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C Time-varying regressors

The assumption in this paper that the exogenous regressor xt is constant serves the
purpose of analytical tractability, especially in order to facilitate the examination of the
asymptotic behaviour of at, at least to such an extent as is needed for the treatment of
the EEP. Upon inspecting the proofs, however, it is apparent that time-varying regressors
xt are likely to lead to complications in the analysis. In particular, in the case of constant
gain learning, the analogue of (2.2) for general time-varying xt is

at =

[
1− cx

2
t

rt

]
at−1 + c

x2t
rt

+ γ
xt
rt
εt

such that xt may cause the autoregressive coe�cient to switch between the stable, unit
root or explosive regimes. This issue will not arise in the case of decreasing gain learning
as long as at converges to the REE α. On the other hand, the singularity of the asymp-
totic second moment matrix will persist, see equation (1.6). In order derive substantial
results in these settings, strong assumptions will have be imposed on the regressors. One
such restriction is the case of the regressors tending to an equilibrium value which, not
surprisingly, leads to essentially the same results as in Theorems 1-4.

Assumption E
The sequence xt tends to an equilibrium value x: limt→∞ xt = x.

Without loss of generality, we may again assume that x = 1. The xt are taken to
be deterministic for expositional simplicity. Identical calculations to those below would
result for stochastic regressors if, for instance, (i) the regressors are strictly exogenous,
i.e. the sequence xt is independent of the error terms εt, and (ii) Assumption E holds with
probability one.

C.1 Constant gain

Reconsider the recursion of rt in (1.4b) with a constant gain γt = γ:

rt = (1− γ) rt−1 + γx2t . (C.1)

With the solution of (C.1) given by

rt = ρtr0 + γ
t−1∑
n=0

ρnx2t−n

it follows that rt tends to the equilibrium value r = x2 = 1, provided that γ ∈ (0, 1). Sub-
stituting this into the dynamics of at in (1.4a) yields the recursion in (2.2), as indeed was
obtained under the assumption of a constant xt = x. As a consequence, the asymptotics
of at are also the same.

Regarding the EEP, note that the structural equation is given by

yt = δxt + βat−1xt + εt

or
yxt = δt + βat−1 + εxt ,

with yxt = yt/xt and ε
x
t = εt/xt. Remembering that xt → 1, it can be shown that passing

from εxt to εt does not a�ect the behaviour of the OLS estimator, so that all the results
for the EEP in the case of constant gain remain valid.
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C.2 Decreasing gain

Reconsider the recursion of rt in (1.4b) with a decreasing gain sequence γt = γ/t, i.e.

rt =

(
1− γ

t

)
rt−1 +

γ

t
x2t .

This is of the same form as equation (B.1). Hence, performing the same analysis on rt as
is done on at in Appendices B.1.1 and B.1.2 shows that, for every γ > 0,

lim
t→∞

rt = rγx2 = rγ

for some positive number r. Using this equilibrium value in the dynamics for at in (1.4a)
we obtain

at = at−1 +
1/r

t
(yt − at−1) ,

which is just (1.9) with γt = γ̃/t and γ̃ = 1/r. Note, however, that in order to determine
γ̃ and, correspondingly, the value of c̃ = (1− γ̃) β, one has to know r. This, however, is
given by

r = lim
t→∞

1

tγ

t∑
i=1

θi
i1−γ

,

cf. (B.14) and (B.15). Since θi → 1, it is clear that

r = lim
t→∞

1

tγ

t∑
i=1

1

i1−γ
= lim

t→∞

1

tγ

[∫ t

1

ds

s1−γ
+O(1)

]
=

1

γ
.

Hence, γ̃ = γ and c̃ = c. As a consequence, up to a change in variance, we have the same
asymptotics for at as for xt = 1. The same is true for the EEP.

D Consistency

The weak consistency of the OLS estimator in Sections 2 and 3 is obtained as a byproduct
of our results in Theorems 2 and 4. It is instructive, however, to look at our results in the
light of the results available in the literature on consistency in models with predetermined
regressors. The reason is that even the best of those conditions turn out not to be met
by some of the constant and decreasing gain learning models we consider in this paper.
This �nding complements the failure of the Grenander condition for the decreasing gain
model in Section 3, see also the discussion in the introduction.

To our knowledge, the best su�cient condition for the consistency of the OLS estimator
in multivariate models with predetermined regressors is given in Lai & Wei (1982a). It
requires that

λmin(T )→∞ and
lnλmax(T )

λmin(T )
→ 0 a.s., (D.1)

where λmax(T ) and λmin(T ) are the maximal and minimal eigenvalue, respectively, of the
regressors' moment matrix MT . For the estimation of the slope parameter in a simple
regression model, a slight improvement is given in Lai & Wei (1982b) with the condition

AT
lnT

→∞ a.s., (D.2)
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with AT being the usual sum of squared mean-adjusted regressors. To illustrate the
strength of (D.1), Lai & Wei (1982a) discuss an example in which a marginal violation
of the conditions leads to the inconsistency of the OLS estimator. They hence call the
conditions in (D.1) �in some sense the weakest possible� (p. 155).

For the purpose of comparing (D.1) to our results on weak consistency, note that this
condition may also be used in terms of convergence in probability, in the sense that

lnλmax(T )

λmin(T )

p→ 0 (D.3)

implies the weak consistency of the OLS estimator, say θ̂T . This is because the basic result
obtained by Lai & Wei (1982a) is that∥∥∥θ̂T − θ∥∥∥2 = lnλmax(T )

λmin(T )
O(1) a.s.

on the set
{
λmin(T ) > 0

}
. Let us brie�y discuss condition (D.3) for the various models

considered in this paper.

D.1 Constant gain

Reconsider the model in (2.1)-(2.2). For the stable case, (D.3) is trivially satis�ed since all
entries of MT in (2.5) satisfy a weak LLN. The same is true for the unit root case, as can
be shown by some straightforward calculations on the eigenvalues, using the asymptotic
behaviour of the properly normalised entries of MT as obtained in Appendix A.3.2. For
the explosive case, similar calculations making use of Theorem 1 (iii) show that

lnλmax(T )

λmin(T )
→ 4 ln|1− c| a.s..

Hence (D.3) is violated, but weak consistency still holds.

D.2 Decreasing gain

Turn now to model (3.1)-(3.2). For c < 1/2, it can be veri�ed that condition (D.3) is met.
For c > 1/2, however, it is shown in Appendix B.3 that

plim
T→∞

AT
lnT

=
σ2γ2

2c− 1
.

Hence (D.2) is not satis�ed. Also, Christopeit & Massmann (2013) conclude that

plim
T→∞

lnλmax(T )

λmin(T )
=
(
α2 + 1

) 2c− 1

σ2γ2

so that (D.3) is not satis�ed either. Nevertheless, Theorem 4 implies that the slope
estimator is weakly consistent.
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E The Lindeberg conditions

E.1 Theorem 3 for c ≥ 1/2

We verify the Lindeberg condition for sums of independent random variables, cf. Shiryaev
(1996, Chapter III, �4, Theorem 1). Put di�erently, for every δ > 0,

Vt =
1

〈v〉t

t∑
i=1

E
ε2i

i2(1−c)
1{|εi|>δi1−c〈v〉1/2t

} → 0.

For c > 1/2, taking account of (B.17),{
|εi| > δi1−c 〈v〉1/2t

}
=

{
|εi| >

σ√
2c− 1

δi1−c
√
t2c−1 +O(1)

}
=

{
|εi| >

σ√
2c− 1

(
1 + o(1

)
)δi1−ctc−1/2

}
⊂

{
|εi| > κ

(
1 + o(1

)
)tp
}

with p = (c ∧ 1)− 1
2
and κ > 0. The last inclusion follows from the fact that i1−c ≥ t1−c

for c ≥ 1 and i1−c ≥ 1 for c < 1. Therefore, by square integrability of εi,

Eε2i 1
{
|εi|>δi1−c〈v〉1/2t

} ≤ Eε211
{
|ε1|>κ(1+o(1))tp

} = πt → 0

as t→∞. As a consequence,

Vt ≤
πt
〈v〉t

t∑
i=1

1

i2(1−c)
=
πt
σ2
→ 0.

For c = 1/2, the proof runs similarly, now making use of (B.22):{
|εi| > δi1/2 〈v〉1/2t

}
=

{
|εi| > σ

(
1 + o(1

)
)δi1/2

√
ln t
}

⊂
{
|εi| > κ

(
1 + o(1

)
)
√
ln t
}
,

so that
Eε2i 1

{
|εi|>δi1−c〈v〉1/2t

} ≤ Eε211
{
|ε1|>κ(1+o(1))

√
ln t

} = πt → 0

and hence

Vt =
1

〈v〉t

t∑
i=1

E
ε2i
i
1{|εi|>δi1/2〈v〉1/2t

} ≤ πt
〈v〉t

t∑
i=1

1

i
=
πt
σ2
→ 0.

E.2 Theorem 4 for c > 1/2

Reconsider the martingale in (B.38), reproduced here for convenience:

MT =
T∑
t=1

ξTtεt, ξTt =
at−1√
αT

.
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We have to show that, for every δ > 0,

RT =
T∑
t=1

E

{
ξ2Ttε

2
t1{|ξTtεt|>δ}|Ft−1

}
p→ 0, (E.1)

cf. Christopeit & Hoderlein (2006). To this end, we make use of the elementary implication
|ab| > δ ⇒ a2 > δ or b2 > δ to obtain the inclusion

{
|ξTtεt| > δ

}
=
{
|at−1εt| > δ

√
αT
}
⊂{

a2t−1 > δ
√
αT
}
∪
{
ε2t > δ

√
αT
}
. Therefore,

RT ≤ 1

αT

T∑
t=1

E

{
a2t−1ε

2
t1{a2t−1>δ

√
αT}|Ft−1

}

+
1

αT

T∑
t=1

E

{
a2t−1ε

2
t1{ε2t>δ√αT}|Ft−1

}

=
σ2

αT

T∑
t=1

a2t−11{a2t−1>δ
√
αT} +

1

αT

T∑
t=1

a2t−1E

{
ε2t1{ε2t>δ√αT}

}
= R0

T +R1
T .

As to R0
T , since at → α a.s., there will be a T0 (depending on ω) such that a2t−1 ≤ δ

√
αT

for all t > T0. Hence the sum is �nite and

R0
T → 0 a.s. (E.2)

As to R1
T ,

E

{
ε2t1{ε2t>λT δ}

}
= πT → 0.

Hence, taking account of (B.42),

R1
T =

πT
αT

T∑
t=1

a2t−1=πT
A′T
αT

p→ 0. (E.3)

(E.2) and (E.3) together show (E.1).

E.3 Theorem 4 for c < 1/2

By de�nition (cf. (B.68)),

XT =
T∑
t=1

ξTtεt

with

ξTt =
1

T 1/2−c

(
t−c − T−c

1− c

)
To show:

RT =
T∑
t=1

E

{
ξ2Ttε

2
t1{|ξTtεt|>δ}|Ft−1

}
p→ 0.

But

RT =
T∑
t=1

ξ2TtE

{
ε2t1{ε2t>δ2/ξ2Tt}

}
.
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Since

max
t≤T
|ξTt| ≤

1

T 1/2−c +
1

1− c
1

T 1/2
= mT = o(1),

it follows that

πT = E

{
ε2t1{ε2t>δ2/ξ2Tt}

}
≤ E

{
ε2t1{ε2t>δ2/m2

T}

}
→ 0.

Therefore,

RT ≤ mT

T∑
t=1

ξ2Tt → 0

since
∑T

t=1 ξ
2
Tt = O(1).

F Proof of Corollary 3

Consider the OLS residual ε̂t = yt − δ̂ − β̂at−1 = mt + εt, where

mt = (δ − δ̂) + (β − β̂)at−1.

Then
T∑
t=1

ε̂2t =
T∑
t=1

m2
t + 2

T∑
t=1

mtεt +
T∑
t=1

ε2t .

Since

1

T

T∑
t=1

m2
t ≤

2

T

T (δ − δ̂)2 + (β − β̂)2
T∑
t=1

a2t−1

 = o(1),

1

T

∣∣∣∣∣∣
T∑
t=1

mtεt

∣∣∣∣∣∣ ≤
 1

T

T∑
t=1

m2
t

1

T

T∑
t=1

ε2t

1/2

= o(1),

it follows that
1

T

T∑
t=1

ε̂2t =
1

T

T∑
t=1

ε2t + o(1)→ σ2

with probability one or in probability according to whether both δ̂ and β̂ are strongly or
weakly consistent.

G Proof of equation (B.77)

Ad R. Recall the de�nition of RT in (B.76):

RT =
1

T 1/2−c

T∑
t=1

t−cζtεt.
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With a view to deriving ER2
T , we calculate

E

 T∑
t=1

t−cζtεt

2

= E
T∑

s,t=1

t−cζtεts
−cζsεs

= 2E
T∑
t=1

t−cζtεt

t−1∑
s=1

s−cζsεs + E
T∑
t=1

t−2cζ2t ε
2
t

= 2
T∑
t=1

t−1∑
s=1

t−cs−cEζtεtζsεs + E
T∑
t=1

t−2cζ2t ε
2
t

= R1T +R2T . (G.1)

As to R1T , making use of (B.74), we obtain for s < t that

Eζtεtζsεs = E


 ∞∑
i=t

θi
εi
i1−c

 εt
 ∞∑
i=s

θi
εi
i1−c

 εs


= E


 ∞∑
i=t

θi
εi
i1−c

2

εtεs


+E


 ∞∑
i=t

θi
εi
i1−c

 εt
 t−1∑
i=s

θi
εi
i1−c

 εs


= E


 ∞∑
i=t

θi
εi
i1−c

 εt
E


 t−1∑
i=s

θi
εi
i1−c

 εs


= σ4θtθs
1

t1−c
1

s1−c
.

Hence, remembering that limt→∞ θt = 1,

R1T = 2σ4

T∑
t=1

t−cθt
1

t1−c

t−1∑
s=1

s−cθs
1

s1−c

= 2σ4

T∑
t=1

θt
1

t

t−1∑
s=1

θs
1

s

= O (1)
T∑
t=1

1

t

[
ln t+O (1)

]
= O (1) ln2 T. (G.2)
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As to R2T ,

Eζ2t ε
2
t = E

[
ζt+1 + θt

εt
t1−c

]2
ε2t

= Eζ2t+1Eε
2
t +

θ2t
t2(1−c)

Eε4t

= σ4

∞∑
i=t+1

θ2i
t2(1−c)

+
θ2t

t2(1−c)
m4

= O
(
t2c−1

)
.

Hence

R2T =
T∑
t=1

t−2cEζ2t ε
2
t = O (1)

T∑
t=1

1

t
= O (1) lnT. (G.3)

Therefore, taking (G.1), (G.2) and (G.3) together, we �nd that

E (RT )
2 =

1

T 1−2c [R1T +R2T ] = O

(
ln2 T

T 1−2c

)
.

In particular,
plim
T→∞

RT = 0. (G.4)

Ad S. Recall ST in (B.76), namely

ST =
1

T 1/2−c

T∑
t=1

t−cwt−1εt.

Since

wt−1 =
1

t

t−1∑
i=1

Oti (1)

i1−c
εi, (G.5)

Ew2
t−1 = O (1)

1

t2

t∑
i=1

1

i2(1−c)
= O

(
t−2
)
, (G.6)

(cf. (B.25)) is Ft−1-measurable and

ES2
T =

σ2

T 1−2c

T∑
t=1

t−2cEw2
t−1

= O(1)
1

T 1−2c

T∑
t=1

1

t2(1+c)
= O

(
1

T 1−2c

)
.

In particular,
plim
T→∞

ST = 0. (G.7)
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H On Remark 1

The following considerations are based on a Theorem by Lévy, cf. Kawata (1972, Theorem
13.1.1):

Theorem 1 (Lévy)
Let Xn, n = 0, 1, . . . , be a sequence of random variables with distribution functions Fk s.t.
the in�nite sum

X =
∞∑
n=0

Xn (H.1)

converges absolutely with probability one. Let pn denote the maximal jump of Fn, i.e.
pn = sup

{
Fn(x)− Fn(x−) : x ∈ R

}
, and F the distribution function of X. Then the

following is true.

(i) If one of the Fn is continuous, then also the distribution function F is continuous.

(ii) If all Fn have discontinuities, then a necessary and su�cient condition for F to be
continuous is that

P =
∏∞

n=0
pn

diverges to zero.

We will apply this result to the sequence Xn = anεn, where the εn are iid with �nite
second moments and distribution function F0, and the sequence (an) ∈ l2. The rhs of (H.1)
then converges a.s. (by Kolmogorov's theorem) and in L2. If F0 is continuous, then so
are the distribution functions Fn (x) = F0

(
a−nx

)
of the Xn, and (i) shows that F is con-

tinuous. If the points of discontinuity of F0 are (xi) , with p0 = supi
{
F0(xi)− F0(xi−)

}
,

then the points of discontinuity of Fn are
(
a−nxi

)
, and the height of the jump of Fn at

a−nxi is just that of F0 at xi. Hence pn = p0 = supi
{
F0(xi)− F0(xi−)

}
. Hence, whenever

p0 < 1, ∏N

n=0
pn = pN+1

0 → 0,

so that continuity of F follows from (ii). The case p0 = 1 cannot occur unless εn = 0.
This result covers all our needs for stable AR(1)-processes with iid integrable error

terms. It shows that the stationary distribution F is always continuous, except for the
trivial case of zero errors (in which case the stationary solution is zero). Cf. also Lai &
Wei (1985, Lemma 2).

I On Remark 8

As to vt, the predictable quadratic variation is

〈v〉t = σ2

t∑
i=1

θ2i
i2(1−c)

= O (1) a.s..

Therefore, by the MCT for martingales with bounded predictable quadratic variation, vt
converges a.s. to some �nite random variable.

As to wt, for every δ > 0,

P
(
|wt| > δ

)
≤ δ−2Ew2

t = O
(
t2c−3

)
,
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so that
∞∑
t=1

P
(
|wt| > δ

)
<∞.

Therefore, by the Borel-Cantelli Lemma,

P
(
|wt| > δ i.o.

)
= 0.

Equivalently, limt→∞wt = 0 a.s..
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