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1. A review on Francq and Zaköıan (2001)’s results

The following theorem, proved in Francq and Zaköıan (2001), FZ01, gives

conditions for the existence of second order stationary Markov switching MS

VARMA processes.

Result 1.1 (FZ01, Theorem 2, p.346) Suppose that ρ(P(Φ⊗2)) < 1, where

ρ( · ) denotes the spectral radius. Then, for all t ∈ Z, the series

zt = ωt +
+∞∑
k=1

Φt Φt−1 · · · Φt−k+1ωt−k

converges in L2 and the MS(M) VARMA(p, q) process (yt), defined as the

block of the first K components of (zt), is the unique nonanticipative second

order stationary solution of (1). Suppose that (2) admits a nonanticipative

second order stationary solution. Then we have

+∞∑
k=0

||I {P(Φ⊗2)}k S vec Ω|| < +∞

where I = (In2 · · · In2) ∈ Rn2×(Mn2) and || · || denotes the matrix norm

||A|| =
∑

i,j |aij | for any matrix A = (aij). Finally, if c(st) = 0 in (1),
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a necessary and sufficient condition for the existence of a nonanticipative

second order stationary solution to (1) is given by the finiteness of the above

series.

Once first and second order stationarity are ensured, FZ01, Section 4, com-

pute the mean and the variance-covariance matrix of the process y = (yt)

in (1). Let U be the (Mn)-dimensional vector, whose ith block is the n-

dimensional vector πiE(zt | st = i) for i = 1, . . . ,M , that is,

U = (π1E(z
′
t | st = 1) · · · πM E(z

′
t | st = M))

′ ∈ RMn.

Let c = (π1 c(1)
′ · · · πM c(M)

′
)
′ ∈ RMn. Then we have

U = P(Φ) U + c

(see FZ01, p.348). Costa et al. (2005), Proposition 3.6, p.35, proved that

if ρ(P(Φ⊗2)) < 1, then ρ(P(Φ)) < 1. It can be easily checked that the

converse is not true in general. See Remark 3.7, p.35, of Costa et al. (2005).

We extend in Section 3, Theorem 3.3, such a result for the general case of a

matrix P(Φ⊗r).

Result 1.2 (FZ01, Section 4.1) If ρ(P(Φ)) < 1, then the expectations of

(zt) in (2) and (yt) in (1), driven by a MS(M) VARMA(p, q) model, are

given by

E(zt) = (e
′ ⊗ In) U E(yt) = (e

′ ⊗ f
′
) U

where

U = (IMn − P(Φ))−1 c.
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Here we set e = (1 · · · 1)
′ ∈ RM and f

′
= (IK 0 · · · 0) ∈

RK×n.

Let V be defined as U but with zt replaced by zt ⊗ zt = vec(zt z
′
t), that is,

V = (π1E(z
′
t ⊗ z

′
t| st = 1) · · · πM E(z

′
t ⊗ z

′
t| st = M))

′ ∈ RMn2
.

Let D be defined by replacing Φ(i) ⊗Φ(i) by c(i) ⊗Φ(i) + Φ(i) ⊗ c(i) in

the definition of P(Φ⊗2). Then we have (see FZ01, p.349)

V = P(Φ⊗2) V + D U + C + S vec(Ω).

Result 1.3 (FZ01, Section 4.1) If ρ(P(Φ⊗2)) < 1, then the second order

moments of (zt) in (2) and (yt) in (1), driven by a MS(M) VARMA(p, q)

model, are given by

E(zt ⊗ zt) = (e
′ ⊗ In2) V E(yt ⊗ yt) = (e

′ ⊗ f
′ ⊗ f

′
) V

where

V = (IMn2 − P(Φ⊗2))−1 [D U + C + S vec(Ω)].

3



DGP Moment T = 100 T = 250 T = 500 T = 1000 T = 2000 T = 5000

Bivariate

MS(2) VAR(1)

1st

2nd

3rd

4th

0.1083

0.1798

0.2342

0.6014

0.0661

0.1610

0.1597

0.4909

0.0487

0.1563

0.1260

0.4439

0.0329

0.1501

0.0897

0.3867

0.0246

0.1483

0.0696

0.3587

0.0152

0.0864

0.0462

0.1413

Bivariate

MS(2) VARMA(1,1)

1st

2nd

3rd

4th

0.1747

0.4602

0.8605

3.4824

0.1051

0.4105

0.5860

2.9544

0.0772

0.3947

0.4706

2.6749

0.0532

0.3784

0.3311

2.3861

0.0389

0.3735

0.2571

2.2109

0.0244

0.1686

0.0571

0.9826

Univariate

MS(2) ARMA(2,1)

1st

2nd

3rd

4th

0.0958

0.1406

0.3026

1.2468

0.0599

0.1061

0.2148

1.0083

0.0403

0.0892

0.1598

0.8375

0.0299

0.0774

0.1316

0.7237

0.0209

0.0737

0.0898

0.6007

0.0138

0.0210

0.0350

0.2741

Table 1: RMSE of the discrepancies between analytical and empirical first, second,

third and fourth moments (vertically ordered) over 1,000 replications. The DGPs

and their parameters are described above.

2. Monte Carlo results

To check the correctness of the formulae proposed in Section 3, we run some

Monte Carlo experiments. Particularly, we aim at checking if the proposed

analytical moments approach their empirical counterparts. To do so, we

simulate time series from three different data generating processes: a bivari-

ate (K = 2) MS(2) VAR(1), a bivariate (K = 2) MS(2) VARMA(1, 1), and

a univariate (K = 1) MS(2) ARMA(2, 1). The coefficients of the simulated

bivariate MS(2) VAR(1) are as follows (consider the model in Equation (1)

with no constant term and Gaussian i.i.d. errors): p11 = 0.1, p22 = 0.8,

a1(1) =

 0 0.4

0.3 1.2

, a1(2) =

0.6 0.4

0 0.3

, σ(1) =

 1 0.6

0.6 1

 and σ(2) =
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0.4 0.2

0.2 0.4

. In the case of the bivariate MS(2) VARMA(1, 1), we add the

moving average part, where b1(1) =

0.9 0.1

0.2 0

 and b1(2) =

 0 0.2

0.3 0.8

.

Finally, for the univariate MS(2) ARMA(2, 1), we set the following param-

eters: a1(1) = 1.2, a1(2) = 0, a2(1) = 0.1, a2(2) = 0.3, b1(1) = 0.5,

b1(2) = 0.5, σ(1) = 1 and σ(2) = 0.5. The experiments simulate artifi-

cial time series of length T + 50 with T = {100, 250, 500, 1000, 2000, 5000};

the first 50 initial data points are discarded to minimize the effect of initial

conditions. One thousand Monte Carlo replications are carried out for each

trial. In Table 1 we report the RMSE over the simulations evaluated as the

squared-norm of the difference between the empirical and the true moment

vectors (vertically ordered from the first to the fourth moment). The nu-

merical exercises show that our measures of the third and fourth moments,

as well as first and second moments in FZ01, are very close to their empirical

counterparts.

3. Proof of Theorem 3.2

First we prove Equation (4). Starting from (2), similar computations as in

the proof of Theorem 3.1 show that

πiE(z⊗4t | st = i) = πi (Φ⊗4(i))E(z⊗4t−1 | st = i) + πi [c(i)⊗Φ⊗3(i)

+ Φ(i)⊗ c(i)⊗Φ⊗2(i) + Φ⊗2(i)⊗ c(i)⊗Φ(i) + Φ⊗3(i)⊗ c(i)] E(z⊗3t−1 | st = i)

+ πi [Φ⊗2(i)⊗ c⊗2(i) + (Φ(i)⊗ c(i))⊗2 + Φ(i)⊗ c⊗2(i)⊗Φ(i)

+ c(i)⊗Φ⊗2(i)⊗ c(i) + (c(i)⊗Φ(i))⊗2 + c⊗2(i)⊗Φ⊗2(i)

+ (Φ⊗2(i)⊗Σ⊗2(i))E(I⊗2n ⊗ u⊗2t ) + (Φ(i)⊗Σ(i))⊗2E((In ⊗ ut)
⊗2)
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+ (Φ(i)⊗Σ⊗2(i)⊗Φ(i))E(In ⊗ u⊗2t ⊗ In) + (Σ(i)⊗Φ⊗2(i)⊗Σ(i))E(ut ⊗ I⊗2n ⊗ ut)

+ (Σ(i)⊗Φ(i))⊗2E((ut ⊗ In)⊗2) + (Σ⊗2(i)⊗Φ⊗2(i))E(u⊗2t ⊗ I⊗2n )]E(z⊗2t−1 | st = i)

+ πi [Φ(i)⊗ c⊗3(i) + c(i)⊗Φ(i)⊗ c⊗2(i) + c⊗2(i)⊗Φ(i)⊗ c(i)

+ c⊗3(i)⊗Φ(i) + (Φ(i)⊗ c(i)⊗Σ⊗2(i))E(In ⊗ u⊗2t )

+ (Φ(i)⊗Σ(i)⊗ c(i)⊗Σ(i))E(In ⊗ u⊗2t ) + (Φ(i)⊗Σ⊗2(i)⊗ c(i))E(In ⊗ u⊗2t )

+ (c(i)⊗Φ(i)⊗Σ⊗2(i))E(In ⊗ u⊗2t ) + (c(i)⊗Σ(i)⊗Φ(i)⊗Σ(i))

× E(ut ⊗ In ⊗ ut) + (c(i)⊗Σ⊗2(i)⊗Φ(i))E(u⊗2t ⊗ In) + (Σ(i)⊗Φ(i)⊗ c(i)⊗Σ(i))

× E(ut ⊗ In ⊗ ut) + (Σ(i)⊗Φ(i)⊗Σ(i)⊗ c(i))E(ut ⊗ In ⊗ ut) + (Σ(i)⊗ c(i)

⊗Φ(i)⊗Σ(i))E(ut ⊗ In ⊗ ut) + (Σ(i)⊗ c(i)⊗Σ(i)⊗Φ(i))E(u⊗2t ⊗ In) + (Σ⊗2(i)

⊗Φ(i)⊗ c(i))E(u⊗2t ⊗ In) + (Σ⊗2(i)⊗ c(i)⊗Φ(i))E(u⊗2t ⊗ In)]E(zt−1 | st = i)

+ πi c⊗4(i) + πi [c⊗2(i)⊗Σ⊗2(i) + (c(i)⊗Σ(i))⊗2 + c(i)⊗Σ⊗2(i)⊗ c(i)

+ Σ(i)⊗ c⊗2(i)⊗Σ(i) + (Σ(i)⊗ c(i))⊗2 + Σ⊗2(i)⊗ c⊗2(i)]E(u⊗2t ) + πi Σ
⊗4(i)E(u⊗4t ).

By Lemma 3.1, Equation (24) of Magnus and Neudecker (1986), and rela-

tions listed in the proof of Theorem 3.1, we have

E(I⊗2n ⊗ u⊗2t ) = Kn2,K2 [vec(Ω)⊗ In2 ]

E((In ⊗ ut)
⊗2) = Kn2,K2 [vec(Ω)⊗ In2 ]

E(In ⊗ u⊗2t ⊗ In) = Kn,nK2 [vec(Ω)⊗ In2 ] Kn,n

E(ut ⊗ I⊗2n ⊗ ut) = Kn2K,K [vec(Ω)⊗ In2 ]

E((ut ⊗ In)⊗2) = Kn,nK2 [vec(Ω)⊗ In2 ] Kn,n

E(u⊗2t ⊗ I⊗2n ) = vec(Ω)⊗ In2 .

Using Lemma 3.1 and substituting these relations and those listed in the

proof of Theorem 3.1 in the formula obtained above, we have
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πiE(z⊗4t | st = i) =
M∑
j=1

pji{Φ⊗4(i)} πj E(z⊗4t−1 | st−1 = j)

+

M∑
j=1

pji {c(i)⊗Φ⊗3(i) + Φ(i)⊗ c(i)⊗Φ⊗2(i) + Φ⊗2(i)⊗ c(i)⊗Φ(i)

+ Φ⊗3(i)⊗ c(i)] πj E(z⊗3t−1 | st−1 = j)

+

M∑
j=1

[ pji {Φ⊗2(i)⊗ c⊗2(i) + (Φ(i)⊗ c(i))⊗2 + Φ(i)⊗ c⊗2(i)⊗Φ(i)

+ c(i)⊗Φ⊗2(i)⊗ c(i) + (c(i)⊗Φ(i))⊗2 + c⊗2(i)⊗Φ⊗2(i)}

+ pji {(Φ⊗2(i)⊗Σ⊗2(i) + (Φ(i)⊗Σ(i))⊗2) Kn2,K2

+ (Σ(i)⊗Φ⊗2(i)⊗Σ(i)) Kn2K,K + Σ⊗2(i)⊗Φ⊗2(i)} (vec(Ω)⊗ In2)

+ pji {(Φ(i)⊗Σ⊗2(i)⊗Φ(i) + (Σ(i)⊗Φ(i))⊗2) Kn,nK2}

× (vec(Ω)⊗ In2) Kn,n]πj E(z⊗2t−1 | st−1 = j)

+
M∑
j=1

[ pji {Φ(i)⊗ c⊗3(i) + c(i)⊗Φ(i)⊗ c⊗2(i) + c⊗2(i)⊗Φ(i)⊗ c(i)

+ c⊗3(i)⊗Φ(i)}+ pji {(Φ(i)⊗ c(i)⊗Σ⊗2(i) + Φ(i)⊗Σ(i)⊗ c(i)⊗Σ(i)

+ Φ(i)⊗Σ⊗2(i)⊗ c(i) + c(i)⊗Φ(i)⊗Σ⊗2(i)) Kn,K2

+ (c(i)⊗Σ(i)⊗Φ(i)⊗Σ(i) + Σ(i)⊗Φ(i)⊗ c(i)⊗Σ(i) + Σ(i)⊗Φ(i)⊗Σ(i)⊗ c(i)

+ Σ(i)⊗ c(i)⊗Φ(i)⊗Σ(i)) KnK,K + c(i)⊗Σ⊗2(i)⊗Φ(i) + Σ(i)⊗ c(i)⊗Σ(i)⊗Φ(i)

+ Σ⊗2(i)⊗Φ(i)⊗ c(i) + Σ⊗2(i)⊗ c(i)⊗Φ(i)} (vec(Ω⊗ In)]πj E(zt−1 | st−1 = j)

+ πi {c⊗4(i)}+ πi {c⊗2(i)⊗Σ⊗2(i) + (c(i)⊗Σ(i))⊗2 + c(i)⊗Σ⊗2(i)⊗ c(i)

+ Σ(i)⊗ c⊗2(i)⊗Σ(i) + (Σ(i)⊗ c(i))⊗2 + Σ⊗2(i)⊗ c⊗2(i)} vec(Ω)

+ πi {Σ⊗4(i)} {vec(Ω⊗Ω) + vec(Ω)⊗ vec(Ω) + vec[(Ω⊗Ω) KK,K ]}.
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Reasoning as in the proof of Theorem 3.1, the last relation can be written

as

Hi =
M∑
j=1

P(Φ⊗4)ij Hj +
M∑
j=1

Xij Wj +
M∑
j=1

Yij Vj +
M∑
j=1

Zij Uj + ¯̄Ci

+ Ri vec(Ω) + ¯̄Si {vec(Ω⊗Ω) + vec(Ω)⊗ vec(Ω) + vec[(Ω⊗Ω) KK,K ]}

where

Yij = (Y1)ij + (Y2)ij (vec(Ω)⊗ In2) + (Y3)ij (vec(Ω)⊗ In2) Kn,n

Zij = (Z1)ij + (Z2)ij (vec(Ω)⊗ In).

This proves Equation (4). Since ρ(P(Φ⊗4)) < 1, the matrix IMn4 − P(Φ⊗4)

is invertible. So we can express H in closed form as in the statement of

Theorem 3.2. Then we have E(z⊗4t ) =
∑M

i=1 πiE(z⊗4t | st = i) = (e
′ ⊗

In4) H. The fourth moments of (yt) are now easily deduced in matrix form.

4. Proof of Theorem 3.3

Set r ≥ 2. To simplify computations, we assume that the process (zt) is

centered, that is, ct = 0. The result does not depend on the distribution

of the residuals, hence they are assumed to be non-Gaussian i.i.d. with

nontrivial finite moments at any dimension. In other words, we can choose

residuals so that A(r) varies over the elements of a basis of RMnr
. For every

k ≥ 0, let A(r, k) be the (Mnr)-dimensional vector whose ith block is the

nr-dimensional vector πiE(zt−k ⊗ z
⊗(r−1)
t | st = i) for i = 1, . . . ,M . For

k = 0, we have A(r, k) = A(r). First we prove that

A(r, k) =
[
In ⊗P(Φ⊗(r−1))

]
A(r, k − 1).
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If r = 2 and ct = 0, this formula is equivalent to W (k) = P ∗W (k − 1)

from FZ01, p.349, where A(2, k) = vecW (k) and P(Φ) = P ∗, that is,

vecW (k) = [In ⊗ P ∗] vecW (k − 1). Using Result 1.1, we have

πiE(zt−k ⊗ z
⊗(r−1)
t | st = i) = πiE(zt−k ⊗ (Φ(i) zt−1 + Σ(i) ut)

⊗(r−1) | st = i)

= πi

M∑
j=1

[
In ⊗Φ⊗(r−1)(i)

]
E(zt−k ⊗ z

⊗(r−1)
t−1 | st = i, st−1 = j) pji πj

=
M∑
j=1

[
In ⊗ (pji Φ

⊗(r−1)(i))
]
πj E(zt−k ⊗ z

⊗(r−1)
t−1 | st−1 = j)

as zt−k and ut are uncorrelated for k ≥ 1. This proves the above expression

for A(r, k). By iteration, it gives

A(r, k) =
[
In ⊗ {P(Φ⊗(r−1))}k

]
A(r)

for every k ≥ 0. Now we prove that

lim
k→+∞

A(r, k) = 0.

From Result 1.1, we set

zt =

+∞∑
`=0

zt,` zt,` = ΦtΦt−1 · · ·Φt−`+1Σt−`ut−`

where zt,0 = Σtut. Since zt,` are uncorrelated and centered when ct = 0,
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we have

πi1 E(zt−k ⊗ z
⊗(r−1)
t | st = i1) =

+∞∑
`1=0

· · ·
+∞∑
`r=0

πi1 E(zt−k,`1 ⊗ zt,`2 ⊗ · · · ⊗ zt,`r | st = i1)

=
+∞∑
`1=0

πi1E(zt−k,`1 ⊗ z
⊗(r−1)
t,k+`1

|st = i1)

where k + `1 = `2 = · · · = `r := `. But we have

πi1 E(zt−k,`−k ⊗ z
⊗(r−1)
t,` | st = i1) = πi1 E(zt−k,`−k ⊗ z

⊗(r−1)
t,` | st = i1, st−k = i1) p

(k)
i1i1

πi1

= πi1 p
(k)
i1i1

Φ⊗r(i1)E[(Φt−k−1 · · ·Φt−`+1Σt−`ut−`)

⊗ (Φt−1 · · ·Φt−`+1Σt−`ut−`)
⊗(r−1) |st = i1)

=
M∑

i2=1

πi1 p
(k)
i1i1

Φ⊗r(i1)E[(Φt−k−1 · · ·Φt−`+1Σt−`ut−`)

⊗ (Φt−1 · · ·Φt−`+1Σt−`ut−`)
⊗(r−1)|st = i1, st−1 = i2)pi2i1πi2

=

M∑
i2=1

p
(k)
i1i1

Φ⊗r(i1)E[(Φt−k−1 · · ·Φt−`+1Σt−`ut−`)

⊗ (Φt−1 · · ·Φt−`+1Σt−`ut−`)
⊗(r−1)|st−1 = i2, st−k−1 = i2) p

(k)
i2i2

pi2i1πi2 πi2

=

M∑
i2=1

p
(k)
i1i1

p
(k)
i2i2

Φ⊗r(i1) Φ⊗r(i2)E[(Φt−k−2 · · ·Φt−`+1Σt−`ut−`)

⊗ (Φt−2 · · ·Φt−`+1Σt−`ut−`)
⊗(r−1)|st−1 = i2) pi2i1πi2
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=

M∑
i2=1

M∑
i3=1

p
(k)
i1i1

p
(k)
i2i2

Φ⊗r(i1) Φ⊗r(i2)E[(Φt−k−2 · · ·Φt−`+1Σt−`ut−`)

⊗ (Φt−2 · · ·Φt−`+1Σt−`ut−`)
⊗(r−1)|st−2 = i3) pi2i1 pi3i2 πi3

...

=
M∑

i2=1

· · ·
M∑

i`1+1

p
(k)
i1i1
· · · p(k)i`1 i`1

Φ⊗r(i1) · · ·Φ⊗r(i`1)E[(Σt−`ut−`)

⊗ (Φt−`1 · · ·Φt−`+1Σt−`ut−`)
⊗(r−1)|st−`1 = i`1+1) pi2i1 pi3i2 · · · pi`1+1i`1

πi`1+1

where the last expectation is a finite term. Here p
(k)
ij = Pr(st = j|st−k = i)

is the (i, j)th element of Pk. The (i1, ih+1) block of the partitioned matrix

{P(Φ⊗r)}h is exactly

M∑
i2=1

· · ·
M∑

ih+1=1

pi2i1pi3i2 · · · pih+1ihΦ⊗r(i1) · · ·Φ⊗r(ih).

Now ρ(P(Φ⊗r)) < 1 if and only if limh→+∞{P(Φ⊗r)}h = 0. See, for exam-

ple, Horn and Johnson (1985), Theorem 5.6.12, p.298. Thus we obtain

lim
h→+∞

{P(Φ⊗r)}hi1ih+1
= 0.

Using the above formula (with h = `1) and p
(k)
ijij
→ πij , for k, `1 → +∞, we

get

lim
k→+∞

πi1 E(zt−k ⊗ z
⊗(r−1)
t | st = i1) = 0

for every i1 = 1, . . . ,M . This proves that A(r, k) vanishes as k goes to

infinity, hence

lim
k→+∞

[In ⊗ {P(Φ⊗(r−1))}k]A(r) = 0.
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From the above assumption on A(r), this implies

lim
k→+∞

In ⊗ {P(Φ⊗(r−1))}k = 0

that is, limk→+∞{P(Φ⊗(r−1))}k = 0. Thus we have ρ(P(Φ⊗(r−1))) < 1.

5. Proof of Corollary 3.1

By (5) we obtain the following linear system with unknown matrices A(1),

. . . , A(r):

(IMnr −P(Φ⊗r)) A(r)−Br,1 A(r − 1)− · · · −Br,r−1 A(1) = Br,r

(IMnr−1 −P(Φ⊗(r−1)) A(r − 1)− · · · −Br−1,r−2 A(1) = Br−1,r−1

...

(IMn −P(Φ)) A(1) = B1,1.

The incomplete block matrix Λ associated to the system is (Mδ) × (Mδ),

where δ = (nr+1 − n)/(n− 1):

Λ =


IMnr −P(Φ⊗r) −Br,1 · · · −Br,r−1

0 IMnr−1 −P(Φ⊗(r−1)) · · · −Br−1,r−2
...

...
...

0 0 · · · IMn −P(Φ)

 .

To determine explicitly the matrix expressions of every sth order moments

of (yt), the above system must satisfy the Cramer condition, that is,

det(Λ) =

r∏
s=1

det(IMns −P(Φ⊗s)) 6= 0

12



hence det(IMns − P(Φ⊗s)) 6= 0 for s = 1, . . . , r. Thus IMns − P(Φ⊗s)

must be invertible, for s = 1, . . . , r. But this is ensured by the hypothesis

ρ(P(Φ⊗r)) < 1 and Theorem 3.3.

6. Proof of Corollary 3.2

In this case pij = Pr(st = j|st−1 = i) does not depend on i, that is, pij = πj .

By the independence of the matrices Φ⊗rt , we obtain

||E(z⊗rt,` )|| = ||{E(Φ⊗rt )}`E(ω⊗rt )|| ≤ ||{E(Φ⊗rt )}`||||E(ω⊗rt )|| < +∞

where || · || is the L2-norm. Reasoning as in the proof of Theorem 2 from

FZ01, we can conclude that the sufficient condition in Theorem 3.4 can be

replaced by ρ(E(Φ⊗rt )) < 1. See also Corollary 1 of Francq and Zaköıan

(2005) for the case of MS GARCH models. But we have

E(Φ⊗rt ) = E[E(Φ⊗rt |st)] = E[
M∑
i=1

πiE(Φ⊗rt |st = i)] =
M∑
i=1

πi Φ
⊗r(i).

This completes the proof.

7. Example 3.1

Set ρr = ρ(P(Φ⊗r)). Then ρr < 1 is a sufficient condition for finite moments

up to order r. This example shows that, in certain cases, it is not necessary.

Let us consider Example 4 from FZ01, p.352, i.e., the univariate MS(2)

AR(2) model defined by yt = ηt if st = 1 and yt = ayt−2 + ηt if st = 2.

Here ηt ∼ IID(0, 1) and a is a nonzero real constant. As shown in FZ01,

13



the process can be written as

yt = ηt +

+∞∑
k=1

ak ηt−2k Ist=2,...,st−2k+2=2

where IA is the indicator function of A. This implies that the necessary and

sufficient condition for higher-order stationarity is simply |a| < 1. Then we

have

Φ(1) =

0 0

1 0

 Φ(2) =

0 a

1 0

 .

Set p11 = 0.1 and p22 = 0.2. If a = 1.08, then ρ1 ∼ 0.906, ρ2 ∼ 0.942,

ρ3 ∼ 0.979, and ρ4 ∼ 1.017. If a = 1.2, then ρ1 ∼ 0.95, ρ2 ∼ 1.05, ρ3 ∼ 1.15,

and ρ4 ∼ 1.26. If a = 1.039, then ρ7 ∼ 0.9967 and ρ8 ∼ 1.0159. This

shows that the converse of Theorem 3.3 is not true in general. One can see

that ρr = |a|r/2
√
p12 p21 + p222, hence the parameter restrictions in terms

of ”parameter region” is defined by |a|r/2
√
p12 p21 + p222 < 1, p12 = 1−p11,

p21 = 1 − p22, 0 < p11 < 1, 0 < p22 < 1, |a| > 0, and r ≥ 1. This proves

that condition ρr < 1 can be unnecessary. If the chain is i.i.d., then the

sufficient condition becomes |a|r/2√π2 < 1.

8. Proof of Theorem 4.2

i) Kollo and Srivastava (2004) proved that β
[Ma]
1 (y) can be expressed via

the third order multivariate moments as follows

β
[Ma]
1 (y) = trace(E((y∗t )

′ ⊗ y∗t ⊗ (y∗t )
′
)E(y∗t ⊗ (y∗t )

′ ⊗ y∗t )).
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Then we have

β
[Ma]
1 (y) = [vec(E(y∗t ⊗ (y∗t )

′ ⊗ y∗t ))]
′

vec(E(y∗t ⊗ (y∗t )
′ ⊗ y∗t ))

= [(KK,K ⊗ IK)E(y∗t ⊗ y∗t ⊗ y∗t )]
′
(KK,K ⊗ IK)E(y∗t ⊗ y∗t ⊗ y∗t )

= E((y∗t )
′ ⊗ (y∗t )

′ ⊗ (y∗t )
′
) (KK,K ⊗ IK) (KK,K ⊗ IK)E(y∗t ⊗ y∗t ⊗ y∗t )

= E((y∗t )
′ ⊗ (y∗t )

′ ⊗ (y∗t )
′
)E(y∗t ⊗ y∗t ⊗ y∗t ) = (s[C](y))

′
s[C](y).

From Kollo (2008), p.2333, the following relation

β
[Ma]
2 (y) = trace(E(y∗t (y∗t )

′ ⊗ y∗t (y∗t )
′
))

holds. Then we get

β
[Ma]
2 (y) = E(trace(IK2 (y∗t (y∗t )

′ ⊗ y∗t (y∗t )
′
)))

= E([vec(IK2)]
′

vec(y∗t (y∗t )
′ ⊗ y∗t (y∗t )

′
))

= [vec(IK2)]
′
E(y∗t ⊗ y∗t ⊗ y∗t ⊗ y∗t ) = [vec(IK2)]

′
k[C](y).

ii) By Móri et al. (1993) we have s[MRS](y) = E(||y∗t ||2 y∗t ) hence

s[MRS](y) = E((y∗t )
′
y∗t y∗t ) = vecE((y∗t )

′
y∗t y∗t )

= E(vec((y∗t )
′
y∗t y∗t )) = E(vec(y∗t (y∗t )

′
y∗t ))

= E(vec(y∗t (y∗t )
′
IK y∗t )) = E([(y∗t )

′ ⊗ (y∗t (y∗t )
′
)] vec IK)

= E((y∗t )
′ ⊗ (y∗t (y∗t )

′
)) vec IK = vec{E((y∗t )

′ ⊗ (y∗t (y∗t )
′
)) vec IK}

= ([vec(IK)]
′ ⊗ IK) vecE((y∗t )

′ ⊗ (y∗t (y∗t )
′
))

= ([vec(IK)]
′ ⊗ IK)E(vec(y∗t )

′ ⊗ vec(y∗t (y∗t )
′
))

= ([vec(IK)]
′ ⊗ IK)E(y∗t ⊗ y∗t ⊗ y∗t ) = ([vec(IK)]

′ ⊗ IK) s[C](y).
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Furthermore, we have

vec K[MRS](y) = vecE(y∗t (y∗t )
′
y∗t (y∗t )

′
)− (K + 2) vec IK

= E(vec(y∗t (y∗t )
′
y∗t (y∗t )

′
))− (K + 2) vec IK

= E((y∗t (y∗t )
′
)⊗ (y∗t (y∗t )

′
)) vec IK − (K + 2) vec IK

= ([vec IK ]
′ ⊗ IK2)E(vec((y∗t (y∗t )

′
)⊗ (y∗t (y∗t )

′
)))− (K + 2) vec IK

= ([vec IK ]
′ ⊗ IK2)E(y∗t ⊗ y∗t ⊗ y∗t ⊗ y∗t )− (K + 2) vec IK

= ([vec IK ]
′ ⊗ IK2) k[C](y)− (K + 2) vec IK .

iii) From Kollo (2008), p.2332, we obtain

b[Ko](y) = 1K×K ? E(y∗t ⊗ (y∗t )
′ ⊗ y∗t ) = E[

∑
i,j

(y∗ti y
∗
tj) y∗t ]

hence

b[Ko](y) = E[(y∗t )
′
1K×K y∗t y∗t ] = E(vec(y∗t (y∗t )

′
1K×K y∗t ))

= E([(y∗t )
′ ⊗ (y∗t (y∗t )

′
)] vec 1K×K) = vec{IK E([(y∗t )

′ ⊗ (y∗t (y∗t )
′
)] 1K2×1}

= (11×K2 ⊗ IK) vecE((y∗t )
′ ⊗ (y∗t (y∗t )

′
)) = (11×K2 ⊗ IK) s[C](y).

Finally, we have

vec B[Ko](y) = vecE((y∗t )
′
1K×K y∗t y∗t (y∗t )

′
) = E((y∗t )

′
1K×K y∗t y∗t ⊗ y∗t )

= E(vec((y∗t )
′
1K×K y∗t ) y∗t ⊗ y∗t ) = E((y∗t )

′ ⊗ (y∗t )
′

vec(1K×K) y∗t ⊗ y∗t )

= E((y∗t ⊗ y∗t ) ((y∗t )
′ ⊗ (y∗t )

′
) vec(1K×K)) = E((y∗t ⊗ y∗t ) ((y∗t )

′ ⊗ (y∗t )
′
)) vec(1K×K)

= E((y∗t (y∗t )
′
)⊗ (y∗t (y∗t )

′
)) vec(1K×K) = vec[IK2 E((y∗t (y∗t )

′
)⊗ (y∗t (y∗t )

′
)) 1K2×1]

= (11×K2 ⊗ IK2) vecE((y∗t (y∗t )
′
)⊗ (y∗t (y∗t )

′
)) = (11×K2 ⊗ IK2) k[C](y).
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9. Proof of Corollary 4.1

By Kollo (2008), p.2334, we get

trace B[Ko](yt) =
∑
i,j,k

E(y∗ti y
∗
tj (y∗tk)2) = E((

K∑
i,j=1

y∗ti y
∗
tj) (

K∑
k=1

(y∗tk)2))

= E(((y∗t )
′
1K×K y∗t ) ||y∗t ||2) = E(((y∗t )

′
1K×K y∗t ) (y∗t )

′
y∗t )

= E((y∗t )
′
y∗t (y∗t )

′
1K×K y∗t ) = E[(1K×K y∗t )

′ ⊗ (y∗t )
′

vec(y∗t (y∗t )
′
)]

= E[((y∗t )
′
1K×K)⊗ (y∗t )

′
y∗t ⊗ y∗t ] = E[((y∗t )

′ ⊗ (y∗t )
′
) (1K×K ⊗ IK) y∗t ⊗ y∗t ]

= E[(y∗t )
′ ⊗ (y∗t )

′ ⊗ (y∗t )
′ ⊗ (y∗t )

′
] vec(1K×K ⊗ IK) = (k[C](y))

′
vec(1K×K ⊗ IK)

and

||B[Ko](y)||2 = [vec B[Ko](y)]
′
[vec B[Ko](y)]

= [(11×K2 ⊗ IK2)k[C](y)]
′
[(11×K2 ⊗ IK2)k[C](y)]

= k[C](y)
′
(1K2×K2 ⊗ IK2) k[C](y) = trace[(1K2×K2 ⊗ IK2) k[C](y) k[C](y)

′
]

= [vec(1K2×K2 ⊗ IK2)]
′

vec(k[C](y) k[C](y)
′
)

= [vec(1K2×K2 ⊗ IK2)]
′
k[C](y)⊗ k[C](y)

where 11×K2 ⊗ IK2 = (IK2 · · · IK2) = I ∈ RK2×K4
.

10. Example 4.1

Let us consider the bivariate (K = 2) simulated model yt = c(st) +σ(st) ut,

ut ∼ NID(0, I2) with M = 3. We set the following parameters:

c(1) = [1 2]
′

c(2) = [0.2 0.5]
′

c(3) = [−1 0]
′
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σ(1) =

1 0

0 2

 σ(2) =

3 2

2 4

 σ(3) =

0.7 0.3

0.2 0.8

 .
The transition probability matrix and the ergodic probability vector are:

P =


0.60 0.02 0.02

0.20 0.90 0.08

0.20 0.08 0.90

 π =


0.0476

0.4762

0.4762

 .

Firstly, we compute the four measures of skewness as presented above:

s[C] = [0.2613 − 0.1152 − 0.1152 − 0.1751 − 0.1152 − 0.1751 − 0.1751 1.0900]
′

β
[Ma]
1 = 1.3881

s[MRS] = [0.0862 0.9747]
′

b[Ko] = [−0.1443 0.6246]
′
.

Then we report the measures of multivariate kurtosis:

k[C] = [10.2201 − 14.5945 − 14.5945 22.5217 − 14.5945 22.5217 22.5217 − 36.9711

− 14.5945 22.5217 22.5217 − 36.9711 22.5217 − 36.9711 − 36.9711 65.4624]
′

β
[Ma]
2 = 120.7259

vec K[MRS] = [28.7418 − 51.5656 − 51.5656 83.9841]
′

vec B[Ko] = [3.5528 − 6.5222 − 6.5222 14.0420]
′
.

All those measures correctly detect the leptokurtic and almost symmetric

characteristics of the process. We see that the departure from normality of

this process is substantial as we compare these numerical vectors with those

of a normal population w of dimension K = 2: β
[Ma]
2 (w) = 8, K[MRS](w) =

0, B[Ko](w) = vec[4 2 2 4]
′

and k[C](w) = [3 0 0 1 0 1 1 0 0 1 1 0 1 0 0 3]
′
.
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Note that the various definitions of skewness for w are all null.

11. Example 4.2

Let us consider the bivariate MS(2) VARMA(1, 1) model defined in the

online Supplementary Material, Section 2. The measures of skewness for

this switching model clearly indicate a symmetric distribution:

s[C] = [0 0 0 0 0 0 0 0]
′

β
[Ma]
1 = 0 s[MRS] = [0 0]

′
b[Ko] = [0 0]

′
.

However, the measures of kurtosis vary as follows:

k[C] = [4.1402 0.0180 − 0.0857 1.2531 − 0.1212 0.8223 1.2467 − 0.0526

− 0.0175 1.2612 0.8223 − 0.0762 1.2549 − 0.3059 − 0.2823 9.5463]
′

β
[Ma]
2 = 15.3312 vec K[MRS] = [1.3951 − 0.2879 − 0.3679 6.7994]

′

vec B[Ko] = [5.2564 1.7957 1.7011 10.6706]
′
.

Now we formally test the departure from normality. By Example 4.1 above,

we have ||k[C]||2 − ||k[C](w)||2 = 116 − 24 = 92, where w is normally dis-

tributed. This leads to a rejection of the null of normality. The rejection is

also confirmed by Mardia’s measure as β
[Ma]
2 − β[Ma]

2 (w) = 15.33− 8 = 7.33

is greater than the critical values of a normal distribution at any given

significance level (see Theorem 4.2). Finally, by Corollary 4.1, we have

||B[Ko]||2 − ||B[Ko](w)||2 = 147 − 40 = 107. This again rejects normality.

Although all measures of skewness agree on a symmetric feature of the pro-

cess, the testing procedures on kurtosis’ measures clearly indicate presence

of excess kurtosis with respect to the normal behaviour.
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Francq, C., Zaköıan, J.M., Stationarity of multivariate Markov switching

ARMA models, Journal of Econometrics 102 (2001), 339–364.
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