%2multibyte Version: 5.50.0.2960 CodePage: 65001 \documentstyle[amstex,amsfonts,fullpage,thmse]{article} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %TCIDATA{OutputFilter=LATEX.DLL} %TCIDATA{Version=5.50.0.2960} %TCIDATA{Codepage=65001} %TCIDATA{} %TCIDATA{BibliographyScheme=Manual} %TCIDATA{Created=Tue Jul 25 18:58:44 2000} %TCIDATA{LastRevised=Tuesday, March 07, 2017 16:43:35} %TCIDATA{} %TCIDATA{Language=American English} %TCIDATA{CSTFile=article.cst} \setlength{\topmargin}{-0.25in} \setlength{\textheight}{8.75in} \setlength{\evensidemargin}{0.125in} \setlength{\oddsidemargin}{0.125in} \setlength{\textwidth}{6.25in} \renewcommand{\baselinestretch}{1.5} \input{tcilatex} \renewcommand{\thepage}{} \newtheorem{assumption}{Assumption}[section] \input tcilatex \begin{document} \title{{\sc Supplementary Material on} \textquotedblleft {\sc a general class of non-nested test statistics for models defined through moment restrictions}\textquotedblright } \author{Paulo M.D.C. Parente \\ %EndAName Instituto Universit\'{a}rio de Lisboa (ISCTE-IUL)\\ Business Research Unit (BRU-IUL)} \date{This version: March 2017} \maketitle In this supplement we provide the proofs of the theorems presented in Sections 4 and 5 of the paper, investigate the behavior of the random variable $W_{i,j}^{\ast }(\delta _{h})$ $i=1,2,$ $j=3,4$ (defined in subsection 5.1 of the paper) as some elements of $\delta _{h}$ approach infinity, and present the results of the Monte Carlo study for the tests based on the exponential tilting estimator. This supplement is organized as follows. In Section SM1 we prove the relevant theorems of section 4. Section SM2 provides the proofs of the theorems of section 5 and analyzes the limit of $W_{i,j}^{\ast }(\delta _{h})$ $i=1,2,$ $j=3,4$ as some elements of $% \delta _{h}$ approach infinity. Finally, SM3 presents the additional results obtained in the Monte Carlo study for the tests based on the exponential tilting estimator. In what follows CR, CS, L, and T denote the $c_{r}$, Cauchy-Schwarz, Lyapunov and triangle inequalities respectively. Furthermore, `with probability approaching one' is abbreviated as `wpa$1$'. Unless stated otherwise `LLN' corresponds to the Khinchin law of large numbers, `UWL' denotes a uniform weak law of large numbers, as Lemma 2.4 of Newey and McFadden (1994) or a uniform weak law of large numbers at the true parameter as Lemma 4.3 of Newey and McFadden (1994) and `CLT' refers to the Lindeberg-L% \'{e}vy central limit theorem. NS refers to Newey and Smith (2004). \renewcommand{\thesection}{} \setcounter{page}{1}\renewcommand{\thepage}{[SM.\arabic{page}]}% \renewcommand{\thesection}{SM1} \section{Proofs of results of section 4} \setcounter{equation}{0} \subsection{Proofs of the results of subsection 4.1} The following Lemma generalizes Lemma A.1 of Ramalho and Smith (2004). Let $% g_{i}(\beta )=g(z_{i},\beta )$ and $\hat{g}(\beta )=\sum \nolimits_{i=1}^{n}g_{i}(\beta )/n$. \begin{lemma} \label{Lemma_a1}\noindent Let Assumptions 2.1, 2.2 and 4.1 (a) hold. Then $n% \hat{p}_{i}^{v_{c}}=1+o_{p}(1)$ and \[ n^{1/2}\left( \hat{p}_{i}^{v_{c}}-\frac{1}{n}\right) =\kappa _{v_{c}}\frac{1% }{n}\hat{g}_{i}^{\prime }n^{1/2}\hat{\lambda}(1+o_{p}(1))+O_{p}(n^{-3/2}), \]% uniformly $(i=1,...,n)$ where $\hat{g}_{i}\equiv g(z_{i},\hat{\beta})$ and $% \kappa _{v_{c}}=v_{c,1}(0)/v_{c}(0).$ \end{lemma} {\bf Proof: }Let $b_{i}\equiv \sup_{\beta \in B}\left \vert g_{i}(\beta )\right \vert $. From the proof of Lemma A1 and Theorem 3.1 in NS we have $% \max_{1\leq i\leq n}b_{i}$ $=O_{p}(n^{-1/\alpha })$ and $\hat{\lambda}% =O_{p}(n^{-1/2})$. Thus, $\sup_{\beta \in B,1\leq i\leq n}% %TCIMACRO{\U{a6}}% %BeginExpansion {\vert}% %EndExpansion \hat{\lambda}^{\prime }g_{i}(\beta )% %TCIMACRO{\U{a6}}% %BeginExpansion {\vert}% %EndExpansion =O_{p}(n^{-(1/2-1/\alpha )})$. A first order Taylor expansion of $v_{c}(\hat{% \lambda}^{\prime }\hat{g}_{i})$ around zero yields $v_{c}(\hat{\lambda}% ^{\prime }\hat{g}_{i})=v_{c}(0)+v_{c,1}(\dot{\lambda}^{\prime }\hat{g}_{i})% \hat{\lambda}^{\prime }\hat{g}_{i}$, where $\dot{\lambda}$ is on a line joining $\hat{\lambda}$ and zero. Now $\max_{1\leq i\leq n}% %TCIMACRO{\U{a6}}% %BeginExpansion {\vert}% %EndExpansion v_{c,1}(\hat{\lambda}^{\prime }g_{i}(\hat{\beta}))-v_{c,1}(0)% %TCIMACRO{\U{a6}}% %BeginExpansion {\vert}% %EndExpansion =o_{p}(1)$ as $\sup_{\beta \in B,1\leq i\leq n}% %TCIMACRO{\U{a6}}% %BeginExpansion {\vert}% %EndExpansion \hat{\lambda}^{\prime }g_{i}(\beta )% %TCIMACRO{\U{a6}}% %BeginExpansion {\vert}% %EndExpansion =o_{p}(1)$ and so $v_{c,1}(\hat{\lambda}^{\prime }g_{i}(\hat{\beta}))\hat{% \lambda}^{\prime }\hat{g}_{i}=$ $v_{c,1}(0)\hat{\lambda}^{\prime }\hat{g}% _{i}(1+o_{p}(1))$. Therefore $v_{c}(\hat{\lambda}^{\prime }\hat{g}% _{i})=v_{c}(0)+v_{c,1}(0)\hat{\lambda}^{\prime }\hat{g}_{i}(1+o_{p}(1))$ uniformly ($i=1,...,n$). Similarly, \[ \left[ \sum_{j=1}^{n}v_{c}(\hat{\lambda}^{\prime }\hat{g}_{j})\right] ^{-1}=(v_{c}(0)n)^{-1}(1+O_{p}(n^{-1})) \]% as $\sum_{j=1}^{n}\hat{g}_{j}/n=O_{p}(n^{-1/2})$ and $\hat{\lambda}% =O_{p}(n^{-1/2})$ by Theorem 3.1 of NS. Hence $\hat{p}% _{i}^{v_{c}}=[v_{c}(0)+v_{c,1}(0)\hat{\lambda}^{\prime }\hat{g}% _{i}(1+o_{p}(1))](v_{c}(0)n)^{-1}(1+O_{p}(n^{-1}))$. It follows by Lemma A.1 of NS that $n\hat{p}_{i}^{v_{c}}=1+(v_{c,1}(0)/v_{c}(0))o_{p}(1)$ and that \[ n^{1/2}(\hat{p}_{i}^{v_{c}}-1/n)=(v_{c,1}(0)/v_{c}(0))n^{-1}\hat{g}% _{i}^{\prime }n^{1/2}\hat{\lambda}(1+o_{p}(1))+O_{p}(n^{-3/2}). \]% %TCIMACRO{\TeXButton{End Proof}{\endproof}}% %BeginExpansion \endproof% %EndExpansion \bigskip \noindent {\bf Proof of Theorem 4.1:} By the mean value theorem $v_{a}\left( \hat{p}_{i}n\right) =v_{a}(1)+v_{a,1}\left( \hat{\sigma}_{i}\right) \left( \hat{p}_{i}n-1\right) $, where $\hat{\sigma}_{i}=\alpha _{i}+\left( 1-\alpha _{i}\right) \hat{p}_{i}n$ and $\alpha _{i}\in \left( 0,1\right) $ and consequently \[ {\cal S}_{v}=\sum\limits_{i=1}^{n}v_{a,1}\left( \hat{\sigma}_{i}\right) \sqrt{n}\left( \hat{p}_{i}-\frac{1}{n}\right) n\hat{p}_{i}\left[ v_{b}\left( \frac{\hat{q}_{i}^{v_{c}}}{\hat{p}_{i}^{v_{c}}}\right) -\sum\limits_{\ell =1}^{n}v\left( \frac{\hat{q}_{\ell }^{v_{c}}}{\hat{p}_{\ell }^{v_{c}}}% \right) \hat{p}_{\ell }\right] . \]% By Lemma \ref{Lemma_a1} ${\cal S}_{v}=\sum_{j=1}^{4}R_{j,n},$ where $% R_{j,n},j=1,...,4$ are defined below. Let us consider first \[ R_{1,n}\equiv \frac{1}{n}\sum\limits_{i=1}^{n}v_{a,1}\left( \hat{\sigma}% _{i}\right) n\hat{p}_{i}v_{b}\left( \frac{v_{c}\left( \hat{\eta}^{\prime }h_{i}\left( \hat{\gamma}\right) \right) }{n\hat{p}_{i}^{v_{c}}\hat{v}_{c,h}}% \right) \hat{g}_{i}^{\prime }\sqrt{n}\hat{\lambda}(1+o_{p}(1)), \]% where $\hat{v}_{c,h}\equiv \dsum\nolimits_{i=1}^{n}v_{c}\left( \hat{\eta}% ^{\prime }h_{i}\left( \hat{\gamma}\right) \right) /n$. Now by Lemma \ref% {Lemma_a1}, $v_{a,1}\left( \hat{\sigma}_{i}\right) =v_{a,1}\left( 1\right) +o_{p}(1)$. Additionally $n\hat{p}_{i}=1+o_{p}\left( 1\right) $ and $n\hat{p}% _{i}^{v_{c}}=1+o_{p}\left( 1\right) $ uniformly in $i=1,...,n$ by Lemma \ref% {Lemma_a1}. Also $\hat{v}_{c,h}={\rm E}_{\text{{\sc p}}_{0}}\left[ v_{c}\left( \eta ^{\ast \prime }h\left( z,\gamma ^{\ast }\right) \right) % \right] +o_{p}(1)$ by a UWL. It follows using the fact that $\sqrt{n}\hat{% \lambda}=O_{p}(1)$, and a UWL that \begin{equation} R_{1,n}=A_{v}\sqrt{n}\hat{\lambda}(1+o_{p}(1))+o_{p}\left( 1\right) . \label{R1n} \end{equation}% Hence by Theorem 3.2 of NS we have $R_{1,n}\overset{d}{\rightarrow }{\cal N}% \left( 0,\sigma _{0}^{2}\right) $. Let us consider now \[ R_{2,n}\equiv \frac{1}{n}\sum \limits_{i=1}^{n}v_{a,1}\left( \hat{\sigma}% _{i}\right) n\hat{p}_{i}v_{b}\left( \frac{v_{c}\left( \hat{\eta}^{\prime }h_{i}\left( \hat{\gamma}\right) \right) }{n\hat{p}_{i}^{v_{c}}\hat{v}_{c,h}}% \right) O_{p}(n^{-1/2}). \]% Using the same arguments as above $n^{-1}\sum \nolimits_{i=1}^{n}v_{a,1}\left( \hat{\sigma}_{i}\right) n\hat{p}% _{i}v_{b}(v_{c}\left( \hat{\eta}^{\prime }h_{i}\left( \hat{\gamma}\right) \right) /[n\hat{p}_{i}^{v_{c}}\hat{v}_{c,h}])=O_{p}(1)$. It follows that $% R_{2,n}=O_{p}(n^{-1/2})$. Now define \[ R_{3,n}\equiv \frac{1}{n}\sum \limits_{i=1}^{n}v_{a,1}\left( \hat{\sigma}% _{i}\right) n\hat{p}_{i}\hat{g}_{i}^{\prime }\sqrt{n}\hat{\lambda}% (1+o_{p}(1))\sum \limits_{\ell =1}^{n}v_{b}\left( \frac{\hat{q}_{\ell }^{v_{c}}}{\hat{p}_{\ell }^{v_{c}}}\right) \hat{p}_{\ell }. \]% Note that $n^{-1}\sum \nolimits_{i=1}^{n}v_{a,1}\left( \hat{\sigma}% _{i}\right) n\hat{p}_{i}\hat{g}_{i}^{\prime }=o_{p}(1)$ by a UWL, $\sqrt{n}% \hat{\lambda}(1+o_{p}(1))=O_{p}(1)$ by Theorem 3.2 of NS and that \[ \sum \limits_{\ell =1}^{n}v_{b}\left( \frac{\hat{q}_{\ell }^{v_{c}}}{\hat{p}% _{\ell }^{v_{c}}}\right) \hat{p}_{\ell }=\frac{1}{n}\sum \limits_{\ell =1}^{n}v_{b}\left( \frac{v_{c}\left( \hat{\eta}^{\prime }h_{\ell }\left( \hat{\gamma}\right) \right) }{n\hat{p}_{\ell }^{v_{c}}\hat{v}_{c,h}}\right) n% \hat{p}_{\ell } \]% converges in probability to ${\rm E}_{\text{{\sc p}}_{0}}[v_{b}(v_{c}\left( \eta ^{\ast \prime }h\left( z,\gamma ^{\ast }\right) \right) /{\rm E}_{\text{% {\sc p}}_{0}}\left[ v_{c}\left( \eta ^{\ast \prime }h\left( z,\gamma ^{\ast }\right) \right) \right] )]+o_{p}\left( 1\right) $ by a UWL. Hence $% R_{3,n}=o_{p}(1)$. Finally, consider \[ R_{4,n}\equiv \frac{1}{n}\sum \limits_{i=1}^{n}v_{a,1}\left( \hat{\sigma}% _{i}\right) O_{p}(n^{-1/2})\sum \limits_{\ell =1}^{n}v_{b}\left( \frac{\hat{q% }_{\ell }^{v_{c}}}{\hat{p}_{\ell }^{v_{c}}}\right) \hat{p}_{\ell }. \]% Since by a UWL $n^{-1}\sum \nolimits_{i=1}^{n}v_{a,1}\left( \hat{\sigma}% _{i}\right) =O_{p}(n^{-1/2})$ and $\sum \nolimits_{\ell =1}^{n}v_{b}\left( \hat{q}_{\ell }^{v_{c}}/\hat{p}_{\ell }^{v_{c}}\right) \hat{p}_{\ell }=O_{p}(1)$ we have $R_{4,n}=o_{p}(1)$. Hence ${\cal S}_{v}\overset{d}{% \rightarrow }{\cal N}\left( 0,\sigma _{0}^{2}\right) .$ The fact that ${\cal \tilde{S}}_{v}={\cal S}_{v}+o_{p}(1)$ follows from the arguments above and the fact that $n\hat{p}_{i}^{v_{c}}=1+o_{p}\left( 1\right) $ by Lemma \ref{Lemma_a1}. Concerning the Lagrange multiplier statistic ${\cal LM}_{v}=\hat{A}_{v}\sqrt{% n}\hat{\lambda}$, note that ${\cal S}_{v}=R_{1.n}+o_{p}(1)$ and using $% \left( \ref{R1n}\right) $ one obtains $R_{1.n}-{\cal LM}_{v}=[A_{0,v}-\hat{A}% _{v}]\sqrt{n}\hat{\lambda}+A_{v}\sqrt{n}\hat{\lambda}o_{p}(1)+o_{p}(1)$. Because $A_{0,v}-\hat{A}_{v}=o_{p}(1)$ and $\sqrt{n}\hat{\lambda}=O_{p}(1)$ it follows that $R_{1.n}-{\cal LM}_{v}=o_{p}(1)$.\ Finally we consider the statistic ${\cal J}_{v}=-\hat{A}_{v}\hat{\Omega}% _{g}^{-1}\sqrt{n}\hat{g}(\hat{\beta})$. Note that NS proved in the proof of Theorem 3.2 (p. 240) that $\hat{g}(\hat{\beta})=-\Omega _{g}\hat{\lambda}% +o_{p}(n^{1/2})$. Therefore ${\cal J}_{v}-{\cal LM}_{v}=\left[ \hat{A}_{v}% \hat{\Omega}_{g}^{-1}\Omega _{g}-\hat{A}_{v}\right] \sqrt{n}\hat{\lambda}% +o_{p}(1),$ as $\hat{A}_{v}\hat{\Omega}_{g}^{-1}=O_{p}(1)$ and $\sqrt{n}\hat{% \lambda}=O_{p}(1)$. Since $\hat{\Omega}_{g}^{-1}=\Omega _{g}^{-1}+o_{p}(1)$ and $\hat{A}_{v}=A_{0,v}+o_{p}(1)$, it follows that ${\cal J}_{v}-{\cal LM}% _{v}=o_{p}(1)$.% %TCIMACRO{\TeXButton{End Proof}{\endproof}}% %BeginExpansion \endproof% %EndExpansion \bigskip \noindent {\bf Proof of Theorem 4.2:} We prove here only consistency of $% \hat{\sigma}_{3}^{2}$ for $\sigma _{0}^{2}$ as the proof for the other estimators $\hat{\sigma}_{j}^{2},j=1,2,4$ is simpler. First note that $\hat{P% }\overset{p}{\rightarrow }P_{0,g}$ by a UWL and the Slutsky theorems under Assumptions 2.1 and 2.3. Now note that \[ \hat{A}_{v,3}=\frac{1}{n}\dsum\nolimits_{i=1}^{n}v_{b}\left( \hat{q}% _{i}^{v_{c}}/\hat{p}_{i}^{v_{c}}\right) \hat{g}_{i}^{\prime }n\hat{p}_{i}=% \frac{1}{n}\dsum\nolimits_{i=1}^{n}v_{b}\left( \frac{v_{c}(\hat{\eta}% ^{\prime }h_{i}(\hat{\gamma}))}{\frac{1}{n}\sum\nolimits_{i=1}^{n}v_{c}(\hat{% \eta}^{\prime }h_{i}(\hat{\gamma}))}\frac{1}{n\hat{p}_{i}}\right) \hat{g}% _{i}^{\prime }n\hat{p}_{i} \]% By a UWL $\sum\nolimits_{i=1}^{n}v_{c}(\hat{\eta}^{\prime }h_{i}(\hat{\gamma}% ))/n\overset{p}{\rightarrow }{\rm E}_{\text{{\sc p}}_{0}}(v_{c}(\eta ^{\ast \prime }h(z,\gamma ^{\ast })))$. Also by Lemma \ref{Lemma_a1}, $n\hat{p}% _{i}=1+o_{p}(1)$. Hence, by a UWL and continuity of $v_{b}\left( \cdot \right) $ it follows that $\hat{A}_{v,3}={\rm E}_{\text{{\sc p}}% _{0}}(v_{b}(v_{c}(\eta ^{\ast \prime }h(z,\gamma ^{\ast }))\left/ {\rm E}_{% \text{{\sc p}}_{0}}[v_{c}(\eta ^{\ast \prime }h(z,\gamma ^{\ast }))]\right. )g(z,\beta _{0}))+o_{p}(1)$. Hence consistency of $\hat{\sigma}_{3}^{2}$ for $\sigma _{0}^{2}$ follows from the Slutsky theorem.% %TCIMACRO{\TeXButton{End Proof}{\endproof}}% %BeginExpansion \endproof% %EndExpansion \subsection{Proofs of the results of subsection 4.2} \noindent {\bf Proof of Theorem 4.2:} Let us first consider ${\cal S}_{v}$. Note that \begin{eqnarray*} {\cal S}_{v}/\sqrt{n} &=&\frac{1}{n}\sum\limits_{i=1}^{n}v_{a}\left( \hat{p}% _{i}n\right) n\hat{p}_{i}v_{b}\left( \frac{n\hat{q}_{i}^{v_{c}}}{n\hat{p}% _{i}^{v_{c}}}\right) - \\ &&\frac{1}{n}\sum\limits_{i=1}^{n}v_{a}\left( \hat{p}_{i}n\right) n\hat{p}% _{i}\frac{1}{n}\sum\limits_{\ell =1}^{n}n\hat{p}_{\ell }v_{b}\left( \frac{n% \hat{q}_{\ell }^{v_{c}}}{n\hat{p}_{\ell }^{v_{c}}}\right) . \end{eqnarray*}% Now notice that $n\hat{q}_{i}^{v_{c}}=v_{c}(\hat{\eta}^{\prime }h_{i}(\hat{% \gamma}))\left/ \left[ \sum\nolimits_{i=1}^{n}v_{c}(\hat{\eta}^{\prime }h_{i}(\hat{\gamma}))/n\right] \right. $, $n\hat{p}_{i}^{v_{c}}=v_{c}(\hat{% \lambda}^{\prime }g_{i}(\hat{\beta}))\left/ \left[ \sum% \nolimits_{i=1}^{n}v_{c}(\hat{\lambda}^{\prime }g_{i}(\hat{\beta}))/n\right] \right. $ and $n\hat{p}_{i}=\rho _{1}(\hat{\lambda}^{\prime }g_{i}(\hat{\beta% }))\left/ \left[ \sum\nolimits_{i=1}^{n}\rho _{1}(\hat{\lambda}^{\prime }g_{i}(\hat{\beta}))/n\right] \right. $. A UWL implies that $% \sum\nolimits_{i=1}^{n}v_{c}(\hat{\eta}^{\prime }h_{i}(\hat{\gamma})/n={\rm E% }_{\text{{\sc p}}_{0}}[v_{c}(\eta ^{\ast \prime }h(z,\gamma ^{\ast }))]+o_{p}(1)$, $\sum\nolimits_{i=1}^{n}v_{c}(\hat{\lambda}^{\prime }g_{i}(% \hat{\beta}))/n={\rm E}_{\text{{\sc p}}_{0}}[v_{c}(g(z,\beta ^{\ast }))]+o_{p}(1)$, $\sum\nolimits_{i=1}^{n}\rho _{1}(\hat{\lambda}^{\prime }g_{i}(\hat{\beta}))/n={\rm E}_{\text{{\sc p}}_{0}}[\rho _{1}(g(z,\beta ^{\ast }))]+o_{p}(1)$. It follows by a UWL that \[ \frac{1}{n}\sum\limits_{i=1}^{n}v_{a}\left( \hat{p}_{i}n\right) n\hat{p}% _{i}v_{b}\left( \frac{n\hat{q}_{i}^{v_{c}}}{n\hat{p}_{i}^{v_{c}}}\right) =% {\rm E}_{\text{{\sc p}}_{0}}\left[ v_{a}(\rho _{1}^{g,z})\rho _{1}^{g,z}v_{b}\left( \frac{v_{c}^{h,z}}{v_{c}^{g,z}}\right) \right] +o_{p}(1). \] Also \[ \frac{1}{n}\sum \limits_{i=1}^{n}v_{a}\left( \hat{p}_{i}n\right) n\hat{p}% _{i}={\rm E}_{\text{{\sc p}}_{0}}\left[ v_{a}(\rho _{1}^{g,z})\rho _{1}^{g,z}% \right] +o_{p}(1) \]% and \[ \frac{1}{n}\sum \nolimits_{\ell =1}^{n}n\hat{p}_{\ell }v_{b}\left( \frac{n% \hat{q}_{\ell }^{v_{c}}}{n\hat{p}_{\ell }^{v_{c}}}\right) ={\rm E}_{\text{% {\sc p}}_{0}}[\rho _{1}^{g,z}v_{b}\left( \frac{v_{c}^{h,z}}{v_{c}^{g,z}}% \right) ]+o_{p}(1). \] Because ${\rm E}_{\text{{\sc p}}_{0}}[v_{a}(\rho _{1}^{g,z})\rho _{1}^{g,z}v_{b}(v_{c}^{h,z}/v_{c}^{g,z})]\neq {\rm E}_{\text{{\sc p}}% _{0}}[v_{a}(\rho _{1}^{g,z})\rho _{1}^{g,z}]{\rm E}_{\text{{\sc p}}% _{0}}[\rho _{1}^{g,z}v_{b}(v_{c}^{h,z}/v_{c}^{g,z})]$, ${\cal S}_{v}\overset{% p}{\rightarrow }\pm \infty $. Consider now ${\cal \tilde{S}}_{v}.$ Note that \begin{eqnarray*} {\cal \tilde{S}}_{v}/\sqrt{n} &=&\frac{1}{n}\sum \limits_{i=1}^{n}v_{a}\left( \hat{p}_{i}n\right) n\hat{p}_{i}v_{b}\left( n% \hat{q}_{i}^{v_{c}}\right) \\ &&-\frac{1}{n}\sum \limits_{i=1}^{n}v_{a}\left( \hat{p}_{i}n\right) n\hat{p}% _{i}\frac{1}{n}\sum \limits_{\ell =1}^{n}v_{b}\left( n\hat{q}_{\ell }^{v_{c}}\right) n\hat{p}_{\ell }. \end{eqnarray*} Using similar arguments to those described above we have $\sum \nolimits_{i=1}^{n}v_{a}\left( \hat{p}_{i}n\right) n\hat{p}_{i}v_{b}\left( n% \hat{q}_{i}^{v_{c}}\right) /n={\rm E}_{\text{{\sc p}}_{0}}[v_{a}(\rho _{1}^{g,z})\rho _{1}^{g,z}v_{b}(v_{c}^{h,z})]+o_{p}(1)$, $\sum \nolimits_{i=1}^{n}v_{a}\left( \hat{p}_{i}n\right) n\hat{p}_{i}/n={\rm E}_{% \text{{\sc p}}_{0}}[v_{a}(\rho _{1}^{g,z})\rho _{1}^{g,z}]+o_{p}(1)$ and $% \sum \nolimits_{\ell =1}^{n}n\hat{p}_{\ell }v_{b}\left( n\hat{q}_{\ell }^{v_{c}}\right) /n={\rm E}_{\text{{\sc p}}_{0}}[\rho _{1}^{g,z}v_{b}(v_{c}^{h,z})]+o_{p}(1)$. Since ${\rm E}_{\text{{\sc p}}% _{0}}[v_{a}(\rho _{1}^{g,z})\rho _{1}^{g,z}v_{b}(v_{c}^{h,z})]\neq {\rm E}_{% \text{{\sc p}}_{0}}[v_{a}(\rho _{1}^{g,z})\rho _{1}^{g,z}]{\rm E}_{\text{% {\sc p}}_{0}}[\rho _{1}^{g,z}v_{b}(v_{c}^{h,z})]$, ${\cal \tilde{S}}_{v}% \overset{p}{\rightarrow }\pm \infty .$ Concerning the Lagrange multiplier statistic ${\cal LM}_{v}=\hat{A}_{v}\sqrt{% n}\hat{\lambda}$, note that ${\cal LM}_{v}/\sqrt{n}=\hat{A}_{v}\hat{\lambda}% =A_{v}^{\ast }\lambda ^{\ast }+o_{p}(1)$. Since $A_{v}^{\ast }\lambda ^{\ast }\neq 0$ it follows that ${\cal LM}_{v}\overset{p}{\rightarrow }\pm \infty $% . Finally we consider the statistic ${\cal J}_{v}/\sqrt{n}=-\hat{A}_{v}\hat{% \Omega}_{g}^{-1}\hat{g}(\hat{\beta})$. Note that ${\cal J}_{v}/\sqrt{n}% \overset{p}{\rightarrow }-A_{v}^{\ast }\Omega _{g}^{\ast -1}{\rm E}_{\text{% {\sc p}}_{0}}[g_{i}(\beta ^{\ast })]$. Given that $A_{v}^{\ast }\Omega _{g}^{\ast -1}{\rm E}_{\text{{\sc p}}_{0}}[g_{i}(\beta ^{\ast })]\neq 0$, $% {\cal J}_{v}\overset{p}{\rightarrow }\pm \infty $.% %TCIMACRO{\TeXButton{End Proof}{\endproof}}% %BeginExpansion \endproof% %EndExpansion \subsection{Proofs of the results of subsection 4.3} Let $\left\{ z_{in}\right\} _{i=1}^{n}$ be a triangular array which we assume to be row wise independent and identically distributed (iid). Let $% g_{in}(\beta )=g(z_{i,n},\beta )$, $\hat{g}(\beta )=\sum\nolimits_{i=1}^{n}g_{i,n}(\beta )/n$, $\hat{g}_{in}\equiv g(z_{i,n},% \hat{\beta})$ and $h_{in}\left( \gamma \right) =h\left( z_{i,n},\gamma \right) $. \begin{lemma} \label{UWL_LOCalt}Under Assumption 4.6 the following result holds $% \sup_{\beta \in {\cal B}}\left \Vert \hat{g}(\beta )-{\rm E}_{\text{{\sc p}}% _{0n}}[g_{in}(\beta )]\right \Vert =o_{p}(1)$, and $\left \{ {\rm E}_{\text{% {\sc p}}_{0n}}[g_{in}(\beta )]\right \} _{n=1}^{\infty }$ is uniformly equicontinuous in $\beta \in {\cal B}$. \end{lemma} \noindent {\bf Proof:} We use the UWL corresponding to Theorem 4 of Andrews (1992) together with the Weak Law of Large Numbers for Triangular Arrays (Davidson, 1994, 19.9 Corollary p.301). Note that by the UWL $\sup_{\beta \in {\cal B}}\left \vert \hat{g}(\beta )-{\rm E}_{\text{{\sc p}}% _{n}}[g_{i,n}(\beta )]\right \vert =o_{p}(1)$, where the UWL applies because the four sufficient conditions are satisfied. In particular the total boundedness condition (BD) holds by Assumption 4.6 (c). Assumption 4.6 (e) implies both the pointwise convergence condition (P-WLLN) (by the LLN) and the domination condition (DM). The termwise stochastic equicontinuity (TSE) condition is satisfied because \begin{equation} {\rm E}_{\text{{\sc p}}_{0n}}[\sup_{\beta ,\beta ^{\prime }\in {\cal B}% :\left \Vert \beta -\beta ^{\prime }\right \Vert \leq d}\left \Vert g_{in}(\beta )-g_{in}(\beta ^{\prime })\right \Vert ]\leq {\rm E}_{\text{% {\sc p}}_{0n}}[\sup_{\beta \in {\cal B}}\left \Vert \frac{\partial g_{i,n}(\beta )}{\partial \beta }\right \Vert ]d\leq Cd, \label{eqcont_g} \end{equation}% where the first inequality holds by a mean-value expansion (which relies on Assumption 4.6 (d)) and the second holds by Assumption 4.6 (e). \ In addition to guaranteeing TSE, equation (\ref{eqcont_g}) also shows the uniform equicontinuity of $\left \{ {\rm E}_{\text{{\sc p}}% _{0n}}[g(z_{in},\beta )]\right \} _{n=1}^{\infty }$.% %TCIMACRO{\TeXButton{End Proof}{\endproof}}% %BeginExpansion \endproof% %EndExpansion \begin{lemma} \label{Lemma_convmat}Under Assumptions 4.6, 4.7 and 4.8 the following results hold: \begin{enumerate} \item $\frac{1}{n}\sum \nolimits_{i=1}^{n}\hat{g}_{in}\hat{g}_{in}^{\prime }-\Omega _{0,g}=o_{p}(1)$ if $\hat{\beta}\overset{p}{\rightarrow }\beta _{0}; $ \item $\frac{1}{n}\sum \nolimits_{i=1}^{n}\left \Vert \hat{g}% _{in}\right \Vert ^{2}-{\rm E}_{\text{{\sc p}}_{0n}}[\left \Vert g_{in}(\beta _{0})\right \Vert ^{2}]=o_{p}(1)$ if $\hat{\beta}\overset{p}{% \rightarrow }\beta _{0};$ \item $\frac{1}{n}\sum \nolimits_{i=1}^{n}\frac{\partial g_{in}(\hat{\beta})% }{\partial \beta ^{\prime }}-D_{0,g}=o_{p}(1)$ if $\hat{\beta}\overset{p}{% \rightarrow }\beta _{0};$ \item $\frac{1}{n}\sum\nolimits_{i=1}^{n}v_{c}\left( \hat{\eta}^{\prime }h_{in}\left( \hat{\gamma}\right) \right) -{\rm E}_{\text{{\sc p}}% _{0n}}[v_{c}(\eta ^{\ast \prime }h_{in}\left( \gamma ^{\ast }\right) )]=o_{p}(1)$ if $\hat{\beta}\overset{p}{\rightarrow }\beta _{0}$, $\hat{% \gamma}\overset{p}{\rightarrow }\gamma ^{\ast }$ and $\hat{\eta}\overset{p}{% \rightarrow }\eta ^{\ast };$ \item $\frac{1}{n}\sum\nolimits_{i=1}^{n}v_{b}\left( \frac{v_{c}\left( \hat{% \eta}^{\prime }h_{in}\left( \hat{\gamma}\right) \right) }{% \sum\nolimits_{i=1}^{n}v_{c}\left( \hat{\eta}^{\prime }h_{in}\left( \hat{% \gamma}\right) \right) /n}\right) -{\rm E}_{\text{{\sc p}}_{0n}}[v_{b}(\frac{% v_{c}(\eta ^{\ast \prime }h_{in}\left( \gamma ^{\ast }\right) )}{{\rm E}_{% \text{{\sc p}}_{0n}}[v_{c}(\eta ^{\ast \prime }h_{in}\left( \gamma ^{\ast }\right) )]})]=o_{p}(1)$ if $\hat{\beta}\overset{p}{\rightarrow }\beta _{0}$% , $\hat{\gamma}\overset{p}{\rightarrow }\gamma ^{\ast }$ and $\hat{\eta}% \overset{p}{\rightarrow }\eta ^{\ast };$ \item $\frac{1}{n}\sum\nolimits_{i=1}^{n}v_{b}\left( \frac{v_{c}\left( \hat{% \eta}^{\prime }h_{in}\left( \hat{\gamma}\right) \right) }{% \sum\nolimits_{i=1}^{n}v_{c}\left( \hat{\eta}^{\prime }h_{in}\left( \hat{% \gamma}\right) \right) /n}\right) )\hat{g}_{in}-A_{0,v}=o_{p}(1),$ if $\hat{% \beta}\overset{p}{\rightarrow }\beta _{0}$, $\hat{\gamma}\overset{p}{% \rightarrow }\gamma ^{\ast }$ and $\hat{\eta}\overset{p}{\rightarrow }\eta ^{\ast };$ \end{enumerate} \end{lemma} \noindent {\bf Proof: }We prove results (1), (5) and (6) as the proofs of the remaining results are similar. Proof of 1: Using a proof similar to that Lemma \ref{UWL_LOCalt} we have $\sup_{\beta \in {\cal B}}\left\Vert \sum\nolimits_{i=1}^{n}g_{i,n}(\beta )g_{i,n}(\beta )^{\prime }/n-{\rm E}_{% \text{{\sc p}}_{0n}}[g_{i,n}(\beta )g_{i,n}(\beta )^{\prime }]\right\Vert =o_{p}(1)$ which relies on Assumptions 4.6 (c), (d) and (e) and CS. Now we use the fact that ${\rm E}_{\text{{\sc p}}_{0n}}[g_{i,n}(\beta _{0})g_{i,n}(\beta _{0})^{\prime }]\rightarrow \Omega _{0,g}$ by Assumption 4.6 (f). Concerning (5) and (6), write $\hat{a}_{n}=\sum\nolimits_{i=1}^{n}v_{c}% \left( \hat{\eta}^{\prime }h_{in}\left( \hat{\gamma}\right) \right) /n$ and $% a_{n}={\rm E}_{\text{{\sc p}}_{0n}}[v_{c}(\eta ^{\ast \prime }h_{in}\left( \gamma ^{\ast }\right) )]$, we know by Assumption 4.8 (c) that $a_{n}\in {\cal A}$, $n\geq 1$. Let $\psi =\left( \beta ^{\prime },\gamma ^{\prime },\eta ^{\prime },a^{\prime }\right) ^{\prime }$. Using a proof similar to that of Lemma \ref{UWL_LOCalt} we have $\sup_{\psi \in {\cal B}\times {\cal G% }\times {\cal H}\times {\cal A}}||\sum\nolimits_{i=1}^{n}v_{b}\left( v_{c}\left( \eta ^{\prime }h_{in}\left( \gamma \right) \right) \left/ a\right. \right) )g\left( z,\beta \right) /n-{\rm E}_{\text{{\sc p}}% _{0n}}[v_{b}\left( v_{c}\left( \eta ^{\prime }h_{in}\left( \gamma \right) \right) \left/ a\right. \right) )g_{in}\left( \beta \right) ]||=o_{p}(1)$ using Assumptions 4.6 (c), (d) , (e), 4.7 (a), 4.8 (a), (b) and (c) and CS and consequently by result (4) we have $\sum\nolimits_{i=1}^{n}v_{b}\left( v_{c}\left( \hat{\eta}^{\prime }h_{in}\left( \hat{\gamma}\right) \right) /% \hat{a}_{n}\right) \hat{g}_{in}/n-{\rm E}_{\text{{\sc p}}_{0n}}[v_{b}(v_{c}(% \eta ^{\ast \prime }h_{in}\left( \gamma ^{\ast }\right) )/a_{n})g_{in}\left( \beta _{0}\right) ]=o_{p}(1)$ which proves (5). The conclusion (6) follows from the fact that ${\rm E}_{\text{{\sc p}}_{0n}}[v_{b}(v_{c}(\eta ^{\ast \prime }h_{in}\left( \gamma ^{\ast }\right) )/a_{n})g_{in}\left( \beta _{0}\right) ]\rightarrow A_{0,v}$ by Assumption 4.8 (d).% %TCIMACRO{\TeXButton{End Proof}{\endproof}}% %BeginExpansion \endproof% %EndExpansion \begin{lemma} \label{Lemma_CLTlocalt}If Assumption 4.6 is satisfied, then $\sqrt{n}\hat{g}% \left( \beta _{0,n}\right) \overset{D}{\rightarrow }{\cal N}(\delta _{g},\Omega _{0,g})$. \end{lemma} \noindent {\bf Proof:} First we use the Cram\'{e}r Wold device to show that \[ \frac{1}{\sqrt{n}}\sum_{i=1}^{n}[g_{in}(\beta _{0,n})-{\rm E}_{\text{{\sc p}}% _{0n}}(g_{in}(\beta _{0,n}))]\overset{D}{\rightarrow }{\cal N}(0,\Omega _{0,g}). \]% That is, we show that for a fixed $\lambda \neq 0$ \begin{equation} \frac{1}{\sqrt{n}}\sum_{i=1}^{n}\frac{\lambda ^{\prime }[g_{in}(\beta _{0,n})-{\rm E}_{\text{{\sc p}}_{0n}}(g_{in}(\beta _{0,n}))]}{\sqrt{\lambda ^{\prime }B_{n}\lambda }}\overset{D}{\rightarrow }{\cal N}(0,1), \label{CLTloc} \end{equation}% where $B_{n}={\rm E}_{\text{{\sc p}}_{0n}}([g_{in}(\beta _{0,n})-{\rm E}_{% \text{{\sc p}}_{0n}}(g_{in}(\beta _{0,n}))][g_{in}(\beta _{0,n})-{\rm E}_{% \text{{\sc p}}_{0n}}(g_{in}(\beta _{0,n}))]^{\prime })\rightarrow \Omega _{0,g}$. Note first that \[ B_{n}={\rm E}_{\text{{\sc p}}_{0n}}\left[ g_{in}(\beta _{0,n})g_{in}(\beta _{0,n})^{\prime }\right] -n{\rm E}_{\text{{\sc p}}_{0n}}(g_{in}(\beta _{0,n})){\rm E}_{\text{{\sc p}}_{0n}}(g_{in}(\beta _{0,n}))^{\prime }/n. \]% Now $n{\rm E}_{\text{{\sc p}}_{0n}}(g_{in}(\beta _{0,n})){\rm E}_{\text{{\sc % p}}_{0n}}(g_{in}(\beta _{0,n}))^{\prime }=\delta _{g}\delta _{g}^{\prime }$. Additionally, $\left\Vert {\rm E}_{\text{{\sc p}}_{0n}}\left[ g_{in}(\beta _{0,n})g_{in}(\beta _{0,n})^{\prime }\right] -{\rm E}_{\text{{\sc p}}_{0n}}% \left[ g_{in}(\beta _{0})g_{in}(\beta _{0})^{\prime }\right] \right\Vert \rightarrow 0$ as $\beta _{0,n}\rightarrow \beta _{0}$ because% \[ {\rm E}_{\text{{\sc p}}_{0n}}[\sup_{\beta _{a},\beta _{b}\in {\cal B}% :\left\Vert \beta _{a}-\beta _{b}\right\Vert \leq d}\left\Vert g_{in}(\beta _{a})g_{in}(\beta _{a})^{\prime }-g_{in}(\beta _{b})g_{in}(\beta _{b})^{\prime }\right\Vert ]\leq Cd, \]% by a mean-value expansion (which holds by Assumption 4.6 (d)), Assumption 4.6 (e) and CS. It follows from Assumption 4.6 (f) that $B_{n}\rightarrow \Omega _{0,g}$. Also note that $B_{n}$ is positive definite for $n$ large enough because $\Omega _{0,g}$ is positive definite. Now for $a=2+\delta $ we have by CR, L, CS and Assumption 4.6 (e) \begin{eqnarray*} {\rm E}_{\text{{\sc p}}_{0n}}\left[ \left\vert \lambda ^{\prime }[g_{in}(\beta _{0,n})-{\rm E}_{\text{{\sc p}}_{0n}}(g_{in}(\beta _{0,n}))]\right\vert ^{a}\right] &\leq &2^{a-1}\left[ {\rm E}_{\text{{\sc p}}% _{0n}}\left\Vert \lambda ^{\prime }g_{in}(\beta _{0,n})\right\Vert ^{a}+\left\vert {\rm E}_{\text{{\sc p}}_{0n}}(\lambda ^{\prime }g_{in}(\beta _{0,n}))\right\vert ^{a}\right] \\ &\leq &2^{a}\left[ \left\Vert \lambda \right\Vert ^{a}{\rm E}_{\text{{\sc p}}% _{0n}}[\left\Vert g_{in}(\beta _{0,n})\right\Vert ^{a}\right] <2^{a}\left\Vert \lambda \right\Vert ^{a}C. \end{eqnarray*}% Therefore \[ \frac{1}{n^{a/2}}\sum_{i=1}^{n}{\rm E}_{\text{{\sc p}}_{0n}}\left[ \left\vert \lambda ^{\prime }[g_{in}(\beta _{0,n})-{\rm E}_{\text{{\sc p}}% _{0n}}(g_{in}(\beta _{0,n}))]\right\vert ^{a}\right] \leq \frac{% 2^{a}\left\Vert \lambda \right\Vert ^{a}C}{n^{a/2-1}}\rightarrow 0. \]% Hence by the Lyapunov CLT (Serfling, 1980, p.31-32, Corollary) it follows that $\left( \ref{CLTloc}\right) $ holds. Now note that \[ \sqrt{n}\hat{g}\left( \beta _{0,n}\right) =\sqrt{n}\left[ \hat{g}\left( \beta _{0,n}\right) -{\rm E}_{\text{{\sc p}}_{0n}}(\hat{g}\left( \beta _{0,n}\right) )\right] +\sqrt{n}{\rm E}_{\text{{\sc p}}_{0n}}(\hat{g}\left( \beta _{0,n}\right) ) \]% and the first term converges to ${\cal N}(0,\Omega _{0,g})$ while the second is equal to $\delta _{g}$ which proves the result. %TCIMACRO{\TeXButton{End Proof}{\endproof}}% %BeginExpansion \endproof% %EndExpansion . Lemmata \ref{LA1} to \ref{LA3} correspond to versions of Lemmata A1 to A3 of NS for iid triangular arrays and the proofs are similar to those Lemmata given in NS (with $\beta _{0}$ replaced by $\beta _{0,n}$ in those proofs) and therefore are omitted. \begin{lemma} \label{LA1}If Assumption 4.6 is satisfied, then for any $1/\alpha <\zeta <1/2 $ and $\Lambda _{n}=\left\{ \lambda :\left\Vert \lambda \right\Vert \leq n^{-\zeta }\right\} $ and with wpa$1$ $\Lambda _{n}\subseteq \hat{% \Lambda}_{n}(\beta )$ for all $\beta \in {\cal B}$. \end{lemma} \begin{lemma} \label{LA2}If Assumption 4.6 is satisfied, $\bar{\beta}\in {\cal B}$, $\bar{% \beta}-\beta _{0,n}\overset{p}{\rightarrow }0$ and $\hat{g}(\bar{\beta}% )=O_{p}(n^{-1/2})$, then $\bar{\lambda}=\arg \max_{\lambda \in \hat{\Lambda}% _{n}(\bar{\beta})}\hat{P}_{n}^{g}(\bar{\beta},\lambda )$ exists wpa$1$, and $% \bar{\lambda}=O_{p}(n^{-1/2})$, $\sup_{\lambda \in \hat{\Lambda}_{n}(\bar{% \beta})}\hat{P}_{n}^{g}(\bar{\beta},\lambda )\leq O_{p}(n^{-1})$. \end{lemma} \begin{lemma} \label{LA3}If Assumption 4.6 is satisfied, then $\left \Vert \hat{g}(\hat{% \beta})\right \Vert =O_{p}(n^{-1/2})$. \end{lemma} The proof of the following Lemma follows the same steps of the proof of Theorem 3.1 of NS, but since there are some small differences we present it below. \begin{lemma} \label{LA_GELcons}If Assumption 4.6 is satisfied, then $\hat{\beta}\overset{p% }{\rightarrow }\beta _{0}$, $\hat{\beta}-\beta _{0,n}\overset{p}{\rightarrow }0$, $g(\hat{\beta})=O_{p}(n^{-1/2})$, $\hat{\lambda}=\arg \max_{\lambda \in \hat{\Lambda}_{n}(\hat{\beta})}\sum\nolimits_{i=1}^{n}\rho (\lambda ^{\prime }g_{in}(\hat{\beta}))/n$ exists wpa$1$, and $\hat{\lambda}=O_{p}(n^{-1/2})$. \end{lemma} {}{\bf Proof:} Let $g_{n}(\beta )={\rm E}_{\text{{\sc p}}_{0n}}[g(z_{in},% \beta )]$. By Lemma \ref{LA3} $\hat{g}(\hat{\beta})=o_{p}(1)$, and by Lemma % \ref{UWL_LOCalt} $\sup_{\beta \in {\cal B}}\left\Vert \hat{g}(\beta )-g_{n}(\beta )]\right\Vert \overset{p}{\rightarrow }0$ and $\left\{ g_{n}(\beta )\right\} _{n=1}^{\infty }$ is uniformly equicontinuous. Additionally, since $\lim_{n\rightarrow \infty }g_{n}(\beta )=g(\beta )$ for each $\beta \in {\cal B}$, we have $\sup_{\beta \in {\cal B}}\left\Vert g_{n}(\beta )-g(\beta )\right\Vert \rightarrow 0$ (see Rudin, 1976, Exercise 16, p.168). Hence by T $g(\hat{\beta})\overset{p}{\rightarrow }0$. Since $% g(\beta )=0$ has a unique zero at $\beta _{0}$, $g(\beta )$ must be bounded away from zero outside any neighborhood of $\beta _{0}$. Therefore, $\hat{% \beta}$ must be inside any neighborhood of $\beta _{0}$ wpa$1$, i.e. $\hat{% \beta}\overset{p}{\rightarrow }\beta _{0}$, giving the first conclusion. The second conclusion follows from the inequality $\left\Vert \hat{\beta}-\beta _{0,n}\right\Vert \leq \left\Vert \hat{\beta}-\beta _{0}\right\Vert +\left\Vert \beta _{0}-\beta _{0,n}\right\Vert $, the first conclusion and the fact that $\left\Vert \beta _{0}-\beta _{0,n}\right\Vert \rightarrow 0$ by Assumption 4.6 (a). The third conclusion is due to Lemma \ref{LA3}. Also, note that by the second and third conclusions the hypotheses of Lemma \ref% {LA2} are satisfied for $\bar{\beta}=\hat{\beta}$, so that the last conclusion follows from Lemma \ref{LA2}. %TCIMACRO{\TeXButton{End Proof}{\endproof}}% %BeginExpansion \endproof% %EndExpansion \begin{lemma} \label{asymp_norm}If Assumption 4.6 is satisfied, then \[ \sqrt{n}\left( \begin{array}{c} \hat{\beta}-\beta _{0,n} \\ \hat{\lambda}% \end{array}% \right) \overset{d}{\rightarrow }{\cal N}(\left( \begin{array}{c} -H_{0,g}\delta _{g} \\ -P_{0,g}\delta _{g}% \end{array}% \right) ,\left( \begin{array}{cc} \Sigma _{0,g} & 0 \\ 0 & P_{0,g}% \end{array}% \right) ). \] \end{lemma} {\bf Proof: }Let $\hat{\theta}=(\hat{\beta}^{\prime },\hat{\lambda}^{\prime })^{\prime }$ and $\theta _{0,n}=\left( \beta _{0,n}^{\prime },0^{\prime }\right) ^{\prime }$. Note that since $\beta _{0}\in int\left( {\cal B}% \right) $ and $\beta _{0,n}\rightarrow \beta _{0}$, then $\beta _{0,n}\in int\left( {\cal B}\right) $ for $n$ large enough. Using arguments similar to those of NS in the proof of their Theorem 3.2 (which in our case are based on a first order Taylor expansion of the first order conditions of the GEL objective function around $\theta _{0,n}$ and require the fact that $\beta _{0,n}\rightarrow \beta _{0}$, Lemma \ref{LA_GELcons} and the Lemma \ref% {Lemma_convmat}) we have \begin{equation} \sqrt{n}(\hat{\theta}-\theta _{0,n})=-(H_{0,g}^{\prime },-P_{0,g})\sqrt{n}% \hat{g}(\beta _{0,n})+o_{p}(1). \label{lamb_TA} \end{equation}% Now apply the CLT given by Lemma \ref{Lemma_CLTlocalt}. %TCIMACRO{\TeXButton{End Proof}{\endproof}}% %BeginExpansion \endproof% %EndExpansion The following Lemma generalizes the results of Lemma \ref{Lemma_a1} for triangular arrays and its proof is similar and therefore omitted, though available upon request. \begin{lemma} \label{Lemma_a2}Let Assumptions 4.6, 4.7 and 4.8 hold. Then $n\hat{p}% _{i}^{v_{c}}=1+o_{p}(1)$ and \[ n^{1/2}\left( \hat{p}_{i}^{v_{c}}-\frac{1}{n}\right) =\kappa _{v_{c}}\frac{1% }{n}\hat{g}_{in}^{\prime }n^{1/2}\hat{\lambda}(1+o_{p}(1))+O_{p}(n^{-3/2}), \]% uniformly $(i=1,...,n)$ where $\kappa _{v_{c}}=v_{c,1}(0)/v_{c}(0)$. \end{lemma} \noindent {\bf Proof of Theorem 4.3: }Using the similar arguments to those used in the proof of Theorem 4.1, which require \ref{Lemma_convmat} rather than Lemma 4.3 of Newey and McFadden (1994) and Lemma \ref{Lemma_a2} we have ${\cal S}_{v}=A_{0,v}\sqrt{n}\hat{\lambda}(1+o_{p}(1))+o_{p}\left( 1\right) $% . Now, given\ that by Lemma \ref{asymp_norm} $\sqrt{n}\hat{\lambda}\overset{d% }{\rightarrow }{\cal N}\left( -P_{0,g}\delta _{g},P_{0,g}\right) $, it follows that ${\cal N}\left( -A_{0,v}P_{0,g}\delta _{g},\sigma _{0}^{2}\right) $. The demonstration of the asymptotic equivalence of the statistics ${\cal S}% _{v}$, ${\cal \tilde{S}}_{v}$, ${\cal LM}_{v}$ and ${\cal J}_{v}$ is similar to the proof of asymptotic equivalence of these statistics given in the proof of Theorem 4.2. %TCIMACRO{\TeXButton{End Proof}{\endproof}}% %BeginExpansion \endproof% %EndExpansion \renewcommand{\thesection}{SM2} \section{Proofs of the results of section 5 and discussion} In this section we provide the proofs of the theorems presented in section 5 of the paper and investigate the behavior of the random variable $% W_{i,j}^{\ast }(\delta _{h})$ $i=1,2$, $j=3,4$ (defined in subsection 5.1 of the paper) as some elements of $\delta _{h}$ approach infinity. \subsection{Proofs of the results of section 5} We start by compiling a number of Lemmata without presenting their proofs either because the proofs are very similar to those given in NS or to those provided in the previous sections. Let $g_{in}(\beta )=g(z_{i,n},\beta )$, $% \hat{g}(\beta )=\sum\nolimits_{i=1}^{n}g_{i,n}(\beta )/n$, $\hat{g}% _{in}=g_{in}(\hat{\beta})$ and $h_{in}\left( \gamma \right) =h\left( z_{i,n},\gamma \right) $, $\hat{h}_{in}\equiv h(z_{i,n},\hat{\gamma})$, $% \hat{h}(\gamma )=\sum\nolimits_{i=1}^{n}h_{in}(\gamma )/n,$\ $s_{in}(\varphi )=s(z_{i,n},\varphi )$ and $\hat{s}(\varphi )=\sum\nolimits_{i=1}^{n}s_{in}(\varphi )/n$. The proofs of Lemmata \ref{UWL_LOC1} to \ref{Lemma_CLTthloc} are similar to the proofs of Lemmata \ref{UWL_LOCalt} to \ref{Lemma_CLTlocalt} above. \begin{lemma} \label{UWL_LOC1}Suppose Assumption 5.1 holds. Under a sequence $\left \{ \text{{\sc p}}_{n}\right \} _{n=1}^{\infty }\in {\cal P}$ the following results hold: \begin{enumerate} \item $\sup_{\beta \in {\cal B}}\left \Vert \hat{g}(\beta )-{\rm E}_{\text{% {\sc p}}_{n}}[g_{in}(\beta )]\right \Vert =o_{p}(1)$, and $\left \{ {\rm E}_{% \text{{\sc p}}_{n}}[g_{in}(\beta )]\right \} _{n=1}^{\infty }$ is uniformly equicontinuous in $\beta \in {\cal B}$. \item $\sup_{\gamma \in {\cal G}}\left \Vert \hat{h}(\gamma )-{\rm E}_{\text{% {\sc p}}_{n}}[h_{in}(\gamma )]\right \Vert =o_{p}(1)$, and $\left \{ {\rm E}% _{\text{{\sc p}}_{n}}[h_{in}(\gamma )]\right \} _{n=1}^{\infty }$ is uniformly equicontinuous in $\gamma \in {\cal G}$. \end{enumerate} \end{lemma} \begin{lemma} \label{Lemmata_D_loc}Suppose Assumption 5.1 holds. Under a sequence $\left\{ \text{{\sc p}}_{n}\right\} _{n=1}^{\infty }\in {\rm Seq}\left( \beta _{0},\gamma ^{\ast },\eta ^{\ast },\delta _{h},\Omega ,D_{g},D_{h},A_{v}\right) $ we have: \begin{enumerate} \item $\frac{1}{n}\sum \nolimits_{i=1}^{n}s_{in}(\hat{\varphi})s_{in}(\hat{% \varphi})^{\prime }-\Omega =o_{p}(1)$ if $\hat{\varphi}\overset{p}{% \rightarrow }\varphi ^{\ast };$ \item $\frac{1}{n}\sum \nolimits_{i=1}^{n}\left \Vert s_{in}(\hat{\varphi}% )\right \Vert ^{2}-{\rm E}_{\text{{\sc p}}_{n}}[\left \Vert s_{in}(\varphi ^{\ast })\right \Vert ^{2}]=o_{p}(1)$ if $\hat{\varphi}\overset{p}{% \rightarrow }\varphi ^{\ast };$ \item $\frac{1}{n}\sum \nolimits_{i=1}^{n}\frac{\partial g_{in}(\hat{\beta})% }{\partial \beta ^{\prime }}-D_{g}=o_{p}(1)$ if $\hat{\beta}\overset{p}{% \rightarrow }\beta _{0};$ \item $\frac{1}{n}\sum \nolimits_{i=1}^{n}\frac{\partial h_{in}(\hat{\gamma})% }{\partial \gamma ^{\prime }}-D_{h}=o_{p}(1)$ if $\hat{\gamma}\overset{p}{% \rightarrow }\gamma ^{\ast };$ \item $\frac{1}{n}\sum \nolimits_{i=1}^{n}v_{c}\left( \hat{\eta}^{\prime }h_{in}\left( \hat{\gamma}\right) \right) -{\rm E}_{\text{{\sc p}}% _{n}}[v_{c}(\eta ^{\ast \prime }h_{in}\left( \gamma ^{\ast }\right) )]=o_{p}(1)$ if $\hat{\beta}\overset{p}{\rightarrow }\beta _{0}$, $\hat{% \gamma}\overset{p}{\rightarrow }\gamma ^{\ast }$ and $\hat{\eta}\overset{p}{% \rightarrow }\eta ^{\ast };$ \item $\frac{1}{n}\sum \nolimits_{i=1}^{n}v_{b}\left( \frac{v_{c}\left( \hat{% \eta}^{\prime }h_{in}\left( \hat{\gamma}\right) \right) }{\sum \nolimits_{i=1}^{n}v_{c}\left( \hat{\eta}^{\prime }h_{in}\left( \hat{\gamma}% \right) \right) /n}\right) -{\rm E}_{\text{{\sc p}}_{n}}[v_{b}(\frac{% v_{c}(\eta ^{\ast \prime }h_{in}\left( \gamma ^{\ast }\right) )}{{\rm E}_{% \text{{\sc p}}_{n}}[v_{c}(\eta ^{\ast \prime }h_{in}\left( \gamma ^{\ast }\right) )]})]=o_{p}(1)$ if $\hat{\beta}\overset{p}{\rightarrow }\beta _{0}$% , $\hat{\gamma}\overset{p}{\rightarrow }\gamma ^{\ast }$ and $\hat{\eta}% \overset{p}{\rightarrow }\eta ^{\ast };$ \item $\frac{1}{n}\sum \nolimits_{i=1}^{n}v_{b}\left( \frac{v_{c}\left( \hat{% \eta}^{\prime }h_{in}\left( \hat{\gamma}\right) \right) }{\sum \nolimits_{i=1}^{n}v_{c}\left( \hat{\eta}^{\prime }h_{in}\left( \hat{\gamma}% \right) \right) /n}\right) )\hat{g}_{in}-A_{v}=o_{p}(1),$ if $\hat{\beta}% \overset{p}{\rightarrow }\beta _{0}$, $\hat{\gamma}\overset{p}{\rightarrow }% \gamma ^{\ast }$ and $\hat{\eta}\overset{p}{\rightarrow }\eta ^{\ast }.$ \end{enumerate} \end{lemma} \begin{lemma} \label{Lemma_CLTthloc}Suppose Assumption 5.1 holds. Under a sequence $% \left\{ \text{{\sc p}}_{n}\right\} _{n=1}^{\infty }\in {\rm Seq}\left( \beta _{0},\gamma ^{\ast },\eta ^{\ast },\delta _{h},\Omega ,D_{g},D_{h},A_{v}\right) $ with $\left\Vert \delta _{h}\right\Vert _{\infty }<\infty $ and satisfying $\sqrt{n}{\rm E}_{\text{{\sc p}}_{n}}(g_{in}(\beta _{0,\text{{\sc p}}_{n}}))\rightarrow \delta _{g}$ with $\left\Vert \delta _{g}\right\Vert _{\infty }<\infty $, we have $\sqrt{n}\hat{s}\left( \varphi _{n}^{\ast }\right) \overset{D}{\rightarrow }{\cal N}(\delta ,\Omega )$, where $\varphi _{n}^{\ast }=(\beta _{0,\text{{\sc p}}_{n}}^{\prime },\gamma _{\text{{\sc p}}_{n}}^{\ast \prime })^{\prime }$ and $\delta =\left( \delta _{g}^{\prime },\delta _{h}^{\prime }\right) ^{\prime }$. \end{lemma} The proofs of Lemmata \ref{LA1_loc} to \ref{g_hat_loc} are similar to the proofs of Lemma A1 to A3 of NS. The proofs of these Lemmata of NS required a LLN, a UWL and a CLT. In our framework these are replaced by the LLN for triangular arrays in Davidson (1994, 19.9 Corollary p.301), Lemmata \ref% {Lemmata_D_loc} and \ref{Lemma_CLTthloc} respectively. The proof of part (2) of Lemma \ref{Lambda_lemma_loc} is similar to that of Lemma A2 of NS, but uses the assumptions that $H_{n}\subset {\cal H}$, $n\geq 1$ and ${\cal H}$ is a convex set. \begin{lemma} \label{LA1_loc}Suppose Assumption 5.1 holds. Under a sequence $\left \{ \text{{\sc p}}_{n}\right \} _{n=1}^{\infty }\in {\cal P}$ for any $% 1/(2+\delta )<\zeta <1/2$, the following results hold: \begin{enumerate} \item $\sup_{\beta \in {\cal B},\lambda \in \Lambda _{n},1\leq i\leq n}\left \vert \lambda ^{\prime }g_{in}\left( \beta \right) \right \vert \overset{p}{\rightarrow }0$, where $\Lambda _{n}=\left \{ \lambda :\left \Vert \lambda \right \Vert \leq n^{-\zeta }\right \} $ and wpa$1$ $% \Lambda _{n}\subseteq \hat{\Lambda}_{n}(\beta )$ for all $\beta \in {\cal B}$% . \item $\sup_{\gamma \in {\cal G},\eta \in H_{n},1\leq i\leq n}\left\vert \eta ^{\prime }h_{in}\left( \gamma \right) \right\vert \overset{p}{% \rightarrow }0$, where $H_{n}=\left\{ \eta :\left\Vert \eta \right\Vert \leq n^{-\zeta }\right\} $. \end{enumerate} \end{lemma} \begin{lemma} \label{Lambda_lemma_loc}Suppose Assumption 5.1 holds. Under a sequence $% \left \{ \text{{\sc p}}_{n}\right \} _{n=1}^{\infty }\in {\rm Seq}\left( \beta _{0},\gamma ^{\ast },\eta ^{\ast },\delta _{h},\Omega ,D_{g},D_{h},A_{v}\right) $: \begin{enumerate} \item if $\sqrt{n}{\rm E}_{\text{{\sc p}}_{n}}(g_{in}(\beta _{0,\text{{\sc p}% }_{n}}))\rightarrow \delta _{g},$ with $\left\Vert \delta _{g}\right\Vert _{\infty }<+\infty $, $\bar{\beta}\in {\cal B}$, $\bar{\beta}-\beta _{0,% \text{{\sc p}}_{n}}\overset{p}{\rightarrow }0$ and $\hat{g}(\bar{\beta}% )=O_{p}(n^{-1/2})$, then $\bar{\lambda}=\arg \max_{\lambda \in \hat{\Lambda}% _{n}(\bar{\beta})}\hat{P}_{g}(\bar{\beta},\lambda )$ exists wpa$1$, $\bar{% \lambda}=O_{p}(n^{-1/2})$ and $\sup_{\lambda \in \hat{\Lambda}_{n}(\bar{\beta% })}\hat{P}_{g}(\bar{\beta},\lambda )\leq \rho _{0}+O_{p}(1/n)$. \item if $\left\Vert \delta _{h}\right\Vert _{\infty }<+\infty $, $\bar{% \gamma}\in {\cal G}$, $\bar{\gamma}-\gamma _{\text{{\sc p}}_{n}}^{\ast }% \overset{p}{\rightarrow }0$ and $\hat{h}(\bar{\gamma})=O_{p}(n^{-1/2})$, then $\bar{\eta}=\arg \max_{\eta \in {\cal H}}\hat{P}_{h}(\bar{\gamma},\eta ) $ exists wpa$1$, $\bar{\eta}=O_{p}(n^{-1/2})$ and $\sup_{\eta \in {\cal H}}% \hat{P}_{h}(\bar{\gamma},\eta )\leq \rho _{0}+O_{p}(1/n)$. \end{enumerate} \end{lemma} \begin{lemma} \label{g_hat_loc}Suppose Assumption 5.1 holds. Under a sequence $\left \{ \text{{\sc p}}_{n}\right \} _{n=1}^{\infty }\in {\rm Seq}\left( \beta _{0},\gamma ^{\ast },\eta ^{\ast },\delta _{h},\Omega ,D_{g},D_{h},A_{v}\right) $: \begin{enumerate} \item if $\sqrt{n}{\rm E}_{\text{{\sc p}}_{n}}(g_{in}(\beta _{0,\text{{\sc p}% }_{n}}))\rightarrow \delta _{g}$, with $\left \Vert \delta _{g}\right \Vert _{\infty }<+\infty $, then $\left \Vert \hat{g}(\hat{\beta})\right \Vert =O_{p}(n^{-1/2})$. \item if $\left \Vert \delta _{h}\right \Vert _{\infty }<+\infty $, then $% \left \Vert \hat{h}(\hat{\gamma})\right \Vert =O_{p}(n^{-1/2})$. \end{enumerate} \end{lemma} The proof of the following Lemma is similar to that of Lemma \ref{LA_GELcons}% . \begin{lemma} \label{Th_cons_locg}Suppose Assumption 5.1 holds. Under a sequence $\left \{ \text{{\sc p}}_{n}\right \} _{n=1}^{\infty }\in {\rm Seq}\left( \beta _{0},\gamma ^{\ast },\eta ^{\ast },\delta _{h},\Omega ,D_{g},D_{h},A_{v}\right) $: \begin{enumerate} \item if $\sqrt{n}{\rm E}_{\text{{\sc p}}_{n}}(g_{in}(\beta _{0,\text{{\sc p}% }_{n}}))\rightarrow \delta _{g}$ with $\left\Vert \delta _{g}\right\Vert _{\infty }<+\infty $, then $\hat{\beta}\overset{p}{\rightarrow }\beta _{0}$, $\hat{\beta}-\beta _{0,\text{{\sc p}}_{n}}\overset{p}{\rightarrow }0$, $\hat{% \lambda}=\arg \max_{\lambda \in \hat{\Lambda}_{n}(\hat{\beta}% )}\sum\nolimits_{i=1}^{n}\rho (\lambda ^{\prime }g_{in}(\hat{\beta}))/n$ exists wpa$1$, and $\hat{\lambda}=O_{p}(n^{-1/2})$. \item if $\left\Vert \delta _{h}\right\Vert _{\infty }<+\infty $, then $\hat{% \gamma}\overset{p}{\rightarrow }\gamma ^{\ast }$, $\hat{\gamma}-\gamma _{% \text{{\sc p}}_{n}}^{\ast }\overset{p}{\rightarrow }0$, $\hat{\eta}=\arg \max_{\eta \in {\cal H}}\sum\nolimits_{i=1}^{n}\rho (\eta ^{\prime }h_{in}(% \hat{\gamma}))/n$ exists wpa$1$, and $\hat{\eta}=O_{p}(n^{-1/2})$. \end{enumerate} \end{lemma} The proof of the following Lemma is similar to that of Lemma \ref{asymp_norm}% . \begin{lemma} \label{asymp_norm_loc}Suppose Assumption 5.1 holds. Under a sequence $% \left \{ \text{{\sc p}}_{n}\right \} _{n=1}^{\infty }\in {\rm Seq}\left( \beta _{0},\gamma ^{\ast },\eta ^{\ast },\delta _{h},\Omega ,D_{g},D_{h},A_{v}\right) $: \begin{enumerate} \item if $\sqrt{n}{\rm E}_{\text{{\sc p}}_{n}}(g_{in}(\beta _{0,\text{{\sc p}% }_{n}}))\rightarrow \delta _{g}$ with $\left\Vert \delta _{g}\right\Vert _{\infty }<+\infty $, then \[ \sqrt{n}\left( \begin{array}{c} \hat{\beta}-\beta _{0,\text{{\sc p}}_{n}} \\ \hat{\lambda}% \end{array}% \right) \overset{d}{\rightarrow }{\cal N}(\left( \begin{array}{c} -H_{0,g}\delta _{g} \\ -P_{0,g}\delta _{g}% \end{array}% \right) ,\left( \begin{array}{cc} \Sigma _{0,g} & 0 \\ 0 & P_{0,g}% \end{array}% \right) ). \] \item if $\left\Vert \delta _{h}\right\Vert _{\infty }<+\infty $, then \[ \sqrt{n}\left( \begin{array}{c} \hat{\gamma}-\gamma _{\text{{\sc p}}_{n}}^{\ast } \\ \hat{\eta}% \end{array}% \right) \overset{d}{\rightarrow }{\cal N}(\left( \begin{array}{c} -H_{0,h}\delta _{h} \\ -P_{0,h}\delta _{h}% \end{array}% \right) ,\left( \begin{array}{cc} \Sigma _{0,h} & 0 \\ 0 & P_{0,h}% \end{array}% \right) ). \] \end{enumerate} \end{lemma} The proof of the following Lemma is similar to that of Lemma \ref{Lemma_a1}. \begin{lemma} \label{Lemma_pn_loc}Suppose Assumption 5.1 holds. Under a sequence $\left \{ \text{{\sc p}}_{n}\right \} _{n=1}^{\infty }\in {\rm Seq}\left( \beta _{0},\gamma ^{\ast },\eta ^{\ast },\delta _{h},\Omega ,D_{g},D_{h},A_{v}\right) $: \begin{enumerate} \item if $\sqrt{n}{\rm E}_{\text{{\sc p}}_{n}}(g_{in}(\beta _{0,\text{{\sc p}% }_{n}}))\rightarrow \delta _{g}$ with $\left \Vert \delta _{g}\right \Vert _{\infty }<+\infty $, we have $n\hat{p}_{i}^{v_{c}}=1+o_{p}(1)$ and \[ n^{1/2}\left( \hat{p}_{i}^{v_{c}}-\frac{1}{n}\right) =\kappa _{v_{c}}\frac{1% }{n}\hat{g}_{in}^{\prime }n^{1/2}\hat{\lambda}(1+o_{p}(1))+O_{p}(n^{-3/2}), \]% uniformly $(i=1,...,n)$ where $\kappa _{v_{c}}=v_{c,1}(0)/v_{c}(0).$ \item if $\left \Vert \delta _{h}\right \Vert _{\infty }<+\infty $, we have $% n\hat{q}_{i}^{v_{c}}=1+o_{p}(1)$ and \[ n^{1/2}\left( \hat{q}_{i}^{v_{c}}-\frac{1}{n}\right) =\kappa _{v_{c}}\frac{1% }{n}\hat{h}_{in}^{\prime }n^{1/2}\hat{\eta}(1+o_{p}(1))+O_{p}(n^{-3/2}), \]% uniformly $(i=1,...,n)$ where $\kappa _{v_{c}}=v_{c,1}(0)/v_{c}(0)$. \end{enumerate} \end{lemma} The proofs of the following two Lemmata are similar to those of Theorem 4.3 and Theorem 4.2. \begin{lemma} \label{Lemma_normloc_deltag}Suppose Assumption 5.1 holds. Under a sequence $% \left \{ \text{{\sc p}}_{n}\right \} _{n=1}^{\infty }\in {\rm Seq}\left( \beta _{0},\gamma ^{\ast },\eta ^{\ast },\delta _{h},\Omega ,D_{g},D_{h},A_{v}\right) $ that satisfies $\sqrt{n}{\rm E}_{\text{{\sc p}}% _{n}}(g_{in}(\beta _{0,\text{{\sc p}}_{n}}))\rightarrow \delta _{g}$ with $% \left \Vert \delta _{g}\right \Vert _{\infty }<+\infty $ and Assumption 5.2 and if $\left \Vert \delta _{h}\right \Vert =+\infty $, then ${\cal S}_{v}$ converges in distribution to ${\cal N}\left( -A_{v}P_{g}\delta _{g},\sigma ^{2}\right) $. Furthermore, ${\cal \tilde{S}}_{v},$ ${\cal LM}_{v}$ and $% {\cal J}_{v}$ are asymptotically equivalent to ${\cal S}_{v}$. \end{lemma} \begin{lemma} \label{Lemma_sigma_deltag}Suppose Assumption 5.1 holds. Under a sequence $% \left\{ \text{{\sc p}}_{n}\right\} _{n=1}^{\infty }\in {\rm Seq}\left( \beta _{0},\gamma ^{\ast },\eta ^{\ast },\delta _{h},\Omega ,D_{g},D_{h},A_{v}\right) $ satisfying $\sqrt{n}{\rm E}_{\text{{\sc p}}% _{n}}(g_{in}(\beta _{0,\text{{\sc p}}_{n}}))\rightarrow \delta _{g}$ and Assumption 5.2 and if $\left\Vert \delta _{h}\right\Vert =+\infty $, $\hat{% \sigma}_{j}^{2}\overset{p}{\rightarrow }\sigma ^{2}$, $j=1,...4$. \end{lemma} \begin{lemma} \label{Lemma_obs_eq}Suppose Assumptions 5.1 holds. Under a sequence $\left\{ \text{{\sc p}}_{n}\right\} _{n=1}^{\infty }\in {\rm Seq}\left( \beta _{0},\gamma ^{\ast },\eta ^{\ast },\delta _{h},\Omega ,D_{g},D_{h},A_{v}\right) $ with $\left\Vert \delta _{h}\right\Vert _{\infty }<\infty $ and satisfying $\sqrt{n}{\rm E}_{\text{{\sc p}}_{n}}(g_{in}(\beta _{0,\text{{\sc p}}_{n}}))\rightarrow \delta _{g}$ with $\left\Vert \delta _{g}\right\Vert _{\infty }<+\infty $ and let $\delta =(\delta _{g}^{\prime },\delta _{h}^{\prime })^{\prime }$, then \begin{enumerate} \item $\sqrt{n}{\cal S}_{v}\overset{d}{\rightarrow }{\cal T}\left( \delta ,\Omega ,Q_{1}\right) $ and $\sqrt{n}{\cal J}_{v,2}$, $\sqrt{n}{\cal J}% _{v,3} $, $\sqrt{n}{\cal LM}_{v,2}$ and $\sqrt{n}{\cal LM}_{v,3}$ are asymptotically equivalent to $\sqrt{n}{\cal S}_{v}$; \item $\sqrt{n}{\cal \tilde{S}}_{v}\overset{d}{\rightarrow }{\cal T}\left( \delta ,\Omega ,Q_{2}\right) $ and $\sqrt{n}{\cal J}_{v,1}$, $\sqrt{n}{\cal J% }_{v,4}$, $\sqrt{n}{\cal LM}_{v,1}$ and $\sqrt{n}{\cal LM}_{v,4}$ are asymptotically equivalent to $\sqrt{n}{\cal \tilde{S}}_{v}$; \item $n\hat{\sigma}_{1}^{2}\overset{d}{\rightarrow }{\cal T}\left( \delta ,\Omega ,Q_{3}\right) $ and $n\hat{\sigma}_{4}^{2}$ is asymptotically equivalent to $n\hat{\sigma}_{1}^{2}$; \item $n\hat{\sigma}_{2}^{2}\overset{d}{\rightarrow }{\cal T}\left( \delta ,\Omega ,Q_{4}\right) $ and $n\hat{\sigma}_{3}^{2}$ is asymptotically equivalent to $n\hat{\sigma}_{2}^{2}$; \item $n\hat{\sigma}_{j}^{2}$ is non-negative with probability approaching one for $j=1,2,3,4$. \end{enumerate} \end{lemma} \noindent {\bf Proofs:} {\bf Proof of 1:} {$\sqrt{n}{\cal S}_{v}$ is considered first. By a second order Taylor expansion, \begin{equation} v_{a}\left( \hat{p}_{i}n\right) =v_{a}(1)+\left( \hat{p}_{i}n-1\right) +v_{a,2}\left( \hat{\sigma}_{i}\right) \left( \hat{p}_{i}n-1\right) ^{2}/2, \label{phi_taylor} \end{equation}% where $\hat{\sigma}_{i}=\alpha _{i}+\left( 1-\alpha _{i}\right) \hat{p}_{i}n$ and $\alpha _{i}\in \left( 0,1\right) $. Hence, \begin{align*} \sqrt{n}{\cal S}_{v}& =\sqrt{n}\sum \limits_{i=1}^{n}\sqrt{n}\left( \hat{p}% _{i}-\frac{1}{n}\right) n\hat{p}_{i}\left[ v_{b}\left( \frac{\hat{q}% _{i}^{v_{c}}}{\hat{p}_{i}^{v_{c}}}\right) -\sum \limits_{\ell =1}^{n}v_{b}\left( \frac{\hat{q}_{\ell }^{v_{c}}}{\hat{p}_{\ell }^{v_{c}}}% \right) \hat{p}_{\ell }\right] \\ & +n\sum \limits_{i=1}^{n}\frac{v_{a,2}\left( \hat{\sigma}_{i}\right) }{2}% \left( \hat{p}_{i}n-1\right) ^{2}\hat{p}_{i}\left[ v_{b}\left( \frac{\hat{q}% _{i}^{v_{c}}}{\hat{p}_{i}^{v_{c}}}\right) -\sum \limits_{\ell =1}^{n}v_{b}\left( \frac{\hat{q}_{\ell }^{v_{c}}}{\hat{p}_{\ell }^{v_{c}}}% \right) \hat{p}_{\ell }\right] =B_{1,n}+B_{2,n}. \end{align*}% } {Using Lemma \ref{Lemma_pn_loc} $n^{1/2}(\hat{p}_{i}-1/n)=n^{-1}\hat{g}% _{in}^{\prime }\sqrt{n}\hat{\lambda}\left( 1+o_{p}\left( 1\right) \right) +O_{p}(n^{-3/2})$ and $\sum\nolimits_{i=1}^{n}\hat{p}_{i}\hat{g}% _{in}^{\prime }=0$ we have $B_{1,n}=\sqrt{n}\hat{A}_{v,3}\sqrt{n}\hat{\lambda% }\left( 1+o_{p}\left( 1\right) \right) ]+B_{1r,n}$, where $B_{1r,n}$ is defined below.} {Note that by a first-order Taylor expansion }% \[ {v_{b}\left( \frac{n\hat{q}_{i}^{v_{c}}}{n\hat{p}_{i}^{v_{c}}}\right) }% =v_{b}\left( 1\right) +v_{b,1}\left( \frac{\hat{\sigma}_{1,i}}{\hat{\sigma}% _{2,i}}\right) \frac{\left( n\hat{q}_{i}^{v_{c}}-1\right) }{\hat{\sigma}% _{2,i}}{-}\frac{{\hat{\sigma}_{1,i}}}{{\hat{\sigma}_{2,i}^{2}}}{% v_{b,1}\left( \frac{\hat{\sigma}_{1,i}}{\hat{\sigma}_{2,i}}\right) \left( n% \hat{p}_{i}^{v_{c}}-1\right) ,} \]% {\ where $\hat{\sigma}_{1,i}=\alpha _{1,i}+\left( 1-\alpha _{1,i}\right) n% \hat{q}_{i}^{v_{c}}$ and $\alpha _{1,i}\in \left( 0,1\right) $ and $\hat{% \sigma}_{2,i}=\alpha _{2,i}+\left( 1-\alpha _{2,i}\right) n\hat{p}% _{i}^{v_{c}}$ and $\alpha _{2,2}\in \left( 0,1\right) $. Thus, }% \begin{align*} \sqrt{n}\hat{A}_{v,3}{\ }& {=\sum \nolimits_{i=1}^{n}n\hat{p}_{i}\hat{g}% _{in}^{\prime }v_{b,1}\left( \frac{\hat{\sigma}_{1,i}}{\hat{\sigma}_{2,i}}% \right) \sqrt{n}}\left( {\hat{q}_{i}^{v_{c}}-}\frac{1}{n}\right) \frac{1}{% \hat{\sigma}_{2,i}} \\ & -{\sum \nolimits_{i=1}^{n}n\hat{p}_{i}\hat{g}_{in}^{\prime }\frac{{\hat{% \sigma}_{1,i}}}{{\hat{\sigma}_{2,i}^{2}}}{v_{b,1}\left( \frac{\hat{\sigma}% _{1,i}}{\hat{\sigma}_{2,i}}\right) }\sqrt{n}\left( \hat{p}_{i}^{v_{c}}-\frac{% 1}{n}\right) } \\ {}& {=W_{1,n}-W_{2,n}.} \end{align*}% \ Now by Lemmata \ref{Lemma_pn_loc} $\sqrt{n}(\hat{p}_{i}^{v_{c}}-1/n)=n^{-1}% \hat{g}_{in}^{\prime }\sqrt{n}\hat{\lambda}\left( 1+o_{p}\left( 1\right) \right) +O_{p}(n^{-3/2})$ and $\sqrt{n}(\hat{q}_{i}^{v_{c}}-1/n)=n^{-1}\hat{h% }_{in}^{\prime }\sqrt{n}\hat{\eta}\left( 1+o_{p}\left( 1\right) \right) +O_{p}(n^{-3/2})$ as $\kappa _{v_{c}}=1$. Additionally, note that similarly to (\ref{lamb_TA}) we have\ $\sqrt{n}\hat{\lambda}=-P_{g}\sqrt{n}\hat{g}% (\beta _{0,\text{{\sc p}}_{n}})+o_{p}(1)$, and $\sqrt{n}\hat{\eta}=-P_{h}% \sqrt{n}\hat{h}(\gamma _{\text{{\sc p}}_{n}}^{\ast })+o_{p}(1)$. Combining these results with the fact that $v_{b,1}=1$ and Lemma \ref{Lemmata_D_loc},\ we obtain \begin{align} {W_{1,n}}& =\sqrt{n}\hat{\eta}^{\prime }\frac{1}{n}\sum\limits_{i=1}^{n}\hat{% h}_{in}\hat{g}_{in}^{\prime }v_{b,1}{{\left( \frac{\hat{\sigma}_{1,i}}{\hat{% \sigma}_{2,i}}\right) }}\frac{1}{\hat{\sigma}_{2,i}}+O_{p}(n^{-2}) \nonumber \\ {\ }& {=-\sqrt{n}\hat{s}({\varphi }_{n}^{\ast })^{\prime }S_{h}^{\prime }P_{h}\Omega _{hg}+O_{p}(n^{-2}),} \label{w1n} \end{align}% \ \ and \begin{eqnarray*} W_{2,n} &=&\sum\limits_{i=1}^{n}n\hat{p}_{i}\hat{g}_{in}^{\prime }\frac{\hat{% \sigma}_{1,i}}{\hat{\sigma}_{2,i}^{2}}v_{b,1}\left( \frac{\hat{\sigma}_{1,i}% }{\hat{\sigma}_{2,i}}\right) \left[ \frac{1}{n}\hat{g}_{in}^{\prime }\sqrt{n}% \hat{\lambda}\left( 1+o_{p}\left( 1\right) \right) +O_{p}(n^{-3/2})\right] \\ &=&-{\sqrt{n}\hat{s}(\varphi }_{n}^{\ast }{)^{\prime }S_{g}P_{g}\Omega _{g}+O_{p}(n^{-2}),} \end{eqnarray*}% where $\varphi _{n}^{\ast }=(\beta _{0,\text{{\sc p}}_{n}}^{\prime },\gamma _{\text{{\sc p}}_{n}}^{\ast \prime })^{\prime }$. Hence% \begin{eqnarray} \sqrt{n}\hat{A}_{3,v} &=&\frac{1}{\sqrt{n}}\sum\limits_{i=1}^{n}n\hat{p}_{i}% \hat{g}_{in}^{\prime }v_{b}\left( \frac{\hat{q}_{i}^{v_{c}}}{\hat{p}% _{i}^{v_{c}}}\right) =-\sqrt{n}{\hat{s}({\varphi }_{n}^{\ast })}^{\prime }S_{h}^{\prime }P_{h}\Omega _{hg} \label{aj1} \\ &&+\sqrt{n}{\hat{s}({\varphi }_{n}^{\ast })}^{\prime }S_{g}^{\prime }P_{g}\Omega _{g}+O_{p}(n^{-2}). \nonumber \end{eqnarray} Now note that $B_{1r,n}\equiv n^{-1}\sum \nolimits_{i=1}^{n}n\hat{p}% _{i}[v_{b}\left( \hat{q}_{i}^{v_{c}}/\hat{p}_{i}^{v_{c}}\right) -n^{-1}\sum \nolimits_{i=1}^{n}v_{b}\left( \hat{q}_{i}^{v_{c}}/\hat{p}% _{i}^{v_{c}}\right) n\hat{p}_{i}]O_{p}(1)=o_{p}(1)$. Additionally, by Lemma \ref{Lemma_pn_loc} we have% \begin{eqnarray*} B_{2,n} &\equiv &n\sum \limits_{i=1}^{n}\frac{v_{a,2}\left( \hat{\sigma}% _{i}\right) }{2}\left[ \sqrt{n}\left( \hat{p}_{i}-\frac{1}{n}\right) \right] ^{2}n\hat{p}_{i}\left[ v_{b}\left( \frac{\hat{q}_{i}^{v_{c}}}{\hat{p}% _{i}^{v_{c}}}\right) -\sum \limits_{\ell =1}^{n}v_{b}\left( \frac{\hat{q}% _{\ell }^{v_{c}}}{\hat{p}_{\ell }^{v_{c}}}\right) \hat{p}_{\ell }\right] \\ &=&n\sum \limits_{i=1}^{n}\frac{v_{a,2}\left( \hat{\sigma}_{i}\right) }{2}% \left[ \frac{1}{n}\hat{g}_{in}^{\prime }\sqrt{n}\hat{\lambda}\left( 1+o_{p}\left( 1\right) \right) +O_{p}(n^{-3/2})\right] ^{2}n\hat{p}_{i}\left[ v_{b}\left( \frac{\hat{q}_{i}^{v_{c}}}{\hat{p}_{i}^{v_{c}}}\right) -\sum \limits_{\ell =1}^{n}v_{b}\left( \frac{\hat{q}_{\ell }^{v_{c}}}{\hat{p}% _{\ell }^{v_{c}}}\right) \hat{p}_{\ell }\right] . \end{eqnarray*} By T and the fact that $(a+b)^{2}\leq 2a^{2}+2b^{2}$ we have \[ \left \vert B_{2,n}\right \vert \leq \frac{2}{n}\sum \limits_{i=1}^{n}[\left \Vert \hat{g}_{in}\right \Vert ^{2}\left \Vert \sqrt{n}\hat{\lambda}\right \Vert ^{2}\left( 1+o_{p}\left( 1\right) \right) +O_{p}(n^{-3})]\left \vert \frac{v_{a,2}\left( \hat{\sigma}_{i}\right) }{2}n% \hat{p}_{i}\left[ v_{b}\left( \frac{\hat{q}_{i}^{v_{c}}}{\hat{p}_{i}^{v_{c}}}% \right) -\sum \limits_{\ell =1}^{n}v_{b}\left( \frac{\hat{q}_{\ell }^{v_{c}}% }{\hat{p}_{\ell }^{v_{c}}}\right) \hat{p}_{\ell }\right] \right \vert . \] Since $\sum \nolimits_{i=1}^{n}v_{b}\left( \hat{q}_{i}^{v_{c}}/\hat{p}% _{i}^{v_{c}}\right) \hat{p}_{i}=v_{b}\left( 1\right) +o_{p}(1)$ by Lemmata % \ref{Lemma_pn_loc} and $\left \Vert \sqrt{n}\hat{\lambda}\right \Vert ^{2}=O_{p}(1)$ by Lemma \ref{asymp_norm_loc} it follows by Lemma \ref% {Lemmata_D_loc} that $\left \vert B_{2,n}\right \vert =o_{p}(1)$. Therefore, \begin{align*} {\sqrt{n}{\cal S}_{v}}& {=-\sqrt{n}\hat{s}({\varphi }_{n}^{\ast })^{\prime }S_{h}^{\prime }P_{h}\Omega _{hg}\sqrt{n}\hat{\lambda}+\sqrt{n}\hat{s}({% \varphi }_{n}^{\ast })^{\prime }S_{g}^{\prime }P_{g}\Omega _{g}\sqrt{n}\hat{% \lambda}+O_{p}(n^{-2})} \\ {}& {=\sqrt{n}\hat{s}({\varphi }_{n}^{\ast })^{\prime }S_{h}^{\prime }P_{h}\Omega _{hg}P_{g}S_{g}\sqrt{n}\hat{s}({\varphi }_{n}^{\ast })-\sqrt{n}% \hat{s}({\varphi }_{n}^{\ast })^{\prime }S_{g}^{\prime }P_{g}S_{g}\sqrt{n}% \hat{s}({\varphi }_{n}^{\ast })+O_{p}(n^{-2})} \end{align*}% \ because $\sqrt{n}\hat{\lambda}=-P_{g}\sqrt{n}\hat{g}(\beta _{0,\text{{\sc p% }}_{n}})+o_{p}(1)$ and the fact $P_{g}\Omega _{g}P_{g}=P_{g}$. Hence, since $% \sqrt{n}\hat{s}({{\varphi }_{n}^{\ast }})\overset{d}{\rightarrow }{\cal N}% (\delta ,\Omega )$, $\delta =(\delta _{g}^{\prime },\delta _{h}^{\prime })^{\prime }$ by Lemma \ref{asymp_norm_loc} it follows that $\sqrt{n}{\cal S}% _{v}\overset{d}{\rightarrow }{\cal T}\left( \delta ,\Omega ,Q_{1}\right) $. Consider now $\sqrt{n}{\cal J}_{v,2}=-\sqrt{n}\hat{A}_{v,2}\hat{\Omega}% _{g}^{-1}\sqrt{n}\hat{g}(\hat{\beta})$, note that \begin{eqnarray*} \sqrt{n}{\cal J}_{v,2} &=&n^{-1/2}\dsum \limits_{i=1}^{n}(n\hat{p}% _{i}-1)v_{b}(n\hat{q}_{i}/(n\hat{p}_{i}))\hat{g}_{in}^{\prime }\hat{\Omega}% _{g}^{-1}\sqrt{n}\hat{g}(\hat{\beta}) \\ &&-\sqrt{n}\hat{A}_{v,3}\hat{\Omega}_{g}^{-1}\sqrt{n}\hat{g}(\hat{\beta}).{\ } \end{eqnarray*} We prove that the first term converges in probability to zero. Note that by Lemma \ref{Lemma_pn_loc} \begin{eqnarray*} n^{-1/2}\dsum\limits_{i=1}^{n}(n\hat{p}_{i}-1)v_{b}\left( \frac{n\hat{q}% _{i}^{v_{c}}}{n\hat{p}_{i}}\right) \hat{g}_{in}^{\prime } &=&\frac{1}{n}% \dsum\limits_{i=1}^{n}v_{b}\left( \frac{n\hat{q}_{i}^{v_{c}}}{n\hat{p}_{i}}% \right) \hat{g}_{in}\hat{g}_{in}^{\prime }\sqrt{n}\hat{\lambda}\left( 1+o_{p}\left( 1\right) \right) \\ &&+\dsum\limits_{i=1}^{n}O_{p}(n^{-3/2})v\left( n\hat{q}_{i}\right) \hat{g}% _{in}^{\prime }. \end{eqnarray*}% Both terms of the rhs converge to zero in probability by Lemma \ref% {Lemma_pn_loc}, Lemma \ref{Lemmata_D_loc}, the facts that\ $\sqrt{n}\hat{% \lambda}=-P_{g}\sqrt{n}\hat{g}_{n}(\beta _{0,\text{{\sc p}}_{n}})+o_{p}(1),$ $\Omega P=0$ and $\hat{g}(\hat{\beta})\overset{p}{\rightarrow }0$. Hence \begin{equation} n^{-1/2}\dsum\limits_{i=1}^{n}(n\hat{p}_{i}-1)v_{b}\left( \frac{n\hat{q}% _{i}^{v_{c}}}{n\hat{p}_{i}}\right) \hat{g}_{in}^{\prime }=o_{p}(1). \label{aj2} \end{equation} Combining $\left( \ref{aj1}\right) $ and $\left( \ref{aj2}\right) $, one obtains \begin{equation} \sqrt{n}\hat{A}_{v,2}=\sqrt{n}\hat{A}_{v,3}+o_{p}(1). \label{eq_J1_3} \end{equation}% Consequently as \begin{align} -\sqrt{n}\Omega _{g}^{-1}\hat{g}(\hat{\beta})& =\sqrt{n}\hat{\lambda}% +o_{p}(1) \nonumber \\ & =-P_{g}\sqrt{n}\hat{g}(\beta _{0,\text{{\sc p}}_{n}})+o_{p}(1), \label{g_beta_hat} \end{align}% we have $\sqrt{n}{\cal J}_{2,v}=\sqrt{n}{\cal J}_{3,v}+o_{p}(1)=\sqrt{n}% {\cal S}_{v}+o_{p}(1)$. Concerning the Lagrange multiplier test statistics note that\ for $\sqrt{n}% {\cal LM}_{j,v}\ j=2,3$\ we have\ $\sqrt{n}{\cal LM}_{v,j}-\sqrt{n}{\cal J}% _{v,j}=n^{1/2}\hat{A}_{v,j}\left[ n^{1/2}\hat{\lambda}+\hat{\Omega}% _{g}^{-1}n^{1/2}\hat{g}(\hat{\beta})\right] =$ $n^{1/2}\hat{A}_{v,j}[-\Omega _{g}^{-1}+\hat{\Omega}_{g}^{-1}+o_{p}(1)]\sqrt{n}\hat{g}(\hat{\beta}% )=o_{p}(1)$\ using $\left( \ref{g_beta_hat}\right) $ and the facts that $% \sqrt{n}\hat{A}_{j,v}=O_{p}(1),$ $\Omega _{g}^{-1}-\hat{\Omega}% _{g}^{-1}=o_{p}(1)$ by Lemma \ref{Lemmata_D_loc} and $\sqrt{n}\hat{g}(\hat{% \beta})=O_{p}(1)$. {\bf Proof of 2: }Let us now consider $\sqrt{n}{{\cal \tilde{S}}_{v}}$. By $% \left( \ref{phi_taylor}\right) $, it follows that\ \begin{align*} \sqrt{n}{{\cal \tilde{S}}_{v}}& =\sqrt{n}\sum\limits_{i=1}^{n}\sqrt{n}\left( \hat{p}_{i}-\frac{1}{n}\right) n\hat{p}_{i}\left[ v_{b}\left( n\hat{q}% _{i}^{v_{c}}\right) -\sum\limits_{\ell =1}^{n}v_{b}\left( n\hat{q}_{\ell }^{v_{c}}\right) \hat{p}_{\ell }\right] \\ & +n\sum\limits_{i=1}^{n}\frac{v_{2,a}\left( \hat{\sigma}_{i}\right) }{2}% \left( \hat{p}_{i}n-1\right) ^{2}\hat{p}_{i}\left[ v_{b}\left( n\hat{q}% _{i}^{v_{c}}\right) -\sum\limits_{\ell =1}^{n}v_{b}\left( n\hat{q}_{\ell }^{v_{c}}\right) \hat{p}_{\ell }\right] =C_{1,n}+C_{2,n}. \end{align*}% Hence, by Lemma \ref{Lemma_pn_loc}, \begin{eqnarray*} C_{1,n} &=&n^{-1/2}\sum\limits_{i=1}^{n}n\hat{p}_{i}\left[ v_{b}\left( \hat{q% }_{i}^{v_{c}}n\right) -\sum\limits_{\ell =1}^{n}v_{b}\left( \hat{q}_{\ell }^{v_{c}}n\right) \hat{p}_{\ell }\right] \hat{g}_{in}^{\prime }\sqrt{n}\hat{% \lambda}\left( 1+o_{p}\left( 1\right) \right) \\ &&+C_{1r,n}. \end{eqnarray*} Note that $n^{-1/2}\sum \nolimits_{i=1}^{n}n\hat{p}_{i}[v_{b}\left( \hat{q}% _{i}^{v_{c}}n\right) -\sum \nolimits_{\ell =1}^{n}v_{b}\left( \hat{q}_{\ell }^{v_{c}}n\right) \hat{p}_{\ell }]\hat{g}_{in}^{\prime }=n^{-1/2}\sum \nolimits_{i=1}^{n}n\hat{p}_{i}v_{b}\left( \hat{q}_{i}^{v_{c}}n\right) \hat{g% }_{in}^{\prime }$ because $\sum \nolimits_{i=1}^{n}\hat{p}_{i}\hat{g}% _{in}^{\prime }=0$. Additionally by a Taylor expansion $v_{b}\left( n\hat{q}% _{i}^{v_{c}}\right) =v_{b}\left( 1\right) +v_{b,1}\left( \hat{\sigma}% _{3,i}\right) \left( n\hat{q}_{i}^{v_{c}}-1\right) $, where $\hat{\sigma}% _{3,i}=\alpha _{3,i}+\left( 1-\alpha _{3,i}\right) n\hat{q}_{i}^{v_{c}}$ and $\alpha _{3,i}\in \left( 0,1\right) $. Thus \[ \frac{1}{\sqrt{n}}\sum \limits_{i=1}^{n}n\hat{p}_{i}\hat{g}_{in}^{\prime }v_{b}\left( \hat{q}_{i}^{v_{c}}n\right) =\frac{1}{\sqrt{n}}\sum \limits_{i=1}^{n}n\hat{p}_{i}\hat{g}_{in}^{\prime }v_{b,1}\left( \hat{\sigma}% _{3,i}\right) \left( n\hat{q}_{i}^{v_{c}}-1\right) . \] Now note that $\sum\nolimits_{i=1}^{n}n\hat{p}_{i}\hat{g}_{in}^{\prime }% \sqrt{n}\left( n\hat{q}_{i}^{v_{c}}-1/n\right) =O_{p}(1)$ by Lemma \ref% {Lemma_pn_loc}, Lemma \ref{Lemmata_D_loc} and the fact that $\sqrt{n}\hat{% \eta}=O_{p}(1)$. Thus using continuity of $v_{b,1}\left( .\right) $ at $1$, we have \begin{eqnarray} \sqrt{n}\hat{A}_{4,v} &=&n^{-1/2}\sum\limits_{i=1}^{n}n\hat{p}_{in}\hat{g}% _{in}^{\prime }v_{b}\left( \hat{q}_{i}^{v_{c}}n\right) ={W_{1,n}+o_{p}(1)} \label{eq_J1_1} \\ &=&-\sqrt{n}{\hat{s}(\varphi }_{n}^{\ast }{)}^{\prime }S_{h}^{\prime }P_{h}\Omega _{hg}+{O_{p}(n^{-2})} \nonumber \end{eqnarray}% \ \ by (\ref{w1n}). Also $C_{1r,n}=n^{-1/2}\sum\nolimits_{i=1}^{n}n\hat{p}% _{i}[v_{b}\left( \hat{q}_{i}^{v_{c}}n\right) -$ $\sum\nolimits_{\ell =1}^{n}v_{b}\left( \hat{q}_{\ell }^{v_{c}}n\right) \hat{p}_{\ell }]\hat{g}% _{i}^{\prime }O_{p}(n^{-3/2})=o_{p}(1/n)$ by Lemmata \ref{Lemma_pn_loc} and % \ref{UWL_LOC1} and $C_{2,n}=o_{p}(1)$ \ using a proof similar to the proof that $B_{2,n}=o_{p}(1)$. Hence \begin{eqnarray*} \sqrt{n}{{\cal \tilde{S}}_{v}} &=&-\sqrt{n}{\hat{s}({\varphi }_{n}^{\ast })}% ^{\prime }S_{h}^{\prime }P_{h}\Omega _{hg}\sqrt{n}\hat{\lambda}+o_{p}(1) \\ &=&\sqrt{n}{\hat{s}({\varphi }_{n}^{\ast })}^{\prime }S_{h}^{\prime }P_{h}\Omega _{hg}P_{g}S_{g}\sqrt{n}{\hat{s}({\varphi }_{n}^{\ast })}% +o_{p}(1). \end{eqnarray*}% \ Thus, since $\sqrt{n}\hat{s}(\varphi _{n}^{\ast })\overset{d}{\rightarrow }% {\cal N}(\delta ,\Omega )$ we have $\sqrt{n}{{\cal \tilde{S}}_{v}}\overset{d}% {\rightarrow }{\cal T}\left( \delta ,\Omega ,Q_{2}\right) $. Consider now $\sqrt{n}{\cal J}_{v,1}=-n^{-1/2}\dsum\nolimits_{i=1}^{n}v_{b}% \left( n\hat{q}_{i}^{v_{c}}\right) \hat{g}_{i}^{\prime }\hat{\Omega}% _{g}^{-1}n^{1/2}\hat{g}(\hat{\beta})$.\ Note that$\sqrt{n}\hat{A}% _{v,1}=n^{-1/2}\dsum\nolimits_{i=1}^{n}v\left( n\hat{q}_{i}\right) \hat{g}% _{in}^{\prime }=-n^{-1/2}\dsum\nolimits_{i=1}^{n}(n\hat{p}_{i}-1)v_{b}\left( n\hat{q}_{i}^{v_{c}}\right) \hat{g}_{in}^{\prime }$ $+\sqrt{n}\hat{A}_{v,4}$% .\ The second term of the rhs has the asymptotic representation given in (% \ref{eq_J1_1}). Similarly to the proof of $\left( \ref{aj2}\right) $ the first term converges in probability to zero and therefore \begin{equation} \sqrt{n}\hat{A}_{v,1}=\sqrt{n}\hat{A}_{v,4}+o_{p}(1). \label{eq_J1_2} \end{equation}% Thus, using equation $\left( \ref{g_beta_hat}\right) $, and the fact that $% P_{g}\sqrt{n}\hat{g}(\beta _{0,\text{{\sc p}}_{n}})=O_{p}(1)$\ it follows that $\sqrt{n}{\cal J}_{1,v}=\sqrt{n}{\cal J}_{4,v}+o_{p}(1)=\sqrt{n}{\cal \tilde{S}}_{v}+o_{p}(1)$. The proof that $\sqrt{n}{\cal LM}_{v,j}-\sqrt{n}% {\cal J}_{v,j}=o_{p}(1)$, $j=1,4$ is similar to the case $j=2,3$ and therefore omitted. {\bf Proof of 3: }{\bf \ }Let us first consider $n\hat{\sigma}_{1}^{2}=n\hat{% A}_{1,v}\hat{P}_{g}\hat{A}_{1,v}^{\prime }$. Note that by $\left( \ref% {eq_J1_2}\right) $ and \ $\left( \ref{eq_J1_1}\right) $, $n\hat{\sigma}% _{1}^{2}=n\hat{s}(\varphi _{n}^{\ast })^{\prime }K_{h}P_{g}K_{h}^{\prime }% \hat{s}(\varphi _{n}^{\ast })+o_{p}(1)$. Hence, it follows that \ $n\hat{% \sigma}_{1}^{2}\overset{d}{\rightarrow }{\cal T}\left( \delta ,\Omega ,Q_{3}\right) $\ because of the fact that $\sqrt{n}\hat{s}(\varphi _{n}^{\ast })\overset{d}{\rightarrow }{\cal N}(\delta ,\Omega )$. \ Additionally, using $\left( \ref{eq_J1_2}\right) $ and \ $\left( \ref% {eq_J1_1}\right) $ we have $n\hat{\sigma}_{4}^{2}=n\hat{\sigma}% _{1}^{2}+o_{p}(1)$. {\bf Proof of 4: }Now consider $n\hat{\sigma}_{2}^{2}=n\hat{A}_{2,v}\hat{P}% _{g}\hat{A}_{2,v}^{\prime }$. By $\left( \ref{eq_J1_3}\right) $ and $\left( % \ref{aj1}\right) $\ we have \[ n\hat{\sigma}_{2}^{2}=n{\hat{s}({\varphi }_{n}^{\ast })}^{\prime }(K_{h}-K_{g})P_{g}(K_{h}-K_{g})^{\prime }{\hat{s}({\varphi }_{n}^{\ast })}% +o_{p}(1){.} \]% \ Hence $n\hat{\sigma}_{1}^{2}\overset{d}{\rightarrow }{\cal T}\left( \delta ,\Omega ,Q_{4}\right) $ as $\sqrt{n}\hat{s}(\varphi _{n}^{\ast })\overset{d}{% \rightarrow }{\cal N}(\delta ,\Omega )$.\ Additionally, also by $\left( \ref% {eq_J1_3}\right) $ and $\left( \ref{aj1}\right) $ we have\ $n\hat{\sigma}% _{2}^{2}=n\hat{\sigma}_{3}^{2}+o_{p}(1)$. {\bf Proof of 5: }Because $P_{g}$ is a positive semidefinite matrix, it follows that $n\hat{\sigma}_{j}^{2}\geq 0$, $j=1,2,3,4$ wpa$1$.{% %TCIMACRO{\TeXButton{End Proof}{\endproof}}% %BeginExpansion \endproof% %EndExpansion } %TCIMACRO{\TeXButton{newline}{\newline}}% %BeginExpansion \newline% %EndExpansion \noindent {\bf Proof of Theorem 5.1:} (1) follows from Lemmata \ref% {Lemma_normloc_deltag} and \ref{Lemma_sigma_deltag} with $\delta _{g}=0$, while (2) follows from Lemma \ref{Lemma_obs_eq} with $\delta =S_{h}^{\prime }\delta _{h}$.{% %TCIMACRO{\TeXButton{End Proof}{\endproof}}% %BeginExpansion \endproof% %EndExpansion } %TCIMACRO{\TeXButton{newline}{\newline}}% %BeginExpansion \newline% %EndExpansion \noindent {\bf Proof of Theorem 5.2: }The proof of this theorem is similar to the proof of Theorem 4.1 of Shi (2015). First let $\hat{\Omega}_{n}=\hat{% \Omega}$, $\hat{Q}_{n,i}=\hat{Q}_{i}$ and $\hat{Q}_{n,j}=\hat{Q}_{j}$, $% cv_{ij,n}^{\ast }=cv^{\ast }(1-\tau ,\hat{\Omega}_{n},\hat{Q}_{n,i},\hat{Q}% _{n,j}).$ We take a sequence $\{${\sc p}$_{n}\in {\cal P}_{0}\}$ and a subsequence $\{b_{n}\}$ of $\{n\}$ such that \[ \lim \sup_{n\rightarrow \infty }\sup_{\text{{\sc p}}\in P_{0}}\Pr \left( \left\vert W_{n}^{s}\left( i,j\right) \right\vert >cv_{n}^{\ast }\right) =% \underset{n\rightarrow \infty }{\lim }\Pr\nolimits_{\text{{\sc p}}% _{b_{n}}}\left( \left\vert W_{b_{n}}^{s}\left( i,j\right) \right\vert >cv_{ij,b_{n}}^{\ast }\right) . \]% Such sequences and subsequences always exist. Assumption 5.1 and condition (c) of Definition 5.1 imply that elements in the arrays $\beta _{o,\text{% {\sc p}}}$, $\gamma _{\text{{\sc p}}}^{\ast }$, $\eta _{\text{{\sc p}}% }^{\ast }$, $\Omega _{\text{{\sc p}}}(\varphi ^{\ast })$, $D_{\text{{\sc p}}% ,g}(\beta ^{\ast })$, $D_{\text{{\sc p}},h}(\gamma ^{\ast })$, $A_{\text{% {\sc p}},v}(\mu ^{\ast })$ are uniformly bounded over {\sc p}$\in {\cal P}$. Thus, there exists a subsequence $\{a_{n}\}$ of $\{b_{n}\}$ and some $\left( \beta _{0},\gamma ^{\ast },\delta _{h},\Omega ,D_{g},D_{h},A_{v}\right) $ such that $\left( \beta _{0,\text{{\sc p}}_{a_{n}}},\gamma _{\text{{\sc p}}% _{a_{n}}}^{\ast },\sqrt{n}{\cal E}_{\text{{\sc p}}_{a_{n}},h},\Omega _{\text{% {\sc p}}_{a_{n}}}(\varphi ^{\ast }),D_{\text{{\sc p}}_{a_{n}},g}(\beta ^{\ast }),D_{\text{{\sc p}}_{a_{n}},h}(\gamma ^{\ast }),A_{\text{{\sc p}}% _{a_{n}},v}(\mu ^{\ast })\right) \rightarrow \left( \beta _{0},\gamma ^{\ast },\delta _{h},\Omega ,D_{g},D_{h},A_{v}\right) $. It suffices to show that $% \lim\limits_{n\rightarrow \infty }\Pr\nolimits_{\text{{\sc p}}% _{a_{n}}}\left( \left\vert W_{a_{n}}^{s}\left( i,j\right) \right\vert >cv_{ij,a_{n}}^{\ast }\right) \leq \tau $. Note now that \[ W_{a_{n}}^{s}\left( i,j\right) =\frac{T_{a_{n}}\left( i\right) -tr(\hat{Q}% _{a_{n},i}\hat{\Omega}_{a_{n}})/\sqrt{a_{n}}}{\sqrt{V_{a_{n}}(j)+c_{ij}\cdot tr(\hat{Q}_{a_{n},j}\hat{\Omega}_{a_{n}})/a_{n}}},i=1,2,j=3,4. \]% By Theorem 5.1 (1) if $\left\Vert \delta _{h}\right\Vert _{\infty }=+\infty $% , we have $T_{a_{n}}\left( i\right) \overset{d}{\rightarrow }{\cal N}% (0,\sigma ^{2})$ and $V_{a_{n}}(j)\overset{p}{\rightarrow }\sigma ^{2}$. Additionally, $\hat{Q}_{a_{n},i}\overset{p}{\rightarrow }Q_{i}$, $\hat{Q}% _{a_{n},j}\overset{p}{\rightarrow }Q_{j}$, $\hat{\Omega}_{a_{n}}\overset{p}{% \rightarrow }\Omega $ by Lemma \ref{Lemmata_D_loc}\ and the Slutsky theorems. Therefore $W_{a_{n}}^{s}\left( i,j\right) \overset{d}{\rightarrow }% {\cal N}(0,1)$ and \begin{eqnarray*} \lim\limits_{n\rightarrow \infty }\Pr\nolimits_{\text{{\sc P}}% _{a_{n}}}\left( \left\vert W_{a_{n}}^{s}\left( i,j\right) \right\vert >cv_{ij,a_{n}}^{\ast }\right) &\leq &\lim\limits_{n\rightarrow \infty }\Pr\nolimits_{\text{{\sc P}}_{a_{n}}}\left( \left\vert W_{a_{n}}^{s}\left( i,j\right) \right\vert >z_{1-\tau /2}\right) \\ &=&\tau \end{eqnarray*}% because $cv_{ij,a_{n}}^{\ast }\geq z_{1-\tau /2}$. Suppose now that $\left\Vert \delta _{h}\right\Vert _{\infty }<+\infty $ in this case \[ W_{a_{n}}^{s}\left( i,j\right) \overset{d}{\rightarrow }{\cal W}^{s}\left( S_{h}^{\prime }\delta _{h},i,j\right) =\frac{{\cal T}\left( S_{h}^{\prime }\delta _{h},\Omega ,Q_{i}\right) -tr(Q_{i}\Omega )}{\sqrt{{\cal T}\left( S_{h}^{\prime }\delta _{h},\Omega ,Q_{j}\right) +c_{ij}\cdot tr(Q_{j}\Omega )% }} \]% by Lemma \ref{Lemmata_D_loc} and Theorem 5.1 (2). Note that $cv_{ij,a_{n}}^{\ast }\geq cv(1-\tau ,\hat{\Omega}_{a_{n}},\hat{Q}% _{a_{n},i},\hat{Q}_{a_{n},j}).$ Hence \[ \Pr \nolimits_{\text{{\sc p}}_{a_{n}}}\left( \left \vert W_{a_{n}}^{s}\left( i,j\right) \right \vert >cv_{ij,a_{n}}^{\ast }\right) \leq \Pr \nolimits_{% \text{{\sc p}}_{a_{n}}}\left( \left \vert W_{a_{n}}^{s}\left( i,j\right) \right \vert >cv(1-\tau ,\hat{\Omega}_{a_{n}},\hat{Q}_{a_{n},i},\hat{Q}% _{a_{n},j})\right) . \] Note that by inspection ${\cal W}^{s}\left( S_{h}^{\prime }\delta _{h},i,j\right) $ is continuous in $(\delta _{h},\Omega ,Q_{i},Q_{j})$; the continuity of the Cholesky decomposition follows from Lemma 2.1.6 p. 295 of Schatzman (2002). Additionally, ${\cal W}^{s}\left( S_{h}^{\prime }\delta _{h},i,j\right) $ is a continuous random variable and consequently $cv\left( 1-\tau ,\delta _{h},\Omega ,Q_{i},Q_{j}\right) $ is continuous in $(\delta _{h},\Omega ,Q_{i},Q_{j})$. Since $\left[ 0,c_{h}\right] $ is a compact set it follows by the maximum theorem that $cv(1-\tau ,\Omega ,Q_{i},Q_{j})$ is continuous in $\Omega ,Q_{i},Q_{j}$. Now by Lemma \ref{Lemmata_D_loc} $\hat{% \Omega}_{a_{n}}\overset{p}{\rightarrow }\Omega $, $\hat{Q}_{a_{n},i}\overset{% p}{\rightarrow }Q_{i}$ and $\hat{Q}_{a_{n},j}\overset{p}{\rightarrow }Q_{j}$ and consequently $cv(1-\tau ,\hat{\Omega}_{a_{n}},\hat{Q}_{a_{n},i},\hat{Q}% _{a_{n},j})\overset{p}{\rightarrow }cv_{ij}(1-\tau ,\left[ 0,c_{h}\right] )$% . Therefore \[ \lim_{n\rightarrow \infty }\Pr \nolimits_{\text{{\sc P}}_{a_{n}}}\left( \left \vert W_{a_{n}}^{s}\left( i,j\right) \right \vert >cv(1-\tau ,\hat{% \Omega}_{a_{n}},\hat{Q}_{a_{n},i},\hat{Q}_{a_{n},j})\right) =\Pr \left( \left \vert {\cal W}^{s}\left( S_{h}^{\prime }\delta _{h},i,j\right) \right \vert >cv_{ij}(1-\tau ,\left[ 0,c_{h}\right] )\right) . \] Now by Assumption 5.2 $cv_{ij}(1-\tau ,\left[ 0,c_{h}\right] )=cv_{ij}(1-\tau ,[0,+\infty ))$, consequently for any $\delta _{h}\in \lbrack 0,+\infty )$ \begin{eqnarray*} \Pr \left( \left \vert {\cal W}^{s}\left( S_{h}^{\prime }\delta _{h},i,j\right) \right \vert >cv(1-\tau ,\left[ 0,c_{h}\right] )\right) &\leq &\Pr \left( \left \vert {\cal W}^{s}\left( S_{h}^{\prime }\delta _{h},i,j\right) \right \vert >cv\left( 1-\tau ,S_{h}^{\prime }\delta _{h},\Omega ,Q_{i},Q_{j},c_{ij}\right) \right) \\ &=&\tau . \end{eqnarray*}% {% %TCIMACRO{\TeXButton{End Proof}{\endproof}}% %BeginExpansion \endproof% %EndExpansion }% %TCIMACRO{\TeXButton{newline}{\newline}}% %BeginExpansion \newline% %EndExpansion \noindent {\bf Proof of Theorem 5.3: }Using the same arguments as in the proof of Theorem 5.1 $cv(1-\tau ,\Omega ,Q_{i},Q_{j})$ is continuous in $% \Omega ,Q_{i},Q_{j}$ and therefore $cv(1-\tau ,\hat{\Omega},\hat{Q}_{i},\hat{% Q}_{j})\overset{p}{\rightarrow }cv(1-\tau ,\Omega ,Q_{i},Q_{j})$ because $% \hat{\Omega}\overset{p}{\rightarrow }\Omega $, $\hat{Q}_{i}\overset{p}{% \rightarrow }Q_{i}$ and $\hat{Q}_{,j}\overset{p}{\rightarrow }Q_{j}$ for $% \left \Vert \delta _{h}\right \Vert _{\infty }\leq +\infty $ by Lemma \ref% {Lemmata_D_loc}. consequently $cv^{\ast }(1-\tau ,\hat{\Omega},\hat{Q}_{i},% \hat{Q}_{j})\overset{p}{\rightarrow }cv_{ij}^{\ast }$. Now let us consider first the case{\bf \ }$\left\Vert \delta _{h}\right\Vert _{\infty }<+\infty $. In this case $W_{n}^{s}\left( i,j\right) \overset{d}{% \rightarrow }{\cal W}(\delta ,\Omega ,Q_{i},Q_{j},c_{ij})$ by Lemmata \ref% {Lemmata_D_loc} and \ref{Lemma_obs_eq}, It follows that $\underset{% n\rightarrow \infty }{\lim }\Pr\nolimits_{\text{{\sc p}}_{n}}\left( \left\vert W_{n}^{s}\left( i,j\right) \right\vert >cv^{\ast }(1-\tau ,\hat{% \Omega},\hat{Q}_{i},\hat{Q}_{j})\right) =1-F_{\left\vert {\cal W}% _{ij}\right\vert }(cv_{ij}^{\ast })$. Consider now the case{\bf \ }$\left \Vert \delta _{h}\right \Vert _{\infty }=+\infty .$ In this case $W_{n}^{s}\left( i,j\right) \overset{d}{% \rightarrow }{\cal N}\left( -A_{v}P_{g}\delta _{g}/\sigma ,1\right) $ by Lemmata \ref{Lemmata_D_loc} and \ref{Lemma_obs_eq}. It follows that $% \underset{n\rightarrow \infty }{\lim }\Pr \nolimits_{\text{{\sc p}}% _{n}}\left( \left \vert W_{n}^{s}\left( i,j\right) \right \vert >cv^{\ast }(1-\tau ,\hat{\Omega},\hat{Q}_{i},\hat{Q}_{j})\right) =\Pr \left[ \left \vert x\right \vert >cv_{ij}^{\ast }\right] $, where $x\sim {\cal N}% \left( -A_{v}P_{g}\delta _{g}/\sigma ,1\right) $. Now note that $\Pr \left[ \left \vert x\right \vert >cv_{ij}^{\ast }\right] =\Phi (-cv_{ij}^{\ast }-A_{v}P_{g}\delta _{g}/\sigma )+\Phi (-cv_{ij}^{\ast }+A_{v}P_{g}\delta _{g}/\sigma )$. {% %TCIMACRO{\TeXButton{End Proof}{\endproof}}% %BeginExpansion \endproof% %EndExpansion } \subsection{The limit behavior of $W_{i,j}^{\ast }(\protect\delta _{h})$} In this subsection we investigate the behavior of the random variable $% W_{i,j}^{\ast }(\delta _{h})=\left. {\cal T}\left( S_{h}^{\prime }\delta _{h},\Omega ,Q_{i}\right) \right/ {\cal T}\left( S_{h}^{\prime }\delta _{h},\Omega ,Q_{j}\right) ^{1/2}$, $i=1,2$, $j=3,4$, as some of the elements of $\delta _{h}$ approach infinity. These random variables are defined in section 5.1 of the paper, page 17. We start by presenting two useful Lemmata that allow us to analyze this limit. The proofs of the Lemmata are presented at the end of this subsection. \begin{lemma} \label{Lemma_rep} The random variables $W_{i,j}^{\ast }(\delta _{h})=\left. {\cal T}\left( S_{h}^{\prime }\delta _{h},\Omega ,Q_{i}\right) \right/ {\cal % T}\left( S_{h}^{\prime }\delta _{h},\Omega ,Q_{j}\right) ^{1/2}$, $i=1,2$, $% j=3,4$ have the following representation: \begin{equation} W_{i,j}^{\ast }(\delta _{h})=\frac{s_{0}\left( \delta _{h}\right) x_{0}+z^{\prime }C_{\Omega }^{\prime }Q_{i}C_{\Omega }z}{\left[ s_{0}^{2}\left( \delta _{h}\right) +2s_{j}\left( \delta _{h}\right) x_{j}+z^{\prime }C_{\Omega }^{\prime }Q_{j}C_{\Omega }z\right] ^{1/2}}, \label{W_delta} \end{equation}% where $z\sim {\cal N}(0,I_{m})$, $x_{0}\sim {\cal N}(0,1)$, $s_{0}^{2}\left( \delta _{h}\right) =\delta _{h}^{\prime }L_{0}\delta _{h}\geq 0$, $% L_{0}\equiv P_{h}\Omega _{hg}P_{g}\Omega _{hg}^{\prime }P_{h}$, $% s_{3}^{2}\left( \delta _{h}\right) =\delta _{h}^{\prime }L_{1}\delta _{h}\geq 0$, where $L_{1}\equiv L_{0}\Omega _{h}L_{0}$, $s_{4}^{2}\left( \delta _{h}\right) =s_{0}^{2}\left( \delta _{h}\right) -s_{3}^{2}\left( \delta _{h}\right) \geq 0$ and $x_{j}\sim {\cal N}(0,1)$. \end{lemma} We can see from Lemma \ref{Lemma_rep} that $W_{i,j}^{\ast }(\delta _{h})$ only depends on $\delta _{h}$ via the quadratic forms $\delta _{h}^{\prime }L_{0}\delta _{h}$ and $\delta _{h}^{\prime }L_{1}\delta _{h}$. Additionally, it is apparent from equation $\left( \ref{W_delta}\right) $ that if $s_{0}^{2}\left( \delta _{h}\right) =\delta _{h}^{\prime }L_{0}\delta _{h}\rightarrow \infty $, then $W_{i,j}^{\ast }(\delta _{h})\rightarrow {\cal N}(0,1)$ (note that $0\leq s_{j}\left( \delta _{h}\right) /s_{0}^{2}\left( \delta _{h}\right) \leq s_{0}^{-1}\left( \delta _{h}\right) $, $j=3,4$). However, given that the matrix $L_{0}$ is positive semidefinite (because $P_{g}$ is positive semidefinite), the quadratic form $% \delta _{h}^{\prime }L_{0}\delta _{h}$ does not necessarily diverge as any of the elements of $\delta _{h}$ approach infinity. In fact the following lemma shows that this limit is path dependent. We use the following notation. Let $N(A)$ denote the null space of a matrix $A$ and let $% \left\Vert \cdot \right\Vert $ be the Euclidean norm of $\cdot $. Denote $U$ a matrix of eigenvectors of the matrix $L_{0}$ chosen such that they are orthogonal to each other. Let also $U_{a}$ be the submatrix of $U$ that contains the eigenvectors corresponding to the positive eigenvalues of $L_{0} $ and $U_{b}$ be the submatrix of $U$ that contains the eigenvectors corresponding to the zero eigenvectors of $L_{0}$. \begin{lemma} \label{linalgebra_aux} If $rank(L_{0})=r>0$ and $\delta _{h}\left( t_{a},t_{b}\right) =U_{a}t_{a}+U_{b}t_{b}$ where $t_{a}\in {\Bbb R}^{r}$ and $t_{b}\in {\Bbb R}^{m_{h}-r}$, then we have $\left\Vert \delta _{h}\left( t_{a},t_{b}\right) \right\Vert =\left\Vert t_{a}\right\Vert +\left\Vert t_{b}\right\Vert $, and the following results hold for $i=1,2$, $j=3,4$: \begin{enumerate} \item $W_{i,j}^{\ast }(\delta _{h}\left( t_{a},t_{b}\right) )=W_{i,j}^{\ast }(U_{a}t_{a});$ \item $\lim_{\left\Vert t_{b}\right\Vert \rightarrow \infty }W_{i,j}^{\ast }(\delta _{h}\left( t_{a},t_{b}\right) )=W_{i,j}^{\ast }(U_{a}t_{a}),$ if $% \left\Vert t_{a}\right\Vert <\infty ;$ \item $\lim_{\left\Vert t_{a}\right\Vert \rightarrow \infty }W_{i,j}^{\ast }(\delta _{h}\left( t_{a},t_{b}\right) )=x_{0}$ either if $\left\Vert t_{b}\right\Vert <\infty $ or if $\left\Vert t_{b}\right\Vert \rightarrow \infty $, where $x_{0}\sim {\cal N}(0,1).$ \end{enumerate} \end{lemma} In Lemma \ref{linalgebra_aux}$\ $we consider paths of the form $\delta _{h}\left( t_{a},t_{b}\right) =U_{a}t_{a}+U_{b}t_{a}$ because the eigenvectors are chosen such that they are orthogonal to each other and therefore they form a basis of ${\Bbb R}^{m_{h}}$. Since $\left\Vert \delta _{h}\left( t_{a},t_{b}\right) \right\Vert =\left\Vert t_{a}\right\Vert +\left\Vert t_{b}\right\Vert $, it follows that $\left\Vert \delta _{h}\left( t_{a},t_{b}\right) \right\Vert $ goes to infinity in the following cases: $\left\Vert t_{b}\right\Vert \rightarrow \infty $ and $% \left\Vert t_{a}\right\Vert <\infty $; $\left\Vert t_{a}\right\Vert \rightarrow \infty $ and $\left\Vert t_{b}\right\Vert <\infty $; and $% \left\Vert t_{a}\right\Vert \rightarrow \infty $ and $\left\Vert t_{b}\right\Vert \rightarrow \infty $. Lemma \ref{linalgebra_aux} shows that, for fixed $t_{a}$ satisfying $\left\Vert t_{a}\right\Vert <\infty $, the distribution of $W_{i,j}^{\ast }(\delta _{h}\left( t_{a},t_{b}\right) )$ does not depend on the value of $t_{b}$ and consequently this distribution is the same whether $\left\Vert t_{b}\right\Vert \rightarrow \infty $ or if $% \left\Vert t_{b}\right\Vert <\infty $. On the other hand, when $\left\Vert t_{a}\right\Vert \rightarrow \infty $, $W_{i,j}^{\ast }(\delta _{h}\left( t_{a},t_{b}\right) )$ converges always to the standard normal distribution. We prove now the above Lemmata. \noindent {\bf Proof of Lemma \ref{Lemma_rep}: }First note that for any matrix $Q$: ${\cal T}\left( \delta _{h}^{\prime }S_{h},\Omega ,Q\right) =\left( \delta _{h}^{\prime }S_{h}+z^{\prime }C_{\Omega }^{\prime }\right) Q\left( S_{h}^{\prime }\delta _{h}+C_{\Omega }z\right) =\delta _{h}^{\prime }S_{h}QS_{h}^{\prime }\delta _{h}+\delta _{h}^{\prime }S_{h}QC_{\Omega }z+z^{\prime }C_{\Omega }^{\prime }QS_{h}^{\prime }\delta _{h}+z^{\prime }C_{\Omega }^{\prime }QC_{\Omega }z$. We prove the result by showing that: \begin{description} \item[(a)] for $i=1,2:$ ${\cal T}\left( \delta _{h}^{\prime }S_{h},\Omega ,Q_{i}\right) =$ $s_{0}\left( \delta _{h}\right) x_{0}+z^{\prime }C_{\Omega }^{\prime }Q_{i}C_{\Omega }z$, $s_{0}^{2}\left( \delta _{h}\right) =\delta _{h}^{\prime }L\delta _{h}$ and $x_{0}\sim {\cal N}(0,1)$. \item[(b)] for $j=3,4:{\cal T}\left( \delta _{h}^{\prime }S_{h},\Omega ,Q_{j}\right) =s_{0}^{2}\left( \delta _{h}\right) +2s_{j}\left( \delta _{h}\right) x_{j}+z^{\prime }C_{\Omega }^{\prime }Q_{j}C_{\Omega }z$, $% s_{3}^{2}\left( \delta _{h}\right) =\delta _{h}^{\prime }L\Omega _{h}L\delta _{h},$ $s_{4}^{2}\left( \delta _{h}\right) =s_{0}^{2}\left( \delta _{h}\right) -s_{3}^{2}\left( \delta _{h}\right) \geq 0$ and $x_{j}\sim {\cal % N}(0,1).$ \end{description} We start by proving (a). Let us consider ${\cal T}\left( \delta _{h}^{\prime }S_{h},\Omega ,Q_{i}\right) $. Note that for $Q=Q_{1}$ and $Q=Q_{2}$ we have $\delta _{h}^{\prime }S_{h}QS_{h}^{\prime }\delta _{h}=0$, $z^{\prime }C_{\Omega }^{\prime }QS_{h}^{\prime }\delta _{h}=0$ and $\delta _{h}^{\prime }S_{h}QC_{\Omega }z=\delta _{h}^{\prime }P_{h}\Omega _{hg}P_{g}S_{g}C_{\Omega }z$ because $S_{g}S_{h}^{\prime }=0$ and $% S_{h}S_{h}^{\prime }=I_{m_{h}}$. Therefore for $i=1,2$: ${\cal T}\left( \delta ,\Omega ,Q_{i}\right) =\delta _{h}^{\prime }P_{h}\Omega _{hg}P_{g}S_{g}C_{\Omega }z+z^{\prime }C_{\Omega }^{\prime }Q_{i}C_{\Omega }z $. Let $s_{0}^{2}\left( \delta _{h}\right) ={\rm var}\left( \delta _{h}^{\prime }P_{h}\Omega _{hg}P_{g}S_{g}C_{\Omega }z\right) $. Note that $% s_{0}^{2}\left( \delta _{h}\right) =\delta _{h}^{\prime }P_{h}\Omega _{hg}P_{g}S_{g}\Omega S_{g}^{\prime }P_{g}\Omega _{hg}^{\prime }P_{h}\delta _{h}=\delta _{h}^{\prime }L_{0}\delta _{h}\geq 0$ and let $x_{0}\sim {\cal N}% (0,1)$. Hence for $i=1,2$ we have ${\cal T}\left( \delta _{h}^{\prime }S_{h},\Omega ,Q_{i}\right) =$ $s_{0}\left( \delta _{h}\right) x_{0}+z^{\prime }C_{\Omega }^{\prime }Q_{i}C_{\Omega }z$. To see this note that if $s_{0}^{2}\left( \delta _{h}\right) =0$, $\delta _{h}^{\prime }P_{h}\Omega _{hg}P_{g}S_{g}C_{\Omega }z=0$ and $s_{0}\left( \delta _{h}\right) x_{0}=0$ and if $s_{0}\left( \delta _{h}\right) >0$, then we can define $x_{0}=\delta _{h}^{\prime }P_{h}\Omega _{hg}P_{g}S_{g}C_{\Omega }z/s_{0}\left( \delta _{h}\right) $ and since $z\sim {\cal N}(0,I_{m})\,$it follows that $x_{0}\sim {\cal N}(0,1)$. We prove now (b). Note that for $Q=Q_{3}$ and $Q=Q_{4}$ we have $\delta _{h}^{\prime }S_{h}QS_{h}^{\prime }\delta _{h}=\delta _{h}^{\prime }L_{0}\delta _{h}=s_{0}^{2}\left( \delta _{h}\right) $ because $% S_{g}S_{h}^{\prime }=0$ and $S_{h}S_{h}^{\prime }=I_{m_{h}}$. Additionally, by symmetry we have for $Q=Q_{3}$ and $Q=Q_{4}$: $\delta _{h}^{\prime }S_{h}QC_{\Omega }z+z^{\prime }C_{\Omega }^{\prime }QS_{h}^{\prime }\delta _{h}=2\delta _{h}^{\prime }S_{h}QC_{\Omega }z$. Now note that $\delta _{h}^{\prime }S_{h}Q_{3}C_{\Omega }z=\delta _{h}^{\prime }P_{h}\Omega _{hg}P_{g}\Omega _{hg}^{\prime }P_{h}S_{h}C_{\Omega }z$ and consequently $s_{3}^{2}\left( \delta _{h}\right) ={\rm var}\left( \delta _{h}^{\prime }P_{h}\Omega _{hg}P_{g}\Omega _{hg}^{\prime }P_{h}S_{h}C_{\Omega }z\right) =\delta _{h}^{\prime }L_{0}\Omega _{h}L_{0}\delta _{h}\geq 0$. Let us consider now $\delta _{h}^{\prime }S_{h}Q_{4}C_{\Omega }z$. Note that $\delta _{h}^{\prime }S_{h}Q_{4}C_{\Omega }z$ $=\delta _{h}^{\prime }P_{h}\Omega _{hg}P_{g}(K_{h}-K_{g})^{\prime }C_{\Omega }z$, because $% S_{g}S_{h}^{\prime }=0$ and and $S_{h}S_{h}^{\prime }=I_{m_{h}}$. Let $% s_{4}^{2}\left( \delta _{h}\right) ={\rm var}\left( \delta _{h}^{\prime }P_{h}\Omega _{hg}P_{g}(K_{h}-K_{g})^{\prime }C_{\Omega }z\right) $. After some lengthy, but simple algebra we can show that $s_{4}^{2}\left( \delta _{h}\right) =s_{0}^{2}\left( \delta _{h}\right) -s_{3}^{2}\left( \delta _{h}\right) $. Since $s_{4}^{2}\left( \delta _{h}\right) \geq 0$ it follows that $s_{0}^{2}\left( \delta _{h}\right) \geq s_{3}^{2}\left( \delta _{h}\right) $. Consequently ${\cal T}\left( \delta _{h}^{\prime }S_{h},\Omega ,Q_{j}\right) =s_{0}^{2}\left( \delta _{h}\right) +2s_{j}\left( \delta _{h}\right) x_{j}+z^{\prime }C_{\Omega }^{\prime }Q_{j}C_{\Omega }z$ for $j=3,4$ if $s_{j}^{2}\left( \delta _{h}\right) \geq 0 $, $s_{0}\left( \delta _{h}\right) \geq 0$ using the same arguments adopted in the proof of (a).{% %TCIMACRO{\TeXButton{End Proof}{\endproof}}% %BeginExpansion \endproof% %EndExpansion } \noindent {\bf Proof of Lemma \ref{linalgebra_aux}: }Since $L_{0}$ is a real symmetric matrix it can be factorized as $L_{0}=U\Lambda U^{\prime }$, where $UU^{\prime }=U^{\prime }U=I_{m_{h}}$ and $\Lambda $ is a diagonal matrix whose entries are the eigenvalues of $L_{0}$. Note that $L_{0}=U\Lambda U^{\prime }=U_{a}\Lambda _{\ast }U_{a}^{\prime }$, where $\Lambda _{\ast }$ is a $(r\times r)$ matrix with only the $r$ positive eigenvalues in the diagonal. Now notice that $U_{b}t_{b}$ $\in N(L_{0})$ as $% AU_{b}t_{b}=U_{a}\Lambda _{\ast }U_{a}^{\prime }U_{b}t_{b}=0$, because $% U_{a}^{\prime }U_{b}=0$. Also $\left( U_{a}t_{a}\right) ^{\prime }U_{b}t_{a}=t_{a}U_{a}^{\prime }U_{b}t_{b}=0$, as $U_{a}^{\prime }U_{b}=0$. Hence $\left\Vert \delta _{h}\left( t_{a},t_{b}\right) \right\Vert =\left\Vert t_{a}\right\Vert +\left\Vert t_{b}\right\Vert $. To prove 1 note that since $U_{b}t_{b}\in N(L_{0})$, it follows that $% U_{b}t_{b}\in N(L_{1})$ and $U_{b}t_{b}\in N(L_{0}-L_{1})$ because $L_{0}$, $% L_{1}$ and $L_{0}-L_{1}$are positive semidefinite by Lemma \ref{Lemma_rep} (see Abadir and Magnus, 2005, solution of Exercise, 8.41, p. 227). Consequently $s_{0}^{2}\left( \delta _{h}\left( t_{a},t_{b}\right) \right) =t_{a}U_{a}^{\prime }L_{0}U_{a}t_{a}$, $s_{3}^{2}\left( \delta _{h}\left( t_{a},t_{b}\right) \right) =t_{a}U_{a}^{\prime }L_{1}U_{a}t_{a}$ and $% s_{4}^{2}\left( \delta _{h}\left( t_{a},t_{b}\right) \right) =t_{a}U_{a}^{\prime }\left( L_{0}-L_{1}\right) U_{a}t_{a}$ and the result follows from Lemma \ref{Lemma_rep}. The result 2 is a consequence of 1 because $W_{i,j}^{\ast }(U_{a}t_{a})$ does not depend on $t_{b}.$ To prove 3 we only need to prove that $\lim_{\left\Vert t_{a}\right\Vert \rightarrow \infty }s_{0}^{2}\left( \delta _{h}\left( t_{a},t_{b}\right) \right) =+\infty $ as in this case $\lim_{\left\Vert t_{a}\right\Vert \rightarrow \infty }s_{j}\left( \delta _{h}\left( t_{a},t_{b}\right) \right) /s_{0}^{2}\left( \delta _{h}\left( t_{a},t_{b}\right) \right) =0$ due to the fact that $0\leq s_{j}\left( \delta _{h}\left( t_{a},t_{b}\right) \right) /s_{0}^{2}\left( \delta _{h}\left( t_{a},t_{b}\right) \right) \leq s_{0}^{-1}\left( \delta _{h}\left( t_{a},t_{b}\right) \right) $, $j=3,4$ for $s_{0}\left( \delta _{h}\left( t_{a},t_{b}\right) \right) >0$ by \ref% {Lemma_rep}. Now since $U_{a}^{\prime }U_{a}=I_{r}$ we have $s_{0}^{2}\left( \delta _{h}\left( t_{a},t_{b}\right) \right) =t_{a}U_{a}^{\prime }L_{0}U_{a}t_{a}=t_{a}U_{a}^{\prime }U_{a}\Lambda _{\ast }U_{a}^{\prime }U_{a}t_{a}=t_{a}\Lambda _{\ast }t_{a}\geq c\left\Vert t_{a}\right\Vert ,$ where $c$ is a positive constant. Hence $s_{0}^{2}\left( \delta _{h}\left( t_{a},t_{b}\right) \right) \rightarrow \infty $ as $\left\Vert t_{a}\right\Vert \rightarrow \infty $.{% %TCIMACRO{\TeXButton{End Proof}{\endproof}}% %BeginExpansion \endproof% %EndExpansion } \renewcommand{\thesection}{SM3} \section{Monte Carlo study (additional results)} Tables SM1 and SM2 present the empirical sizes and powers for the tests based on the non-nested test statistics computed with the exponential tilting (ET) estimator for the sample sizes $200$ and $400$. The nominal level for all tests reported is $0.05$. \ We report the results for ${\cal S}% _{\alpha }$, ${\cal \tilde{S}}_{\alpha }$, ${\cal LM}_{\alpha }$ and ${\cal J% }_{\alpha }$ for $\alpha \rightarrow 0,$ $\alpha =1,1.5,2,3$ and for the Ramalho and Smith (2002) statistics based on ET. We use the notation ${\cal S% }_{\text{{\sc rs}}}$, ${\cal \tilde{S}}_{\text{{\sc rs}}}$, ${\cal LM}_{% \text{{\sc rs}}}$ and ${\cal J}_{\text{{\sc rs}}}$ for the Ramalho and Smith (2002) statistics. We also present in the Tables SM1 and SM2 the results for the tests for overidentifying restrictions based on the likelihood ratio statistic computed with ET [Kitamura and Stutzer (1997) and Imbens {\it et al.} (1998)], which is labelled ${\cal LR}_{\text{{\sc et}}}$. ET is calculated using the Broyden--Fletcher--Goldfarb--Shanno (BFGS) algorithm. %TCIMACRO{\TeXButton{\footnotesize}{\footnotesize}}% %BeginExpansion \footnotesize% %EndExpansion %TCIMACRO{% %\TeXButton{linespace1\normalsize}{\renewcommand{\baselinestretch}{0.95}\footnotesize}}% %BeginExpansion \renewcommand{\baselinestretch}{0.95}\footnotesize% %EndExpansion \setlength{\tabcolsep}{3.5pt} \begin{gather*} \text{{\bf Table SM1:} Rejection frequencies of the tests under the null.} \\ \begin{tabular}{c|c|ccc|ccc|ccc|ccc} \hline\hline \multicolumn{2}{c|}{$n$} & \multicolumn{6}{|c|}{$200$} & \multicolumn{6}{|c}{% $400$} \\ \hline \multicolumn{2}{c|}{Statistic} & \multicolumn{3}{|c|}{original} & \multicolumn{3}{|c|}{Shi-type} & \multicolumn{3}{|c|}{original} & \multicolumn{3}{|c}{Shi-type} \\ \hline Estimator & $\rho _{u_{g},w_{h2}}$ & $0.0$ & $0.2$ & $0.4$ & $0.0$ & $0.2$ & $0.4$ & $0$ & $0.2$ & $0.4$ & $0$ & $0.2$ & $0.4$ \\ \hline & ${\cal LR}_{\text{{\sc et}}}$ & $5.8$ & $5.6$ & $6.2$ & $-$ & $-$ & $-$ & $% 5.6$ & $5.3$ & $5.7$ & $-$ & $-$ & $-$ \\ \cline{2-14} & ${\cal S}_{0}$ & $18.0$ & $15.6$ & $14.5$ & $1.8$ & $1.7$ & $1.9$ & $16.3$ & $13.6$ & $12.5$ & $1.6$ & $1.4$ & $1.7$ \\ & ${\cal \tilde{S}}_{0}$ & $5.5$ & $6.1$ & $8.6$ & $4.6$ & $6.4$ & $7.9$ & $% 4.9$ & $4.9$ & $7.3$ & $4.0$ & $4.9$ & $6.2$ \\ & ${\cal LM}_{0}$ & $7.8$ & $6.4$ & $7.8$ & $4.5$ & $4.2$ & $4.4$ & $6.4$ & $% 5.8$ & $6.6$ & $4.3$ & $3.3$ & $3.5$ \\ & ${\cal J}_{0}$ & $5.7$ & $4.8$ & $6.0$ & $3.5$ & $3.1$ & $3.0$ & $5.5$ & $% 5.1$ & $5.7$ & $3.8$ & $2.8$ & $2.8$ \\ \cline{2-14} & ${\cal S}_{1}$ & $18.2$ & $16.0$ & $15.8$ & $2.0$ & $1.8$ & $1.8$ & $16.4$ & $13.9$ & $14.2$ & $1.6$ & $1.3$ & $1.3$ \\ & ${\cal \tilde{S}}_{1}$ & $6.1$ & $5.9$ & $8.2$ & $4.4$ & $5.8$ & $7.1$ & $% 5.4$ & $5.1$ & $6.5$ & $3.9$ & $4.6$ & $5.4$ \\ & ${\cal LM}_{1}$ & $7.5$ & $6.4$ & $7.8$ & $4.7$ & $4.3$ & $4.2$ & $6.3$ & $% 5.7$ & $6.5$ & $4.3$ & $3.3$ & $3.4$ \\ & ${\cal J}_{1}$ & $5.4$ & $4.8$ & $6.2$ & $3.9$ & $3.3$ & $2.7$ & $5.4$ & $% 4.9$ & $5.7$ & $3.8$ & $2.8$ & $2.7$ \\ \cline{2-14} & ${\cal S}_{1.5}$ & $18.2$ & $16.3$ & $16.0$ & $2.2$ & $2.0$ & $1.9$ & $% 16.4 $ & $14.1$ & $14.5$ & $1.8$ & $1.4$ & $1.5$ \\ & ${\cal \tilde{S}}_{1.5}$ & $6.4$ & $6.0$ & $8.0$ & $4.2$ & $5.5$ & $6.7$ & $5.6$ & $5.2$ & $6.9$ & $3.8$ & $4.0$ & $5.2$ \\ & ${\cal LM}_{1.5}$ & $7.3$ & $6.5$ & $7.5$ & $4.7$ & $4.5$ & $4.2$ & $6.2$ & $5.6$ & $5.8$ & $4.2$ & $3.4$ & $3.3$ \\ ET & ${\cal J}_{1.5}$ & $5.3$ & $5.1$ & $5.6$ & $3.8$ & $3.4$ & $2.8$ & $5.4$ & $4.8$ & $5.1$ & $3.8$ & $3.0$ & $2.7$ \\ \cline{2-14} & ${\cal S}_{2}$ & $18.2$ & $16.3$ & $15.9$ & $2.4$ & $2.3$ & $2.4$ & $16.4$ & $14.1$ & $14.3$ & $1.9$ & $1.7$ & $1.7$ \\ & ${\cal \tilde{S}}_{2}$ & $6.7$ & $6.2$ & $7.9$ & $4.2$ & $5.2$ & $6.1$ & $% 5.8$ & $5.2$ & $7.2$ & $3.8$ & $3.6$ & $4.9$ \\ & ${\cal LM}_{2}$ & $7.1$ & $6.5$ & $6.9$ & $4.7$ & $4.7$ & $4.3$ & $6.2$ & $% 5.5$ & $5.9$ & $4.2$ & $3.5$ & $3.6$ \\ & ${\cal J}_{2}$ & $5.3$ & $4.8$ & $5.2$ & $3.8$ & $3.6$ & $3.0$ & $5.3$ & $% 4.7$ & $5.0$ & $3.8$ & $2.9$ & $3.0$ \\ \cline{2-14} & ${\cal S}_{3}$ & $18.2$ & $16.3$ & $15.3$ & $3.4$ & $3.2$ & $3.5$ & $16.4$ & $13.9$ & $13.7$ & $2.3$ & $2.1$ & $2.5$ \\ & ${\cal \tilde{S}}_{3}$ & $6.9$ & $6.8$ & $8.4$ & $4.1$ & $4.5$ & $4.9$ & $% 6.3$ & $5.6$ & $7.6$ & $3.7$ & $3.2$ & $4.9$ \\ & ${\cal LM}_{3}$ & $7.0$ & $6.5$ & $7.1$ & $4.8$ & $5.0$ & $5.0$ & $6.0$ & $% 5.4$ & $6.4$ & $4.2$ & $3.7$ & $4.2$ \\ & ${\cal J}_{3}$ & $5.2$ & $4.8$ & $5.5$ & $4.0$ & $3.9$ & $3.7$ & $5.2$ & $% 4.5$ & $5.5$ & $3.9$ & $3.2$ & $3.6$ \\ \cline{2-14} & ${\cal S}_{\text{{\sc rs}}}$ & $16.2$ & $15.0$ & $15.1$ & $2.1$ & $1.0$ & $% 1.4$ & $15.9$ & $13.6$ & $12.0$ & $1.6$ & $1.1$ & $0.8$ \\ & ${\cal \tilde{S}}_{\text{{\sc rs}}}$ & $5.7$ & $5.3$ & $7.4$ & $3.4$ & $% 5.8 $ & $7.6$ & $5.5$ & $5.4$ & $7.5$ & $3.5$ & $5.2$ & $7.1$ \\ & ${\cal LM}_{\text{{\sc rs}}}$ & $7.1$ & $6.9$ & $7.4$ & $4.1$ & $4.3$ & $% 3.9$ & $6.4$ & $6.6$ & $5.6$ & $3.7$ & $4.1$ & $2.9$ \\ & ${\cal J}_{\text{{\sc rs}}}$ & $5.2$ & $5.1$ & $5.5$ & $3.2$ & $3.0$ & $% 2.4 $ & $5.6$ & $5.6$ & $4.8$ & $3.4$ & $3.5$ & $2.4$ \\ \hline\hline \end{tabular}% \end{gather*} \begin{gather*} \text{{\bf Table SM2:} Rejection frequencies of the tests under the alternative.} \\ \begin{tabular}{c|c|cccccc|cccccc} \hline\hline \multicolumn{2}{c|}{$n$} & \multicolumn{6}{|c|}{$200$} & \multicolumn{6}{|c}{% $400$} \\ \hline \multicolumn{2}{c|}{Statistic} & \multicolumn{3}{|c}{original} & \multicolumn{3}{|c|}{Shi-type} & \multicolumn{3}{|c}{original} & \multicolumn{3}{|c}{Shi-type} \\ \hline Estimator & $\omega $ & $3$ & $4$ & $5$ & \multicolumn{1}{|c}{$3$} & $4$ & $% 5 $ & $3$ & $4$ & $5$ & \multicolumn{1}{|c}{$3$} & $4$ & $5$ \\ \hline & ${\cal LR}_{\text{{\sc et}}}$ & $35.3$ & $53.1$ & $66.3$ & \multicolumn{1}{|c}{$-$} & $-$ & $-$ & $34.6$ & $55.6$ & $73.9$ & \multicolumn{1}{|c}{$-$} & $-$ & $-$ \\ \cline{2-14} & ${\cal S}_{0}$ & $43.7$ & $57.0$ & $62.7$ & \multicolumn{1}{|c}{$11.9$} & $% 19.9$ & $27.2$ & $40.7$ & $55.9$ & $66.8$ & \multicolumn{1}{|c}{$10.7$} & $% 19.8$ & $30.6$ \\ & ${\cal \tilde{S}}_{0}$ & $10.3$ & $19.6$ & $33.6$ & \multicolumn{1}{|c}{$% 5.1$} & $10.4$ & $19.2$ & $12.5$ & $26.2$ & $42.9$ & \multicolumn{1}{|c}{$% 5.7 $} & $14.2$ & $27.6$ \\ & ${\cal LM}_{0}$ & $43.6$ & $61.2$ & $73.3$ & \multicolumn{1}{|c}{$34.5$} & $52.4$ & $65.3$ & $43.8$ & $63.2$ & $79.2$ & \multicolumn{1}{|c}{$33.4$} & $% 53.9$ & $72.8$ \\ & ${\cal J}_{0}$ & $37.9$ & $55.5$ & $68.0$ & \multicolumn{1}{|c}{$27.7$} & $% 44.3$ & $57.4$ & $40.6$ & $60.3$ & $77.0$ & \multicolumn{1}{|c}{$29.8$} & $% 49.7$ & $68.6$ \\ \cline{2-14} & ${\cal S}_{1}$ & $48.9$ & $62.1$ & $67.6$ & \multicolumn{1}{|c}{$12.7$} & $% 20.9$ & $28.7$ & $47.7$ & $64.3$ & $75.4$ & \multicolumn{1}{|c}{$11.1$} & $% 21.4$ & $33.3$ \\ & ${\cal \tilde{S}}_{1}$ & $18.4$ & $32.1$ & $49.0$ & \multicolumn{1}{|c}{$% 10.9$} & $20.8$ & $35.8$ & $20.1$ & $35.8$ & $54.5$ & \multicolumn{1}{|c}{$% 11.1$} & $24.0$ & $40.5$ \\ & ${\cal LM}_{1}$ & $40.2$ & $58.9$ & $71.9$ & \multicolumn{1}{|c}{$30.4$} & $49.2$ & $62.9$ & $40.4$ & $60.6$ & $77.5$ & \multicolumn{1}{|c}{$29.0$} & $% 50.1$ & $70.1$ \\ & ${\cal J}_{1}$ & $34.6$ & $53.0$ & $66.2$ & \multicolumn{1}{|c}{$23.3$} & $% 40.9$ & $54.2$ & $38.0$ & $57.7$ & $75.2$ & \multicolumn{1}{|c}{$25.7$} & $% 45.4$ & $65.6$ \\ \cline{2-14} & ${\cal S}_{1.5}$ & $50.1$ & $63.9$ & $69.4$ & \multicolumn{1}{|c}{$14.0$} & $22.9$ & $30.7$ & $49.2$ & $66.5$ & $77.9$ & \multicolumn{1}{|c}{$12.4$} & $23.4$ & $36.0$ \\ & ${\cal \tilde{S}}_{1.5}$ & $23.1$ & $37.3$ & $54.5$ & \multicolumn{1}{|c}{$% 15.3$} & $26.3$ & $42.6$ & $23.8$ & $40.1$ & $59.1$ & \multicolumn{1}{|c}{$% 14.6$} & $28.8$ & $46.4$ \\ & ${\cal LM}_{1.5}$ & $37.2$ & $56.4$ & $70.2$ & \multicolumn{1}{|c}{$27.3$} & $46.0$ & $60.4$ & $36.6$ & $56.6$ & $75.5$ & \multicolumn{1}{|c}{$25.6$} & $45.7$ & $67.3$ \\ ET & ${\cal J}_{1.5}$ & $31.6$ & $49.9$ & $64.0$ & \multicolumn{1}{|c}{$20.1$% } & $37.8$ & $52.0$ & $34.2$ & $53.6$ & $72.6$ & \multicolumn{1}{|c}{$22.9$} & $41.1$ & $62.4$ \\ \cline{2-14} & ${\cal S}_{2}$ & $50.7$ & $64.5$ & $70.2$ & \multicolumn{1}{|c}{$16.2$} & $% 25.6$ & $34.0$ & $50.4$ & $67.9$ & $79.5$ & \multicolumn{1}{|c}{$13.9$} & $% 26.6$ & $39.5$ \\ & ${\cal \tilde{S}}_{2}$ & $26.3$ & $41.7$ & $58.0$ & \multicolumn{1}{|c}{$% 18.5$} & $30.9$ & $47.8$ & $26.5$ & $43.1$ & $61.9$ & \multicolumn{1}{|c}{$% 17.4$} & $32.6$ & $50.5$ \\ & ${\cal LM}_{2}$ & $33.7$ & $52.6$ & $67.7$ & \multicolumn{1}{|c}{$24.2$} & $42.4$ & $57.5$ & $32.4$ & $51.9$ & $71.4$ & \multicolumn{1}{|c}{$22.0$} & $% 41.0$ & $61.6$ \\ & ${\cal J}_{2}$ & $28.5$ & $46.2$ & $61.3$ & \multicolumn{1}{|c}{$17.7$} & $% 33.4$ & $48.8$ & $29.9$ & $48.8$ & $67.7$ & \multicolumn{1}{|c}{$19.1$} & $% 36.1$ & $56.6$ \\ \cline{2-14} & ${\cal S}_{3}$ & $50.2$ & $65.3$ & $71.0$ & \multicolumn{1}{|c}{$21.2$} & $% 32.0$ & $40.6$ & $49.4$ & $67.8$ & $79.7$ & \multicolumn{1}{|c}{$18.8$} & $% 33.1$ & $47.1$ \\ & ${\cal \tilde{S}}_{3}$ & $28.2$ & $45.1$ & $62.0$ & \multicolumn{1}{|c}{$% 21.2$} & $36.1$ & $53.6$ & $25.7$ & $42.2$ & $59.5$ & \multicolumn{1}{|c}{$% 18.7$} & $33.8$ & $51.9$ \\ & ${\cal LM}_{3}$ & $29.1$ & $46.1$ & $61.3$ & \multicolumn{1}{|c}{$21.2$} & $35.3$ & $51.1$ & $27.1$ & $43.8$ & $60.0$ & \multicolumn{1}{|c}{$20.3$} & $% 34.0$ & $51.3$ \\ & ${\cal J}_{3}$ & $23.9$ & $39.0$ & $53.8$ & \multicolumn{1}{|c}{$15.5$} & $% 27.3$ & $42.2$ & $24.3$ & $40.1$ & $56.2$ & \multicolumn{1}{|c}{$17.5$} & $% 30.3$ & $46.4$ \\ \cline{2-14} & ${\cal S}_{\text{{\sc rs}}}$ & $52.6$ & $67.5$ & $74.5$ & \multicolumn{1}{|c}{$13.9$} & $29.2$ & $43.7$ & $50.0$ & $71.5$ & $84.8$ & \multicolumn{1}{|c}{$11.4$} & $28.1$ & $45.8$ \\ & ${\cal \tilde{S}}_{\text{{\sc rs}}}$ & $10.7$ & $29.7$ & \multicolumn{1}{c|}{$48.3$} & $7.7$ & $22.9$ & $39.6$ & $5.1$ & $13.4$ & $% 29.9$ & \multicolumn{1}{|c}{$1.9$} & $7.1$ & $21.0$ \\ & ${\cal LM}_{\text{{\sc rs}}}$ & $37.7$ & $51.2$ & \multicolumn{1}{c|}{$% 62.5 $} & $27.5$ & $41.6$ & $54.6$ & $40.7$ & $59.4$ & \multicolumn{1}{c|}{$% 68.3$} & $29.2$ & $47.1$ & $58.2$ \\ & ${\cal J}_{\text{{\sc rs}}}$ & $32.1$ & $44.8$ & $55.5$ & \multicolumn{1}{|c}{$20.0$} & $34.1$ & $46.4$ & $38.2$ & $56.5$ & $64.8$ & \multicolumn{1}{|c}{$25.5$} & $42.3$ & $52.9$ \\ \hline\hline \end{tabular}% \end{gather*} \renewcommand{\thesection}{}% %TCIMACRO{\TeXButton{\normal}{\normalsize}}% %BeginExpansion \normalsize% %EndExpansion %TCIMACRO{% %\TeXButton{TeX field}{\renewcommand{\baselinestretch}{1}\normalsize}}% %BeginExpansion \renewcommand{\baselinestretch}{1}\normalsize% %EndExpansion \section{References} \begin{description} \item Abadir, K. M., and J. R. Magnus (2005): {\em Matrix Algebra}. Vol. 1. Cambridge University Press. \item Andrews, D. W. K. (1992): \textquotedblleft Generic Uniform Convergence,\textquotedblright\ {\em Econometric Theory}, 8, 241--257. \item Davidson, J.E.H. (1994): {\em Stochastic Limit Theory}. Oxford: Oxford University Press. \item Imbens, G., R. Spady, and P. Johnson (1998): \textquotedblleft Information Theoretic Approaches to Inference in Moment Condition Models,\textquotedblright \ {\em Econometrica}, 66, 333-357. \item Kitamura, Y., and M. Stutzer (1997): \textquotedblleft An Information-Theoretic Alternative to Generalized Method of Moments Estimation,\textquotedblright \ {\em Econometrica}, 65, 861-874. \item Newey, W.K., and D.L. McFadden (1994): \textquotedblleft Large Sample Estimation and Hypothesis Testing,\textquotedblright \ in Engle, R.F., and D.L. McFadden, eds., {\em Handbook of Econometrics}, Vol. 4, 2111-2245. New York: North Holland. \item Newey, W.K., and R.J. Smith (2004): \textquotedblleft Higher Order Properties of GMM and Generalized Empirical Likelihood Estimators,\textquotedblright \ {\em Econometrica}, 219-255. \item Ramalho, J.J.S. and R.J. Smith (2002): \textquotedblleft Generalized Empirical Likelihood Non-nested Tests,\textquotedblright\ {\em Journal of Econometrics}, 107, 99-125. \item Ramalho, J.J.S., and R.J. Smith (2004): \textquotedblleft Goodness of Fit Tests for Moment Conditions Models,\textquotedblright\ {\em working paper% }, Universidade de \'{E}vora. \item Rudin, W. (1976): {\em Principles of Mathematical Analysis}, third edition, McGraw-Hill. \item Serfling, R. (1980): {\em Approximation Theorems of Mathematical Statistics}, Wiley, 1980. \item Schatzman, M. (2002): {\em Numerical analysis: a mathematical introduction}. Oxford University Press. \item Shi, X. (2015a): \textquotedblleft A nondegenerate Vuong test,\textquotedblright \ {\em Quantitative Economics}, vol. 6(1), 85-121, 03. \end{description} \end{document}