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In this supplement we provide the proofs of the theorems presented in Sections 4 and 5 of the paper,

investigate the behavior of the random variable W ∗i,j(δh) i = 1, 2, j = 3, 4 (defined in subsection 5.1 of

the paper) as some elements of δh approach infinity, and present the results of the Monte Carlo study for

the tests based on the exponential tilting estimator. This supplement is organized as follows. In Section

SM1 we prove the relevant theorems of section 4. Section SM2 provides the proofs of the theorems of

section 5 and analyzes the limit of W ∗i,j(δh) i = 1, 2, j = 3, 4 as some elements of δh approach infinity.

Finally, SM3 presents the additional results obtained in the Monte Carlo study for the tests based on

the exponential tilting estimator.

In what follows CR, CS, L, and T denote the cr, Cauchy-Schwarz, Lyapunov and triangle inequalities

respectively. Furthermore, ‘with probability approaching one’ is abbreviated as ‘wpa1’. Unless stated

otherwise ‘LLN’ corresponds to the Khinchin law of large numbers, ‘UWL’ denotes a uniform weak

law of large numbers, as Lemma 2.4 of Newey and McFadden (1994) or a uniform weak law of large

numbers at the true parameter as Lemma 4.3 of Newey and McFadden (1994) and ‘CLT’ refers to the

Lindeberg-Lévy central limit theorem. NS refers to Newey and Smith (2004).

SM1 Proofs of results of section 4

SM1.1 Proofs of the results of subsection 4.1

The following Lemma generalizes Lemma A.1 of Ramalho and Smith (2004). Let gi(β) = g(zi, β) and

ĝ(β) =
∑n
i=1 gi(β)/n.
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Lemma SM1.1 Let Assumptions 2.1, 2.2 and 4.1 (a) hold. Then np̂vci = 1 + op(1) and

n1/2

(
p̂vci −

1

n

)
= κvc

1

n
ĝ′in

1/2λ̂(1 + op(1)) +Op(n
−3/2),

uniformly (i = 1, ..., n) where ĝi ≡ g(zi, β̂) and κvc = vc,1(0)/vc(0).

Proof: Let bi ≡ supβ∈B |gi(β)|. From the proof of Lemma A1 and Theorem 3.1 in NS we have

max1≤i≤n bi = Op(n
−1/α) and λ̂ = Op(n

−1/2). Thus, supβ∈B,1≤i≤n |λ̂′gi(β)| = Op(n
−(1/2−1/α)). A first

order Taylor expansion of vc(λ̂
′ĝi) around zero yields vc(λ̂

′ĝi) = vc(0)+vc,1(λ̇′ĝi)λ̂
′ĝi, where λ̇ is on a line

joining λ̂ and zero. Now max1≤i≤n |vc,1(λ̂′gi(β̂))−vc,1(0)| = op(1) as supβ∈B,1≤i≤n |λ̂′gi(β)| = op(1) and

so vc,1(λ̂′gi(β̂))λ̂′ĝi = vc,1(0)λ̂′ĝi(1+op(1)). Therefore vc(λ̂
′ĝi) = vc(0)+vc,1(0)λ̂′ĝi(1+op(1)) uniformly

(i = 1, ..., n). Similarly,  n∑
j=1

vc(λ̂
′ĝj)

−1

= (vc(0)n)−1(1 +Op(n
−1))

as
∑n
j=1 ĝj/n = Op(n

−1/2) and λ̂ = Op(n
−1/2) by Theorem 3.1 of NS. Hence p̂vci = [vc(0)+vc,1(0)λ̂′ĝi(1+

op(1))](vc(0)n)−1(1+Op(n
−1)). It follows by Lemma A.1 of NS that np̂vci = 1+(vc,1(0)/vc(0))op(1) and

that

n1/2(p̂vci − 1/n) = (vc,1(0)/vc(0))n−1ĝ′in
1/2λ̂(1 + op(1)) +Op(n

−3/2).

Proof of Theorem 4.1: By the mean value theorem va (p̂in) = va(1) + va,1 (σ̂i) (p̂in− 1), where

σ̂i = αi + (1− αi) p̂in and αi ∈ (0, 1) and consequently

Sv =

n∑
i=1

va,1 (σ̂i)
√
n

(
p̂i −

1

n

)
np̂i

[
vb

(
q̂vci
p̂vci

)
−

n∑
`=1

v

(
q̂vc`
p̂vc`

)
p̂`

]
.

By Lemma SM1.1 Sv =
∑4
j=1Rj,n, where Rj,n, j = 1, ..., 4 are defined below.

Let us consider first

R1,n ≡
1

n

n∑
i=1

va,1 (σ̂i)np̂ivb

(
vc (η̂′hi (γ̂))

np̂vci v̂c,h

)
ĝ′i
√
nλ̂(1 + op(1)),

where v̂c,h ≡
∑n

i=1
vc (η̂′hi (γ̂)) /n. Now by Lemma SM1.1, va,1 (σ̂i) = va,1 (1) + op(1). Additionally

np̂i = 1 + op (1) and np̂vci = 1 + op (1) uniformly in i = 1, ..., n by Lemma SM1.1. Also v̂c,h =

Ep0 [vc (η∗′h (z, γ∗))] + op(1) by a UWL. It follows using the fact that
√
nλ̂ = Op(1), and a UWL

that

R1,n = Av
√
nλ̂(1 + op(1)) + op (1) . (1)

Hence by Theorem 3.2 of NS we have R1,n
d→ N

(
0, σ2

0

)
.
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Let us consider now

R2,n ≡
1

n

n∑
i=1

va,1 (σ̂i)np̂ivb

(
vc (η̂′hi (γ̂))

np̂vci v̂c,h

)
Op(n

−1/2).

Using the same arguments as above n−1
∑n
i=1 va,1 (σ̂i)np̂ivb(vc (η̂′hi (γ̂)) /[np̂vci v̂c,h]) = Op(1). It follows

that R2,n = Op(n
−1/2). Now define

R3,n ≡
1

n

n∑
i=1

va,1 (σ̂i)np̂iĝ
′
i

√
nλ̂(1 + op(1))

n∑
`=1

vb

(
q̂vc`
p̂vc`

)
p̂`.

Note that n−1
∑n
i=1 va,1 (σ̂i)np̂iĝ

′
i = op(1) by a UWL,

√
nλ̂(1 + op(1)) = Op(1) by Theorem 3.2 of NS

and that
n∑
`=1

vb

(
q̂vc`
p̂vc`

)
p̂` =

1

n

n∑
`=1

vb

(
vc (η̂′h` (γ̂))

np̂vc` v̂c,h

)
np̂`

converges in probability to Ep0 [vb(vc (η∗′h (z, γ∗)) /Ep0 [vc (η∗′h (z, γ∗))])] + op (1) by a UWL. Hence

R3,n = op(1). Finally, consider

R4,n ≡
1

n

n∑
i=1

va,1 (σ̂i)Op(n
−1/2)

n∑
`=1

vb

(
q̂vc`
p̂vc`

)
p̂`.

Since by a UWL n−1
∑n
i=1 va,1 (σ̂i) = Op(n

−1/2) and
∑n
`=1 vb (q̂vc` /p̂

vc
` ) p̂` = Op(1) we have R4,n = op(1).

Hence Sv
d→ N

(
0, σ2

0

)
.

The fact that S̃v = Sv + op(1) follows from the arguments above and the fact that np̂vci = 1 + op (1)

by Lemma SM1.1.

Concerning the Lagrange multiplier statistic LMv = Âv
√
nλ̂, note that Sv = R1.n + op(1) and using

(1) one obtains R1.n − LMv = [A0,v − Âv]
√
nλ̂+Av

√
nλ̂op(1) + op(1). Because A0,v − Âv = op(1) and

√
nλ̂ = Op(1) it follows that R1.n − LMv = op(1).

Finally we consider the statistic Jv = −ÂvΩ̂−1
g

√
nĝ(β̂). Note that NS proved in the proof of Theorem

3.2 (p. 240) that ĝ(β̂) = −Ωgλ̂ + op(n
1/2). Therefore Jv − LMv =

[
ÂvΩ̂

−1
g Ωg − Âv

]√
nλ̂ + op(1), as

ÂvΩ̂
−1
g = Op(1) and

√
nλ̂ = Op(1). Since Ω̂−1

g = Ω−1
g + op(1) and Âv = A0,v + op(1), it follows that

Jv − LMv = op(1).

Proof of Theorem 4.2: We prove here only consistency of σ̂2
3 for σ2

0 as the proof for the other

estimators σ̂2
j , j = 1, 2, 4 is simpler. First note that P̂

p→ P0,g by a UWL and the Slutsky theorems

under Assumptions 2.1 and 2.3. Now note that

Âv,3 =
1

n

∑n

i=1
vb (q̂vci /p̂

vc
i ) ĝ′inp̂i =

1

n

∑n

i=1
vb

(
vc(η̂

′hi(γ̂))
1
n

∑n
i=1 vc(η̂

′hi(γ̂))

1

np̂i

)
ĝ′inp̂i

By a UWL
∑n
i=1 vc(η̂

′hi(γ̂))/n
p→ Ep0(vc(η

∗′h(z, γ∗))). Also by Lemma SM1.1, np̂i = 1 + op(1). Hence,

by a UWL and continuity of vb (·) it follows that Âv,3 = Ep0(vb(vc(η
∗′h(z, γ∗)) /Ep0 [vc(η

∗′h(z, γ∗))] )g(z, β0))+

op(1). Hence consistency of σ̂2
3 for σ2

0 follows from the Slutsky theorem.
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SM1.2 Proofs of the results of subsection 4.2

Proof of Theorem 4.2: Let us first consider Sv. Note that

Sv/
√
n =

1

n

n∑
i=1

va (p̂in)np̂ivb

(
nq̂vci
np̂vci

)
−

1

n

n∑
i=1

va (p̂in)np̂i
1

n

n∑
`=1

np̂`vb

(
nq̂vc`
np̂vc`

)
.

Now notice that nq̂vci = vc(η̂
′hi(γ̂)) /[

∑n
i=1 vc(η̂

′hi(γ̂))/n] , np̂vci = vc(λ̂
′gi(β̂))

/[∑n
i=1 vc(λ̂

′gi(β̂))/n
]

and np̂i = ρ1(λ̂′gi(β̂))
/[∑n

i=1 ρ1(λ̂′gi(β̂))/n
]

. A UWL implies that
∑n
i=1 vc(η̂

′hi(γ̂)/n = Ep0 [vc(η
∗′h(z, γ∗))]+

op(1),
∑n
i=1 vc(λ̂

′gi(β̂))/n = Ep0 [vc(g(z, β∗))] +op(1),
∑n
i=1 ρ1(λ̂′gi(β̂))/n = Ep0 [ρ1(g(z, β∗))] +op(1). It

follows by a UWL that

1

n

n∑
i=1

va (p̂in)np̂ivb

(
nq̂vci
np̂vci

)
= Ep0

[
va(ρg,z1 )ρg,z1 vb

(
vh,zc
vg,zc

)]
+ op(1).

Also
1

n

n∑
i=1

va (p̂in)np̂i = Ep0 [va(ρg,z1 )ρg,z1 ] + op(1)

and
1

n

∑n

`=1
np̂`vb

(
nq̂vc`
np̂vc`

)
= Ep0 [ρ

g,z
1 vb

(
vh,zc
vg,zc

)
] + op(1).

Because Ep0 [va(ρg,z1 )ρg,z1 vb(v
h,z
c /vg,zc )] 6= Ep0 [va(ρg,z1 )ρg,z1 ]Ep0 [ρ

g,z
1 vb(v

h,z
c /vg,zc )], Sv

p→ ±∞.

Consider now S̃v. Note that

S̃v/
√
n =

1

n

n∑
i=1

va (p̂in)np̂ivb (nq̂vci )

− 1

n

n∑
i=1

va (p̂in)np̂i
1

n

n∑
`=1

vb (nq̂vc` )np̂`.

Using similar arguments to those described above we have
∑n
i=1 va (p̂in)np̂ivb (nq̂vci ) /n = Ep0 [va(ρg,z1 )ρg,z1 vb(v

h,z
c )]+

op(1),
∑n
i=1 va (p̂in)np̂i/n = Ep0 [va(ρg,z1 )ρg,z1 ] + op(1) and

∑n
`=1 np̂`vb (nq̂vc` ) /n = Ep0 [ρ

g,z
1 vb(v

h,z
c )] +

op(1). Since Ep0 [va(ρg,z1 )ρg,z1 vb(v
h,z
c )] 6= Ep0 [va(ρg,z1 )ρg,z1 ]Ep0 [ρ

g,z
1 vb(v

h,z
c )], S̃v

p→ ±∞.

Concerning the Lagrange multiplier statistic LMv = Âv
√
nλ̂, note that LMv/

√
n = Âvλ̂ = A∗vλ

∗ +

op(1). Since A∗vλ
∗ 6= 0 it follows that LMv

p→ ±∞. Finally we consider the statistic Jv/
√
n =

−ÂvΩ̂−1
g ĝ(β̂). Note that Jv/

√
n

p→ −A∗vΩ∗−1
g Ep0 [gi(β

∗)]. Given that A∗vΩ
∗−1
g Ep0 [gi(β

∗)] 6= 0, Jv
p→

±∞.

SM1.3 Proofs of the results of subsection 4.3

Let {zin}ni=1 be a triangular array which we assume to be row wise independent and identically distributed

(iid). Let gin(β) = g(zi,n, β), ĝ(β) =
∑n
i=1 gi,n(β)/n, ĝin ≡ g(zi,n, β̂) and hin (γ) = h (zi,n, γ).
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Lemma SM1.2 Under Assumption 4.6 the following result holds supβ∈B ‖ĝ(β)− Ep0n [gin(β)]‖ = op(1),

and {Ep0n [gin(β)]}∞n=1 is uniformly equicontinuous in β ∈ B.

Proof: We use the UWL corresponding to Theorem 4 of Andrews (1992) together with the Weak Law

of Large Numbers for Triangular Arrays (Davidson, 1994, 19.9 Corollary p.301). Note that by the UWL

supβ∈B |ĝ(β)− Epn [gi,n(β)]| = op(1), where the UWL applies because the four sufficient conditions are

satisfied. In particular the total boundedness condition (BD) holds by Assumption 4.6 (c). Assumption

4.6 (e) implies both the pointwise convergence condition (P-WLLN) (by the LLN) and the domination

condition (DM). The termwise stochastic equicontinuity (TSE) condition is satisfied because

Ep0n [ sup
β,β′∈B:‖β−β′‖≤d

‖gin(β)− gin(β′)‖] ≤ Ep0n [sup
β∈B

∥∥∥∥∂gi,n(β)

∂β

∥∥∥∥]d ≤ Cd, (2)

where the first inequality holds by a mean-value expansion (which relies on Assumption 4.6 (d)) and

the second holds by Assumption 4.6 (e). In addition to guaranteeing TSE, equation (2) also shows the

uniform equicontinuity of {Ep0n [g(zin, β)]}∞n=1.

Lemma SM1.3 Under Assumptions 4.6, 4.7 and 4.8 the following results hold:

1. 1
n

∑n
i=1 ĝinĝ

′
in − Ω0,g = op(1) if β̂

p→ β0;

2. 1
n

∑n
i=1 ‖ĝin‖

2 − Ep0n [‖gin(β0)‖2] = op(1) if β̂
p→ β0;

3. 1
n

∑n
i=1

∂gin(β̂)
∂β′ −D0,g = op(1) if β̂

p→ β0;

4. 1
n

∑n
i=1 vc (η̂′hin (γ̂))− Ep0n [vc(η

∗′hin (γ∗))] = op(1) if β̂
p→ β0, γ̂

p→ γ∗ and η̂
p→ η∗;

5. 1
n

∑n
i=1 vb

(
vc(η̂′hin(γ̂))∑n

i=1 vc(η̂
′hin(γ̂))/n

)
− Ep0n [vb(

vc(η
∗′hin(γ∗))

Ep0n [vc(η∗′hin(γ∗))] )] = op(1) if β̂
p→ β0, γ̂

p→ γ∗ and

η̂
p→ η∗;

6. 1
n

∑n
i=1 vb

(
vc(η̂′hin(γ̂))∑n

i=1 vc(η̂
′hin(γ̂))/n

)
)ĝin −A0,v = op(1), if β̂

p→ β0, γ̂
p→ γ∗ and η̂

p→ η∗;

Proof: We prove results (1), (5) and (6) as the proofs of the remaining results are similar. Proof of 1: Us-

ing a proof similar to that Lemma SM1.2 we have supβ∈B ‖
∑n
i=1 gi,n(β)gi,n(β)′/n− Ep0n [gi,n(β)gi,n(β)′]‖ =

op(1) which relies on Assumptions 4.6 (c), (d) and (e) and CS. Now we use the fact that Ep0n [gi,n(β0)gi,n(β0)′]→

Ω0,g by Assumption 4.6 (f).

Concerning (5) and (6), write ân =
∑n
i=1 vc (η̂′hin (γ̂)) /n and an = Ep0n [vc(η

∗′hin (γ∗))], we know

by Assumption 4.8 (c) that an ∈ A, n ≥ 1. Let ψ = (β′, γ′, η′, a′)
′
. Using a proof similar to that of Lemma

SM1.2 we have supψ∈B×G×H×A ||
∑n
i=1 vb (vc (η′hin (γ)) /a ))g (z, β) /n−Ep0n [vb (vc (η′hin (γ)) /a ))gin (β)]|| =

op(1) using Assumptions 4.6 (c), (d) , (e), 4.7 (a), 4.8 (a), (b) and (c) and CS and consequently by re-

sult (4) we have
∑n
i=1 vb (vc (η̂′hin (γ̂)) /ân) ĝin/n − Ep0n [vb(vc(η

∗′hin (γ∗))/an)gin (β0)] = op(1) which

proves (5). The conclusion (6) follows from the fact that Ep0n [vb(vc(η
∗′hin (γ∗))/an)gin (β0)]→ A0,v by

Assumption 4.8 (d).
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Lemma SM1.4 If Assumption 4.6 is satisfied, then
√
nĝ (β0,n)

D→ N (δg,Ω0,g).

Proof: First we use the Cramér Wold device to show that

1√
n

n∑
i=1

[gin(β0,n)− Ep0n(gin(β0,n))]
D→ N (0,Ω0,g).

That is, we show that for a fixed λ 6= 0

1√
n

n∑
i=1

λ′[gin(β0,n)− Ep0n(gin(β0,n))]√
λ′Bnλ

D→ N (0, 1), (3)

where Bn = Ep0n([gin(β0,n)− Ep0n(gin(β0,n))][gin(β0,n)− Ep0n(gin(β0,n))]′)→ Ω0,g. Note first that

Bn = Ep0n [gin(β0,n)gin(β0,n)′]− nEp0n(gin(β0,n))Ep0n(gin(β0,n))′/n.

Now nEp0n(gin(β0,n))Ep0n(gin(β0,n))′ = δgδ
′
g. Additionally, ‖Ep0n [gin(β0,n)gin(β0,n)′]− Ep0n [gin(β0)gin(β0)′]‖ →

0 as β0,n → β0 because

Ep0n [ sup
βa,βb∈B:‖βa−βb‖≤d

‖gin(βa)gin(βa)′ − gin(βb)gin(βb)
′‖] ≤ Cd,

by a mean-value expansion (which holds by Assumption 4.6 (d)), Assumption 4.6 (e) and CS. It follows

from Assumption 4.6 (f) that Bn → Ω0,g. Also note that Bn is positive definite for n large enough

because Ω0,g is positive definite. Now for a = 2 + δ we have by CR, L, CS and Assumption 4.6 (e)

Ep0n
[
|λ′[gin(β0,n)− Ep0n(gin(β0,n))]|a

]
≤ 2a−1

[
Ep0n ‖λ′gin(β0,n)‖a + |Ep0n(λ′gin(β0,n))|a

]
≤ 2a [‖λ‖a Ep0n [‖gin(β0,n)‖a] < 2a ‖λ‖a C.

Therefore
1

na/2

n∑
i=1

Ep0n
[
|λ′[gin(β0,n)− Ep0n(gin(β0,n))]|a

]
≤ 2a ‖λ‖a C

na/2−1
→ 0.

Hence by the Lyapunov CLT (Serfling, 1980, p.31-32, Corollary) it follows that (3) holds. Now note that

√
nĝ (β0,n) =

√
n [ĝ (β0,n)− Ep0n(ĝ (β0,n))] +

√
nEp0n(ĝ (β0,n))

and the first term converges to N (0,Ω0,g) while the second is equal to δg which proves the result. .

Lemmata SM1.5 to SM1.7 correspond to versions of Lemmata A1 to A3 of NS for iid triangular arrays

and the proofs are similar to those Lemmata given in NS (with β0 replaced by β0,n in those proofs) and

therefore are omitted.

Lemma SM1.5 If Assumption 4.6 is satisfied, then for any 1/α < ζ < 1/2 and Λn =
{
λ : ‖λ‖ ≤ n−ζ

}
and with wpa1 Λn ⊆ Λ̂n(β) for all β ∈ B.

Lemma SM1.6 If Assumption 4.6 is satisfied, β̄ ∈ B, β̄ − β0,n
p→ 0 and ĝ(β̄) = Op(n

−1/2), then

λ̄ = arg maxλ∈Λ̂n(β̄) P̂
g
n(β̄, λ) exists wpa1, and λ̄ = Op(n

−1/2), supλ∈Λ̂n(β̄) P̂
g
n(β̄, λ) ≤ Op(n−1).
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Lemma SM1.7 If Assumption 4.6 is satisfied, then
∥∥∥ĝ(β̂)

∥∥∥ = Op(n
−1/2).

The proof of the following Lemma follows the same steps of the proof of Theorem 3.1 of NS, but

since there are some small differences we present it below.

Lemma SM1.8 If Assumption 4.6 is satisfied, then β̂
p→ β0, β̂ − β0,n

p→ 0, g(β̂) = Op(n
−1/2), λ̂ =

arg maxλ∈Λ̂n(β̂)

∑n
i=1 ρ(λ′gin(β̂))/n exists wpa1, and λ̂ = Op(n

−1/2).

Proof: Let gn(β) = Ep0n [g(zin, β)]. By Lemma SM1.7 ĝ(β̂) = op(1), and by Lemma SM1.2

supβ∈B ‖ĝ(β)− gn(β)]‖ p→ 0 and {gn(β)}∞n=1 is uniformly equicontinuous. Additionally, since limn→∞ gn(β) =

g(β) for each β ∈ B, we have supβ∈B ‖gn(β)− g(β)‖ → 0 (see Rudin, 1976, Exercise 16, p.168). Hence by

T g(β̂)
p→ 0. Since g(β) = 0 has a unique zero at β0, g(β) must be bounded away from zero outside any

neighborhood of β0. Therefore, β̂ must be inside any neighborhood of β0 wpa1, i.e. β̂
p→ β0, giving the

first conclusion. The second conclusion follows from the inequality
∥∥∥β̂ − β0,n

∥∥∥ ≤ ∥∥∥β̂ − β0

∥∥∥+‖β0 − β0,n‖,

the first conclusion and the fact that ‖β0 − β0,n‖ → 0 by Assumption 4.6 (a). The third conclusion is

due to Lemma SM1.7. Also, note that by the second and third conclusions the hypotheses of Lemma

SM1.6 are satisfied for β̄ = β̂, so that the last conclusion follows from Lemma SM1.6.

Lemma SM1.9 If Assumption 4.6 is satisfied, then

√
n

 β̂ − β0,n

λ̂

 d→ N (

 −H0,gδg

−P0,gδg

 ,

 Σ0,g 0

0 P0,g

).

Proof: Let θ̂ = (β̂′, λ̂′)′ and θ0,n =
(
β′0,n, 0

′)′. Note that since β0 ∈ int (B) and β0,n → β0, then

β0,n ∈ int (B) for n large enough. Using arguments similar to those of NS in the proof of their Theorem

3.2 (which in our case are based on a first order Taylor expansion of the first order conditions of the

GEL objective function around θ0,n and require the fact that β0,n → β0, Lemma SM1.8 and the Lemma

SM1.3) we have

√
n(θ̂ − θ0,n) = −(H ′0,g,−P0,g)

√
nĝ(β0,n) + op(1). (4)

Now apply the CLT given by Lemma SM1.4.

The following Lemma generalizes the results of Lemma SM1.1 for triangular arrays and its proof is

similar and therefore omitted, though available upon request.

Lemma SM1.10 Let Assumptions 4.6, 4.7 and 4.8 hold. Then np̂vci = 1 + op(1) and

n1/2

(
p̂vci −

1

n

)
= κvc

1

n
ĝ′inn

1/2λ̂(1 + op(1)) +Op(n
−3/2),

uniformly (i = 1, ..., n) where κvc = vc,1(0)/vc(0).
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Proof of Theorem 4.3: Using the similar arguments to those used in the proof of Theorem 4.1, which

require SM1.3 rather than Lemma 4.3 of Newey and McFadden (1994) and Lemma SM1.10 we have

Sv = A0,v
√
nλ̂(1 + op(1)) + op (1). Now, given that by Lemma SM1.9

√
nλ̂

d→ N (−P0,gδg, P0,g), it

follows that N
(
−A0,vP0,gδg, σ

2
0

)
.

The demonstration of the asymptotic equivalence of the statistics Sv, S̃v, LMv and Jv is similar to

the proof of asymptotic equivalence of these statistics given in the proof of Theorem 4.2.

SM2 Proofs of the results of section 5 and discussion

In this section we provide the proofs of the theorems presented in section 5 of the paper and investigate

the behavior of the random variable W ∗i,j(δh) i = 1, 2, j = 3, 4 (defined in subsection 5.1 of the paper)

as some elements of δh approach infinity.

SM2.1 Proofs of the results of section 5

We start by compiling a number of Lemmata without presenting their proofs either because the proofs

are very similar to those given in NS or to those provided in the previous sections. Let gin(β) = g(zi,n, β),

ĝ(β) =
∑n
i=1 gi,n(β)/n, ĝin = gin(β̂) and hin (γ) = h (zi,n, γ), ĥin ≡ h(zi,n, γ̂), ĥ(γ) =

∑n
i=1 hin(γ)/n,

sin(ϕ) = s(zi,n, ϕ) and ŝ(ϕ) =
∑n
i=1 sin(ϕ)/n.

The proofs of Lemmata SM2.1 to SM2.3 are similar to the proofs of Lemmata SM1.2 to SM1.4 above.

Lemma SM2.1 Suppose Assumption 5.1 holds. Under a sequence {pn}∞n=1 ∈ P the following results

hold:

1. supβ∈B ‖ĝ(β)− Epn [gin(β)]‖ = op(1), and {Epn [gin(β)]}∞n=1 is uniformly equicontinuous in β ∈ B.

2. supγ∈G

∥∥∥ĥ(γ)− Epn [hin(γ)]
∥∥∥ = op(1), and {Epn [hin(γ)]}∞n=1 is uniformly equicontinuous in γ ∈ G.

Lemma SM2.2 Suppose Assumption 5.1 holds. Under a sequence {pn}∞n=1 ∈ Seq (β0, γ
∗, η∗, δh,Ω, Dg, Dh, Av)

we have:

1. 1
n

∑n
i=1 sin(ϕ̂)sin(ϕ̂)′ − Ω = op(1) if ϕ̂

p→ ϕ∗;

2. 1
n

∑n
i=1 ‖sin(ϕ̂)‖2 − Epn [‖sin(ϕ∗)‖2] = op(1) if ϕ̂

p→ ϕ∗;

3. 1
n

∑n
i=1

∂gin(β̂)
∂β′ −Dg = op(1) if β̂

p→ β0;

4. 1
n

∑n
i=1

∂hin(γ̂)
∂γ′ −Dh = op(1) if γ̂

p→ γ∗;

5. 1
n

∑n
i=1 vc (η̂′hin (γ̂))− Epn [vc(η

∗′hin (γ∗))] = op(1) if β̂
p→ β0, γ̂

p→ γ∗ and η̂
p→ η∗;
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6. 1
n

∑n
i=1 vb

(
vc(η̂′hin(γ̂))∑n

i=1 vc(η̂
′hin(γ̂))/n

)
−Epn [vb(

vc(η
∗′hin(γ∗))

Epn [vc(η∗′hin(γ∗))] )] = op(1) if β̂
p→ β0, γ̂

p→ γ∗ and η̂
p→ η∗;

7. 1
n

∑n
i=1 vb

(
vc(η̂′hin(γ̂))∑n

i=1 vc(η̂
′hin(γ̂))/n

)
)ĝin −Av = op(1), if β̂

p→ β0, γ̂
p→ γ∗ and η̂

p→ η∗.

Lemma SM2.3 Suppose Assumption 5.1 holds. Under a sequence {pn}∞n=1 ∈ Seq (β0, γ
∗, η∗, δh,Ω, Dg, Dh, Av)

with ‖δh‖∞ <∞ and satisfying
√
nEpn(gin(β0,pn))→ δg with ‖δg‖∞ <∞, we have

√
nŝ (ϕ∗n)

D→ N (δ,Ω),

where ϕ∗n = (β′0,pn , γ
∗′
pn)′ and δ =

(
δ′g, δ

′
h

)′
.

The proofs of Lemmata SM2.4 to SM2.6 are similar to the proofs of Lemma A1 to A3 of NS. The

proofs of these Lemmata of NS required a LLN, a UWL and a CLT. In our framework these are replaced

by the LLN for triangular arrays in Davidson (1994, 19.9 Corollary p.301), Lemmata SM2.2 and SM2.3

respectively. The proof of part (2) of Lemma SM2.5 is similar to that of Lemma A2 of NS, but uses the

assumptions that Hn ⊂ H, n ≥ 1 and H is a convex set.

Lemma SM2.4 Suppose Assumption 5.1 holds. Under a sequence {pn}∞n=1 ∈ P for any 1/(2 + δ) <

ζ < 1/2, the following results hold:

1. supβ∈B,λ∈Λn,1≤i≤n |λ
′gin (β)| p→ 0, where Λn =

{
λ : ‖λ‖ ≤ n−ζ

}
and wpa1 Λn ⊆ Λ̂n(β) for all

β ∈ B.

2. supγ∈G,η∈Hn,1≤i≤n |η
′hin (γ)| p→ 0, where Hn =

{
η : ‖η‖ ≤ n−ζ

}
.

Lemma SM2.5 Suppose Assumption 5.1 holds. Under a sequence {pn}∞n=1 ∈ Seq (β0, γ
∗, η∗, δh,Ω, Dg, Dh, Av):

1. if
√
nEpn(gin(β0,pn))→ δg, with ‖δg‖∞ < +∞, β̄ ∈ B, β̄ − β0,pn

p→ 0 and ĝ(β̄) = Op(n
−1/2), then

λ̄ = arg maxλ∈Λ̂n(β̄) P̂g(β̄, λ) exists wpa1, λ̄ = Op(n
−1/2) and supλ∈Λ̂n(β̄) P̂g(β̄, λ) ≤ ρ0 +Op(1/n).

2. if ‖δh‖∞ < +∞, γ̄ ∈ G, γ̄ − γ∗pn
p→ 0 and ĥ(γ̄) = Op(n

−1/2), then η̄ = arg maxη∈H P̂h(γ̄, η) exists

wpa1, η̄ = Op(n
−1/2) and supη∈H P̂h(γ̄, η) ≤ ρ0 +Op(1/n).

Lemma SM2.6 Suppose Assumption 5.1 holds. Under a sequence {pn}∞n=1 ∈ Seq (β0, γ
∗, η∗, δh,Ω, Dg, Dh, Av):

1. if
√
nEpn(gin(β0,pn))→ δg, with ‖δg‖∞ < +∞, then

∥∥∥ĝ(β̂)
∥∥∥ = Op(n

−1/2).

2. if ‖δh‖∞ < +∞, then
∥∥∥ĥ(γ̂)

∥∥∥ = Op(n
−1/2).

The proof of the following Lemma is similar to that of Lemma SM1.8.

Lemma SM2.7 Suppose Assumption 5.1 holds. Under a sequence {pn}∞n=1 ∈ Seq (β0, γ
∗, η∗, δh,Ω, Dg, Dh, Av):

1. if
√
nEpn(gin(β0,pn))→ δg with ‖δg‖∞ < +∞, then β̂

p→ β0, β̂−β0,pn
p→ 0, λ̂ = arg maxλ∈Λ̂n(β̂)

∑n
i=1 ρ(λ′gin(β̂))/n

exists wpa1, and λ̂ = Op(n
−1/2).
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2. if ‖δh‖∞ < +∞, then γ̂
p→ γ∗, γ̂ − γ∗pn

p→ 0, η̂ = arg maxη∈H
∑n
i=1 ρ(η′hin(γ̂))/n exists wpa1, and

η̂ = Op(n
−1/2).

The proof of the following Lemma is similar to that of Lemma SM1.9.

Lemma SM2.8 Suppose Assumption 5.1 holds. Under a sequence {pn}∞n=1 ∈ Seq (β0, γ
∗, η∗, δh,Ω, Dg, Dh, Av):

1. if
√
nEpn(gin(β0,pn))→ δg with ‖δg‖∞ < +∞, then

√
n

 β̂ − β0,pn

λ̂

 d→ N (

 −H0,gδg

−P0,gδg

 ,

 Σ0,g 0

0 P0,g

).

2. if ‖δh‖∞ < +∞, then

√
n

 γ̂ − γ∗pn
η̂

 d→ N (

 −H0,hδh

−P0,hδh

 ,

 Σ0,h 0

0 P0,h

).

The proof of the following Lemma is similar to that of Lemma SM1.1.

Lemma SM2.9 Suppose Assumption 5.1 holds. Under a sequence {pn}∞n=1 ∈ Seq (β0, γ
∗, η∗, δh,Ω, Dg, Dh, Av):

1. if
√
nEpn(gin(β0,pn))→ δg with ‖δg‖∞ < +∞, we have np̂vci = 1 + op(1) and

n1/2

(
p̂vci −

1

n

)
= κvc

1

n
ĝ′inn

1/2λ̂(1 + op(1)) +Op(n
−3/2),

uniformly (i = 1, ..., n) where κvc = vc,1(0)/vc(0).

2. if ‖δh‖∞ < +∞, we have nq̂vci = 1 + op(1) and

n1/2

(
q̂vci −

1

n

)
= κvc

1

n
ĥ′inn

1/2η̂(1 + op(1)) +Op(n
−3/2),

uniformly (i = 1, ..., n) where κvc = vc,1(0)/vc(0).

The proofs of the following two Lemmata are similar to those of Theorem 4.3 and Theorem 4.2.

Lemma SM2.10 Suppose Assumption 5.1 holds. Under a sequence {pn}∞n=1 ∈ Seq (β0, γ
∗, η∗, δh,Ω, Dg, Dh, Av)

that satisfies
√
nEpn(gin(β0,pn)) → δg with ‖δg‖∞ < +∞ and Assumption 5.2 and if ‖δh‖ = +∞, then

Sv converges in distribution to N
(
−AvPgδg, σ2

)
. Furthermore, S̃v, LMv and Jv are asymptotically

equivalent to Sv.

Lemma SM2.11 Suppose Assumption 5.1 holds. Under a sequence {pn}∞n=1 ∈ Seq (β0, γ
∗, η∗, δh,Ω, Dg, Dh, Av)

satisfying
√
nEpn(gin(β0,pn))→ δg and Assumption 5.2 and if ‖δh‖ = +∞, σ̂2

j
p→ σ2, j = 1, ...4.

Lemma SM2.12 Suppose Assumptions 5.1 holds. Under a sequence {pn}∞n=1 ∈ Seq (β0, γ
∗, η∗, δh,Ω, Dg, Dh, Av)

with ‖δh‖∞ <∞ and satisfying
√
nEpn(gin(β0,pn))→ δg with ‖δg‖∞ < +∞ and let δ = (δ′g, δ

′
h)′, then
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1.
√
nSv

d→ T (δ,Ω, Q1) and
√
nJv,2,

√
nJv,3,

√
nLMv,2 and

√
nLMv,3 are asymptotically equivalent

to
√
nSv;

2.
√
nS̃v

d→ T (δ,Ω, Q2) and
√
nJv,1,

√
nJv,4,

√
nLMv,1 and

√
nLMv,4 are asymptotically equivalent

to
√
nS̃v;

3. nσ̂2
1
d→ T (δ,Ω, Q3) and nσ̂2

4 is asymptotically equivalent to nσ̂2
1;

4. nσ̂2
2
d→ T (δ,Ω, Q4) and nσ̂2

3 is asymptotically equivalent to nσ̂2
2;

5. nσ̂2
j is non-negative with probability approaching one for j = 1, 2, 3, 4.

Proofs:

Proof of 1:
√
nSv is considered first. By a second order Taylor expansion,

va (p̂in) = va(1) + (p̂in− 1) + va,2 (σ̂i) (p̂in− 1)
2
/2, (5)

where σ̂i = αi + (1− αi) p̂in and αi ∈ (0, 1). Hence,

√
nSv =

√
n

n∑
i=1

√
n

(
p̂i −

1

n

)
np̂i

[
vb

(
q̂vci
p̂vci

)
−

n∑
`=1

vb

(
q̂vc`
p̂vc`

)
p̂`

]

+ n

n∑
i=1

va,2 (σ̂i)

2
(p̂in− 1)

2
p̂i

[
vb

(
q̂vci
p̂vci

)
−

n∑
`=1

vb

(
q̂vc`
p̂vc`

)
p̂`

]
= B1,n +B2,n.

Using Lemma SM2.9 n1/2(p̂i − 1/n) = n−1ĝ′in
√
nλ̂ (1 + op (1)) + Op(n

−3/2) and
∑n
i=1 p̂iĝ

′
in = 0 we

have B1,n =
√
nÂv,3

√
nλ̂ (1 + op (1))] +B1r,n, where B1r,n is defined below.

Note that by a first-order Taylor expansion

vb

(
nq̂vci
np̂vci

)
= vb (1) + vb,1

(
σ̂1,i

σ̂2,i

)
(nq̂vci − 1)

σ̂2,i
− σ̂1,i

σ̂2
2,i

vb,1

(
σ̂1,i

σ̂2,i

)
(np̂vci − 1) ,

where σ̂1,i = α1,i + (1− α1,i)nq̂
vc
i and α1,i ∈ (0, 1) and σ̂2,i = α2,i + (1− α2,i)np̂

vc
i and α2,2 ∈ (0, 1).

Thus,

√
nÂv,3 =

∑n

i=1
np̂iĝ

′
invb,1

(
σ̂1,i

σ̂2,i

)√
n

(
q̂vci −

1

n

)
1

σ̂2,i

−
∑n

i=1
np̂iĝ

′
in

σ̂1,i

σ̂2
2,i

vb,1

(
σ̂1,i

σ̂2,i

)√
n

(
p̂vci −

1

n

)
= W1,n −W2,n.

Now by Lemmata SM2.9
√
n(p̂vci −1/n) = n−1ĝ′in

√
nλ̂ (1 + op (1)) +Op(n

−3/2) and
√
n(q̂vci −1/n) =

n−1ĥ′in
√
nη̂ (1 + op (1)) +Op(n

−3/2) as κvc = 1. Additionally, note that similarly to (4) we have
√
nλ̂ =
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−Pg
√
nĝ(β0,pn) + op(1), and

√
nη̂ = −Ph

√
nĥ(γ∗pn) + op(1). Combining these results with the fact that

vb,1 = 1 and Lemma SM2.2, we obtain

W1,n =
√
nη̂′

1

n

n∑
i=1

ĥinĝ
′
invb,1

(
σ̂1,i

σ̂2,i

)
1

σ̂2,i
+Op(n

−2)

= −
√
nŝ(ϕ∗n)′S′hPhΩhg +Op(n

−2), (6)

and

W2,n =

n∑
i=1

np̂iĝ
′
in

σ̂1,i

σ̂2
2,i

vb,1

(
σ̂1,i

σ̂2,i

)[
1

n
ĝ′in
√
nλ̂ (1 + op (1)) +Op(n

−3/2)

]
= −

√
nŝ(ϕ

∗
n)′SgPgΩg +Op(n

−2),

where ϕ∗n = (β′0,pn , γ
∗′
pn)′.

Hence

√
nÂ3,v =

1√
n

n∑
i=1

np̂iĝ
′
invb

(
q̂vci
p̂vci

)
= −
√
nŝ(ϕ∗n)

′
S′hPhΩhg (7)

+
√
nŝ(ϕ∗n)

′
S′gPgΩg +Op(n

−2).

Now note that B1r,n ≡ n−1
∑n
i=1 np̂i[vb (q̂vci /p̂

vc
i )− n−1

∑n
i=1 vb (q̂vci /p̂

vc
i )np̂i]Op(1) = op(1).

Additionally, by Lemma SM2.9 we have

B2,n ≡ n

n∑
i=1

va,2 (σ̂i)

2

[√
n

(
p̂i −

1

n

)]2

np̂i

[
vb

(
q̂vci
p̂vci

)
−

n∑
`=1

vb

(
q̂vc`
p̂vc`

)
p̂`

]

= n

n∑
i=1

va,2 (σ̂i)

2

[
1

n
ĝ′in
√
nλ̂ (1 + op (1)) +Op(n

−3/2)

]2

np̂i

[
vb

(
q̂vci
p̂vci

)
−

n∑
`=1

vb

(
q̂vc`
p̂vc`

)
p̂`

]
.

By T and the fact that (a+ b)2 ≤ 2a2 + 2b2 we have

|B2,n| ≤
2

n

n∑
i=1

[‖ĝin‖2
∥∥∥√nλ̂∥∥∥2

(1 + op (1)) +Op(n
−3)]

∣∣∣∣∣va,2 (σ̂i)

2
np̂i

[
vb

(
q̂vci
p̂vci

)
−

n∑
`=1

vb

(
q̂vc`
p̂vc`

)
p̂`

]∣∣∣∣∣ .
Since

∑n
i=1 vb (q̂vci /p̂

vc
i ) p̂i = vb (1) + op(1) by Lemmata SM2.9 and

∥∥∥√nλ̂∥∥∥2

= Op(1) by Lemma

SM2.8 it follows by Lemma SM2.2 that |B2,n| = op(1).

Therefore,

√
nSv= −

√
nŝ(ϕ∗n)′S′hPhΩhg

√
nλ̂+

√
nŝ(ϕ∗n)′S′gPgΩg

√
nλ̂+Op(n

−2)

=
√
nŝ(ϕ∗n)′S′hPhΩhgPgSg

√
nŝ(ϕ∗n)−

√
nŝ(ϕ∗n)′S′gPgSg

√
nŝ(ϕ∗n) +Op(n

−2)

because
√
nλ̂ = −Pg

√
nĝ(β0,pn) + op(1) and the fact PgΩgPg = Pg. Hence, since

√
nŝ(ϕ∗n)

d→ N (δ,Ω),

δ = (δ′g, δ
′
h)′ by Lemma SM2.8 it follows that

√
nSv

d→ T (δ,Ω, Q1).
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Consider now
√
nJv,2 = −

√
nÂv,2Ω̂−1

g

√
nĝ(β̂), note that

√
nJv,2 = n−1/2

n∑
i=1

(np̂i − 1)vb(nq̂i/(np̂i))ĝ
′
inΩ̂−1

g

√
nĝ(β̂)

−
√
nÂv,3Ω̂−1

g

√
nĝ(β̂).

We prove that the first term converges in probability to zero. Note that by Lemma SM2.9

n−1/2
n∑
i=1

(np̂i − 1)vb

(
nq̂vci
np̂i

)
ĝ′in =

1

n

n∑
i=1

vb

(
nq̂vci
np̂i

)
ĝinĝ

′
in

√
nλ̂ (1 + op (1))

+

n∑
i=1

Op(n
−3/2)v (nq̂i) ĝ

′
in.

Both terms of the rhs converge to zero in probability by Lemma SM2.9, Lemma SM2.2, the facts that
√
nλ̂ = −Pg

√
nĝn(β0,pn) + op(1), ΩP = 0 and ĝ(β̂)

p→ 0. Hence

n−1/2
n∑
i=1

(np̂i − 1)vb

(
nq̂vci
np̂i

)
ĝ′in = op(1). (8)

Combining (7) and (8), one obtains

√
nÂv,2 =

√
nÂv,3 + op(1). (9)

Consequently as

−
√
nΩ−1

g ĝ(β̂) =
√
nλ̂+ op(1)

= −Pg
√
nĝ(β0,pn) + op(1), (10)

we have
√
nJ2,v =

√
nJ3,v + op(1) =

√
nSv + op(1).

Concerning the Lagrange multiplier test statistics note that for
√
nLMj,v j = 2, 3 we have

√
nLMv,j−

√
nJv,j = n1/2Âv,j

[
n1/2λ̂+ Ω̂−1

g n1/2ĝ(β̂)
]

= n1/2Âv,j [−Ω−1
g + Ω̂−1

g + op(1)]
√
nĝ(β̂) = op(1) using (10)

and the facts that
√
nÂj,v = Op(1), Ω−1

g − Ω̂−1
g = op(1) by Lemma SM2.2 and

√
nĝ(β̂) = Op(1).

Proof of 2: Let us now consider
√
nS̃v. By (5), it follows that

√
nS̃v =

√
n

n∑
i=1

√
n

(
p̂i −

1

n

)
np̂i

[
vb (nq̂vci )−

n∑
`=1

vb (nq̂vc` ) p̂`

]

+ n

n∑
i=1

v2,a (σ̂i)

2
(p̂in− 1)

2
p̂i

[
vb (nq̂vci )−

n∑
`=1

vb (nq̂vc` ) p̂`

]
= C1,n + C2,n.

Hence, by Lemma SM2.9,

C1,n = n−1/2
n∑
i=1

np̂i

[
vb (q̂vci n)−

n∑
`=1

vb (q̂vc` n) p̂`

]
ĝ′in
√
nλ̂ (1 + op (1))

+C1r,n.
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Note that n−1/2
∑n
i=1 np̂i[vb (q̂vci n) −

∑n
`=1 vb (q̂vc` n) p̂`]ĝ

′
in = n−1/2

∑n
i=1 np̂ivb (q̂vci n) ĝ′in because∑n

i=1 p̂iĝ
′
in = 0. Additionally by a Taylor expansion vb (nq̂vci ) = vb (1) + vb,1 (σ̂3,i) (nq̂vci − 1), where

σ̂3,i = α3,i + (1− α3,i)nq̂
vc
i and α3,i ∈ (0, 1). Thus

1√
n

n∑
i=1

np̂iĝ
′
invb (q̂vci n) =

1√
n

n∑
i=1

np̂iĝ
′
invb,1 (σ̂3,i) (nq̂vci − 1) .

Now note that
∑n
i=1 np̂iĝ

′
in

√
n (nq̂vci − 1/n) = Op(1) by Lemma SM2.9, Lemma SM2.2 and the fact

that
√
nη̂ = Op(1). Thus using continuity of vb,1 (.) at 1, we have

√
nÂ4,v = n−1/2

n∑
i=1

np̂inĝ
′
invb (q̂vci n) = W1,n + op(1) (11)

= −
√
nŝ(ϕ

∗
n)
′
S′hPhΩhg +Op(n

−2)

by (6). Also C1r,n = n−1/2
∑n
i=1 np̂i[vb (q̂vci n)−

∑n
`=1 vb (q̂vc` n) p̂`]ĝ

′
iOp(n

−3/2) = op(1/n) by Lemmata

SM2.9 and SM2.1 and C2,n = op(1) using a proof similar to the proof that B2,n = op(1). Hence

√
nS̃v = −

√
nŝ(ϕ∗n)

′
S′hPhΩhg

√
nλ̂+ op(1)

=
√
nŝ(ϕ∗n)

′
S′hPhΩhgPgSg

√
nŝ(ϕ∗n) + op(1).

Thus, since
√
nŝ(ϕ∗n)

d→ N (δ,Ω) we have
√
nS̃v

d→ T (δ,Ω, Q2).

Consider now
√
nJv,1 = −n−1/2

∑n

i=1
vb (nq̂vci ) ĝ′iΩ̂

−1
g n1/2ĝ(β̂). Note that

√
nÂv,1 = n−1/2

∑n

i=1
v (nq̂i) ĝ

′
in =

−n−1/2
∑n

i=1
(np̂i − 1)vb (nq̂vci ) ĝ′in +

√
nÂv,4. The second term of the rhs has the asymptotic represen-

tation given in (11). Similarly to the proof of (8) the first term converges in probability to zero and

therefore

√
nÂv,1 =

√
nÂv,4 + op(1). (12)

Thus, using equation (10), and the fact that Pg
√
nĝ(β0,pn) = Op(1) it follows that

√
nJ1,v =

√
nJ4,v +

op(1) =
√
nS̃v+op(1). The proof that

√
nLMv,j−

√
nJv,j = op(1), j = 1, 4 is similar to the case j = 2, 3

and therefore omitted.

Proof of 3: Let us first consider nσ̂2
1 = nÂ1,vP̂gÂ

′
1,v. Note that by (12) and (11), nσ̂2

1 =

nŝ(ϕ∗n)′KhPgK
′
hŝ(ϕ

∗
n) + op(1). Hence, it follows that nσ̂2

1
d→ T (δ,Ω, Q3) because of the fact that

√
nŝ(ϕ∗n)

d→ N (δ,Ω). Additionally, using (12) and (11) we have nσ̂2
4 = nσ̂2

1 + op(1).

Proof of 4: Now consider nσ̂2
2 = nÂ2,vP̂gÂ

′
2,v. By (9) and (7) we have

nσ̂2
2 = nŝ(ϕ∗n)

′
(Kh −Kg)Pg(Kh −Kg)

′ŝ(ϕ∗n) + op(1).

Hence nσ̂2
1

d→ T (δ,Ω, Q4) as
√
nŝ(ϕ∗n)

d→ N (δ,Ω). Additionally, also by (9) and (7) we have nσ̂2
2 =

nσ̂2
3 + op(1).
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Proof of 5: Because Pg is a positive semidefinite matrix, it follows that nσ̂2
j ≥ 0, j = 1, 2, 3, 4

wpa1.

Proof of Theorem 5.1: (1) follows from Lemmata SM2.10 and SM2.11 with δg = 0, while (2) follows

from Lemma SM2.12 with δ = S′hδh.

Proof of Theorem 5.2: The proof of this theorem is similar to the proof of Theorem 4.1 of Shi (2015).

First let Ω̂n = Ω̂, Q̂n,i = Q̂i and Q̂n,j = Q̂j , cv
∗
ij,n = cv∗(1 − τ, Ω̂n, Q̂n,i, Q̂n,j). We take a sequence

{pn ∈ P0} and a subsequence {bn} of {n} such that

lim sup
n→∞

sup
p∈P0

Pr (|W s
n (i, j)| > cv∗n) = lim

n→∞
Prpbn

(∣∣W s
bn (i, j)

∣∣ > cv∗ij,bn
)
.

Such sequences and subsequences always exist. Assumption 5.1 and condition (c) of Definition 5.1 imply

that elements in the arrays βo,p, γ
∗
p , η∗p , Ωp(ϕ

∗), Dp,g(β
∗), Dp,h(γ∗), Ap,v(µ

∗) are uniformly bounded

over p∈ P. Thus, there exists a subsequence {an} of {bn} and some (β0, γ
∗, δh,Ω, Dg, Dh, Av) such that(

β0,pan
, γ∗pan ,

√
nEpan ,h,Ωpan (ϕ∗), Dpan ,g

(β∗), Dpan ,h
(γ∗), Apan ,v(µ

∗)
)
→ (β0, γ

∗, δh,Ω, Dg, Dh, Av). It

suffices to show that lim
n→∞

Prpan
(∣∣W s

an (i, j)
∣∣ > cv∗ij,an

)
≤ τ .

Note now that

W s
an (i, j) =

Tan (i)− tr(Q̂an,iΩ̂an)/
√
an√

Van(j) + cij · tr(Q̂an,jΩ̂an)/an

, i = 1, 2, j = 3, 4.

By Theorem 5.1 (1) if ‖δh‖∞ = +∞, we have Tan (i)
d→ N (0, σ2) and Van(j)

p→ σ2. Additionally,

Q̂an,i
p→ Qi, Q̂an,j

p→ Qj , Ω̂an
p→ Ω by Lemma SM2.2 and the Slutsky theorems. Therefore W s

an (i, j)
d→

N (0, 1) and

lim
n→∞

PrPan
(∣∣W s

an (i, j)
∣∣ > cv∗ij,an

)
≤ lim

n→∞
PrPan

(∣∣W s
an (i, j)

∣∣ > z1−τ/2
)

= τ

because cv∗ij,an ≥ z1−τ/2.

Suppose now that ‖δh‖∞ < +∞ in this case

W s
an (i, j)

d→Ws (S′hδh, i, j) =
T (S′hδh,Ω, Qi)− tr(QiΩ)√
T (S′hδh,Ω, Qj) + cij · tr(QjΩ)

by Lemma SM2.2 and Theorem 5.1 (2).

Note that cv∗ij,an ≥ cv(1− τ, Ω̂an , Q̂an,i, Q̂an,j). Hence

Prpan
(∣∣W s

an (i, j)
∣∣ > cv∗ij,an

)
≤ Prpan

(∣∣W s
an (i, j)

∣∣ > cv(1− τ, Ω̂an , Q̂an,i, Q̂an,j)
)
.

Note that by inspectionWs (S′hδh, i, j) is continuous in (δh,Ω, Qi, Qj); the continuity of the Cholesky

decomposition follows from Lemma 2.1.6 p. 295 of Schatzman (2002). Additionally, Ws (S′hδh, i, j) is

a continuous random variable and consequently cv (1− τ, δh,Ω, Qi, Qj) is continuous in (δh,Ω, Qi, Qj).
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Since [0, ch] is a compact set it follows by the maximum theorem that cv(1− τ,Ω, Qi, Qj) is continuous

in Ω, Qi, Qj . Now by Lemma SM2.2 Ω̂an
p→ Ω, Q̂an,i

p→ Qi and Q̂an,j
p→ Qj and consequently cv(1 −

τ, Ω̂an , Q̂an,i, Q̂an,j)
p→ cvij(1− τ, [0, ch]). Therefore

lim
n→∞

PrPan

(∣∣W s
an (i, j)

∣∣ > cv(1− τ, Ω̂an , Q̂an,i, Q̂an,j)
)

= Pr (|Ws (S′hδh, i, j)| > cvij(1− τ, [0, ch])) .

Now by Assumption 5.2 cvij(1− τ, [0, ch]) = cvij(1− τ, [0,+∞)), consequently for any δh ∈ [0,+∞)

Pr (|Ws (S′hδh, i, j)| > cv(1− τ, [0, ch])) ≤ Pr (|Ws (S′hδh, i, j)| > cv (1− τ, S′hδh,Ω, Qi, Qj , cij))

= τ.

Proof of Theorem 5.3: Using the same arguments as in the proof of Theorem 5.1 cv(1− τ,Ω, Qi, Qj)

is continuous in Ω, Qi, Qj and therefore cv(1 − τ, Ω̂, Q̂i, Q̂j)
p→ cv(1 − τ,Ω, Qi, Qj) because Ω̂

p→ Ω,

Q̂i
p→ Qi and Q̂,j

p→ Qj for ‖δh‖∞ ≤ +∞ by Lemma SM2.2. consequently cv∗(1− τ, Ω̂, Q̂i, Q̂j)
p→ cv∗ij .

Now let us consider first the case ‖δh‖∞ < +∞. In this case W s
n (i, j)

d→W(δ,Ω, Qi, Qj , cij) by Lem-

mata SM2.2 and SM2.12, It follows that lim
n→∞

Prpn

(
|W s

n (i, j)| > cv∗(1− τ, Ω̂, Q̂i, Q̂j)
)

= 1−F|Wij |(cv
∗
ij).

Consider now the case ‖δh‖∞ = +∞. In this case W s
n (i, j)

d→ N (−AvPgδg/σ, 1) by Lemmata SM2.2

and SM2.12. It follows that lim
n→∞

Prpn

(
|W s

n (i, j)| > cv∗(1− τ, Ω̂, Q̂i, Q̂j)
)

= Pr
[
|x| > cv∗ij

]
, where x ∼

N (−AvPgδg/σ, 1). Now note that Pr
[
|x| > cv∗ij

]
= Φ(−cv∗ij −AvPgδg/σ) + Φ(−cv∗ij +AvPgδg/σ).

SM2.2 The limit behavior of W ∗
i,j(δh)

In this subsection we investigate the behavior of the random variableW ∗i,j(δh) = T (S′hδh,Ω, Qi)/ T (S′hδh,Ω, Qj)
1/2

,

i = 1, 2, j = 3, 4, as some of the elements of δh approach infinity. These random variables are defined in

section 5.1 of the paper, page 17. We start by presenting two useful Lemmata that allow us to analyze

this limit. The proofs of the Lemmata are presented at the end of this subsection.

Lemma SM2.13 The random variables W ∗i,j(δh) = T (S′hδh,Ω, Qi)/ T (S′hδh,Ω, Qj)
1/2

, i = 1, 2, j =

3, 4 have the following representation:

W ∗i,j(δh) =
s0 (δh)x0 + z′C ′ΩQiCΩz

[s2
0 (δh) + 2sj (δh)xj + z′C ′ΩQjCΩz]

1/2
, (13)

where z ∼ N (0, Im), x0 ∼ N (0, 1), s2
0 (δh) = δ′hL0δh ≥ 0, L0 ≡ PhΩhgPgΩ

′
hgPh, s2

3 (δh) = δ′hL1δh ≥ 0,

where L1 ≡ L0ΩhL0, s2
4 (δh) = s2

0 (δh)− s2
3 (δh) ≥ 0 and xj ∼ N (0, 1).

We can see from Lemma SM2.13 that W ∗i,j(δh) only depends on δh via the quadratic forms δ′hL0δh

and δ′hL1δh. Additionally, it is apparent from equation (13) that if s2
0 (δh) = δ′hL0δh → ∞, then
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W ∗i,j(δh)→ N (0, 1) (note that 0 ≤ sj (δh) /s2
0 (δh) ≤ s−1

0 (δh), j = 3, 4). However, given that the matrix

L0 is positive semidefinite (because Pg is positive semidefinite), the quadratic form δ′hL0δh does not

necessarily diverge as any of the elements of δh approach infinity. In fact the following lemma shows

that this limit is path dependent. We use the following notation. Let N(A) denote the null space of a

matrix A and let ‖·‖ be the Euclidean norm of ·. Denote U a matrix of eigenvectors of the matrix L0

chosen such that they are orthogonal to each other. Let also Ua be the submatrix of U that contains the

eigenvectors corresponding to the positive eigenvalues of L0 and Ub be the submatrix of U that contains

the eigenvectors corresponding to the zero eigenvectors of L0.

Lemma SM2.14 If rank(L0) = r > 0 and δh (ta, tb) = Uata + Ubtb where ta ∈ Rr and tb ∈ Rmh−r,

then we have ‖δh (ta, tb)‖ = ‖ta‖+ ‖tb‖, and the following results hold for i = 1, 2, j = 3, 4:

1. W ∗i,j(δh (ta, tb)) = W ∗i,j(Uata);

2. lim‖tb‖→∞W ∗i,j(δh (ta, tb)) = W ∗i,j(Uata), if ‖ta‖ <∞;

3. lim‖ta‖→∞W ∗i,j(δh (ta, tb)) = x0 either if ‖tb‖ <∞ or if ‖tb‖ → ∞, where x0 ∼ N (0, 1).

In Lemma SM2.14 we consider paths of the form δh (ta, tb) = Uata + Ubta because the eigenvectors

are chosen such that they are orthogonal to each other and therefore they form a basis of Rmh . Since

‖δh (ta, tb)‖ = ‖ta‖ + ‖tb‖, it follows that ‖δh (ta, tb)‖ goes to infinity in the following cases: ‖tb‖ → ∞

and ‖ta‖ <∞; ‖ta‖ → ∞ and ‖tb‖ <∞; and ‖ta‖ → ∞ and ‖tb‖ → ∞. Lemma SM2.14 shows that, for

fixed ta satisfying ‖ta‖ <∞, the distribution of W ∗i,j(δh (ta, tb)) does not depend on the value of tb and

consequently this distribution is the same whether ‖tb‖ → ∞ or if ‖tb‖ <∞. On the other hand, when

‖ta‖ → ∞, W ∗i,j(δh (ta, tb)) converges always to the standard normal distribution.

We prove now the above Lemmata.

Proof of Lemma SM2.13: First note that for any matrixQ: T (δ′hSh,Ω, Q) = (δ′hSh + z′C ′Ω)Q (S′hδh + CΩz) =

δ′hShQS
′
hδh + δ′hShQCΩz + z′C ′ΩQS

′
hδh + z′C ′ΩQCΩz. We prove the result by showing that:

(a) for i = 1, 2 : T (δ′hSh,Ω, Qi) = s0 (δh)x0 + z′C ′ΩQiCΩz, s
2
0 (δh) = δ′hLδh and x0 ∼ N (0, 1).

(b) for j = 3, 4 : T (δ′hSh,Ω, Qj) = s2
0 (δh) + 2sj (δh)xj + z′C ′ΩQjCΩz, s

2
3 (δh) = δ′hLΩhLδh, s

2
4 (δh) =

s2
0 (δh)− s2

3 (δh) ≥ 0 and xj ∼ N (0, 1).

We start by proving (a). Let us consider T (δ′hSh,Ω, Qi). Note that for Q = Q1 and Q = Q2 we

have δ′hShQS
′
hδh = 0, z′C ′ΩQS

′
hδh = 0 and δ′hShQCΩz = δ′hPhΩhgPgSgCΩz because SgS

′
h = 0 and

ShS
′
h = Imh

. Therefore for i = 1, 2: T (δ,Ω, Qi) = δ′hPhΩhgPgSgCΩz + z′C ′ΩQiCΩz. Let s2
0 (δh) =

var (δ′hPhΩhgPgSgCΩz). Note that s2
0 (δh) = δ′hPhΩhgPgSgΩS

′
gPgΩ

′
hgPhδh = δ′hL0δh ≥ 0 and let x0 ∼

N (0, 1). Hence for i = 1, 2 we have T (δ′hSh,Ω, Qi) = s0 (δh)x0 + z′C ′ΩQiCΩz. To see this note that
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if s2
0 (δh) = 0, δ′hPhΩhgPgSgCΩz = 0 and s0 (δh)x0 = 0 and if s0 (δh) > 0, then we can define x0 =

δ′hPhΩhgPgSgCΩz/s0 (δh) and since z ∼ N (0, Im) it follows that x0 ∼ N (0, 1).

We prove now (b). Note that for Q = Q3 and Q = Q4 we have δ′hShQS
′
hδh = δ′hL0δh = s2

0 (δh)

because SgS
′
h = 0 and ShS

′
h = Imh

. Additionally, by symmetry we have for Q = Q3 and Q = Q4:

δ′hShQCΩz + z′C ′ΩQS
′
hδh = 2δ′hShQCΩz.

Now note that δ′hShQ3CΩz = δ′hPhΩhgPgΩ
′
hgPhShCΩz and consequently s2

3 (δh) = var
(
δ′hPhΩhgPgΩ

′
hgPhShCΩz

)
=

δ′hL0ΩhL0δh ≥ 0.

Let us consider now δ′hShQ4CΩz. Note that δ′hShQ4CΩz = δ′hPhΩhgPg(Kh − Kg)
′CΩz, because

SgS
′
h = 0 and and ShS

′
h = Imh

. Let s2
4 (δh) = var (δ′hPhΩhgPg(Kh −Kg)

′CΩz). After some lengthy,

but simple algebra we can show that s2
4 (δh) = s2

0 (δh) − s2
3 (δh). Since s2

4 (δh) ≥ 0 it follows that

s2
0 (δh) ≥ s2

3 (δh). Consequently T (δ′hSh,Ω, Qj) = s2
0 (δh) + 2sj (δh)xj + z′C ′ΩQjCΩz for j = 3, 4 if

s2
j (δh) ≥ 0, s0 (δh) ≥ 0 using the same arguments adopted in the proof of (a).

Proof of Lemma SM2.14: Since L0 is a real symmetric matrix it can be factorized as L0 = UΛU ′,

where UU ′ = U ′U = Imh
and Λ is a diagonal matrix whose entries are the eigenvalues of L0. Note

that L0 = UΛU ′ = UaΛ∗U
′
a, where Λ∗ is a (r × r) matrix with only the r positive eigenvalues in

the diagonal. Now notice that Ubtb ∈ N(L0) as AUbtb = UaΛ∗U
′
aUbtb = 0, because U ′aUb = 0. Also

(Uata)
′
Ubta = taU

′
aUbtb = 0, as U ′aUb = 0. Hence ‖δh (ta, tb)‖ = ‖ta‖+ ‖tb‖.

To prove 1 note that since Ubtb ∈ N(L0), it follows that Ubtb ∈ N(L1) and Ubtb ∈ N(L0−L1) because

L0, L1 and L0 −L1are positive semidefinite by Lemma SM2.13 (see Abadir and Magnus, 2005, solution

of Exercise, 8.41, p. 227). Consequently s2
0 (δh (ta, tb)) = taU

′
aL0Uata, s2

3 (δh (ta, tb)) = taU
′
aL1Uata

and s2
4 (δh (ta, tb)) = taU

′
a (L0 − L1)Uata and the result follows from Lemma SM2.13. The result 2 is

a consequence of 1 because W ∗i,j(Uata) does not depend on tb. To prove 3 we only need to prove that

lim‖ta‖→∞ s2
0 (δh (ta, tb)) = +∞ as in this case lim‖ta‖→∞ sj (δh (ta, tb)) /s

2
0 (δh (ta, tb)) = 0 due to the

fact that 0 ≤ sj (δh (ta, tb)) /s
2
0 (δh (ta, tb)) ≤ s−1

0 (δh (ta, tb)), j = 3, 4 for s0 (δh (ta, tb)) > 0 by SM2.13.

Now since U ′aUa = Ir we have s2
0 (δh (ta, tb)) = taU

′
aL0Uata = taU

′
aUaΛ∗U

′
aUata = taΛ∗ta ≥ c ‖ta‖ ,

where c is a positive constant. Hence s2
0 (δh (ta, tb))→∞ as ‖ta‖ → ∞.

SM3 Monte Carlo study (additional results)

Tables SM1 and SM2 present the empirical sizes and powers for the tests based on the non-nested test

statistics computed with the exponential tilting (ET) estimator for the sample sizes 200 and 400. The

nominal level for all tests reported is 0.05. We report the results for Sα, S̃α, LMα and Jα for α → 0,

α = 1, 1.5, 2, 3 and for the Ramalho and Smith (2002) statistics based on ET. We use the notation Srs,

S̃rs, LMrs and Jrs for the Ramalho and Smith (2002) statistics. We also present in the Tables SM1

and SM2 the results for the tests for overidentifying restrictions based on the likelihood ratio statistic
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computed with ET [Kitamura and Stutzer (1997) and Imbens et al. (1998)], which is labelled LRet. ET

is calculated using the Broyden—Fletcher—Goldfarb—Shanno (BFGS) algorithm.

Table SM1: Rejection frequencies of the tests under the null.

n 200 400
Statistic original Shi-type original Shi-type

Estimator ρug,wh2 0.0 0.2 0.4 0.0 0.2 0.4 0 0.2 0.4 0 0.2 0.4
LRet 5.8 5.6 6.2 − − − 5.6 5.3 5.7 − − −
S0 18.0 15.6 14.5 1.8 1.7 1.9 16.3 13.6 12.5 1.6 1.4 1.7

S̃0 5.5 6.1 8.6 4.6 6.4 7.9 4.9 4.9 7.3 4.0 4.9 6.2
LM0 7.8 6.4 7.8 4.5 4.2 4.4 6.4 5.8 6.6 4.3 3.3 3.5
J0 5.7 4.8 6.0 3.5 3.1 3.0 5.5 5.1 5.7 3.8 2.8 2.8
S1 18.2 16.0 15.8 2.0 1.8 1.8 16.4 13.9 14.2 1.6 1.3 1.3

S̃1 6.1 5.9 8.2 4.4 5.8 7.1 5.4 5.1 6.5 3.9 4.6 5.4
LM1 7.5 6.4 7.8 4.7 4.3 4.2 6.3 5.7 6.5 4.3 3.3 3.4
J1 5.4 4.8 6.2 3.9 3.3 2.7 5.4 4.9 5.7 3.8 2.8 2.7
S1.5 18.2 16.3 16.0 2.2 2.0 1.9 16.4 14.1 14.5 1.8 1.4 1.5

S̃1.5 6.4 6.0 8.0 4.2 5.5 6.7 5.6 5.2 6.9 3.8 4.0 5.2
LM1.5 7.3 6.5 7.5 4.7 4.5 4.2 6.2 5.6 5.8 4.2 3.4 3.3

ET J1.5 5.3 5.1 5.6 3.8 3.4 2.8 5.4 4.8 5.1 3.8 3.0 2.7
S2 18.2 16.3 15.9 2.4 2.3 2.4 16.4 14.1 14.3 1.9 1.7 1.7

S̃2 6.7 6.2 7.9 4.2 5.2 6.1 5.8 5.2 7.2 3.8 3.6 4.9
LM2 7.1 6.5 6.9 4.7 4.7 4.3 6.2 5.5 5.9 4.2 3.5 3.6
J2 5.3 4.8 5.2 3.8 3.6 3.0 5.3 4.7 5.0 3.8 2.9 3.0
S3 18.2 16.3 15.3 3.4 3.2 3.5 16.4 13.9 13.7 2.3 2.1 2.5

S̃3 6.9 6.8 8.4 4.1 4.5 4.9 6.3 5.6 7.6 3.7 3.2 4.9
LM3 7.0 6.5 7.1 4.8 5.0 5.0 6.0 5.4 6.4 4.2 3.7 4.2
J3 5.2 4.8 5.5 4.0 3.9 3.7 5.2 4.5 5.5 3.9 3.2 3.6
Srs 16.2 15.0 15.1 2.1 1.0 1.4 15.9 13.6 12.0 1.6 1.1 0.8

S̃rs 5.7 5.3 7.4 3.4 5.8 7.6 5.5 5.4 7.5 3.5 5.2 7.1
LMrs 7.1 6.9 7.4 4.1 4.3 3.9 6.4 6.6 5.6 3.7 4.1 2.9
Jrs 5.2 5.1 5.5 3.2 3.0 2.4 5.6 5.6 4.8 3.4 3.5 2.4

Table SM2: Rejection frequencies of the tests under the alternative.

n 200 400
Statistic original Shi-type original Shi-type

Estimator ω 3 4 5 3 4 5 3 4 5 3 4 5
LRet 35.3 53.1 66.3 − − − 34.6 55.6 73.9 − − −
S0 43.7 57.0 62.7 11.9 19.9 27.2 40.7 55.9 66.8 10.7 19.8 30.6

S̃0 10.3 19.6 33.6 5.1 10.4 19.2 12.5 26.2 42.9 5.7 14.2 27.6
LM0 43.6 61.2 73.3 34.5 52.4 65.3 43.8 63.2 79.2 33.4 53.9 72.8
J0 37.9 55.5 68.0 27.7 44.3 57.4 40.6 60.3 77.0 29.8 49.7 68.6
S1 48.9 62.1 67.6 12.7 20.9 28.7 47.7 64.3 75.4 11.1 21.4 33.3

S̃1 18.4 32.1 49.0 10.9 20.8 35.8 20.1 35.8 54.5 11.1 24.0 40.5
LM1 40.2 58.9 71.9 30.4 49.2 62.9 40.4 60.6 77.5 29.0 50.1 70.1
J1 34.6 53.0 66.2 23.3 40.9 54.2 38.0 57.7 75.2 25.7 45.4 65.6
S1.5 50.1 63.9 69.4 14.0 22.9 30.7 49.2 66.5 77.9 12.4 23.4 36.0

S̃1.5 23.1 37.3 54.5 15.3 26.3 42.6 23.8 40.1 59.1 14.6 28.8 46.4
LM1.5 37.2 56.4 70.2 27.3 46.0 60.4 36.6 56.6 75.5 25.6 45.7 67.3

ET J1.5 31.6 49.9 64.0 20.1 37.8 52.0 34.2 53.6 72.6 22.9 41.1 62.4
S2 50.7 64.5 70.2 16.2 25.6 34.0 50.4 67.9 79.5 13.9 26.6 39.5

S̃2 26.3 41.7 58.0 18.5 30.9 47.8 26.5 43.1 61.9 17.4 32.6 50.5
LM2 33.7 52.6 67.7 24.2 42.4 57.5 32.4 51.9 71.4 22.0 41.0 61.6
J2 28.5 46.2 61.3 17.7 33.4 48.8 29.9 48.8 67.7 19.1 36.1 56.6
S3 50.2 65.3 71.0 21.2 32.0 40.6 49.4 67.8 79.7 18.8 33.1 47.1

S̃3 28.2 45.1 62.0 21.2 36.1 53.6 25.7 42.2 59.5 18.7 33.8 51.9
LM3 29.1 46.1 61.3 21.2 35.3 51.1 27.1 43.8 60.0 20.3 34.0 51.3
J3 23.9 39.0 53.8 15.5 27.3 42.2 24.3 40.1 56.2 17.5 30.3 46.4
Srs 52.6 67.5 74.5 13.9 29.2 43.7 50.0 71.5 84.8 11.4 28.1 45.8

S̃rs 10.7 29.7 48.3 7.7 22.9 39.6 5.1 13.4 29.9 1.9 7.1 21.0
LMrs 37.7 51.2 62.5 27.5 41.6 54.6 40.7 59.4 68.3 29.2 47.1 58.2
Jrs 32.1 44.8 55.5 20.0 34.1 46.4 38.2 56.5 64.8 25.5 42.3 52.9
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