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Introduction

This supplement contains technical material and figures that accompany the main paper.

Appendices A and B provide, respectively, supplementary material for Sections 3 and 4 in

the main paper.

Appendix A The Balanced Model

Appendix A.1 Median Bias

Proposition A.1. In a pure balanced Group Interaction model with ε ∼ SMN(0, In), λ̂ML

is median-unbiased for all λ when m = 2. For m > 2,

(i) bmed(λ) < 0 for all λ ∈ Λ;

(ii) bmed(λ)→ 0 as λ→ −(m− 1) and as λ→ 1, and also as r →∞ with m fixed;

(iii) bmed(λ) is convex on Λ, and |bmed(λ)| is maximized at

λ =
1− (m− 1)ζr,m

1 + ζr,m
, (A.1)

where ζr,m := (med(Fr,r(m−1)))
1/4, the maximum being m (1− ζr,m) /(1 + ζr,m).

Proof. By Lemma A.2, given at the end of this section, med(Fr,r(m−1)) ≤ 1, with equality

if and only if m = 2. Using (3.7), it follows that med(λ̂ML) ≤ λ, with equality if and only
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if m = 2, thus establishing part (i). Part (ii) follows immediately from (3.8). To prove

part (iii), note that the function bmed(λ) is continuous over Λ, with

dbmed(λ)

dλ
=
m
(
1− λ+ ζ2r,m(λ+m− 1)

)
+m(1− λ)

(
ζ4r,m − 1

)(
1− λ+ ζ2r,m(λ+m− 1)

)2 − 1,

and
d2bmed(λ)

dλ2
= −

2m2(ζ2r,m − 1)ζ2r,m
(ζ2r,m(λ+m− 1) + 1− λ)3

.

Clearly, d2bmed(λ)/dλ2 > 0 for any λ ∈ Λ, because ζr,m < 1 if m > 2 by Lemma A.2.

Solving dbmed(λ)/dλ = 0 gives two critical points, one inside Λ and one outside. The one

inside Λ is λ = (1− (m− 1)ζr,m) /(1 + ζr,m).

Note that, since ζr,m > 0, the point of maximum (A.1) is negative for any r and for any

m > 2. It is also worth observing that, in terms of the parameter θ, the point of maximum

is θ = 1/ζr,m.

Figure 1 displays the exact median bias and the large-m median bias of λ̂ML in a

Gaussian pure balanced Group Interaction model, obtained from Proposition A.1, for a

range of values of r and m, and plotted against λ. The absolute value of the median bias

is large when the number r of groups is small and the group size m is large, and it appears

to be decreasing in m and increasing in r.
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Figure 1: Median bias of λ̂ML for the pure balanced Group Interaction model with ε ∼
SMN(0, In).

Lemma A.2. med(Fp,q) = 1 if and only if p = q and med(Fp,q) < 1 if p < q.

Proof. The first part of the lemma is straightforward, because Fp,q = 1/Fq,p implies that

med(Fp,q)med(Fq,p) = 1, and hence that med(Fp,q) = 1 if p = q. Moving to the second part,

med(Fp,q) < 1 if and only if Pr (Fp,q < 1) > 1/2. Using the well-known relationship between

the cdf’s of the F and beta distributions, Pr (Fp,q < 1) = Pr (Beta(p/2, q/2) < p/(p+ q)) ,

where Beta(p/2, q/2) is a beta random variable. But note that p/(p + q) is the mean of

Beta(p/2, q/2). Thus, med(Fp,q) < 1 if and only if

Pr
(

Beta
(p

2
,
q

2

)
< E

[
Beta

(p
2
,
q

2

)])
> 1/2,
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that is, if and only if med(Beta(p/2, q/2)) < E[Beta(p/2, q/2)]. For the beta distribution

the median is smaller than the mean if and only the skewness is positive (e.g., Groeneveld

and Meeden, 1977). The desired result follows, because the skewness of Beta(p/2, q/2) is

positive if and only if p < q.

Appendix A.2 Confidence Intervals

Here we provide two figures that illustrate the properties of the exact confidence intervals

introduced in the paper. Figure 2 plots some confidence intervals (3.10), as a function of

the observed λ̂ML, for λ̂ML ∈ Λ, and for α = 0.05, m = 5, and a series of values of r.

When r is small the exact confidence intervals are very wide, but quickly shrink towards

λ̂ML (dotted 45 degree line) as r increases.

A commonly used 100 (1− α) % large-r confidence interval for λ, based on the asymp-

totic normality of λ̂ML, is (
λ̂ML − cα

√
vλ̂ML

, λ̂ML + cα
√
vλ̂ML

)
, (A.2)

where vλ̂ML
is the large-r variance (3.5) evaluated at the MLE, and cα is the appropriate

critical value from the standard normal distribution. Figures 3 compares the confidence

intervals (A.2) with the exact confidence intervals (3.10), when r = 5, for m = 5, 50, and

for λ̂ML ∈ (−1, 1). The general conclusion from this plot, and from similar ones that we

do not report, is that, as long as r > 1, the two-sided asymptotic confidence intervals

provide a good approximation to the equal-tailed exact ones if λ̂ML ∈ (−1, 1). The large-r

approximation may be inaccurate for smaller values of λ̂ML, but such values of λ̂ML are

rare in applications.
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Figure 2: Exact equal-tailed 95% confidence belts for λ in the pure balanced Group Inter-

action model with ε ∼ SMN(0, In), when m = 5.
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Figure 3: Equal-tailed 95% exact (solid lines) and large-r (dashed lines) confidence belts

for λ based on λ̂ML, for λ̂ML ∈ (−1, 1), when r = 5.

Appendix A.3 Bias

Before considering the moments of λ̂ML itself, we note the following. The mean of θ̂ML

is a known, monotonically increasing, function of λ, namely (k1
√
m− 1)θ. Inverting that

function gives a modified “indirect” estimator of the same form as the median-unbiased

estimator λ̃ML defined above, namely1

λ̂mean :=
θ̂ML − (m− 1)k1

√
m− 1

θ̂ML + k1
√
m− 1

.

This correction might be expected to reduce the bias in λ̂ML, and is exactly analogous to

the median correction given in equation (3.9) above, except that
√

med(Fr,r(m−1)) is here

replaced by k1
√
m− 1.2 This suggests that we consider a family of estimators of the form

λ̂φ :=
θ̂ML − (m− 1)φ

θ̂ML + φ
,

where φ is a constant (possibly dependent on (r,m)) to be chosen.3 The MLE λ̂ML itself

corresponds to φ = 1, the median unbiased estimator to φ =
√

med(Fr,r(m−1)), and the

indirect estimator to φ = k1
√
m− 1. Note that for both λ̂med and λ̂mean, φ→ 1 as r →∞,

so all three estimators are asymptotically equivalent under fixed-domain asymptotics. We

shall consider the moments of λ̂φ generally, thereby covering all three cases.

Taylor expansion of λ̂φ as a function of θ̂ML about the mean of θ̂ML, k1τ, gives:

λ̂φ = 1− mφ

φ+ k1τ
− mφ

φ+ k1τ

∞∑
i=1

(−1)i

(
θ̂ML − k1τ
φ+ k1τ

)i
.

To simplify the notation, put

α :=
mφ

φ+ k1τ
, x :=

θ̂ML − k1τ
φ+ k1τ

, µi := E(xi),
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so that µ1 = 0, and

λ̂φ = 1− α− α
∞∑
i=1

(−1)ixi.

Truncating the series at the third order term, and taking expectations using Proposition

3.6, gives4

E(λ̂φ) ' 1− α(1 + µ2 − µ3). (A.3)

Similarly, the expansion for var(λ̂φ) up to terms of order 4, is

var(λ̂φ) ' α2
(
µ2 − 2µ3 +

(
3µ4 − µ22

))
. (A.4)

In these expressions the usual formulae for moments about the mean in terms of raw

moments give:

µ2 =
(k2 − k21)τ2

(φ+ k1τ)2
, µ3 =

(k3 − 3k1k2 + 2k31)τ3

(φ+ k1τ)3
, µ4 =

(k4 − 4k1k3 + 6k21k2 − 3k41)τ4

(φ+ k1τ)4
.

Focussing now on the MLE (the case φ = 1), including only the term µ2 in (A.3)

reproduces very accurately the exact mean, over the entire parameter space Λ, and for any

r and m. For the variance, using only the first two terms is inadequate, but the three term

approximation given in (A.4) reproduces the exact variance very well. Figure 4 plots the

exact variance of λ̂ML (obtained by numerical integration) for λ ∈ (−1, 1), along with three

different approximations: the third order approximation (A.4), the large-r approximation

(3.5) and the large-m approximation (3.12). The third order approximation seems to be

vastly superior to the two asymptotic ones.

Appendix A.3.1 Bias Correction

From equation (A.3), omitting the final term µ3, the approximate bias of λ̂ML is, to this

order,

bmean(λ) := − (α+ λ− 1 + α(1 + µ2)) ,

where α and µ2 are evaluated with φ = 1. Evidently, the bias is negative for all λ if

α+λ− 1 > 0, or k1
√
m− 1 < 1, which is so if m ≥ 4. Thus, based on this approximation,

λ̂ML is negatively biased for all λ if m ≥ 4. As might be expected, for moderate r the

estimator is almost unbiased for small m, but can be quite biased when m is larger: the

matrix W becomes more “dense” as m increases for fixed r.

An alternative approach to bias-correcting λ̂ML is to simply subtract an estimate of

the approximate bias bmean(λ) from λ̂ML, replacing λ by λ̂ML in bmean(λ). Denoting the

estimates of α and µ2 by α̂ and µ̂2, this means using

λ̂BC := 2λ̂ML − 1 + α̂(2 + µ̂2). (A.5)

We call this a direct bias correction.5 The variance of the corrected estimator can also

be obtained by the same methods, but we omit the details. Instead, in Figure 5 we plot
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the mean bias, for λ ∈ (−1, 1), of λ̂ML, and of the three bias-reducing estimators we have

introduced, λ̂med, λ̂mean, λ̂BC. This is obtained by straightforward simulation (cf. Section

3.1.1). Figures 6 and 7 do the same for the RMSE function and the median bias function.

These figures show that λ̂ML can be significantly biased, but that direct bias correction

(λ̂BC) essentially removes the entire mean bias. However, λ̂BC performs poorly in terms

of the median bias. The estimator λ̂med does not perform as well as λ̂BC in terms of mean

bias, but it does reduce a good portion of the mean bias of λ̂ML, and is median unbiased

by construction. These differing effects reflect the fact that the distribution of λ̂ML can

be quite skewed. The estimator λ̂mean appears to be dominated by λ̂med in terms of both

mean and median bias. The variances of the four estimators are all virtually identical, and

the three bias corrected estimators appear to have lower RMSE than λ̂ML, at least when

λ ∈ (−1, 1). To conclude, then, bias correction does seem desirable, particularly when

r is small and/or m is large, and several methods are available to accomplish this, with

varying degrees of success. Which to choose obviously depends on one’s preferences.
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Figure 4: Exact variance of λ̂ML, as a function of λ, along with three different approxima-

tions.
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Figure 5: Bias function of the MLE (λ̂ML), the median unbiased estimator (λ̂med), the

indirect estimator obtained by inverting the mean function (λ̂mean), and the direct bias

corrected MLE (λ̂BC).
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Figure 6: RMSE function of the MLE (λ̂ML), the median unbiased estimator (λ̂med), the

indirect estimator obtained by inverting the mean function (λ̂mean), and the direct bias

corrected MLE (λ̂BC).
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Figure 7: Median function of the MLE (λ̂ML), the median unbiased estimator (λ̂med), the

indirect estimator obtained by inverting the mean function (λ̂mean), and the direct bias

corrected MLE (λ̂BC).
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Appendix B Unbalanced Model

Remark B.1. As noted in Remark 3.1, the (Gaussian) unbalanced model is also a member

of the curved exponential family. Indeed the likelihood is the product of p versions of that

for the balanced model, with different group sizes, and different multiplicities. Each of

these has sufficient statistics and canonical parameters of the same type as those given

earlier for the balanced model. That is, the exponent of the exponential part of the

likelihood is of the form

η1

p∑
i=1

(s1i + s2i) + η2

p∑
i=1

(
s2i +

s1i

(mi − 1)2

)
+ 2η3

p∑
i=1

(
s2i −

s1i
(mi − 1)

)
.

It is not possible to rewrite this as a linear combination of two statistics with constant

coefficients, so the model is a (3, 2) curved model, as mentioned. In this representation of

the model the statistics s1i, s2i are all independent of each other, and are proportional to

χ2 variates. Note that the sum can be written as

− 1

2σ2

(
(1− λ)2 s2 +

p∑
i=1

s1i

(
λ+mi − 1

mi − 1

)2
)
,

with s2 =
∑p

i=1 s2i, a linear combination of p+ 1 independent multiples of χ2 variates.

Remark B.2. The estimating equation l̇p(λ) = 0 is, for the unbalanced model, a polyno-

mial of degree p+ 1 in λ, and has no explicit solution if p > 3. The fact that the equation

is known to have a single zero in Λ makes the numerical computation of the solution a

much simpler task than it would otherwise be.

Appendix B.1 Exact Distribution

Figures 8 and 9 complement Figure 3 in the paper. They were produced using the result

given in Proposition 4.3 in the text. Each of the three rows of Figure 8 displays pdf λ̂ML
(z;λ)

for a fixed value of m1 and varying n, while Figure 9 displays pdf λ̂ML
(z;λ) for fixed n and

varying m1. For convenience, all densities are plotted on (−2, 1) ⊂ Λ = (− (m1 − 1) , 1).

Recall that as long as the model is unbalanced, there is a point z2 ∈ Λ where the density

of λ̂ML is nonanalytic, whatever the sample size n. Graphically, nonanalyticity is clearly

visible only for small m1; at m1 = 6 it is already difficult to detect.

Appendix B.2 Probability of Underestimation

The values of z2 relevant for Figure 10 are -2.0769 when m1 = 10 and m2 = 20, -0.9231

when m1 = 5 and m2 = 25, -0.3659 when m1 = 2 and m2 = 28 (note that z0 does not

depend on r1 if r1 = r2).
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Figure 8: Density of λ̂ML for pure Group Interaction model with two groups, when ε ∼
SMN(0, In).
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Figure 10: The probability that λ̂ML underestimates λ as a function of λ, in the two-groups
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Appendix B.3 Proofs for Section 4

Proof of Proposition 4.1. Let qi ∼ χ2
vi , i = 1, 2, assumed independent, and let q =

a1q1+a2q2, with 0 < a1 < a2. In the joint density of (q1, q2), transform to x1 := a1q1, x2 :=

a2q2. The Jacobian is (a1a2)
−1, so

pdf(x1, x2) =
exp

{
−1

2

(
x1
a1

+ x2
a2

)}
x
v1
2
−1

1 x
v2
2
−1

2

a
v1
2
1 a

v2
2
2 2

v1+v2
2 Γ(v12 )Γ(v22 )

.

Now transform to q = x1 + x2, b = x1/(x1 + x2), 0 < b < 1, so that x1 = bq, x2 = (1− b)q,
and the Jacobian is q. Then,

pdf(q, b) =
exp

{
−1

2

(
q
a1
− (1−b)q

a1
+ (1−b)q

a2

)}
q
v1+v2

2
−1b

v1
2
−1(1− b)

v2
2
−1

a
v1
2
1 a

v2
2
2 2

v1+v2
2 Γ(v12 )Γ(v22 )

.

Integrating out b, the integral is a standard form of the confluent hypergeometric function,

giving the density:

pdf(q) =
exp

(
− q

2a1

)
q
v
2
−1

a
v1
2
1 a

v2
2
2 2

v
2 Γ(v2 )

1F1

(
v2
2
,
v

2
;

1

2a1
q

(
1− a1

a2

))
,

where v := v1 + v2. Obviously, for a1 = a2 we have the standard result that q is a multiple

of a χ2
v variate. Putting φ = 1/a1, ψ := a1/a2, we have

pdf(q) =
φ
v
2ψ

v2
2 exp

(
−φq

2

)
q
v
2
−1

2
v
2 Γ(v2 )

1F1

(
v2
2
,
v

2
;
1

2
φq (1− ψ)

)
,

as given in the text.

Proof of Proposition 4.3. We first prove the special cases (4.13) and (4.14) and then

the general case. Consider the cdf defined by

Pr(w ≤ z) = Pr(χ2
γ ≤ a1χ2

α + a2χ
2
β),

where a1, a2 are positive functions of z, and we assume, without loss of generality, that

a1 > a2 for all z (in case a1 < a2, simply interchange (α, β) and (a1, a2) in everything

that follows). Conditioning first on (q1 = χ2
α, q2 = χ2

β), we have, on differentiating the

conditional cdf, the conditional density is

pdfw(z|q1, q2) =
exp

{
−1

2(a1q1 + a2q2)
}

2
γ
2 Γ(γ2 )

(ȧ1q1 + ȧ2q2)(a1q1 + a2q2)
γ
2
−1. (B.1)

Multiplying by the joint density of (q1, q2),

pdfw(z, q1, q2) =
exp

{
−1

2((1 + a1)q1 + (1 + a2)q2)
}

2
α+β+γ

2 Γ(γ2 )Γ(α2 )Γ(β2 )
(ȧ1q1+ȧ2q2)(a1q1+a2q2)

γ
2
−1q

α
2
−1

1 q
β
2
−1

2 .
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The problem is to integrate out (q1, q2). In case γ = 2 the term (a1q1+a2q2)
γ
2
−1 is missing,

and it is immediate that

pdfw(z) =
αȧ1
1+a1

+ βȧ2
1+a2

2(1 + a1)
α
2 (1 + a2)

β
2

. (B.2)

Likewise, if γ is even, say γ = 2s+ 2, then

(a1q1 + a2q2)
γ
2
−1 = (a1q1 + a2q2)

s.

Simple binomial expansion, followed by integration gives, in generalization of (B.2), the

following special case of the result given in Proposition 4.3 in the text:

pdfw(z) =
(12)s

2s!(1 + a1)
α
2 (1 + a2)

β
2

×
[
αȧ1

1 + a1
Cs

(
Aα+2,β

(
a1

1 + a1
,

a2
1 + a2

))
+

βȧ2
1 + a2

Cs

(
Aα,β+2

(
a1

1 + a1
,

a2
1 + a2

))]
.

(B.3)

Here, we have used the formula given in Lemma 4.4.

Moving now to the general case where γ is arbitrary, start from the conditional density

and make the same transformations as in the proof of Proposition 4.1 above. That is, set

xi := aiqi, i = 1, 2, then s := x1 + x2 and b := x1/(x1 + x2), we obtain

pdfw(z, s, b) =
exp

{
−1

2s
(
1 + a−12

)}
s
α+β+γ

2
−1

2
α+β+γ

2 Γ(α2 )Γ(β2 )Γ(γ2 )a
α
2
1 a

β
2
2

× exp

{
1

2
sb
(
a−12 − a

−1
1

)}
b
α
2
−1(1− b)

β
2
−1
[
ȧ1
a1
b+

ȧ2
a2

(1− b)
]
.

Integrating out b in the last line gives a linear combination of two confluent hypergeo-

metric functions:

pdfw(z, s) =
exp

{
−1

2s
(
1 + a−12

)}
s
α+β+γ

2
−1

2
α+β+γ

2 Γ(γ2 )Γ(α+β+2
2 )a

α
2
1 a

β
2
2

×
[
αȧ1
2a1

1F1

(
α+ 2

2
,
α+ β + 2

2
;
1

2
s(a−12 − a

−1
1 )

)
+
βȧ2
2a2

1F1

(
α

2
,
α+ β + 2

2
;
1

2
s(a−12 − a

−1
1 )

)]
.

Integrating out s then produces the result given in Proposition 4.3 in the text.

It can be shown (with some algebra) that this general result reduces to the results

given above for the special cases γ = 2 and γ = 2s+ 2.
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Proof of Lemma 4.4. A generating function for Cj(A) is

|I − tA|−
1
2 =

∞∑
j=0

tj
(
1
2

)
j

j!
Cj(A).

But, when A has the form assumed, the left-hand side is

(1− ta1)−
n1
2 (1− ta2)−

n2
2 =

∞∑
j,k=0

tj+k
(
n1
2

)
j

(
n2
2

)
k

j!k!
aj1a

k
2

=
∞∑
j=0

tj

j!

(
j∑

k=0

(
j

k

)(n1
2

)
k

(n2
2

)
j−k

ak1a
j−k
2

)
.

Equating coefficients of tj/j! gives the result.

Appendix B.4 An auxiliary Lemma

The following lemma is used in Section 4.7:

Lemma B.3. Let Ai, i = 1, ..., t, be mi×ni matrices. If ιmi ∈ col(Ai) for each i = 1, ..., t,

then col(
⊕t

i=1Ai) is spanned by
∑t

i=1 ni eigenvectors of diag(ιmiι
′
mi − Imi , i = 1, .., t).

Proof. If ιmi ∈ col(Ai) for each i = 1, ..., t, then the t columns of
⊕t

i=1 ιmi and the∑t
i=1(ni) − t columns of

⊕t
i=1Oi, where Oi is an mi × (ni − 1) matrix with col(Oi) ⊂

col⊥(ιmi), form an orthogonal basis for col(
⊕t

i=1Ai). But these
∑t

i=1 ni columns are

orthogonal eigenvectors of diag(ιmiι
′
mi − Imi , i = 1, .., t) (see footnote 14 in the main text).

Notes

1Kyriakou, Phillips, and Rossi (2014) consider a different indirect estimator for λ based on the OLS

estimator.
2The two correction terms seem to be fairly close, except when r is very small, and it seems that√

med(Fr,r(m−1)) < k1
√
m− 1.

3Note that λ̂φ is supported on Λ for any φ .
4The approximation cannot be extended to the entire Taylor expansion, because the moments of θ̂ML

exist only up to order r(m − 1) − 1. However, only the first few terms are needed to obtain an excellent

approximation, so this is unimportant.
5In greater detail, putting a :=

√
m− 1, the bias-corrected estimator is

λ̂BC = λ̂ML +
mθ̂ML

1 + ak1θ̂ML

(
1− ak1
1 + θ̂ML

+
a2(k2 − k21)θ̂ML

(1 + ak1θ̂ML)2

)
.
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