy

Ztk ⇒
∫ 1

0 J
ζ
k,ck

(r)dJζk,ck(r) +Dk
∫ 1

0 J
ζ∗
k,ck

(r)dJζ∗k,ck(r){∫ 1
0

[
Jζk,ck(r)

]2
dr +Dk

∫ 1
0

[
Jζ∗k,ck(r)

]2
dr

}1/2
=: T ζk , k = 0, ..., bS/2c (S.42)

Z∗tk ⇒
∫ 1

0 J
ζ∗
k,ck

(r)dJζk,ck(r)−
∫ 1

0 J
ζ
k,ck

(r)dJζ∗k,ck(r){∫ 1
0

[
Jζk,ck(r)

]2
dr +

∫ 1
0

[
Jζ∗k,ck(r)

]2
dr

}1/2
=: T ∗ζk , k = 1, . . . , S∗ (S.43)

FPP,k ⇒ 1

2

[(
T ζk
)2

+
(
T ∗ζk

)2
]
, k = 1, . . . , S∗ (S.44)

FPP,j...bS/2c ⇒
1

S − j

bS/2c∑
i=j

(
T ζi
)2

+
S∗∑
k=1

(
T ∗ζk

)2

 , j = 0, 1 (S.45)

where Dk = 0, for k = 0, S/2 and Dk = 1, for k = 1, ..., S∗, and the limiting processes, Jζ0,c0(r),

JζS/2,cS/2
(r), Jζk,ck(r) and Jζ∗k,ck(r), k = 1, . . . , S∗, are as defined in Theorem 4.1.

Remark S.9: The limiting null distributions of the PP-type statistics from section S.5 are

obtained on setting ck = 0 (so that, correspondingly, H0,k holds) in the representations given

in Theorem S.2. These limiting null distributions coincide with those reported in Smith et al.

(2009) and Rodrigues and Taylor (2007), for OLS and local GLS de-trending respectively, for

the corresponding HEGY statistics from (2.4) in the case where uSn+s is serially uncorrelated.

Notice also that, contrary to what is shown in, inter alia, Burridge and Taylor (2001) and del

Barrio Castro, Osborn and Taylor (2012), for the corresponding tk and t∗k augmented HEGY

statistics from (2.4), when uSn+s is serially correlated the limiting null distributions of the

harmonic frequency PP-type test statistics Zk, Ztk , Z∗k and Z∗tk , k = 1, ..., S∗, are free from

nuisance parameters. Indeed, the asymptotic null distributions of Z∗k and Z∗tk coincide with

those reported for the augmented HEGY tk and t∗k statistics, k = 1, ..., S∗, in Burridge and

Taylor (2001) and del Barrio Castro, Osborn and Taylor (2012) for the case where ak = 0

and bk = 1; that is, in the absence of serial correlation in uSn+s. The foregoing asymptotic

equivalence results between the HEGY and corresponding PP-type statistics also hold under

the local alternative, H1,c. �
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Remark S.10: Selected critical values for tests based on the statistics in (S.40)-(S.43) and

(S.44)-(S.45) (for the quarterly, S = 4, and monthly, S = 12, cases) are provided for the case of

OLS de-trended tests in HEGY, Ghysels et al. (1994) and Smith and Taylor (1998), and for GLS

de-trended tests in Rodrigues and Taylor (2007). Notice that the limiting null distribution in

(S.40) for both k = 0 and k = bS/2c coincides with the limiting null distribution of the standard

normalised bias statistic of Dickey and Fuller (1979), with relevant critical values provided in

Fuller (1996). Furthermore, the limiting null distribution in (S.40), for k = 1, ..., S∗, coincides

with the limiting null distribution of the Dickey et al. (1984) unit root test statistic, from where

relevant critical values can be obtained. �

S.7 Proofs of Theorems S.1 and S.2

First re-write (2.4) with p∗ set to zero in vector form, viz, y = Yβ0 + u, where y is a T × 1

vector with generic element ∆Sy
ξ
Sn+s; Y := [y0|y1|y∗1|y2|y∗2| . . . |yS∗ |y∗S∗ |yS/2

]
is a T×S matrix

where yi, i = 0, ..., bS/2c are T ×1 vectors with generic elements yξi,Sn+s−1, and y∗i , i = 1, ..., S∗

are T × 1 vectors with generic elements y∗ξi,Sn+s−1, respectively, and β0 := [π0, π1π
∗
1, π2, π

∗
2,

. . . , πS∗ , π
∗
S∗ , πS/2,

]′
. The OLS estimator from the un-augmented form of (2.4), may then be

defined via,

T β̂0 :=
[
T−2Y′Y

]−1 [
T−1Y′y

]
. (S.46)

Because T−2Y′Y weakly converges to an S × S diagonal matrix, this as a consequence of the

asymptotic orthogonality of the HEGY auxiliary variables discussed previously, we may there-

fore separately derive the large sample behavior of the OLS estimators of πj , j = 0, ..., bS/2c,
and π∗i , i = 1, ..., S∗. To that end, the so-called normalised bias statistics then satisfy the

following,

T π̂j =
T−1y′jy

T−2y′jyj
+ op (1) =

T−1
∑N

n=1

∑0
s=1−S y

ξ
j,Sn+s−1∆Sy

ξ
Sn+s

T−2
∑N

n=1

∑0
s=1−S

(
yξj,Sn+s−1

)2 + op (1) , j = 0, ..., bS/2c

(S.47)

and

T π̂∗i =
T−1y∗′i y

T−2y∗′i y∗i
+ op (1) =

T−1
∑N

n=1

∑0
s=1−S y

∗ξ
i,Sn+s−1∆Sy

ξ
Sn+s

T−2
∑N

n=1

∑0
s=1−S

(
y∗ξi,Sn+s−1

)2 + op (1) , i = 1, ..., S∗.

(S.48)

Consider first the numerators of (S.47) and (S.48). For (S.47) observe first that,

T−1
N∑
n=1

0∑
s=1−S

yξj,Sn+s−1∆Sy
ξ
Sn+s = T−1

N∑
n=1

Y
ξ′
n−1Cj∆SY

ξ
n + Aj + op (1) , j = 0, S/2 (S.49)

where Aj := S−1
∑S−1

i=1 (S − i) cos [iωj ]N
−1
∑N

n=1

(
uξS−i,nu

ξ
Sn

)
, and where ∆SY

ξ
n := [∆Sy

ξ
Sn−(S−1),

∆S yξSn−(S−2), ..., ∆S yξSn]′. Notice then that Aj → Ψj := S−1
∑S−1

i=1 (S − i) cos [iωj ] γi for

[S.15]



ωj = 2πj
S , j = 0, S/2. Similarly, for j = 1, . . . , S∗, we have that

T−1
N∑
n=1

0∑
s=1−S

yξj,Sn+s−1∆Sy
ξ
Sn+s = T−1

N∑
n=1

Y
ξ′
n−1Cj∆SY

ξ
n + Aj + op (1) (S.50)

T−1
N∑
n=1

0∑
s=1−S

y∗ξj,Sn+s−1∆Sy
ξ
Sn+s = T−1

N∑
n=1

Y
ξ′
n−1Cj∆SY

ξ
n + Aj + op (1) (S.51)

where Aj := S−1
∑S−1

i=1 (S − i) cos [iωj ]N
−1
∑N

n=1

(
uξS−i,nu

ξ
Sn

)
and Aj := −S−1

∑S−1
i=1 (S − i) sin [iωj ]

N−1
∑N

n=1

(
uξS−i,nu

ξ
Sn

)
. We observe that Aj → Ψ1

j := S−1
∑S−1

i=1 (S − i) cos [iωj ] γi and Aj →
Ψ2
j := −S−1

∑S−1
i=1 (S − i) sin [iωj ] γi for ωj = 2πj

S , j = 1, . . . , S∗.

Again using (S.10), applications of the CMT, the identities CkCkCk ≡ S2Ck for k = 0, S/2,

and C ′jCjCj ≡
(
S
2

)2
Cj , C

′
jCjCj ≡

(
S
2

)2
Cj ,C

′
j CjCj ≡ −

(
S
2

)2
Cj , C

′
j CjCj ≡

(
S
2

)2
Cj ,

C ′jCjCj ≡
(
S
2

)2
Cj , C

′
jCjCj≡ −

(
S
2

)2
Cj , C

′
jCjCj ≡

(
S
2

)2
Cj and C

′
jCjCj ≡

(
S
2

)2
Cj for

j = 1, ..., S∗, the orthogonality between the circulant matrices and Theorem 2.6 in Phillips

(1988), the following results are obtained:

i) For the zero and Nyquist frequencies (k = 0, S/2),

T−1
N∑
n=1

Y
ξ′
n−1Ck∆SY

ξ
n ⇒ σ2

ε

S

ψ (cos[ωk])

S2

∫ 1

0
Jξck (r)′C ′kCkCkΨ (1) dJξck (r) +

1

S

∞∑
j=2

E
(
U ξ′1 CkU

ξ
j

)
=

σ2
ε

S
ψ (cos[ωk])

2
∫ 1

0
Jξck (r)′CkdJ

ξ
ck

(r) +
1

S

∞∑
j=2

E
(
U ξ′1 CkU

ξ
j

)
= σ2

εψ (cos[ωk])
2
∫ 1

0
Jξ∗ck (r)′CkdJ

ξ∗
ck

(r) +
1

S

∞∑
j=2

E
(
U ξ′1 CkU

ξ
j

)
(S.52)

where ω0 = 0 and ωS/2 = π.

ii) For the harmonic frequencies (j = 1, ..., S∗),

T−1
N∑
n=1

Y
ξ′
n−1Cj∆SY

ξ
n ⇒ σ2

ε

S

(
2

S

)2

bj

∫ 1

0
Jξcj (r)′C ′jCj

(
bjCj + ajCj

)
dJξcj (r)

+
σ2
ε

S

(
2

S

)2

aj

∫ 1

0
Jξcj (r)′C

′
jCj

(
bjCj + ajCj

)
dJξcj (r) +

1

S

∞∑
k=2

E
(
U
ξ′
1 CjU

ξ

k

)
=

σ2
ε

S
b2j

∫ 1

0
Jξcj (r)′CjdJ

ξ
cj (r) +

σ2
ε

S
ajbj

∫ 1

0
Jξcj (r)′CjdJ

ξ
cj (r)

+
σ2
ε

S
a2
j

∫ 1

0
Jξcj (r)′CjdJ

ξ
cj (r)− σ2

ε

S
ajbj

∫ 1

0
Jξcj (r)′CjdJ

ξ
cj (r)

+
1

S

∞∑
k=2

E
(
U
ξ′
1 CjU

ξ

k

)

=
σ2
ε

(
a2
j + b2j

)
2

∫ 1

0
Jξ†cj (r)′CjdJ

ξ†
cj (r) +

1

S

∞∑
k=2

E
(
U
ξ′
1 CjU

ξ

k

)
, (S.53)
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T−1
N∑
n=1

Y
ξ′
n−1Cj∆SY

ξ
n ⇒ σ2

ε

S

(
2

S

)2

bj

∫ 1

0
Jξcj (r)′C ′jCj

(
bjCj + ajCj

)
dJξcj (r)

+
σ2
ε

S

(
2

S

)2

aj

∫ 1

0
Jξcj (r)′C

′
jCj

(
bjCj + ajCj

)
dJξcj (r) +

1

S

∞∑
k=2

E
(
U ξ′1 CjU

ξ
k

)
=

σ2
ε

S
b2j

∫ 1

0
Jξcj (r)′CjdJ

ξ
cj (r)− σ2

ε

S
bjaj

∫ 1

0
Jξcj (r)′CjdJ

ξ
cj (r)

+
σ2
ε

S
ajbj

∫ 1

0
Jξcj (r)′CjdJ

ξ
cj (r) +

σ2
ε

S
a2
j

∫ 1

0
Jξcj (r)′CjdJ

ξ
cj (r)

+
1

S

∞∑
k=2

E
(
U ξ′1 CjU

ξ
k

)

=
σ2
ε

(
a2
j + b2j

)
2

∫ 1

0
Jξ†cj (r)′CjdJ

ξ†
cj (r) +

1

S

∞∑
k=2

E
(
U ξ′1 CjU

ξ
k

)
(S.54)

where Jξ†cj (r) := 1√
S/2

Jξcj (r).

Moreover, for k = 0 and k = S/2,

1

S

∞∑
j=2

E
(
U ξ′1 CkU

ξ
j

)
+ Ψk =

∞∑
i=1

cos [iωk] γi =
1

2
(λ2
k − γk) (S.55)

and for j = 1, 2, . . . , S∗,

1

S

∞∑
k=2

E
(
U ξ′1 CjU

ξ
k

)
+ Ψ1

j =
∞∑
i=1

cos [(S − i)ωj ] γi =
1

4
(λ2
j − γ0) (S.56)

1

S

∞∑
k=2

E
(
U ξ′1 CjU

ξ
k

)
+ Ψ2

j = −
∞∑
i=1

sin [(S − i)ωj ] γi =
1

4
(λ∗2j − γ0) (S.57)

with ωj = 2πj
S .

In the case of the denominator of (S.47) the required results for j = 0 and j = S/2 are

collected in (S.21). Consider next the denominators of (S.47) and (S.48) over the values 1, ..., S∗

of the index parameters j and i, respectively. Here we have the results that Ci, i = 1, ..., S∗, is

symmetric and that C
′

i = −Ci, and noting also that Ci and Ci are orthogonal to C0 and CS/2

and that CiCiCi ≡
(
S
2

)2
Ci, CiCiCi ≡

(
S
2

)2
Ci, C

′
iCiCi ≡ −

(
S
2

)2
Ci and C

′
iCiCi ≡

(
S
2

)2
Ci.

Using these results we have that,

T−2
N∑
n=1

0∑
s=1−S

(
yξi,Sn+s−1

)2
= T−2

N∑
n=1

(
S

2

)(
Y
ξ′
n−1Ci Y

ξ

n−1

)
+ op (1)

T−2
N∑
n=1

0∑
s=1−S

(
y∗ξi,Sn+s−1

)2
= T−2

N∑
n=1

(
S

2

)(
Y
ξ′
n−1Ci Y

ξ

n−1

)
+ op (1)
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T−2
N∑
n=1

(
S

2

)(
Y
ξ′
n−1Ci Y

ξ

n−1

)
⇒ σ2

ε

S2

(
S

2

)
b2i

(
2

S

)2 ∫ 1

0
Jξci (r)′CiCiCiJ

ξ
ci (r) dr +

σ2
ε

S2

(
S

2

)
biai

(
2

S

)2 ∫ 1

0
Jξci (r)′CiCiCiJ

ξ
ci (r) dr +

σ2
ε

S2

(
S

2

)
biai

(
2

S

)2 ∫ 1

0
Jξci (r)′C

′
iCiCiJ

ξ
ci (r) dr +

σ2
ε

S2

(
S

2

)
a2
i

(
2

S

)2 ∫ 1

0
Jξci (r)′C

′
iCiCiJ

ξ
ci (r) dr

=
σ2
ε

(
a2
i + b2i

)
4

∫ 1

0
Jξ†ci (r)′CiJ

ξ†
ci (r) dr (S.58)

where i = 1, . . . , S∗ and Jξ†ci (r) := 1√
S/2

Jξci (r).

Combining the results in (S.49)-(S.57) with (S.21) and (S.58) we establish that for k = 0

(ω0 = 0) and k = S/2 (ωS/2 = π),

T π̂k ⇒
∫ 1

0 Jξ∗ck (r)′CkdJ
ξ∗
ck (r) + (

∑∞
i=1 cos [iωk] γi) /σ

2
ε [ψ (cos[ωk])]

2∫ 1
0 Jξ∗ck (r)′CkJ

ξ∗
ck (r) dr

(S.59)

and for j = 1, ..., S∗ that,

T π̂j ⇒
σ2
ε(a2j+b2j)

2

∫ 1
0 Jξ†cj (r)′CjdJ

ξ†
cj (r) + (

∑∞
i=1 cos [(S − i)ωj ] γi)

σ2
ε(a2j+b2j)

4

∫ 1
0 Jξ†cj (r)′CjJ

ξ†
cj (r) dr

(S.60)

T π̂∗j ⇒
σ2
ε(a2j+b2j)

2

∫ 1
0 Jξ†cj (r)′CjdJ

ξ†
cj (r) + (

∑∞
i=1 sin [(S − i)ωj ] γi)

σ2
ε(a2j+b2j)

4

∫ 1
0 Jξ†cj (r)′CjJ

ξ†
cj (r) dr

. (S.61)

Next observe that the corresponding t-statistics from the un-augmented form of (2.4) can be

written as

tk = γ̂
−1/2
0 T π̂k

[
T−2

N∑
n=1

0∑
s=1−S

(
yξk,Sn+s

)2
]1/2

+ op(1), k = 0, ..., bS/2c (S.62)

t∗i = γ̂
−1/2
0 T π̂∗i

[
T−2

N∑
n=1

0∑
s=1−S

(
y∗ξi,Sn+s

)2
]1/2

+ op(1), i = 1, . . . , S∗ (S.63)

where γ̂0 is the usual OLS variance estimator from the un-augmented form of (2.4); that is, γ̂0 :=

T−1
∑N

n=1

∑0
s=1−S(ûξSn+s)

2. Observe from the results in (S.59)-(S.61) that π̂j = op (1) and π̂∗j =

op (1), and hence γ̂0 := T−1
∑N

n=1

∑0
s=1−S(∆Sy

ξ
Sn+s)

2 + op (1) so that γ̂0
p→ σ2

ε

(
1 +

∑∞
j=1 ψ

2
j

)
.

Substituting the result that γ̂0
p→ σ2

ε

(
1 +

∑∞
j=1 ψ

2
j

)
, the results in Remark S.1, and the

results in (S.59)-(S.61), (S.21) and (S.58) into (S.62)-(S.63) and using applications of the CMT,

after some simple manipulations, we finally obtain the stated results in Theorem S.1, where we

have defined the independent standard OU processes Jζi,ci(r) := v′iJ
ξ∗
ci (r), i = 0, S/2, Jζj,cj (r) :=

h′jJ
ξ†
cj (r) and Jζ∗j,cj (r) := h∗ ′j Jξ†cj (r) where h′j and h∗ ′j are the first and second rows of v′j ,

respectively, for j = 1, . . . , S∗ (see Remarks S.1 and S.3). The proof of Theorem S.2 then

follows directly from these results and the consistency properties of the long and short run

variance estimators used in the construction of the PP-type statistics. �
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S.8 Additional Monte Carlo Results

Figures S.1-S.4 report complementary finite sample local power figures to those given in Figures

3-6 in the main text for the case where the tests are not size-adjusted but rather were run using

the relevant asymptotic critical values (obtained from the sources given in Remarks 4.2 and

4.3). The Monte Carlo DGP and set-up of these experiments were otherwise exactly as detailed

in Section 5.2.
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