Online Supplementary Material for 'Uniform Convergence Rates over Maximal Domains in Structural Nonparametric Cointegrating Regression'

James A. Duffy

Proof of Lemma 3.1. Let $g_k(z) := g(z)\mathbf{1}\{|g(z)| \le k\}$. g_k is bounded, and a straightforward extension of the argument used to verify (9.1) in Duffy (2016) gives that

$$\mathbb{E}f(Y)g_k(Z) = \frac{1}{2\pi} \int \hat{f}(\lambda)\mathbb{E}\left[e^{-i\lambda'Y}g_k(Z)\right] d\lambda$$

for every $k \in \mathbb{N}$. Now let $k \to \infty$; the left side converges to $\mathbb{E}f(Y)g(Z)$ by dominated convergence. For the right side, using that Y_1 and (Y_2, Z) are independent, we have

$$\left| \int \hat{f}(\lambda) \mathbb{E} \Big[\mathrm{e}^{-\mathrm{i}\lambda'Y} \{ g_k(Z) - g(Z) \} \Big] \mathrm{d}\lambda \right| \leq \left(\int |\hat{f}(\lambda)\psi_{Y_1}(-\lambda)| \,\mathrm{d}\lambda \right) \mathbb{E} |g_k(Z) - g(Z)|$$
$$\leq \|f\|_1 \|\psi_{Y_1}\|_1 \mathbb{E} |g(Z)| \mathbf{1} \{ |g(Z)| > k \}$$
$$\to 0$$

using the fact that $|\hat{f}(\lambda)| \leq ||f||_1$.

Proof of Lemma 3.2. We shall give only the proof of (3.6) here; the proof of (3.5) follows by similar arguments, and is somewhat simpler. Recall from (3.3) the decomposition

$$x'_{t+1,t+k,t+k} = a_m \epsilon_{t+k-m} + \sum_{\substack{l=0\\l \neq m}}^{k-1} a_l \epsilon_{t+k-l}.$$

Let $\mathcal{K} := \{\lfloor k/2 \rfloor + 1, \dots, k-1\} \setminus \{m\}$. Since the second term on the right is independent of η_{t+k-m} ,

$$\begin{split} |\mathbb{E}\eta_{t+k-m} \mathrm{e}^{-\mathrm{i}\lambda x'_{t+1,t+k,t+k}}| &\leq |\mathbb{E}\eta_{t+k-m} \mathrm{e}^{-\mathrm{i}\lambda a_m \epsilon_{t+k-m}} |\prod_{l\in\mathcal{K}} |\psi(-\lambda a_l)| \\ &\leq [|a_m||\lambda|\mathbb{E}|\eta_0 \epsilon_0| \wedge \mathbb{E}|\eta_0|] \prod_{l\in\mathcal{K}} |\psi(-\lambda a_l)| \end{split}$$

$$\lesssim (c_m |\lambda| \wedge 1) \prod_{l \in \mathcal{K}} |\psi(-\lambda a_l)|$$

using $\mathbb{E}|e^{ix} - 1| \le |x|$, (3.4) and the Cauchy-Schwarz inequality. Hence

$$|\mathbb{E}\eta_{t+k-m} \mathrm{e}^{-\mathrm{i}\lambda x'_{t+1,t+k,t+k}}|^q \lesssim (c_m^q |\lambda|^q \wedge 1) \prod_{l \in \mathcal{K}} |\psi(-\lambda a_l)|.$$

Thus the left side of (3.6) may be bounded above by a constant times

$$\int_{\mathbb{R}} (z_1 c_m^q |a_k|^p |\lambda|^{p+q} F(a_k \lambda) \wedge z_2) \prod_{l \in \mathcal{K}} |\psi(-\lambda a_l)| \, \mathrm{d}\lambda.$$

The result now follows by Lemma F.2 in the Supplement to Duffy (2016).

Proof of Lemma 3.3. (i) follows by arguments analogous to those used to prove Lemma 9.3(i) in Duffy (2016). For (ii), we recall from (3.2) the decomposition

$$x_{t+k} = x_{t,t+k}^* + x_{t+1,t+k,t+k}'.$$

Thence by Fourier inversion (Lemma 3.1) and Lemma 3.2(i),

$$\begin{aligned} |\mathbb{E}_t f(x_{t+k})\eta_{t+k-m}| &= \left| \frac{1}{2\pi} \int_{\mathbb{R}} \hat{f}(\lambda) \mathrm{e}^{-\mathrm{i}\lambda x^*_{t,t+k}} \mathbb{E}[\eta_{t+k-m} \mathrm{e}^{-\mathrm{i}\lambda x'_{t+1,t+k,t+k}}] \,\mathrm{d}\lambda \right| \\ &\lesssim \|f\|_1 \int_{\mathbb{R}} |\mathbb{E}\eta_{t+k-m} \mathrm{e}^{-\mathrm{i}\lambda x'_{t+1,t+k,t+k}}| \,\mathrm{d}\lambda, \end{aligned}$$

using the fact that $|\hat{f}(\lambda)| \leq ||f||_1$. The result now follows by Lemma 3.2(i).

Proof of Lemma 3.4. For (i), note that $\{d_t^{-2}\}$ is regularly varying with index -2H, whence by Karamata's theorem and Proposition 1.5.9a in Bingham, Goldie, and Teugels (1987), $\{\sum_{t=1}^{n} d_t^{-2}\}$ is either slowly varying (when $H \leq 1/2$), or regularly varying with index 1 - 2H. In comparison, $\{e_n^{1/2}\}$ is regularly varying with index

$$\frac{1}{2}(1-H) > 1 - 2H$$

for all $H \in (\frac{1}{3}, 1)$; thus (i) holds. (ii) follows from the fact that $\{k^{-1/2}d_k^{-3/2}\}$ is regularly varying with index

$$-\frac{1}{2} - \frac{3}{2}H < -\frac{1}{2} - \frac{3}{2} \cdot \frac{1}{3} = -1$$

For (iii), note that $\{c_m\}$ and $\{m^{1/2}e_m\}$ are regularly varying with indices $H - 1/\alpha < 1$ and

$$\frac{1}{2}+1-H<\frac{3}{2}-\frac{1}{3}=\frac{7}{6}$$

References

- BINGHAM, N. H., C. M. GOLDIE, AND J. L. TEUGELS (1987): *Regular Variation*. C.U.P., Cambridge (UK).
- DUFFY, J. A. (2016): "A uniform law for convergence to the local times of linear fractional stable motions," Annals of Applied Probability, 25(1), 45–72.