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This document presents several appendices that contain supplementary results to be published
online alongside the main paper, “Semiparametric Estimation of Random Coefficients in Structural
Economic Models”. All references to equation numbers and to section numbers are references to
equations and sections in the main paper. The main paper contains Appendices A and B. This

document begins with Appendix C.

C Compactness

The following proposition shows that under Assumptions 1-6 the operator T' defined in (4.2) is
compact with infinite dimensional range. As discussed in Section 4 in the paper, compactness of

the operator is useful because then T" admits a SVD.

Proposition 4. Let T be the operator defined in (4.2) with domain L,zrg and let Assumptions 1
- 6 be satisfied. If foywze/mo is square integrable with respect to mg X m.. then R(T) C L2 and

T:L2, — L2 is an a.s. bounded and compact operator.

The proof is detailed in Appendix F.2 below.
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D Identification and completeness

In addition to the large class of functions that satisfy the sufficient conditions for identification given
in Proposition 3, we provide here further examples of families F¢jwz¢ for which the corresponding

Fojcwz is T-complete.

ADDITIVELY-CLOSED ONE-PARAMETER FAMILY OF DISTRIBUTIONS. Let © = R, and Feywze
be additively closed. That is, V foywze, hcywze € Foywze and Vo, 05 € O,

Jeywze(e,w, z,01) * heywzo(c,w, 2,02) = foywze(c,w, 2,01 + 02),

where * denotes the convolution operation. Then, Fycwz is T —complete. Some distributions that
belong to the additively-closed one-parameter family, and that are relevant for our application, are
the following, see Teicher (1961).

0
- Gamma distribution: fopwze = g(lf&;”)) Alem9=we ¢ > 0, g(z,w) > 0, 0 > 0 or fowze =

(z,w) pw)—1 —Be
F?;(z,w))cg( ) le o y € > 07 Q(Z,w) > 0, 6 > 0.

- Uniform distribution with support depending on 6: foywze = U0 — g(Z, W), 0 + g(Z,W)],

where ¢g(-, -) is some positive and bounded function of (Z, W). Therefore,

1
{0 g(ZW) <c<O+g(ZW)}.
fewze 29(Z. V) {6 — g( ) <c + g( )}
However, if fowze has a uniform distribution with support that does not depend on 6 then,
foyw is not identified.

LOCATION-SCALE ONE-PARAMETER FAMILY OF DISTRIBUTIONS. Let © = R, and Feywze
be the one-parameter family induced by foywz via location or scale changes. That is, Vfojwze €
Fowzo, fowzelc,w,2,0) = fowz(ec — 0,w,2) or fowze(c,w,2,0) = fowz(cl,w,z). For the
location (resp. scale) family, if the conditional characteristic function of C' (resp. log(C'), given

(W, Z), does not vanish a.s. in some non-degenerate real interval, then the fy is identified, see
Teicher (1961).

D.1 Identification without nuisance unobservables

In this section we briefly describe the case where we do not have € so that fowz¢ cannot be recovered
as in Theorem 1. This is relevant in models where all the unobservable variables are of interest so

¢ is included in €. In our setup, this implies that the general structural model (3.1) reduces to

V(C,W,Z,0)=0  a.s. (D.1)



and Assumption 1 is replaced by the following one.

Assumption 1. The random element (C, W, Z,0) satisfies a structural economic model

U(C,W,Z,0)=0 as. (D.2)

where U is a known Borel measurable real-valued function. We assume that (D.2) has a unique

global solution in terms of C':
C=eoW,Z,0), a.s. (D.3)

where ¢ : RF+4 3 R is a Borel-measurable function.

Indeed, even in this setup where ¢ is not strictly monotonic in § and 6 is multivariate, we can
characterize the structural pdf fgw as a solution to a constrained functional equation. Let Fojyz
be the cumulative distribution function associated with Poywz and assumed to be in Lfrcz for every

w € W. Then, we have the following analog to Theorem 1.

Theorem 8. Let Assumptions 1" and 5 be satisfied. If Pow admits a pdf fow with respect to the

Lebesgue measure, then fow is a solution of:
Fowz(c,w,z) = Sfow(0,w) subject to  fow € Fopw, a.s. (D.4)

where S is a linear operator defined as

Sh :/ 1{@(%2,9)9}(9%(9,w)d@, Yh € L72rg' (D.5)
S)

Proof. Equations (D.4)-(D.5) follow from the fact that, under Assumption 1', Fopwz(c,w,2) =
E [1{¢(w 20)<e}( ‘ W, Z} J Lpw,z0)<c} (0)dPoyw,z (0, w, z) and from Assumption 5. [ |

Ho(w,z,0)<c}

—ci) and the adjoint S* is given in the following proposi-

The kernel of the operator S is

tion:

Proposition 5 (Adjoint of S). Let S be the operator defined in (D.5). Assume that S : L — L7
is bounded. Then, the operator S* defined as: Y € L2,

S°h //1{w(wze<c} )WCZ((CQ)Z)h(c,w,Z)dch-

exists and is the adjoint of S. The operator S* : L2 — L2 is bounded and linear.

The proof is similar to the proof of Proposition 1 and is omitted. Note that when there are
nuisance unobservables ¢, the estimating equation (4.3) can be trivially recovered from (D.4) by
differentiating with respect to c. If ch = fe %d@wczdcdz < 00, then the bounded operator S : L2 .

L2 is compact.



Identification of fy depends on injectivity of S| which, in turn, depends on the exogenous
variation in Z. The estimation procedure for this case is the same as that one proposed in Section
5 with the operator T replaced by S. The rate of the mean integrated squared error will improve
since Fopwz can be estimated at a better rate than foywz. Moreover, the degree of ill-posedness

will not be as severe as in the case where the kernel of T' is exponential.

E Case with non-random parameters: Iterative two-step

method

In this section we describe the two-step estimator in the case in which some components of 6 are
deterministic as described in Section 5.3. This is an iterative algorithm similar to that proposed in
Heckman & Singer (1984). The algorithm is as follows:

I. For a given 99 ) compute the indirect Tikhonov regularized estimator of fg,w using the two-
step procedure described in Section 5.1. That is, in the first step solve the minimization

problem
i = arg min {1Tyh — fonwz| P+ allhl
2

and in the second step compute the metric projection of fg; w(j) onto the set Fyw as

foa P c
Pefosw () = max {O, Toswe) — —} (E.1)

7T92
. fo o - p) roy
where c is such that [g Pefgh i ;yd0 = 1. Fix fyliy = Pefgyiwe):
II. For a given fe(i ‘)W compute 99 +1) by solving the nonlinear least-squares problem:
j+1 : 2(j ; FU
89 ) = arg ug <‘|Telfa(g|)w(92vw) — fewzll” + O‘Hfﬂ(gl)w||2) '

Then, iterate steps I and I[ until convergence. The algorithm should be run using different

starting values for 0, to avoid convergence to a local optimum.



F Proofs of minor results

F.1 Proof of Proposition 1

By definition, the adjoint operator T* of the bounded linear operator T satisfies: Vh € L2
(Th,¢) = (h,T*y). Thus,

Yy € Lm

T

(Th,v) = /c/Z(Th)(c,w,z)w(c,z)ﬂcz(c,z)dcdz
= ///fCWZg(cjw,z,Q)h(e)dew(c,z)wcz(c,z)dcdz
cCJZ2J0O

= T c, W, 2 c,z w cdzdf = *
= [ 0mo0) [ [ fowzte.w. 200t 9 = dedzdt = (. 70)

where the third equality follows from the Fubini’s theorem. Existence and linearity follow from the Riesz

representation theorem. Boundedness of T* follows from the boundedness of T since ||T*|| = ||T||.

F.2 Proof of Proposition 4

We first show that R(T) C L2 . By the Cauchy-Schwarz inequality, Vw € W and Vh € L2 _:
2
ITh|? = // <fCWZ",h> rea(c, 2)ded (F.1)
cJz o
2
// HfC'WZ‘)H |[A][27 e (¢, 2)dedz
clz T
f2
— HhH?// / Wzl o . dodedz.
cJzlJe To

The expression is finite if the multiple integral is bounded. This is shown below in the second part of the

proof. Thus, after showing this we establish that R(T") C L2

Tez'

IN

Next, we show compactness of T'. This can be shown by showing that T" is Hilbert-Schmidt. An integral
operator from L2 , to L2 is Hilbert-Schmidt if its kernel is square integrable with respect to mg X mc.. An
Hﬂbert-Sczlrlmidt operator is bounded and compact. Under the conditions of the proposition we compute
JelzJo fc';%ze moTe, and show that it is bounded:

/ / / fcwze o
2

= // / [Z fewzo(p;  (w, 2,0, ¢),w,2,0) ‘80@2 (w, z,0,c) ‘10 W%dcdz

0

< //2S IZ/J‘?WZG wz@c)wzﬂ’@cgoZ (wz@c| Le, ( )Mdcdzcw
T
_ _ 0,¢),z)
— 25—1 / 2 gi,w, z,0) 0. 0w, 2,0, & 1 Tea(p(w, 2,0, 24), de;dzdf
L/ g [ P zoeiw,2.0) gt .6,2) o
<



where the first inequality follows from the Fubini’s theorem and the Cauchy-Schwarz’s inequality and the
second equality follows from the change of variable goi_l(w, z,0,c¢) = g;. The final inequality follows from
Assumption 6. This result shows that R(T') C L%, and that T is Hilbert-Schmidt and then bounded and
compact.

G Technical lemmas

Lemma 3. Let the assumptions of Corollary 1 be satisfied and fC|WZ be as defined in (5.7). Then,

()[BT fews — T fow2)]” = O (max{ni, i)

(ii) Var(T* feywz) = O [nfl (min{hn, hd})—’“} .

Proof. Note that fC|WZ_fC\WZ = (fcwz — fcwszz) [1 - (]EWZ - fwz) /fwz] And, since

fwz

1
fwz

(fWZ - fwz> /fWZ = Op(l) we can use the approximation fC|WZ—fC|WZ = fcwz - fC\WZfWZ>~
We start by showing result (7).

Let ¢ be a k-dimensional vector and v a I-dimensional vector. We use the notation vf = (v, 1)
and vt = (u,v',t"). Moreover, we let p = k + [ and let D?*(h) be the Hessian matrix of a function
h. We use a single integral symbol to denote the multiple integral either with respect to dvdt or
dudvdt. We start by computing the bias term b(w, ) = E <T*fC‘WZ — T*fC|WZ>.

By standard Taylor series approximations we get: b (w, ) ~ T*fw;z [E < fcw Z) — fowzE ( fW Z)}
and then

b(w,d) =~ T*fml/z { [E (fcwz) - fcwz} + fewz [fWZ —E (fwz)]) ;
E (fcwz) — fowz = hjtr (DQ(fCWZ)/m’mK(u,C)K(U,z)K(t, w)dudvdt) + o(h2);

E(fwz) — fwy = hjtr <D2(fWZ) / ﬁ’ﬁK@,@K(t,@@dt) + o(h2):

b(w,0)

1

/ f;lwze [hitr <D2(fcwz)(67w72) /mrm[((%C)K(v,z)[((t,w)dudvdt> dedz
clz Jwz

Tex(C, 2)

mo(0)

—h2tr <D2(fWZ)(w’ 2) / U—%’ﬁK(v, 2)K(t, w)dvdt) } dedz + o (max{hi, h?l})

= hibi(w,0) — hibs(w,0) + o (max{hZ, h3}) .

Therefore, b*(w, §) = O (max{h?, h}) which proves (i).



Now consider the variance term (part (7i) of the Lemma).
Var (T*fC|WZ> = Var [T* (fcwvz - fc*\wz)}
1
Var {T s <fCWZ - quszzﬂ

Jwz

= Var T*fCWZ 1 Var T*fC|WZfWZ
fwz Jwz

oo (T* fewz fC|WZfWZ> |

fWZ fWZ

12

In the following we use the notation: K} ;(z,w) = K;(2;— 2, 2) Kp(w; —w, w). We start by analysing
the first term:

Var <T* fCWZ) - Var
fwz

= Var

yw, 2,0) <~ K ci— ¢, cC Tez(Cy 2
/Z CfCIWZ€(sz )Z h(h )Kh,i(z,w) ( )dcdz] (G.1)

fwz(w, z)nhy = n o

Tez(cis i) Kp(w; —w,w)
fwz(w, ;) o

+o0 <(nhfb)_1)

1 n
WZfC\er(Ci,w,Zu@)
n =1

1 9 72 (i, 21) K2 (w; —w,w)
= — Ciy W, 24, 0) 2= h ’ - w;, 2)desdw;dz;
nh%’“ /fC'|WZ6( 4 i )f%/z(wazi) ﬂ_g fCWZ(Cz W; Zz) C;AW;az;

Tex(Ciy 2i) Kp(w; —w,w)
Jwz(w, z) Ty

2
fow z(ci, wy, Zi)dcidwidzi:|

1
T [/fowze(cz‘,w,zi,ﬁ)

as
Onhﬁ

! 2 72 (ci, z) [ K2(t,w)dt
= nhll;fl/fC|WZ9(CZ’w’2279)fwz(w,zz) 7'{'3 fC|WZ(C’L?w7’Z’L)dczdzz

+o ((nh,'g)—l) :

Next,

Var (T*M> — Var </ fewzele,w, 2, 9) ZfCIWZ c,w, 2)Kpi(z, )Mdcdz> (G.2)
zJe

fWZ fwz(w Z nhp o

= ( hk Z fCIWZe c,w, z;, )f(;|Wz(C,w,zi)Kh(wi — w7w)Mdc>
n c

fWZ w Zz) o
1
+o0 (nh’“)

1 ( fC|WZ9(CawaZi79)
C

2
fewz(c,w, z;)me(c, zi)dc) X

n_hg fWZ(w’Zi)
2
MfWZ(wa 2i)dz; + o ((nhg) ™)
o



where the results are obtained by standard Taylor series approximations.

Finally, we have to compute the covariance term:

Cou [ edeWz pefowziwz o
fWZ fWZ
fC|WZQ(CZ Wz 0) . Tez (CZ Zz)
= —— ZCOU 5 Wfﬁ(wz w, w) FELEE
n2hkhd = Je %Kh(wi - waw)mfc\wz(c w, z;)dc

Brm——"

— 1 71'cz(cv Zi) 2 1 '
= / [/c feywzo(e,w, 2, 0) foyw z (e, w, zi) - dc] fwz(w,zi)dzz
thn . ky—1
| Kt w)K [ 52w dt—i—o((n(mm{hn,hd}) ) )
hq
By putting (G.1), (G.2) and (G.3) together we obtain
Var(T* feywz) (G.4)
[ K2(t,w)dt

12

Zi

1 1 2
— B (R zom?lw,z) + = 7
/Z nhk [ fClWZG?TCZ [,z nhs (fC|WZ07TCZ o ZZ) fWZ(ZU,Zi)T['g

2 /E(fCWZQwCZ !w,zl-)Qd ‘fK(t,w)K (thn>dt+0< ( 1 )

Zi 5

_nh’; fwz(w, z) Uy n(min{hy,, hq})*
1 1 1 1
= — — 92— ,
nhﬁvl(w’ o)+ nhk Va(w, 6) nhs%(w,ﬁ) o (n(min{hn7 hd})k>

Lemma 4. Let the assumptions of Theorem 4 be satisfied, fC|WZ be as defined in (5.7) and Z,; be
as defined in the proof of Theorem 4. Then,

ZE Zni | NV ar(Zy;) ’ —0
i=1

asn — 0

if a3/(nhk) — 0.

Proof. Note that

ZE Zoi /N7 ar(Zy)| = nnVar(Z,)) 2E|Zp [*

w\»—x

=n

(Var(Zu)) 2 E|Zy|* (G.5)

and E|Z,1[> = O (a%?2h,,?) by Assumption 9 (i). Moreover, by Assumption 9 (i) there exists a



constant k > 0 such that Var(Z,;) > ka=2h,*. Therefore,

3 1 aSh3k
=0 (\/na%jﬁk(\/ar(an))?’) =0 ( na%#’)

which converges to 0 if a®/(nhk) — 0.

Zni | NV ar(Zy;)

Sk
i=1

Lemma 5. Let the assumptions of Theorem 6 be satisfied. Then,

5 B e ool . ‘
(aPs + PyT*TEy) fo = PyT TPy [y

where f;ﬁf,f is the solution of (5.9) with f0|wz replaced by foywz and Feyw replaced by Ly =
{hELgre:<fe|W fih— f9|w> }

Proof. From (A.15) in the proof of Theorem 6 and because f;if,f € Ly implies (f;f{f, fg‘cW) €Ly,
which in turn implies that f’f(fa Ly fg‘c )= (fa oLs fgfw), we get: f’f(T*T—FOJ)fa g IBfT*fc‘WZ
by using (A.15). Using these results, the following equivalences hold:

PyT T (fyy W — fyia) + Oépff;f}f/f = P{T fowz — ByT*T £y
= ﬁfT*TPf(fa W fgch) + Oépffgorvf/f = BT fowz — ISfT*TfTC
& (aPp+ P TPy for? = PyT" fowz + BT T(Py — 1) ff,
= BT (Talfy + TP = D)
= PfT*TpffeTfW'
[

Lemma 6. Suppose that assumptions 10 (i)-(i1i) and (v) hold. Then, a solution to the minimization

problem (5.10) ezists.

Proof. Problem (5.10) is numerically equivalent to the following procedure computed in two steps,

where in the first step one computes, for each 6, € ©,

m(0) = min {lITo,h = fowzl* +allbl?} (G.6)

h€.7:92‘w

and in the second step one computes:

0, = min m(6,). (G.7)

01€01

A solution to (G.6) exists for every 6, € ©; since it is a convex problem. Moreover, under As-
sumptions 10 (4 )- (i) and (v), by Theorem 3 of Milgrom & Segal (2002) the value function m(-) is

9



continuous. This together with compactness of ©; implies the existence of a solution to (G.7). W

Lemma 7. The functional £(h) = ||h||* defined on L2 satisfies:
|R1]|? — ||hal|® — (ha, (b1 — ha)) > c||h1 — ho||*  for any 0 < c < 1.

Proof. Note that the Gateaux derivative of || - |* at hy € L2 , denoted by D(hg) is equal to the
linear functional D(hg) = (-, ho) on L2 . Hence, for every hy, hy € L2,

D(ho)(h1 — hy) = (D(hy) — D(hy), (h1 — h2)) > ¢||h1 — hs)?, for any 0 < ¢ < 1. (G.8)

Define @(t) = ||hy||* where hy = thy + (1 — t)hy, for hy,hy € L2, and for every t € [0, 1]. Note that
he € Fopw if by, ho € Fypw. Moreover, d(t)/dt = D(hy)(h1 — hg). Then, for 0 <t <t <1

do(t)  de(t)
dt dt

= (D(h) = D(hw), hy = ha)

hy — hy
17t = D ||?
C—
- t—t

where the second equality is due to the equality hy — hy = (t — t')(hy — h) and the last inequality
is due to (G 8) Now by setting t" =0 we get dfl—gt) — d('z—(to) > ct||hy — ho||>. Therefore, by

©(1) = (0 fo dfltt) d‘P ]dt > c||hy — hol|?. By replacing ¢(1) with |2 ||* and ©(0) with

| ha||* we get the result. |

Lemma 8. Under Assumption 10 (iv) and (vi) we have: (i) ||JEGC;|CWH2 — Hng\WHQ = Op(a™14,) for
dn = 0(1); (i) if 6, = O(«), then there exists an My such that:

P<||f02\w||2 > M()) —0 as n — 0o.

Proof. By definition of § and since Qn(§) > 0: O‘||f92’|WH2 < Qn(9) + oszQQ’ﬁ/VH?. This implies that

o (1wl = 18wl?) < @u(@) +a (1w 2 = 1 )
< Qnle”) + o (8wl = 18y 1)
= Q") +1Quls") — QO + a (1wl = 1)

= (571)

by Assumption 10 (iv) and (vi), where §,, = o(1) and the second inequality follows from the fact
that fa w15 the minimizer of the criterion (and hence, Qn( )+ all fy ||2 < @n(go) + a||f902‘w||2).

10



This shows (i). To show (i) we use result (i) and observe that

P (52 = Mol > 22) = P (allfgifi I = 1 ypwl®) > a1
= P(0y(6,) > aM)

which converges to zero for every M > 0 if 6,, = O(«). Finally, because || f902|W||2 is bounded, we

can choose a finite M > 0 sufficiently large so that P <Hfg‘2|CWH2 > Mo) —0asnt0. [

Lemma 9. Let U,(g°) denote an open neighborhood in G in the weak topology around ¢°. Under
Assumptions 7 and 10 (i), (iv)-(vi), and if §, = O(«), where 6, is as in Assumption 10 (vi), then:

P(§ ¢ U,(g°) =0 as n — 0o.

Proof. Since P(A) < P(AN B) + P(B¢) for any measurable sets A and B and by recalling the
notation § = (61, fg;fw) then

P(g ¢ Un(9°) < P(g ¢ Un(9”). I ForfI* < Mo) + Pl fgyw I” > Mo) (G.9)

for some My > 0 large. Lemma 8 shows that for any ¢ > 0 there exists an My = My(e) > 0 such
that P(||f§;fw||2 > M) < €. So, we focus on the first probability in the right hand side.

P(5 & Un(g"), |l foriwI* < Mo) (G.10)
= (g% A1, [@nl9) +allfI] SQn(g°)+a|\ngW\|2)
21 15 B
< (g% A e [QU) I £I] gg%(gg}iﬂ”%%b%(g) Q(9)]

< Q(e") + all Byl + 10u(6") - QL)

Note that [3Qn(9) = Q(9)| = 21 To,h — fopwzl* = |To,h — feywzl* < || feywz — fopwzl|? by using
. a2 . ~
the inequality 4 —b* < (a—b)%. So, by Assumption 7, Sup,e. o) f2<as 13@n(9) — Q(9)] = Op(n,,)
for some 7,, = o(1). Then, from (G.10) and because |Q,(¢°) — Q(g°)| = O,(4,), it follows:

P(g ¢ Uu(9°), I fow I < Mo)
= (g% Jnf L 10(9) +allfIP] < allfiwl* + Op(ma) + Op((;n))
= (¢ A, @@+ inf ol fIP < all foyw I + On(mn) + op«sn))
< P (g% A ||f”2<MOQ(9) < Op(max{a,nn,én})> .

11



Note that the set US(¢°) is closed and ©1 x {f € Fo,jw; || f]|* < Mo} is closed and bounded.
Thus, under assumption 10 (v), @ is continuous which implies that there exists a ¢* € {g €
U (9°) |1 fII? < Mo} such that infygy, g0y 712<nm, @(9) = Q(g*). Moreover, by Assumption 10 (iv)
it must be Q(g*) > 0. If this was not the case, then we would have g* = ¢°, but this is a contradiction
of the fact that g* € U (g°).

Because O,(max{«,n,,0,}) = 0 as n — oo and Q(g*) > 0, we conclude that

P(g ¢ Un(9"), | o |* < Mo) — 0

which in turn implies that P(g & Uy,(g°)) — 0 as n — oc. |
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