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In this supplementary material, we include the proofs of results stated in the main text. The contents

of the supplemental appendix are organized as follows. Appendix A contains notations and definitions

used throughout the appendix. Appendix B contains the proof of Theorems 2.1 and 2.2 and Corollaries

2.1 and 2.2. Appendix C contains the proof of Theorem 3.1 and auxiliary lemmas. Appendix D contains

the proof of Theorem 4.1. Appendix E then reports the Monte Carlo results.

Appendix A: Notation and Definitions

Let Π : X → Z be the projection map pointwise defined by x = (yL, yU , z) 7→ z. Let ν = Π#µ be the

pushforward measure of µ on Z. We then denote the marginal density of P with respect to ν by φ2
0(z). By

the disintegration theorem, there exists a family {µz : z ∈ Z} of probability measures on X . Throughout,

we assume that µz is absolutely continuous with respect to some σ-finite measure λ for all z ∈ Z. We then

denote the conditional density function of P with respect to λ by v2
0(yL, yU |z).

For any 1 ≤ p ≤ ∞, we let ‖ · ‖Lpπ be the usual Lp-norm with respect to a measure π, where ‖ · ‖L∞π
denotes the essential supremum.

Appendix B: Proof of Theorems 2.1 and 2.2

Proof of Theorem 2.1. We first show that the identified set can be written as

Θ0(P ) = {θ : θ = E[m(Z)l(Z)], P (mL(Z) ≤ m(Z) ≤ mU (Z)) = 1}. (B.1)

For this, we note that, by Assumptions 2.1-2.3 and arguing as in the proof of Theorem 1 in Stoker (1986),

we have

E[w(Z)∇zm(Z)] = E[m(Z)l(Z)]. (B.2)

Further, the distribution of Y first-order stochastically dominates that of YL. Similarly, the distribution of

YU first-order stochastically dominates that of Y . Since q is nondecreasing by the convexity of %, it then

follows that, for each u ∈ R,

E[q(YL − u)|Z] ≤ E[q(Y − u)|Z] ≤ E[q(YU − u)|Z], P − a.s. (B.3)

Eq. (3) then follows by (B.3), Assumption 2.3 (iii), and the hypothesis that E[q(Y − u)|Z = z] = 0 has a

unique solution at u = m(z) on D.
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For the convexity of Θ0(P ), observe that for any θ1, θ2 ∈ Θ0(P ), there exist m1,m2 : Z → R such

that θj = E[mj(Z)l(Z)] and mL(Z) ≤ mj(Z) ≤ mU (Z), P − a.s. for j = 1, 2. Let α ∈ [0, 1] and let

θα ≡ αθ1 + (1− α)θ2. Then,

θα = E[mα(Z)l(Z)],

where mα ≡ αm1 + (1 − α)m2. Since mL(Z) ≤ mα(Z) ≤ mU (Z), P − a.s., it follows that θα ∈ Θ0(P ).

Therefore, Θ0(P ) is convex.

We show compactness of Θ0(P ) by showing Θ0(P ) is bounded and closed. By Assumption 2.3 (i)-(ii),

for any θ ∈ Θ0(P ),

|θ(j)| ≤ sup
z∈Z
|m(z)|E[|l(j)(Z)|] ≤ sup

x∈D
|x|E[|l(j)(Z)|] <∞, for j = 1, · · · , `. (B.4)

Hence, Θ0(P ) is bounded. To see that Θ0(P ) is closed, consider the following maximization problem:

maximize E[m(Z)p′l(Z)], (B.5)

s.t. mL(Z) ≤ m(Z) ≤ mU (Z), P − a.s. (B.6)

Arguing as in the proof of Proposition 2 in Bontemps, Magnac, and Maurin (2012), the objective function

is maximized by setting m(z) = mL(z) when p′l(z) ≤ 0 and setting m(z) = mU (z) otherwise. This and

(B.2) give the support function of Θ0(P ) in (13) and also shows that, for each p ∈ S, there exists mp(z) ≡
1{p′l(z) ≤ 0}mL(z)+1{p′l(z) > 0}mU (z) such that υ(p,Θ0(P )) = 〈p, θ∗(p)〉, where θ∗(p) = E[mp(Z)l(Z)].

Since mp satisfies mL(Z) ≤ mp(Z) ≤ mU (Z), P − a.s., we have θ∗(p) ∈ Θ0(P ). By Proposition 8.29 (a)

in Rockafellar and Wets (2005), the boundary of Θ0(P ) is {θ̃ : 〈p, θ̃〉 = υ(p,Θ0(P )), p ∈ S`}. Therefore,

Θ0(P ) contains its boundary, and hence it is closed.

For the strict convexity of Θ0(P ), we show it through the differentiability of the support function. The

proof is similar to that of Lemma A.8 in Beresteanu and Molinari (2008) and Lemma 23 in Bontemps,

Magnac, and Maurin (2012). To this end, we extend the support function and define s(p,Θ0(P )) as in (13)

for each p ∈ R` \ {0}.

For each z ∈ Z, let ξ(z) ≡ (mL(z) − mU (z))l(z). For each p ∈ R` \ {0}, let ζ(p) ≡ E[1{p′ξ(Z) ≥
0}p′ξ(Z)]. Then, sincemL(Z)−mU (Z) ≤ 0 almost surely, it holds that υ(p,Θ0(P )) = ζ(p)+E[mU (Z)p′l(Z)]

for all p ∈ R` \ {0}. For any p, q ∈ R` \ {0}, it then follows by the Cauchy-Shwarz inequality that

|ζ(q)− ζ(p)− (q − p)′E[ξ(Z)1{p′ξ(Z) ≥ 0}]|

= |E[(1{q′ξ(Z) ≥ 0} − 1{p′ξ(Z) ≥ 0})q′ξ(Z)]| ≤ ‖1{q′ξ ≥ 0} − 1{p′ξ ≥ 0}‖L2
P
‖q′ξ‖L2

P
. (B.7)

By Assumptions 2.1 (i), the distribution of ξ(Z) does not assign a positive measure to any proper subspace

of R` with dimension ` − 1, which ensures P (p′ξ(Z) = 0) = 0. Thus, for any sequence {qn} such that

qn → p, it follows that 1{q′nξ(Z) ≥ 0} a.s.→ 1{p′ξ(Z) ≥ 0} as n→∞. Note that 1{p′ξ(Z)} is bounded for all

p. Thus, the function class {12{p′ξ(·)} : p ∈ R` \ {0}} is uniformly integrable. These results ensure that

‖1{q′ξ ≥ 0}− 1{p′ξ ≥ 0}‖L2
P
→ 0 as q → p. This and ‖q′ξ‖L2

P
<∞ imply that the right hand side of (B.7)

is o(1). Hence, ζ is differentiable at every point on R` \{0} with the derivative E[ξ(Z)1{p′ξ(Z) ≥ 0}]. Note

that, for each z ∈ Z, p 7→ mU (z)p′l(z) is differentiable with respect to p and mU l is integrable with respect

to P by Assumption 2.3 (i)-(ii). This ensures that p 7→ E[mU (Z)p′l(Z)] is differentiable with respect to
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p at every p ∈ R \ {0}. Therefore, the map p 7→ υ(p,Θ0(P )) is differentiable for all p ∈ R` \ {0}. By

Corollary 1.7.3 in Schneider (1993), the support set H(p,Θ0(P )) ≡ {θ : 〈p, θ〉 = υ(p,Θ0(P ))} ∩Θ0(P ) for

each p then contains only one point, which ensures the strict convexity of Θ0(P ).

To see that Θ0(P ) is sharp, take any θ ∈ Θ0(P ). Then, by convexity, there exist p, q ∈ S` and α ∈ [0, 1]

such that θ = αθ∗(p) + (1− α)θ∗(q), which further implies

θ = E[(αmp(Z) + (1− α)mq(Z))l(Z)] = E[w(Z)∇zmα,p,q(Z)], (B.8)

where mα,p,q ≡ αmp + (1−α)mq, and the last equality follows from integration by parts and Assumptions

2.1 (i) and 2.3 (iv) ensuring the almost everywhere differentiability of mα,p,q. Since mα,p,q satisfies (3) in

place of m with mα,p,q and mα,p,q is almost everywhere differentiable, θ is the weighted average derivative

of a regression function consistent with some data generating process. Hence, Θ0(P ) is sharp.

Proof of Corollary 2.1. By Assumption 2.4, the weighted average derivative and index coefficients are

related to each other by

θ(j) = E[w(Z)M ′(Z ′β)]β(j), j = 1, · · · , `. (B.9)

By Theorem 2.1 and letting p = ιj and −ιj respectively, we obtain bounds θ
(j)
L , θ

(j)
U on each component

θ(j) of the average derivative vector as in (16)-(17). Due to the scale normalization β(1) = 1 and (B.9), we

then obtain

θ
(1)
L ≤ E[w(Z)M ′(Z ′β)] ≤ θ(1)

U . (B.10)

Furthermore, by Assumption 2.4 and w(z) ≥ 0 for all z, one may tighten these bounds as

θ
(1)
L,+ ≤ E[w(Z)M ′(Z ′β)] ≤ θ(1)

U , (B.11)

where θ
(1)
L,+ = max{θ(1)

L , 0}. By (B.9), (B.11), and θ
(1)
U , θ

(1)
L,+ being non-negative, it follows that

θ
(j)
L

θ
(1)
U

≤ β(j) ≤
θ

(j)
U

θ
(1)
L,+

, j = 2, · · · , `. (B.12)

Intersecting these bounds with the a priori bounds [β(j), β
(j)

] yields the conclusion of the corollary.

Proof of Theorem 2.2. We first show (24). By the first order condition for (20) and Assumption 2.5 (ii),

E[q(Y −g(Z, V ))|Z, V ] = E[q(Y −g(Z, V ))|Z̃, V ] = 0, P −a.s. By Assumption 2.5 (i) and the monotonicity

of q, for vL ≤ v ≤ vU , we have∫
q(y − g(z, vU ))dP (y|z̃, v) ≤ 0 ≤

∫
q(y − g(z, vL))dP (y|z̃, v), P − a.s. (B.13)

Taking expectations with respect to V , we obtain∫
q(y − g(z, vU ))dP (y|z̃) ≤ 0 ≤

∫
q(y − g(z, vL))dP (y|z̃), P − a.s. (B.14)

Further, by Assumption 2.6 (ii), ∫
q(y − γ(z, vL, vU ))dP (y|z̃) = 0. (B.15)
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By (B.14)-(B.15) and the monotonicity of q, we then have

g(z, vL) ≤ γ(z, vL, vU ) ≤ g(z, vU ). (B.16)

Let ΞL(v) ≡ {(vL, vU ) : vL ≤ vU ≤ v} and ΞU (v) ≡ {(vL, vU ) : v ≤ vL ≤ vU}. To prove the lower bound

on g(z, v), take any vU ≤ v. Then by Assumption 2.5 (i) and (B.16), we have γ(z, vL, vU ) ≤ g(z, v) for any

(vL, vU ) ∈ Ξ(v). Hence, it follows that gL(z, v) ≡ sup(vL,vU )∈ΞL(v) γ(z, vL, vU ) ≤ g(z, v). Note that gL(z, v)

is weakly increasing in v by construction and differentiable in z with a bounded derivative by Assumption

2.6 (iii). Hence, it is consistent with Assumption 2.5 (i). Thus, the bound is sharp. A similar argument

gives the upper bound. Hence, (24) holds. This and integration by parts imply that the sharp identified

set can be written as

Θ0,v(P ) = {θ : θ = E[g(Z, v)l(Z)], P (gL(Z, v) ≤ g(Z, v) ≤ gU (Z, v)) = 1}. (B.17)

The rest of the proof is then similar to that of Theorem 2.1. It is therefore omitted.

Proof of Corollary 2.2. By Assumption 2.7, the weighted average derivative and index coefficients are

related to each other by

θ(j)
v = E[w(Z)G′(Z ′β, v)]β(j), j = 1, · · · , `. (B.18)

By Theorem 2.2 and letting p = ιj and−ιj respectively, we obtain bounds θ
(j)
L (v), θ

(j)
U (v) on each component

θ(j)(v) of the average derivative vector as in (27)-(28). Mimic the argument of the proof of Corollary 2.2.

We then obtain

θ
(j)
L (v)

θ
(1)
U (v)

≤ β(j) ≤
θ

(j)
U (v)

θ
(1)
L,+(v)

, ∀v ∈ V, j = 2, · · · , `, (B.19)

where θ
(1)
L,+(v) = max{θ(1)

L (v), 0}. Hence, by intersecting these bounds across v ∈ V, we obtain the following

bounds:

sup
v∈V

θ
(j)
L (v)

θ
(1)
U (v)

≤ β(j) ≤ inf
v∈V

θ
(j)
U (v)

θ
(1)
L,+(v)

, j = 2, · · · , `. (B.20)

Finally, intersecting these bounds with the a priori bounds [β(j), β
(j)

] yields the conclusion of the corollary.

Appendix C: Proof of Theorem 3.1

This Appendix contains the proof of Theorem 3.1 and auxiliary lemmas needed to establish the main

result.

Below, we adopt the framework of Bickel, Klassen, Ritov, and Wellner (1993). To characterize the

efficiency bound, it proves useful to study a parametric submodel of P defined in (32). We define a

parametric submodel through a curve in L2
µ. Let h0 ≡

√
dP/dµ. Let ṽ : X → R and φ̃ : Z → R be

bounded functions that are continuously differentiable in z with bounded derivatives. We then define

v̄(x) ≡ ṽ(x)− E[ṽ(X)|Z = z], and φ̄(z) ≡ φ̃(z)− E[φ̃(Z)], (C.1)
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where expectations are with respect to P ∈ P. For each η ∈ R, define vη : X → R and φη : Z → R by

v2
η(yL, yU |z) = v2

0(yL, yU |z)(1 + 2ηv̄(x)), and φ2
η(z) = φ2

0(z)(1 + 2ηφ̄(z)). (C.2)

We then let h2
η be defined pointwise by

h2
η(x) ≡ v2

η(yL, yU |z)φ2
η(z). (C.3)

It is straightforward to show that η 7→ h2
η is a curve in L2

µ with the Fréchet derivative ḣ0 = v̇0φ0 + v0φ̇0,

where v̇0(yL, yU |z) ≡ v̄(x)v0(yL, yU |z) and φ̇0(z) = φ̄(z)φ0(z). We also note that for any η and η0 in a

neighborhood of 0, it holds that

v2
η(yL, yU |z) = v2

η0(yL, yU |z)(1 + 2(η − η0)v̄η0(x)), and φ2
η(z) = φ2

η0(z)(1 + 2ηφ̄η0(z)). (C.4)

where v̄η0 = v̄v2
0/v

2
η0 and φ̄η0 = φ̄φ2

0/φ
2
η0 . We then define v̇η0(yL, yU |z) = v̄η0(x)vη0(yL, yU |z) and φ̇η0(z) =

φ̄η0(z)φη0(z).

We further introduce notation for population objects along this curve. Let fη(z) ≡ φ2
η(z) and lη ≡

−∇zw(z)− w(z)∇zfη(z)/fη(z). Lemma C.1 will show that there exists a neighborhood N of 0 such that

the equations
∫
q(yL − m̃)v2

η(yL, yU |z)dλ(yL, yU ) = 0 and
∫
q(yU − m̃)v2

η(yL, yU |z)dλ(yL, yU ) = 0 have

unique solutions on D for all η ∈ N . We denote these solutions by mL,η and mU,η respectively. We then

let mp,η(z) ≡ Γ(mL,η(z),mU,η(z), p
′lη(z)). Further, we define

rj,η(z) ≡ −
d

dm̃
Eη [q(yj − m̃)|Z = z]

∣∣
m̃=mj,η(z)

, j = L,U, (C.5)

where the expectation is taken with respect to Pη. Finally, define

ζp,η ≡ Γ(r−1
L,η(z)q(yL −mL,η(z)), r

−1
U,η(z)q(yU −mU,η(z)), p

′lη(z)). (C.6)

Given these definitions, we give an outline of the general structure of the proof. The proof of Theorem

3.1 proceeds by verifying the conditions of Theorem 5.2.1 in Bickel, Klassen, Ritov, and Wellner (1993),

which requires (i) the characterization of the tangent space at P , which we accomplish in Theorem C.1

and (ii) the pathwise weak differentiability of the map Q 7→ υ(·,Θ0(Q)), which is established by Theorem

C.2.

Tangent Space (Theorem C.1)

Step 1: Lemmas C.1-C.5 show that for some neighborhood N of 0, Assumptions 2.3 and 3.2 hold

with Pη in place of P for all η ∈ N , where
√
dPη/dµ = hη defined in (C.2)-(C.3). This means that the

restrictions on P in Assumptions 2.3 and 3.2 do not restrict the neighborhood in such a way that affects

the tangent space derived in the next step. In this step, we exploit the fact that Z is determined by the

dominating measure µ instead of each distribution in the model.

Step 2: Theorem C.1 then establishes that the tangent space Ṡ equals T ≡ {h ∈ L2
µ :
∫
h(x)s(x)dµ(x) =

0} by showing that (i) Ṡ ⊆ T generally and (ii) due to Step 1, {Pη, η ∈ N} is a regular parametric submodel

of P whose tangent set U̇ ⊂ Ṡ is dense in T implying T ⊆ Ṡ.

Differentiability (Theorem C.2)

Step 1: Lemmas C.1 and C.7 explicitly characterize the pathwise derivatives of mj,η, j = L,U along
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the curve η 7→ hη defined in (C.2)-(C.3).

Step 2: Based on Step 1 and Lemma C.8, Lemma C.9 then characterizes the pathwise derivative of the

support function υ(p,Θ0(Pη)) at a point p along the curve η 7→ hη defined in (C.2)-(C.3). Lemmas C.10

and C.11 further show that this pathwise derivative is uniformly bounded and continuous in (p, η) ∈ S`×N .

Step 3: Based on Step 2, Theorem C.2 first characterizes the pathwise weak derivative of ρ(Pη) =

υ(·,Θ0(Pη)) on the tangent space of the curve η 7→ hη and further extends it to Ṡ.

Lemma C.1. Let η 7→ hη be a curve in L2
µ defined in (C.2)-(C.3). Suppose Assumption 2.1 holds. Suppose

P ∈ P. Then, there exists a neighborhood N of 0 such that (i)
∫
q(yj − m̃)v2

η(yL, yU |z)dλ(yL, yU ) = 0 has

a unique solution at m̃ = mj,η(z) on D for j = L,U and for all η ∈ N ; (ii) For each (z, η) ∈ Z × N ,

mη,L and mη,U are continuously differentiable a.e. on the interior of Z × N with bounded derivative. In

particular, it holds that

∂

∂η
mL,η(z)

∣∣∣
η=η0

= 2r−1
L,η0

(z)

∫
q(yL −mL,η0(z))v̇η0(yL, yU |z)vη0(yL, yU |z)dλ(yL, yU ) (C.7)

∂

∂η
mU,η(z)

∣∣∣
η=η0

= 2r−1
U,η0

(z)

∫
q(yU −mU,η0(z))v̇η0(yL, yU |z)vη0(yL, yU |z)dλ(yL, yU ), (C.8)

for all η0 ∈ N .

Proof of Lemma C.1. The proof builds on the proof of Theorem 3.1 in Newey and Stoker (1993). By Eq.

(C.2), it follows that∫
q(yL − m̃)v2

η(yL, yU |z)dλ(yL, yU ) =

∫
q(yL − m̃)v2

0(yL, yU |z)dλ(yL, yU )

+ 2η

∫
q(yL − m̃)v̄(x)v2

0(yL, yU |z)dλ(yL, yU ). (C.9)

Since P ∈ P, Assumption 3.2 and Lemma C.2 in Newey (1991) imply that the map (z, m̃) 7→
∫
q(yj −

m̃)v̄(x)v2
0 (yL, yU |z)dλ(yL, yU ) is continuously differentiable in on Z×D for j = L,U . Hence, by (C.9), there

is a neighborhood N ′ of 0 such that the map (z, m̃, η) 7→
∫
q(yL− m̃)v2

η(yL, yU |z)dλ(yL, yU ) is continuously

differentiable on Z × D × N ′ with bounded derivatives. By continuity, we may take a neighborhood N

of 0 small enough so that
∫
q(yL − m̃)v2

η(yL, yU |z)dλ(yL, yU ) = 0 admits a unique solution mL,η(z) for all

η ∈ N . A similar argument can be made for mU,η.

By the implicit function theorem, there is a neighborhood of (z, 0) on which ∇zmj,η0 and ∂
∂ηmj,η(z)|η=η0

exist and are continuous in their arguments on that neighborhood for j = L,U . By the compactness of Z,

N can be chosen small enough so that ∇zmη,L and ∂
∂ηmj,η(z)|η=η0 are continuous and bounded on Z ×N

and

∂

∂η
mj,η(z)

∣∣∣
η=η0

= 2r−1
j,η0

(z)

∫
q(yj −mj,η0(z))v̇η0(yL, yU |z)vη0(yL, yU |z)dλ(yL, yU ), j = L,U. (C.10)

This completes the proof of the lemma.

Lemma C.2. Let η 7→ hη be a curve in L2
µ defined in (C.2)-(C.3). Suppose Assumption 2.1 (i) holds.

Suppose further that P ∈ P. Then, there exists a neighborhood N of 0 such that the conditional support

of (YL, YU ) given Z is in Do × Do, w(z)fη(z) = 0 on ∂Z, Pη − a.s., ∇zfη/fη(z) is continuous a.e., and∫
‖lη(z)‖2φ2

η(z)dν(z) <∞ for all η ∈ N .
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Proof of Lemma C.2. By (C.2), {(yL, yU ) : v2
0(yL, yU |z) = 0} ⊆ {(yL, yU ) : v2

η(yL, yU |z) = 0} for all z ∈ Z
and η ∈ R. This implies {(yL, yU ) : v2

η(yL, yU |z) > 0} ⊆ {(yL, yU ) : v2
0(yL, yU |z) > 0} ⊂ Do × Do for

all z ∈ Z and η ∈ R, where the last inclusion holds by Assumption 2.3. This establishes the first claim.

Similarly, the second claim follows immediately from Eq. (C.2) and Assumption 2.3 (ii).

For the third claim, using Eq. (C.2), we write

∇zfη(z)
fη(z)

=
∇zf(z)

f(z)
+

2η∇zφ̄(z)

1 + 2ηφ̄(z)
. (C.11)

By Assumption 2.3 (ii), (C.11), and φ̄ being bounded and continuously differentiable in z, (η, z) 7→
∇zfη(z)/fη(z) is continuous. This and Assumption 2.2 in turn imply that the map (η, z) 7→ ‖lη(z)‖2

is continuous. Hence, by Assumption 2.1 (i), it achieves a finite maximum on N × Z for some N small

enough. Therefore,
∫
‖lη(z)‖φ2

η(z)dν(z) <∞ for all η ∈ N .

Lemma C.3. Let η 7→ hη be a curve in L2
µ defined in (C.2)-(C.3). Suppose further that P ∈ P. Then,

there exists a neighborhood N of 0 such that |rL,η(z)| > ε̄ and |rU,η(z)| > ε̄, for all z ∈ Z and η ∈ N .

Proof of Lemma C.3. By (C.2) and (C.5), rL,η can be written as

rL,η(z) ≡ −
d

dm̃
Eη [q(yL − m̃)|Z = z]

∣∣
m̃=mL,η(z)

= − d

dm̃

(
E [q(yL − m̃)|Z = z] + 2η

∫
q(yL − m̃)v̄(x)v2

0(yL, yU |z)dλ(yL, yU )
)∣∣
m̃=mL,η(z)

= rL(z)− 2η
d

dm̃

∫
q(yL − m̃)v̄(x)v2

0(yL, yU |z)dλ(yL, yU )
∣∣
m̃=mL,η(z)

. (C.12)

Since v̄ is bounded and continuously differentiable, the second term on the right hand side of (C.12) is

well-defined and is bounded because Assumption 3.2 (iii) holds for P ∈ P. By Assumption 3.2 (i) and Eq.

(C.12), we may take a neighborhood N of 0 small enough so that |rL,η(z)| > ε̄ for all η ∈ N and z ∈ Z. A

similar argument can be made for rU,η(z). Thus, the claim of the lemma follows.

Lemma C.4. Let η 7→ hη be a curve in L2
µ defined in (C.2)-(C.3). Suppose further that P ∈ P. Then, there

exists a neighborhood N of 0 such that (i) for any ϕ : X → R that is bounded and continuously differentiable

in z with bounded derivatives,
∫
ϕ(x)v2

η(yL, yU |z)dλ(yL, yU ) is continuously differentiable in z on Z with

bounded derivatives; (ii)
∫
q(yL−m̃)ϕ(x)v2

η(yL, yU |z)dλ(yL, yU ) and
∫
q(yU−m̃)ϕ(x)v2

η(yL, yU |z)dλ(yL, yU )

are continuously differentiable in (z, m̃) on Z ×D with bounded derivatives for all η ∈ N .

Proof of Lemma C.4. Let ϕ : X → R be bounded and continuously differentiable in z with bounded

derivatives. By (C.2), we may write∫
ϕ(x)v2

η(yL, yU )dλ(yL, yU ) =

∫
ϕ(x)v2

0(yL, yU |z)dλ(yL, yU ) + 2η

∫
ϕ(x)v̄(x)v2

0(yL, yU |z)dλ(yL, yU )

(C.13)

Note that v̄ is bounded and continuously differentiable in z with bounded derivatives. Thus, by Assump-

tion 3.2 (ii),
∫
ϕ(x)v2

η(yL, yU )dλ(yL, yU ) is bounded and continuously differentiable in z with bounded
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derivatives. Similarly, we may write∫
q(yL − m̃)ϕ(x)v2

η(yL, yU |z)dλ(yL, yU )

=

∫
q(yL − m̃)ϕ(x)v2

0(yL, yU |z)dλ(yL, yU ) + 2η

∫
q(yL − m̃)ϕ(x)v̄(x)v2

0(yL, yU |z)dλ(yL, yU ). (C.14)

By Assumption 3.2 (iii),
∫
q(yL−m̃)ϕ(x)v2

0(yL, yU )dλ(yL, yU ) is bounded and continuously differentiable in

z with bounded derivatives. Further, since v̄ is bounded and continuously differentiable in z with bounded

derivatives, again by Assumption 3.2 (iii), the same is true for the second term on the right hand side of

(C.14). The argument for
∫
q(yU − m̃)ϕ(x)v2

η(yL, yU )dλ(yL, yU ) is similar. Thus, the claim of the lemma

follows.

Lemma C.5. Let η 7→ hη be a curve in L2
µ defined in (C.2)-(C.3). Suppose that P ∈ P. Then, there exists

a neighborhood N of 0 such that mL,η and mU,η are continuously differentiable a.e. on Z with bounded

derivatives. Further, the maps (z, η) 7→ ∇zmL,η(z) and (z, η) 7→ ∇zmU,η(z) are continuous on Z ×N .

Proof of Lemma C.5. We show the claims of the lemma for mL,η. By P ∈ P, Assumption 3.2 (iii)

holds, which implies that the maps (z, m̃) 7→
∫
q(yL − m̃)v2

0(yL, yU |z)dλ(yL, yU ) and (z, m̃) 7→
∫
q(yL −

m̃)v̄(x)v2
0(yL, yU |z)dλ(yL, yU ) are continuously differentiable on Z×D. By (C.14) (with ϕ(x) = 1), it then

follows that (z, m̃, η) 7→
∫
X q(yL−m̃)v2

η(yL, yU |z)dλ(yL, yU ) is continuously differentiable on Z×D×N for

some N that contains 0 in its interior. Following the argument based on the implicit function theorem in

the proof of Theorem 3.1 in Newey and Stoker (1993), it then follows that ∇zmL,η exists and is continuous

on Z ×N . By the compactness of Z, N can be chosen small enough so that ∇zmL,η is bounded on Z ×N .

The argument for mU,η is similar. Hence it is omitted.

Theorem C.1. Let Assumptions 2.1-2.2 and 3.1 hold and P ∈ P. Then, the tangent space of S = {s ∈
L2
µ : s =

√
dP/dµ, P ∈ P} at s ≡

√
dP/dµ is given by Ṡ = {h ∈ L2

µ :
∫
h(x)s(x)dµ(x) = 0.}

Proof of Theorem C.1. Let T ≡ {h ∈ L2
µ :
∫
h(x)s(x)dµ(x) = 0}. Ṡ ⊆ T holds by Proposition 3.2.3 in

Bickel, Klassen, Ritov, and Wellner (1993).

For the converse: T ⊆ Ṡ, it suffices to show that a dense subset of T is contained in Ṡ. For this, let

U̇ ≡ {ḣ0 ∈ L2
µ :
∫
ḣ0(x)s(x)dµ(x) = 0} denote the tangent space of the curve defined in (C.2)-(C.3). By

Lemmas C.1-C.5, there is a neighborhood N of 0 for which Assumptions 2.3 and 3.2 hold for all η ∈ N .

Therefore, η 7→ h2
η, η ∈ N is a regular parametric submodel of P whose Fréchet derivative at η = 0 is given

by ḣ0. Hence, U̇ ⊆ Ṡ. Further, by Lemma C.7 in Newey (1991) and the argument used in the proof of

Theorem 3.1 in Newey and Stoker (1993), U̇ is dense in T. Thus, T ⊆ Ṡ.

Lemma C.6. Let η 7→ hη be a curve in L2
µ defined in (C.2)-(C.3). Suppose Assumption 2.1 holds. Suppose

further that P ∈ P. Then, there is a compact set D′ and a neighborhood N of 0 such that D′ contains the

support of YL −mL,η0(Z) and YU −mU,η0(Z) in its interior for all η0 ∈ N .

Proof of Lemma C.6. By Lemma C.2, there exists a neighborhood N ′ of 0 such that the supports of YL

and YU are contained in the interior of D under Pη for all η in N ′. Similarly, by Lemma C.1, there is a

neighborhood N ′′ of 0 such that mL,η(Z),mU,η(Z) are well defined for all η ∈ N ′′ and their supports are

contained in the interior of D respectively. Without loss of generality, let D = [a, b] for some −∞ < a <
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b <∞ and let N = N ′ ∩N ′′. Then, the support of YL −mL,η(Z) is contained in D′ ≡ [a− b, b− a] for all

η ∈ N . A similar argument ensures that the support of YU −mU,η(Z) is contained in D′. This completes

the proof.

Lemma C.7. Let η 7→ hη be a curve in L2
µ defined in (C.2)-(C.3). Suppose Assumption 2.1 holds.

Suppose further that P ∈ P. Then there is a neighborhood N of 0 such that (i) the functions (z, η0) 7→
∂
∂ηmL,η(z)

∣∣
η=η0

and (z, η0) 7→ ∂
∂ηmU,η(z)

∣∣
η=η0

are bounded on Z × N ; (ii) For each z ∈ Z, the maps

η0 7→ ∂
∂ηmL,η(z)

∣∣
η=η0

and η0 7→ ∂
∂ηmU,η(z)

∣∣
η=η0

are continuous on N .

Proof of Lemma C.7. By Lemmas C.1, C.3 and C.6, Assumption 2.1 and v̄ being bounded, it follows that∣∣ ∂
∂η
mj,η(z)

∣∣∣
η=η0

∣∣ ≤ 2ε̄−1 sup
u∈D′

|q(u)| × sup
x∈X

v̄(x) <∞, j = L,U. (C.15)

Hence, the first claim follows. Now let ηn ∈ N be a sequence such that ηn → η0. Then, by the triangle and

Cauchy-Schwarz inequalities,∣∣∣ ∂
∂η
mL,η(z)

∣∣∣
η=ηn

− ∂

∂η
mL,η(z)

∣∣∣
η=η0

∣∣∣ ≤ 2|r−1
L,ηn

(z)− r−1
L,η0

(z)| sup
u∈D′

|q(u)| × ‖v̇η0‖L2
λ
‖vη0‖L2

λ
(C.16)

+ 2ε̄−1 sup
u∈D′

|q(u)|
(
‖vηn − vη0‖L2

λ
‖v̇ηn‖L2

λ
+ ‖v̇ηn − v̇η0‖L2

λ
‖vη0‖L2

λ

)
(C.17)

+ 2ε̄−1

∫
|q(yL −mηn(z))− q(yL −mη0(z))|v̇η0(yL, yU |z)vη0(yL, yUz)dλ(yL, yU ). (C.18)

Note that |r−1
L,ηn

(z) − r−1
L,η0

(z)| → 0, a.e. by (C.12). By the continuous Fréchet differentiability of η 7→ vη,

it follows that ‖vηn − vη0‖L2
λ

= o(1) and ‖v̇ηn − v̇η0‖L2
λ

= o(1). Further, the term in (C.18) tends to 0 as

ηn → η0 by the dominated convergence theorem, almost everywhere continuity of q ensured by Assumption

2.1 (ii), and mηn → mη0 , a.e. by Lemma C.5. Therefore, | ∂∂ηmL,η(z)|η=ηn − ∂
∂ηmL,η(z)|η=η0 | = o(1). The

continuity of ∂
∂ηmU,η(z)|η=η0 can be shown in the same way. This completes the proof.

Lemma C.8. Let η 7→ hη be a curve in L2
µ defined in (C.2)-(C.3). Suppose Assumption 3.1 holds. Suppose

further that P ∈ P. Then, there is a neighborhood N of 0 such that

∂

∂η

∫
p′lη0(z)1{p′lη(z) > 0}(mU,η0(z)−mL,η0(z))φ2

η0(z)dν(z)
∣∣∣
η=η0

= 0, (C.19)

for all η0 ∈ N .

Proof of Lemma C.8. By (C.11), there is a neighborhood N of 0 such that for all η0 ∈ N ,

∂p′lη(z)

∂η

∣∣∣
η=η0

=
4p′∇zφ̄(z)(1 + η0φ̄(z))

(1 + 2η0φ̄(z))2
. (C.20)

Hence, by compactness of S` × Z, the map (p, z, η0) 7→ ∂p′lη(z)
∂η |η=η0 is uniformly bounded on S` × Z ×N

by some constant M > 0. Let ηn be a sequence such that ηn → η0 ∈ N . By the mean value theorem, there
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is η̄n(z) such that

lim
n→∞

∫
p′lη0(z)(1{p′lηn(z) > 0} − 1{p′lη0(z) > 0})(mU,η0(z)−mL,η0(z))φ2

η0(z)dν(z)

= lim
n→∞

∫
p′lη0(z)(1{p′lη0(z) > (η0 − ηn)

∂p′lη(z)

∂η

∣∣∣
η=η̄n(z)

} − 1{p′lη0(z) > 0})

× (mU,η0(z)−mL,η0(z))φ2
η0(z)dν(z)

≤ lim
n→∞

∫
|p′lη0(z)|1{|p′lη0(z)| ≤M |η0 − ηn|}|mU,η0(z)−mL,η0(z)|φ2

η0(z)dν(z), (C.21)

where the last inequality follows from
∂p′lη(z)
∂η |η=η̄n(z) being bounded by M . Therefore, from (C.21), we

conclude that

lim
n→∞

1

|ηn − η0|
|
∫
p′lη0(z)(1{p′lηn(z) > 0} − 1{p′lη0(z) > 0})(mU,η0(z)−mL,η0)φ2

η0(z)dν(z)|

≤ 2 sup
y∈D
|y| ×M × lim

n→∞

∫
1{|p′lη0(z)| ≤M |η0 − ηn|}φ2

η0(z)dν(z) = 0, (C.22)

where the last equality follows from the monotone convergence theorem and P being in P ensuring As-

sumption 3.1 (ii).

Lemma C.9. Let η 7→ hη be a curve in L2
µ defined in (C.2)-(C.3). Suppose Assumptions 2.1-2.2, and 3.1

hold. Suppose further that P ∈ P. Then, there is a neighborhood N of 0 such that for all η0 ∈ N ,

∂υ(p,Θ0(Pη))

∂η

∣∣∣∣
η=η0

= 2

∫
{w(z)p′∇zmp,η0(z)− υ(p,Θ0(Pη0)) + p′lη0(z)ζp,η0(yL, yU , z)}ḣη0(x)hη0dµ(x).

(C.23)

Proof of Lemma C.9. We first show Γ(∇zmL,η(z),∇zmU,η(z), p
′lη(z)) is the gradient of mp,η(z), µ − a.e.

By Assumption 3.1 (ii), it suffices to show the equality for z such that p′lη(z) 6= 0. Write

mp,η(z + h)−mp,η(z)− Γ(∇zmL,η(z),∇zmU,η(z), p
′lη(z))

′h

= 1{p′lη(z + h) > 0}[(mU,η(z + h)−mL,η(z + h))

− (mU,η(z)−mL,η(z))− (∇zmU,η(z)−∇zmL,η(z))
′h]

+ (1{p′lη(z + h) > 0} − 1{p′lη(z) > 0})× [(mU,η(z)−mL,η(z))− (∇zmU,η(z)−∇zmL,η(z))
′h]

+ (mL,η(z + h)−mL,η(z)−∇zmL,η(z)
′h). (C.24)

∇zmU,η and ∇zmL,η being the gradients of mU,η and mL,η, respectively implies that

(mU,η(z + h)−mL,η(z + h))− (mU,η(z)−mL,η(z))− (∇zmU,η(z)−∇zmL,η(z))
′h = o(‖h‖),

mL,η(z + h)−mL,η(z)−∇zmL,η(z)
′h = o(‖h‖). (C.25)

By the continuity of z 7→ lη(z), ensured by Assumption 2.2, (C.11), and φ̄ being continuously differentiable,

there exists ε > 0 such that 1{p′lη(z + h) > 0} = 1{p′lη(z) > 0} for all h such that ‖h‖ < ε. These results

and (C.24) ensure that

mp,η(z + h)−mp,η(z)− Γ(∇zmL,η(z),∇zmU,η(z), p
′lη(z))

′h = o(‖h‖). (C.26)

In what follows, we therefore simply write ∇zmp,η(z) = Γ(∇zmL,η(z),∇zmU,η(z), p
′lη(z)).

Next, we show that η 7→ ∇zmp,η(z) is continuous for almost all z ∈ Z. By Lemma C.7, η 7→ ∇zmL,η
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and η 7→ ∇zmU,η are continuous. Further, if ηn → η0, then

µ({x : lim
n→∞

1{p′lηn(z) > 0} = 1{p′lη0(z) > 0}}) = 1

by the continuity of η 7→ p′lη(z) ensured by (C.11) and µ({x : p′lη0(z) = 0}) = 0 by Assumption 3.1 (ii).

Hence, η 7→ ∇zmp,η(z) is continuous a.e.

By Theorem 2.1, integration by parts, and (C.4), we may write

υ(p,Θ0(Pη)) =

∫
w(z)p′∇zmp,η(z)φ

2
η0(z)dν(z) + 2(η − η0)

∫
w(z)p′∇zmp,η(z)φ̇η0(z)φη0(z)dν(z) (C.27)

=

∫
p′lη0(z)mp,η(z)φ

2
η0(z)dν(z) + 2(η − η0)

∫
w(z)p′∇zmp,η(z)φ̇η0(z)φη0(z)dν(z). (C.28)

This and υ(p,Θ0(Pη0)) =
∫
p′lη0(z)mp,η0(z)φ2

η0(z)dν(z) by Theorem 2.1 imply

∂υ(p,Θ0(Pη))

∂η

∣∣∣∣
η=η0

= lim
η→η0

1

η − η0

∫
p′lη0(z)(mp,η(z)−mp,η0(z))φ2

η0(z)dν(z)

+ 2 lim
η→η0

∫
w(z)p′∇zmp,η(z)φ̇η0(z)φη0(z)dν(z),

= lim
η→η0

1

η − η0

∫
p′lη0(z)(mp,η(z)−mp,η0(z))φ2

η0(z)dν(z) + 2

∫
w(z)p′∇zmp,η0(z)φ̇η0(z)φη0(z)dν(z),

(C.29)

where the second equality follows from w, ∇zmp,η and φ̄η0 being bounded by Assumption 2.2 and Lemma

C.1, which allows us to apply the dominated convergence theorem, and the almost everywhere continuity

of η 7→ ∇zmp,η(z). The first term on the right hand side of (C.29) may be further rewritten as

lim
η→η0

1

η − η0

∫
p′lη0(z)(mp,η(z)−mp,η0)φ2

η0(z)dν(z) (C.30)

= lim
η→η0

1

η − η0

∫
p′lη0(z)1{p′lη0(z) > 0}(mU,η(z)−mU,η0(z))φ2

η0(z)dν(z) (C.31)

+ lim
η→η0

1

η − η0

∫
p′lη0(z)1{p′lη0(z) ≤ 0}(mL,η(z)−mL,η0(z))φ2

η0(z)dν(z) (C.32)

+ lim
η→η0

1

η − η0

∫
p′lη0(z)(1{p′lη(z) > 0} − 1{p′lη0(z) > 0})(mU,η0(z)−mL,η0(z))φ2

η0(z)dν(z).

(C.33)

For (C.31), by the mean value theorem, we have

lim
η→η0

1

η − η0

∫
p′lη0(z)1{p′lη0(z) > 0}(mU,η(z)−mU,η0)φ2

η0(z)dν(z)

= lim
η→η0

∫
p′lη0(z)1{p′lη0(z) > 0} ∂

∂η
mU,η(z)

∣∣∣
η=η̄(z,η)

φ2
η0(z)dν(z)

=

∫
p′lη0(z)1{p′lη0(z) > 0} ∂

∂η
mU,η(z)

∣∣∣
η=η0

φ2
η0(z)dν(z), (C.34)

where the first equality holds for each p for some η̄(p, η) a convex combination of η and η0. The second

equality follows from Lemmas C.2 and C.7, ‖p‖ = 1, and Assumption 2.3 (ii) justifying the use of the
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dominated convergence theorem. Similarly, for (C.32), we have

lim
η→η0

1

η − η0

∫
p′lη0(z)1{p′lη0(z) ≤ 0}(mL,η(z)−mL,η0)φ2

η0(z)dν(z)

=

∫
p′lη0(z)1{p′lη0(z) ≤ 0} ∂

∂η
mL,η(z)

∣∣∣
η=η0

φ2
η0(z)dν(z) . (C.35)

Hence, by (C.29)-(C.34), integration by parts, and (C.33) being 0 by Lemma C.8, we obtain

∂υ(p,Θ0(Pη))

∂η

∣∣∣∣
η=η0

= 2

∫
p′lη0(z)ζp,η0(yL, yU , z)v̇η0(yL, yU |z)vη0(yL, yU , z)dλ(yL, yU )φ2

η0(z)dν(z) (C.36)

+ 2

∫
w(z)p′∇zmp,η0(z)φ̇η0(z)φη0(z)dν(z) . (C.37)

Using ḣη0 = v̇η0φη0 + vη0 φ̇η0 ,
∫
v2
η0dλ = 1, and

∫
ḣη0hη0dµ = 0, we may rewrite this as

∂υ(p,Θ0(Pη))

∂η

∣∣∣∣
η=η0

= 2

∫
{w(z)p′∇zmp,η0(z)− υ(p,Θ0(Pη0)) + p′lη0(z)ζp,η0(yL, yU , z)}ḣη0(x)hη0dµ(x) .

(C.38)

Therefore, the conclusion of the lemma follows.

Lemma C.10. Let η 7→ hη be a curve in L2
µ defined in (C.2)-(C.3). Suppose Assumptions 2.1-2.2, and

3.1 hold. Suppose further that P ∈ P. Then, there is a neighborhood N of η = 0 such that the map

(p, η0) 7→ ∂υ(p,Θ0(Pη))
∂η

∣∣
η=η0

is uniformly bounded on S` ×N .

Proof of Lemma C.10. By Lemma C.9 and the triangle inequality,∣∣∣∂υ(p,Θ0(Pη))

∂η

∣∣∣
η=η0

∣∣∣ = 2
∣∣∣ ∫ {w(z)p′∇zmp,η0(z)− υ(p,Θ0(Pη0))}ḣη0(x)hη0dµ(x)

∣∣∣
+ 2
∣∣∣ ∫ p′lη0(z)ζp,η0(yL, yU , z)ḣη0(x)hη0(x)dµ(x)

∣∣∣. (C.39)

By Assumption 2.2 and ‖p‖ = 1, uniformly on N ,

‖w(z)p′∇zmp,η(z)‖L∞µ ≤ sup
z∈Z
|w(z)| × ‖∇zmp,η(z)‖L∞µ

≤ sup
z∈Z
|w(z)| × (sup

z∈Z
|∇zmL,η(z)|+ sup

z∈Z
|∇zmU,η(z)|) <∞. (C.40)

where the last inequality follows from Lemma C.1. This ensures that (p, η) 7→ υ(p,Θ0(Pη)) is uniformly

bounded on S` ×N . We therefore have∣∣∣ ∫ {w(z)p′∇zmp,η0(z)− υ(p,Θ0(Pη0))}ḣη0(x)hη0dµ(x)
∣∣∣

≤ sup
(p,η0,z)∈S`×N×Z

|w(z)p′∇zmp,η0(z)− υ(p,Θ0(Pη0))|‖ḣη0‖L2
µ
‖hη0‖L2

µ
<∞. (C.41)

Further, by Assumption 2.1 (ii) and Lemmas C.3 and C.6, it follows that

sup
x∈X
|ζp,η0(x)| ≤ 2ε̄−1 sup

u∈D′
|q(u)| <∞

for all (p, η0) ∈ S` × N . Therefore, by the triangle and Cauchy-Schwarz inequalities and Lemma C.2, we
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have∣∣∣ ∫ p′lη0(z)ζp,η0(yL, yU , z)ḣη0(x)hη0(x)dµ(x)
∣∣∣

≤ 2ε̄−1 sup
u∈D′

q(u)

∫
‖lη0(z)‖ḣη0(x)hη0(x)dµ(x) ≤ 2ε̄−1 sup

u∈D′
q(u)‖ḣη0‖L2

µ
Eη0 [‖lη0(z)‖2]1/2 <∞. (C.42)

By (C.39), (C.41), and (C.42), the conclusion of the lemma follows.

Lemma C.11. Let η 7→ hη be a curve in L2
µ defined in (C.2)-(C.3). Suppose Assumptions 2.1-2.2,

and 3.1 hold. Suppose further that P ∈ P. Then, there is a neighborhood N of 0 such that the map

(p, η0) 7→ ∂υ(p,Θ0(Pη))
∂η

∣∣
η=η0

is continuous on S` ×N.

Proof of Lemma C.11. Let (pn, ηn) be a sequence such that (pn, ηn)→ (p, η0). For each (p, η, z) ∈ S`×N×
Z, let γp,η(z) ≡ w(z)p′∇zmp,η(z) − υ(p,Θ0(Pη)). We first show that (p, η) 7→ γp,η(z) and (p, η) 7→ ζp,η(x)

are continuous a.e. By Lemma C.7, η 7→ ∇zmL,η(z) and η 7→ ∇zmU,η(z) are continuous for every z ∈ Z.

Further, if (pn, ηn)→ (p, η0), then

µ({x : lim
n→∞

1{p′nlηn(z) > 0} = 1{p′lη0(z) > 0}}) = 1

by the continuity of (p, η) 7→ p′lη(z) implied by (C.11) and µ({x : p′lη0(z) = 0}) = 0 by Assump-

tion 3.1 (ii). Hence, (p, η) 7→ w(z)p′∇zmp,η(z) is continuous a.e. Note that by (C.4), υ(p,Θ0(Pη)) =∫
w(z)p′∇zmp,η(z)(1 + 2(η − η0)φ̄η0(z))φ2

η0(z)dν(z). Hence, as (pn, ηn)→ (p, η0), it follows that

lim
n→∞

υ(pn,Θ0(Pηn)) = lim
n→∞

∫
w(z)p′n∇zmpn,ηn(z)(1 + 2(ηn − η0)φ̄η0(z))φ2

η0(z)dν(z)

=

∫
lim
n→∞

w(z)p′n∇zmpn,ηn(z)(1 + 2(ηn − η0)φ̄η0(z))φ2
η0(z)dν(z) = υ(p,Θ0(Pη0)), (C.43)

where the second equality follows from w(z)p′∇zmp,η(z) and φ̄(z) being bounded on S` × N × Z and an

application of the dominated convergence theorem, while the last equality follows from the continuity of

(p, η) 7→ w(z)p′∇zmp,η(z) for almost all z. Hence, (p, η) 7→ γp,η(z) is continuous a.e.

The maps (p, η) 7→ r−1
j,η (z)q(yj − mj,η(z)), j = L,U are continuous for almost all x by Assumption

2.1 (ii), (C.12), and η 7→ mj,η(z) being continuous for almost all z for j = L,U by Lemma C.7. Since

(p, η) 7→ 1{p′lη(z) > 0}} is continuous for almost all z as shown above, it then follows that (p, η) 7→ ζp,η(x)

is continuous for almost all x.

Given these results, we show
∂υ(pn,Θ0(Pη))

∂η |η=ηn −
∂υ(p,Θ0(Pη))

∂η |η=η0 → 0 as ηn → η0. Toward this end, we

first note that

∂υ(pn,Θ0(Pη))

∂η

∣∣∣∣
η=ηn

− ∂υ(p,Θ0(Pη))

∂η

∣∣∣∣
η=η0

(C.44)

= 2

∫
γpn,ηn(z)ḣηn(x)hηndµ(x)− 2

∫
γp,η0(z)ḣη0(x)hη0dµ(x) (C.45)

+ 2

∫
p′nlηn(z)ζpn,ηn(x)ḣηn(x)hηndµ(x)− 2

∫
p′lη0(z)ζp,η0(x)ḣη0(x)hη0dµ(x). (C.46)
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By Lemma C.10, the Cauchy-Schwarz and triangle inequalities,

|
∫
γpn,ηn(z)ḣηn(x)hηndµ(x)−

∫
γp,η0(z)ḣη0(x)hη0dµ(x)| (C.47)

≤ sup
(p,η,z)∈S`×N×Z

|γp,η(z)|(‖ḣηn‖L2
µ
‖hηn − hη0‖L2

µ
+ ‖ḣηn − ḣη0‖L2

µ
‖hη0‖L2

µ
) (C.48)

+ |
∫
{γpn,ηn(z)− γp,η0(z)}ḣη0(z)hη0(z)µ(x) = o(1), (C.49)

where the last equality follows from η 7→ hη being continuously Fréchet differentiable, (p, η, z) 7→ γp,η(z)

being bounded on S`×N ×Z as shown in Lemma C.10, the dominated convergence theorem, and (p, η) 7→
γp,η(z) being continuous a.e.

Further, we may write (C.46) as∫
p′nlηn(z)ζpn,ηn(x)ḣηn(x)hηndµ(x)−

∫
p′lη0(z)ζp,η0(x)ḣη0(x)hη0dµ(x) (C.50)

=

∫
p′nlηn(z)ζpn,ηn(x)(ḣηn(x)hηn(x)− ḣη0(x)hη0(x))dν(x) (C.51)

+

∫
p′nlηn(z)(ζpn,ηn(x)− ζp,η0(x))ḣη0(x)hη0(x)dµ(x) (C.52)

+

∫
(p′nlηn(z)− p′lη0(z))ζp,η0(x)ḣη0(x)hη0(x)dµ(x). (C.53)

By Assumptions 2.2 and 2.3 (ii), (C.11), and φ̄ being continuously differentiable, (η, z) 7→ ‖lη(z)‖ is

continuous on N × Z. Hence, it achieves a finite maximum on N × Z. Further, by Lemmas C.3, C.6

and Assumption 2.1 (ii), supx∈X |ζp,η0(x)| ≤ 2ε̄−1 supu∈D′ |q(u)| <∞ for all (p, η0) ∈ S` ×N . By Cauchy-

Schwarz inequality, and ‖pn‖ ≤ 1 for all n, it then follows that∫
p′nlηn(z)(ḣηn(x)hηn(x)− ḣη0(x)hη0(x))dν(x)

≤ sup
(η,z)∈N×Z

‖lη(z)‖ sup
(p,η)∈S`×N

sup
x∈X
|ζp,η(x)|(‖ḣηn‖L2

µ
‖hηn − hη0‖L2

µ
+ ‖ḣηn − ḣη0‖L2

µ
‖hη0‖L2

µ
) = o(1),

(C.54)

where the last equality follows from η 7→ hη being continuously Fréchet differentiable. Further, by the

almost everywhere continuity of (p, η) 7→ p′lη(ζp,η − ζp,η0),

lim
n→∞

∫
p′nlηn(z)(ζpn,ηn(x)− ζp,η0(x))ḣη0(x)hη0(x)dµ(x)

=

∫
lim
n→∞

p′nlηn(z)(ζpn,ηn(x)− ζp,η0(x))ḣη0(x)hη0(x)dµ(x) = 0. (C.55)

where the first equality follows from the dominated convergence theorem. Finally, again by the dominated

convergence theorem,

lim
n→∞

∫
(p′nlηn(z)− p′lη0(z))ζp,η0(x)ḣη0(x)hη0(x)dµ(x)

=

∫
lim
n→∞

(p′nlηn(z)− p′lη0(z))ζp,η0(x)ḣη0(x)hη0(x)dµ(x) = 0. (C.56)

By (C.44)-(C.56), we conclude that
∂υ(pn,Θ0(Pη))

∂η |η=ηn −
∂υ(p,Θ0(Pη))

∂η |η=η0 → 0 as ηn → η0. This establishes

the claim of the lemma.
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Theorem C.2. Suppose Assumptions 2.1-2.3, and 3.2 hold. Then, the mapping ρ : P → C(S`) point-

wise defined by ρ(hη)(p) ≡ υ(p,Θ0(Pη)) for hη =
√
dPη/dµ is then pathwise weak differentiable at h0 ≡√

dP0/dµ. Moreover, the derivative ρ̇ : Ṗ→ C(S`) satisfies:

ρ̇(ḣ0)(p) = 2

∫
{w(z)p′∇zmp(z)− υ(p,Θ0(P0)) + p′l(z)ζp(x)}ḣ0(x)h0(x)dµ(x). (C.57)

Proof of Theorem C.2. We first show that ∂ρ(Pη)/∂η
∣∣
η=0

is the pathwise weak derivative of ρ. For this,

note that ρ̇(ḣ0) ∈ C(S`) for all ḣ0 ∈ Ṡ as implied by Lemmas C.9 and C.11. Linearity of ρ̇ is immediate,

while continuity follows by noting that by the Cauchy-Schwarz inequality and ‖p‖ = 1,

sup
‖ḣ0‖L2

µ=1

‖ρ̇(ḣ0)‖∞

≤ 2{sup
p∈S`
‖w(z)p′∇zmp(z)− υ(p,Θ0(P ))‖L∞µ + sup

z∈Z
‖l(z)‖ × sup

u∈D′
|q(u)|}‖ḣ0‖L2

µ
‖h0‖L2

µ
<∞, (C.58)

where we exploited (C.40), Assumption 2.1 (ii), and the fact that z 7→ ‖l(z)‖ being continuous hence

achieves a finite maximum on Z by Assumptions 2.1 (i), 2.2, and P ∈ P. Let η 7→ hη be a curve in L2
µ

defined in (C.2)-(C.3). For each p ∈ S`, by the mean value theorem,

lim
η0→0

∫
S`

υ(p, Pη0)− υ(p, P0)

η0
dB(p) = lim

η0→0

∫
S`

∂υ(p, Pη)(p)

∂η

∣∣∣
η=η̄(p,η0)

dB(p) (C.59)

=

∫
S`

∂υ(p, Pη)(p)

∂η

∣∣∣
η=0

dB(p) =

∫
S`
ρ̇(ḣ0)(τ)dB(p) , (C.60)

where the first equality holds at each p for some η̄(p, η0) a convex combination of η0 and 0. The second

equality in turn follows by Lemma C.10 justifying the use of the dominated convergence theorem, while

the final equality follows by Lemma C.11 and the definition of ρ̇ : Ṗ→ C(S`). Eqs. (C.59)-(C.60) hold for

any ḣ0 in the tangent space U̇ of the curve defined in (C.2)-(C.3). As discussed in the proof of Theorem

C.1, U̇ is dense in Ṡ. Since ρ̇ is continuous, Eqs. (C.59)-(C.60) then hold for any ḣ0 ∈ Ṗ. This completes

the proof.

Proof of Theorem 3.1. Let B ≡ C(S`) and let B∗ be the set of finite Borel measures on S`, which is the

norm dual of B by Corollary 14.15 in Aliprantis and Border (2006). By Theorem C.2, ρ has pathwise weak

derivative ρ̇. For each B ∈ B∗, define

ρ̇T (B)(x) ≡
∫
S`

2{w(z)p′∇zmp(z)− υ(p,Θ0(P )) + p′l(z)ζp(x)}h0(x)dB(p). (C.61)

We show that (i) ρ̇T is well defined for any B ∈ B∗, (ii) ρ̇T (B) ∈ Ṡ and finally (iii) ρ̇T is the adjoint

operator of ρ̇.

We first note that (p, z) 7→ p′l(z) is continuous in z for each p by Assumption 2.2 and measurable

in p for each z. Thus, (p, x) 7→ p′l(z) is jointly measurable by Lemma 4.51 in Aliprantis and Bor-

der (2006). This implies the joint measurability of (p, x) 7→ 1{p′l(z) > 0}. A similar argument also

ensures the joint measurability of p′∇zmL(z) and p′∇zmU (z). By the joint measurability of (p, x) 7→
(w(z), 1{p′l(z) > 0}, p′∇zmL(z), p′∇zmU (z)) and Assumption 2.2, (p, x) 7→ w(z)p′∇zmp(z) is jointly

measurable. By the proof of Theorem 2.1, υ(p,Θ0(p)) is differentiable in p and is therefore continu-

ous, implying (p, x) 7→ υ(p,Θ0(p)) is jointly measurable. Further, rL and rU are measurable by P ∈ P

satisfying Assumption 3.2 (iii). q(yL − mL(z)), q(yU − mU (z)) are measurable by Assumption 2.1 and
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P ∈ P satisfying Assumption 2.3 (iv). Hence, (p, x) 7→ ζp(x) is jointly measurable. Therefore, the map

(p, x) 7→ (w(z)p′∇zmp(z), υ(p,Θ0(p), p′l(z), ζp(x), h0(x))′ is jointly measurable by Lemma 4.49 in Aliprantis

and Border (2006). Hence, the map

(p, x) 7→ 2{w(z)p′∇zmp(z)− υ(p,Θ0(P0)) + p′l(z)ζp(x)} (C.62)

is jointly measurable by the measurability of the composite map.

Moreover, for |B| the total variation of the measure B, by (C.40), we have∫
(

∫
S`

2{w(z)p′∇zmp(z)− υ(p,Θ0(P0))}h0(z)dB(p))2dµ(x)

≤ 16× sup
p∈S`
‖w(z)p′∇zmp,η(z)‖2L∞µ × |B|

2 <∞. (C.63)

Further,∫
(

∫
S`

2p′l(z)ζp(x)h0(x))dB(p))2dµ(x) ≤ 16

∫
|p′l(z)|2h0(x)2dµ(x)× ε̄−2 × sup

u∈D′
|q(u)|2 × |B|2 <∞,

(C.64)

by Assumption 2.1 and P ∈ P satisfying Assumptions 2.3 and 3.2. Therefore, ρ̇T (B) ∈ L2
µ for each B ∈ B∗.

By Fubini’s theorem and Assumption 2.1 (iv), we have∫ ∫
S`

2{w(z)p′∇zmp(z)− υ(p,Θ0(P0)) + p′l(z)ζp(x)}h0(x)dB(p)h0(x)dµ(x)

=

∫
S`

∫
2{w(z)p′∇zmp(z)− υ(p,Θ0(P0)) + p′l(z)ζp(x)}h2

0(x)dµ(x)dB(p) = 0, (C.65)

where we exploited υ(p,Θ0(P0)) = E[w(Z)p′∇zmp(Z)] and E[ζp(x)|Z = z] = 1{p′l(z) ≤ 0}E[q(YL −
mL(Z))|Z = z] + 1{p′l(z) > 0}E[q(YU −mU (Z))|Z = z] = 0, P − a.s. Thus, by Theorem C.1 and (C.61),

ρ̇T (B) ∈ Ṡ for all B ∈ B∗. Further, for any ḣ0 ∈ Ṡ, again by interchanging the order of integration∫
S`
ρ̇(ḣ0)(p)dB(p) =

∫
X
ḣ0(x)ρ̇T (B)(x)dµ(x), (C.66)

which ensures that ρ̇T : B∗ → Ṗ is the adjoint of ρ̇ : Ṗ→ B.

Since Ṡ is linear by Theorem C.1, Theorem C.2 and Theorem 5.2.1 in Bickel, Klassen, Ritov, and

Wellner (1993) establishes that

Cov(

∫
S`
G(p)dB1(p),

∫
S`
G(p)dB2(p)) =

1

4

∫
X
ρ̇T (B1)(x)ρ̇T (B2)(x)dµ(x)

=

∫
S`

∫
S`
E[{w(z)p′∇zmp(z)− υ(p,Θ0(P0)) + p′l(z)ζp(x)}

× {w(z)q′∇zmq(z)− υ(q,Θ0(P0)) + q′l(z)ζq(x)}]dB1(p)dB2(q),

for any B1, B2 ∈ B∗ by Fubini’s theorem. Letting B1 and B2 be the degenerate measures at p and q in
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(C.67), we obtain

Cov(G(p),G(q))

= E[{w(z)p′∇zmp(z)− υ(p,Θ0(P0)) + p′l(z)ζp(x)}{w(z)q′∇zmq(z)− υ(q,Θ0(P0)) + q′l(z)ζq(x)}].
(C.67)

Therefore, the efficient influence function ψp is as given in (33). This establishes the claim of the theorem.

Appendix D: Proof of Theorem 4.1.

In this appendix, we establish Theorem 4.1. Throughout, let Yp,i ≡ 1{p′l(Zi) ≤ 0}YL,i + 1{p′l(Zi) >
0}YU,i, and let ῡn(p) ≡ 1

n

∑n
i=1 p

′ l̂i,h(Zi)Yp,i. The proof of Theorem 4.1 proceeds by decomposing
√
n(υ̂n(p)−

υ(p,Θ0(P0))) as follows:

√
n(υ̂n(p)− υ(p,Θ0(P )))

=
√
n(υ̂n(p)− ῡn(p)) +

√
n(ῡn(p)− E[ῡn(p)]) +

√
n(E[ῡn(p)]− υ(p,Θ0(P )))

≡ G1n(p) +G2n(p) +G3n(p). (D.1)

G1n is the difference between υ̂n and the infeasible trimmed estimator ῡn, which requires the knowledge

of Yp,i. G2n represents the infeasible estimator centered at its expected value, and G3n is the asymptotic

bias of ῡn. The auxiliary lemmas are then used to show the following results:

Step 1: Lemma D.2 shows G1n = op(1) uniformly in p ∈ S`, while Lemma D.5 shows G3n = o(1) uniformly

in p ∈ S`.

Step 2: Using the result of Lemma D.1, Lemmas D.3 and D.4 then establish that G2n = 1√
n

∑n
i=1 ψp(Xi)+

op(1) uniformly in p ∈ S`, and Lemma D.6 establishes that {ψp : p ∈ S`} is a P -Donsker class.

Step 3: Combining Steps 1-2 and (D.1) gives the main claim of Theorem 4.1.

Before proceeding further, we introduce one more piece of notation. For each p ∈ S`, define

p(1)
n (x, x′; p) ≡ −1

2

(1

h

)`+1
p′∇zK

(z − z′
h

)
(g(1)
p (x)− g(1)

p (x′)), g(1)
p (x) ≡ w(z)

f(z)
yp,iτn,i (D.2)

p(2)
n (x, x′; p) ≡ 1

2

(1

h

)`
K
(z − z′

h

)
(g(2)
p (x) + g(2)

p (x′)), g(2)
p (x) ≡ w(Zi)

p′∇zf(z)

f(z)2
yp,iτn,i. (D.3)

For each k ∈ {1, 2}, we then define r
(k)
n (xi; p) = E[p

(k)
n (Xi, Xj ; p)|Xi = xi].

Lemma D.1. Suppose Assumptions 2.2, 2.3, 4.2 and 4.3 hold. For each k ∈ {1, 2} and n ∈ N, let

H(k)
n ≡ {p̃(k)

n /bn : X × X → R : p̃
(k)
n (x, x′; p), p ∈ B`} and G(k)

n ≡ {q̃(k)
n /bn : X × X → R : q̃n(x, x′; p) =

p̃
(k)
n (x, x′; p) − r̃(k)

n (x, p) − r̃(k)
n (x′; p) − E[r̃

(k)
n (x; p)], p ∈ B`}, where r̃

(k)
n (xi; p) ≡ E[p̃n(Xi, Xj ; p)|Xi = xi]

and B` ≡ {p ∈ R` : ‖p‖ ≤ 1} is the unit ball in R`. Then, H(k)
n and G(k)

n are Euclidean in the sense of Pakes

and Pollard (1989) and Sherman (1994a) with envelope functions H(k) : X ×X → R and G(k) : X ×X → R
such that E[H(k)(Xi, Xj)

2] <∞ and E[G(k)(Xi, Xj)
2] <∞ for k = 1, 2.
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Proof of Lemma D.1. For any (fixed) function g : X ×X → R`, let Fg,n ≡ {φ/bn : X ×X → R : φ(x, x, p) =

p′g(x, x′) τn(z)
f(z) , p ∈ B`}. By the Cauchy-Schwarz inequality and Assumption 4.3, for any p, q ∈ B`, we then

have |φ(x, x′, p)− φ(x, x′, p′)|/bn ≤ ‖g(x, x′)‖‖p− q‖. Hence, by Lemma 2.13 in Pakes and Pollard (1989),

Fg,n is Euclidean with the envelope function Fg(x, x
′) = g(x, x′)′p0 +M‖g(x, x′)‖ for some p0 ∈ B`, where

M = 2
√
` supp∈B` ‖p − p0‖, which can be further bounded from above by 4

√
`. Hence, we may take the

envelope function as Fg(x, x
′) = (1 + 4

√
`)‖g(x, x′)‖.

By Lemma 2.4 in Pakes and Pollard (1989), the class of sets {x ∈ X : p′l(z) > 0} is a VC-class,

which in turn implies that the function classes Fφ1 ≡ {φ : X × X → R : φ(x, x′, p) = 1{p′l(z) > 0}}
and Fφ2 ≡ {φ : X × X → R : φ(x, x′, p) = 1{p′l(z′) > 0}} are Euclidean, where x = (yL, yU , z) and

x′ = (y′L, y
′
U , z

′) with envelope function Fφj (x, x
′) = 1, j = 1, 2.

Note that we may write

p̃(1)
n (x, x′; p) = −p′∇zK

(
z − z′

h

)[w(z)

f(z)

(
(yU − yL)1{p′l(z) > 0}+ yL

)
τn(z)

− w(z′)

f(z′)

(
(y′U − y′L)1{p′l(z′) > 0}+ y′L

)
τn(z)

]
. (D.4)

Hence, H(1)
n can be written as the combination of classes of functions: H(1)

n = Fg1,n · Fφ1 + Fg2,n + Fg3,n ·
Fφ2 + Fg4,n, where

g1(x, x′) = −∇zK
(z − z′

h

)
w(z)(yU − yL), g2(x, x′) = −∇zK

(z − z′
h

)
w(z)yL

g3(x, x′) = ∇zK
(z − z′

h

)
w(z′)(y′U − y′L), g4(x, x′) = ∇zK

(z − z′
h

)
w(z′)y′L.

By Lemma 2.14 in Pakes and Pollard (1989) and Fφ1 and Fφ2 having constant envelope functions, H(1)
n is

Euclidean with the envelope function Fg1 + Fg2 + Fg3 + Fg4 . Hence, H(1)
n is Euclidean with the envelope

function H(1)(x, x′) ≡ 8(1+4
√
`) supx |g

(1)
p (x)| suph>0 ‖∇zK( z−z

′

h )‖, where g
(1)
p is bounded by Assumptions

2.2 and 2.3. By Assumption 4.2, E[suph>0 ‖∇zK(
Zi−Zj
h )‖2] <∞, which in turn implies E[H(1)(Xi, Xj)

2] <

∞. This shows the claim of the lemma for H(1)
n . Showing H(2)

n ,G(k)
n k = 1, 2 are Euclidean is similar. Hence,

the rest of the proof is omitted.

Lemma D.2. Suppose Assumptions 2.3, 3.1, 4.2, and 4.3 hold. Suppose further that h̃→ 0 and nh̃`+2 →
∞. Then, uniformly in p ∈ S`, υ̂n(p)− ῡn(p) = op(n

−1/2).

Proof of Lemma D.2. By ‖p‖ = 1, the Cauchy-Schwarz inequality, and Assumption 2.3,

E[sup
p∈S`
|ui,n(p)|2] ≤ 2 sup

y∈D
|y|E[‖l̂i,h(Zi)‖2 sup

p∈S`
|1{p′ l̂i,h̃(Zi) > 0} − 1{p′l(Zi) > 0|2]

≤ 2 sup
y∈D
|y|E[‖l̂i,h(Zi)‖4]1/2P (sgn(p′ l̂i,h̃(Zi)) 6= sgn(p′l(Zi)),∃p ∈ S`), (D.5)

where E[‖l̂i,h(Zi)‖4] <∞ under our choice of h and the trimming sequence. Hence, for the desired result,

it suffices to show that P (sgn(p′ l̂i,h̃(Zi)) 6= sgn(p′l(Zi)),∃p ∈ S`) = o(n−1). By Assumption 3.1, it follows
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that

P (sgn(p′ l̂i,h̃(Zi)) 6= sgn(p′l(Zi)),∃p ∈ S`)

≤ P (p′ l̂i,h̃(Zi) > 0 and p′l(Zi) < 0,∃p ∈ S`) + P (p′ l̂i,h̃(Zi) < 0 and p′l(Zi) > 0,∃p ∈ S`). (D.6)

Without loss of generality, suppose that p′ l̂i,h̃(Zi) > 0 and p′l(Zi) < 0 for some p ∈ S`. Then, there must

exist ε > 0 such that supp∈S` |p′ l̂i,h̃(Zi) − E[p′ l̂i,h̃(Zi)] + E[p′ l̂i,h̃(Zi))] + p′l(Zi)| > ε. This is also true if

p′ l̂i,h̃(Zi)) < 0 and p′l(Zi) > 0. Therefore, by the triangle inequality and the law of iterated expectations,

we may write

P (sgn(p′ l̂i,h̃(Zi)) 6= sgn(p′l(Zi)),∃p ∈ S`)

≤ 2
{
E
[
P
(

sup
p∈S`
|p′ l̂i,h̃(Zi)− E[p′ l̂i,h̃(Zi)|Zi])| > ε/2|Zi

)
+ P

(
sup
p∈S`
|E[p′ l̂i,h̃(Zi)|Zi]− p′l(Zi)| > ε/2|Zi

)]}
,

(D.7)

where the second term in (D.7) vanishes for all n sufficiently large because the bias satisfies ‖E[l̂i,h̃(Zi)|Zi]−
l(Zi)‖ → 0 with probability 1 as h̃→ 0. Hence, we focus on controlling the first term in (D.7) below.

Let M̄ ≡ supz∈Z ‖∇zK(z)‖ and define

Wn(p) ≡ 1

(n− 1)h̃(`+1)

n∑
j=1,j 6=i

p′
{
∇zK

(z − Zj
h̃

)
− E[∇zK

(z − Zj
h̃

)
]
}

(D.8)

σ̄2 ≡ E
[

sup
p∈S`

(
1

(n− 1)h̃(`+1)

n∑
j=1,j 6=i

p′
{
∇zK

(z − Zj
h̃

)
− E[∇zK

(z − Zj
h̃

)
]
}

)2
]
. (D.9)

Note that, arguing as in (D.21)-(D.23), p′ l̂i,h̃(z) = −p′∇zw(z) − w(z)p′f̂i,h̃(z)/f̂i,h̃(z) = −p′∇zw(z) −
w(z)p′f̂i,h̃(z)×O(bn). Hence,

p′ l̂i,h̃(z)− E[p′ l̂i,h̃(Zi)|Zi = z] ≤ CWn(p)bn, (D.10)

for some C > 0. Below, let an ≡ C/bn. Define W ≡ {f : X → R : f(zj) = p′{∇zK(
z−zj
h̃

) −
E[∇zK(

z−Zj
h̃

)]/h̃(`+1)}, p ∈ S`}. Then by S` being finite dimensional and Lemma 2.6.15 in van der Vaart

and Wellner (1996), W is a VC-subgraph class, which in turn implies that supQN(ε,W, L2(Q)) ≤ (Kε )V

for all 0 < ε < K for some positive constants V and K by Lemma 2.6.7 in van der Vaart and Wellner

(1996). Then, by Wn being independent of Zi and Theorem 2.14.16 in van der Vaart and Wellner (1996),

we have

P (sup
p∈S`
|p′ l̂i,h̃(Zi)− E[p′ l̂i,h̃(Zi)|Zi])| > ε/2|Zi = z) ≤ P (‖Wn‖W > εan)

≤ C
( 1

σ̄

)2V (
1 ∨ εan

σ̄

)3V+1
exp

(
− 1

2

(εan)2

σ̄2 + (3 + εan)/
√
n

)
, (D.11)

where C is a constant that depends on V and K. Note that under the imposed conditions on h̃, we have

(εan)2

σ̄2 + (3 + εan)/
√
n

=
1

S1,n + S2,n
, (D.12)

where S1,n ≡ σ̄2/(εan)2 and S2,n ≡ (3 + εan)/(εan)2√n. By (D.9), σ̄2 = O(1/nh̃`+2), which together with

Assumption 4.3 implies that S1,n = o(1). Similarly, S2,n = o(1) by an
√
n → ∞ by Assumption 4.3. This
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ensures that, by (D.11), P (supp∈S` |p′ l̂i,h̃(Zi) − E[p′ l̂i,h̃(Zi)|Zi])| > ε/2|Zi = z) decays exponentially as

n → ∞. Hence, combining this with (D.5)-(D.7), we have E[supp∈S` |ui,n(p)|2] = o(n−1) as desired. This

establishes the claim of the Lemma.

Lemma D.3. For each k ∈ {1, 2}, let U
(k)
n (p) ≡

(
n
2

)−1∑n−1
i=1

∑n
j=i+1 p

(k)
n (Xi, Xj ; p) and Û

(k)
n (p) =

2
n

∑n
i=1 r

(k)
n (Xi; p). Suppose Assumptions 2.1-2.3, 4.2-4.3 hold. Suppose further that nh`+2+δ → ∞ for

some δ > 0 as h→ 0. Then,
√
n(Û

(k)
n (p)− U (k)

n (p)) = op(1) uniformly in p ∈ S` for k = 1, 2.

Proof of Lemma D.3. Following the same argument as in the proof of Lemma 3.1 in Powell, Stock, and

Stoker (1989), we may write

Û (k)
n (p)− U (k)

n (p) =

(
n

2

)−1 n−1∑
i=1

n∑
j=i+1

q(k)
n (Xi, Xj ; p), (D.13)

where q
(k)
n (xi, xj ; p) = p

(k)
n (xi, xj ; p)− r(k)

n (xi, p)− r(k)
n (xj ; p)−E[r

(k)
n (Xi; p)]. Recall that q̃

(k)
n = h(`+1)q

(k)
n .

Below we analyze the case k = 1. By the definition of p
(1)
n and Assumption 4.3, we may then obtain

the following bound:

E[sup
p∈S`
|q̃(1)
n (Xi, Xj ; p)/bn|2] ≤ 16E[sup

p∈S`
|p̃(1)
n (Xi, Xj ; p)/bn|2]

- ( sup
(z,y)∈Z×D

|w(z)y|)2E
[
‖∇zK((Zi − Zj)/h)‖2

]
- h`

∫
‖∇zK(u)‖2f(zi)f(zi + hu)dzidu = O(h`),

(D.14)

where the second inequality follows from Assumption 2.1-2.3, ‖p‖ = 1 for all p, and the Cauchy-Schwarz

inequality and τn(z)/f(z) ≤ bn, while the third inequality uses the change of variables from (zi, zj) to

(zi, u = (zi − zj)/h) with Jacobian h−`. By Lemma D.1, G(1)
n is Euclidean. By Theorem 3 in Sherman

(1994b) applied with δn = 1, γ2
n = h`, and k = 2, it then follows that for some 0 < α < 1, which can be

made arbitrarily close to 1, we have(
n

2

)−1 n−1∑
i=1

n∑
j=i+1

q(1)
n (Xi, Xj ; p) = h−(`+1)bn

(
n

2

)−1 n−1∑
i=1

n∑
j=i+1

q̃(1)
n (Xi, Xj ; p)/bn

= O(h−(`+1)bn)Op(h
α`/2/n) = Op(h

`(α
2
−1)−1bn/n) (D.15)

uniformly over B`. Since α can be made arbitrarily close to 1, there is δ > 0 such that h`(
α
2
−1)−1 =

O(h−
`
2
−1−δ) = o(

√
n)O(n−

δ
2 ), where the last equality follows from the assumption that nh`+2+δ →∞. This

together with (D.15) andO(bnn
−δ/2) = o(1) by Assumption 4.3 implies

(
n
2

)−1∑n−1
i=1

∑n
j=i+1 q

(1)
n (Xi, Xj ; p) =

o(n−1/2) uniformly over B`. By S` ⊂ B` and (D.13), this establishes the claim of the lemma for k = 1.

For k = 2, note that

E[sup
p∈S`
|q̃(2)
n (Xi, Xj ; p)/bn|2] ≤ 16E[sup

p∈S`
|p̃(2)
n (Xi, Xj ; p)/bn|2]

- ( sup
(z,y)∈Z×D

|w(z)p′∇zf(z)y|)2E
[
|K((Zi − Zj)/h)|2

]
- h`

∫
|K(u)|2f(zi)f(zi + hu)dzidu = O(h`), (D.16)
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where the second inequality follows from Assumption 2.1 and τn/f
2(z) = τ2

n/f
2(z) ≤ b2n by Assumption

4.3, while the third inequality uses the change of variables from (zi, zj) to (zi, u = (zi−zj)/h) with Jacobian

h−`. Mimic the argument for k = 1 to obtain
(
n
2

)−1∑n−1
i=1

∑n
j=i+1 q

(2)
n (Xi, Xj ; p) = o(n−1/2). By S` ⊂ B`

and (D.13), this establishes the claim of the lemma for k = 2.

Lemma D.4. Suppose Assumptions 2.1-2.3, 3.1, and 4.1-4.3 hold. Suppose further that nh`+2+δ →∞ for

some δ > 0, and nh2J → 0 as h→ 0. Then, uniformly in p ∈ S`,
√
n(ῡn(p)−E[ῡn(p)]) = 1√

n

∑n
i=1 ψp(Xi)+

op(1).

Proof of Lemma D.4. We start with the observation that

ῡn(p) = − 1

n

n∑
i=1

p′∇zw(Zi)Yp,i −
1

n

n∑
i=1

w(Zi)
p′∇z f̂i,h(Zi)

f̂i,h(Zi)
Yp,iτn,i. (D.17)

By a second-order Taylor expansion of
p′∇z f̂i,h(z)

f̂i,h(z)
around p′∇zf(z)

f(z) , the second term in (D.17) can be written

as

− 1

n

n∑
i=1

w(Zi)
p′∇z f̂i,h(Zi)

f̂i,h(Zi)
Yp,iτn,i

= − 1

n

n∑
i=1

w(Zi)
p′∇zf(Zi)

f(Zi)
Yp,iτn,i −

1

n

n∑
i=1

w(Zi)
p′(∇z f̂i,h(Zi)−∇zf(Zi))

f(Zi)
Yp,iτn,i

+
1

n

n∑
i=1

w(Zi)
p′∇zf(Zi)(f̂i,h(Zi)− f(Zi))

f(Zi)2
Yp,iτn,i +Rn

= − 1

n

n∑
i=1

w(Zi)
p′∇zf(Zi)

f(Zi)
Yp,iτn,i −

1

n

n∑
i=1

w(Zi)
p′∇z f̂i,h(Zi)

f(Zi)
Yp,iτn,i

+
1

n

n∑
i=1

w(Zi)
p′∇zf(Zi)f̂i,h(Zi)

f(Zi)2
Yp,iτn,i +Rn

= H1,n +H2,n +H3,n +Rn, (D.18)

where

H1,n = − 1

n

n∑
i=1

w(Zi)
p′∇zf(Zi)

f(Zi)
Yp,iτn,i, H2,n = − 1

n

n∑
i=1

w(Zi)
p′∇z f̂i,h(Zi)

f(Zi)
Yp,iτn,i

H3,n =
1

n

n∑
i=1

w(Zi)
p′∇zf(Zi)f̂i,h(Zi)

f(Zi)2
Yp,iτn,i, (D.19)

and Rn is a remainder term that contains quadratic terms in the expansion. By (D.17), (D.18), and the

law of iterated expectations, one may therefore write

√
n(ῡn(p)− E[ῡn(p)]) = − 1√

n

n∑
i=1

(p′∇zw(Zi)Yp,i − E[p′∇zw(Zi)mp,i(Zi)])

+

3∑
j=1

√
n(Hj,n − E[Hj,n]) +

√
n(Rn − E[Rn]). (D.20)

The remainder term involves the second derivatives of
p′∇z f̂i,h(z)

f̂i,h(z)
evaluated at

p′∇z f̃i,h
f̃i,h

, where f̃i,h lies
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between f̂i,h and fi,h. For example, one component of
√
nRn can be bounded by

1√
n

n∑
i=1

| − τn,i

2f̃i,h(Zi)
p′(∇z f̂i,h(Zi)−∇zf(Zi))(f̂i,h(Zi)− f(Zi))|

-
√
n sup
z∈Z

τn,i
f(z)

∣∣∣1− (1−
f̃i,h(z)

f(z)
)
∣∣∣−1

sup
z∈Z
‖∇z f̂i,h(z)−∇zf(z)‖ sup

z∈Z
|f̂i,h(z)− f(z))|

=
√
nO(bn)Op

(( lnn

nh`+2

)1/2
+ hJ

)
Op
(( lnn

nh`
)1/2

+ hJ
)

= op(1), (D.21)

uniformly in p ∈ S`, where the first equality follows from the geometric expansion (as in Lemma 6A in

Sherman (1994b)):

τn,i
f(z)

(
1− (1−

f̃i,h(z)

f(z)
)
)−1

=
τn,i
f(z)

(
1 + (1−

f̃i,h(z)

f(z)
) + · · ·

)
=

τn,i
f(z)

(
f(z) +

1

f(z)
(f(z)− f̃i,h(z)) + · · ·

)
,

(D.22)

which can be bounded by the following:

f(z)bn +
τn(z)2

f2(z)
|f(z)− f̃i,h(z)|+ · · · = O(bn) +O(b2n)Op

(( lnn

nh`
)1/2

+ hJ
)

+ · · · = O(bn), (D.23)

where we used Assumption 4.3, τn(z) ∈ {0, 1}, and the uniform convergence rate of f̃i,h, which follows

from Theorem 6 in Hansen (2008). Applying Theorem 6 in Hansen (2008) again, the penultimate equality

in (D.21) follows. The last equality in (D.21) follows from the assumption nh`+2+δ → ∞, nh2J → 0,

J > (` + 2)/2, and Assumption 4.3. Other components of Rn can be shown to be op(1) similarly. Hence,

it follows that

√
n(Rn − E[Rn]) = op(1). (D.24)

Below, we investigate Hj,n, j = 1, 2, 3. We first note that

√
n(H1,n − E[H1,n]) =

1√
n

n∑
i=1

(ψp,1(Xi)− E[ψp,1(Xi)]) + op(1), (D.25)

where ψp,1(x) = −w(z)p
′∇zf(z)
f(z) yp. This follows from the following argument. Notice that

H1,n = − 1

n

n∑
i=1

w(Zi)
p′∇zf(Zi)

f(Zi)
Yp,iτn,i =

1

n

n∑
i=1

ψp,1(x)τn,i. (D.26)

and hence

E
[( 1√

n

n∑
i=1

(ψp,1(Xi)− ψp,1(Xi)τn,i)
)2]

= o(1), (D.27)

by Assumption 4.3 and arguing as in the proof of Theorem A (page 10) in Lewbel (2000). Furthermore,

by the Cauchy-Schwarz inequality,

|E[ψp,1(Xi)]− E[ψp,1(Xi)τn,i]| ≤ ‖ψp,1(Xi)‖L2
P
‖1− τn,i‖L2

P
= op(n

−1/2). (D.28)

Eq. (D.25) then follows from (D.27)-(D.28).
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Next, noting that ∇K is an odd function,

H2,n = − 1

n

n∑
i=1

w(Zi)
p′∇z f̂i,h(Zi)

f(Zi)
Yp,iτn,i

=
−1

n(n− 1)h`+1

n∑
i=1

n∑
j=1,j 6=i

w(Zi)
p′∇zK(Zi − Zj/h)

f(Zi)
Yp,iτn,i

=
−1

2

(
n

2

)−1 n−1∑
i=1

n∑
j=i+1

(1

h

)`+1
p′∇zK

(Zi − Zj
h

)
(g(1)
p (Xi)− g(1)

p (Xj))

=

(
n

2

)−1 n−1∑
i=1

n∑
j=i+1

p(1)
n (Xi, Xj ; p), (D.29)

where g
(1)
p (Xi) = W (Zi)

f(Zi)
Yp,iτn,i and p

(1)
n (Xi, Xj ; p) = −1

2

(
1
h

)`+1
p′∇zK

(
Zi−Zj
h

)
(g

(1)
p (Xi) − g(1)

p (Xj)). By

Lemma D.3

√
n(

(
n

2

)−1 n−1∑
i=1

n∑
j=i+1

p(1)
n (Xi, Xj ; p)− E[p(1)

n (Xi, Xj ; p)]) =
2√
n

(
n∑
i=1

r(1)
n (Xi; p)− E[r(1)

n (Xi; p)]) + op(1),

(D.30)

where r
(1)
n (x; p) ≡ E[p

(1)
n (Xi, Xj ; p)|Xi = x].

Arguing as in Eq. (3.15) in PSS and by the law of iterated expectations, we may then write

r(1)
n (x; p) =

−1

2

∫ (1

h

)`+1
p′∇zK

(Zi − z
h

)
(g(1)
p (Xi)−

w(z)

f(z)
mp(z))f(z)dz

=
1

2

∫ (1

h

)
p′∇zK(u)(g(1)

p (Xi)−
wmp

f
(Zi + hu))f(Zi + hu)du

=
−1

2

∫
K(u)g(1)

p (Xi)p
′∇zf(Zi + hu)du

+
1

2

∫
K(u)p′∇z(wmp)(Zi + hu)du

=
1

2
{−w(Zi)

p′∇zf(Zi)

f(Zi)
Yp,iτn,i + p′∇zw(Zi)mp(Zi) + w(Zi)p

′∇zmp(Zi)}+ t(1)
n (Xi; p), (D.31)

where we used the change of variables, integration by parts and the assumption that K(u) = 0 on the

boundary of SK . The remainder term t
(1)
n is given by

t(1)
n (Xi; p) =

−1

2

∫
K(u)g(1)

p (Xi)p
′(∇zf(Zi + hu)−∇zf(Zi))du

+
1

2

∫
K(u)p′(∇z(wmp)(Zi + hu)−∇z(wmp)(Zi))du. (D.32)

By Assumptions 2.1 and 4.1, uniformly in p ∈ S`,

|g(1)
p (x)|‖∇zf(z + hu)−∇zf(z)‖ - sup

y∈D
|y| × bn × w(z)M1(z)‖hu‖. (D.33)

By Assumptions 3.1, 4.1 and mp(z) = 1{p′l(z) ≤ 0}mL(z) + 1{p′l(z) ≤ 0}mU (z), we have uniformly in

p ∈ S`,

‖∇z(wmp)(z + hu)−∇z(wmp)(z)‖ ≤ 2M2(z)‖hu‖. (D.34)
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Assumption 4.1 and (D.33)-(D.34) then imply

E[sup
p∈S`
|t(1)
n (X; p)|2] - |h|2E[{bn sup

y∈D
|y||w(Z)M1(Z)|+ 2|M2(Z)|}2](

∫
‖u‖|K(u)|du)2 = O(h2b2n).

By Assumption 4.3 and h→ 0 at a polynomial rate (by nh2J → 0.), this in turn implies 1√
n

∑n
i=1 t

(1)
n (X, ·)−

E[t
(1)
n (X, ·)] converges in probability to 0 uniformly in p ∈ S`. Using this result together with (D.29)-(D.31),

and arguing as in (D.26)-(D.28) to control the effect of the asymptotic trimming, we obtain

√
n(H2,n − E[H2,n]) =

1√
n

n∑
i=1

(ψp,2(Xi)− E[ψp,2(Xi)]) + op(1), (D.35)

where ψp,2(x) = −w(z)p
′∇zf(z)
f(z) yp,i + p′∇zw(z)mp(z) + w(z)p′∇zmp(z).

Now we turn to H3,n in (D.18). Noting that K is an even function, we have

1

n

n∑
i=1

w(Zi)
p′∇zf(Zi)f̂i,h(Zi)

f(Zi)2
Yp,iτn,i =

1

n(n− 1)h`

n∑
i=1

n∑
j=1,j 6=i

w(Zi)
p′∇zf(Zi)K(Zi − Zj/h)

f(Zi)2
Yp,iτn,i

=
1

2

(
n

2

)−1 n−1∑
i=1

n∑
j=i+1

(1

h

)`
K
(Zi − Zj

h

)
(g(2)
p (Xi) + g(2)

p (Xj))

=

(
n

2

)−1 n−1∑
i=1

n∑
j=i+1

p(2)
n (Xi, Xj ; p), (D.36)

where g
(2)
p (Xi) = w(Zi)

p′∇zf(Zi)
f(Zi)2

Yp,iτn,i and p
(2)
n (Xi, Xj ; p) = 1

2

(
1
h

)`
K
(
Zi−Zj
h

)
(g

(2)
p (Xi) + g

(2)
p (Xj)). By

Lemma D.3, (D.30) holds while replacing p
(1)
n , r

(1)
n with p

(2)
n , r

(2)
n . Arguing similarly to (D.31), we may then

write

r(2)
n (x; p) =

1

2

∫ (1

h

)`
K
(Zi − z

h

)
(g(2)
p (Xi) +

w(z)p′∇zf(z)

f(z)2
mp(z))f(z)dz

=
1

2

∫
K(u)(g(2)

p (Xi) +
wp′∇zfmp

f2
(Zi + hu))f(Zi + hu)du

=
1

2

∫
K(u)g(2)

p (Xi)f(Zi + hu)du

+
1

2

∫
K(u)

wp′∇zf
f

mp(Zi + hu)du

=
1

2
{w(Zi)

p′∇zf(Zi)

f(Zi)
Yp,iτn,i + w(Zi)

p′∇zf(Zi)

f(Zi)
mp(Zi)}+ t(2)

n (Xi; p), (D.37)

where the remainder term t
(2)
n (Xi; p) is given by

t(2)
n (Xi; p) =

1

2

∫
K(u)g(2)

p (Xi)(f(Zi + hu)− f(Zi))du

+
1

2

∫
K(u)

((wp′∇zfmp

f

)
(Zi + hu)−

(wp′∇zfmp

f

)
(Zi)

)
du. (D.38)

By Assumptions 2.1 and 4.1, uniformly in p ∈ S`,

|g(2)
p (x)||f(z + hu)− f(z)| - sup

y∈D
|y| × b2n × w(z)‖∇zf(z)‖M3(z)‖hu‖. (D.39)

By Assumptions 3.1, 4.1 and mp(z) = 1{p′l(z) ≤ 0}mL(z) + 1{p′l(z) ≤ 0}mU (z), we have uniformly in
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p ∈ S`,

|wp
′∇zfmp

f
(z + hu)− wp′∇zfmp

f
(z)| ≤ 2M4(z)‖hu‖. (D.40)

Assumption 4.1 and (D.39)-(D.40) then imply

E[sup
p∈S`
|t(2)
n (X; p)|2] - |h|2E[{b2n sup

y∈D
|y| × w(Z)‖∇zf(Z)‖M3(Z) + 2M4(z)}2](

∫
‖u‖|K(u)|du)2 = O(h2b4n).

By Assumption 4.3 and h→ 0 at a polynomial rate, this in turn implies 1√
n

∑n
i=1 t

(2)
n (X, ·)− E[t

(2)
n (X, ·)]

converges in probability to 0 uniformly in p ∈ S`. This result, (D.36), (D.30) with replacing p
(1)
n , r

(1)
n with

p
(2)
n , r

(2)
n , and (D.37) imply

√
n(H3,n − E[H3,n]) =

1√
n

n∑
i=1

(ψp,3(Xi)− E[ψp,3(Xi)]) + op(1), (D.41)

where ψp,3(x) = w(z)p
′∇zf(z)
f(z) yp+w(z)p

′∇zf(z)
f(z) mp(z), and the effect of the asymptotic trimming is controlled

by arguing as in (D.26)-(D.28).

Note that by (D.17), (D.25), (D.35), and (D.41), and an integration by parts, ψp(x) − E[ψp(X)] =

−p′∇zw(z)yp − E[w(Z)p′∇zmp(Z)] +
∑3

j=1(ψp,j(x)− E[ψp,j(Z)]). By (D.20), (D.24), and E[ψp(X)] = 0,

the conclusion of the lemma then follows.

Lemma D.5. Suppose Assumptions 4.1-4.2 hold. Suppose that nh2J → 0. Then, uniformly in p ∈ S`,
E[ῡn(p)]− υ(p,Θ0(P0)) = o(n−1/2).

Proof of Lemma D.5. Note that by (D.20) and (D.24), and the definition of H1,n,

E[ῡn(p)] = E[−p′∇zw(Z)mp(Z)]− E[w(Z)
p′∇zf(Z)

f(Z)
mP (Z)] +

3∑
j=2

E[Hj,n] + E[Rn]

= υ(p,Θ0(P0)) +
3∑
j=2

E[Hj,n] + o(n−1/2). (D.42)

Hence, for the conclusion of the lemma, it suffices to show that
∑3

j=2E[Hj,n] = o(n−1/2). Further, by

Assumption 4.3 and the argument in (D.28), the presence of the trimming function does not affect the

analysis, and hence we omit τn,i below.

The rest of the proof is based on the proof of Theorem 3.2 in Powell, Stock, and Stoker (1989). Hence,

we briefly sketch the argument. By (D.29), the law of iterated expectations, and arguing as in (3.19) in

Powell, Stock, and Stoker (1989), we obtain

E[H2,n] = −
∫ ∫ (1

h

)`+1
p′∇zK

(z − z′
h

)
g(1)
p (x)f(z)f(z′)dzdz′

=
1

h

∫ ∫
p′∇zK(u)g̃(1)

p (z)f(z)f(z + hu)dzdu = −
∫ ∫

K(u)g̃(1)
p (z)f(z)p′∇zf(z + hu)dzdu, (D.43)

where g̃
(1)
p (z) ≡ w(z)

f(z)mp(z). By Assumptions 4.1, 4.2, and Young’s version of Taylor’s theorem, for each

p ∈ S`, we then obtain the expansion:

√
nE[H2,n] = b1(p)

√
nh+ b2(p)

√
nh2 + · · ·+ bJ−1(p)

√
nhJ−1 +O(

√
nhJ), (D.44)
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where bk is given by

bk(p) =
−1

k!

k∑
j1,··· ,jk

∫
uj1 · · ·ujkK(u)du×

∫
g̃(1)
p (z)

∑̀
i=1

p(i) ∂k+1f(z)

∂zj1 · · · ∂zjk∂zi
f(z)dz, p ∈ S`, k = 1, · · · , J,

(D.45)

which shows that the map p 7→ bk(p) is continuous on S` for k = 1, 2, · · · , J. This implies that the expansion

in (D.44) is valid uniformly over the compact set S`. By Assumption 4.2 (v) and (D.45), bk(p) = 0 for all

k ≤ J but bk 6= 0 for k = J . By the hypothesis that nh2J → 0, we obtain
√
nE[H2,n] = O(

√
nhJ) = o(1).

Similarly, one may write

√
nE[H3,n] =

∫ ∫ (1

h

)`
K
(z − z′

h

)
g(2)
p (x)f(z)f(z′)dzdz′ (D.46)

=

∫ ∫
K(u)g̃(2)

p (z)f(z)p′∇zf(z + hu)dzdu, (D.47)

where g̃
(2)
p (x) ≡ w(z)p

′∇zf(z)
f(z)2

mp(z). Mimic the argument for H2,n. Then, it follows that
√
nE[H3,n] = o(1).

This establishes the claim of the lemma.

Lemma D.6. Suppose Assumptions 2.1-2.3, and 3.2 hold. Then, F ≡ {ψp : X → R : ψp(x) =

w(z)p′∇zmp(z)− υ(p,Θ0(P )) + p′l(z)ζp(x)} is Donsker in C(S`).

Proof of Lemma D.6. Let Fg ≡ {f : X → R : f(x) = p′g(x), p ∈ S`}, where g : X → R` is a known

function. Then by S` being finite dimensional and Lemma 2.6.15 in van der Vaart and Wellner (1996), Fg
is a VC-subgraph class of index `+ 2 with an envelope function F (x) ≡ ‖g(x)‖. Define

g1(x) ≡ w(z)(∇zmU (z)−∇zmL(z)), g2(x) ≡ w(z)∇zmL(z), (D.48)

g3(x) ≡ l(z){r−1
U (z)q(yU −mU (z))− r−1

L (z)q(yL −mL(z))}, (D.49)

g4(x) ≡ l(z)r−1
L (z)q(yL −mL(z)), g5(x) ≡ l(z). (D.50)

Then Fgj , j = 1, · · · , 5 are VC-subgraph classes. Further, let Fυ ≡ {f : X → R : f(x) = υ(p,Θ0(P )), p ∈
S`}. This is also finite dimensional. Hence, Fυ is a VC-subgraph class. Finally, let Fφ ≡ {f : X → R :

1{p′l(z) > 0}, p ∈ S`}. Then, Fφ = φ ◦ Fg5 , where φ : R → R is the monotone map φ(w) = 1{w > 0}. By

Lemma 2.6.18 in van der Vaart and Wellner (1996), Fφ is also a VC-subgraph class.

Note that ψp can be written as

ψp(x) = w(z)p′{1{p′l(z) > 0}(∇zmU (z)−∇zmL(z)) +∇zmL(z)} − υ(p,Θ0(P ))

+ p′l(z){1{p′l(z) > 0}{r−1
U (z)q(yU −mU (z))− r−1

L (z)q(yL −mL(z))}+ r−1
L (z)q(yL −mL(z))}. (D.51)

Therefore, F = Fg1 · Fφ + Fg2 + (−Fυ) + Fg3 · Fφ + Fg4 , which is again a VC-subgraph class with some

index V (F) by Lemma 2.6.18 in van der Vaart and Wellner (1996). By Assumptions 2.1-2.3 and 3.2, we

may take F (x) ≡ supp∈S` ‖w(z)p′∇zmp,η(z)‖L∞µ + ‖l(z)‖ × ε̄−1 × supu∈D′ |q(u)| as an envelope function

such that E[F (x)2] <∞. Then, by Theorems 2.6.7 and 2.5.1 in van der Vaart and Wellner (1996), F is a

Donsker class. This establishes the claim of the lemma.
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Proof of Theorem 4.1. For each p ∈ S`, we have the following decomposition:

√
n(υ̂n(p)− υ(p,Θ0(P0)))

=
√
n(υ̂n(p)− ῡn(p)) +

√
n(ῡn(p)− E[ῡn(p)]) +

√
n(E[ῡn(p)]− υ(p,Θ0(P0)))

≡ G1n(p) +G2n(p) +G3n(p). (D.52)

By Lemmas D.2-D.5, uniformly in p ∈ S`, G1n(p) = G3n(p) = op(1), and G2n(p) = 1√
n

∑n
i=1 ψp(Zi)+op(1).

This establishes the second claim of the Theorem. By Theorem 3.1, ψp is the efficient influence function, and

hence regularity of {υ̂n(·)} follows from Lemma D.6 and Theorem 18.1 in Kosorok (2008), which establishes

the first claim. The stated convergence in distribution is then immediate from (D.52) and Lemma D.6,

while the limiting process having the efficient covariance kernel is a direct result of the characterization of

the semiparametric efficiency bound obtained in Theorem 3.1, which establishes the third claim.

Appendix E: Figures and Tables
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Figure 1: Identified sets for the density weighted average derivatives
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Table 1: Risk of υ̂IVn (Gaussian kernel)

c=0.1 c=0.5 c=1
Sample Size h RH RIH ROH RH RIH ROH RH RIH ROH
n=1000

0.4 0.0608 0.0477 0.0600 0.0834 0.0709 0.0673 0.1229 0.1037 0.0801
0.5 0.0588 0.0468 0.0578 0.0785 0.0749 0.0485 0.1212 0.1185 0.0437
0.6 0.0572 0.0452 0.0564 0.0809 0.0804 0.0351 0.1305 0.1304 0.0229
0.7 0.0567 0.0416 0.0563 0.0844 0.0844 0.0263 0.1416 0.1416 0.0086
0.8 0.0555 0.0386 0.0553 0.0882 0.0882 0.0195 0.1556 0.1556 0.0026

n=500
0.4 0.0929 0.0703 0.0919 0.1185 0.0877 0.1072 0.1731 0.1203 0.1437
0.5 0.0836 0.0684 0.0817 0.1091 0.0979 0.0839 0.1555 0.1414 0.0873
0.6 0.0799 0.0646 0.0786 0.1038 0.0999 0.0640 0.1555 0.1520 0.0530
0.7 0.0774 0.0607 0.0762 0.1060 0.1051 0.0512 0.1679 0.1677 0.0297
0.8 0.0775 0.0592 0.0769 0.1098 0.1096 0.0410 0.1785 0.1785 0.0173

n=250
0.4 0.1357 0.0960 0.1349 0.1820 0.1061 0.1770 0.2480 0.1256 0.2339
0.5 0.1189 0.0941 0.1169 0.1517 0.1231 0.1289 0.2013 0.1638 0.1446
0.6 0.1133 0.0914 0.1112 0.1413 0.1299 0.1053 0.1954 0.1818 0.1084
0.7 0.1121 0.0910 0.1098 0.1365 0.1317 0.0890 0.1974 0.1949 0.0725
0.8 0.1086 0.0864 0.1068 0.1374 0.1360 0.0737 0.2069 0.2061 0.0500

Table 2: Risk of υ̂IVn (Higher-order kernel)

c=0.1 c=0.5 c=1
Sample Size h RH RIH ROH RH RIH ROH RH RIH ROH
n=1000

0.5 0.0722 0.0549 0.0714 0.1267 0.0461 0.1256 0.2038 0.0494 0.2017
0.6 0.0654 0.0551 0.0637 0.0912 0.0532 0.0872 0.1384 0.0636 0.1312
0.7 0.0600 0.0511 0.0583 0.0760 0.0631 0.0645 0.1020 0.0835 0.0745
0.8 0.0564 0.0470 0.0553 0.0759 0.0741 0.0444 0.1093 0.1085 0.0370
0.9 0.0565 0.0446 0.0559 0.0802 0.0801 0.0313 0.1302 0.1302 0.0134

n=500
0.5 0.1104 0.0744 0.1101 0.1867 0.0587 0.1861 0.2887 0.0604 0.2870
0.6 0.0947 0.0753 0.0930 0.1308 0.0745 0.1267 0.1993 0.0857 0.1914
0.7 0.0869 0.0737 0.0846 0.1080 0.0843 0.0970 0.1453 0.1085 0.1184
0.8 0.0802 0.0668 0.0783 0.1019 0.0958 0.0747 0.1373 0.1308 0.0683
0.9 0.0772 0.0635 0.0758 0.1042 0.1034 0.0564 0.1513 0.1508 0.0372

n=250
0.5 0.1788 0.1038 0.1787 0.2832 0.0630 0.2831 0.4316 0.0511 0.4313
0.6 0.1374 0.1034 0.1359 0.1959 0.0979 0.1925 0.2802 0.1061 0.2716
0.7 0.1212 0.1001 0.1187 0.1571 0.1147 0.1460 0.2063 0.1401 0.1773
0.8 0.1143 0.0948 0.1118 0.1385 0.1231 0.1133 0.1811 0.1620 0.1201
0.9 0.1107 0.0910 0.1085 0.1342 0.1292 0.0903 0.1865 0.1820 0.0819
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