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In this supplementary material, we include the proofs of results stated in the main text. The contents
of the supplemental appendix are organized as follows. Appendix A contains notations and definitions
used throughout the appendix. Appendix B contains the proof of Theorems and and Corollaries
and Appendix C contains the proof of Theorem [3.1] and auxiliary lemmas. Appendix D contains
the proof of Theorem Appendix E then reports the Monte Carlo results.

APPENDIX A: Notation and Definitions

Let IT : X — Z be the projection map pointwise defined by = = (yr,yv, 2) — 2. Let v = Il be the
pushforward measure of y on Z. We then denote the marginal density of P with respect to v by ¢2(z). By
the disintegration theorem, there exists a family {u, : 2 € Z} of probability measures on X. Throughout,
we assume that p, is absolutely continuous with respect to some o-finite measure A for all z € Z. We then

denote the conditional density function of P with respect to A by v3(yr, yu|2).

For any 1 < p < oo, we let || - || » be the usual LP-norm with respect to a measure 7, where || - || e

denotes the essential supremum.

APPENDIX B: Proof of Theorems 2.1l and 2.2

Proof of Theorem B.1l We first show that the identified set can be written as

Ou(P)={0:0=Em(2)l(Z)], P(mp(Z) <m(Z) <my(Z)) =1}. (B.1)

For this, we note that, by Assumptions and arguing as in the proof of Theorem 1 in [Stoker| (1986)),
we have

Elw(2)V.m(Z)] = E[m(Z)I(2)]. (B-2)

Further, the distribution of Y first-order stochastically dominates that of Yz. Similarly, the distribution of
Yy first-order stochastically dominates that of Y. Since ¢ is nondecreasing by the convexity of g, it then

follows that, for each u € R,
Elg(Yi, - w)|Z] < Elg(Y — w)|Z] < Elg(Yy —w)|Z], P—as. (B.3)

Eq. then follows by (B.3), Assumption (iii), and the hypothesis that E[q(Y — u)|Z = z] = 0 has a

unique solution at u = m(z) on D.



For the convexity of ©g(P), observe that for any 601,602 € Oy(P), there exist mi,my : Z — R such
that 0; = Em;(Z)l(Z)] and mp(Z) < m;(Z) < my(Z),P — a.s. for j = 1,2. Let o € [0,1] and let
0o = abi + (1 — a))f3. Then,

O = E[ma(2)I(Z)],

where m, = amy + (1 — a)mg. Since mp(Z) < mo(Z) < my(Z), P — a.s., it follows that 6, € Oy(P).

Therefore, ©g(P) is convex.

We show compactness of ©g(P) by showing Oy(P) is bounded and closed. By Assumption (1)-(ii),
for any 6 € Oy(P),

169)] < supm(=)|E[19(2)]] < sup |¢|E[ID(Z)]] < o0, for j=1,--- L. (B4)
z2€Z z€D

Hence, ©¢(P) is bounded. To see that Oy(P) is closed, consider the following maximization problem:

maximize E[m(2)p'1(Z)], (B.5)
st. mp(Z) <m(Z) <my(Z),P —a.s. (B.6)

Arguing as in the proof of Proposition 2 in Bontemps, Magnac, and Maurin| (2012)), the objective function
is maximized by setting m(z) = mpg(z) when p'l(z) < 0 and setting m(z) = my(z) otherwise. This and
give the support function of ©¢(P) in and also shows that, for each p € S, there exists m,(z) =
{p'l(z) < 0}mp(z)+1{p'l(z) > 0}my(z) such that v(p, Og(P)) = (p,0*(p)), where 0*(p) = E[my,(2)I(Z)].
Since my, satisfies mp(Z) < my(Z) < my(Z), P — a.s., we have §*(p) € Og(P). By Proposition 8.29 (a)
in [Rockafellar and Wets| (2005), the boundary of ©g(P) is {6 : (p,8) = v(p, Ou(P)),p € S*}. Therefore,

©¢(P) contains its boundary, and hence it is closed.

For the strict convexity of ©(P), we show it through the differentiability of the support function. The
proof is similar to that of Lemma A.8 in Beresteanu and Molinari (2008) and Lemma 23 in [Bontemps,
Magnac, and Maurin| (2012). To this end, we extend the support function and define s(p, Og(P)) as in
for each p € R\ {0}.

For each z € Z, let £(2) = (mp(2) — my(2))l(2). For each p € R*\ {0}, let ¢(p) = E[1{p'&(Z) >
0}p’&(Z)]. Then, since mr(Z)—my(Z) < 0 almost surely, it holds that v(p, ©¢(P)) = {(p)+E[my(Z)p'1(Z)]
for all p € R®\ {0}. For any p,q € R*\ {0}, it then follows by the Cauchy-Shwarz inequality that

[¢(q) = C(p) — (¢ — p)'E[E(2)1{p'E(Z) > 0}]|
= E[(1{q'§(2) = 0} = 1{p'6(2) = 01 d'&(2)]] < [[1{g'§ = 0} — 1{p'€ = O}l 2 [l4'El 2. (B.7)

By Assumptions (i), the distribution of £(Z) does not assign a positive measure to any proper subspace
of R® with dimension ¢ — 1, which ensures P(p'¢(Z) = 0) = 0. Thus, for any sequence {g,} such that
¢n — p, it follows that 1{¢,&(Z) > 0} “3 1{p'¢(Z) > 0} as n — co. Note that 1{p’¢(Z)} is bounded for all
p. Thus, the function class {12{p’¢(:)} : p € R’ \ {0}} is uniformly integrable. These results ensure that
|1{q¢ >0} —1{p/¢ > 0}z, — 0 as ¢ — p. This and qufHij < oo imply that the right hand side of
is 0(1). Hence,  is differentiable at every point on R\ {0} with the derivative E[¢(Z)1{p'¢(Z) > 0}]. Note
that, for each z € Z, p — my(2)p'l(z) is differentiable with respect to p and my is integrable with respect
to P by Assumption (i)-(ii). This ensures that p — E[my(Z)p'l(Z)] is differentiable with respect to



p at every p € R\ {0}. Therefore, the map p — v(p,Og(P)) is differentiable for all p € R’ \ {0}. By
Corollary 1.7.3 in Schneider| (1993), the support set H(p, ©g(P)) = {0 : (p,0) = v(p,Op(P))} N Oy(P) for

each p then contains only one point, which ensures the strict convexity of O (P).

To see that ©g(P) is sharp, take any 6 € Og(P). Then, by convexity, there exist p,q € S’ and a € [0, 1]
such that § = af*(p) + (1 — «)0*(q), which further implies

0 = El(amy(Z) + (1 — a)my(2))l(Z)] = Elw(Z2)V:mapq(2)], (B-8)

where mq p 4 = amy, + (1 — a)my, and the last equality follows from integration by parts and Assumptions
(i) and (iv) ensuring the almost everywhere differentiability of mq p 4. Since mq p 4 satisfies in
place of m with mq 4 and mq p 4 is almost everywhere differentiable, 6 is the weighted average derivative

of a regression function consistent with some data generating process. Hence, ©¢(P) is sharp. m

Proof of Corollary 2.1} By Assumption [2.4] the weighted average derivative and index coefficients are
related to each other by

By Theorem and letting p = +; and —¢; respectively, we obtain bounds Qg), 0[(Jj) on each component
0\9) of the average derivative vector as in -. Due to the scale normalization A1) = 1 and (B.9), we

then obtain

0} < Blw(2)M'(2'8) < 6}, (B.10)
Furthermore, by Assumption and w(z) > 0 for all z, one may tighten these bounds as

6. < Elw(2)M'(Z'8)] < 6}, (B.11)

where H(Ll)Jr = max{H(Ll), 0}. By , (B.11]), and 9((} ), G(Lll being non-negative, it follows that

B )
0 0
U ,+

Intersecting these bounds with the a priori bounds [B(j ),B(j)] yields the conclusion of the corollary. m

Proof of Theorem 2.2l We first show (24). By the first order condition for and Assumption (i),
Elq(Y —g(Z,V))|Z,V] = Elg(Y —g(Z,V))|Z,V] = 0, P—a.s. By Assumption [2.5] (i) and the monotonicity

of q, for vy, < v < vy, we have

/ a(y — g(zv0))dP(y]Z,v) <0 < / 4y — g(z,v.))AP(y]Z,v), P — a.s. (B.13)

Taking expectations with respect to V', we obtain

/q(y —g(z,v0))dP(y[z) <0 < /q(y —g(z,v1))dP(y|%), P —a.s. (B.14)

Further, by Assumption (ii),

/ 4y — (2 vz, v) )AP(y]2) = 0. (B.15)



By (B.14)-(B.15)) and the monotonicity of ¢, we then have
9(z,v1) <(z,v,w) < g(z,00). (B.16)

Let =21 (v) = {(vp,vy) : v, < vy <o} and Ey(v) = {(vp,vy) : v < vy < wvy}. To prove the lower bound
on g(z,v), take any vy < v. Then by Assumption [2.5] (i) and (B.16)), we have y(z, vz, vy) < g(z,v) for any
(vr,vu) € E(v). Hence, it follows that gr(2,v) = sup(y, v )ez, () V(2 0L, vu) < g(z,v). Note that gr(z,v)
is weakly increasing in v by construction and differentiable in z with a bounded derivative by Assumption
2.6] (iii). Hence, it is consistent with Assumption (i). Thus, the bound is sharp. A similar argument
gives the upper bound. Hence, holds. This and integration by parts imply that the sharp identified

set can be written as
©00(P) ={0:0 = Elg(Z,0)l(2)], P(gr(Z,v) < g(Z,v) < gu(Z,v)) = 1}. (B.17)
The rest of the proof is then similar to that of Theorem It is therefore omitted. m
Proof of Corollary 2.2 By Assumption [2.7, the weighted average derivative and index coefficients are
related to each other by
09) = Elw(2)G'(Z'8,0)]8D), j=1,--- L. (B.18)

By Theoremand letting p = ¢; and —¢; respectively, we obtain bounds Hg) (v), 0((]j ) (v) on each component
61 (v) of the average derivative vector as in (27)-(28). Mimic the argument of the proof of Corollary
We then obtain

9\ . 9\
é)(v) S,B(J) < (({) (U) ’ V’UEV, ]:2’ 76’ (Blg)
0 (v) QL’JF(U)
where 99:_(1)) = maX{G(LI) (v),0}. Hence, by intersecting these bounds across v € V, we obtain the following
bounds:

(4) (4)
sup eﬁ W) < 0) < ing 9? R 1 (B.20)
vev 0 () R0

Finally, intersecting these bounds with the a priori bounds [3 Y ),B(j)] yields the conclusion of the corollary.

|
APPENDIX C: Proof of Theorem [3.1]
This Appendix contains the proof of Theorem [3.1] and auxiliary lemmas needed to establish the main
result.

Below, we adopt the framework of [Bickel, Klassen, Ritov, and Wellner| (1993). To characterize the
efficiency bound, it proves useful to study a parametric submodel of P defined in (32). We define a
parametric submodel through a curve in Li. Let hg = /dP/du. Let v : X — R and $:Z — R be
bounded functions that are continuously differentiable in z with bounded derivatives. We then define

o(x) = 9(x) = BO(X)|Z = 2], and  ¢(2) = ¢(2) — E[$(2)], (C.1)



where expectations are with respect to P € P. For each n € R, define v, : X — R and ¢, : Z — R by

va(yr,yulz) = w3 (yr, yul2) (L + 290()),  and ¢ (2) = ¢5(2) (1 + 2né(2)). (C.2)

We then let h% be defined pointwise by

h%(w) = v%(yL,yU|z)¢%(z). (C.3)

It is straightforward to show that n — h% is a curve in LZ with the Fréchet derivative ho = Vg + voéo,
where ©o(yL, yu|z) = 9(z)vo(yL, yu|z) and ¢o(z) = ¢(2)¢o(z). We also note that for any 1 and 7o in a
neighborhood of 0, it holds that

vy yul2) = vn (e, yul2) (L + 200 = 10) Ty (), and  §(2) = ép, (2) (1 + 206y (2)). (C4)

where 0, = ﬁv%/v%o and ¢, = g5¢(2)/¢7270. We then define oy, (yz, yu|2) = o () vy (YL, yur|2) and éyy(2) =

P (2) o (2).

We further introduce notation for population objects along this curve. Let f,(z) = ¢727(z) and [, =
—V.w(z) —w(2)V; fy(2)/ fy(2). Lemma will show that there exists a neighborhood N of 0 such that
the equations [ ¢(yr — m)v%(yL,yU\z)dA(yL,yU) =0 and [qlyv — m)v%(yL,yU]z)d)\(yL,yU) = 0 have
unique solutions on D for all n € N. We denote these solutions by my,, and mgy,, respectively. We then

let my,(2) = T'(mry(2), mu,(2),0'1,(2)). Further, we define

d . .
’I"jm(Z) = _%En [Q(yj - ’I?’L)|Z = Z] ‘T?L:m- (z)’ J = La U7 (05)

7,M

where the expectation is taken with respect to F,. Finally, define
Com = D7 (2Dalyr, = min(2)), 151 (2)a(yo — mua(2)), 01 (2)). (C.6)

Given these definitions, we give an outline of the general structure of the proof. The proof of Theorem
3.1| proceeds by verifying the conditions of Theorem 5.2.1 in [Bickel, Klassen, Ritov, and Wellner| (1993,
which requires (i) the characterization of the tangent space at P, which we accomplish in Theorem |C.1
and (ii) the pathwise weak differentiability of the map @ — v(-,00(Q)), which is established by Theorem
1C.2)
TANGENT SPACE (Theorem |C.1))

Step 1: Lemmas show that for some neighborhood N of 0, Assumptions 2.3] and [3.2] hold

with P, in place of P for all n € N, where \/dP,/du = hy, defined in (C.2)-(C.3|). This means that the
restrictions on P in Assumptions and do not restrict the neighborhood in such a way that affects

the tangent space derived in the next step. In this step, we exploit the fact that Z is determined by the

dominating measure g instead of each distribution in the model.

Step 2: Theoremthen establishes that the tangent space S equals T = {h € L2 [ h(x)s(x)du(x) =
0} by showing that (i) S C T generally and (ii) due to Step 1, {P,,n € N} is aregular parametric submodel
of P whose tangent set U C S is dense in T implying T C S.

DIFFERENTIABILITY (Theorem |C.2))

Step 1: Lemmas and [C.7] explicitly characterize the pathwise derivatives of m;,,j = L,U along



the curve 1 — h,, defined in (C.2)-(C.3).

Step 2: Based on Step 1 and Lemma [C.8] Lemma [C.9] then characterizes the pathwise derivative of the
support function v(p, Og(F,;)) at a point p along the curve n — h, defined in (C.2)-(C.3). Lemmas
and further show that this pathwise derivative is uniformly bounded and continuous in (p,n) € S*x N.

Step 3: Based on Step 2, Theorem first characterizes the pathwise weak derivative of p(P,;) =
v(-,00(P,)) on the tangent space of the curve n — h, and further extends it to S.

Lemma C.1. Letn + hy be a curve in Li defined in —. Suppose Assumption holds. Suppose
P € P. Then, there exists a neighborhood N of 0 such that (i) [ q(y; — ﬁz)v%(yL,yU|z)d)\(yL,yU) =0 has
a unique solution at m = mj,(2) on D for j = L,U and for all n € N; (it) For each (z,m) € Z x N,
my, 1, and m, y are continuously differentiable a.e. on the interior of Z x N with bounded derivative. In

particular, it holds that

0 .
%mL,n(Z)‘n:no =21, (2 )/Q(yL — ML (2))0no (YL, yul2)vne (Y, yul2)dA (YL, yu) (C.7)
0 _ .
%mU’"(Z) s 27730 (2) /Q(yU — MU (2))0no (YL, YU 2)one (Y, yul2)dA (YL, yur), (C.8)

for allng € N.

Proof of Lemma [C.1l The proof builds on the proof of Theorem 3.1 in |[Newey and Stoker| (1993). By Eq.
(C.2), it follows that

/ 4y — o2y yul2) AN (L. ) = / 4z — )R, yol2) AN L. o)
P / a(yr — )o(@) R (yL, yol2) ANz, yo). (C.9)

Since P € P, Assumption and Lemma C.2 in Newey| (1991) imply that the map (z,m) — [q(y; —
m)o(z)vg (yr,yul2)dA(yr, yo) is continuously differentiable in on Zx D for j = L,U. Hence, by (C.9)), there
is a neighborhood N’ of 0 such that the map (z,m,7) — [q(yr —fn)v%(y,;, yu|2)d\(yr, yu) is continuously
differentiable on Z x D x N’ with bounded derivatives. By continuity, we may take a neighborhood N
of 0 small enough so that [ q(yr — rh)v?](yL, yu|2)dA(yr,yr) = 0 admits a unique solution myp, ,(z) for all

n € N. A similar argument can be made for mg,,,.

By the implicit function theorem, there is a neighborhood of (z,0) on which V,m;,, and a%mj,n(z) ln=n0
exist and are continuous in their arguments on that neighborhood for j = L, U. By the compactness of Z,
N can be chosen small enough so that V_m,, ; and (%mm (2)|n=n, are continuous and bounded on Z x N

and

0 _ . .
%mj’”(z) . 2r; 0 (2) /Q(yj — Mo (2))Ono (YL Yo |2)vne (Y, yul2)dA (yr, yo), =L, U (C.10)

This completes the proof of the lemma. m

Lemma C.2. Let n — hy be a curve in Li defined in -. Suppose Assumption (i) holds.
Suppose further that P € P. Then, there exists a neighborhood N of 0 such that the conditional support
of Y1,Yy) given Z is in D° x D°, w(z)fy(z) =0 on 0Z, P, — a.s., V. fy/fy(2) is continuous a.e., and
S, (2)[1¢5(2)dv(z) < oo for alln € N.



Proof of Lemma[C2 By (C.2), {(y,yv) : v§(yr, yul2) = 0} € {(yr, yv) : vj(yr, yul2) = 0} for all z € 2
and 7 € R. This implies {(yz,yv) : v3(yr,yvlz) > 0} € {(yr,yv) : v§(yL,yulz) > 0} € D° x D° for
all z € Z and n € R, where the last inclusion holds by Assumption This establishes the first claim.
Similarly, the second claim follows immediately from Eq. and Assumption (ii).

For the third claim, using Eq. (C.2|), we write
vzfn(z) _ V. f(2) QHVZ(Z;_(Z)
fo(2) f(z) 14 2m9(2)
By Assumption (ii), (C.11)), and ¢ being bounded and continuously differentiable in z, (n,z)
V. fy(2)/fy(2) is continuous. This and Assumption in turn imply that the map (n,2) — [|i,(2)|?

is continuous. Hence, by Assumption (i), it achieves a finite maximum on N x Z for some N small
enough. Therefore, [ ||I,(2)[|¢;(2)dv(z) < oo for allp e N. m

(C.11)

Lemma C.3. Let n +— hy be a curve in LZ defined in (C.2)-(C.3). Suppose further that P € P. Then,
there exists a neighborhood N of 0 such that |rp ,(2)| > € and |ryy,(2)| > €, for all z € Z and n € N.

Proof of Lemma By (C.2)) and (C.5)), 71, can be written as

d -
TLy(2) = _den lq(yr — )| Z = 2] |ﬁz:mL,n(z)
d - N\
=—7= (E la(yr —m)|Z = =] + 277/(1(yL - m)v(fv)v%(yL,yUlZ)dA(yL,yU)> |z (2)
d -
=rr(z) — Qndm /q(yL — m)o(x)v(yr, yu|2)dA(yL, yU)}m:mLm(z). (C.12)

Since v is bounded and continuously differentiable, the second term on the right hand side of (C.12) is
well-defined and is bounded because Assumption [3.2 (iii) holds for P € P. By Assumption [3.2] (i) and Eq.
(C.12)), we may take a neighborhood N of 0 small enough so that |rr ,(z)| > €éforallp e N and z € Z. A

similar argument can be made for g, (2). Thus, the claim of the lemma follows. m

Lemma C.4. Letn — hy be a curve in Lz defined in (C.2)-(C.3). Suppose further that P € P. Then, there
exists a neighborhood N of 0 such that (i) for any ¢ : X — R that is bounded and continuously differentiable
in z with bounded derivatives, f(p(x)v%(yL,yU]z)d)\(yL,yU) is continuously differentiable in z on Z with

bounded derivatives; (ii) fq(yL—m)ap(x)v%(yL,yU]z)d)\(yL,yU) andfq(yU—er)go(:U)U%(yL,yU|z)d)\(yL,yU)
are continuously differentiable in (z,m) on Z x D with bounded derivatives for allm € N.

Proof of Lemma[C4l Let ¢ : X — R be bounded and continuously differentiable in z with bounded
derivatives. By (C.2), we may write

[ e@d e mirowm) = [ e@d . mlirm. ) + 20 [ oo, wlHiN )
(C.13)
Note that v is bounded and continuously differentiable in z with bounded derivatives. Thus, by Assump-
tion (i), [ @(x)vi(yr, yo)dA(yL, yo) is bounded and continuously differentiable in z with bounded



derivatives. Similarly, we may write

[ aton = @)yl )
= /Q(yL — ) (2)v (L, yul2)dN (YL, yu) +277/Q(3/L — m)(2)0(x)vg (YL, yul2)dA (YL, yo).  (C.14)

By Assumption (i), [ q(yr —m)p(z)v3(yL, yu)dA(yL, yu) is bounded and continuously differentiable in
z with bounded derivatives. Further, since v is bounded and continuously differentiable in z with bounded
derivatives, again by Assumption (iii), the same is true for the second term on the right hand side of
(C.14). The argument for [ ¢(yuy — ﬁQ)cp(x)v%(yL,yU)d)\(yL,yU) is similar. Thus, the claim of the lemma

follows. m

Lemma C.5. Let n — hy be a curve in Li defined in (C.2)-(C.3). Suppose that P € P. Then, there exists
a neighborhood N of 0 such that mp, and my, are continuously differentiable a.e. on Z with bounded

derivatives. Further, the maps (z,n) — V.mr y(2) and (z,n) — V.my,(2) are continuous on Z x N.

Proof of Lemma [C.5l We show the claims of the lemma for mz,. By P € P, Assumption (iii)
holds, which implies that the maps (z,m) — [q(yr, — m)v¢(yr,yu|2)d\(yL, yo) and (z,7m) — [q(yr —
m)v(z)v3(yL, yu|2)d\(yL, yu) are continuously differentiable on Z x D. By (with p(x) = 1), it then
follows that (z,7m,1) — [} ¢(yr —m)v%(yL, yu|2)dA\(yr, yu) is continuously differentiable on Z x D x N for
some N that contains 0 in its interior. Following the argument based on the implicit function theorem in
the proof of Theorem 3.1 in |[Newey and Stoker| (1993)), it then follows that V.mr,, exists and is continuous
on Z x N. By the compactness of Z, N can be chosen small enough so that V.mp,, is bounded on Z x N.

The argument for my, is similar. Hence it is omitted. m

Theorem C.1. Let Assumptions and [3.1) hold and P € P. Then, the tangent space of S = {s €
Li : s = \/dP/du, P € P} at s = \/dP/dpu is given by S = {h € Li o [ h(z)s(z)dp(z) = 0.}

Proof of Theorem [CIl Let T = {h € Li . [ h(z)s(z)du(z) = 0}. S C T holds by Proposition 3.2.3 in
Bickel, Klassen, Ritov, and Wellner| (1993).

For the converse: T C S, it suffices to show that a dense subset of T is contained in S. For this, let
U={he L f ho(z)s(z)dp(z) = 0} denote the tangent space of the curve defined in (C.2)-(C.3). By
Lemmas there is a neighborhood N of 0 for which Assumptions and hold for all n € N.
Therefore, n — h%, n € N is a regular parametric submodel of P whose Fréchet derivative at n = 0 is given
by hg. Hence, U C S. Further, by Lemma C.7 in Newey (1991)) and the argument used in the proof of
Theorem 3.1 in Newey and Stoker| (1993)), Uis dense in T. Thus, TCS. m

Lemma C.6. Letn +— hy be a curve in LZ defined in (C.2))-(C.3|). Suppose Assumption holds. Suppose
further that P € P. Then, there is a compact set D' and a neighborhood N of 0 such that D’ contains the
support of Y, —mp p,(Z) and Yy — my . (Z) in its interior for all ng € N.

Proof of Lemma [C.6l By Lemma there exists a neighborhood N’ of 0 such that the supports of Y7,
and Yy are contained in the interior of D under P, for all  in N’. Similarly, by Lemma there is a
neighborhood N” of 0 such that mr,,(Z), my,(Z) are well defined for all n € N” and their supports are

contained in the interior of D respectively. Without loss of generality, let D = [a, b] for some —o0 < a <

8



b < oo and let N = N’ N”. Then, the support of Y7, — mp,,(Z) is contained in D’ = [a — b,b — a] for all
n € N. A similar argument ensures that the support of Yy — my,(Z) is contained in D’. This completes

the proof. m

Lemma C.7. Let n — hy, be a curve in Li defined in (C.2)-(C.3). Suppose Assumption holds.
Suppose further that P € P. Then there is a neighborhood N of 0 such that (i) the functions (z,n9) —
a%mLm(z)‘n:m and (z,m9) + a%mym(z)‘n:m are bounded on Z x N; (ii) For each z € Z, the maps

Mo — a%mLm(z)‘n:m and no — a%mUm(z)‘n:m are continuous on N.

Proof of Lemma [C.7l By Lemmas[C.1] [C.3] and [C.6], Assumption [2.1] and © being bounded, it follows that

(2) } <2 ! sup |g(u)| x sup v(x) < o0, j = L,U. (C.15)
70
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}877 Jﬂ? n= ueD’ TEX

Hence, the first claim follows. Now let 1, € N be a sequence such that 7, — n9. Then, by the triangle and
Cauchy-Schwarz inequalities,

0

—my, z’ — ——my, z‘ ‘§2r_1 2) —r7t (2)] sup |q(u)| x |0 2 ||V 2 C.16
@) = gpmea)| | <2, () = () sup laG)] % Nengllig o g (C.16)

+2¢! sup la(w)|(lvg, = vaollz2 19m, [l L2 + I9m, = Dnoll 2 lvmoll2) (C.17)
ueD’
2¢ ! / lq(yr — ma, (2)) — q(yr — My (2))[0ne (YL, YUl 2)vne (YL, yu2)dA(yr, yu). (C.18)

Note that \r;?n( z)—rp 170 (z)] = 0, a.e. by (C.12). By the continuous Fréchet dlfferentlablhty of n+— vy,
it follows that [|vy, — vp,[lz2 = o(1) and [|oy, — pllz2 = o(1). Further, the term in ) tends to 0 as
Nn — 1Mo by the dominated convergence theorem, almost everywhere continuity of ¢ ensured by Assumption

(ii), and my,, — my,,a.e. by Lemma Therefore, ‘a%mL,n(Z)’n:nn — a%mL,n(Z)’n:no’ = o(1). The
continuity of a%mU,n(Z”n:no can be shown in the same way. This completes the proof. m

Lemma C.8. Letn — hy, be a curve in L2 defined in - Suppose Assumption|3.1| holds. Suppose
further that P € P. Then, there is a neighborhood N of 0 such that

0

o [P > 0w () = s (DG ()| =0, (C.19)

n="0

for all ng € N.

Proof of Lemma [C.8 By (C.11} - there is a neighborhood N of 0 such that for all g € IV,

W) TG mite)
on  ln=no (1 +2n06(2))? .

op’ l,,(z

(C.20)

Hence, by compactness of S x Z, the map (p, z,10) ln=no is uniformly bounded on St x Zx N

by some constant M > 0. Let 7, be a sequence such that n, —> 1o € N. By the mean value theorem, there



is 7, (z) such that

tim [ 9/, (2) (1Dl (2) > 0F = 1{p g (2) > 03) (M (2) — mm ()62 (2)d(2)

=l [P Ga0E > - m) P 1) > 0
(1 (2) = 11 (2)) 62 ()2
< Jim [ 19t (0t () < Mo =l Hrowi () — iz (I, (vlz), (C21)

where the last inequality follows from %’ﬁ]n:ﬁn(z) being bounded by M. Therefore, from (C.21]), we

conclude that

fim | [P0 00,(2) > 0) = 10l (2) > 01 (2) — 11 )62 (2)(2)

n—oo

< 2sup ly] x M x lim / L{Ip'ly (2)] < Mino — mul}2 (2)dw(z) = 0, (C.22)
y€e

where the last equality follows from the monotone convergence theorem and P being in P ensuring As-

sumption (ii). m

Lemma C.9. Let n — hy, be a curve in Li defined in (C.2)-(C.3)). Suppose Assumptions cmd
hold. Suppose further that P € P. Then, there is a neighborhood N of 0 such that for all ng € N,

du(p, Oo(Fy))
on

=2 / {w(2)p' Vg (2) = (0, ©0(Pyy)) + 9l (2) Gpno (YL YU, 2) Yo (2) gy dpa().

(C.23)

Proof of Lemma [C.9 We first show I'(V.mp ,(2), Vomuy,,(2),p'l,(2)) is the gradient of my,(z), p — a.e.
By Assumption (ii), it suffices to show the equality for z such that p'l,(z) # 0. Write

Mypy(2 + h) — mpy(2) = D(Vamy gy (2), Vamu g (2), 0/l (2))
= Hp'ly(z + 1) > 0}(muy(z + h) = mpy(z + h))
— (muy(2) = mry(2) = (Vamuy(2) = Vamey(2))'h
+ ({p'ly(z + 1) > 0} = Hply(2) > 0}) x [(muy(2) = mpy(2)) = (Ve (2) = Vampy(2)'A)
+ (mpy(z+h) —mp,(2) = Vomg,(2)'h). (C.24)

V.my,, and V.my , being the gradients of my, and my ,, respectively implies that

(mum(z +h) =mpy(z+h)) = (muy(z) —meg(2) = (Vamuy(2) = Vampg(2))'h = o(||h]),
mpn(z+h) —mp,(2) = Vomp,(2)'h =o(||h]]). (C.25)

By the continuity of z — 1,,(2), ensured by Assumption (C-11)), and ¢ being continuously differentiable,
there exists € > 0 such that 1{p'l,(z + h) > 0} = 1{p'l,(z) > 0} for all h such that ||h|| < e. These results

and ((C.24]) ensure that
My (2 + h) = mpy(2) = T(Vampy(2), Ve (2), p'ly(2))'h = o(||R]]). (C.26)
In what follows, we therefore simply write V,my,(2) = T'(V.mp,(2), V.myy,(2), p'l,(2)).

Next, we show that 7 — V,m,, ,(2) is continuous for almost all z € Z. By Lemma nw— V.mpy
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and n — V_my,, are continuous. Further, if 7, — 1o, then
p{z s lim 1{p'ly, () > 0} = 1{p'ly,(2) > 0}}) =1
n—o0

by the continuity of n — p'l,(2) ensured by (C.11) and pu({z : p'l;,(2) = 0}) = 0 by Assumption (ii).
Hence, n +— V.my,,(2) is continuous a.e.

By Theorem integration by parts, and , we may write
v(p, ©o(Py)) = / w(2)p'Vammy ()¢5, (2)dv (2) + 2(11 — 10) / w(2)p'V 2y ()b (2) o (2)di(2) (C.27)
= /p/lno(z)mpm(z)qﬁ?]o(z)dy(z) +2(n — o) /w(z)p’vzmpm(z)géno(z)¢n0(z)du(z). (C.28)

This and v(p, Oo(Py,)) = [ P/l (2)Mipmy (2)2, (2)dv(z) by Theorem [2.1] imply
aU(pu @O(Pn>)

877 n="no
= im0 ()2 = g (2)) 5, ()
+2771.g£710 w(z)p Vzmp,n(z)ﬁbno(z)ﬁbno( )dv(z)
=t [ (200 (2) = (1), (i 2) + 2 [Ty (2 (2 )2
=m0 1 — 1o 70 D1 D570 Mo PV Mpn, Mo Mo )

(C.29)

where the second equality follows from w, V.m,, and (23770 being bounded by Assumption and Lemma
which allows us to apply the dominated convergence theorem, and the almost everywhere continuity
of n+—= V.myp (). The first term on the right hand side of (C.29) may be further rewritten as

im0 () (2) = g )5 )2 (C.30)
= im0 (210 2) > 0) iy (2) = i ()62, ()2 (C.31)
o tim e [ L () < 0N (2) — i ()6, () (2) (C.32)

im0 > 0} = 1l (2) > O)mui (2) = oy ()6 (2.
(C.33)

For , by the mean value theorem, we have
i 1 (2) > 0) 01y (2) — i )3 () (o)
. / / 0
= lim [ G ) > 0 ()] ok (v

— [P @) > 0) ()] (vl (C3)

where the first equality holds for each p for some 7j(p,n) a convex combination of n and 7. The second
equality follows from Lemmas and Ilp|ll = 1, and Assumption (ii) justifying the use of the

11



dominated convergence theorem. Similarly, for (C.32)), we have

lim
n—no 1 — Mo

[ Pl (2) < 0 msz) = m0,) 6 (22

= /p/lno(z)l{p’lm(z) < O}aanmLm(z) 77:770(;5,270(z)dy(z) . (C.35)

Hence, by (C.29)-(C.34), integration by parts, and (C.33) being 0 by Lemma [C.8| we obtain

v (p, ©o(Fy))
n

= 2/p/lm(Z)Cpmo(yL,yU7Z)bno(yL7yU’Z>Uno(yLavaz)d)‘(yLayU>¢7270(Z)dV(Z) (C.36)
=m0

42 [ WDVt (21 (2 () ) (1)
Using fuy, = Uy by + Ungbno, [ 2,dA =1, and [y hyodp = 0, we may rewrite this as

ov(p, GO(PW))
on

=2 /{w(z)p/VZmPJIO (2) —v(p, @O(Pno)> +p,l770 (Z)gpmo (YL, yu, Z)}hno (x)hnodﬂ(x) .
=0

(C.38)

n

Therefore, the conclusion of the lemma follows. m

Lemma C.10. Let n — hy be a curve in Li defined in (C.2)-(C.3). Suppose Assumptions and

hold. Suppose further that P € P. Then, there is a neighborhood N of n = 0 such that the map

9v(p,©0(Pn))

(psm0) = o is uniformly bounded on S x N.

-

Proof of Lemma By Lemma and the triangle inequality,

81}(]), @O(Pﬁ)) ‘
on n=mno

= 2| [ {2Vt (2) = 09, O0(Poy) iy (2 )

42| [ (&) 0 o (2 ()] (C:39)

By Assumption and ||p|| = 1, uniformly on N,

[w(2)p'V ey (2) || Le < sup [w(z)] X [[Vzmpn(2)ll e
z

< sup |w(z)| x (sup |V.mpy(2)| + sup [V.my,(2)]) < oo. (C.40)
2€Z 2€Z 2€Z

where the last inequality follows from Lemma This ensures that (p,n) — v(p, ©o(F,)) is uniformly
bounded on S¢ x N. We therefore have

| [Tt 2) = 005 B0 Po) i () ()

< sup |w(2)D'V 2110 (2) = 0 (0, O0 (P )l Fno [l 2 g [l 22 < 00 (C.41)
(pym0,2)ESEXNXZ

Further, by Assumption (ii) and Lemmas and it follows that
Sup |Gpano ()] < 267 sup Jg(u)] < o0
reX

ueD’

for all (p,m9) € S* x N. Therefore, by the triangle and Cauchy-Schwarz inequalities and Lemma we

12



have

[ i 02 () )2

<26 sup g(u) [ [y (2) o () &))< 2671 s0p () 13 Bl (P12 < 0. (€2

ueD’ ueD

By (C.39)), (C.41), and (C.42), the conclusion of the lemma follows. m

Lemma C.11. Let n + hy be a curve in Li defined in (C.2)-(C.3). Suppose Assumptions

and hold. Suppose further that P € P. Then, there is a neighborhood N of 0 such that the map

9v(p,O0(Pn))

(p,m0) — o is continuous on S* x N,

-
Proof of Lemma Let (pn,nn) be a sequence such that (p,,n,) — (p,m0). For each (p,7,2) € S* x N x
Z, let vpn(2) = w(2)p'Vomy,(2) — v(p, ©o(Py)). We first show that (p,n) — vp,(2) and (p,n) — Gpn(z)
are continuous a.e. By Lemma n— V.mp,(z) and n — V.my,(z) are continuous for every z € Z.
Further, if (pn,nn) — (p,M0), then

p({z: nh_{glo H{ply, (z) > 0} = 1{p'l,,,(2) > 0}}) =1

by the continuity of (p,n) — p'l,(z) implied by ( and p({z : p'l,(2) = 0}) = 0 by Assump-
tion [3.1] (ii). Hence, (p,n) — w(2)p'V.myp,(2) is continuous a.e. Note that by (C.4), v(p,O¢(P;)) =
Jw(2)p'V sy (2)(1+2(n = 10)dno (2)) B3, (2)dv(2). Hence, as (pn,nn) — (p,70), it follows that

Jm 000 €0(P,) = T [ W), Tt (2)(1+ 20— )y ()65, (2) (2
= [ 0BT, )1+ 200~ 10) ()65 (2)(2) = vl ©0(Py)s (C-13)

where the second equality follows from w(2)p'V,m,,,(2) and ¢(z) being bounded on S x N x Z and an
application of the dominated convergence theorem, while the last equality follows from the continuity of

(p,m) = w(2)p'V.myy(2) for almost all z. Hence, (p,n) — 7p,(2) is continuous a.e.

The maps (p,n) — rjé( )q(y; — mjn(2)),j = L,U are continuous for almost all z by Assumption

(ii), (C.12)), and n — m;,(2) being continuous for almost all z for j = L,U by Lemma Since
(p,n) — 1{p'ly(z) > 0}} is continuous for almost all z as shown above, it then follows that (p,n) — (p,(x)

is continuous for almost all z.

Given these results, we show %‘n e — nggp”)\n no — 0 as np, — no. Toward this end, we
first note that
ns QoL , O0(F
677 N="n (977 n="o
=2 [ GV, (@ i) =2 [ 2y (o (@ () (C45)

Lo / Pl (2)Cpm e (&) iy, () () — 2 / Do (2)Cp o (2 g (2) i dpa(). (C.46)
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By Lemma the Cauchy-Schwarz and triangle inequalities,

[ e D @ i) = [ (D () i) (c47)
< s g g ol o, = gl aellg) (€43
(p,,2)ESEXN X Z
1 [ () = 2 (2D (e (2)(2) = o), (.49)

where the last equality follows from 7 + h, being continuously Fréchet differentiable, (p,n,2) — vp,(2)
being bounded on S* x N x Z as shown in Lemma the dominated convergence theorem, and (p,n) —

Ypn(2) being continuous a.e.

Further, we may write as
[ Pt )G Y, () i)~ [ ) () () ) (C.50)
= [ B G (@) (@ (2) oy () )  (C:50)
[ Pl )G ) = G (@) () @(a)  (C:52)
4 [ @l 2) = Pl G @y i (D)dilz).(C:53)

By Assumptions n 2.2 and 2.3 . (ii), (C.11), and ¢ being continuously differentiable, (n,2) — ||l;(2)]| is
continuous on N x Z. Hence, it achieves a finite maximum on N x Z. Further, by Lemmas [C.3] [C.6]
and Assumption (ii), supgea [Cpmo ()] < 26 L sup,epr |g(u)| < oo for all (p,mo) € S¢ x N. By Cauchy-
Schwarz inequality, and ||p,| < 1 for all n, it then follows that

[ Pt (21l (@) () = T () 2 )
< swp i) sup sp G (gl o, o1+ o, = o1 g 22) = o),

(m,z)ENxZ (p,n)ESEX N zEX
(C.54)

where the last equality follows from 7 +— h, being continuously Fréchet differentiable. Further, by the
almost everywhere continuity of (p,n) — p'ly(Cop — Cpno )

im [ Pl (2) Gonne () = Gono (2))Frng () hgo () dp()

= [ 5100, v (@) = G ) () ) di) = 0. (C:55)

where the first equality follows from the dominated convergence theorem. Finally, again by the dominated

convergence theorem,

im [ (Pl (2) = 2'lyo (2)) G () o (2) gy () dpa()

n—oo

= [ G 2) = ()G ()i (0 )di) = 0. (C.50)

n—o0

By (C.44)-(C.56), we conclude that u(p ”’GO(P" ln=ns %WM:WO — 0 as n, — np. This establishes

the claim of the lemma. m
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Theorem C.2. Suppose Assumptions and hold. Then, the mapping p : P — C(S%) point-
wise defined by p(hy)(p) = v(p,O0(Py)) for hy = \/dP,/dp is then pathwise weak differentiable at hg =
APy /du. Moreover, the derivative p: P — C(SY) satisfies:

pmmw>:2/&w@ﬁVw%u>—Mn@mam+4ﬂ@xumvm@ma@wwm. (C.57)

Proof of Theorem We first show that dp(P,)/ 817‘17:0 is the pathwise weak derivative of p. For this,
note that p(ho) € C(SY) for all hy € S as implied by Lemmas and Linearity of p is immediate,
while continuity follows by noting that by the Cauchy-Schwarz inequality and ||p|| = 1,

sup |p(ho) oo

h
H OHLazl

< 2{sup [lw(2)p'Vamy(2) = v(p, Oo(P))l|zge + sup [1(2)|| x sup |q(w)[}HIhollz2 [[holl Lz < o0, (C.58)
pEeS* 2€Z ueD’

where we exploited (C.40f), Assumption (ii), and the fact that z — ||i(2)| being continuous hence
achieves a finite maximum on Z by Assumptions (i), and P € P. Let n — h, be a curve in LIQL
defined in (C.2)-(C.3). For each p € S, by the mean value theorem,

: ’U(p,PO) _U(paPO) T 5U(p,P)(p)
7710H—][>10 St : "o 4B(p) = nlc}glo /sé 37777 ‘n=ﬁ(p,no)dB(p) (6.59)
A s
= [ R ) = [ toase) (C.60)

where the first equality holds at each p for some 7j(p,n9) a convex combination of 7y and 0. The second
equality in turn follows by Lemma justifying the use of the dominated convergence theorem, while
the final equality follows by Lemma and the definition of p: P — C (S%). Egs. — hold for
any ho in the tangent space U of the curve defined in —. As discussed in the proof of Theorem

U is dense in S. Since p is continuous, Egs. (C.59)-(C.60|) then hold for any ho € P. This completes
the proof. m

Proof of Theorem Bl Let B = C(S*) and let B* be the set of finite Borel measures on S, which is the
norm dual of B by Corollary 14.15 in |Aliprantis and Border| (2006). By T heorem p has pathwise weak
derivative p. For each B € B*, define

P (B)(z) = /SZ 2{w(2)p'Vomyp(2) — v(p, ©0(P)) + p'l(2)¢p() ho(2)dB(p).- (C.61)

We show that (i) p7 is well defined for any B € B*, (ii) p7(B) € S and finally (iii) g7 is the adjoint

operator of p.

We first note that (p,z) — p'l(z) is continuous in z for each p by Assumption and measurable
in p for each z. Thus, (p,z) — p'l(z) is jointly measurable by Lemma 4.51 in Aliprantis and Bor-
der| (2006). This implies the joint measurability of (p,z) — 1{p'l(z) > 0}. A similar argument also
ensures the joint measurability of p'V.mp(z) and p'V,my(z). By the joint measurability of (p,z) —
(w(z), {p'l(z) > 0},p'V.mp(2),p’'V.my(z)) and Assumption (p,x) — w(z)p'V.mp(z) is jointly
measurable. By the proof of Theorem v(p, ©p(p)) is differentiable in p and is therefore continu-
ous, implying (p,x) — v(p,Op(p)) is jointly measurable. Further, r; and ry are measurable by P € P
satisfying Assumption (iii). q(yr — mr(2)),q(yuy — my(z)) are measurable by Assumption and
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P € P satisfying Assumption (iv). Hence, (p,z) + (p(x) is jointly measurable. Therefore, the map
(p,x) — (w(z)p'V.mp(2),v(p, Oo(p), p'l(2), (p(x), ho(x))’ is jointly measurable by Lemma 4.49 in Aliprantis
and Border| (2006). Hence, the map

(p,x) = 2{w(2)p'Vamy(2) — v(p, O0(R)) + p'l(2)Gp(2)} (C.62)
is jointly measurable by the measurability of the composite map.

Moreover, for | B| the total variation of the measure B, by (C.40)), we have

J ([ 2000 T (z) = oo, B0 P Yol 4B @) (o)

< 16 x sup Hw(z)p'Vzmp,n(z)H%zo X |BI*> < co. (C.63)
peSt

Further,

J ([ 216 @) aB@)dn(w) <16 [ 1) Phot@)du(e) x €2 x sup la(wf? x |B < .
ueD’
(C.64)
by Assumptionand P € P satisfying Assumptionsand Therefore, p” (B) € Lz for each B € B*.

By Fubini’s theorem and Assumption (iv), we have

/ / 2{w(=)p' Vamy(2) = v(p, Oo(Po)) + p1(2)G() o (@) dB(p) ho(a)dpu(x)
B /S [ 2wV, (2) = o(p, B(P) + 1)) i @) () dB(p) = 0. (C.65)

where we exploited v(p, ©g(Py)) = Ew(Z2)p'V.my(Z)] and E[((z)|Z = 2] = 1{p'l(z) < 0}E[q(Yr —
mp(2))|Z = 2]+ 1{p'l(z) > 0}E[q(Yy — mu(Z))|Z = 2] = 0, P — a.s. Thus, by Theorem [C.1] and (C-61)),
o7 (B) € S for all B € B*. Further, for any hy € S, again by interchanging the order of integration

/ pho) (p)dB(p) = / ho() T (B) () du(x), (C.66)
st X

which ensures that p7 : B* — P is the adjoint of p: P — B.

Since S is linear by Theorem m Theorem and Theorem 5.2.1 in Bickel, Klassen, Ritov, and
Wellner| (1993)) establishes that

Cov( [ ©@aBo). [ SEIBA) = § [ 7B (B )dnta)

St
= /S s El{w(2)p'V.my(2) — v(p, ©0(Po)) + p'l(2)¢p(x)}
x {w(2)q'Vamy(2) = (g, ©0(Fo)) + ¢'1(2)¢y(2)}|dB1(p)dBa(q),

for any Bi, By € B* by Fubini’s theorem. Letting B; and By be the degenerate measures at p and ¢ in
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(C.67)), we obtain

Cov(G(p),G(q))
= E[{w(2)p'V.my(z) — v(p, O0(Fy)) + p'l(2)p(x) Hw(2)q'Vomg(2) — v(g, (o)) + ¢'1(2){q(x)}].
(C.67)

Therefore, the efficient influence function 1, is as given in . This establishes the claim of the theorem.
|

APPENDIX D: Proof of Theorem 4.1.

In this appendix, we establish Theorem Throughout, let Y, ; = 1{p'l(Z;) < 0}Y, + 1{p'l(Z;) >
0}Yyr4, and let O, (p) = L S /1 1,(Zi)Ypi. The proof of Theoremproceeds by decomposing /n(0n(p)—

n

v(p, Bo(F))) as follows:

Vn(tn(p) — v(p, ©0(P)))
= V1 (0n(p) — On(p)) + V1(On(p) — E[on(p)]) + vVR(E[Dn(p)] — v(p, O0(P)))
= Gin(p) + Gon(p) + Gan(p). (D.1)

G'1n, 18 the difference between 0,, and the infeasible trimmed estimator U,,, which requires the knowledge
of Y, ;. Ga, represents the infeasible estimator centered at its expected value, and G, is the asymptotic

bias of ¥,,. The auxiliary lemmas are then used to show the following results:

Step 1: Lemma shows G1,, = 0p(1) uniformly in p € S, while Lemma shows ('3, = o(1) uniformly
inp e S

Step 2: Using the result of Lemma D.1|7 Lemmas ’D_S‘ and ]ﬂ‘ then establish that G, = ﬁ Yo p(Xs) +
0,(1) uniformly in p € S, and Lemmam establishes that {1, : p € S’} is a P-Donsker class.

Step 3: Combining Steps 1-2 and (D.1)) gives the main claim of Theorem

Before proceeding further, we introduce one more piece of notation. For each p € S, define

P O AN z—2 , _w(z)

W ain) = 5 () PVE () 6P@ g @), o) = S (D-2)
roy 171 ¢ z—2 / _ A P'V.f(2) o

W in) = 5(5) K ) 6@+ @), @) = w@) 5 i (D3)

For each k € {1,2}, we then define ) (xisp) = E[pgf) (X5, Xj5p) | Xi = ).

Lemma D.1. Suppose Assumptions and hold. For each k € {1,2} and n € N, let
HF) = {ﬁ%k)/bn XXX - R: ﬁ,(@k)(x,x';p),p € B’} and g® = {(j,(f)/bn XXX = R gz, 2'sp) =
ﬁglk)(x,:c';p) — fﬁlk)(x,p) — fglk)(:n’;p) — E[fffc)(w;p)],p € ]B%z}, where f;k)(xi;p) = Epn(Xi, Xj;p)| X = 2]
and B = {p € R : ||p|| < 1} is the unit ball in R®. Then, HE and G are Euclidean in the sense of |Pakes
and Pollard (1989) and |Sherman| (19944d) with envelope functions H® : X x X — R and G®) : X x X - R

such that E[H® (X;, X;)?] < 0o and E[G®(X;, X;)?] < oo for k = 1,2.
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Proof of Lemma [D.Il For any (fixed) function g : X x X — R¥ let F,,, = {¢/by : X x X — R : ¢(x,2,p) =
pg(z,2")” ((Z)), p € BY}. By the Cauchy-Schwarz inequality and Assumption for any p, ¢ € B, we then
have |¢(z,2',p) — d(x,2’,p')|/bn, < |lg(x,2")|||lp — ¢||- Hence, by Lemma 2.13 in [Pakes and Pollard| (1989),
Fyn is Euclidean with the envelope function Fy(z,z') = g(z,2')'po + M||g(x,z")|| for some py € B, where

M =27 sup,epe ||[p — pol/, which can be further bounded from above by 4v/€. Hence, we may take the
envelope function as F,(z,z') = (1 + 4V0)||g(z,2")||.

By Lemma 2.4 in Pakes and Pollard (1989)), the class of sets {x € X : p'l(z) > 0} is a VC-class,
which in turn implies that the function classes Fy, = {¢ : X x X — R : ¢(z,2',p) = 1{p'l(z) > 0}}
and Fy, = {¢ : X x X = R : ¢(z,2',p) = 1{p'l(2') > 0}} are Euclidean, where z = (yr,yv, 2) and
x' = (Y}, vy, 2') with envelope function Fy, (z,2") =1,j = 1,2.

Note that we may write

N z—2"\ Tw(z
) = 9K (255 [HE (- i) > 0} + )2
w(z)
f(#)
Hence, 7—[( ) can be written as the combination of classes of functions: 7—[7(11) =Fgn Fo +Fgon+ Fgsm-

Fs, + Fgum, where

((whr = ¥ HPIE) > 0} + ) 7a(2)]. (D4)

z—2
h

z— 2

gi(@,0) = VoK (2 )@ e — i), go(@,0) = VoK (5 Juu

z—2

o)t =)y ga(@a') = VoK (25 (2 )y

g3(z,2') = VZK<

By Lemma 2.14 in Pakes and Pollard| (1989) and Fy, and Fg, having constant envelope functions, Hq(zl) is

Euclidean with the envelope function Fg1 + Fy, + Fy, + F,,. Hence, Y is Euclidean with the envelope

function HW (z, ') = 8(1+4v/7) sup,, \gp ()| suppso | VK (555 2|, where 91(7 ) is bounded by Assumptions

and By Assumption@ Elsupp~o ||V K(Z 2 1)||?] < oo, which in turn implies E[HM (X;, X;)?] <
(1)

oo. This shows the claim of the lemma for H,, ’. Showing Hn ), gék)k: = 1,2 are Euclidean is similar. Hence,

the rest of the proof is omitted. m

Lemma D.2. Suppose Assumptions @ and@ hold. Suppose further that h — 0 and nh'*? —
00. Then, uniformly in p € S', 0,(p) — On(p) = 0p(n=1/2).

Proof of Lemma [D.2l By ||p|| = 1, the Cauchy-Schwarz inequality, and Assumption
Elsup |uin(p)*] < 2sup [yl E[|lli1(Z:) > sup [1{pl; ;,(Z:) > 0} = 1{p'l(Z;) > O]
peSt yeD peSt

< 25up y [l (2] Plssn (], (2)) # sen(f1(2)). 3p € 8), (D.5)
Y

where E[|l; 1,(Z:)||*] < oo under our choice of h and the trimming sequence. Hence, for the desired result,
it suffices to show that P(sgn(p’ii i(Z:)) # sgn(p'l(Z;)),3p € S*) = o(n™'). By Assumption it follows
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that

P(sgn(pl; (%) # sen(p'l(Z:)), Fp € )
< P(p'l; (%) > 0 and p'l(Z;) < 0,3p € §°) + P(p'l; ;,(Z) < 0 and p'l(Z;) > 0,3p € §°). (D.6)
Without loss of generality, suppose that p’ lAl i(Z;) > 0 and P'1(Z;) < 0 for some p € S¢. Then, there must
exist € > 0 such that sup,cge |p’ii;L(Zi) - E[p’ZiB(Zi)] + E[p’fiE(Zi))] + p'l(Z;)| > e. This is also true if
o'l .i,(Zi)) <0 and p'l(Z;) > 0. Therefore, by the triangle inequality and the law of iterated expectations,

we may write

P(sgn(p'l;,(Z:)) # sen(v'l(Z:)), 3p € S°)
<2{E|P( sup 'L 5(Zi) = BT, j(Z0)|Z3])| > €/2|Z:) + P( sup B2 2] - 0120 > /212 |},
(D.7)

where the second term in (D.7)) vanishes for all n sufficiently large because the bias satisfies HE[ZZ i(Zi)| Zi) —
1(Z;)|| — 0 with probability 1 as h — 0. Hence, we focus on controlling the first term in (D.7]) below.

Let M = sup,cz ||[V.K(2)| and define

n

W(p) = m_ll)ﬁ(mj%#p’{vzf((z _BZJ') - E[sz(Z _BZJ')]} (D.8)
o = oy o #ER () e (SEP) o

Note that, arguing as in (D20)-(0.23), #/l; () = —p'Vaw(z) — w2 fi7(2)/fi5(2) = —/Vaulz) -
w(Z)P/fi;L(Z) x O(by,). Hence,

p,l;ﬁ(z) - E[pliijl(zi”zi = z] < CWn(p)bna (D'lO)

for some C' > 0. Below, let a, = C/b,. Define W = {f : X — R : f(z;) = p’{VZK(Z%%j) -
E[VZK(%%)}/B(€+1)},p € S*}. Then by S being finite dimensional and Lemma 2.6.15 in [van der Vaart
and Wellner| (1996)), W is a VC-subgraph class, which in turn implies that supgy N (e, W, L2(Q)) < (%)V
for all 0 < € < K for some positive constants V and K by Lemma 2.6.7 in [van der Vaart and Wellner
(1996). Then, by W, being independent of Z; and Theorem 2.14.16 in [van der Vaart and Wellner| (1996)),

we have

P(sup p'l; (Zi) — Bl ;(Z:)| Zi])| > ¢/21Zi = 2) < P(|[Walw > ean)

peSt
<o(3)" (v ) oo (<) @

where C' is a constant that depends on V' and K. Note that under the imposed conditions on iL, we have
(ean)? B 1
a2 + (3 + Ean)/\/ﬁ B Sl,n + SQ,n,

where S, = 52/ (ean)? and Sa, = (3 + €an)/(ean)?y/n. By (D.9), 62 = O(1/nh’+2), which together with
Assumption implies that S;, = o(1). Similarly, S2, = o(1) by a,y/n — co by Assumption This

(D.12)
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ensures that, by (D.11), P(sup,es |p’ZiB(Zi) - E[p’fiﬁ(Zi)|Zi])\ > ¢/2|Z; = z) decays exponentially as
n — oo. Hence, combining this with (D.5)-(D.7), we have E[sup,cse [uin(p)|?] = o(n™!) as desired. This

establishes the claim of the Lemma. m

Lemma D.3. For each k € {1,2}, let U,gk)( ) = () S Z] H_110,(1)()(2,)9,]9) and U,S)( ) =

%Z?:l 7“& (Xi;p). Suppose Assumptions hold. Suppose further that nh'™2t° — oo for
some 6 >0 as h — 0. Then, v/n( T(Zk)( ) — Uﬁk)( )) = op( ) uniformly in p € S¢ for k=1,2.

Proof of Lemma [D.3] Following the same argument as in the proof of Lemma 3.1 in [Powell, Stock, and

Stoker| (1989)), we may write

—1n—1 n
U () - UM (p) = <Z> o> aP(Xi Xip), (D.13)

i=1 j=i+1

where qgk) (i, xj;p) = pgk) (@i, zj3p) — 7“7(116) (x4, p) — 7‘7(1]6) (xzj;p) — E[r,(lk)( Xi;p)]. Recall that ¢ ~(k) = h(“l)qgk).

Below we analyze the case k = 1. By the definition of pg) and Assumption we may then obtain
the following bound:

Elsup |§)(X;, X;3p)/bnl?] < 16E[sup | (Xi, X5 p) /bal]
pESt pEeESt

S sw wEUDPE[IVK(Z - Z)/MIE] 38 [ IVK @) (0 + hudzidu = O(R),
(z2,y)EZXD

(D.14)

where the second inequality follows from Assumption llp|]| = 1 for all p, and the Cauchy-Schwarz
inequality and 7,,(2)/f(2) < by, while the third inequality uses the change of variables from (z;,z;) to
(zi,u = (2; — 2;)/h) with Jacobian h~¢. By Lemma g\" is Euclidean. By Theorem 3 in [Sherman
(1994b) applied with 6, = 1, 42 = hf, and k = 2, it then follows that for some 0 < a < 1, which can be

made arbitrarily close to 1, we have

—1n—-1 n —1n—-1 n
n _ n
(5) X 3 axim=n I (5) XX e X/,
i=1 j=it1

=1 j=i+1
= O(h="Vp,)0,(h*"? Jn) = O,(K" 5~V 1p, /n) (D.15)

uniformly over B, Since o can be made arbitrarily close to 1, there is § > 0 such that A4z =D=1 =
O(hfgflf‘s) = o(\/ﬁ)O(nfg), where the last equality follows from the assumption that nh*t2+t9 — co. This

together with (D.15) and O(b,n~%/2) = o(1) by Assumptlonlmphes (5 ) i Zj i1 q7(l )(XZ,X], p) =
o(n~1/2) uniformly over B. By S’ C B? and (D-13)), this establishes the claim of the lemma for k = 1.

For k = 2, note that

Elsup |§(X;, X;:p)/bnl?] < 16E[sup |2 (Xi, X5 p) /bnl]
pESt pEeESt

30 s |wEp VL Y)E|IK(Z - 25)/m)
(z,y)€ZXD

< nt / |K ()2 f () f (2 + hu)dzdu = O(RY), (D.16)
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where the second inequality follows from Assumption and 7,/f%(z) = 72/f*(z) < b? by Assumption
while the third inequality uses the change of Variables from (z;, zj) to (2, u = (2;—z;)/h) with Jacobian
h~f. Mimic the argument for k = 1 to obtain ()~ Z Z] i1 ¢ )(Xi,Xj;p) = o(n~1/?). By S* ¢ B!
and (D.13)), this establishes the claim of the lemma for k = 2. m

Lemma D.4. Suppose Assumptions and -@ hold. Suppose further that nh*+t2t0 — oo for
some § > 0, and nh* — 0 as h — 0. Then, uniformly inp € S¢, \/n(0,(p)—E[0,(p)]) = ﬁ Yo (X)) +
op(1).

Proof of Lemma [D.4] We start with the observation that

n

o I, 1 pVﬁM Do
'Un(p) = _5 ;p vzw E ; m%,ﬂ'ﬂ,z. (D.17)

By a second-order Taylor expansion of 1%1(;3(2) around 2 f f)( 2) | the second term in (D.17)) can be written

as

_ = Z ZMY})JTM

i=1 f7f ( )
B PAALICD) K P(VafinlZ) - Vo F(Z)
= - Z TY;J,’LTHJ, n Zz; w(Zz) f(Zz) }/p,ﬂ—n,z
1 ¢ PN (Z) (fin(Zi) — [(Z:))
+ - 2 w(Z;) F(Z)? Y, it + Ry
R R PN A0 1 07) IV I N A % ¢
= _n £ w(Z’L)W}/p,ZTn,Z E ; w(ZZ)WY}J,ZTn,Z
'V f(Zi) fin(Zi
T 2: )" ﬂ%ﬁ i+ B
= Hl,n + H2,n + HS,n + Rna (D18)
where
ol P2, R SN A 1)
Hl,n = _; ;M(ZZ)f(Zi)YpJTn’“ H2,n = E ; w(ZZ)WY}LZTn,Z
H,, = lzw(zl)pv (2D fin(Zi )Yp,ﬂn,i, (D.19)

n f(Zi)?

and R, is a remainder term that contains quadratic terms in the expansion. By (D.17)), (D.18), and the

law of iterated expectations, one may therefore write

Vn(n(p) = E[On(p)]) = Z P’V w(Zi)Ypi = Ep'Vw(Zi)myi(Zi)))

§%

+ Z Vn(Hj, — E[Hj,]) + vVn(R, — E[R,]). (D.20)
j=1

The remainder term involves the second derivatives of %Z()() evaluated at %7 where ﬁh lies
i i,h
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between fi,h and f; 5. For example, one component of /nR,, can be bounded by

n

Z " (V. fin(Zi) = Vo (Z) (fan(Zi) — F(Z)]

-1 2fz h( )
< Visp (1= L) ™ 19, i) — Tl s in(a) - 1)
~ 2€Z f( ) f(z) 2€Z o - 2€Z "
_ \/ﬁ()(bn)op((%)”2 + fr’)()p((fTZL)”2 +h7) = 0,(1), (D.21)

uniformly in p € S¥, where the first equality follows from the geometric expansion (as in Lemma 6A in
Sherman| (1994b))):

Tni (1_(1_fi,h(z)))1: i (1+(1_fh(2))+“'> _ T (f(z)+fl(f(Z)—ﬁ,h(Z))+”‘)v

f(z) f(z) f(z) f(z) f(z) (2)
(D.22)
which can be bounded by the following;:
Fn+ L 10) — fue) 4 = O) + OG0, () +7) 2= 0), (D29

where we used Assumption Tn(z) € {0,1}, and the uniform convergence rate of ﬁh, which follows
from Theorem 6 in Hansen| (2008). Applying Theorem 6 in |[Hansen| (2008) again, the penultimate equality

in (D.21)) follows. The last equality in (D.21) follows from the assumption nh‘™2t9 — oo, nh?/ — 0,
J > (£ +2)/2, and Assumption Other components of R, can be shown to be o0,(1) similarly. Hence,
it follows that

Vi(Ry — E[Rn)) = 0p(1). (D.24)

Below, we investigate H; ,,j = 1,2,3. We first note that

Vi, ~ E[H) = = izi;(wp,mxi) — By (X)) + 0p(1), (D.25)
where 11 (z) = —w(z) 2L f[(ff Ly, This follows from the following argument. Notice that
Hip=—— Z pr) Yp,iTni = Z%, )T (D.26)
and hence
E[(—- ) Z Upa(X0) — Ypa(X)m)) | = o(1), (D.27)

by Assumption and arguing as in the proof of Theorem A (page 10) in Lewbel (2000). Furthermore,
by the Cauchy-Schwarz inequality,

B (X)) = Elpa (X)Tall < [0pa(X) 1211 = Taillz, = 0p(n="/?). (D.28)
Eq. (D.25) then follows from (D.27))-(D.28).
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Next, noting that VK is an odd function,

1o plvzfih(zi)
Hyp=—— Y w(Zi) =25, i
2 n w(Z;) psiTn,

’ port f(Zz')
2PV 2~ 2,/

= Yp,iTn,i

N R e+1 Zi — Z;
:2(2) >y ( ) ps (BB g0 - 0

i=1 j=i+1

n —1n—-1 n

= <2> > o (X X5ip), (D.29)
i—1 j=—it1

: 1 B 0+1 1 1
where g (X;) = 0 V,ims and ol (X0, Xpip) = 3H(3) PR (E52) (0 (%) — V(X)) By
Lemma D.3

—1n—1 n n
ﬁ(@ > >0 V(X Xjip) — Bl (X, Xjp))) = —=(3 i (Xisp) — ElrD(Xisp)]) + 0p(1),

=1 j=i+1 =1

i

(D.30)
h W) = BElpM (X X)X =
where " (2;p) = Elpn’ (Xi, Xj;p)|Xi = z].
Arguing as in Eq. (3.15) in PSS and by the law of iterated expectations, we may then write

e =5 [ (7)o (Pl 00 g m s

f(2)
1 wmp
:/( )/ VK (u) (g (X:) — 2 b)) £(Zs+ )
/K w) g\ (X)p'V . f(Z; + hu)du
5 /K(U)P V. (wmy)(Z; + hu)du
7{_ ( )pi(g))y”’ﬂ"’i+p/v2w(zi)mp(zi)+w(Zi)p’Vzmp(Zi)}+t9)(Xi;p), (D.31)

where we used the change of variables, integration by parts and the assumption that K(u) = 0 on the

(1)

boundary of Si. The remainder term t,,’ is given by

(X5 p) /K Vg (X)p (Vo f(Zi + hu) — V. f(Z;))du
/K V. (wmp)(Z; + hu) — V (wmy)(Z;))du.  (D.32)
By Assumptions and uniformly in p € S¢,

9" @)V f (2 + hu) = V= £(2)]] 3 < sup [yl X bn X w(z) My (2)]|hul|. (D.33)

By Assumptions and mp(z) = 1{p'l(z) < 0}mr(z) + 1{p'l(z) < 0}my(z), we have uniformly in
pes’,

IV=(wmy)(z + hu) = Vo (wmy) (2)|| < 2Ma(2)||hul]. (D.34)
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Assumption and (D.33)-(D.34)) then imply

E[SSSI; |t (X;5)*] 3 [h*El{bn sup Yllw(Z2)Mi(Z)] + 2\M2(Z)\}2}(/ lull| K (u) | du)® = O(h?b;).

By Assumption and h — 0 at a polynomial rate (by nh?/ — 0.), this in turn implies ﬁ S tg) (X, )—
E[ & (X, -)] converges in probability to 0 uniformly in p € S¢. Using this result together with (D.29)-(D.31]),
and arguing as in ([D.26))-(D.28)) to control the effect of the asymptotic trimming, we obtain

Vi(Hyp — E[Hzp]) = \/15 > (Wp2(Xi) = Elthpa(Xi)]) + 0p(1), (D.35)
=1

where 9, 2(z) = —w(z)plzzg)(z) Yp.i + P’ Vow(z)my(z) + w(z)p' Vamy(2).

Now we turn to Hs, in (D.18]). Noting that K is an even function, we have

n

I P20 finZ),, PNAS LTI I
n; (Zz) f(ZZ)2 Yp,z n, . 1 h( ;] 12’]#1 f(Zz)2 Yp,z n,t
—1n—1 n )
—;(Z) >3 () B () 6 + o ()
=1 j=i+1
—1n—-1 n
()78 S e, 0
i=1 j=1+1

L
where gi” (Xi) = w(Z) PS80 i and pP (X, X50) = 3(3) K (Z52) (087 (X0) + o7 (X)) By

Lemma D.3, m D.30)) holds while replacing p( ) 7",(1 ) with p( ) 7(12). Arguing similarly to (D.31)), we may then

write

P =g [ () 5 (25 w0 + ML ) ey

/K (6 (X)) W(Zi+hu))f(Zi+hu)du

/K ) f(Zi + hu)du
= /K(u) wp vmep(Zi + hu)du

f
p'V.f(Z; 'V f(Z;)
[(Z;)

A DY, it + w(Z)
(2)

where the remainder term ¢, (X;;p) is given by

*{ (Zi) mp(Zi)} + 7 (Xi; p), (D.37)

t?(x / K (w)g$?(X)(f(Zi + hu) — f(Z;))du

/K pr fmp)(Zi + hu) — (Ujﬂv;fmp)(Zz))du (D.38)

By Assumptions and uniformly in p € S,

1952 @)I1f (= + hu) = f(2)] 3 < sup [yl x 0 x w(2) | V= f (2)l| M (2) ] (D-39)

By Assumptions and my(z) = H{p'l(z) < 0}mp(z) + 1{p'l(z) < 0}my(z), we have uniformly in
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p €St

lvz /vz
I o g - MV ) < o) (D.40)
Assumption [4.1] and (D.39)-(D.40) then imply
E[sup [t (X5 0)1%] 3 RPE{D], sup [y] X w(Z)|[V=f(2)|[Ms(2) + 2Ma(> /HUH\K )ldu)* = O(h?by).
peS ye

By Assumption 4.3|and h — 0 at a polynomial rate, this in turn implies f Yoy 2 (X,) — E[tg) (X, )]
converges in probablhty to 0 uniformly in p € S¢. This result, m with replacing p( ) 7(1 ) with
pn ,r,(f), and (D.37)) imply

Vii(Hsp — E[Hs ) = jﬁ S (G (Xs) — Eltpa(X0)]) + 0p(1), (D.A1)
=1

where 1, 3(z) = w(z)E ?(f)( )yp +w(z)E Z(g)(Z) my(2), and the effect of the asymptotic trimming is controlled
by arguing as in —m.

Note that by (D.17), (D.25)), (D.35)), and (D.41), and an integration by parts, ¢p(z) — Ep(X )] =
—p'Vow(2)yp — Elw(2)p'V.my(Z)] + E?:l(wp,j( ) = E[¢p,;(Z)]). By (D.20), (D.24), and E[s,(X)] =

the conclusion of the lemma then follows. m

Lemma D.5. Suppose Assumptions hold. Suppose that nh2 = 0. Then, uniformly in p € SZ,
E[l_}n(p)] - U(p, @0(P0)) = o(n_l/Q)'

Proof of Lemma[D.5l Note that by (D.20) and (D.24)), and the definition of Hj p,

3

Elon(p)] = El—p/Vw(Z)my(2)] - EW)WW(ZH + 3" E[H;] + R
j=2
3
=v(p, O0(Po)) + > E[Hjn] + o(n"/?). (D.42)
j=2

Hence, for the conclusion of the lemma, it suffices to show that Z?:z E[H;,] = o(n~'/2). Further, by
Assumption and the argument in (D.28)), the presence of the trimming function does not affect the

analysis, and hence we omit 7, ; below.

The rest of the proof is based on the proof of Theorem 3.2 in |Powell, Stock, and Stoker| (1989)). Hence,
we briefly sketch the argument. By (D.29)), the law of iterated expectations, and arguing as in (3.19) in
Powell, Stock, and Stoker| (1989), we obtain

PlHzal = // EH a (zhZ/>9§1)(x)f(2)f(2’)dzdz’
= / / PVK(w)g) () f(2) (2 + hu)dzdu = — / / K(u (2)P'V.f(z + hu)dzdu, (D.43)

O
p € S¢, we then obtain the expansion:

VRE[Ha] = bi(p)v/ih + ba(p)/ah? + - + by_1 (p)v/Ah' ) + O(V/ah?), (D.44)

where gﬁl)(z) = w) mp(z). By Assumptions and Young’s version of Taylor’s theorem, for each
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where by, is given by

-1 ¢ : : (1) : @ O"f(2) ¢
— J1 ... 00 g — A
br(p) = — Z /u w* K (u)du x /gp (Z)Zp 5 B, aZif(Z)dz, peS, k=1,
JissJk =1 jl Tk
(D.45)
which shows that the map p — by (p) is continuous on S¢ for k =1,2,---,J. This implies that the expansion

in (D.44)) is valid uniformly over the compact set S¢. By Assumption E (v) and ( m b (p) = 0 for all
k < J but by, # 0 for k = J. By the hypothesis that nh?/ — 0, we obtain \/nE[Ha,] = (\fh‘]) = o(1).

Similarly, one may write

pl) = [ [ () k(555 )g;2><x>f<z>f<z’>dzdz' (D.46)
//K F)P' V. f(z + hu)dzdu, (D.47)

where g( )( ) = w(z)E y( J;g )mp( ). Mimic the argument for Hy ,,. Then, it follows that /nE[H3,]| = o(1).

This establishes the claim of the lemma. m

Lemma D.6. Suppose Assumptions M (md- hold. Then, F = {¢, : X = R : ¢(x) =
w(2)p'Vomy(z) — v(p, Og(P)) + p'l(2)(p(x)} is Donsker in C(SF).

Proof of Lemma[D.6l Let F, = {f : X — R : f(z) = p'g(z),p € S*}, where g : X — R’ is a known
function. Then by S* being finite dimensional and Lemma 2.6.15 in van der Vaart and Wellner (1996)), Fy
is a VC-subgraph class of index ¢ + 2 with an envelope function F'(x) = ||g(z)||. Define

g1(x) = w(2)(Vomy(z) = Vomp(2)), g2(x) =w(z)V.mp(z), (D.48)
g3(x) = 1(){rp (D)alyy —mu(2)) = (2)alyr — mr(2))}, (D.49)
ga(x) =12 (2)alyr — me(2)), g5(x) =1(2). (D.50)

Then Fy,,j =1,---,5 are VC-subgraph classes. Further, let 7, = {f : & = R : f(z) = v(p,00(P)),p €
S’}. This is also finite dimensional. Hence, F, is a VC-subgraph class. Finally, let Fo={f: & =R:
H{p'l(z) > 0},p € S*}. Then, Fy = ¢ o F,,, where ¢ : R — R is the monotone map ¢(w) = 1{w > 0}. By
Lemma 2.6.18 in [van der Vaart and Wellner| (1996), F, is also a VC-subgraph class.

Note that 1, can be written as

Up(z) = w(2)p'{1{p'l(z) > 0}(V.my(z) — Vomp(2)) + Vomp(2)} — v(p, Oo(P))
+ PP 1(z) > 0{ry' (2)a(yr — mu(2)) = rp (2)a(yr — me(2)} + ;' (2)g(yr — mr(2))}. (D.51)

Therefore, F = Fy, - Fg + Fg, + (=Fv) + Fyy - F4 + Fg,, which is again a VC-subgraph class with some
index V(F) by Lemma 2.6.18 in [van der Vaart and Wellner (1996). By Assumptions [2.1}2.3] and [3.2] we
may take F(z) = supyest [0(2)p'Varmp(2) s + ()] x &
such that E[F(z)?] < co. Then, by Theorems 2.6.7 and 2.5.1 in jvan der Vaart and Wellner (1996), F is a

Donsker class. This establishes the claim of the lemma. m

X sup,cpr |q(u)| as an envelope function
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Proof of Theorem E.1l For each p € S¢, we have the following decomposition:

V(0 (p) — v(p, O0(F)))
= Vn(0n(p) = Un(p)) + V1(0n(p) = E[on(p)]) + Vn(E[On(p)] — v(p, ©0(F)))
= Gin(p) + Gon(p) + Gan(p). (D.52)
By Lemmas uniformly in p € S, G1,,(p) = G3n(p) = 0,(1), and Ga,(p) = % Yo Yp(Zi) 4 0p(1).
This establishes the second claim of the Theorem. By Theorem 1y is the efficient influence function, and
hence regularity of {0y,(-)} follows from Lemma[D.6land Theorem 18.1 in Kosorok| (2008), which establishes
the first claim. The stated convergence in distribution is then immediate from and Lemma

while the limiting process having the efficient covariance kernel is a direct result of the characterization of
the semiparametric efficiency bound obtained in Theorem which establishes the third claim. m

APPENDIX E: Figures and Tables
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Figure 1: Identified sets for the density weighted average derivatives

27



Table 1: Risk of 01V (Gaussian kernel)

c=0.1 c=0.5 c=1
Sample Size h Ry Rry Ron Ry Rry Ron Ry Rrg Rop
n=1000
0.4 0.0608 0.0477 0.0600 0.0834 0.0709 0.0673 0.1229 0.1037 0.0801
0.5 0.0588 0.0468 0.0578 0.0785 0.0749 0.0485 0.1212 0.1185 0.0437
0.6 0.0572 0.0452 0.0564 0.0809 0.0804 0.0351 0.1305 0.1304 0.0229
0.7 0.0567 0.0416 0.0563 0.0844 0.0844 0.0263 0.1416 0.1416 0.0086
0.8 0.0555 0.0386 0.0553 0.0882 0.0882 0.0195 0.1556 0.1556 0.0026
n=500
0.4 0.0929 0.0703 0.0919 0.1185 0.0877 0.1072 0.1731 0.1203 0.1437
0.5 0.0836 0.0684 0.0817 0.1091 0.0979 0.0839 0.1555 0.1414 0.0873
0.6 0.0799 0.0646 0.0786 0.1038 0.0999 0.0640 0.1555 0.1520 0.0530
0.7 0.0774 0.0607 0.0762 0.1060 0.1051 0.0512 0.1679 0.1677 0.0297
0.8 0.0775 0.0592 0.0769 0.1098 0.1096 0.0410 0.1785 0.1785 0.0173
n=250
0.4 0.1357 0.0960 0.1349 0.1820 0.1061 0.1770 0.2480 0.1256 0.2339
0.5 0.1189 0.0941 0.1169 0.1517 0.1231 0.1289 0.2013 0.1638 0.1446
0.6 0.1133 0.0914 0.1112 0.1413 0.1299 0.1053 0.1954 0.1818 0.1084
0.7 0.1121 0.0910 0.1098 0.1365 0.1317 0.0890 0.1974 0.1949 0.0725
0.8 0.1086 0.0864 0.1068 0.1374 0.1360 0.0737 0.2069 0.2061 0.0500
Table 2: Risk of 01V (Higher-order kernel)
c=0.1 c=0.5 c=1
Sample Size h Ry Ry Ron Ry Ry Ron Ry Ry Ron
n=1000
0.5 0.0722 0.05649 0.0714 0.1267 0.0461 0.1256 0.2038 0.0494 0.2017
0.6 0.0654 0.0551 0.0637 0.0912 0.0532 0.0872 0.1384 0.0636 0.1312
0.7 0.0600 0.0511 0.0583 0.0760 0.0631 0.0645 0.1020 0.0835 0.0745
0.8 0.0564 0.0470 0.0553 0.0759 0.0741 0.0444 0.1093 0.1085 0.0370
0.9 0.0565 0.0446 0.0559 0.0802 0.0801 0.0313 0.1302 0.1302 0.0134
n=500
0.5 0.1104 0.0744 0.1101 0.1867 0.0587 0.1861 0.2887 0.0604 0.2870
0.6 0.0947 0.0753 0.0930 0.1308 0.0745 0.1267 0.1993 0.0857 0.1914
0.7 0.0869 0.0737 0.0846 0.1080 0.0843 0.0970 0.1453 0.1085 0.1184
0.8 0.0802 0.0668 0.0783 0.1019 0.0958 0.0747 0.1373 0.1308 0.0683
0.9 0.0772 0.0635 0.0758 0.1042 0.1034 0.0564 0.1513 0.1508 0.0372
n=250
0.5 0.1788 0.1038 0.1787 0.2832 0.0630 0.2831 0.4316 0.0511 0.4313
0.6 0.1374 0.1034 0.1359 0.1959 0.0979 0.1925 0.2802 0.1061 0.2716
0.7 0.1212 0.1001 0.1187 0.1571 0.1147 0.1460 0.2063 0.1401 0.1773
0.8 0.1143 0.0948 0.1118 0.1385 0.1231 0.1133 0.1811 0.1620 0.1201
0.9 0.1107 0.0910 0.1085 0.1342 0.1292 0.0903 0.1865 0.1820 0.0819
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