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In this supplement we provide the proofs of the theorems presented in Sections 4 and 5 of the paper,
investigate the behavior of the random variable W, (05) i = 1,2, j = 3,4 (defined in subsection 5.1 of
the paper) as some elements of d;, approach infinity, and present the results of the Monte Carlo study for
the tests based on the exponential tilting estimator. This supplement is organized as follows. In Section
SM1 we prove the relevant theorems of section 4. Section SM2 provides the proofs of the theorems of
section 5 and analyzes the limit of I/V,*J(éh) 1 =1,2, j = 3,4 as some elements of J; approach infinity.
Finally, SM3 presents the additional results obtained in the Monte Carlo study for the tests based on
the exponential tilting estimator.

In what follows CR, CS, L, and T denote the ¢,, Cauchy-Schwarz, Lyapunov and triangle inequalities
respectively. Furthermore, ‘with probability approaching one’ is abbreviated as ‘wpal’. Unless stated
otherwise ‘LLN’ corresponds to the Khinchin law of large numbers, ‘UWL’ denotes a uniform weak
law of large numbers, as Lemma 2.4 of Newey and McFadden (1994) or a uniform weak law of large
numbers at the true parameter as Lemma 4.3 of Newey and McFadden (1994) and ‘CLT’ refers to the
Lindeberg-Lévy central limit theorem. NS refers to Newey and Smith (2004).

SM1 Proofs of results of section 4

SM1.1 Proofs of the results of subsection 4.1

The following Lemma generalizes Lemma A.1 of Ramalho and Smith (2004). Let g;(8) = g(z;, 8) and
9(8) = 221 9:(B)/n.
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Lemma SM1.1 Let Assumptions 2.1, 2.2 and 4.1 (a) hold. Then np;* =1+ 0,(1) and
12 ((ve 1L L., 125 —3/2
n i n) = “vcﬁgin A1+ 0p(1)) + Op(n ),
uniformly (i = 1,...,n) where §; = g(zi,B) and Ky, = vc,1(0)/v(0).

Proof: Let b; = supgcp |9:(8)[. From the proof of Lemma Al and Theorem 3.1 in NS we have
max; <j<n bi = Op(n~/*) and XA = O,(n~'/2). Thus, SUPgep 1<i<n INgi(B)| = Op(n=(1/2=1/2)) " A first
order Taylor expansion of vc(5\’ gi) around zero yields ’UC(S\/ Gi) = ve(0)+ve ()\’gi)ﬁ' §i, where \is on a line
joining A and zero. Now maxi<i<y |ve1 (N gi(58)) = ve1(0)] = 0,(1) as SUPge B 1<i<n INgi(B)] = 0,(1) and
50 Ve 1 (N gi(B))N§i = ve1(0)N §i(1+0,(1)). Therefore ve(N§;i) = ve(0) +ve1(0)N §i(1+0,(1)) uniformly

(¢ =1,...,n). Similarly,
~1

Zvc(;\’gj) = (v(0)n) (1 + Op(n 1))

as > i Gj/n = 0,(n=/2) and X\ = O,(n~'/2) by Theorem 3.1 of NS. Hence p’* = [v(0)+ve.1 (0)N i (1+
0p(1))](ve(0)n) "1 (14O, (n1)). It follows by Lemma A.1 of NS that np{® = 1+ (v,1(0)/v.(0))o,(1) and

that
n 2 (pye = 1/n) = (06,1(0)/ve(0))n " Gin'PA(1 4 0,(1)) + Op(n /).

Proof of Theorem 4.1: By the mean value theorem v, (pin) = v (1) + ve1 (65) (Pin — 1), where

G;=a; + (1 — ;) pin and «; € (0,1) and consequently

n X R 1 A AVe n Ve A
Sy =Y va1(6i)Vn (pi - n) np; lvb (iﬁ,) -> v <g€c)pe] :
=1

% =1 4

By Lemma SM1.1 S, = 2?21 R; ., where R; ,,j = 1,...,4 are defined below.
Let us consider first

I L
Rin = > a1 (6:) npivy

i=1

(vc (7'hi (7))

U ~
CrUc,h

) G+ 0y(1)),

where ), = Z’il ve ('hi (7)) /n. Now by Lemma SML.1, v,1 (67) = va1 (1) + 0,(1). Additionally
np; = 1+ 0,(1) and np* = 1+ o0, (1) uniformly in ¢ = 1,...,n by Lemma SMI1.1. Also 0.5 =
Ep, [ve (17 (2,7%))] + 0,(1) by a UWL. Tt follows using the fact that \/nA = O,(1), and a UWL
that

Ry, = A1+ 0,(1)) + 0, (1). (1)

Hence by Theorem 3.2 of NS we have R, LN (0,03).
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Let us consider now

1 & o ve (7' hi (3 N
Ry, = - ;va,l (63) npivp (W) O,(n 1/2).

np; Vc,h

Using the same arguments as above n=* Y7, v,.1 (6:) np;vp(ve ('hi (5)) /0Dy 0c,n]) = Op(1). It follows
that Ry, = O,(n~/2). Now define

1 i R R “ n ~Ve X
Ran = n Zva’l (6:) npigiv/nA(l + op(1)) [_Zlvb (qe ) De.

s
i=1 Dy

Note that n=t 3" | va1 (6:) np:ig; = op(1) by a UWL, VA1 + 0,(1)) = O,(1) by Theorem 3.2 of NS

and that
~ q,° 1 — Ve (7 e ( .
(- L ()
= " \p n Py Ve,
converges in probability to Ep,[vy(ve (™R (2,7%)) /Ep, [ve (R (2,7%))])] + 0p (1) by a UWL. Hence

Rs3., = 0p(1). Finally, consider

1 n R _ n (j'ur
R4,n = E Z Va,1 (ai) Op(n 1/2) (%) < Af}c ) pf
=1 /=1

Dy

Since by a UWL n ™! "1 04,1 (65) = Op(n™Y/2) and 2, vy (6, /ye) Pe = Op(1) we have Ry, = 0,(1).
Hence S, -5 N (0,08) .

The fact that S, = S, + 0,(1) follows from the arguments above and the fact that np’ = 1 + o, (1)
by Lemma SM1.1.

Concerning the Lagrange multiplier statistic LM, = A, \/'715\, note that S, = R1., +0p(1) and using
(1) one obtains Ry, — LM, = [Ag., — Ay]y/nA + Ayy/nroy(1) + 0,(1). Because Ay, — A, = 0,(1) and
VA = 0,(1) it follows that Ry, — LM, = 0,(1).

Finally we consider the statistic J, = —Avﬂgl\/ﬁg(ﬁ). Note that NS proved in the proof of Theorem
3.2 (p. 240) that §(3) = —QuA + 0,(n'/?). Therefore J, — LM, = [AUQ?QQ — Ay | V/RA + 0p(1), as
A1 = 0,(1) and v/nd = O,(1). Since Q' = Q' + 0,(1) and A, = Ag, + 0,(1), it follows that
To — LM, =0,(1). 1

Proof of Theorem 4.2: We prove here only consistency of 3 for 02 as the proof for the other
estimators 0 ,j = 1,2,4 is simpler. First note that P % Py.g by a UWL and the Slutsky theorems
under Assumptions 2.1 and 2.3. Now note that

. 1 «—=n o 1 n (' hi (%)) 1\, .
v,3 n E im1 Up (qz /pz )gznpz n § im1 (%) ( 1 Zz ] 'Uc( h ( )) nﬁl g;npi

n

By a UWL 37 ve(7'hi(5))/n 2 Epy (ve(n*'h(2,7*))). Also by Lemma SM1.1, np; = 1+ 0,(1). Hence,
by a UWL and continuity of v, (-) it follows that A, 3 = Ep, (vs(ve(n*h(2, 7)) /ey [ve(n*" h(z, 7)) )g(2, Bo))+

0p(1). Hence consistency of 63 for o follows from the Slutsky theorem. H
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SM1.2 Proofs of the results of subsection 4.2

Proof of Theorem 4.2: Let us first consider S,. Note that

q;
S’u/\/ﬁ = - Zva pz npﬂ]b ( IA)UC)
ng,*
_ Z Va (ﬁm) nﬁi— Zn]ﬁgvb (i) .
i st Py

Now notice that nd* = v('hi(3)) /[Siy ve(hi() /0], e = ve(Ngi(B)) [ [y veVgal ) /m

and np; = p1(N:(8)) /[y p1(Ni(B))/n] . A UWL implies that i, ve(i/'hi(4)/n = By [ve(n”h(z, 7))+
0p(1), S0y 0e(Vgi(3) /1 = Bny[oeg(2, B°)] +0p(1), X0y p1(Ngi(3)) /m = Eny o1 (9(z, )] + 0p(1). Tt
follows by a UWL that

q —E 9,2\ _g,% v(}:z,z 1
72”(1 Din npzvb ﬁv( Po a(pl )pl Ub e +Op( )

c

Also
L~ oy e
> v (pum) mps = B [oa ()0 "] + 0,(1)
i=1

and
h,z

1 n . ng,° vl

o 2, TPV (npf}) Evq [0 "0y < )1 +0,(1).
Because Ep, [va(p%)p{ v (v [087)] # By [va(p%) 0 1Ewy [0 “vn (0222 f082)], S, & +o00.
Consider now S,. Note that

C

B 1 — . . v
S,/V/n = ﬁzva(pm)npwb(nw)

1 . .
77200‘ pl ”Pz Z b(”qgc)npe-

=1

Using similar arguments to those described above we have Y i, vq (pin) np;vp (nG;°) /n = Ep, [ve (p7%) p7 % 0p (v17)]+
0p(1), 3oisy va (Pin) ni/n = Buy[va(p")p]"] + 0,(1) and 374 nipevy (ngp°) /m = Ee, [pf*vs(ve*)] +
0p(1). Since Er, [va(p]%)pf vy (v7)] # By [va(p]) pf*1Erq [0 05 (v/7)), S, & 0.

Concerning the Lagrange multiplier statistic LM, = AU\/ﬁ/\, note that LM, /\/n = Av;\ = AN+
0p(1). Since A*A* # 0 it follows that LM, 2 4oo. Finally we consider the statistic J,/v/n =
—A,Q;19(B). Note that J,/yv/n 5 —A5Q: 1By, [9:(8*)]. Given that A5Q: 1By, [0:(8%)] # 0, J,
+o0. H

SM1.3 Proofs of the results of subsection 4.3

Let {zm}f;l be a triangular array which we assume to be row wise independent and identically distributed

(Hd) Let gzn(ﬂ) = g(zi,naﬂ)a g(ﬂ) = Z?:l gz,n(ﬁ)/ﬂﬂ gzn = g(zz,nug) and hzn (’7) =h (Zi,nvfy)'
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Lemma SM1.2 Under Assumption 4.6 the following result holds supgcg [|9(8) — Ep,, [9in (B)] ]| = 0p(1),
and {Exp,, [9in(B)]}o is uniformly equicontinuous in 3 € B.

Proof: We use the UWL corresponding to Theorem 4 of Andrews (1992) together with the Weak Law
of Large Numbers for Triangular Arrays (Davidson, 1994, 19.9 Corollary p.301). Note that by the UWL
supgep |9(8) — Ep, [9in(B)]] = 0p(1), where the UWL applies because the four sufficient conditions are
satisfied. In particular the total boundedness condition (BD) holds by Assumption 4.6 (c). Assumption
4.6 (e) implies both the pointwise convergence condition (P-WLLN) (by the LLN) and the domination

condition (DM). The termwise stochastic equicontinuity (TSE) condition is satisfied because

39
Ep,, [ sup 9in(8) = gin(B)I] < Epy, [sup || = n{
B,6'€B:||f—p' | <d BeB

221 < ca 2)

where the first inequality holds by a mean-value expansion (which relies on Assumption 4.6 (d)) and
the second holds by Assumption 4.6 (e). In addition to guaranteeing TSE, equation (2) also shows the
uniform equicontinuity of {Ee,, [9(2in, 8)]},—

Lemma SM1.3 Under Assumptions 4.6, 4.7 and 4.8 the following results hold:
Lo 5300 Gindln — Qo,g = 0p(1) if B Po;
2. L35 1gimll* = B, [l9in (B0) "] = 0p(1) if B 5 Bo;
5. 1y, 29l py o =0,(1) if B2 Bo;
4 5 iy e (' hin (9)) = Be, [0e(0™ hin (v9))) = 0p(1) if B 5 Bo. 4 5 7" and ) 5 0"

n ve (A hin (%) ve(* hin A ~ %
5. Xia ’“b< m Sc)m'hi:m)»/n) = Beo o (5 o)) = op(1) i B 5 o, 4 5 o and

i=1

20

n Ve hin ) D 2~ * ~ *
6. %Zi:l Up ( ™ Sj(n hl(:(y)))/n))g — Ao, = 0p(1), if B L Bo, ¥ i " and 7 i n;

Proof: We prove results (1), (5) and (6) as the proofs of the remaining results are similar. Proof of 1: Us-
ing a proof similar to that Lemma SM1.2 we have supges |- 9i.n(8)9in (8)' /10 — Ery,, [9:.0(8)9in (8)'1]] =
0p (1) which relies on Assumptions 4.6 (c), (d) and (e) and CS. Now we use the fact that E ), [gin(80)gin(80)"] —
Qo,g by Assumption 4.6 (f).

Concerning (5) and (6), write a, = > ; Ve ('hin (7)) /n and a,, = Epg,, [ve(0* hin, (7))], we know
by Assumption 4.8 (c) that a,, € A,n > 1. Let ) = (8',7,7/,a’)’. Using a proof similar to that of Lemma
SM1.2 we have Sup g xrca || 31t 2 (v (1 hin (1)) /0))g (2 B) /n—En, [0 (v (1 hin (1)) 0))gin ()] =
o0p(1) using Assumptions 4.6 (c), (d) , (e), 4.7 (a), 4.8 (a), (b) and (c) and CS and consequently by re-
sult (4) we have S o (v (7 hin (3)) /) Gin/ — Ergn [0 hin (v°))/an)gin (B0)] = 0p(1) which
proves (5). The conclusion (6) follows from the fact that Ep,, [vp(ve(n™ hin (7*))/an)gin (Bo)] = Ao.» by
Assumption 4.8 (d). H

[SM.5]



Lemma SM1.4 If Assumption 4.6 is satisfied, then \/ng (Bo,n) 5 N(6g,0,4)-

Proof: First we use the Cramér Wold device to show that

% D _Lgin(Bo.n) = Erg, (gin(Bo.n)] = M (0, Q0,).

That is, we show that for a fixed X\ # 0

1 - /\l[gin(/BO,n) - EPOn (gin(ﬁO,n))] D
- z_; T = N(0,1), (3)

where By, = Exy,, ([9in(Bo,n) = Er,, (9in (B0,n))][9in (Bo.n) — Erq,, (9in(Bo,n))]’) — Q0,g. Note first that
Bn - EPon [gzn (ﬂo,n)gzn (60,7},)/] - nEPon (gin(ﬁO,n))EPOW, (gzn (BO,n))//n-

Now nEp,,, (gin(Bo,n))Ery, (gm(ﬁo,n))/ = 65]5;' Additionally, ||Ep,, [gm(ﬂo,n)gm(ﬁo,n)q — Epy, [9in(B0)gin (Bo)']Il —

0 as Bo,n — Bo because

Epo, [ sup 19in (Ba)gin(Ba)" — gin(Bo)gin (Be)'ll] < Cd,
Ba,BrEB:[|Ba—PBoll<d
by a mean-value expansion (which holds by Assumption 4.6 (d)), Assumption 4.6 (e) and CS. It follows
from Assumption 4.6 (f) that B,, — Qo 4. Also note that B, is positive definite for n large enough

because Qg 4 is positive definite. Now for a = 2 + § we have by CR, L, CS and Assumption 4.6 (e)

EPOn [

)‘/ [gzn(BOn) - EPon (gzn(ﬂO,n))] |a]

IN

2@— ! [EPOn

)‘/gin(ﬂO,n)Ha + |EP07L ()‘/gin(ﬂO,n))la]
2° [IIMI* Epo,, [lgin (Bo,n) 1] < 2% IA]|* C.

A

Therefore
1 & a 2¢ |IN|* C
771“/2 Zl EPOn U)\/ [gm (50771) - EPOn (gzn(BO,n))H } < nia/Q—l — 0.

Hence by the Lyapunov CLT (Serfling, 1980, p.31-32, Corollary) it follows that (3) holds. Now note that

\/ﬁg (ﬁ&n) = \/ﬁ [g (50,71) — Ep,, (.@ (50,71))] + \/EEPOH (g (60,71))

and the first term converges to N (0, €, 4) while the second is equal to §, which proves the result. H.
Lemmata SM1.5 to SM1.7 correspond to versions of Lemmata A1l to A3 of NS for iid triangular arrays
and the proofs are similar to those Lemmata given in NS (with 5y replaced by ., in those proofs) and

therefore are omitted.

Lemma SM1.5 If Assumption 4.6 is satisfied, then for any 1/ < ¢ < 1/2 and Ay, = {X: A < n™¢}
and with wpal A,, C A,L(,B) forall B € B.

Lemma SM1.6 If Assumption 4.6 is satisfied, B € B, B — Bon 200 and §(B) = Op(nfl/z), then
\ = arg max, i (3 PY(B,)\) exists wpal, and A = O,(n=1/?), SUP)cA, (5) PI(B,\) < Op(n1).
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Lemma SM1.7 If Assumption 4.6 is satisfied, then Hg(ﬁ) = 0,(n™1/2).

The proof of the following Lemma follows the same steps of the proof of Theorem 3.1 of NS, but

since there are some small differences we present it below.

Lemma SM1.8 If Assumption 4.6 is satisfied, then B 2 By, B — Bo.n 2o, g(B) = 0,(n"1/?), A=
ArgMAaxy, i (3) Die1 p(Ngin(B))/n exists wpal, and X = O,(n~1/?).

Proof: Let g,(8) = Es,,[9(zin,08)]. By Lemma SM1.7 §(8) = o0,(1), and by Lemma SM1.2
supges [19(8) — g0 (B)]ll L 0and {g,,(B)}>, is uniformly equicontinuous. Additionally, since lim,, o g, (3) =
g(B) for each 3 € B, we have supgep [9.(8) — g(B)]| — 0 (see Rudin, 1976, Exercise 16, p.168). Hence by
T g(B) 2 0. Since g(8) = 0 has a unique zero at Sy, g() must be bounded away from zero outside any
neighborhood of 3y. Therefore, /3 must be inside any neighborhood of 5y wpal, i.e. B85 B, giving the
B /BOH + 180 — Bo,n
the first conclusion and the fact that |5y — Bo.n|| — 0 by Assumption 4.6 (a). The third conclusion is

B

first conclusion. The second conclusion follows from the inequality H B — Bon

<

due to Lemma SM1.7. Also, note that by the second and third conclusions the hypotheses of Lemma
SM1.6 are satisfied for 5 = B, so that the last conclusion follows from Lemma SM1.6. W

Lemma SM1.9 If Assumption 4.6 is satisfied, then

6 - BO,n _HU,g(;g 2079 0
A

vn ;
_P07959 0 PO,g

4 N

Proof: Let 6 = (3',X) and 6, = (ﬁ{,’n,O’)/. Note that since By € int (B) and Sy, — Bo, then
Bo,n € int (B) for n large enough. Using arguments similar to those of NS in the proof of their Theorem
3.2 (which in our case are based on a first order Taylor expansion of the first order conditions of the
GEL objective function around 6, and require the fact that 5y, — 8o, Lemma SM1.8 and the Lemma
SM1.3) we have

\/ﬁ(é - 90,n) = _(H(/)’ga _PO,g)\/ﬁg(ﬁO,n) + Op(l)' (4)

Now apply the CLT given by Lemma SM1.4. W
The following Lemma generalizes the results of Lemma SM1.1 for triangular arrays and its proof is

similar and therefore omitted, though available upon request.
Lemma SM1.10 Let Assumptions 4.6, 4.7 and 4.8 hold. Then np;* =1+ 0,(1) and
12 (e L Lo 123 —3/2
w2 (3 = ) = gl A+ 0p(1)) + Oy ),

uniformly (i = 1,...,n) where Ky, = v¢1(0)/v.(0).
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Proof of Theorem 4.3: Using the similar arguments to those used in the proof of Theorem 4.1, which
require SM1.3 rather than Lemma 4.3 of Newey and McFadden (1994) and Lemma SM1.10 we have
Sy = Apuy/nA(1 + 0,(1)) + 0, (1). Now, given that by Lemma SM1.9 /nA % N (=Py 464, Po,q), it
follows that N (—AgPo,404,03)-

The demonstration of the asymptotic equivalence of the statistics Sy, S,, LM, and 7, is similar to

the proof of asymptotic equivalence of these statistics given in the proof of Theorem 4.2. H

SM2 Proofs of the results of section 5 and discussion

In this section we provide the proofs of the theorems presented in section 5 of the paper and investigate
the behavior of the random variable W (d5) i = 1,2, j = 3,4 (defined in subsection 5.1 of the paper)

as some elements of §;, approach infinity.

SM2.1 Proofs of the results of section 5

We start by compiling a number of Lemmata without presenting their proofs either because the proofs
are very similar to those given in NS or to those provided in the previous sections. Let g, (8) = g(%;.n, 5);
g(ﬁ) = Z?:l gi,n(ﬁ)/n, Jin = gin(ﬁ) and Ay, (7) =h (zi,m'Y)a hin = h(zim,’y), h(7) = Z?:l hin(’}/)/na

Sin() = 5(2in, ) and 8(¢) = 3211 sin(0) /1.
The proofs of Lemmata SM2.1 to SM2.3 are similar to the proofs of Lemmata SM1.2 to SM1.4 above.

Lemma SM2.1 Suppose Assumption 5.1 holds. Under a sequence {P,},., € P the following results
hold:

1. supgeg 19(8) = Ep,, [9in(B)]l| = 0p(1), and {Es, [gin(8)]},—; is uniformly equicontinuous in 3 € B.
2. Sup,eg Hﬁ('y) —Ep, [hin(7)] H =0p(1), and {Eyp,, [hin(7)]},—; is uniformly equicontinuous in v € G.

Lemma SM2.2 Suppose Assumption 5.1 holds. Under a sequence {P,}-; € Seq (80,7*,n*,0n,Q, Dy, Dy, A,)

we have:
1. % Z?:1 Sm(‘ﬁ)sm(@)/ -0 = Op(l) ngb LN ©*;

n N2
: %Zizl [8in(P)II” — Ep,, [

n AYin 3 Y
3. %Zizl gaT('ﬁ) =Dy =o0p(1) if = Bo;

IS

sin (")l

Ohin (% PN *
b B0, P = Dy = 0,(1) i A By

5. L5 v (W hin (7)) = Ee, [ve (1 hin (v9))] = 0p(1) if B 5 Bo, 4 B 7* and 7 5 n*;
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n Ve A/hin(A) Ve hin (V" A A * ~ *
6. 3w (s ) Bl = oo 5 % 6o, 3 % amdy %

i=1

i=1

n Ve "A/hin A) ~ A ~ * ~ *
(DI ( 7 Sﬁ)(ﬁ/h,;(:@)))/n))gm — Ay =0,(1), if B5 By, 4 B y* and i B .

Lemma SM2.3 Suppose Assumption 5.1 holds. Under a sequence {P,},, € Seq (B0, v*,n*, 6n,Q, Dy, Dy, Ay)
with ||0n | o, < 00 and satisfying \/nEp, (gin(Bop,)) — 0g with |64 < oo, we have \/n3 (¢};) 5 N(6,9),
where @ = (B{)’P”,'y;ki)’ and § = (5’9, 6;1)/.

The proofs of Lemmata SM2.4 to SM2.6 are similar to the proofs of Lemma A1l to A3 of NS. The
proofs of these Lemmata of NS required a LLN, a UWL and a CLT. In our framework these are replaced
by the LLN for triangular arrays in Davidson (1994, 19.9 Corollary p.301), Lemmata SM2.2 and SM2.3
respectively. The proof of part (2) of Lemma SM2.5 is similar to that of Lemma A2 of NS, but uses the

assumptions that H, C ‘H, n > 1 and ‘H is a convex set.

Lemma SM2.4 Suppose Assumption 5.1 holds. Under a sequence {P,},., € P for any 1/(2+ §) <
¢ < 1/2, the following results hold:

1. Supgep aen, 1<i<n |N gin (B)] 20, where A, = {X: A€ n¢} and wpal A, C An(B) for all
8 € B.

2. SUP,eg pem, 1<i<n |1 in (V)] 2.0, where H,, = {n:lnll <n=¢}.
Lemma SM2.5 Suppose Assumption 5.1 holds. Under a sequence {P,,},-; € Seq (Bo,7*,n*,0n, Q2 Dy, Dy, Ay):

1. if \/nEp, (gin(Bo,p,)) — dg, with ||64]| . < +o0, BeB, B— Bo.p,, 2.0 and 3(B) = Op(n_1/2), then
A= argmax,c; (3 I:’_Q(B, \) exists wpal, A = O,(n~/?) and SUD A, (3) Pg(B, A) < po+ Op(1/n).

2. if |0nll o < +00, 7 €G, 7 =5, 0 and h(3) = O,(n~1/2), then 7 = argmax,en Py(7,n) exists
wpal, 7 = Op(nil/z) and sup, ¢y ph(’_Ya n) < po+ Op(1/n).

Lemma SM2.6 Suppose Assumption 5.1 holds. Under a sequence {P,},, € Seq (Bo,v*,n*, 6n,Q, Dy, Dy, Ay):

L. f \/iBs, (gin(Bo.r,)) = 0y with ]l < +00, then ||3(8) | = Op(n~1/2).

2. if |64l < 400, then Hh(@)

| =0,(n172),
The proof of the following Lemma is similar to that of Lemma SM1.8.
Lemma SM2.7 Suppose Assumption 5.1 holds. Under a sequence {P,,}.-_ | € Seq (8o, 7*, 1", n,Q, Dy, Dy, Ay):

1. if \/nEp, (gin(Bop,)) — dg with |0, < 400, then B 2 Bo, B—PBor, 20, A= argmax, i (3 S pNgin(B))/n

exists wpal, and X = O,(n~1/?).
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2. if |0n ]|, < 400, then 4 LA A= LN 0, 7 = argmax,en Z?:l p(N' hin (%)) /1 exists wpal, and
= Op(n_l/Q)-

The proof of the following Lemma is similar to that of Lemma SM1.9.
Lemma SM2.8 Suppose Assumption 5.1 holds. Under a sequence {P,,},- ; € Seq (Bo,7*,n*,n, 2, Dy, Dy, Ay):

1. if \/nEp, (gin(Bo,p,)) — 0g with ||0,4]| < +oo, then

3 — —Hy 46 ) 0
Jn B Aﬁo,rn iN( 0,9%g ’ 0.9
A —FPy, 49 0 Py
2. if |0, < +oo, then
Jn Y= e A —Ho,n0n ’ Yon O )
7 — Py 105 0 Py

The proof of the following Lemma is similar to that of Lemma SM1.1.
Lemma SM2.9 Suppose Assumption 5.1 holds. Under a sequence {P, },—, € Seq (B0, v*,n*,6n,Q, Dy, Dy, Ay):
1. if /nEp, (gin(Bor,)) — 04 with ||0,4]| < +o0, we have np;® =1+ 0,(1) and
' (f’%’“ - i) - “vc%%nn”ﬁ(l +0p(1)) + Op(n %),
uniformly (i =1,...,n) where Ky, = v 1(0)/v:(0).
2. if |0, < +00, we have ng}* =1+ o0,(1) and
" (é?” - i) = o, 0 (1 0y (1)) 4 Oy ),
uniformly (i =1,...,n) where Ky, = v¢,1(0)/v:(0).

The proofs of the following two Lemmata are similar to those of Theorem 4.3 and Theorem 4.2.

Lemma SM2.10 Suppose Assumption 5.1 holds. Under a sequence {P,,},- | € Seq (Bo,v*,n*,0n,% Dy, Dy, A,)
that satisfies \/nEp, (gin(Bo,p,)) — 04 with ||04]| . < +oo and Assumption 5.2 and if ||0n|| = +oo, then
S, converges in distribution to N(—AUPQ(Sg,az). Furthermore, S,, LM, and J, are asymptotically

equivalent to S,,.

Lemma SM2.11 Suppose Assumption 5.1 holds. Under a sequence {P,},- | € Seq(Bo,v*,n*,0n, Dy, Dp, A,)
satisfying /nEp, (gin(Bo,r,)) — 04 and Assumption 5.2 and if ||64]| = +o0, &3 L2 j=1,..4.

Lemma SM2.12 Suppose Assumptions 5.1 holds. Under a sequence {P,},—; € Seq (Bo,v*,n*,6n,Q, Dy, Dy, Ay)
with [|0n]| o, < 00 and satisfying \/nEe, (gin(Bor,)) — 05 with ||54]| ., < +oo and let 6 = (0;,0},)’, then
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1. /nS, LA T (0,9,Q1) and /nTy 2, VT3, VL My 2 and \/nL M, 3 are asymptotically equivalent
to \/nSy;

2. /nS, <, 7 (0,9,Q2) and /nTp1, ViTy a4, VL My 1 and /nLM, 4 are asymptotically equivalent
to \/nSy;
3. no? 4, T (6,9,Q3) and né3 is asymptotically equivalent to né?;

4. nos 4, T (6,9Q,Q4) and né3 is asymptotically equivalent to né3;

2

5. no% is non-negative with probability approaching one for j =1,2,3,4.

Proofs:

Proof of 1: \/nS, is considered first. By a second order Taylor expansion,
Va (Bin) = va(1) + (pin — 1) + va2 (&7) (Bin — 1)* /2, ()

where 6; = a; + (1 — ;) pin and «; € (0,1). Hence,

Ve n AVc

q; q A
vb ( /\rfvc ) - vb ( Af]c > pz

D; —1 Dby

~ AV n AV

Va2 (Gi) . . q; @\ -

+n E Pa2 (61) 5 Z(pin —1)%p; [Ub <;ﬁi’) - E Up (pfgc)pz
=1 J4

ViS, —fo(pz L) i

Using Lemma SM2.9 n'/2(p; — 1/n) = n='g},v/nA (1 + 0, (1)) + Op(n=3/2) and 7, pid}, = 0 we
have By ,, = \/ﬁAvg\/ﬁj\ (140, (1))] + Bir,n, where By, is defined below.
Note that by a first-order Taylor expansion

AU A AV, ~ ~
ng,° 01,i ng°—1) o1, 01, e
'Ub< AZL):Ub(l)—’—vb’l(A Z) 7( ZA )—AQZ’lJbJ(A Z)(np;-"—l),
np; 02,4 02,4 03 02,4

where 61; = a1, + (1 —a1,)ng° and aq; € (0,1) and 62,; = az,; + (1 — az;) np; and a2 € (0,1).
Thus,
Vidus = 3" mpgtvns (22 v (g1 ) <
v,3 — i=1 p’lgzn b,1 6’2’7; q’L n 6’2’1‘
b1 L1
_Z nplgmA bJ(A 1)\/,5(;&_)
03 02,4 n
= Wl,n - W2 n-

s

Now by Lemmata SM2.9 v/n(p% —1/n) = n='g},/nA (1 + 0, (1)) + O, (n~3/2) and /n(§’ —1/n) =
n= R, /i (1+ 0, (1)) 4+ O0,(n=3/2) as k,, = 1. Additionally, note that similarly to (4) we have y/nA =

m
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—Py/ng(Bop, ) + 0p(1), and /ni = —P;L\/ﬁiz(’y;‘n) + 0,(1). Combining these results with the fact that

9109 (Po,
vp.1 = 1 and Lemma SM2.2, we obtain
5’1 i 1 _9
: 0
)&2,7; + p(n )
(6)

Sl
Wl,n = \/577/% zl hinggnvbyl <a_2’l
1=

Vnd(9) S, PaSng + Op(n™?),

_2).

and
o o o _
Wan = Lomiilagy b( >[ G /A (14 0, (1) + O, (%)
i=1 63 02y
= —Vn(p))'S,PyQy + O,(n2),
where ¢}, = (66,1’,177;;),‘
Hence
. 1 < GUe
\/EA v = T = npiginv <~u) = 7\/ﬁ’§ :; /S/P Q 7
3, \/ﬁ; bpic () ShPrlng (7)
g

FVS(5) S5 Py + Oy

G /Bic) —n7t 3oy v (477 /D7) npil Oy

Now note that By, =n~ 1 Y 1 np;[vp (
Additionally, by Lemma SM2.9 we have
_ nimww(ﬁil)rm o (5) -3 (%)
2 n D;° Dy’
A Up (qu ) ﬁe] .
1

By, =
i=1

ZW [iéémuuopm)w( 3/2>] "

Va2 (6) @\ N
np; (Vs Ve Up ~U,
D; = p

2
(1) by Lemma

By T and the fact that (a + b)? < 2a? + 2b* we have

Bl <2 ||gm|| [V 140, 1) + 0,072
Since Y. vy (G;°/D;°) Pi = vy (1) + 0p(1) by Lemmata SM2.9 and H\f)\H

SM2.8 it follows by Lemma SM2.2 that | By, | = 0,(1)

Therefore,
VIs(5) 85, PaQngv/nd + Vnd(}) Sy PyQg/nd + Op(
Vnd(9) Sy PySgV/nd(¢}) + Op(n™?)

VnS,= —v/né
= Vn3(¢5) S Pung Py Sgv/nd(¢},)
because /A = —Py\/ng(Bo,p,) + 0p(1) and the fact P,Q, P, = P,. Hence, since /ns(¢}) — N(9,Q)

nA = VALY
§=(8/,87)" by Lemma SM2.8 it follows that \/nS, — 7 (5,92, Q1)
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Consider now /nJ, 2 = —\/ﬁflugﬂg—l\/ﬁg(ﬁ), note that

Vidup = 0TS (i = Dy(nds/ (n5:)) 83 g ()

—\/ﬁAv,?,Q;l\/ﬁﬁ(B)-
We prove that the first term converges in probability to zero. Note that by Lemma SM2.9

n AV n AV

- 5 ng;®\ . 1 ng;°\ . . <

n 2N " (np; — Doy ( s )gén = D w ( sy )gmgin\/ﬁk(l +0, (1))
'L=1 K3 . K3

+Y_0p(n"*?)v (ndi) gl

Both terms of the rhs converge to zero in probability by Lemma SM2.9, Lemma SM2.2; the facts that

VA = —Py/ngn(Bop,) + 0p(1), QP =0 and §(3) % 0. Hence
-1/ Z p - 1 vb < > gzn = Op(l)' (8)

Combining (7) and (8), one obtains

\/’EA'U,Q = \/ﬁAv,i& + Op(l)-

Consequently as

—VnQ, ' §(B) = V/nA + o, (1)

= _Pg\/ﬁg(ﬂO,Pn) + Op(l)v (10)

we have \/nJo, = VT30 + 0p(1) = /nS, + 0,(1).
Concerning the Lagrange multiplier test statistics note that for /nLM, ., j = 2,3 we have /nL M, ;

VnT,j =n'?A, ; [n1/2X + Q;lnl/gg(ﬁ)} = n1/24, ;0,1 + Q1 + 0,(1)]y/ng(B) = 0,(1) using (10)

and the facts that \/nd;, = 0,(1), Q;1 — Q! = 0,(1) by Lemma SM2.2 and /ng(8) = Op(1).

Proof of 2: Let us now consider \/nS,. By (5), it follows that

VS, —fo(pz—>npz vy (ng;*) va ng;°) ]

V2,a (64) , . 2 . Ve - Ve A
3222 )5 o0 3w 0

Cln+02n

Hence, by Lemma SM2.9,
Cin = n'2) np, lvb (g7en) = Y oy (gf°n) m] GinV/nA (14 0, (1))
=1

’
i=1

+Clr,n-
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n A

Note that n=1/2 " npyfu (45n) — Yy vo (6°m) Bildhy = n /2 S0, mpivy (30°) gl because
S Didl, = 0. Additionally by a Taylor expansion v, (ng;) = vy (1) 4+ vp1 (63,) (g — 1), where

b3 =as,; + (1 —as;)ng® and ag,; € (0,1). Thus

1 & - . 1 & . ) Y
—= > Pid, s (4)°n) = —= > npidinve (634) (ngi* —1).
Vi Vi
Now note that Y., np;gi,v/n (ng;* —1/n) = Op(1) by Lemma SM2.9, Lemma SM2.2 and the fact
that /n7 = O,(1). Thus using continuity of v, (.) at 1, we have

VidAy, = 072y npindlen (dn) = Wi+ op(1) (11)

i=1

= —/ns(p)) S, Pulng + Op(n?2)

by (6). Also Cyypp =n =230 mpiop (67°n) — S p_; ve (45°n) Pe)diOp(n~3/2) = 0,(1/n) by Lemmata
SM2.9 and SM2.1 and Cs ,, = 0p(1) using a proof similar to the proof that B , = 0,(1). Hence

VS, = —/nd(¢h) S Pungv/nA + 0,(1)
= V/ns(¢}) Sh Puling Py Sev/nd(0}) + 0p(1).

Thus, since v/ns(¢k) L N(68,9) we have \/nS, > 7(6,9,Q2).
Consider now /nJ, 1 = —n~1/2 Z;l vy (nG!°) g1, 'n'/2§(B3). Note that/nd, ; = n=1/2 Z;l v (ng;) g, =
—n~1/2 Z;l(nﬁi — Dy (nG”) ¢}y, ++/MAy 4. The second term of the rhs has the asymptotic represen-
tation given in (11). Similarly to the proof of (8) the first term converges in probability to zero and

therefore
VA, = /nA, 4+ o,(1). (12)

Thus, using equation (10), and the fact that Pyv/ng(Bop,) = Op(1) it follows that \/nJ1,, = vVnJs. +
0p(1) = \/nS, +0,(1). The proof that /LM, j — /1Ty ; = 0,(1), j = 1,4 is similar to the case j = 2,3
and therefore omitted.

Proof of 3: Let us first consider n6? = nA;,PyA;,. Note that by (12) and (11), n6? =
né(pl) KnPyK; 3(¢5) + 0p(1). Hence, it follows that né? <, 7T (6,9,Q3) because of the fact that
Vns(ek) <, N(5,). Additionally, using (12) and (11) we have né3 = né? + o,(1).

Proof of 4: Now consider né3 = n/lg,vﬁgfl’zyv. By (9) and (7) we have

”&S = ”§(<P:L)/(Kh - Kg)Pg(Kh - Kg)/é(@:l) + Op(1)~

Hence na? < T (6,Q,Q4) as \/ns(pk) <, N(8,9). Additionally, also by (9) and (7) we have né3 =

no3 + op(1).
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Proof of 5: Because P, is a positive semidefinite matrix, it follows that n&f— >0,5=123/4
wpal.
Proof of Theorem 5.1: (1) follows from Lemmata SM2.10 and SM2.11 with d, = 0, while (2) follows
from Lemma SM2.12 with ¢ = S} 6;,. B
Proof of Theorem 5.2: The proof of this theorem is similar to the proof of Theorem 4.1 of Shi (2015).
First let Q, = Q, an = Q; and Qnﬁj = Qj, cvgi, = (1 =, Qn,Qn,i,QnJ). We take a sequence
{Pn € Py} and a subsequence {b,} of {n} such that

lim sup s:}?) Pr (W, (i,5)| > cv)) = lim Prp, (|Wbsn (i,j)| > cvfjﬁbn) .
n—oco0 PE Py n—00

Such sequences and subsequences always exist. Assumption 5.1 and condition (¢) of Definition 5.1 imply
that elements in the arrays Bop, Vo, 75, Qo(©*), Dp g(8%), Den(7v*), Apo(1*) are uniformly bounded
over P€ P. Thus, there exists a subsequence {a,} of {b,} and some (5o, v*,n, 2, Dy, Dy, Ay) such that
(Borar s W, s V00 s Vo (97 D g(B): Do w0, Aryo(11%)) = (Bo,7"580, 9, Dg, Dy Ay). Tt
suffices to show that nl;rr;o Pro, (|Wg (i,5)] > cv;‘j’an) <r.

Note now that

Ta ) —t Aa iQa n . .
W;n (Z’]) = = (Z) T(Q = n)/ﬁ )= 1,27j = 374

Vi G) + iy 17(Qur Q)

By Theorem 5.1 (1) if ||d]],, = 400, we have T, (i) <, N(0,0%) and V, (j) & o2 Additionally,
Qami RN Qi, QAamj RN Qj, Qan ENY) by Lemma SM2.2 and the Slutsky theorems. Therefore W (i, j) 4
N(0,1) and

lim Prp, (|W; (i,5)] > cev);,.) < lim Prp, (|W: (i,4)] > z1-r/2)

17,a
n—oo J,0n — 00
= T

. *
because cvf; , > z1_r /2.

Suppose now that ||d;|| ., < +oc in this case

W (i, ) 5 W* (Sl 0, §) T (S},0n,,Q;) — tr(Q:Q)
an \“ hOhs s \/,]- (S;L(Shy Q, Q]) + cij 'tT(QjQ)

by Lemma SM2.2 and Theorem 5.1 (2).
Note that cvj; , > cv(l -7, Qa,,> Qa, s Qan’j). Hence

Pro,, (Wa, ()] > evlya,) < Pro, (W2, (620)] > 0(1 = 7, Qs Quis Qun) ) -

Note that by inspection W?# (5,65, 1, ) is continuous in (95, 2, Q;, Q;); the continuity of the Cholesky
decomposition follows from Lemma 2.1.6 p. 295 of Schatzman (2002). Additionally, W? (S} 0p, 1, j) is

a continuous random variable and consequently cv (1 — 7,6y,, Q;,Q;) is continuous in (95, Q, Q;, Q;).
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Since [0, ¢p] is a compact set it follows by the maximum theorem that cv(1 — 7,2, Q;, @) is continuous
in Q,Q;,Q;. Now by Lemma SM2.2 Qan 2 Q, Qami 2 Q, and Qamj 2 @, and consequently cv(1 —
7, Qs Qan iy Qa,, i) > cvij(1 = 7,0, cp]). Therefore

lim Prp, (|W;’n (i, 7) > ev(d = 7,y Qun i Qamj)) = Pr((W* (84014, 4)| > cvij (1 — 7,0, cn]) -

n—oo

Now by Assumption 5.2 cv;;(1 — 7,0, ¢]) = cvi(1 — 7, [0, +00)), consequently for any d; € [0, +00)

1Z)I‘(|)/VS (5;15}“1,])‘ >CU(1_T7 [076}1])) < Pr(‘WS (S;L(Sh,l,j” >Cv(l_T’S;L(Sh797Qian7cij))

= T

Proof of Theorem 5.3: Using the same arguments as in the proof of Theorem 5.1 cv(1 — 7,8, Q;, Q;)
is continuous in Q,Q;,Q; and therefore cv(l — T,Q,Qi,Qj) EN cv(l —7,9,Q;,Q;) because 0L,
Q; & Q; and Q’j 2 Q; for ||64]| . < +oo by Lemma SM2.2. consequently cv*(1 — 7, €, Q;, Qj) LN vy

Now let us consider first the case |||, < 4+00. In this case W (4, ) 4, W(4, 8, Q4. Qj, cij) by Lem-
mata SM2.2 and SM2.12, It follows that lim Pry, (\W;j (i,9)] > cv*(1 — 7,9, Qs Qj)) — 1= Flp,, (cv).

Consider now the case ||05||,, = +oo. In this case W} (4, j) 4N (—A,Py64/0,1) by Lemmata SM2.2
and SM2.12. It follows that nlinéo Prp, <|W7f (i, )] > cv*(1 — 7,9, Qs, Qj)) = Pr [|z| > cv;‘j], where z ~
N (—AyPydy/0,1). Now note that Pr [|z| > cv};] = ®(—cvj; — Ay Pydy/0) + ®(—cvj; + Ay Pydy/o). A

SM2.2 The limit behavior of W};(d5)

In this subsection we investigate the behavior of the random variable W;*;(05) = 7 (S},0n, 2, Q:)/ T (5},6n, 2, Qj)l/Z,
1=1,2, j = 3,4, as some of the elements of §;, approach infinity. These random variables are defined in
section 5.1 of the paper, page 17. We start by presenting two useful Lemmata that allow us to analyze

this limit. The proofs of the Lemmata are presented at the end of this subsection.

Lemma SM2.13 The random variables W;;(6n) = T(S;Léh,Q,Qi)/T(Sjbéh,Q,Qj)1/2, i=1,2,7=
3,4 have the following representation:

So (5h) xo + Z/CélQlCQZ
[s2 (6n) + 255 (6n) 25 + 2/CHQ;Caz)/*

Wz*j (6n) = (13)

where z ~ N(0, 1), ©9 ~ N(0,1), 55 (0n) = 8, Lodn > 0, Lo = PuSQng Py, Pa, 53 () = 6;,L16n > 0,
where Ly = LoQ, Lo, s5 (0n) = s (6n) — s3 (6) > 0 and z; ~ N(0,1).

We can see from Lemma SM2.13 that W, (01,) only depends on ¢, via the quadratic forms 6}, Lody,
and 0}, L16,. Additionally, it is apparent from equation (13) that if s? (d,) = &, Lodn — oo, then
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Wi (6n) — N(0,1) (note that 0 < s; (dx) /5 (0n) < 55" (0n), = 3,4). However, given that the matrix
Ly is positive semidefinite (because P, is positive semidefinite), the quadratic form §}, Lod;, does not
necessarily diverge as any of the elements of §; approach infinity. In fact the following lemma shows
that this limit is path dependent. We use the following notation. Let N(A) denote the null space of a
matrix A and let ||-|| be the Euclidean norm of -. Denote U a matrix of eigenvectors of the matrix Lo
chosen such that they are orthogonal to each other. Let also U, be the submatrix of U that contains the
eigenvectors corresponding to the positive eigenvalues of Ly and U, be the submatrix of U that contains

the eigenvectors corresponding to the zero eigenvectors of L.

Lemma SM2.14 If rank(Lg) = r > 0 and 6p, (ta,ts) = Usta + Usty where t, € R™ and ¢, € R™»7,
then we have |0, (ta,ty)|| = ||tall + |Itsll, and the following results hold for i =1,2, j = 3,4:

1. W:j (6’1 (ta’tb)) = Wifj(Uata);
2. 1imyjg, | oo WiT(6h (ta, ) = Wi (Uata), if |[tall < oo;
8. limyjg, oo Wi (On (tas ty)) = w0 either if ||ty]| < 0o or if ||ty|| — oo, where xo ~ N(0,1).

In Lemma SM2.14 we consider paths of the form 0, (tq,t5) = Uata + Usts because the eigenvectors
are chosen such that they are orthogonal to each other and therefore they form a basis of R™». Since
105 (tas to)ll = Itall + lltsl|, it follows that ||0p (ta,s)|| goes to infinity in the following cases: ||tp|| — oo
and ||t,] < 00; [|ta]] — o0 and ||tp]] < 00; and ||t4]] — oo and ||tp]] — oo. Lemma SM2.14 shows that, for
fixed ¢, satisfying [|t.|| < oo, the distribution of W}, (05 (ta,t)) does not depend on the value of ¢, and
consequently this distribution is the same whether |[|t|| — oo or if ||t|| < co. On the other hand, when
[tall — o0, Wi (6 (ta,tp)) converges always to the standard normal distribution.
We prove now the above Lemmata.
Proof of Lemma SM2.13: First note that for any matrix Q: 7 (7,55, , Q) = (6,5 + 2'C§) Q (51,01 + Caz) =
0, Sh QS0 + 6, ShQCaz + 2/ CLQ S} 0 + 2/ CHQCqz. We prove the result by showing that:

(a) fori=1,2:7(8,5n,9Q,Q;i) = s (0n) zo + 2'CHQ:Caz, si (0r) = 8, Ly, and zo ~ N(0,1).

(b) for j = 3,4: T(JLSh,Q,Qj) = Sg (5h) + 2Sj (5h) T; + Z/CijOQZ, 8% ((Sh) = (%LQ}LL(S}L, 82 (6h) =
s2(0n) — s%(6,) > 0 and z; ~ N(0,1).

We start by proving (a). Let us consider 7 (6;,5h,€2,Q;). Note that for Q@ = Q1 and Q = Q2 we
have 0;,5,QS5},0n = 0, 2CLQS; 0, = 0 and §;,S,QCaz = 8}, PrQyyP;S,Caz because S,5;, = 0 and
SpSj, = In,. Therefore for i = 1,2: T (6,Q,Q;) = 0}, PyQugPyS;Caz + 2'CHQ:Caz. Let s3(6,) =
var (8, PnQngPyS,Caz). Note that s? (6;,) = 5;LP;LthPgSgQS;PgQ;LgPhéh = 8} Loy, > 0 and let zp ~
N(0,1). Hence for ¢ = 1,2 we have T (6;,5,,Q, Qi) = so (0n) zo + 2'CHLQiCaz. To see this note that
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if s3(6n) = 0, 8}, PQgPySyCaz = 0 and sq (6,) zo = 0 and if so (65) > 0, then we can define z¢y =
87, PPy SyCaz/so (6n) and since z ~ N (0, I,,,) it follows that zo ~ N (0, 1).

We prove now (b). Note that for Q@ = Q3 and Q = Q4 we have 6, 5,QS},0, = 6},Lodn, = s3(0n)
because S,5;, = 0 and S}, S} = I,,,. Additionally, by symmetry we have for @ = @3 and Q = Q4:
01,5hQCqz + 2/ CHQS; 0 = 207, S,QCq 2.

Now note that ¢, S,Q3Cqz = (S;lPthngQ/thhShCQZ and consequently s2 (§;) = var (%PthngQ;lgPhSth]z) =
8 Lo Lody, > 0.

Let us consider now §;,5,Q4Cqz. Note that ¢, 5,Q4Caz = 0}, Py Py(K) — Ky)' Caz, because
S¢S;, = 0 and and S3,S; = Ip,,. Let 52 (6p) = var (03, PrnQng Py (K, — K,)' Caz). After some lengthy,
but simple algebra we can show that s3 (6,) = s3(6n) — 53 (6s). Since s3(d) > 0 it follows that
s2 (0n) > s3(0n). Comsequently 7 (8},5h,Q,Q;) = 8% (6n) + 25; (0n) x; + 2/CHQCaz for j = 3,4 if
55 (0n) > 0, 50 (6n) > 0 using the same arguments adopted in the proof of (a). B
Proof of Lemma SM2.14: Since Lg is a real symmetric matrix it can be factorized as Ly = UAU’,
where UU’' = U'U = I, and A is a diagonal matrix whose entries are the eigenvalues of Ljy. Note
that Ly = UAU’' = U,AU,, where A, is a (r X r) matrix with only the r positive eigenvalues in
the diagonal. Now notice that Uyt, € N(Lg) as AUpty, = U, AU, Upty, = 0, because U.U, = 0. Also
(Uata) Upta = toaU.Uyty, = 0, as U.Uy, = 0. Hence ||04 (ta,ts)|| = [[tall + [Its]]-

To prove 1 note that since Upty, € N(Lyg), it follows that Upt, € N(L1) and Upt, € N(Lo— L1) because
Lo, L1 and Lo — Lyare positive semidefinite by Lemma SM2.13 (see Abadir and Magnus, 2005, solution
of Exercise, 8.41, p. 227). Consequently s2 (3, (ta,t)) = toU.LoUdta, 83 (0h (ta,ts)) = toULL1Uut,
and s3 (6, (ta,tp)) = toU. (Lo — L1) Ust, and the result follows from Lemma SM2.13. The result 2 is
a consequence of 1 because W{fj(Uata) does not depend on t;,. To prove 3 we only need to prove that
limyj;, | o0 5 (On (ta,ty)) = +00 as in this case lim |, | oo S5 (On (tasts)) /5§ (On (ta,ts)) = 0 due to the
fact that 0 < s; (6n (ta,tp)) /52 (0 (tarts)) < s (On (ta,ts)), 5 = 3,4 for so (65 (ta,ts)) > 0 by SM2.13.
Now since U.U, = I, we have s3 (6, (ta,tp)) = toU,LoUstsa = toULUANULUt, = tohity > c|tall,

where c is a positive constant. Hence sZ (8, (t4,tp)) — 00 as [|ty| — oco. B

SM3 Monte Carlo study (additional results)

Tables SM1 and SM2 present the empirical sizes and powers for the tests based on the non-nested test
statistics computed with the exponential tilting (ET) estimator for the sample sizes 200 and 400. The
nominal level for all tests reported is 0.05. We report the results for S, Sa, LM, and T, for a — 0,
a =1,1.5,2,3 and for the Ramalho and Smith (2002) statistics based on ET. We use the notation Sgs,
SRS, LMy and Jis for the Ramalho and Smith (2002) statistics. We also present in the Tables SM1

and SM2 the results for the tests for overidentifying restrictions based on the likelihood ratio statistic
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computed with ET [Kitamura and Stutzer (1997) and Imbens et al. (1998)], which is labelled LRy,. ET
is calculated using the Broyden—Fletcher—-Goldfarb—Shanno (BFGS) algorithm.

Table SM1: Rejection frequencies of the tests under the null.

n 200 400
Statistic original Shi-type original Shi-type
Estimator Pug,wpe | 0.0 0.2 04 (00 0.2 04| O 02 04| 0 02 04
Rer | 58 56 62— — — |56 53 57— — —
So 180 156 145[1.8 1.7 19[|16.3 136 125]1.6 1.4 1.7
So 55 6.1 86 |46 64 79|49 49 7.3 |40 49 6.2
LMo | 78 64 7.8 |45 42 44|64 58 6.6 |43 3.3 35
Jo 57 48 6.0 |35 3.1 30|55 51 57|38 2.8 28
S1 182 16.0 158[2.0 1.8 1.8|16.4 139 142[1.6 1.3 1.3
S1 6.1 59 82 (44 58 71|54 51 6.5 (39 46 54
LMy | 75 64 78 |47 43 42|63 57 6.5 |43 3.3 34
J1 54 48 6.2 |39 33 27|54 49 57 |38 28 2.7
Sis 18.2 16.3 16.0(2.2 20 19|164 14.1 145(1.8 14 1.5

ET J1.5 53 51 56 |38 34 28|54 48 51 |38 3.0 2.7

T3 52 48 55|40 39 37|52 45 55 (39 32 3.6
Sks 16.2 150 15121 1.0 14159 136 120|1.6 1.1 0.8
Shs 57 53 74|34 58 76|55 54 75 (35 52 71
LM | 71 69 74 |41 43 39|64 66 56 3.7 41 29
Trs 52 5.1 55|32 30 24|56 56 48|34 35 24

Table SM2: Rejection frequencies of the tests under the alternative.

n 200 400
Statistic original Shi-type original Shi-type
Estimator w 3 4 5 3 4 5 3 4 5 3 4 5

LRegr |35.3 53.1 66.3| — — — | 346 55.6 73.9| — — —
So 43.7 57.0 62.7|11.9 19.9 27.2[40.7 55.9 66.8[10.7 19.8 30.6
So 10.3 19.6 33.6| 5.1 10.4 19.2|12.5 26.2 42.9| 5.7 14.2 276

LMo |43.6 61.2 73.3|34.5 524 65.3|43.8 63.2 79.2|33.4 539 728
Jo 37.9 55.5 68.0|27.7 44.3 57.4|40.6 60.3 77.0|29.8 49.7 68.6
S1 48.9 62.1 67.6 127 209 28.7[47.7 64.3 754[11.1 21.4 33.3
S1 18.4 32.1 49.0]10.9 20.8 35.8|20.1 35.8 54.5|11.1 24.0 40.5

LMy |40.2 589 71.9|30.4 49.2 629|404 60.6 77.5|29.0 50.1 70.1
J1 34.6 53.0 66.2|23.3 409 54.2|38.0 57.7 75.2|25.7 454 65.6

S15 |50.1 63.9 69.4[14.0 229 30.7|49.2 66.5 779|124 23.4 36.0

Si1s 231 37.3 54.5|15.3 26.3 42.6|23.8 40.1 59.1|14.6 28.8 46.4

LMy55|372 56.4 70.2|27.3 46.0 60.4|36.6 56.6 75.5|25.6 45.7 67.3
ET Jis |31.6 499 64.0]|20.1 37.8 52.0|34.2 53.6 72.6|22.9 41.1 62.4
So 50.7 64.5 70.2|16.2 25.6 34.0|50.4 67.9 79.5[13.9 26.6 39.5
So 26.3 41.7 58.0|18.5 30.9 47.8|26.5 43.1 61.9|17.4 32.6 50.5

LMo |33.7 52.6 67.7]24.2 424 575|324 519 714|220 41.0 61.6
J2 28.5 46.2 61.3|17.7 33.4 48.8|29.9 488 67.7|19.1 36.1 56.6
S3 50.2 65.3 71.0[21.2 32.0 40.6[49.4 67.8 79.7[18.8 33.1 47.1
S3 28.2 45.1 62.0|21.2 36.1 53.6|25.7 42.2 59.5|18.7 33.8 51.9

LMz |29.1 46.1 61.3|21.2 35.3 51.1|27.1 43.8 60.0|20.3 34.0 51.3
J3 23.9 39.0 53.8|15.5 27.3 42.2|24.3 40.1 56.2|17.5 30.3 46.4

Srs 52.6 67.5 74.5|13.9 29.2 43.7[50.0 71.5 84.8|11.4 28.1 45.8

Sks 10.7 29.7 483| 7.7 229 396| 51 134 299|19 71 210

LMys | 37.7 51.2 62.5|27.5 41.6 54.6|40.7 59.4 68.3]29.2 47.1 58.2

Trs 32.1 44.8 55.5|20.0 34.1 46.4|38.2 56.5 64.8|25.5 42.3 52.9
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