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9 Outline

This SM provides proofs of the results stated in AG1. It also provides some complementary
results to those in AG1.

Section states some basic results that are used in all of the proofs. These results also are
used in AG2 and should be useful for establishing the asymptotic sizes of other tests for moment
condition models when strong identification is not assumed. Given the results in Section [I0] Section
proves Theorem Section [12] proves Theorem and Section [13] proves Theorem

Section shows that the eigenvalue condition in Fy, defined in , is not redundant in

Theorems and
Sections and [I7] prove Lemma Lemma [10.3] and Theorem respectively, which
appear in Section [I0]

Section [L§ proves that the conditions in ([3.10) and (3.11) are sufficient for the second condition

in Fo;.

Section [19] proves Theorem and Lemma Section [19] also determines the asymptotic
size of Kleibergen’s (2005) CLR test with Jacobian-variance weighting that employs the Robin and
Smith (2000) rank statistic, defined in Section |5}, for the general case of p > 1. When p = 1, the
asymptotic size of this test is correct. But, when p > 2, we cannot show that its asymptotic size
is necessarily correct (because the sample moments and the rank statistic can be asymptotically
dependent under some sequences of distributions). Section [19| provides some simulation results for
this test.

Section [20| proves Theorem which provides results for time series observations.

For notational simplicity, throughout the SM, we often suppress the argument 6y for various
quantities that depend on the null value 3. Throughout the SM, the quantities Br, Cr, and
(T1F, ..., Tpr) are defined using the general definitions given in —, rather than the defin-
itions given in Section [3| which are a special case of the former definitions.

For notational simplicity, the proofs in Sections are for the sequence {n}, rather than a
subsequence {wy, : n > 1}. The same proofs hold for any subsequence {w, : n > 1}. The proofs in

these three sections use the following simplified notation. Define

Dn = EFnGza Qn = QFna Bn = BFn7 Cn = CFn) Bn = (Bn,ann,p—q)7 Cn = (Cn7q7Cn,k—q)7
W, = WFn, Wop = WQFn, U, := Uan and U, 1= U2Fn7 (9‘1)

where g = g3, is defined in (10.16)), B, , € RP*?, B, 4 € Rp*(p=a) Chg € RF*4 and Chi—q €



RFX(k=4)  Define

T” q-= Diag{Tan’ "'7Tan} € quqa Ymp_q = Dia’g{T(Q+1)Fn? ""TpFn} € R(pfq)X(pfq% and
Ty 9% (r—9)
o - k
Y, = | 0P—9xq Thpq € RF*P, (9.2)

olk—p)xq lk—p)x(p—q)

Note that Y, is the diagonal matrix of singular values of W,, D, U, see ((10.8).

10 Basic Framework and Results for the Proofs

10.1 Uniformity

The proofs of Theorems and [6.1{ use Corollary 2.1(c) in ACG. The latter result provides
general sufficient conditions for the correct asymptotic size and (uniform) asymptotic similarity of
a sequence of tests.

We now state Corollary 2.1(c) of ACG. Let {¢,, : » > 1} be a sequence of tests of some null
hypothesis whose null distributions are indexed by a parameter A with parameter space A. Let
RP,(\) denote the null rejection probability of ¢,, under \. For a finite nonnegative integer .J, let
{hn(A) = (h1n(N), ..., hyn(N)) € R :n > 1} be a sequence of functions on A. Define

H:={hec (RU{£o0})’ : hy, (Mw,) — h for some subsequence {w,}

of {n} and some sequence {\,, € A:n > 1}}. (10.1)

Assumption B*: For any subsequence {w,, } of {n} and any sequence {\,,, € A : n > 1} for which
hu, (Aw, ) — h € H, RP,, (A, ) — « for some « € (0,1).

Proposition 10.1 (ACG, Corollary 2.1(c)) Under Assumption B*, the tests {¢,, : n > 1} have
asymptotic size « and are asymptotically similar (in a uniform sense). That is, AsySz := limsup
n—oo

supyep RP,(A) = a and linH—ljolgf infyep RP,(A) = limsup supycp RP, ().

n—00
Comments: (i) By Comment 4 to Theorem 2.1 of ACG, Proposition provides asymptotic
size and similarity results for nominal 1 — « confidence sets (CS’s), rather than tests, by defining
A as one would for a test, but having it depend also on the parameter that is restricted by the
null hypothesis, by enlarging the parameter space A correspondingly (so it includes all possible
values of the parameter that is restricted by the null hypothesis), and by replacing (i) ¢,, by a CS
based on a sample of size n, (ii) « by 1 — «, (iii) RP,(\) by CP,()), where C'P,()) denotes the



coverage probability of the CS under A when the sample size is n, and (iv) the first lim sup supycp
that appears by linrg iol.}f infycp . In the present case, where the null hypotheses arengfoo the form
Hy : 0 = 0g for 6 € O, for CS’s, 0 is taken to be a subvector of A and A is specified so that the
value of this subvector ranges over ©.

(ii) In the application of Proposition to prove Theorems and one takes A to be
a one-to-one transformation of Fy for tests, and one takes A to be a one-to-one transformation of
Fo,0 for CS’s. With these changes, the proofs for tests and CS’s are the same. In consequence, we
provide explicit proofs for tests only and obtain the proofs for CS’s by analogous applications of
Proposition In the application of Proposition to prove Theorem the same is done
but with Fjyw,p—1 in place of Fo.

(iii) We prove the test results in Theorems and [6.1| using Proposition by verifying
Assumption B* for suitable choices of A and h,(\).

10.2 Random Weight Matrices \/7\7“ and ﬁn

We prove results for statistics that depend on random weight matrices Wn € RF*k and ﬁn €
RP*P_In particular, we consider statistics of the form Wnﬁnﬁn and functions of this statistic, where

D,, is defined in 1) The definitions of the random weight matrices Wn and (7” depend upon the

statistic that is of interest. They are taken to be of the form

—

Wy, = Wl(W2n> € R¥** and U, := U, (Uay) € RV, (10.2)

where I//[\/'gn and Uy, are random finite-dimensional quantities, such as matrices, and Wi (+) and Uy (-)
are nonrandom functions that are assumed below to be continuous on certain sets. The estimators
Wgn and (7% have corresponding population quantities Wopr and Usp, respectively. For examples,
see Examples 1-3 immediately below. Thus, the population quantities corresponding to /V[7n and

U, are

Wgp .= Wl(WQF) and Up := Ul(U2F)7 (103)

respectively.

Example 1: With Kleibergen’s (2005) LM test and the CLR test with moment-variance weighting,

which are considered in Sections [f] and [6] respectively, we take

—

W, = ﬁ;l/Z and [7“ = 1. (10.4)

In this case, the functions W7 (-) and U; () are the identity functions, and the corresponding popu-



lation quantities are Wp = Waop = 9;1/2, where Qp := Erg,g., see |D and Up = Uap = I.

Example 2: For a CLR test based on an equally-weighted statistic other than Qn Y Qﬁn, such as
Wnﬁn, as in Comment (ii) to Theorem one defines a pd matrix W, as desired and one takes

/Wn:WN/n and Un:UF:UQF:Ip

Example 3: With Kleibergen’s (2005) CLR test with Jacobian-variance weighting and p = 1,
which is considered in Section [0} we determine the asymptotic distribution of the rank statistic
in by taking W, = ‘755/2 and U, = I,,. In this case, the functions Wi(-) and U;(-) are as
in Example 1, and the corresponding population quantities are Wr = Wap = (Varg(vec(G;)) —
FUFEC(Gi)lefgeC(Gi)I)_1/2 = (\IJUFEC(Gi) —EFGiEFG;)_l/Q, and Up = Usp = I,,. For this test, we need
the asymptotic distribution of the LM statistic. In consequence, for this test, we also establish

some asymptotic results with Wn and (,Afn defined as in Example 1.

Examples 4 & 5: The results of this section are used in AG2 when the asymptotic sizes of two
new SR-CQLR tests are determined. For the SR-CQLR tests, Wn =Q, 2 and it is convenient to
take Wi(-) = (-)~/2 and Wa, = Q,, and the matrix U, is a nonlinear transformation Uy (-) of a
matrix estimator, which is different for the two tests. For brevity, we do not define the nonlinear

transformation or the two matrix estimators here.

We provide results for distributions F' in the following set of null distributions:

Fwu :=A{F € F: Amin(WF) > dwu, Amin(Ur) > 0w, [[Wr|| < Mwy, and ||Up|| < Mwy}
(10.5)
for some constants oy > 0 and My < oo, where F is defined in (3.3)). The set Fyyy N Fp is
used to establish results for Kleibergen’s LM and the CLR test with moment-variance weighting,

considered in Section [6] using the fact that Fy = Fyy N Fo for dwy > 0 sufficiently small and

Mwy < oo sufficiently large. This holds because for all F' € Fy, Apin(Wr) = )\min(le/ 2) =
Al (p) > [|Qp]|7Y2 > M, for some M, < oo (because ||Qp|| = ||Epgigll| < M, for some
M, < oo by the moment conditions in ), [|[We|| = ||Q5"?] < At/2(Qr) < 6/2 (using the

Amin(EFrgig;) > § condition in F), where § > 0, Amin(Ur) = Amin(Ip) = 1, and ||Urp|| = ||Ip|| = p.

10.3 Reparametrization

To apply Proposition [10.1] we reparametrize the null distribution F' to a vector A. The vector A
is chosen such that for a subvector of A convergence of a drifting subsequence of the subvector (after
suitable renormalization) yields convergence in distribution of the test statistic and convergence in

distribution of the critical value in the case of the CLR tests.



To be consistent with the use of general weight matrices Wn and ﬁn in this section, we provide
more general definitions of 7;p, Br, and Cr here than are given in Section @ These general
definitions reduce to the definitions given in Section |3 when Wr = Q;l/ % and Ur =1,

The vector A depends on the following quantities. Let
Br denote a p x p orthogonal matrix of eigenvectors of Up(ErG;)WpWr(ErG;)Ur  (10.6)

ordered so that the corresponding eigenvalues (kif, ..., kpr) are nonincreasing. The matrix Bp is

such that the columns of Wg(ErG;)UrBr are orthogonal. Let
CF denote a k x k orthogonal matrix of eigenvectors of Wg(ErG) UpUr(ErG;) W (10.7)

ordered so that the corresponding eigenvalues are (K1, ..., kpr,0,...,0) € RE. The matrices Bp
and Cr are not uniquely defined. We let Br denote one choice of the matrix of eigenvectors of

Up(ErG:)WpWr(ErG;)Ur and analogously for Cr. Let
(T1F, ..., Tpr) denote the p singular values of Wp(ErG;)Ur, (10.8)

which are nonnegative, ordered so that 7;r is nonincreasing. (Some of these singular values may
be zero.) As is well-known, the squares of the p singular values of a k x p matrix A with £ > p

equal the p eigenvalues of A’A and the largest p eigenvalues of AA’. In consequence, kjr = TJQ-F for

7=1,..,p.



Define the elements of A to be

M= (T1F, ..., Tpr) € RP,
)\2,F = Bp € Rpo,

kxk
>\3,F3: CreR x s

)\4,F = (EFGil,...,EFGip) S kap’
/

9i 9i

Xs.pi= EFp c R(PJrl)kX(PJrl)k’
vec(G;) vec(G;)
)\G,F = ()\6,1F7 veuy /\6,(p71)F)/ = (TZJ, ceny i)/ S Rpil, Where 0/0 = O,
T1F T(p-1)F

A= Wap,

Ag,r = Usp,

Ao, r := F, and

A= Ap:= (/\1,F7~-7)\9,F)- (109)

For simplicity, when writing A\ = (A1 r,..., A9 ), we allow the elements to be scalars, vectors,

matrices, and distributions and likewise in similar expressions. If p = 1, no vector \¢ r appears in
A because A\q r only contains a single element. The vector Ag 7 is only used in the proofs for CLR
tests. It could be deleted when considering only an LM test. The dimensions of W and Usp
depend on the choices of Wn =Wy (/Wgn) and ﬁn = Ul(ﬁgn). We let A5 gr denote the upper left
k x k submatrix of A5 . Thus, A5 g5 = Ergig; = Qp.

We consider the parameter space Ag for A, which corresponds to Fyy N Fy, where Fyyy and
Fo are defined in ([10.5) and , respectively. The parameter space Ay and the function A, ())
are defined by

Ao :={A: A= (A1 p,.... Ao ) for some F' € Fyyy N Fo} and

hn(N) := (020 F, A2, Fy A3, F s A F A5,y A6y AT Fs A F). (10.10)

By the definition of F, Ay indexes distributions that satisfy the null hypothesis Hg : 8 = 6y. The
dimension J of h,()) equals the number of elements in (A p,...,A\s ). Redundant elements in
(ALF, .-y Ag ), such as the redundant off-diagonal elements of the symmetric matrix A5 , are not
needed, but do not cause any problem. Note that two parameter spaces denoted by A; and Ao,

which are larger than Ag, are considered for the two SR-CQLR tests analyzed in AG2. (We also
use Ao in this paper, see (10.11)) below.)



We define A and h,(A) as in (10.9) and (10.10|) because, as shown below, the asymptotic dis-

tributions of the test statistics under a sequence {F;, : n > 1} for which h,(\r,) — h € H depend
on the behavior of lim n1/2)\17pn, as well as lim A\, g, for m = 2,...,8. For example, the LM statis-
tic in depends on Qn 1/ 21A7n, or equivalently, on nl/ 200, Y 2ﬁann‘S’n (because projections are
invariant to rescaling and right-hand side (rhs) transformations by nonsingular matrices), where
Sy, is a pd diagonal matrix that is designed to make this quantity O,(1) and not o,(1). We show
that this quantity is asymptotically equivalent to n!/ 29;5/ 2]3”3 £, Sn. In turn, the latter quan-
tity depends on nl/QQ;jm@nBFn = nl/ZQ;jm(@nBFn — Ep,G;Bp,) + nl/QQ;iﬂEFnGiBFn. The
quantity vec(n!/ QQ;i/ 2(@nBFn — FEr G;Bp,)) has a nondegenerate asymptotic normal distribu-
tion by the central limit theorem (CLT), using the behavior of lim As ,, for s = 2,4,5, the fact
that Bp, is an orthogonal matrix, and the restriction in Fy. Hence, the asymptotic behavior of
vec(nl/zQ;i/QénBFn) depends on that of nl/QQ;j/QEFnGiBFn. Using the SVD of Q;jﬂEFnGi,
the latter is shown below to equal )\37FnDiag{n1/2)\1?Fn}, where Diag{nl/z)\LFn} denotes the k x p
matrix with n'/ 2)\17 £, on the main diagonal and zeros elsewhere.

In Example 1 of Section applied to the linear model , we have Wp = Q;l/ % and
7ip is the jth singular value of —Qp?EpZY], = —Qp"?EpZ; Z!n, where Qp = Epu2Z;Z! for
j=1,...,p. As is well known, if 7 is close to zero, weak instrument problems occur. But, as we
show, matrices 7 that are close to being singular, without their columns being close to zero, also
lead to weak IV problems. This is captured in the present set-up by 7,r being close to zero in the

sense that limn'/ 21pF, < 0o. If this occurs, then weak identification problems arise.

For notational convenience,

{An,n :m > 1} denotes a sequence {\, € Ay : n > 1} for which h,(\,) — h € H, where

Ay :={A: A= (A p,..., A\g.r) for some F € Fyyy} (10.11)

and H is defined in ((10.1) with A replaced by As. Analogously, for any subsequence {w, : n > 1},
{Aw,.n : m > 1} denotes a sequence {\,, € Ap : n > 1} for which hy,, (A, ) — h € H. By definition,
Ay C As. We use the parameter space As in many places in the paper, rather than Ag, for two
reasons. First, this makes it clear where the conditions specified in Fy (and Ag) are really needed.
Second, some of the results given here are used in AG2, which does not employ the smaller set Ag,
but does use Aa. By the definitions of Ap and Fwy, {Ann : n > 1} is a sequence of distributions
that satisfies the null hypothesis Hy : 0 = 6.

We decompose h (defined by , , and ) analogously to the decomposition of

the first eight components of A: h = (hq, ..., hg), where Am,r and hy, have the same dimensions



for m =1, ...,8. We further decompose the vector h; as hy = (hq1, ..., h1p)’, where the elements of
hy could equal co. We decompose hg as he = (he 1, ..., he p—1)’. In addition, we let hs 4, denote the

upper left k& x k submatrix of hs. In consequence, under a sequence {\, , : n > 1}, we have

n1/2Tan — h17j >0V <p, )‘m,Fn — hpy, Vm =2, ..., 8,

Xsgr, = Qp, = Ep,9i9; — hsg, and X6 jp, — he; Vj =1,....,p— L. (10.12)

By the conditions in F, defined in (3.3, hs 4 is pd.
The smallest and largest singular values of Wp(ErG;)UF (i.e., Tpr and T1r) can be related to

those of EpG; (i.e., spr and sip) for F' € Fyy via
c15jr < Tjr < casjp for j =1 and j = p for some constants 0 < ¢; < c2 < 00 (10.13)

that do not depend on F. As shown below, the parameter 6 is strongly or semi-strongly identified

under {\, : n > 1} if limn!/27,5, = co. In consequence of (10.13)), this holds iff limn'/2s,x, =

1/2

0o. The parameters are weakly identified in the standard sense if limn'/“7;p, < oo Vj < p or,

equivalently, if lim n1/2T1Fn < 00, which holds by (|10.13)) iff lim 77,1/2815‘" < o0. The parameters are

1/2

weakly identified in the non-standard sense if limn'/27, 5, = oo and limn!/ 27 pE, < 00, which holds

by (10.13) iff limn'/2s, = oo and limnl/ZspFn < 00.
The proof of ((10.13]) is as follows. For notational simplicity, we drop the subscript F' in some

of the calculations. We have

Amin(U' EGLW'W EG;U)
= min (UMUNIY EGIW'WEG(UA[UAID - I
< min NEGW'WEGA - Amax(U'U)
= min (BG/[EG)W'W (BG/IEGA) - IBGA P Anax(U'0)
< )\max(W'W))\min(EGQEGi))\maX(U'U)

< AAmin(EGLEG,), where

2= SUp [Amax(WrWr) Amax(UrpUp)]Y/? < o0 (10.14)

FeFwu
and the last inequality holds by the conditions in Fyyy (defined in ((10.5)). Because the smallest
eigenvalues of U'EGIW'W EG;U and EG,EG; equal the squares of the smallest singular values
of WEG;U and EG;, respectively, establishes the second inequality in for 7 = p.
Analogous calculations establish the lower bound in for 5 = p and the bounds for j =1



by replacing min and < by max and >, respectively, in the appropriate places and taking ¢ :=

inf peyy [Amin WeWE) Amin(UsUr)]/2 > 0.

10.4 Assumption WU

We assume that the random weight matrices Wn = Wl(/Wgn) and U, = Ul(ijn) defined in
(10.2) satisfy the following assumption that depends on a suitably chosen parameter space A
(C Ag), such as Ay, Ag, or Aj.

Assumption WU for the parameter space A, C Aj: Under all subsequences {w,} and all
sequences {Ay, p :n > 1} with Ay, p € Ay,

(a) szn —p h7 (:=1limWap, ),

(b) Usa, —p hg (:=limUsp,, ), and

(c) Wi(-) is a continuous function at h7 on some set W, that contains {\7 p (= Wap) : A =
(ALF, .-y Ao r) € Ay} and contains Wgwn wp—1 and Uj(+) is a continuous function at hg on some

set Up that contains {Ag r (= Uzr) : A = (A1,F, ..., Ao, r) € Ay} and contains ﬁgwn wp—1.

In Assumption WU and elsewhere below, “all sequences {\,,  : » > 1}” means “all sequences
{Aw,n i m > 1} for any h € H” and likewise with n in place of w,. Note that, by definition, a
sequence {Ay,, ; : n > 1} determines a sequence of distributions {Fy, : n > 1}, see (10.9).

Assumption WU for the parameter space Ay is verified in Comment (ii) to Theorem m given
below for the CLR test with moment-variance weighting, which is considered in Section [6} It also
holds for Kleibergen’s LM test (for the same parameter space Ag) by the same argument (because

Won, Uan, Wi(-), and Uy (-) are the same for these two tests, see (10.4)).

10.5 Basic Results

For any square-integrable random vector a; and F, F,, € F, define
% .= Varp(a; — (Epacg)Qy'g:) and @} := lim @%M (10.15)

whenever the limit exists, where the distributions {F,, : n > 1} correspond to {\,,n : n > 1}
for any subsequence {w, : n > 1}. Note that ®% = ¥% — Epa;Epa) (because U} = Epb;b] for
b; =a; — (EFaggz)legi and Epg; = 0%).

A basic result that is used in the proofs of results for all of the tests considered in this paper

and AG2 is the following.

10



Lemma 10.2 Under all sequences {\, 5 : n > 1},

I~ = kxpk
/2 9n S B O e I
A - ’ vec(G;)
vec(Dy, — Er, Gi) vec(Dp) orkxk - )

Under all subsequences {wy} and all sequences { Ay, p : n > 1}, the same result holds with n replaced
with wy,.

Comments: (i) The variance matrix @ZeC(Gi) depends on h only through hg and hs. The assump-
tions allow @ZeC(G")

(ii) Suppose one eliminates the Amin(Ergig;) > ¢ condition in F and one defines ﬁn in 1'

to be singular.

13

¢, which is constructed to have

with ﬁn replaced by an eigenvalue-adjusted matrix, denoted by Q
its smallest eigenvalue greater than or equal to € > 0 multiplied by its largest eigenvalue, see AG2
for the details of such a construction. In this case, the result of Lemma, [10.2] still holds and all of
the other asymptotic results following from Lemma still hold, except the independence of g,
and Dj. However, this independence is key because it is used in the conditioning argument that
establishes the correct asymptotic size of all of the tests that are shown to have correct asymptotic
size. Without it, these tests do not necessarily have correct asymptotic size. In consequence, we
define ZA)n in using ﬁn, not ﬁfl

The reason that independence does not necessarily hold when ﬁn is defined using (Alf“ rather
than Q,,, is that the covariance term Ep, [Gij — Er,Gij — (Er,Gejg)) (9% ) gilg, typically does not
equal 0% when 0% # Qr,, whereas EFf, [Gij — Ep,Gij — (EFnnggg)Q;ﬂjgi]gg necessarily equals
0%*%  see the proof of Lemma in Section |L5| below for more details.

(iii) The proofs of Lemma and other results in this section are given in Sections

below.

The following is a key definition. Consider a sequence {A, p : n > 1}. Let ¢ = g5, (€ {0, ...,p})
be such that
hi; =00 for 1 <j <gq,and hyj <ooforq,+1<j<p, (10.16)

where hy; = limnl/Qijn >0for j =1,....p by and the distributions {F, : n > 1}
correspond to {A, : n > 1} defined in . Such a ¢ exists because {h;; : j < p} are
nonincreasing in j (since {7;r : j < p} are the ordered singular values of Wr(ErG;)UF, as defined
in (10.8))). As defined, ¢ is the number of singular values of Wg, (EF,G;)Up, that diverge to

172 Roughly speaking, ¢ is the number of parameters, or one-to-one

infinity when multiplied by n
transformations of the parameters, that are strongly or semi-strongly identified.

The following quantities appear in Lemma below, which gives the asymptotic distribution

11



of ﬁn after suitable rotations and rescaling, but without the recentering (by subtracting Er, G;)

that appears in Lemma We partition hy and h3 and define A, as follows:

9% (P—a)
ha = (h27q7 hQ,p—q)a hs = (h37Q7 h3,k*f1)7 h<1>,p7q = Diag{thH, ey th} S ka(piq),
ok—p)x(p—q)
Zh = (Zh,tpzh,p—q) € RkXp7 Zh,q = h3,cp Zh,p—q = h3h<1>7p—q + h?lﬁhhSIhQ,pfqa
h71 = Wl(h7), and hgl = Ul(hg), (10.17)

where ho, € RPXY, hop g € RPXP=9) hg € RFX4 hyy € RF*¥F=0 A, € RF¥9 A, , €
Rk*(0=9) by € RF¥F hgy € RP*P, and Dy, is defined in Lemma m For simplicity, there is some
abuse of notation here, e.g., ho 4 and ho ;4 denote different matrices even if p — ¢ happens to equal
q. Note that when Assumption WU holds h7; = lim Wg, = lim W;(Wsp,) and hgy = limUp, =
lim Uy (Uszp,) under {A, p : n > 1}.

The case where ¢ = p (i.e., n'/2

TjF, — oo for all j < p) is the strong or semi-strong identification
case. In this case, no hg ¢, hi,_,, and Zh,p—q matrices appear in , Ay = hgq = hsp, and
A}, is non-random. In consequence, the limit in distribution (or probability) of the normalized
matrix nl/ 2WFn]jnU £, Ty, where T,, € RP*P is defined below, is non-random, see Lemma m
below. When ¢ < p, identification is weak and the limit of this matrix is random.

Now we provide some motivation for Lemma which is stated below. To show that the
LM statistic has a XIQJ asymptotic distribution we need to determine the asymptotic behavior of Bn
without the recentering by Er, G; that occurs in Lemma In addition, to determine the as-
ymptotic distribution of the rk,, statistic in , we need to determine the asymptotic distribution
of anﬁnUFn without recentering by Ef, G;. (Furthermore, to determine the asymptotic distribu-
tions of the two SR-CQLR test statistics and conditional critical values considered in AG2, we need
to determine the asymptotic distribution of Wg, ﬁnU r, without recentering by Er,G;.) To do so,
we post-multiply WFnlA?nU r, first by Bp, and then by a nonrandom diagonal matrix S, € RP*P
(which may depend on F), and h). The matrix S, rescales the columns of W, DU r,BF, to ensure
that n'/ 2WF"1A)HU F, BF, Sn converges in distribution to a (possibly) random matrix that is finite
a.s. and not almost surely zero. For F' € Fyy N Fo, it ensures that the (possibly) random limit
matrix has full column rank with probability one. For example, in the case of the LM statistic,
these transformations are applied with Wg, = Q;j/ > and U F, = Ip.

For the LM statistic and the CLR statistics that employ it, we need the full column rank

property of the limit random matrix in order to apply the continuous mapping theorem (CMT).
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For the LM statistic, the full rank property ensures that the quantity ﬁ;ﬁ; 11A)n (whose inverse
appears in the expression for LM, see (4.2)), is nonsingular asymptotically with probability one
after ﬁn has been transformed and rescaled to yield n'/ QQ;j/ 21/5"3 £, Sn. Note that Pﬁ—l 125 s which

appears in the definition of LM, in (4.2), can be written as

Pavsap, 1= DBy, D) By,
— (651/2971/2)(nl/zQ;1/2ﬁnTn) [(nl/QQ;1/2ﬁnTn)’(§;1/QQ}/2)’(ﬁ;l/zﬂiﬂ)
~ -1 ~ ~
X (nI/QQ,;l/QDnTn)} (n'/20.12D,,T,,) (QL/2Q1/2), where
Tn = BF”Sn S RP*P and Qn = QF,L (: EanZ‘g;), (1018)

provided T, has full rank and €, is pd. In consequence, these transformations do not affect the
value or distribution of the LM statistic.

Note that the two SR-CQLR test statistics considered in AG2 do not depend on an LM statistic
and do not require the asymptotic distribution of nt/ QWFnﬁnU £, Br, Sy to have full column rank
a.s.

Define

Sp := Diag{(n*?r1p,)7, ...,(n*?1,5,) "1 1,..., 1} € RP¥P, (10.19)

where ¢ = gy, is defined in ((10.16). Note that 7;7, > 0 for n large for j < ¢ and, hence, S, is well

defined for n large, because n'/2

TjF, — oo for all j <gq.
The proof of Theorem for the LM test, the proofs of Theorems and for the CLR
test with moment-variance weighting, and the proofs for the two SR-CQLR tests in AG2 use the

following lemma. The p x p matrix T;, is defined in (10.18]).

Lemma 10.3 Suppose Assumption WU holds for some non-empty parameter space A, C As.
Under all sequences {\, p, : n > 1} with A, j, € Ay,

n1/2(§n, ﬁn — EFnGia WFnﬁnUFnTn) —d (yh,ﬁh,ﬁh),

where (a) (gy, Dy) are defined in Lemma m (b) Ay, is the nonrandom function of h and Dy,
defined in , (c) (Dn, Ar) and gy, are independent, (d) if Assumption WU holds with A, = Ao,
Wp = 9;1/2, and Up = I, then Ay, has full column rank p with probability one, and (e) under all
subsequences {wy} and all sequences { Ay, p : 1 > 1} with Ay, p € Ay, the convergence result above

and the results of parts (a)-(d) hold with n replaced with wy,.
Comments: (i) Lemma M(c)-(d) are key properties of the asymptotic distribution of n!/2(g,,
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Wg, ﬁnUFnT n) that lead to the LM statistic having a XI2’ asymptotic distribution and the CLR test
with moment-variance weighting having correct asymptotic size. Lemma m(c) is a key property
that leads to the correct asymptotic size of the two SR-CQLR tests in AG2. Lemma M(d) is not
needed for these tests because they do not rely on an LM statistic.

(i) The conditions in Fy are used in the proofs to obtain the result of Lemma [10.3[d) and are
not used elsewhere in the proofs, except where Lemma M(d) is used.

The following theorems are used only for the CLR tests. For the proof of Theorem [4.1]concerning
Kleibergen’s (2005) LM test, one can go from here to Section
Let

P e e e

Kjn denote the jth eigenvalue of nU;LD;WT;WnDnUn, Vi=1,...,p, (10.20)

AN, N, Sy S AN A

ordered to be nonincreasing in j. By definition, Amin(nU,,D; W, W, D,Uy) = Kpy. Also, the jth

1/2
H;jn .

singular value of nt/ Q/Wnﬁnﬁn equals
Theorem 10.4 Suppose Assumption WU holds for some non-empty parameter space Ay C As.
Under all sequences {\, p, : n > 1} with A\, j, € Ay,
(a) Rpn —p 00 if ¢ = p,
(b)
()
(d)
Epn), converges in distribution to the (ordered) p—q vector of the eigenvalues ofzz’p,qh&k_qhg’k_q
X Nppq € RP-OXP=0)

(e) the convergence in parts (a)-(d) holds jointly with the convergence in Lemma and

—~ — ~ .
Fpn —d Amin(Dpp—qh3 k—gh3 g gDhp—q) if < p,
Kjn —p 00 for all j < g,

AN AN S~ A A

the (ordered) vector of the smallest p—q eigenvalues of nU}, Dy Wy Wy, DU, d.e., (K(g41yns s

(f) under all subsequences {wy} and all sequences { Ay, p : n > 1} with Ay, n € A, the results
in parts (a)-(e) hold with n replaced with wy,.

AN AN, S~ A~

Robin and Smith (2000)-type rank statistic.

(ii) Theorem [10.4(a) and (b) is used to determine the asymptotic behavior of the statistic
rky, defined in (6.2) (which is employed by the CLR test with moment-variance weighting that is
considered in Section [f]). More specifically, Theorem [10.4|a) and (b) is used to verify Assumption
R in Section [12] below.

(iii) Theorem [10.4(c) and (d) is used to determine the asymptotic behavior of the critical
value functions for the two SR-CQLR tests considered in AG2 (with /Wn and U, defined suitably).
Because Theorem ¢) and (d) are immediate by-products of the proofs of Theorem [10.4[(a) and
(b), they are stated and proved here, rather than in AG2.
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(iv) The statement of Theorem 3 in Kleibergen (2005) is difficult to interpret because the
expression given for the conditional asymptotic distribution of the CLR statistic involves Kleiber-
gen’s (2005) statistic rk(fp), which is a finite-sample object. Based on Theorem below
provides the asymptotic distribution of a class of CLR statistics in terms of an asymptotic version
of the rank statistic employed, which is necessary for a precise statement of the asymptotic distri-
bution. The class of CLR statistics considered are those defined in and based on the rank
statistic in Theorem for some choices of /Wn and ﬁn, which is a Robin and Smith (2000)-type

rank statistic. In particular, taking W, = Qn /2 and ﬁn = I, gives the rank statistic defined in

62).

11 Asymptotic Size of the Nonlinear LM Test

In this section, we prove Theorem [4.1] for the LM test.
We state a theorem that verifies Assumption B* of ACG (stated in Section for the LM
test. The following theorem applies with W, = 651/2, Wr = 9;1/2, and U, = Up = I,,. (These

definitions affect the definition of A, ,, which appears in the theorem).

Theorem 11.1 The asymptotic null rejection probabilities of the nominal size o € (0,1) LM test

equal o under all subsequences {wy} and all sequences { Ay, p : 1 > 1} with Ay, p € Ag Vn > 1.

Comments: (i) The requirement that Ay, 5 € Ag (defined in (10.10)) implies that the parameter
space for F is Fo (defined in (3.9)) for the results given in Theorems and (because the
restrictions in Fyy are not binding, see the discussion in the paragraph containing )

(ii) Proposition and Theorem m prove Theorem for the LM test. The proof of
Theorem [4.1] for the LM CS is analogous, see Comments (i) and (ii) to Proposition [10.1]

For notational simplicity, we prove Theorem for the sequence {n}, rather than a subse-

quence {wy, : n > 1}. We note here that the same proof holds for any subsequence {w, : n > 1}.

Proof of Theorem Let Q, := QF,. We derive the limiting distribution of the statistic
LM, using the CMT applied to Q;l/2n1/2§n, 5\2;1/2971/2, and nl/QQ#ﬂﬁnTn, where the latter two
quantities appear in the expression on the rhs of . Note that Qn —p hs 4 by the WLLN, Q,, —
hs.4, and hs 4 is pd. Thus, 651/29}/2 —p 1. By Lemmaapplied with Wp = 9;1/2 and Ur = I,
(which results from taking W, = 0,2 and U, = Ip), we get (QEI/2n1/2fq\n,n1/2951/2]_/§nTn) —q
(h;;/th,Zh). For the CMT to apply, it is enough to show that the function f : RF*P — Rkxk
defined by f(D) := D(D'D)~'D’ for D € R**P is continuous on a set C C R**P with P(A), €
C) = 1. This holds because the function fo(D,L) := LD((LD)'(LD))~'D'L’ for a nonsingular
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k x k matrix L is continuous at (D, Ij) if f(D) is continuous at D. Note that f is continuous at
each D that has full column rank. And, by Lemma M(d), Ay, has full column rank a.s. because
Anh € Mo, Fy, € Fo, Wp = 9;1/2, and Ur = I,. Hence, f is continuous a.s. By 651/297{/2 —p Iy,
the convergence result in Lemma and the CMT, we have

Pps Q1?0 %G, = Dy (D5 D;) = DG, 202G, —q B = chh;;/zﬁm (11.1)

where DY := (651/292/2)711/2951/213”Tn.
Conditional on Ay, v}v), is distributed as X;% because (i) Ay, and g, are independent by property
(c) in Lemma [10.3} (ii) f;/*g, is conditionally distributed as N(0%, I) by g, ~ N(0%, hs 4) and

(i), and (iii) Pg, is fixed given A}, and projects onto a space of dimension p a.s. by property
(d) in Lemma m Because the X% distribution does not depend on Ay, v}v, is unconditionally

distributed as X;% as well. In consequence, using the CMT again, we have
LM, —4 LM}, := 0,0}, ~ X (11.2)

Given this result and the use of the X;%,l—a critical value by the LM test, we obtain the conclusion

of Theorem for the LM test: lim Pp, (LM, > X;Q),1_a) =a. 0

12 Asymptotic Size of the CLR Test with Moment-Variance
Weighting

In this section, we prove Theorem |6.1] which concerns the CLR test (and CS) with moment-
variance weighting based on the Robin-Smith rank statistic. In fact, for the CLR test defined by
—, we prove a stronger result than that given in Theorem We establish Theorem (6.1
for a CLR test that is based on any rank statistic rk, that satisfies a high-level assumption, denoted
Assumption R, not just the rank statistic 7k, (o) defined in . Then, we verify Assumption R for
the moment-variance-weighted Robin-Smith rank statistic rk,(6o) in (6.2). Note that Assumption
R does not hold for the rank statistic in when p > 2.

Section below provides additional asymptotic size results for equally-weighted CLR tests
(and CS’s), which are CLR tests that are based on rk,, statistics that depend on ﬁn only through
Wnﬁn for some k x k weighting matrix Wn These results show that equally-weighted CLR tests
(and CS’s) based on the Robin and Smith (2000) rank statistic with a general weight matrix W,
(€ RF¥k) have correct asymptotic size under suitable conditions on W,. One can view these results

as verifying Assumption R for a broad class of rk,, statistics. In contrast, the results in the present
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section establish the correct asymptotic size of CLR tests (and CS’s) under the high-level condition
Assumption R and for the Robin and Smith (2000) rank statistic when W,, is the moment-variance
weighting matrix O, Y ?, see Comment (ii) to Theorem below.

The high-level condition on the rank statistic rk,, is the following.

Assumption R: For any subsequence {w,} and any sequence {\,, » : n > 1} with Ay, 5 € Ao
Vn > 1 either (a) rky, —p rn = 00 or (b) rky, —4 rr(Dp) for some nonrandom function ry, :
RF*P — R, where Dy, is defined in Lemma, and the convergence is joint with that in Lemma

In Assumption R, by rky, —;, 0o, we mean that for every K < oo we have Py, »,, (7kw, >
K) — 1, where Py, x,,, (-) denotes probability under A, when the true parameter vector equals 6.
The following theorem applies when the LM statistic is defined as in with projection onto
651/2]3”. In consequence, the quantities in in the present case are /Wn = 651/2, Wr = 9;1/2,
and ﬁn = U = I,. (These definitions affect the definition of X, 5, which appears in the theorem).

Theorem 12.1 For any statistic vk, that satisfies Assumption R, the asymptotic null rejection
probabilities of the nominal size a € (0,1) CLR test defined in (4.2)-(5.2) based on rk, equal o

under all subsequences {w,} and all sequences { Ay, n : 1 > 1} with Ay, n € Ao Vn > 1.

Comments: (i) Theorem and Proposition imply that a nominal size « CLR test based on
any rank statistic that satisfies Assumption R has asymptotic size o and is asymptotically similar.
Analogous CS results (to the test results stated in Theorem hold for a parameter space Ag
that is a reparametrization of Fg g and is defined as Ay is defined, but with the adjustments outlined
in Comments (i) and (ii) to Proposition [10.1]

(ii) Theorems and and Proposition establish the test results of Theorem
This holds because Theorem (a), (b), (e), and (f) with W, = 0, and U, = » imply
that Assumption R holds for the CLR test with moment-variance weighting, that is considered in
Section [6 which uses the Robin and Smith (2000) rk, statistic defined in (6.2). (In the present
context, Theorem requires that Assumption WU holds for the parameter space Ag. It holds
with Wn = Wgn, Wi(w) = w for w € RF*F Wy = RFXk, ﬁn = ﬁgn, Ui(u) = u for u € RP*P and

Uy = RP*P, because Wn = (AZT_LI/Q —p hgl/z

o under all sequences {Ap in > 1} with A, p, € Ap and

U, = I, for all n > 1.) In particular, Assumption R holds with r;, = cc if ¢ = p and with r,(Dj,)
equal to the smallest eigenvalue of Z;7p_qh3,k_qhg7k_qzh7p_q if ¢ < p (where Zh,p—q and hs3j_, are
defined in based on Wr = Q;l/ 2and U r = Ip). The CS results of Theorem hold by
Theorem Comment (i) to Theorem and Comment (i) to Proposition [10.1]
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(iii) Theorem ﬂ shows that Assumption R does not hold in general for rank statistics based
on Vp, and ﬁ};, defined in 1)1 , when p > 2. The reason is that for some sequences of
distributions the asymptotic distribution of lA);rL and, hence, the rank statistic rk, depends on Dy,

and ML £ 08P not just on D, alone.

For notational simplicity, the following proof is for the sequence {n}, rather than a subsequence

{wy, : n > 1}. The same proof holds for any subsequence {w, : n > 1}.

Proof of Theorem [12.1l Let
o = ngp 0 P M 1oy Q%G (12.1)

It follows from (|4.2)) that
AR, = LM, + Jy. (12.2)

We now distinguish two cases. First, suppose Assumption R(a) holds: 7k, —, co. By (12.2)) and
some algebra, we have (AR, — 7ky)% + 4L M, - rk, = (LM,, — J,, + rky)? + 4LM,, - J,,. Therefore,

1
CLRn =5 (LMn 4 Jn — 1k + /(LM — Jp + 7kn)2 + ALM,, - Jn> . (12.3)

Using a mean-value expansion of the square-root expression in ((12.3)) about (LM, — J,, +7ky)?, we

have

V (LM, — J, + rky)2 +4LM,, - J, = LM,, — J,, + 7k, + (21/C,,) Y4LM,, - J,, (12.4)

for an intermediate value ¢,, between (LM, — J,, + rk,)? and (LM, — Jp, + k)% + ALM,, - J,,. Tt
follows that CLR,, = LM, + 0,(1) —4 x; using and (1/¢,,) ! = 0p(1) (which holds because
rky, —p 00, LM, = O,(1), and J,, = Op(1) by below). Analogously, it can be shown that the
critical value ¢(1 — «, rky,), defined above , of the CLR test converges in probability to Xf,’lfa.
The result of Theorem then follows by the definition of convergence in distribution.

Second, suppose Assumption R(b) holds. Then, using Lemma we have (nl/ 2G,,nY 2(1A)n —
Er,Gi),rky) —a (Gy, Dn,rr(Dy)). By the proof of Lemma applied with Wr = 951/2 and
Ur = I, (which correspond to /Wn = 651/2
(/%G 01 /2(Dy, — Er,G)) = (G, Dp) gives

and ﬁn = Ip), using the former result in place of

(n*?G,,n' (D, — Ep, Gy),n**Q 2D, Ty, k) —a (Gns Dn, A, 71(Dh)), (12.5)

where Q,, := Qg , (Dp,Ap,) and g, are independent, and A, has full column rank p with probability
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one by Lemma [10.3(d) (because we are considering sequences {Ay, 5 : n > 1} with Ay, n € Ao
¥n > 1, Wp = Q"% and Up = I,). In addition, Q, —, hsg, hsg is pd, and My 1j2p =

M (Q*l /2172 because T}, (defined in ((10.18])) and €2, 12 are nonsingular. These results

nl/zﬂfll/zﬁnTn
and the CMT imply that

Jo —a In = Ghhs s *Mx hs 2?5, (12.6)

The convergence results in (11.2) and (12.6) and 7k, —4 r,(Dy) hold jointly by (12.5) and the

definitions of LM,, and J,, in (4.2)) and ([12.1]).
Note that LMy, = gyhsy *Px, hs o gy by (11.1) and (11.2). Conditional on &y, Px, hs/*g,

and Mz, h;;/ 2§h have a joint normal distribution with zero covariance (because Var(h;;/ 2§h) = I
and ch MZh = 0F X”‘3) and, hence, are independent. The same holds true conditional on Dy, because
A}, is a nonrandom function of Dy, and Dy, is independent of gj. In consequence, conditional on
Dy, LM}, and Jj, are independent and distributed as X;% and Xiip, respectively.

Using the convergence results in and , the definition of CLR,, in with AR, =
LM, + J, substituted in, and the CMT, we obtain

o 1/ _ —— —
CLR, —4 CLRy, := B (LMh + Jp — T+ \/(LMh + Jp *Fh)2 +4LM’I“h> s (12.7)

where 7, := r3,(Dy).

The function ¢(1 — ) (defined in ([5.2))) is continuous in r on R by the absolute continuity of
the distributions of X?) and X%_p, which appear in clr(r) (also defined in ), and the continuity
of clr(r) in r a.s. This, rk, —4 71, and (12.7) yield

CLR, —¢(1 — a,rky) —q CLR}, — ¢(1 — a, 7). (12.8)
Therefore, by the definition of convergence in distribution, we have
Poor, (CLRy, > c¢(1 — o, 7ky,)) — P(CLRp, > ¢(1 — o, 7)) (12.9)

provided P(CLRy, = ¢(1 — a, 7)) = 0, which holds because P(CLR;, = c¢(1 — a,7,)|Dp) = 0 a.s.
The latter holds because conditional on Dy, CLR}, is absolutely continuous (by since LM,
and Jj, are independent and distributed as X;% and X%—p and 7, is a nonrandom function of Dj,)
and ¢(1 — «,Ty) is a constant.

From above, conditional on Dy, LM}, and J}, are independent and distributed as X% and X%_p,
respectively, and 7, is a constant. Thus, conditional on Dy, CLR), and clr(7;) have the same

distribution. By definition, ¢(1 — «,7}) is the 1 — a quantile of the absolutely continuous random
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variable clr(7y,) for any constant 7. Hence,
P(CLRy, > c(1 — a,73)|Dp) = a a.s. (12.10)

Because the left-hand side conditional probability equals « a.s. and o does not depend on Dy, the
unconditional probability P(CLR;, > c¢(1 — a,74)) equals a as well. Combined with (12.9), this
gives the desired result. [

13 Asymptotic Size of the CLR Test with Jacobian-Variance
Weighting when p=1
In this section, we prove the test results of Theorem which concerns Kleibergen’s CLR test

(and CS) with Jacobian-variance weighting when p = 1. The CS results of Theorem [5.3 hold by an
analogous argument, see Comments (i) and (ii) to Proposition [10.1]

Proof of Theorem We prove the test results of Theorem using Proposition and
results (or variants of results) in Lemma and Theorems|(10.4] [11.1} and [12.1] The proof is made

more complicated by the fact that we need to use two different definitions of /V[7n. To obtain the
asymptotic distribution of the LM statistic (which is a component of the CLR statistic), we need
to take W, = 0, 1% and U, = 1, because the LM statistic (defined in ) depends on O, 1/2D .
But, to obtain the asymptotic distribution of the rank statistic rk, := nD ! V_an (defined in
(5.10))), we need to take W VD /2 and Un = 1, because rk,, depends on VD 12p D,.

For notational simplicity, we establish results below for sequences {n}, rather than subsequences
{wy} of {n}. Subsequence results hold by replacing n by w,, in the proofs.

We proceed as follows. First, we apply Lemma[I0.3|exactly as in the proof of Theorem [T1.1]with
W, = Q.2 U, = 1, W = Q"% and Up = 1. This yields n'/2(g,, D, — Ep, Gi, W, DpUp, Ty) —4
(Gn, Dn, Ap) for sequences {\,,, : n > 1} that correspond to distributions F in Fyy N Fy based on
these definitions of Wr and Up. As discussed in the paragraph containing , Fo=Fwu NFo
for dwy sufficiently small and My sufficiently large. We employ constants dyy and My for
which this holds. The joint convergence result above yields the asymptotic distributions of the
AR,, LM, and J, statistics via the calculations in (11.1)), (11.2), (12.1), (12-2), and (12.6).

Next, we take W, = V12 U, = 1, We = Wap = (Varp(Gy)-T$ Q5T ~1/2, where TG and
Qp are defined in , Wl() equals the identity function on Wy := R¥** Uy = Uyp = 1, and Uy ()

equals the identity function on Us := R. We consider distributions in F v w,—1 (which is a subset
of Fy when 03 = 05 by the paragraph following ([5.9))). We obtain the asymptotic distribution of rk,
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under the corresponding sequences {\,, , : n > 1} (which differ from the sequences {\,, , : n > 1} in
the previous paragraph due to the difference between the two definitions of Wr). More specifically,
we verify the convergence results in Assumption R for rk,, := nﬁgf/&} Dy, (defined in ) for the
{An,n i > 1} sequences of this paragraph. The result of Theorem a), (b), (e), and (f) verifies
the convergence results in Assumption R for sequences {A, , : n > 1} for which F,, € Frywp=1
V¥n > 1 provided Assumption WU holds for such sequences with ﬁ/\gn = Wn = 17571/ 2, Wi(+) equal
to the identity function, ﬁgn = ﬁn =1, Uy(-) equal to the identity function, and the parameter
space A, being equal to Ajywp=1 := {X : A = (A1,p,..., Ag,p) for some F' € Fyy N Frywp=1}-
Here Fyy is defined in (10.5) with W = (Varp(G;) — TS9O T%7)~1/2 and Up = 1. Note that
Fivwp=1 = Fwu N Frvwp=1 for dwy > 0 sufficiently small and My < oo sufficiently large
(and we employ constants dyy and My that satisfy these conditions). This holds because for all
F € Frvwp—t, Amin(Wr) = Amin(Varp(Gy) — TG QTG 71/2) = A\pbl2(Varp(Gy) —TE QTS
> )\;1211{(2(EFGZ'G{L-) > MII/Q for some M, < oo (because ErG;G; — (Varp(G;) — ngﬂglfg“) =
EFGiEFG;—l—F%Q;ng“ is psd and || EpG;G,|| < My for some M, < oo by the moment conditions
in F), ||Well = [|(Varp(Gs) — TEQRITE) 12| < A2 (Varp(Gy) — TEQITS) < 657 (using
the condition in Fjywp—1 and the fact that Varp(G;) — nglefg“ = \I/% — EpGErG’, using
the definition of U5 in (3.6)), where &3 > 0, and ||Up|| = Amin(Ur) = 1.

Assumption WU(b) holds automatically with hg = 1 because ﬁgn := 1. The requirement of
Assumption WU(c) that Wi(-) is continuous at h;7 and Uj(-) is continuous at hg also holds auto-
matically because Wi(-) and U;(-) are identity functions.

Assumption WU(a) for the parameter space A sy, p—1 requires that Won —p by ((=1lm Wap,).
For sequences {\,, 5, : n > 1}, we have

~

WG — G) = T0 1T

)

Vo, = n! Z(G’ —
= Er,(Gi — Er,Gi)(Gi — Ep,G;) — T3 Qp'T% + 0,(1)
= Wy +op(1)
—p h7?, (13.1)

where the first equality holds by (5.3)), the second equality holds by the WLLN’s applied multiple
times and Slutsky’s Theorem using the conditions in F, the third equality holds by the definition
of Wap, and the convergence holds because War, = A7 g, — hr by the definition of the sequence

{Ap i m > 1} and hy is pd (since hy = lim Wap, and the eigenvalues of WQ_F2 are bounded above
for F € F). Equation 1' and Slutsky’s Theorem give ‘7571/2 —p h7 because h7_2 is pd using
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the condition in Fjywp—1 that Amin(\llgi — ErG,ErG;) > 6. In consequence, Assumption WU(a)
holds.

This completes the verification of Assumption WU for the parameter space Ajyw,—1 and, in
consequence, the verification of the convergence results of Assumption R for rk, for sequences
{Ann :n > 1} defined in the fourth paragraph of this proof.

Now we consider sequences {\, 5 : n > 1} that satisfy the conditions on {\,  : n > 1} given in
both the third and fourth paragraphs of this proof. These sequences correspond to distributions F'
in Fyywp=1. These sequences satisfy the convergence conditions in (8.11) using the definitions in
(8.9) and (8.10) with 7, Br, Cr, and Wap defined based on Wr = 9;1/2 and with these quantities
based on Wr = (Varp(G;) — ngﬁglf‘g“)_l/ 2. In consequence, for these sequences of distributions
{Ann :n > 1}, the results above establish the asymptotic distributions of the AR,,, LM,, J,, and
rk, statistics and the convergence is joint because all of the convergence results are based on the
underlying CLT result in Lemma [10.2] Given this joint convergence, by the same arguments as
given in the proof of Theorem we obtain that the CLR test with Jacobian-variance weighting
has asymptotic null rejection probabilities equal to « under all such sequences {A,  : n > 1} (and
all subsequences of such sequences).

Finally, we apply Proposition 8.1 with A and h,(#) given by the concatenation of the A vectors
and hy, () functions used in the third and fourth paragraphs above and with A given by the product
space of the A spaces used in these paragraphs. (Redundant elements of A and h,(\) do not cause
any problems.) The result of the previous paragraph verifies Assumption B* for this choice A,
hn(A), and A. In consequence, Proposition 8.1 implies that the Jacobian-variance weighted CLR

test has correct asymptotic size and is asymptotically similar when p = 1. [J

14 The Eigenvalue Condition in Fj

In this section, we show that the restriction Ap_;j(¥;r(€)) > 61 > 0 in Fo;, defined in (3.9),
is not redundant. If this restriction is weakened to A,—;(V;r(£)) > 0, we show that, for some
models, some sequences of distributions, and some (consistent) choices of variance and covariance
estimators, the LM statistic in has a X% asymptotic distribution. This leads to over-rejection
of the null when the standard X;% critical value is used and the parameters are over-identified (i.e.,
k > p). On the other hand, we show that the LM statistic equals zero a.s. for some models and
some distributions F' if the condition A,—;(V;r(§)) > 01 > 0 is removed entirely. This implies that
the LM test also under-rejects the null hypothesis and is nonsimilar in both finite samples and

asymptotically for some F.
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All of the CLR tests considered in Sections [f| and [6] except that of Smith (2007), are functions
of the LM statistic in (4.2)) (and other statistics). In consequence, the aberrant behavior of the LM
statistic and test demonstrated in this section, when the restriction Ap,—;(¥;r(§)) > 61 > 0 in Fy

is weakened or eliminated, carries over to the CLR statistics and tests in Sections[f]and [6] Smith’s

(2007) CLR test is a function of the LM statistic in 1) but with Q;, 1/ ’Dn replaced by Di.

14.1 Eigenvalue Condition Counter-Examples

For simplicity, we consider the case p = 1 in this section. As above, the null hypothesis is

H0:0:90.

Lemma 14.1 (a) Suppose Fy is defined with the condition A,—j(¥;r(§)) > 0 in place of
MAp—i(Yip(€)) > 01 > 0 in Fo; for all j € {0,...,p}, where p = 1. Suppose ﬁn(ﬁ) s defined in
and T1n(0) = n! Y1 Gi(0)gi(0) (which differs from its definition in ) Then, there
exist moment functions g(W;,0) and a sequence of null distributions {F,, € Fo : n > 1} for which
ﬁn = ﬁn(ﬁg) and fln = fln(Go) are well-behaved (in the sense that (A)n — Ep,9i9; —p 0>k and
L1, — Er, Gig) —p 0F°F) and LM, (00) = AR, (00) + 0p(1) —a X2

(b) Suppose Fy is defined with the condition A\p—;(¥;p(£)) > 61 > 0 deleted in Fo; for all
j €40,...,p}, where p = 1. Suppose Qn(e) and fln(é?) are defined in and , respectively.

Then, there exists moment functions and a null distribution F € Fy for which LM, (6y) = 0 a.s.
for allm > 1.

Comments: (i) The model we use to prove Lemma [14.1|(a) is the linear IV regression model with

one endogenous rhs variable and (for simplicity) no exogenous variables. Specifically, the model is
Y1i = yQiQ + u; and Y2i = Zéﬂ' + v9;, (14.1)

where y1;, 0, Y2, v0; € R, Z;,w € RF w9 = pu; + 0&; for some random variable £;, 6 = (1 — p2)1/2,
and the observations are i.i.d. across ¢ for any given n. The parameter space F* for the distribution

F of the random vector W; = (y14, y2i, Z.)" is

F*:={F : (14.1) holds with = 6y, 7 =7 € R¥, p=pp € (-1,1),
Z;i, u;, and &; are mutually independent, Eru; = Erp&; = 0,

Epui = Epé; =1, Epl|(ui,&, Z1Z:)|*77 < M, and Anin(BpZiZ]) > 6} (14.2)

for some v, > 0 and M < co. As defined, p is the correlation between u; and wvo;.
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The moment functions are g(W;,0) = Z;(y1; — y2:0). When the null value 6y is the true value,
this gives g; = ¢i(0o) = Ziu; and G; = Gi(0g) = —Z;y2i- The set F* is a subset of Fy when the
latter is defined with the condition Ap—;(¥;r(£)) > 0 in place of A,—;(¥;r(£)) > 61 > 0. This holds
because (i) for all F' € F*, )\min(\IJ?C(Gi)) > 0 (by the argument in the paragraph that contains
because Amin(ErZ;Z!) > 0 and Amin(Erpeic;) > 0, where ¢, = (u;, —pu; — 6¢;)" for p €
(=1,1)), (i) Amin(Ergi]) = ErtAmin(BrZiZl) > 6 > 0, and (iii) Ap_; (WCFasTr CiBramsty o
Amin(TECEN M2/ for all € € RP~I with ||€]] = 1 and all j € {0,...,p} (by the results and
arguments in the paragraphs that contain —, which verify that condition (iv), stated
in , is a sufficient condition for the A,_;(-) condition in Fy;). The quantity /\min(\II?C(G")) is
arbitrarily close to zero for p arbitrarily close to one.

We consider a sequence of distributions {F;, € F* : n > 1} for which 7z, = 0" for alln > 1, p,,

(=pr,) — 1, and Ep, Z;Z! does not depend on n. For these distributions,
Gi = —p,gi + 0nGY, where G := —Z;£; and §,, := (1 — p2)'/2 (14.3)

In this case, the IV’s are irrelevant and the degree of endogeneity is close to perfect for n large.

(if) The model we consider in Lemma [14.1|(b) is the same as that in part (a) except that F*
allows for p = pp € (—1,1] and we consider a single distribution ¥ with 7 = 0¥ and p = 1, rather
than a drifting sequence of distributions. For this distribution, Amin(\I/%eC(Gi)) =0.

(iii) The intuition for the results in Lemma [14.1fa) and (b) is as follows. As shows, G;
is close to being proportional to g; when 7, = 0¥ and p,, is close to one. And, when 75, = 0¥ and
pn, = 1, they are exactly proportional. By averaging over ¢ = 1, ...,n and by taking expectations, the
same properties are seen to hold for én and g, and their population counterparts. In consequence,
D, (= G — fnﬁgl’g\n when p = 1) is close to 0% (because it is a sample version of the L?(F)
projection of G; on g;) and the same is true of the population counterpart of ﬁn (because it is the
L?(F) projection of G; on g;). The latter implies that the direction of the k-vector Dy is primarily
random. In consequence, this direction turns out to be sensitive to the specification of the sample
matrices fn and Qn even within the class of consistent estimators of their population counterparts.

One consistent choice of T, and (used in Lemma M(a)) yields D, to be very close to
being proportional to g,. In this case, the projection of Qn 1 2§n onto (), Y 21A)n is asymptotically
equivalent to Qn 1 2§n itself. The LM statistic is a quadratic form in this projection k-vector
(i.e., P§;1 /25 Qn Y 2§n) multiplied by n. Hence, it behaves asymptotically like a quadratic form in
Qn v 2§n multiplied by n, which is just the AR statistic. This explains the result in Lemma (a).
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On the other hand, when p,, = 1 (which implies that Gn = —Gn by )7 another consistent
choice of T, and 0, (used in Lemma M(b)) yields D,, = 0% a.s. In this case, the projection of
Qn 1 2§n onto O, 1/ ’Dy, equals 0F a.s. Hence, the LM statistic (which is a quadratic form in this
projection times n) equals zero a.s. This explains the result in Lemma M(b)

(iv) The result of Lemma [14.1](a) also holds for the model described in Comment (ii). Hence,
drifting sequences of distributions are not required to show the result of Lemma M(a) if one
removes the condition A\p—;(¥;r(£)) > 61 > 0 entirely from Fo;. Furthermore, the result of Lemma
14.1{a) can be extended to cover weak IV cases (in which 7 = 7, # 0*, but 7, — 0¥ sufficiently
quickly as n — o00), rather than the irrelevant IV case (in which 7= = 0%).

(v) In the extreme case of the model, where p = 1 and m = 0, the endogenous variables y;
and yo; are identical, which is similar to perfect multicollinearity in linear regression. However, the
result of Lemma (a) does not require either p to be exactly equal to one or 7 to be exactly
equal to zero.

(vi) Finite sample simulations corroborate the asymptotic result given in Lemma [14.1)(a). For
the model and LM test described in Comment (i) with & = 5, 7 = 0%, p = 1, Z; ~ N(0°,I5),
(ui, &) ~ N(0%,I3), and Z; independent of (u;,&;), the null rejection rate of the nominal 5% LM
test is 59.4% when n = 200 and 57.6% when n = 1000. However, when p deviates from 1 even by
a small amount, the magnitude of over-rejection drops very quickly. The null rejection rate of this
nominal 5% LM test is 10.1% when p = 0.99 and n = 200 and 12.9% when p = 0.998 and n = 1000.
(These simulation results are based on 50,000 simulation repetitions.)

(vii) The conditions of Lemma [14.1a) and (b) are consistent with those of Theorem 1 of
Kleibergen (2005). This implies that the X?D asymptotic distribution of the LM statistic obtained

in the latter only holds under additional conditions, such as those in Fy.

14.2 Proof of Lemma [14.1]

Proof of Lemma To prove part (a), we use the model defined in (14.1)-(14.3]). We have

~

- R n
G = —puGn +0uGr, where Gy, :=n"" 3 G7, and
=1

T =n 'Y Gigl =1 3 (=ppgi + 602G g = —ppQn — ppGndly + 6nl't,, where
=1 =1

n
1= n ZIGZ‘g; (14.4)
1=

We choose {p,, : n > 1} to converge to one sufficiently fast that nd,, — 0, where 6, = (1—p2)/2

n
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by (14.3). For example, we can take p,, = (1 — n~3)"/2. Using the results above, we obtain

ﬁn = én - flnﬁyjl/g\n
= _pn:dn + 6TLG:L - [_ann - pn/g\n/gln + 5nr>{n]Q;1§n
= Pn (G020 G0)Gn + 60 (G — T5,05,1G0). (14.5)

This gives

Gn i= Gn +10,C, = Dn/( 19.), where

Cn = (G}, = 11,05 30)/ (P ﬁ Gn) = Op(n~2) and G, = G + 0p(n"1/?),  (14.6)

where ¢, = O,(n~/2) because p, — 1, @;’fb = 0,(n"Y?) by the CLT since Er,Gf = —Fr,7Z; -
Ep & = 0F, I“{nﬂnl = Op(1) by the WLLN applied twice and Amin(EF, 9i9;) = Amin(EFR, ZiZ)) >
>0, gn =0p(n ~1/2) by the CLT, and (ngnQn Gn)~t = 0,(1), which holds by the CMT because
AR, = ngnQn Jn —d Xk (by the CLT, WLLN, and CMT) and X% > 0 a.s., and lastly the result
for g, in the second line of holds by ¢, = O,(n~'/2) and né,, = o(1).

Projections are invariant to nonzero scalar multiplications of the matrix that defines the pro-

jection. That is, P4 = P.4 for any matrix A and any scalar ¢ # 0. We have pngnQn gn # 0 wp—1
because (ng,Q;1g,) " = O,(1) and p,, — 1. So, the LM statistic is unchanged wp—1 when D, is

replaced by Dn/(pnganlﬁn) = Gn = Gn + 0,(n~/?) using 1) Thus, we have

12p L, 8%

LM, = n%ﬁ; G Dn In

~

= W%Q#ﬁn(%ﬁﬁlﬁn) 9.9, G +0p(1)
= n%ﬁgl/g\n +0p(1) = ARy, + 0p(1) —4 Xi, (14.7)

which completes the proof of part (a).
Next, we prove part (b). In this case, we use the model in ((14.1))-(14.3) with p,, = 1 and d,, =0

for all n > 1. In consequence, G; = —g; and @n = —gn. Given the definitions of Qn and fln in

(3.1) and (3.2), this yields

~ n N n .
', = nt Z ngé - Gn@/@ =-n! Z gigv/; + gn/.d/n =y,

=1 =1

D, =G, — flnﬁ_lﬁn = 0", and

LM, := 1§, 0, 2Py 125 0,25, = ng, 0, 2Py, %G, = 0 (14.8)

26



for all n > 1, where the projection matrix, Py, onto 0¥ equals 0¥**. [

15 Proof of Lemma [10.2

Lemma of AG1. Under all sequences {\,p :n > 1},

kxpk
hs.g oFxp
—d

1/2 In T v [
vec(Dyn — Ep, Gi) vec(Dy,) Opkxk q)szC(Gi)

n

Under all subsequences {w,} and all sequences {A,, p : n > 1}, the same result holds with n

replaced with wy,.

Proof of Lemma [10.2l We have

~

n I‘1'n
n'2vec(Dy — Dy) = n 2> wec(Gi — Dp) — | 1 | Q'3 (15.1)
i=1 ~
|
. Er,Gongy
=n 12 Z vec(G; — D) — : Q}jgi +0p(1),
=1
' EFnGépgé

where the second equality holds by (i) the weak law of large numbers (WLLN) applied to n™! >},
Gejgy for j=1,...,p, n7 1> vee(Gy), and n= 13", geg), (i) Ep,g; = 0, (i) hs g = lim Qp, is
pd, and (iv) the CLT, which implies that n'/2g, = O,(1).

Using , the convergence result of Lemma holds (with n in place of w,) by the
Lyapunov triangular-array multivariate CLT using the moment restrictions in F. The limiting

covariance matrix between nl/ QUec(ﬁn — D,,) and nt/ 2@1 in Lemma is a zero matrix because
Ep,[Gij — Dyj — (Er,Ge;gn) 5 gilg; = 0<%, (15.2)

where D,,; denotes the jth column of D,,, using Ef, g; = 0% for j = 1, ..., p. By the CLT, the limiting
variance matrix of n'/2vec(D,, — D,,) in Lemma equals

lim Varg, (vec(Gy) — (Er, vec(Ge)gp) Qs gs) = lim @) = e, (15.3)

(Gq)

see (|10.15)), and the limit exists because (i) the components of @%ic are comprised of Ay r,, and

submatrices of A5 g, and (ii) A5 r, — hs for s =4, 5. By the CLT, the limiting variance matrix of
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n1/2g, equals lim Er, g;g, = hs 4. O

16 Proof of Lemma [10.3

Lemma of AG1l. Suppose Assumption WU holds for some non-empty parameter space
Ay C Ay, Under all sequences { A, :n > 1} with A, € Ay,

1'/%(Gn, Dy — Er, Gi, Wi, DpUr, Ty) —a (G, D, ),

where (a) (gy,, Dy) are defined in Lemma m (b) Ay, is the nonrandom function of h and Dy,
defined in , (c) (Dy,Ap) and gy, are independent, (d) if Assumption WU holds with A, = Ay,
Wrp = 9;1/2, and Up = I, then Ay, has full column rank p with probability one and (e) under all
subsequences {wy} and all sequences { Ay, n : 1 > 1} with Ay, p € Ay, the convergence result above

and the results of parts (a)-(d) hold with n replaced with wy,.

The proof of part (d) of Lemma uses the following two lemmas and corollary.

Lemma 16.1 Suppose A € R**P has a multivariate normal distribution (with possibly singular
variance matriz), k > p, and the variance matriz of A& € RF has rank at least p for all nonrandom

vectors £ € RP with ||£|| = 1. Then, P(A has full column rank p) = 1.

Comments: (i) Let Condition A denote the condition of the lemma on the variance of Ag.
A sufficient condition for Condition A is that vec(A) has a pd variance matrix (because A¢ =
(¢’ ® Ix)vec(A)). The converse is not true. This is proved in Comment (iii) below.

(ii) A weaker sufficient condition for Condition A is that the variance matrix of A¢ € R* has
rank k for all constant vectors £ € RP with ||£|| = 1. The latter condition holds iff Var({'vec(A)) > 0
for all ¢ € RPF of the form ¢ = ¢ ® u for some & € RP and p € R¥ with ||¢]] = 1 and ||u|| = 1
(because (&' @ p')vec(A) = vec(p/ A€) = p/A€). In contrast, vec(A) has a pd variance matrix iff
Var(C'vec(A)) > 0 for all ¢ € RP* with ||¢|| = 1.

(iii) For example, the following matrix A satisfies the sufficient condition given in Comment (ii)
for Condition A (and hence Condition A holds), but not the sufficient condition given in Comment

(i). Let Z; for j = 1,2,3 be independent standard normal random variables. Define

VAR
A= . (16.1)
Z3 71

Obviously, Var(vec(A)) is not pd. On the other hand, writing £ = (£,,&,)" and p = (uq, py)’, we
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have

Var(WAE) = Var(u[Z1&; + Zas] + 1ol 2381 + Z185))
= Var((ui€1 + p2ée) 21 + € Za + 191 Z3)
= (11&1 + 192)” + (1162)” + (1261)* (16.2)

Now, (11€5)% = 0 implies p; = 0 or &, = 0 and (5€;)? = 0 implies py = 0 or &; = 0. In addition,
gy = 0 implies s # 0, €5 = 0 implies &; # 0, etc. So, the two cases where (1,&5)? = (19€1)? = 0
are: (p11,€1) = (0,0) and (pg, &) = (0,0). But, (u1,&;) = (0,0) implies (111 +119€2)? = (12€2)* > 0
and (p9,&5) = (0,0) implies (p1&; + p19€2)? = (111€1)? > 0. Hence, Var(u/Ag) > 0 for all p and &
with [|u|] = [|€]] = 1, Var(A€) is pd for all £ € R? with ||¢]|?> = 1, and the sufficient condition given
in Comment (ii) for Condition A holds.

(iv) Condition A allows for redundant rows in A, which corresponds to redundant moment
conditions in the application of Lemmal[I6.1] Suppose a matrix A satisfies Condition A. Then, one
adds one or more rows to A, which consist of one or more of the existing rows of A or some linear
combinations of them. (In fact, the added rows can be arbitrary provided the resulting matrix has a
multivariate normal distribution.) Call the new matrix A . The matrix A, also satisfies Condition
A (because the rank of the variance of A, ¢ is at least as large as the rank of the variance of A,

which is p).

Corollary 16.2 Suppose A, € RFX s a nonrandom matriz with full column rank g, and Ap_y, €
RF*(0=4+) has a multivariate normal distribution (with possibly singular variance matriz) and k > p.
Let M € RF** be a nonsingular matriz such that MA,, = (e1,...,eq,), where e; denotes the l-th
coordinate vector in R®. Decompose M = (M, M3)" with My € R*** and My € R*=2)%F_ Syppose
the variance matriz of MaA,_q.&9 € RF=% has rank at least p — gs for all nonrandom vectors

£y € RP™9 with ||&|| = 1. Then, for A = (A,., Ap—q.) € R¥*P| we have P(A has full column rank
p) =1

Comment: Corollary follows from Lemma by the following argument. We have

MA,, MA,_ I M{A,_
MA= [ T TR ) & e ) (16.3)
Mg, MaApg, OF=aelxa - MyA, -,
The matrix A has full column rank p iff M A has full column rank p iff MsA,_,, has full column
rank p — q.. The Corollary now follows from Lemma applied with A, &, p, and £ replaced by

MsAy,_q., k — g+, p — g«, and &,, respectively.
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The following lemma is a special case of Cauchy’s interlacing eigenvalues result, e.g., see Hwang
(2004). As above, for a symmetric matrix A, let A\;(A) > Aa(A) > ... denote the eigenvalues of A.
Let A_, denote a principal submatrix of A of order » > 1. That is, A_, denotes A with some choice

of 7 rows and the same r columns deleted.

Proposition 16.3 Let A by a symmetric k x k matriz. Then, A\p(A) < Ag—1(A—1) < Me—1(A) <
e < A2(A4) < Ai(Aq) < A (A4).

The following is a straightforward corollary of Proposition [16.3

Corollary 16.4 Let A by a symmetric k x k matriz and let r € {1, ...,k — 1}. Then, (a) A\p(A) >
Am(A_y) form=1,...k —7r and (b) A\n(A) < Ap—r(A_y) form=r+1,.. k.

Proof of Lemma [10.3] First, we prove the convergence result in Lemma[I0.3] The singular value
decomposition of W,,D, U, is
W, DU, = C, Y, Bl (16.4)

because B, is a matrix of eigenvectors of U] D, W)W, D,U,, C, is a matrix of eigenvectors of
W, DU, U, D;,W,,, and T,, is the k x p matrix with the singular values {7;r, : j < p} of W,,D, U,
on the diagonal (ordered so that 7jg, > 0 is nonincreasing in j).

Using (16.4)), we get

-1 / -1 Iy -1 I
WnDynUn B Y5 g = CoYnB, By oY, = Cpn Ty T, e=0Cn = Chq,
o o olp—a)xq ’ o(k—a)xq ’
(16.5)
where the second equality uses Bj, B,, = I,,. Hence, we obtain
Wi DnUp B g Yok = Wy DyUpn By g Tk + Won'/2(Dy, — Di)Uy Brg(n/?1 )7
= Cpyg +0p(1) —p hag = Apg, (16.6)

where the second equality uses n'/ 27’j g, — oo for all j < ¢ (by the definition of ¢ in ),
W, = O(1) (by the condition ||[Wp|| < My < oo VF € Fyu, see (10.5)), n'/2(D,, — D,) = O,(1)
(by Lemma [10.2)), U, = O(1) (by the condition ||Up|| < M; < oo VF € Fyy, see (10.5)), and
By, — hag with |Jvec(hgq)|| < oo (by using the definitions in and (9.1)). The
convergence in holds by , , and , and the last equality in holds by
the definition of wa in .
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Using (16.4) again, we have

09%(P—a)
nY2 W, DU By p—q = n2Co Y0 Bl By g = n?C T,
Ip—q
09%(p—a) 02*(P—q)
=Cn | 02,y | = h3| Diag{higi1,.h1p} | =h3hi, g (16.7)
0(k—p)x(p—q) 0(k=p)x(p—q)

where the second equality uses B}, B,, = I, the convergence holds by ((10.12]) using the definitions

in (10.17) and 1 , and the last equality holds by the definition of h<1>,pfq in (10.17)).
Using (16.7) and Lemma we get

02 W, DpUpBrp—g = 0*WoDpUn By p—g + Wun/?(Dy, — Dp)UnBpp—g
—d hghi,p_q + h715hh81h2’p,q = Z’LP—Q’ (16.8)

where By, ,—q — h2p—q, Wn — h71, and U, — hg by (10.3), (10.12), (10.17)), and Assumption WU
using the definitions in 1) and the last equality holds by the definition of A, ,_, in 1}
Equations (16.6)) and ([16.8]) combine to prove

n' W, DU, Ty = n?W,DpUpnBnSy = (WyDpUp By o Uik, 0 * W DUy By )

n?q,

—a (Bhg Anp—q) = Ay (16.9)

using the definition of S, in . The convergence is joint with that in Lemma because it
just relies on the convergence of n'/ 2(ﬁn — D,,), which is part of the former. This establishes the
convergence result of Lemma [10.3

Properties (a) and (b) in Lemma hold by definition. Property (c) in Lemma holds by

Lemma and property (b) in Lemma [10.3]
Now, we prove property (d). We have

hap—q = lim B, By p—q = Ip—4 and hg7qh3,q = lim C,’%qC’mq = I (16.10)

/
2,p—q n,p—q

because B, and C,, are orthogonal matrices by (10.6) and (10.7). Hence, if ¢ = p, then A;, =
Zh’q = h3q, Z;Zh = I, and Ay, has full column rank.
Hence, it suffices to consider the case where ¢ < pand A, ;, € Ag ¥n > 1, which is assumed in part

(d). We prove part (d) for this case by applying Corollary with ¢, = ¢, Ay, = Ay (= hsyg),
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Ap_g, = BDppog, M =y, My = Ry, My = by, & € RP7% and A = A,. Corollary
gives the desired result that P(Aj has full column rank p) = 1. The condition in Corollary m
that “MA,, = (e1, ..., eq,)" holds in this case because hAy, , = hihs 4 = (e1, ..., ¢4). The condition
in Corollary that “the variance matrix of MaA,_, & € RF=% has rank at least p — ¢, for
all nonrandom vectors £, € RP™9 with ||£5|| = 17 in this case becomes “the variance matrix of
hgyquzhyp_q@ € RF~9 has rank at least p — ¢ for all nonrandom vectors &, € RP~9 with ||&,]] = 1.7

It remains to establish the latter property, which is equivalent to
Ap—qg (Var(hyp_ Anp—qs)) > 0 VEy € RP™ with [[&]| = 1. (16.11)
We have

Var(h g Bhp—ea) = Var( é»k—qh;;ﬁﬁhhlp—qu)
= ((h2p—ga)' ® (W ghs ) *)Var(vee(Dn))((hp—oa) © (s _ohs ™))
— vec(G; _
= ((h2pgf2) ® (gl ) (2 pg0) @ (Hh o yhs g ))

Ry hi Y 2Gihg e
S (16.12)
where the first equality holds by the definition of th,q in (10.17) and the fact that h7; = h;;/ 2

and hg; = I by the conditions in part (d) of Lemma the second and fourth equalities use
the general formula vec(ABC) = (C' ® A)vec(B), the third equality holds because vec(Dy) ~
N (0PF, @Zec(Gi)) by Lemma and the fourth equality uses the definition of the variance matrix

@7 in ([10.15)) for an arbitrary random vector a;.
h’3 k—qhgglz/QGith—q{z
Next, we show that &,~ '
' QR 2GiBap gt
. n,k—g°tn iPn,p—qS2
lim L% :

equals the expected outer-product matrix

1/2
(I)hé,k—qhs,g/ Gih2,p—q€2
h

= ((h2p—q€a)' ® (W iy o )@ (happg0) ® (W ghsy?))
= 1m((Bup—a€2)' @ (Cr g N5 (Brp-o€2) @ (C iy 2))
= lim((Bap-ofa)' @ (Chig @ P NVE D (Bup-a€a) © (Chiy %))
—lm((Bpp—q€a) ® (Ch g ) Ep,vec(Gs) - Ep,vec(Gy) ((Bnp—qg€a) @ (Ch g0 '?))
= ln((Bap-o)' @ (Chm g PDVE D (Brp-i) @ (Cliy )
0, 2GiBrp4f2) - Br,vec(Ch 0 2 GiBrpg6s)'

c . 2GiBn,
= lim W ity (16.13)

—lim Ep,vec(C), 1,
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where the general formula vec(ABC) = (C' @ A)vec(B) is used multiple times, the limits exist by
the conditions imposed on the sequence {\, j, : n > 1}, the second equality uses B, p,—; — hap—;,
Chjk—q — hgk ¢ and €y vz, h 1/2 the third equality uses the definitions of U} and ®%

given in and (|10.15 respectlvely, and the last equality uses Er,vec(C, J—giln 12¢, iBnp—q) =

vec(Cy, ;. qQ 2p wBnp—q) = O(n~12) by (16.7) with W,, = Q,, vz
/24
We can write lim \IIUEC(C o CiBn) 4 the limit of a subsequence {n,, : m > 1} of matrices
, 1/2
\I/EC(C” O “GiBrm) o which F,, € Foj for all m > 1 for some j =0, ..., q. It cannot be the case

m

1/2

that j > ¢, because if j > ¢, then we obtain a contradiction because n,"7;r, — 00 asm — oo
by the first condition of Fo; and n,IT{ZTj F,,, — 00 as m — oo by the definition of ¢ in .

Now, we fix an arbitrary j € {0,...,¢}. The continuity of the A,_;(-) function and the A,_;(-)
condition in Fo; imply that, for all £ € RP~7 with |[¢]| = 1,

2a Bnm,pjf)

1/2
A '<hm\p o =g St 58nm “GiBnm p— J§>
p—J

C/
=1lim A, <\I/ o > 0. (16.14)

For all &, € RP™7 with ||&,]] = 1, let £ = (0977,£5) € RP~I. Then, By, p—i€ = Bn,, p—¢&2 and, by
(T6.14),

c Q26 Bn,, o
Ap—j <hm\Il pmo kgt "’ qu> > 0 V€, € RP7 with ||&,]] = 1. (16.15)

k— Qn'rln/2G i Brm ,p—a2
Next, we apply Corollary [16.4(b) with A = lim ¥ ;" Cnmokd ’
\I]C;lm k—q T:Tln/zG Bnm p— q§2

and columns deleted in the present case and p > ¢ implies that m =p—j > 1forall j =0,...,q
Corollary [16.4f and (16.15]) give

and Af(qu) = lim

=p—j,r=q—j, where A_(q_j) equals A with its first ¢ — j rows

c 0 Y2G By o
Ap—q <lim g kT e qf?) > 0 V€, € RP™7 with ||&]] = 1. (16.16)

Equations ((16.12)), (16.13)), and (16.16]) combine to establish (16.11)) and the proof of part (d)

is complete.
Part (e) of the Lemma holds by replacing n by the subsequence value w,, throughout the

arguments given above. [

Proof of Lemma It suffices to show that P(A¢ = 0F for some & € RP with ||¢|| = 1) = 0.
For any constant v > 0, there exists a constant K, < oo such that P(|lvec(A)|| > K,) <~
Givene > 0, let {B({,,¢) : s =1,..., N.} be a finite cover of {¢£ € RP : ||{|| = 1}, where ||{,|| =1

and B(&,,¢) is a ball in RP centered at £, of radius €. It is possible to choose {{, : s = 1,..., N:}

such that the number, N;, of balls in the cover is of order e P+, That is, N, < Cie P! for some
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constant C'1 < oo.
Let A, denote the rth row of A for r = 1, ..., k written as a column vector. If £ € B(§,,¢), we

have

k 1/2 k 1/2
IAE = A || = (Z(Ai(ﬁ - 53))2> < <Z 1A1%]1€ — £s|2> = ¢llvec(A)][,  (16.17)
r=1 r=1
where the inequality holds by the Cauchy-Bunyakovsky-Schwarz inequality. If & € B(&,,e) and
A& = 0F, this gives
1A, < elfvec(A)]] (16.18)

Suppose Z, € RP has a multivariate normal distribution with pd variance matrix. Then, for

any € > 0,

P(||Zi| <¢) = / fz.(z)dz < sup fZ*(z)/ dz < Cae? (16.19)
{llzll<e} ZERF {llzll<e}

for some constant Cy < oo, where fz, (z) denotes the density of Z, with respect to Lebesgue
measure, which exists because the variance matrix of Z, is pd, and the inequalities hold because
the density of a multivariate normal is bounded and the volume of a sphere in RP of radius € is
proportional to eP.

For any § € RP with [|{]| = 1, let B¢A¢ By be a spectral decomposition of Var(Ag), where A¢ is
the diagonal k x k matrix with the eigenvalues of Var(A¢) on its diagonal in nonincreasing order
and Bg is an orthogonal k x k matrix whose columns are eigenvectors of Var(A¢) that correspond
to the eigenvalues in A¢. By assumption, the rank of Var(A¢) is p or larger. In consequence,
the first p diagonal elements of A¢ are positive. We have [|A|| = [|B{AS|| and Var(B;AS) =
BiVar(A§)Be = A¢. Let (BAE), denote the p vector that contains the first p elements of the &
vector BéAé. Let Agp denote the upper left p x p submatrix of A¢. We have Var((BéAf)p) = Agp
and Ag, is pd (because the first p diagonal elements of A¢ are positive).
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Now, given any v > 0 and € > 0, we have

P(A¢ = 0F for some ¢ € RP with ||¢]| = 1)

=P (Uévzﬁ UeeB(e, e):jel|=1 1AE = Ok})

< P (U {I1Ag,)| < ellvec(a)I1})
< P (U {186 < elloec( )1} N {llvee(A)]] < Ky }) + P lvec(A)]| > K)
< P (U {llAg ]I S K} ) +9
Ne
< > P(IAg ) <eKy) +9
s=1
Ne
< S P(I(BLAE), I < eKy) 4+
s=1
< N502K£€p+’)’
< Cie PGy KPeP + o
— vase— 0, (16.20)

where the first inequality holds by using £ € B(&,, ), the third inequality uses the definition
of K, the third last inequality holds because [|(Bg A&,)pl| < [|Bg A&, l| = ||A|| using the defini-
tions in the paragraph that follows the paragraph that contains , the second last inequality
holds by with Z, = (B A¢,)p and the fact that the variance matrix of (B Ag,)p is pd by
the argument given in the paragraph following , and the last inequality holds by the bound
given above on N..

Because v > 0 is arbitrary, implies that P(A¢ = 0¥ for some ¢ € RP with ||¢]| = 1) = 0,
which completes the proof. [

17 Proof of Theorem [10.4

Theorem of AG1l. Suppose Assumption WU holds for some non-empty parameter space
A, C Ao. Under all sequences {\pp :n > 1} with Ay € Ay,
(a) Kpn —p o0 if ¢ =p,
(b) Kpn —d )‘min(Z/h,p—qh&k—qhg,k—qzhvp—q) if g <p,
(c)
(d)
Rpn), converges in distribution to the (ordered) p—q vector of the eigenvalues of Zlhjp_qh&k_qhg,qu

XAppg € R—a)x(p—q)

=)

jn —p 00 for all j < gq,

n
the (ordered) vector of the smallest p—q eigenvalues of nUy;, Dy, W Wy, DUy, i.e., (K(g41)n, s
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(e) the convergence in parts (a)-(d) holds jointly with the convergence in Lemma and
(f) under all subsequences {wy} and all sequences { Ay, p : 1 > 1} with Ay, p, € Ay, the results

in parts (a)-(e) hold with n replaced with wy,.

The proof of Theorem [10.4] uses the following rate of convergence lemma. This lemma is a key

technical contribution of the paper.

Lemma 17.1 Suppose Assumption WU holds for some non-empty parameter space A, C As.
Under all sequences {\,p : n > 1} with A\, € As and for which q defined in satisfies
q > 1, we have (a) Rjn —p 00 for j = 1,....q and (b) when p > q, Rjn = 0,((n**14r,)?) for all
¢ < qandj=q+1,..p. Under all subsequences {wy} and all sequences {\y, p : n > 1} with

Awn b € Ms, the same result holds with n replaced with wy,.

Proof of Lemma m. By the definitions in and , hej = limTj11)p,/TiF, for
j=1,...,p— 1. By the definition of ¢ in , heq = 01if ¢ < p. If ¢ = p, he 4 is not defined by
and and we define it here to equal zero. Because 7 is nonnegative and nonincreasing
in j, he; € [0,1]. If hg; > 0, then {7;p, : n > 1} and {7(j41)p, : n > 1} are of the same order of
magnitude, i.e., 0 < lim 7115, /Tjr, < 1B We group the first ¢ singular values into groups that
have the same order of magnitude within each group. Let G}, (€ {1,...,q}) denote the number of
groups. (We have G, > 1 because ¢ > 1 is assumed in the statement of the lemma.) Note that
G, equals the number of values in {hg 1, ..., he 4} that equal zero. Let 4 and rg denote the indices
of the first and last singular values, respectively, in the gth group for g = 1, ..., Gp. Thus, r = 1,
Ty = Tg+1— 1, where rg, 11 is defined to equal ¢+ 1, and TQG;L = gq. Note that ry and ry depend on h.
By definition, the singular values in the gth group, which have the gth largest order of magnitude,
are {7y, p, 1 n > 1}, ... {Tyer, 1 n > 1} By construction, he; > 0 for all j € {ry,...,rg — 1} for
g=1,...,Gp. (The reason is: if hg ; is equal to zero for some j € {rg,...,rg—1}, then {7yop, : n > 1}
is of smaller order of magnitude than {7, r, : n > 1}, which contradicts the definition of rj.) Also
by construction, lim 7, /7;r, = 0 for any (j,5') in groups (g, ¢’), respectively, with g < ¢’. Note
that when p =1 we have G, =1 and m =rj = 1.

The eigenvalues {Kj, : j < p} of nU! D! W!W,,D,,U, are solutions to the determinantal equation
\nﬁ;ﬁ;W[LWnﬁnﬁn — kI,| = 0. Equivalently, by multiplying this equation by 7';12&71_1|B{1U,/1[/]\;1/]

x |U7 U, By, they are solutions to

772 BLUL DLW W DU By — (027, p,) 2k BLULUL YU U By = 0 (17.1)

"' Note that SUP;j>1, reryy TiF < 00 by the conditions ||Wr|| < My and ||Ur|| < M1 in Fwy and the moment
conditions in F. Thus, {7, : » > 1} does not diverge to infinity, and the “order of magnitude” of {7;r, : n > 1}
refers to whether this sequence converges to zero, and how slowly or quickly it does, when it does converge to zero.
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wp—1, using |A; Ag| = |A1]-]| Az for any conformable square matrices Ay and As, |By,| > 0, |U,| >0
(by the conditions in Fyy in (10.5) because A, C Ay and Ag only contains distributions in Fyyy),

U1 > 0 wp—1 (because U, —, hg1 by (10.2), (10.12), (10.17), and Assumption WU(b) and (c)
1/2

and hgy is pd), and 7., r, > 0 for n large (because n'/*7, 5, — oo for r; < q). (For simplicity, we

omit the qualifier wp—1 from some statements below.) Thus, {(n'/27,,r ) 2R : 7 < p} solve

|T7T12FnB;lU7/1ﬁ"/fl/WT/LWnﬁnUan - K(Ip + A\n)| =0or
"’ ﬁ/

|(Ip + Xn)_leFan ! D)WW, DU, By, — rI,| = 0, where

~ Ay, A SN

A= | " = BULUT YU U By — 1 (17.2)
A2n A3TL

for A\ln € RTX7T ﬁgn e R1x(=9) and A\gn e RP—r1)x(=%) and the second line is obtained by

multiplying the first line by |(Z, + A7,

‘We have
7,5 WnDnU, By,
= 7L (WaW, YW DoUp By — (01?7, 5,) " Won'/?(Dy, — Dy,)Un By,
= 7 (WaWHC T + Op((n' 27y, 5,) ™) (17.3)
hg o +0(1) 077 x (P=77)
= (Ik? + Op(l))cn O(p—rf)xrf O(TTQFn /Tran)(p_TY)X(p_r?) + OP((nl/QTTan)_I)
olk—p)xry k—p)x(p—r7)
g R orix(p—r7)
sT1

-1
—p h3 , where hg,rf := Diag{1, he 1, he1h62; -, H he e},
/=1

O(k—rf) Xrs O(k_T<1>)X (p—r$

haT? € RTTXTT, hgﬁ = 1whenr$ =1, O(7por, [Tr 1, ) P71 X P=7%) denotes a diagonal (p—r$) x (p—
r{) matrix whose diagonal elements are O(7,,r, /Tr,F, ), the second equality uses , W, —p hn
(by Assumption WU(a) and (c)), [|h71|] = || lim W,,|| < oo (by the conditions in Fyy defined in
(10.5)), n'/%(D,,— D,,) = O,(1) (by Lemmal10.2), U,, = O(1) (by the conditions in Fyyyr), and B, =

O(1) (because By, is orthogonal), the third equality uses Wan* v —, I) (because W, —p hr1, hy o=
j—1 j—1

lim Wy, and hr7; is pd by the conditions in Fywv), 75, /TrF, = H(T(ngl)Fn /Ter,) = H he ¢+ o(1)

(=1

/=1 —
for j = 2,...,r%, and 7jF, /TrF, = O(Tryr, /TrF,) for § = ra,...,p (because {7;r, : j < p} are

nonincreasing in j), and the convergence uses Cp, — hs3, Tr,5, /Tr,r, — 0 (by the definition of r3),

and n'/27,  — oo (by (10.16) because r; < q). Note that, for matrices that are written as O(-),
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we sometimes provide the dimensions of the matrix as superscripts for clarity, and sometimes we

do not provide the dimensions for simplicity.

Equation (17.3)) yields

2 Lt D T T D gr° 07ix(p=rd) / hg ry 07 pr)
- ol 1 s 1
Tt BaUnDuWalWnDnUnB =p | oyns gmrtixtomrty | 7378 gmrtinst gemrtixto—r)
he2 orix(@—ry)
= 6 , (17.4)
ole—r)xry  lo—ri)x(p—r9)
where the equality holds because h5hs = lim C,C,, = I}, using ((10.7).
In addition, we have
A, = B.U U VU U By, — I, —, 0P7P (17.5)

using [/J\',;IU” —p I, (because [7” —p hg1 by Assumption WU(b) and (c), hg1 := lim U, and hg; is
pd by the conditions in Fy ), By, — ha, and hhe = I, (because By, is orthogonal for all n > 1).
The ordered vector of eigenvalues of a matrix is a continuous function of the matrix by Elsner’s

Theorem, see Stewart (2001, Thm. 3.1, pp. 37-38). Hence, by the second line of (17.2)), (17.4])),

1) and Slutsky’s Theorem, the largest 7§ eigenvalues of TT_anB' U, D, W)W, D,U,B,, (ie.,

n-n—n

{(nI/ZT,‘an)ﬂﬁjn :j < r{} by the definition of Kj,), satisfy

rg—1
((n1/2TT1Fn)_2k\1n’ SY) (n1/2TT1Fn)_2RT<1>n) —p (1’ hgvl’ h%vlha% Y H h%’ﬁ) and so

=1
Rin —p 00V = 1,013 76)

because n'/%7, p, — oo (by (10.16) since r1 < ¢) and hgy > 0 for all £ € {1,...,r$ — 1} (as noted

above). By the same argument, the smallest p — r{ eigenvalues of TﬁZFnB;ZU{lD;W[LWnDnUan,

T1

ie., {(nY27, 1) 2 Rjn 1 j =18 + 1, ..., p}, satisfy
(nl/QTnFn)_Qﬁjn —p 0Vji=ri+1,..,p. (17.7)

If G, =1, proves part (a) of the lemma and proves part (b) of the lemma (because
in this case r{ = ¢ and 7,5, /7¢r, = O(1) for all £ < ¢ by the definitions of ¢ and G},). Hence, from
here on, we assume that G > 2.

Next, define B,, j, j, to be the p x (j2 — ji1) matrix that consists of the j; + 1,..., jo columns of
B, for 0 < j; < jo < p. Note that the difference between the two subscripts j; and jo equals the

number of columns of B, j, j,, which is useful for keeping track of the dimensions of the B, j, j,
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matrices that appear below. By definition, B, = (B, 0,0, Bn o p)-
By (17.3) (excluding the convergence part) applied once with By, ;¢ , in place of B, as the far-
right multiplicand and applied a second time with By, o »¢ in place of By, as the far-right multiplicand,

we have

‘ 9 B
On = TR, BnOTOUnDanWnDnU"B”W(fvp

/

he o +o(1 orix(—r?)
soi O o o)
olk—r)xry O(Try, [Ty, )BT X@011)
+O0, (0?70, 5,) ")
= 0p(Tryp /Tri 1) + Op((n' P70 5,) 7Y, (17.8)

where the last equality holds because (i) C},(I + 0p(1))Cy = I + 0p(1), (ii) when Ij appears in
place of C}, (I + 0,(1))Cy,, the first summand on the left-hand side (lhs) of the last equality equals
0"1*(P=%) and (iii) when o,(1) appears in place of C/,(Ij, + 0,(1))C,, the first summand on the lhs
of the last equality equals an r{ x (p — 7{) matrix with elements that are op(7r, 5, /Tr F,)-

Define

21”('%) =T 1"_12F BnO TOUT/Lﬁ;LWéWnﬁnUanO,Tf - R(Irf + A\ln) € RT<1>XT?7
Eon(K) 1= 0, — KAz, € BT and (17.9)
23”('%) =T 1"_12FnBI 0 U/ DI W/W D UnBy, TS T H(Ip—ri’ + A\3n) e RP—r)x(p—r),

n,r{,p

As in the first line of (17.2)), {(nY/?7,,5,) %Rjn : j < p} solve

~

0 = |2 BLULDLW W, DUy, By — k(I + Ay)|

n-n—mn

gln K §2n

€2n % / §3n

= [ (8)] - [Ean (k) — Ean () Ern (W)Enn (k)]
— (9] - 772 Bl o U DWW Dl B sy — 0hérn ()0

riFp = n,ri,p

—~ ~ ~1 —~
_KJ(IP*T? + A3” - A2n§ln (’%)Qn - Q;Eln (H)A2TL + KAAIQngln (5)A2n)’, (1710)

where the third equality uses the standard formula for the determinant of a partitioned matrix (i.e.,

the determinant of £ = 6/1 2 equals [&] = [&] - |€3 — §'2§I1§2| provided &; is nonsingular, e.g.,

2 83
see Rao (1973, p. 32)) and the result given in (17.11)) below, which shows that &;,,(x) is nonsingular
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wp—1 for k equal to any solution (nl/QTnFn)_Qﬁjn to the first equality in for 7 < p, and
the last equality holds by algebra.

Now we show that, for j = 7$4-1, ..., p, (n'/?7,, F, )~ 2R jn cannot solve the determinantal equation
|/§\1n(/£)] = 0, wp—1, where this determinant is the first multiplicand on the rhs of . This
implies that {(n"/?7,, 5, ) 2Rjn : j = r$ +1,...,p} must solve the determinantal equation based on

the second multiplicand on the rhs of (17.10) wp—1. For j =r{ +1,...,p, we have

Ein = Eaal(0?7,1) R50)
= 772 B0 Us Dy Wi Wa DU Buoss — (0771, 5,) *Rju (g + Av)

= 1 + 0p(1) — 0p(1) (s + 0p(1))
= h§%o + 0p(1), (17.11)

where the second last equality holds by 1) 1 , and 1) Equation (17.11f) and )\min(hg%ﬂ?) >

0 (which follows from the definition of h<6>7r<1> in 1' and the fact that hgy > 0 for all £ ¢
{1,...,r] — 1}) establish the result stated in the first sentence of this paragraph.

For j = r{+1, ..., p, plugging (nl/znlpn)*?/%jn into the second multiplicand on the rhs of (|17.10)
gives

0 = |7, 7%, Brro pUn DWW DulUn Bt p + 0p((Trap [ Tr15,)%) + Op((0P70y1,) 72)

n,ry,p-nn

— (27 1)) " H R (1, o + Ajon)|, where (17.12)

~

~ A1 o
Aan p= Agn — Al2n€jlngn - anjlnA%l + (nl/zTTan) EJTLAanjlnA?n € R(p ri)x(p=ri)

using and (| m Multiplying (17.12) by TT,I P /72 7o F, gives

0= 17;2‘} B! .o U.D'W'W,D,Uy,B, sop+op(1) = (nl/%mpn)—?ﬁjn(fp,rf + Ajon)|  (17.13)

n,r{,p-n-—n

using O, ((n/?1,,5,)72) = 0,(1) (because r5 < ¢ by the definition of ry and n'/?7;5, — oo for all

j < q by the definition of ¢ in (10.16])).
Thus, {(n*/?7,,5,) 2Rjn : j =75+ 1,...,p} solve

0= |72 Bl o yUs Do Wi WoDuUn By yo py + 0p(1) — (Ly—ro + Ajay ). (17.14)

n,ry,p-nn

For j =r{+1,...,p, we have

Ajgn = Op(l), (1715)
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because Ay, = op(1) and Ag, = op(1) (by (17.5)), Ej_lln = 0,(1) (by (17.11)), 0,, = 0p(1) (by (17.8

1/2

since Top, < Trp, and n'/21,. g — o0), and (n'/%7, g, ) %R = 0p(1) for j =15+ 1,...,p (by

[T77).
Now, we repeat the argument from ((17.2)) to (17.15)) with the expression in (17.14)) replacing that

in the first line of l' with (|17.15)) replacing 1' and with j = r§+1, ..., p, A\jgn, By p—r$s TroFy )

rg—1

. S0 O .0

TrsFys 13 — 11, P — 13, and hg o = Diag{1, he 11, herg+1h6,5 42, - I 7ee} € RUz—Dx0a—rD)
L=r§+1

in place of j = r{ +1,...,p, Apn, By, TrF,, TroFn, 75, P — 75, and hg,r‘f’ respectively. (The fact

that A\jgn depends on j, whereas Zn does not, does not affect the argument.) In addition, Broro
and Bnﬂxf’p in —17.10 are replaced by the matrices Bn’@mg and Bn,rg,p (which consist of the
r{ 4+ 1,...,r5 columns of B,, and the last p — 7§ columns of B,,, respectively.) This argument gives

the analogues of ((17.6)) and (17.7)), which are

/,‘%]n —>p o0 v‘j =T, ...,7"<2> and (nl/zTran)72//%jn - Op(l) v,] - 7’; + 17 -~y P- (1716)

In addition, the analogue of (|17.14) is the same as (17.14)) but with gjgn in place of Ejzn, where

~ o~

Ajzy, is defined just as Ajo, is defined in (17.12) but with zzl\gjgn and :4\3]‘2” in place of Egn and A\gn,

respectively, where

~ Avjon  Azjon
j2n —

~, ~ (17.17)
A2j2n A3j2n

" Qe m® o OO "y OO P
for A1j2n € R2*"2, A2j2n c Rrax(p—ry 7"2)7 and A3j2n c Rp—ri—rd)x(p—ri—r3)

Repeating the argument GG, — 2 more times yields
Rjn —p oo Vj=1,..,1g and (0?1, 5) 2Rjn = 0p(1) Vi =15 +1,...,p,¥g =1, ..., Gs. (17.18)

A formal proof of this “repetition of the argument GG, —2 more times” is given below using induction.
Because T’QGh = ¢, the first result in (17.18]) proves part (a) of the lemma.
The second result in (17.18) with ¢ = G}, implies: for all j =q¢+1,...,p,

(n

V) o = 0a(1) (17.19)

because rg;, = q. Either rg, =rg = qorrg, <rg, = q. In the former case, (n'21,5,) " 2Rjn =
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op(1) for j =q+1,...,p by (17.19)). In the latter case, we have

Tho
Tan TGth

= lim
T"‘Gth TTG,LFn

lim

Gh_l
=[] ?es >0, (17.20)

J=ra,

where the inequality holds because hg > 0 for all ¢ € {rq,, ..., TOGh — 1}, as noted at the beginning
of the proof. Hence, in this case too, (n1/2Tan)_27%jn =op(1) for j =q+1,...,p by and
. Because 7/p, > 745, for all £ < g, this establishes part (b) of the lemma.

Now we establish by induction the results given in that are obtained heuristically by
“repeating the argument G, — 2 more times.” The induction proof shows that subtleties arise when
establishing the asymptotic negligibility of certain terms.

Let ogp denote a symmetric (p —ry_y

L,p=ry_qis Op(T(T;1>71+[)Fn7'(r<g>71+m)pn/ngFn)+Op((n1/2T,r,an)_1). Note that o4, = 0,(1) because

) X (p — rg_y) matrix whose (¢,m) element for {,m =

ro_1+ L€ >rg for £ > 1 (since 7;p, are nonincreasing in j) and nl/QTTan — oo for g =1, ..., G.

We now show by induction over g = 1, ..., G}, that wp—1 {(n1/2T7~an)_2//€jn rj=rg_1+1,..,p}
solve

72 B U, DWW DypUnBrys | o+ 0gp — K(Tp—ye | + Ajgn)| =0 (17.21)

o
rgFn nrg_1,P

for some (p—ry_;) x (p—rjy_;) symmetric matrices A\jgn = 0p(1) and ogy, (where the matrices that
are og, may depend on j).

The initiation step of the induction proof holds because holds with g = 1 by the first line
of with /Tjgn := A, and ogp = 0 for g =1 (and using the fact that, for g =1, ro_1=15:=0
.p = Bnop = Bn).

For the induction step of the proof, we assume that holds for some g € {1,...,Gj — 1}

and show that it then also holds for g 4+ 1. By an argument analogous to that in ((17.3)), we have

and B, ;o
o

0’”371 x(p—rg_1)

Tallz‘anDnUan,rgil,p - (Ik + Op(l))c’fl Diag{Tranu ) TpFn}/Tran + OP((nl/ZTTan)_l)
ok=p)x(p—rg_;)

Orgilx(rg—r;)il) o1
g
Ex(p—rg o g
—p h3 g7r3 ,0 (p—3) , where h6,rg := Diag{1, her,, ..., H he;},
ok=r)x(rg—rg_1) J=rg_1t1

O _ 0 O __ .0
h<6>7rg c R(T’g Tgfl)X(Tg T'g*l)7 and h%,'f‘g =] When T; = 1.
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Equation (17.22) and hjhs = lim C;,C;, = I}, yield

02 (rg—rg—1)x(p—rg)
h6,r§ OV'g g1 g
]

—2 / ' N 117/
B re U,D,W, W D U,B,, —
TrgFn VPP o)X (rg—rg_y)  go=rg)x (p—Tg)

n,re_,,ponn

(17.23)

By 1’ and og, = o0p(1), we have wp—1 {(n 1/QTTan)_2ﬁjn 1 Jj =151 +1,..,p} solve
[(Tp—re_, + Ajgn) anB' pU;D;W’W DnU,B, ro p +0p(1) = Kl | = 0. Hence, by
1' Ajgn = 0p(1) (which holds by the induction assumption), and the same argument as used
to establish (17.6) and ((17.7)), we obtain

Rjn —p 00 Vj =15 1+ 1,...,r5 and (n1/27',,gpn)_2k\jn —p OVj =7y +1,..,p. (17.24)
Let oy, denote an (rg —ry_
are Op(T(To_H' Fo/TroFa) + Op((n 1/27}91:”)*1). Note that of, = op(1).

By |) applied once with By, ;e in place of BnT p as the far-right multiplicand and

1) X (p —rg) matrix whose elements in column j for j = 1,...,p — 7§

applied a second time with Bn,rg L in place of B,, o ro_p a3 the far-right multiplicand, we have

Ogn
= 7% Buse_ s UnD,, Wi W DnUpBu s

Org 1 X(ry —Tg 1) OTZX(p—T;?)

= Diag{T(r 1) Fpo TOFn}/T’!‘an C?Q(Ik + 0P<1))Cn Diag{T(r§+1)Fna SxE TpFn}/Tran

ok—rg)x(rg—rg_1) o(k—p)x(p—7§)
+OP((n1/2T7’an)_1)
o (17.25)

where o/, € Rrg=rg-1)x(p=r3), Dz’ag{r(rgilﬂ)Fn, s TroFn } Trg Ry = hg,rg + o(1) = O(1) and the
last equality holds because (i) Cj (I + 0p(1))Cy, = I + 0p(1), (ii) when I appears in place of
Cl (I + 0p(1))Cy, then the contribution from the first summand on the lhs of the last equality
n equals 079~ "a-1X(P="9) " and (iii) when op(1) appears in place of C;, (I + 0,(1))Cy, the
contribution from the first summand on the lhs of the last inequality in equals an oy, matrix.

We partition the (p —r7_;) x (p — rj_;) matrices oy, and ﬁjgn as follows:

O1gp O2gp -~ Atjgn  Azjgn
Ogp = and Ajgn = | R , (17.26)
/ ’ A
O2gp  O3gp Angn Asjgn
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~ OO (10— 70 -~ ro—ro X (p—ro 1
where o1y, Aujgn € RUSTIOXUTED o0 R e RUFTEDX0TD and g Ay,

e RP—r5)x(p=ry) fOI“]_T‘ 1 +1,..,pand g =1,...,G}. Define

gljgn(ﬁ’) = T;gZB/ N TOU/ D/ W’W D U,B, Oy rg + 019p — Iﬁ:(],«o_r + Al]gn)
nggn(’i) ‘= Ogn + 02gp — HA2jgm and (17.27)
/§\3jgn(/<;) =T ;2F Bn ro.p u D/ W’W D U, B, rop T 03gp — H(Ip_rg + A\gjgn)7

where le gn(F), sz gn(r), and E3jgn(f£) have the same dimensions as 014y, 02gp, and o34, respectively.

From (|17.21)), we have wp—1 {(nl/QTran)_Qﬁjn tj=rg+ 1 ..., p} solve

0= |7'_2 BI 17pUT/L‘5;L/W’IILWn‘5nUan7T;,17P +0gp = K(lp—re_, + Ajgn)|
~ ~1 ~
= |€1jgn(’£)’ ' |§3jgn(ﬁ) - £2jgn(/i)/£1jgn("£)€2jgn("1)|

~ B ~—1
= |£1jgn("€)| : |7—7~92 n, r° pU;LD;zW/W D UnBn TSP + 03gp — (an + 02gp) fljgn( )(an + 029p)
_R[IP—TZ + A3jgn - 2jgn§1jgn("i)(ggn + 02917) - (an + 02913) fljgn<H)A2j9n
~ ~1 —~
+K’A,2jgn£1jgn(’<‘)A2jgn] |7 (1728)

where the second equality holds by the same argument as for and uses the result given in
1' below which shows that Eljgn(/ﬂ}) is nonsingular wp—1 when « equals (n'/?7, JFn) 2Ry for
J=rg+1,..p

Now we show that, for j = 7“<g>+1, ey D, (nl/zTTan)_ZRjn cannot solve the determinantal equation
|/§:1jgn(/€)| = 0 for n large, where this determinant is the first multiplicand on the rhs of
and, hence, it must solve the determinantal equation based on the second multiplicand on the rhs

of (17.28). For j =rg +1,...,p, we have

£1jgn = gljgn((nl/QTTan)_z//%j”) = hg?rg + OP(1)7 (1729)
by the same argument as in (17.11)), using o149, = 0p(1) and A\ljgn = 0p(1) (which holds by the

definition of A\ljgn following (|17.21)). Equation (17.29) and Amin(hg To) > 0 establish the result

stated in the first sentence of this paragraph.
For j = ry+1,...,p, plugging (nl/QTTan)*zﬁjn into the second multiplicand on the rhs of (17.28))
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gives

. N~~~ A~ ~—1
0= ’TrngnB;L,T'g,pUT/LD;LW’IQJWn‘DnUanWva + 0391? - (an + 029P)I§1jgn(ggn + 02910)
— ("7, 5,) 2 Rjn(Ip—rs + Aj(g11)n)|; where

~ ~ ~1 ~1 -~
Aj(ngl)n = A3jgn - éjgngljgn(ggn + 02917) - (an + OQQP)IgljgnAngn

I e N
+(n1/27—r9Fn) Q/an /2jgn£1jgnA2jgn (17'30)
and ‘Zj(g—l—l)n e RP=9)*(P=75)  The last two summands on the rhs of the first line of (17.30)) satisfy

~—1 * — k
03gp — (0gn + 02gp) €1jgn (0gn + 02gp) = 03gp — (05, + 0291’),(hg,7“§ + 0p(1)) (0, + 024p)

= O3gp - O;;O;p = (ng+1Fn/T72“an)0(g+l)p7 (1731)

where (i) the first equality uses (17.25) and (17.29), (ii) the second equality uses ozg, = 0y, (which

0_

holds because the (j,m) element of oz, for j =1, ..., 75

1/2

o _ 0 .
ro_jandm=1,.,p—rgis OP(T(TZ_ﬁJ)Fn

XT(Tngm)Fn/T%an)—i_OP((n TTan)_1> = OP(T(T§+m)Fn/TT’an)+Op((n1/2T7”an)_1) since 7‘;71‘}_] 2

re) and (hg;; +o0p(1))oy, = oy, (which holds because hgﬂqg is diagonal and Amin(hg?rg) > 0), (iii) the

last equality uses the fact that the (j,m) element of (T%an/T%ngan)o;;oZp for jym=1,...,p—ry

is the sum of a term that is Op(T(T§+j)FnT(T§+m)Fn/T%an)(T%an T%g+1Fn) = Op(T(T§+j)FnT(Tg+m)Fn
2 : 1/2 —2(.-2 2 1/2 —2

/TTgHFn) and a term that is O,((n'/ TrgF) N5, T7,9+1Fn) = Op((nt/ Tryi1F,) ~) and, hence,

(T%an ngHFn)o;;,o;p is 0(g11)p (using the definition of 0(411y,), and (iv) the last equality uses the

fact that the (j,m) element of (T%an/ngHFn)o?,gp for jm =1,..,p—rj is Op(T(T3+j)FnT(T§+m)Fn
/ngFn)(ngFn/ngﬂLan) + Op((nl/QTTan)_l)(ngFn/ngJran) = Op(T(r§+j)FnT(T§+m)Fn/ngJlen)
+Op((n1/27'rg+lpn)_1)(TTan/TTg+1Fn), which again is the same order as the (j, m) element of o(y1),
(uSIHg T'f'an /T'rg+]_Fn S 1)

The calculations in (17.31)) are a key part of the induction proof. The definitions of the terms
ogp and og, (given preceding ([17.21) and ((17.25)), respectively) are chosen so that the results in
(17.31)) hold.

For j =ry +1,...,p, we have

~

Ajg+in = 0p(1), (17.32)

~ ~ ~—1
because Azjgn = 0p(1) and Asjgn = op(1) by (17.21), &;,, = Op(1) (by (17.29)), 04y, + 02gp = 0p(1)

(by (17.25) since o, = 0,(1)), and (nl/zTTan)_2//%jn = 0,(1) (by (17.24)).
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Inserting ((17.31)) and (17.32) into (17.30) and multiplying by ng F, /rig+1 F, gives

0= |T—2 n, T<> U’ D/ W’W D U,B, 7o, + O(g+1)p — (n1/27'7,g+1Fn)*27{jn(Ip_T§ + A\j(g+1)n)|'

Tg+1Fn
(17.33)
Thus, wp—1, {(nl/QT,ngHFn)_Qﬁjn 1J =Tg41, ..., P} solve
0= |Trg+1Fn n,ro,p U’ D/ W’W D U,B, 9P + O(g+1)p — Ii(Ip_rg + Aj(ngl)n)" (17.34)

This establishes the induction step and concludes the proof that ((17.21]) holds for all g =1, ..., Gp,.

Finally, given that (17.21]) holds for all g =1, ..., G}y, (17.24) gives the results stated in (17.18))
and ([17.18)) gives the results stated in the Lemma by the argument in (17.18))-(17.20). O

Now we use the approach in Johansen (1991, pp. 1569-1571) and Robin and Smith (2000, pp.
172-173) to prove Theorem In these papers, asymptotic results are established under a fixed
true distribution under which certain population eigenvalues are either positive or zero. Here we
need to deal with drifting sequences of distributions under which these population eigenvalues may
be positive or zero for any given n, but the positive ones may drift to zero as n — oo, possibly at
different rates. This complicates the proof. In particular, the rate of convergence result of Lemma
17.1(b) is needed in the present context, but not in the fixed distribution scenario considered in

Johansen (1991) and Robin and Smith (2000).

Proof of Theorem Theorem |10.4{a) and (c) follow immediately from Lemma a).
Next, we assume ¢ < p and we prove part (b). The eigenvalues {K; : j < p} of nU IAXL/I/IZ’LWN

x DU, are the ordered solutions to the determinantal equation [nU,D!,W! W, DU, — klp| = 0.
Equivalently, with probability that goes to one (wp—1), they are the solutions to

1Q2 (k)| = 0, where Q2 (k) := nS,B.,U. D! W' W, DUy BnSy — 68, B U U VU 7 Up By S,
(17.35)
because |Sy| > 0, |By| > 0, |Up| > 0, and |U,| > 0 wp—1. Thus, Amin(nU’ D, W! W, D,,U,) equals
the smallest solution, Kpy, to |@5 (k)] = 0 wp—1. (For simplicity, we omit the qualifier wp—1 that
applies to several statements below.)

We write Q2 (k) in partitioned form using

BnSn - (Bn,anyq,Bn,pfq), where
Sn.q := Diag{(n*?*71r,)7%, .., (W *1r, )7} € RI¥Y. (17.36)
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The convergence result of Lemma for nl/QWnlA)nUnTn (= nl/QWnlA)nUanSn) can be written
as

02 W, DU Bp ySng —p Dhg = hag and 0/ *W, DyUnBrp—g —d Bhp—g» (17.37)

where Zh,q and Zh’p,q are defined in 1}
We have

W,W, ' —, I and U,U; ' —, I, (17.38)

because W, —p hr1 = lim W, (by Assumption WU(a) and (c)), U, —p hg1 :=1lim U,, (by Assump-
tion WU(b) and (c)), and h7; and hg; are pd (by the conditions in Fyyr).
By (17.35))-(17.38)), we have

Q2 (k) = Ig + 0p(1) %,qnl/QWnﬁnUan,pfq + op(1)
" 2Bl UM DLW 1) nl/2B. U D.W!'W,n'/2D,U,B 1
n n,p—q-n~n"n3,q +0P( ) n n,p—q-n-—"n'"’'n nT n¥n-=n,p—q + Op( )
S2 02x(P—a) SpaAinSng SnoA
—K "4 - K n’q/ tnoma oz , where (17.39)
0lP=a)xq Ip—q A2n5n,q Asn
-~ Aln AQ?’L / 1 r—1r77—1 gXxq qX(pfq)
A, = , =B U,U, U, U,B, — I, = op(l) for Ay, € R1*Y, Ay, € R ,

A2n A3n

and Az, € RP—Dx(—a), A\n is defined in ([17.39) just as in 1) and the first equality uses
Apq = hgq and Ay Ny g =y hag = UmC Crg = I, (by (10.7), (10.9), (10.12), and (10.17)).
Note that Aj, and ﬁjn (defined in () are not the same in general for j = 1, 2, 3, because their
dimensions differ. For example, A1, € R?*Y, whereas me e RTXT,

If g=0 (< p), then B, = B, ,—, and

T T

—~ ~ o~ !y~ —~
= nB.(U-\0,)B;YB.U DLW (WHW,f) (Wan_l) (W DUy Bp) BSY (UL, By,

n-n n n

—d Dy g By (17.40)

where the convergence holds by (]17.37[) and (]17.38[) and Zh,p,q is defined as in (|10.17)) with ¢ = 0.

The smallest eigenvalue of a matrix is a continuous function of the matrix (by Elsner’s Theorem, see
Stewart (2001, Thm. 3.1, pp. 37-38)). Hence, the smallest eigenvalue of nB;ﬁ;Lﬁg/W[LWnﬁnﬁan
converges in distribution to the smallest eigenvalue of Zﬁl,p,qh&k_qhg,k_q&,p_q (using h3,k—qhg7k_q =
hshy = I, when g = 0), which proves part (b) of Theorem when ¢ = 0.

In the remainder of the proof of part (b), we assume 1 < g < p, which is the remaining case
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to be considered in the proof of part (b). The formula for the determinant of a partitioned matrix

and (17.39)) give

|Qn(F)] = 1Q1n(K)] - |@3,(k)], where
Qi (k) = =1Ig+ 0p(1) = KSL , — KSngA1nSn.q;
an(ﬁ’) F= nl/ZB;L,pfqUT/Lﬁ;WZLWnnlﬂﬁnUan,P—q + Op(l) - K’Ip—q - K'A?m

~[n2B,, ,_ULDLWyhsq + 0p(1) — kA5, Sngl (I + 0p(1) — 652, — £SnqA10Snq) "

n,p—q@-—n n

x| g,qnlmwnﬁnUan,p—q + 0p(1) — KSn g A2n]; (17.41)

none of the op(1) terms depend on k, and the equation in the first line holds provided @Y, (k) is
nonsingular.

By Lemma M(b) (which applies for 1 < ¢ < p), for j = ¢+ 1,...,p, we have EjnSﬁ’q = 0p(1)
and K;jnSn,¢A1nSn,qg = 0p(1). Thus,

<1>n(ﬁjn) = Iy +o0p(1) — /’%jnsr%,q — KjnSn,qA1nSn,q = Iq + 0p(1). (17.42)

By ([7:33) and ([7AL), |QS(Fjn)| = Q5. Fin)l - [Q5,Fjn)| = 0 for j = 1,....p. By (I742),

|Q%, (Rjn)| # 0 for j =q+1,...,p wp—1. Hence, wp—1,
Q5. (Rjn)| =0 for j=q+1,...p. (17.43)
Now we plug in kj, for j = ¢+ 1,...,p into Q5 () in (17.41)) and use (17.42)). We have

Q3 (jn) = nB, , JUnD W W DypUnBr g + 0p(1)
~[n'2 B, Un DL Wb g + 0p(1)](I + 0p(1) My 0> Wy DU By y—q + 0p(1)]
—Rjnllp—q + Asn — (nl/QB;L,pqu;’Lﬁ;WTILh&q +0p(1))({g + 0p(1))Sn,qA2n
— Abyy S (I + 0p (1)) (B '/ * Wi, DU By g + 0p(1))

+Hjn Ay Sn.g(Ig + 0p(1)) Sn g Azn]. (17.44)
The term in square brackets on the last three lines of (17.44) that multiplies k;, equals
I

p—q + 0p(1), (17.45)

because Az, = 0p(1) (by (17.39)), n*/2W,DpUpBnpy—q = Op(1) (by (17.37)), Snq = o(1) (by the

definitions of ¢ and S, 4 in (10.16) and (17.36)), respectively, and hy j := limn'/27;5,), Ag, = 0,(1)
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(by (17.39)), and &jn A%y, Snq(Ig+0p(1)) SngAzn = A, EjnSy g Azn+ Ay RjnSn.q0p(1)Sn,g A2n = 0p(1)
(using %jn Sz, = 0p(1) and Ag, = 0p(1)).
Equations (|17.44)) and (17.45)) give
QnRin) = 0!8, UL DLW, L = ha gl 1 *Wo DaUn By + 0p(1) = RgnlLp—q + 0p(1)]
= ”1/23;,;9—11Ur,zﬁ:%ernh3,k—qhg,qu”1/2WnﬁnUan,p—q + 0p(1) = Kjn[Ip—q + 0p(1)]

= Myp—q—Ejnllp—q + 0p(1)], (17.46)

where the second equality uses I, = hshf = h37qhg’q + h3 p—qhl kg (because hg = limC), is an
orthogonal matrix) and the last line defines the (p — ¢) x (p — q) matrix M, 4.

Equations (17.43) and (17.46) imply that {K;, : j = ¢+1,...,p} are the p — ¢ eigenvalues of the
matrix

M;;’p_q = [IP*Q + Op(l)]_l/QMn,p*q[Ipfq + Op(l)]_l/Q (17.47)

by pre- and post-multiplying the quantities in (17.46) by the rhs quantity [I,—, + op(l)}_l/ 2 in

[@730). By (750,

M;;P*q —d Zlh,pfqh?),k—qhé,k—qzh,p—q‘ (17.48)

The vector of (ordered) eigenvalues of a matrix is a continuous function of the matrix (by
Elsner’s Theorem, see Stewart (2001, Thm. 3.1, pp. 37-38)). By , the matrix My .
converges in distribution. In consequence, by the CMT, the vector of eigenvalues of M;;p,q, Viz.,
{Kjn 1 j = q+1,...,p}, converges in distribution to the vector of eigenvalues of the limit matrix
Z/h’p,qh&k_qhg’k_qzh’p_q, which proves part (d) of Theorem In addition, )\min(nﬁéﬁ%/l/ﬁ,’l
xW,Dy,U,), which equals the smallest eigenvalue, Ky, converges in distribution to the smallest
eigenvalue of Z/h’p,qh&k_qhg’k_qz;l’p_q, which completes the proof of part (b) of Theorem m

The convergence in parts (a)-(d) of Theorem is joint with that in Lemma because it
just relies on the convergence in distribution of nt/ 2VVnﬁnUnT n, Which is part of the former. This
establishes part (e) of Theorem [10.4]

Part (f) of Theorem holds by the same proof as used for parts (a)-(e) with n replaced by

Wy, 1
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18 Proofs of Sufficiency of Several Conditions for the A,_;(-)

Condition in F;

In this section, we show that the conditions in (3.10)) and (3.11]) are sufficient for the second
c 7/2GiBr,; ,
condition in Fo;, which is Ay (D" Freity > 51 ve € P with [[¢]] = 1.
Condition (i) in (3.10)) is sufficient by the following argument:

—1/2
)\ . \IJC}’,kijF GiBFvP*]‘S
P—=J F

> A\pej (‘I’%’p_ﬁ?ﬂaﬁﬂ“g)

= Amin <(§ ® Ip— J)\I"T;C(C%’pjﬂ;mGiBF’p_j)(g@Ip—j))

et (e gy ) Gt S e P
ser = \TIE® LAl 1€ ® Ip—5) ] m

S L

~ A <\Il;ec(cll’,p—j9;1/2GiBF7P—j)) 7 (18.1)

where the first inequality holds by Corollary - with m = p—j and r = k — p (because

0.1%GBr,_ ¢ / GiBp,p- € 0.1 2GiBp,j¢

. Ch
is a submatrix of U O3 , since W, =

\I,ng i

l’p e ]\IJ “GiBrp- JEC Fk—j, likewise with C Pk replaced by c, Fp—j» and by definition the rows of
C Fp—; are a collection of p— j rows of Cp; ), the first equality holds because the (p—j)-th largest
eigenvalue of a (p — j) X (p — j) matrix equals its minimum eigenvalue and by the general formula
vec(ABC) = (C'® A)vec(B), and the last equality holds because ||(£@,—;)A||> = N (€'€@,_ )\ =
XA =1 using [lg]| = IAll = 1.

Condition (ii) in (3.10)) is sufficient by sufficient condition (i) in (3.10]) and the following:

vee(C" _-Q_I/QGZ'B —i
>\min <\IIF ( F,p—j*'F F.p J)

_ , _
_ min < (Up—j @ Crp—j)n \Ijv@(ﬂ}l/QGiBF,p—j) (Ip—j @ Crp—j)n
I

— - —
neR@%nl=1 \||(Ip—j @ Crp—i)nl| |(Zp—j ® Crp—)ml|
x[|(Ip—j ® CF,p—j)WH
. 022G Br,_ ;) ) —
> min C/\vaec( A min I(Iy—; @ Crp_i)nl|?
CeRP-DR[ll=1 neReG-Digl=1
Q-Y2G By, ;
= Amin (wF( rGiBrp ])> , (18.2)
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where the last equality uses ||(I—; @ Crp_i)n|[> =0 (Ip—; ® é%mﬁépm,j)n = 1 because the rows
of 61%*3‘ are orthonormal and ||n|| = 1.

Condition (iii) in is sufficient by sufficient condition (ii) in and a similar argument
to that given in using the fact that mingepon,jyp)=1 [|(BF,—; @ I)¥||> = 1 because the
columns of Bp,_; are orthonormal.

Condition (iv) in is sufficient by sufficient condition (iii) in and a similar argument
to that given in (18.2) using min e grk.||p)|=1 ||(Ip®9;1/2)¢| 2 > M~2/C+7) for M as in the definition

of F in place of min, -2, <1 [[(Ip—j ® Cpp—j)n||> = 1. The latter inequality holds by the
following calculations:

¢ (Ip @ Qp')¢ (@5/110;1)' Q%" (9,/116511) < [1o;11?

<
Il

I
ngh

)‘min(Qj_rl) X H¢g”2 = 1/Amax(2F) > M_Q/@—M)a (18.3)

ME

1

[
Il

where ¢ = (¢}, ..., qﬁ;)’ for ¢; € RFE Yj < p, the sums are over j for which b; # 0%, the second equal-
ity uses ||¢|| = 1, and the last inequality holds because Amax(2r) = max,c g ||x||=1 Er(Ng)? <
Erllgill* = ((Brllgil'?)? < ((BrllgilP*)YC40)? < MG+ by successively applying the
Cauchy-Bunyakovsky-Schwarz inequality, Lyapunov’s inequality, and the moment bound Er||g;||>™
<M in F.

Conditions (v) and (vi) in are sufficient by the following argument. Write

0ol = (Mp, L) S (Mp, 1y,)', where Mp = —(Epvec(Gi)gl)(Epgig)) ™" € RP**F. (18.4)
We have

Amin(P99)) = min  N(Mp, L) S5 (Mg, L)' A

AERPE:||\||=1
(Mp, Ipi)' A >' f¢< (Mp, L)'\
EAl

min _ X M ,I l)\ 2
AeRPk:ul(H(MF,ka)'AH ) (M, Ipr) Al

(Mp, i)' All
> min i
= pere iz Y
= Amin(S9), (18.5)

where the inequality uses |[(Mpg, Ip)'A||2 = XA + NMpMpA > 1 for A € RPF with ||A|| = 1.
This shows that condition (v) is sufficient for sufficient condition (iv) in 1) Since Z% =
Varp(fi) + ErfiEp f!, condition (vi) is sufficient for sufficient condition (v) in (3.10]).

51



The condition in (3.11]) is sufficient by the following argument:
Clp Q5 *GiBry L =2¢, . ~1/24 ,
)\p_j (\IIFF,IC—] F F,p .7§> Z )\p <\I/§FQF GzBF,p]§> — )\p (\Ing GlBF,p_]é.) ) (186)

where the first inequality holds by Corollary [16.4{(b) with m = p and r = j and the equality holds
ro=1/2q4. ) —1/2 0~ )
because \I/gFQF GiBrp-it _ C};\IlgF G’BF‘T“’&CF and Cp is orthogonal.

19 Asymptotic Size of Kleibergen’s CLR Test with Jacobian-
Variance Weighting and the Proof of Theorem (5.1

In this section, we establish the asymptotic size of Kleibergen’s CLR, test with Jacobian-variance
weighting when the Robin and Smith (2000) rank statistic (defined in (5.5])) is employed. This rank
statistic depends on a variance matrix estimator 1~/Dn. See Section [5| for the definition of the test.
We provide a formula for the asymptotic size of the test that depends on the specifics of the moment
conditions considered and does not necessarily equal its nominal size «. First, in Section [19.1] we
provide an example that illustrates the results in Theorem and Comment (v) to Theorem
In Section we establish the asymptotic size of the test based on VDn defined as in 1) In
Section we report some simulation results for a linear instrumental variable (IV) model with
two rhs endogenous variables. In Section [19.4] we establish the asymptotic size of Kleibergen’s CLR
test with Jacobian-variance weighting under a general assumption that allows for other definitions
of ‘N/Dn.

In Section [I19.5] we show that equally-weighted versions of Kleibergen’s CLR test have correct
asymptotic size when the Robin and Smith (2000) rank statistic is employed and a general equal-
weighting matrix Wn is employed. This result extends the result given in Theorem in Section
|§|7 which applies to the specific case where Wn =0, 1 2, as in . The results of Section are
a relatively simple by-product of the results in Section [19.4]

Proofs of the results stated in this section are given in Section [19.6]

Lemma is proved in Section

Theorem follows from Lemma [19.2] and Theorem [19.3] which are stated in Section

As stated in footnote 4 in Section 2 of AGI, “under sequences F;, such that
nY2Ep G(W;,0) converges to a finite matrix, n*/2D,(0) and n'/2§,(6) (= n=/2 Yo 9(W;,0))
are asymptotically independent (see Lemmas and in Section [10|in this SM). Therefore, if
r(V,,n'/2D,,()) is a continuous function of n!/2D, () and a weighting matrix V,, (that converges

in probability to a positive definite matrix), then by the continuous mapping theorem (CMT),
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n/2g,(6) and T(‘/}n, nt/ 21/571(«9)) are also asymptotically independent.”

Footnote 4 of AG1 also states “however, under sequences for which a component of n'/2Ep, G(W;, 6)
diverges to plus or minus infinity, the CMT cannot be applied because n'/ 213”(9) does not converge
in distribution, but rather, some component of it diverges to plus or minus infinity in probability (see
Lemma in Sectionin this SM when h; j = oo for some j < p). In this case, r(Vo,n2D,, ()
may not have an asymptotic distribution, and if it does, r(‘A/n, n1/2f)n(9)) and n'/2g, () are not
necessarily asymptotically independent.”

The following is a simple example of the latter situation when p = 2. Let 7“(17”,711/2]3”(9)) =
TA/lganl/QlA)ln(G)H, where ‘71% is the (1, 2) component of ‘7n and ﬁln(H) is the first column of
Dy (6). Assume V,, — V —p 0 for some matrix V' and n/2(V,, — V) —q &, where ¢ is a mean zero
normal random matrix. Assume that under F), the first column Ep G1(W;,0) of Ep, G(W;,0) is
a fixed nonzero vector, G§ say. Assume that the (1,2) element of V, denoted by Vi, equals zero
under F,. Then, D1,,(6) —p GY (see Lemmain Sectionin this SM) and Viap||n!/2D1,, (0)]| =
n2(Vigy, — VH)HIA)M(H)H —a &12/|GS||. But, in general there is no reason why &;5 and the random
limit of n'/2g,(#) are independent. For simplicity, the previous example is somewhat contrived,
because rank statistics typically are not of the form Vig,||[n'/2D1,(6)||. But, components of rank
statistics may be of this form. Section [19.1] which follows, provides a more concrete example of

this type of situation.

19.1 An Example

Here we provide an example that illustrates the result of Theorem In this example, the true
distribution F does not depend on n. Suppose p = 2, ErG; = (1¥,0%), where ¥ = (c, ...,c)’ € RF
forc=0,1, nl/Q(ﬁn — ErG;) —q Dy, under F for some random matrix D}, = (D1, Do) € RF*2,
Suppose for Mn = ?5%2
matrix M), € R2**2_(The convergence results n'/2(D,, — EpG;) —q D, and nl/Q(Mn — Mp) —q
M}, are established in Lemmas and respectively, in Section |10] and Section in this

SM under general conditions.) We have

and Mp = Iy, we have nl/2 (]\7” —Mp) —4 M}, under F for some random

~—1/2

ﬁ:[b = UGC];;(VDn vec(ﬁn)) = (Mllnﬁln + Mlgnﬁzn, Mglnﬁln + Mggnﬁgn) , (19.1)

where D,, = (ﬁln,ﬁgn), ]\/ngn for j,£ = 1,2 are the four k x k submatrices of Mn, and likewise

for Mjp for j,£ = 1,2. Let Mﬂh for j,¢ = 1,2 denote the four k& x k submatrices of Mj,. We let
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T = Diag{n='/2,1}. Then, we have

”1/21A7;FLT;[ = (Mllnﬁln + anﬁ%, n1/2M21nﬁln + MQ?nnl/QEZn)

—d (Iklk + 0F<kk Mgy 1F + Ikﬁ2h) = (1'€,M21hl'C +52h) ; (19.2)

where the convergence uses nl/Qan —q Moy, (because Mo1p = Oka) and n1/2ﬁ2n —q Doy,
(because EpGyo = 0F). Equation shows that the asymptotic distribution of nl/ QZADJLTJ; depends
on the randomness of the variance estimator \7Dn through Moqy.

It may appear that this example is quite special and the asymptotic behavior in only
arises in special circumstances, because ErG; = (1%,0%), Mo = 0"*F, and Mp = Iy in this
example. But this is not true. The asymptotic behavior in arises quite generally, as shown
in Theorem whenever p > QE

If one replaces 1752/ 2 by its probability limit, Mg, in the definition of 1371, then the calculations
in hold but with n1/2]\721n replaced by n1/2M21F = 0F*k in the first line and, hence, Moy,
replaced by 0F**
on Dj,. Hence, Comment (iv) to Theorem [5.1| holds in this example.

Suppose one defines Dj, by W,D, as in Comment (v) to Theorem This yields equal

in the second line. Hence, in this case, the asymptotic distribution only depends

weighting of each column of ﬁn This is equivalent to replacing ‘75;/ 2 by Is ® Wn in the definition
of ﬁ}; in . In this case, the off-diagonal k x k blocks of Ir ® Wn are 0°%F and, hence, an
in the first line of (19.2)) equals 0***, which implies that My, = 0¥** in the second line of .
Thus, the asymptotic distribution of lA)}LL does not depend on the asymptotic distribution of the
(normalized) weight matrix estimator Wn It only depends on the probability limit of Wn, as stated

in Comment (v) to Theorem

19.2 Asymptotic Size of Kleibergen’s CLR Test with Jacobian-Variance
Weighting

In this subsection, we determine the asymptotic size of Kleibergen’s CLR test when ﬁn is
weighted by Vpn, defined in || which yields what we call Jacobian-variance weighting, and the
Robin and Smith (2000) rank statistic is employed. This rank statistic is defined in (5.5) with

0 = 6y. For convenience, we restate the definition here:

~

rky = 1k} = Amin(n(D})' D), where D} := vec,;;(vD_iﬂvec(Dn)) (19.3)

2\When the matrix Ma1p #* Oka7 the argument in |D does not go through because nl/zﬂgln does not converge
in distribution (since nl/z(Mgln — Moir) —q Mo by assumption). In this case, one has to alter the definition of Tt
so that it rotates the columns of D,, before rescaling them. The rotation required depends on both Mr and ErG;.
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(so D} is as in 1) with 8 = 6p). As in Section the function vec,;;(-) is the inverse of the
vec(-) function for k x p matrices. Thus, the domain of vec,;;(-) consists of kp-vectors and its range

consists of k X p matrices. Let
E}n denote the jth eigenvalue of n(D])' D}, for j =1, ..., p, (19.4)

ordered to be nonincreasing in j. By definition, )\min(n(f)%)’ ﬁ,tb) = ’f%lm. Also, the jth singular value
of n1/2D}, equals (E}n)l/Q.

Define the parameter space Fxcrr for the distribution F' by
Frorr = {F € F : Amin(Varp((gh, vec(Gy)"))) > 82, Er||(g), vec(Gy))||*T7 < M}, (19.5)

where d5 > 0 and v > 0 and M < oo are as in the definition of F in . Note that FrxorLr C Fo
when §; in Fy satisfies 6; < M~22+1§,, by condition (vi) in . Let vech(-) denote the half
vectorization operator that vectorizes the nonredundant elements in the columns of a symmetric
matrix (that is, the elements on or below the main diagonal). The moment condition in Fxcrr is
imposed because the asymptotic distribution of the rank statistic rk:;rl depends on a triangular array
CLT for vech(f} '), which employs 4 + v moments for f*, where f} := (¢;,vec(G; — EF,G;)")
as in 1D The Amin(+) condition in Fxcrr ensures that TN/Dn is positive definite wp—1, which is
needed because f/Dn enters the rank statistic rk;rl via ‘75;/ 2, see .

For a fixed distribution F; Vbn estimates @?C(Gi) defined in , where @vFeC(Gi) is pd
by its definition in and the Apin(+) condition in Fxcorr. More specifically, @?C(Gi) is pd
because by @%ec(Gi) = Varg(vec(G;) — (Epvec(Ge)g)) 5t i) = (—(Ervec(Gr)g))Qpt, k)
Varp((g), vec(Gy)'))(—(Ervec(Gr)g))Qpt, Ik)'s where (—(Epvec(Ge)gy)Qpt, Ip) € RPFXPTDF hag
full row rank pk and Varg((g},vec(G;)")') is pd by the Apin(+) condition in Frcrg. Let

Mg - Miyr
Mp = Do | = (@@ 12 ang (19.6)
MplF e MppF

p
D} = Z(MljFEFGU’ ---,ijFEFGij) S RkXp, where Gl == (Gﬂ, ...,Gip) S RkXp.
7j=1
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Let (TJ{ Freees T; ») denote the singular values of D}. Define

B} € RP*P to be an orthogonal matrix of eigenvectors of D%D}; and

C’} € R"™F to be an orthogonal matrix of eigenvectors of D};D% (19.7)

ordered so that the corresponding eigenvalues (/@J{F, e H;F) and (HIF, ey K;F, 0,...,0) € R*, respec-
tively, are nonincreasing. We have /@} F= (’7’; F)2 for j =1, ..., p. Note that l’ gives definitions of
Bp and Cp that are similar to the definitions in and 1) but differ because D}L; replaces
Wgr(ErG;)Up in the definitions.

Define (ALp, ..., Ao.r) as in with Ay p = Wp = Q52 Agp = I, and Wi(-) and Uy ()
equal to identity functions. Define

*
Mor = Varg Ji e RT*T, (19.8)

vech (fz*fz*/>

where d* := (p+1)k+(p+1)k((p+1)k+1)/2. Define (\] z, AL . AL 2, AL 1) as (Arp, Ao, Mg, e )
are defined in 1} but with {T;rF 1 j <p}, B;f,, and C’} in place of {7r : j < p}, B, and Cp,
respectively.

Define

A= Ap = (ALm, o Mo A A g AL M ), (19.9)
Akcrr =X A = Or, o Mo ALp, AL o, AL AL ) for some F € Fieopp}, and

ha(A) := (0Y2A1 5, Ao py A3y Al A5,y A6l A7y Mgl A0,k nl/z){p >\;F7 )\;]4"7 )\g,F)'

Let {\, 1 € Akcrr : n > 1} denote a sequence {\, € Axcrr : n > 1} for which hy(N,) — h € H,
for H as in (10.1). The asymptotic variance of n'/2vec(D,, — Er, G;) is @Zec(c"’) under {\, €
Axcrgr:n > 1} by Lemmam

Define hy ; for j < p and hg for s = 2,...,8 as in , q = qp, as in , haqs hap—q, h3.q,

h3p—q, and h{,_, as in (10.17), and Ty, Ty 4, and Ty g as in li Note that hy = h;;ﬂ and

hg = I, due to the definitions of A7 r and Ag r given above, where hs 4 (=lm FEp, gigg) denotes the
upper left k x k submatrix of hs, as in Section

For a sequence {\, , € Agcrr :n > 1}, we have

h * h, * £ * * *
S e oy Ji e RIxd". (19.10)

hao,pr2ps Pag,pr2pe2 vech (fF fi')

hio =
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Note that hyg s« € RPHDF*(PHDE is pd by the definition of Fxcorg in (19.5).

With T}F, B}, and C’;r, in place of 7, B, and CF, respectively, define hij for j < p and hl
for s = 2,3,6 as in (10.12)) as analogues to the quantities without the t superscript, define ¢f = q;rl
as in (10.16), define A} . bbbl bl and Bl Cas i (10.17), and define 1, YT
and TL,p—qT as in 1) The quantity ¢ determines the asymptotic behavior of rk;ﬂ. By definition,

q' is the largest value j (< p) for which limnl/QT;r.Fn = oo under {\,, € Agcrr :n > 1}. It is
shown below that if ¢' = p, then rk:L —p 00, whereas if ¢" < p, then rk:;r1 converges in distribution
to a nondegenerate random variable, see Lemma

By the CLT, for any sequence {\,, € Axcrr:n > 1},

n *
w2y . —4Ln ~ N(0%, hyg), where

i=1 vech (fz*fz*/ — Ep, fz*fz*/)
Ly = (Lp1. Loy Lys) for Ly € R, Lyp € R, and Iy 3 € RPFDR(PHDEFD/2(19 17)

and the CLT holds using the moment conditions in Fxcrr. Note that by the definitions of hy :=
lim Er, G; and hs := lim Ef, (g;, vec(G;)') (gi, vec(G;)'), we have

h h h h
hoge = | 9 59¢ where hs = | 09 96 (19.12)
hs g  hs.c — vec(ha)vec(ha) hs g  hsc
for hs g € R¥k by ¢ € RF*E and hy g € RFPXFP,
We now provide new, but distributionally equivalent, definitions of g, and Dp,:
Gp = Lp1 and vec(Dp) := Lp o — h5,Gghg7!1]fh71. (19.13)

These definitions are distributionally equivalent to the previous definitions of g, and Dj, given

in Lemma because by either set of definitions g, and vec(D},) are independent mean zero

random vectors with variance matrices hs 4 and @Zec(Gi) (= hs,q —vec(hg)vec(hs) — hg,,ggh;;h’&(;g),

respectively, where @Zec(Gi) is defined in (10.15)) and is pd (because @Zec(Gi) = lim @UFiC(Gi) and

Amin(Qﬁf(Gi)) is bounded away from zero by its definition in (10.15) and the Apin(-) condition in

FKCLR)-
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Define

P Myip - Mlph
D} := > (MyjnDjn, ... MyjnDjn) € R¥*P, where SV = (@UC)1/2
j=1
My -+ My
(19.14)
Dy, = (Dun, ..., Dpn), and Dy, is defined in (19.13). Define
AT ~t =t —t ;
Ap = (Bpgt: Dppgt) € RMP, Apgt = hg,qf € R™' and
Al = i kex (p—q
Njpgt = hhY DRy € BP0, (19.15)
Let a(-) be the function from R%" to RFP(P+1)/2 that maps
Tty ' into (19.16)

i=1 \ vech (f7f")

n —1/2
Ay = vech (n_l Zvec(Gi — Ep,Gi)vec(G; — Ep,G;) — fn§~2511~%> , where

i=1
Q, =nt Zgw{ € Rk and T, := n~? Zvec(Gi — Ep,Gy)g. € RP**F,

i=1 =1

Note that a(-) does not depend on the n=t Y"1 | f¥ part of its argument. Also, a(-) is well defined
and continuously partially differentiable at any value of its argument for which n=t>"" | fr £
is pd. (The function a(-) is well defined in this case because n=1 Y " | vec(G; — Ep, G;)vec(G; —
Ep,Gi) ~TnQ; ' Th= (—Tn Q5% L)t Y00 £ 7 (—TnQ Ip) and (~Tn Q5L L) € RPFX Dk
has full row rank pk.) We define Ay, as follows:

A}, denotes the (kp)(kp + 1)/2 x d* matrix of partial derivatives of a(-)

evaluated at (0P+1F vech(hyo,+)')', (19.17)

where the latter vector is the limit of the mean vector of (£, vech (ff')") under {\,1 € AxcLR
n > 1}.
Define

M), = vech;) . (AnLy) € R, (19.18)

where vech !

kp kp(~) denotes the inverse of the vech(-) operator applied to symmetric kp X kp matrices.
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Define

M} = (M} 4, M}, 1) = (04 31} 1) € R*™*P, where (19.19)
P My -+ Mgy
_ _ - L | '
M gt = > (Myjuhag oo Myjrhag)hl € BXE=0 3= |0

J=1

Mpin -+ Mpph

and hy = (h4,1, ey h47p) € RFxp.
Below (in Lemma , we show that the asymptotic distribution of rk}, under sequences
{Mh € Akcrr i n > 1} with ¢" < p is given by

Rl

. T ~t v i v
71 (Diy M) = Mnin (B gt + My, Vb bl (B i+ M, 1)), (19.20)

h,p—qt

where Z;rL’pqu is a nonrandom function of Dy by (19.14)) and ((19.15)) and M;Lpfq
function of M), by (19.19). For sequences {Mh € Akcrr : n > 1} with ¢" = p, we show that
rkp —p Th 1= 00.

We define Ay, as in ([10.17)), as follows:

+ is a nonrandom

Ap = (Bpg, Dpp-q) € R¥P, Ap = h3q, and Ay g = hgh$,_, + hiDyhghap_q, Where
9% (P—q)
hy = (hog hop—q)s hs = (hsq, haj—q), h$p_q = | Diag{higs1,....h1,} | € RF*P~9. (19.21)

0(k—=p)x(p—q)

In the present case, hy = h;;/ % and hg = I, because the CLR,, statistic depends on ﬁn through
ﬁfl 1 213,1, which appears in the LM, statistic. (The CLR,, statistic also depends on ﬁn through
the rank statistic.) This means that Assumption WU for the parameter space Axcrr (defined in
Section [10.4) holds with W, = 0"/, U, = I, hy = hy }/?, and hs = I,. Thus, the distribution of
A}, depends on Dy, ¢, and hg for s = 1,2,3, 5.

Below (in Lemma [19.5), we show that the asymptotic distribution of the CLR,, statistic under
sequences {\,, € Axcrr :n > 1} with ¢' < p is given by

o 1/ _ e —
CLRy, := 3 <LMh+Jh—T‘h+\/(LMh+Jh—Th)2+4LMT‘h), where

— - _ 12 5y, —1)2 ~1/2_
LM}, =00y ~ X12m Ty = chh&g/ Tn, Jn = ghh57g/ MZhhs,g/ gp, ~ Xz,p, and

Th 1= Th(ﬁh,ﬂh). (19.22)
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The quantities (gj,, Dy, M},) are specified in (19.13) and (19.18)) (and (g, D) are the same as in
Lemma [10.2). The definitions of v),, LM}, Jp, and CLRy, in (19.22) are the same as in (11.1)),
(11.2), (12.6), and (12.7)), respectively.

Conditional on Dj,, LM} and J}, are independent and distributed as X;Q; and Xiip, respectively
(see the paragraph following (12.6)). For sequences {\, 4 € Axcrr : n > 1} with ¢f = p, we show
that the asymptotic distribution of the CLR,, statistic is CLRy, := LM}, = 0,0}, ~ Xf,, where

1/2—
Vp 1= PAth)g/ Ih-
The critical value function ¢(1 — a,7) is defined in ) for 0 < r < co. For r = oo, we define

¢(1 — a,r) to be the 1 — « quantile of the X2 distribution.
Now we state the asymptotic size of Kleibergen’s CLR test based on Robin and Smith (2000)
statistic with Vp, defined in (5.3).

Theorem 19.1 Let the parameter space for F' be Fxcorr. Suppose the variance matrix estimator

Vbn employed by the rank statistic 7"k3;rI (defined in 1' 1s defined by 1) Then, the asymptotic
size of Kleibergen’s CLR test based on the rank statistic rkL 18

AsySz = max{a, sup P(CLRy, > c(1 — a,71,))}
heH

provided P(CLRy, = ¢(1 — «, 7)) =0 for all h € H.

Comments: (i) The proviso in Theorem is a continuity condition on the distribution function
of CLR;, — ¢(1 — a,7) at zero. If the proviso in Theorem [19.1| does not hold, then the following

weaker conclusion holds:

AsySz (19.23)
€ [max{a, sup P(CLR;, > c¢(1 — o, 7))}, max{a, sup lim P(CLR;, > ¢(1 — a,7) + x)}].

heH heH =10

(ii) Conditional on (Dy,, M}), g, has a multivariate normal distribution a.s. (because (g, Dp,
M},) has a multivariate normal distribution unconditionally). Note that gj is independent of
Dy,. The proviso in Theorem holds whenever g, has a non-zero variance matrix conditional on
(Dy,, M},) a.s. for all h € H. This holds because (a) P(CLR = c¢(1—a,71,)) = Ep, 3, P(CLR;, =
c(1—a,7,)| Dy, Mp) by the law of iterated expectations, (b) some calculations show that CLR), =
c(1 — a,7y,) iff (7, + ¢)LM), = —cJp + 2 + crp, iff Y;Lyh = ¢ + ¢y, where ¢ == c(1 — a,Ty)
and X, := (7, +0)V?(Pg, by *g,) ¢/*(Mz, hs 2/?g,,)') using (19.22), (c) P, + M5, = Iy and

Pg My, = 0¥k "and (d) conditional on (Dy,, My), Tr, ¢, and A, are constants.
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(iii) When p = 1, the formula for AsySz in Theorem reduces to a and the proviso holds
automatically. That is, Kleibergen’s CLR test has correct asymptotic size when p = 1. This holds
because when p = 1 the quantity MIL in equals 0P by Comment (ii) to Theorem m
below. This implies that 74 (D, M) in does not depend on M,. Given this, the proof that
P(CLRy, > ¢(1—a,7;) = a for all h € H and that the proviso holds is the same as in —
in the proof of Theorem [12.1]

(iv) Theorem is proved by showing that it is a special case of Theorem below, which is
similar but applies not to Vbn defined in , but to an arbitrary estimator Vbn (of the asymptotic
variance @Zec(Gi) of n'/2vec(D,, — Er, G;)) that satisfies an Assumption VD (which is stated below).
Lemma below shows that the estimator XN/Dn defined in satisfies Assumption VD.

(v) A CS version of Theorem holds with the parameter space Fo xcrr in place of Fxcrr,
where Fo korr = {(F,00) : F € Frcrr(6o),00 € ©} and Frcrr(0o) is the set Frorr defined in
with its dependence on 6y made explicit. The proof of this CS result is as outlined in the
Comment to Proposition [10.1l For the CS result, the h index and its parameter space H are as

defined above, but h also includes 0 as a subvector, and H allows this subvector to range over O.

19.3 Simulation Results

In this section, for a particular linear IV regression model, we simulate (i) correlations between

M;fw_qf (defined in (19.19)) and g, and (ii) some asymptotic null rejection probabilities (NRP’s)

of Kleibergen’s CLR test that uses Jacobian-variance weighting and employs the Robin and Smith
(2000) rank statistic. The model has p = 2 rhs endogenous variables and k£ = 15 IV’s. The model

is

y1; = Yo;00 + u; and Yo, = 7' Z; + Vs, (19.24)

where yi;,u; € R, Yo;,Va; € R% 0y € R%, Z; = (Z;1,...,Zg) € RF, and 7 € RF*2. We take
Zij ~x3—11iid. for j =1, k, w ~ ||Z]|w;, (@, Vy;) ~ N(0,%,), (@, Vs;) independent of Z;,
and X, € R3*3 with diagonal elements 1 and off-diagonal elements p. This data generating process
(DGP) involves an asymmetric distribution for Z;; and conditional heteroskedasticity in u;. We
take m = m, = (61,620’0—1/2), where e; € RF denote the jth coordinate vector for j = 1,2. We
consider integer values of the constant ¢ in [0,30], p = .5, 6y = (0,0)’, and nominal size 5% for the
tests. We also experimented with additional DGPs for (u;, Vy;, Z!)" and k € {5,10} and nominal
size of 1% but no important additional insights were gained from these simulations.

In this model, we have g; = Zju; and G; = —Z;Yy;,. Furthermore, h;; = oo and hj2 is a

finite nonnegative number that depends on c. The quantities hJ{ ; for 7 = 1,2 (defined just below
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(19.10)) are not available in closed form, so we simulate them using a very large value of n, viz.,
n = 2,000,000. We use 4,000,000 simulation repetitions to compute the correlations between the
jth elements of MIW_QT and g, for 5 = 1,...,k and the asymptotic NRP’s of the CLR test. To
conserve space we do not report the correlations between the jth and kth elements of these vectors
for j # k. The data-dependent critical values for the test are computed using a look-up table that
gives the critical values for each fixed value r of the rank statistic in a grid from 0 to 10,000 with a
step size of .005, .05, and 1 for r € [0, 100], [100, 1000], and [1000, 10000], respectively. These critical
values are computed using 4,000,000 simulation repetitions. Note that for p = 2, the dimension
d=p+)k+(@+DE((p+1)k+1)/2in equals 135, 495, and 1080, for k£ = 5,10, 15,
respectively, and simulation with 4 million repetitions becomes computationally involved for large

k.

T

(i) The simulations provide evidence for the findings given in Theorem that Mh,p— gt

(the
second column of ML € R¥*?) and g, are correlated asymptotically in some models under some
sequences of distributions. For example, when & = 15 the simulated correlations between the jth
elements of Mjupfq* and g, for j = 1,8, 15 take on the values .32,.11, and —.06, respectively, for all
values ¢ € [0,30]. In consequence, it is not possible to show the Jacobian-variance weighted CLR
test has correct asymptotic size via a conditioning argument that relies on the independence of

~t 7
Ah,p*fﬁ +M

hp—qt a0d Gy

(ii) Next, we report the asymptotic NRP results for Kleibergen’s CLR test that uses Jacobian-
variance weighting and the Robin and Smith (2000) rank statistic. The asymptotic NRP’s are
found to be between 4.99% and 5.11% for the values of ¢ considered. These values are close to the
nominal size of 5.00%. Whether the difference is due to simulation noise or not is not clear. The
simulation standard error based on the formula 100 * (a(1 — «)/reps)'/?, where reps = 4,000, 000
is the number of simulation repetitions, is .01. However, this formula does not take into account
simulation error from the computation of the critical values and from error in approximation of hJ{’ I
For comparison, we also simulated the asymptotic NRP of the LM test (that has asymptotic size
equal to nominal size) and find them to be between 5.01% and 5.02% for the values of ¢ considered.

We conclude that, for the model and error distribution considered, the asymptotic NRP’s of
Kleibergen’s CLR test with Jacobian-variance weighting is quite close to its nominal size. This
occurs even though there are non-negligible correlations between M'L’p_qf and g;. Whether this
occurs for all parameters and distributions in the linear IV model, and whether it occurs in other
moment condition model, is an open question. It appears to be a question that can only be answered

on a case by case basis.
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19.4 Asymptotic Size of Kleibergen’s CLR Test for General Vbn Estimators

In this section, we determine the asymptotic size of Kleibergen’s CLR test (defined in Section
using the Robin and Smith (2000) rank statistic based on a general “Jacobian-variance” estimator
Von (= Von (Ap)) that satisfies the following Assumption VD.

The first two results of this section, viz., Lemma and Theorem [19.3] combine to establish
Theorem see Comment (i) to Theorem The first and last results of this section, viz.,
Lemma and Theorem combine to prove Theorem [19.1

The proofs of the results in this section are given in Section [19.6

Assumption VD: For any sequence {\,; € Agcrr : n > 1}, the estimator 1~/Dn is such that
nY/2(M, — Mp,) —q M, for some random matrix M}, € R¥P** (where M, = 1751/2 and Mp, is

n
defined in ([19.6])), the convergence is joint with

g g kxpk
1/2 In — 4 Ih ~ N | olptDE hs.g (Ui
vee(Dy, — Ep, Gi) vec(Dy,) Opkxk (I)Zec(Gi)

n

n . (19.25)

and (g, Dy, M},) has a mean zero multivariate normal distribution with pd variance matrix. The
same condition holds for any subsequence {w,} and any sequence {\,, » € Axcrr : n > 1} with

wy, in place of n throughout.

Note that the convergence in ((19.25)) holds by Lemma m
The following lemma verifies Assumption VD for the estimator YN/Dn defined in 1)

Lemma 19.2 The estimator Vpy defined in 1' satisfies Assumption VD. Specifically,
n1/2(§naﬁn_EFnGi7Mn_MFn) —d (gh,ﬁh,ﬂh), where Mn = ‘751/2, MFn = ((I)EC(Gi))_l/Q, and

n

(Gn, Dn, M1,) has a mean zero multivariate mnormal distribution defined by (19.11) and (19.13)-
(119.18)) with pd variance matriz.

Comment: As stated in the paragraph containing (19.21)), ﬁn is defined in Lemma and
Theorem m below with I//(\/n = 651/2 and ﬁn = I,
Define

S} = Diag{(n**r}p )7', .., (0?71, )71 1,1} € RPP and T} = B S}, (19.26)
where B}, is defined in 1'

The asymptotic distribution of n'/ QﬁLTJ is given in the following theorem.
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Theorem 19.3 Suppose Assumption VD holds. For all sequences {\,, € Agcrr : n > 1},
n1/2(§n,ﬁn — EFnGi,ﬁ;rLT;{) —d (gh,ﬁh,ﬂl +MT), where Z;FL is a nonrandom affine function of
Dy, defined in and , M;rb is a nonrandom linear (i.e., affine and homogeneous of
degree one) function of My, defined in (19.19), (g),, Dy, M}) has a mean zero multivariate normal
distribution, and g, and Dy, are independent. Under all subsequences {wy,} and all sequences

{Awn.h € AxkcrLr 1 n > 1}, the same result holds with n replaced with wy,.

Comments: (i) Note that the random variables (g, ZL,ML) in Theorem 5.1 have a multivariate
normal distribution whose mean and variance matrix depend on lim Varg, ((f',vec (ff f')") and
on the limits of certain functions of Ef,G; by -. This, Lemma and Theorem
combine to prove Theorem [5.1] of AG1.

(ii) From , MIL = 0F*P if p = 1 (because ¢' = 0 implies ¢ = 0 which, in turn, implies

hs = 0F and ¢f = 1 implies M + has no columns) For p > 2, MIL = 0F%P if p = ¢! (because

h,p—q
g
h.p—q

(T1F,, s TpF,) Of D}n satisfy n'/27;p, — oo for all j < p (i.e., all parameters are strongly or

¢ has no columns) or if hy; = 0* for all j < p. The former holds if the singular values

semi-strongly identified). The latter occurs if Er, G; — 0¥*P (i.e., all parameters are either weakly
identified in the standard sense or semi-strongly identified). These two condition fail to hold when
one or more parameters are strongly identified and one or more parameters are weakly identified
or jointly weakly identified.

(iii) For example, when p = 2 the conditions in Comment (ii) (under which M}: = 0F*P) fail to

hold if Er, Gy # 0% does not depend on n and nl/QEFnG,-Q — ¢ for some ¢ € RF.

The following lemma establishes the asymptotic distribution of rk;rl.

Lemma 19.4 Let the parameter space for F' be Frorr. Suppose the variance matriz estimator
YN/Dn employed by the rank statistic rk}; (defined in ) satisfies Assumption VD. Then, under
all sequences {\,n € Axcrr:n > 1},

(a) rki = T%Im —p 00 if ¢ =p,

(b) rk = E;'m —a mh(Dy, M}) if ¢ < p, where r,(Dy,, My,) is defined in (19.20) using (19.19)
with M}, defined in Assumption VD (rather than in (19.18)),

(c) E;rn —p 00 for all j < g,

(d) the (ordered) vector of the smallest p — q' singular values of n1/2]_/5;rl, ie., ((EJ(r W2

qt+1)n
(//%;[m)l/Q)’, converges in distribution to the (ordered) p — q' vector of the singular values of

3Note that ¢ = 0 implies ¢ = 0 when p = 1 because nl/QD}n = n'Y2Mp, Er,G; = O(1) when ¢ = 0 (by the
definition of qT) and this implies that n1/2EF” G; = O(1) using the first condition in Fxcrr. In turn, the latter
implies that n1/2Q;i/2EFn G; = O(1) using the last condition in F. That is, ¢ = 0 (since Wr = 9;1/2 and Up = I
because Wn = fl;l/Q and ﬁn = I, in the present case, see the Comment to Lemma .
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hglk_qf (Z}:’p_qf +M27p_q1—) € R(k_qT)X(p_qf), where M;;p_qT is defined in (19.19) with M}, defined

in Assumption VD (rather than in (19.18])),
(e) the convergence in parts (a)-(d) holds jointly with the convergence in Theorem and

(f) under all subsequences {wy} and all sequences {\y,, n € Axcrr :n > 1}, parts (a)-(e) hold

with n replaced with wy,.

The following lemma gives the joint asymptotic distribution of CLR,, and k) and the asymp-
totic null rejection probabilities of Kleibergen’s CLR test.

Lemma 19.5 Let the parameter space for F' be Frxcopr. Suppose the variance matriz estimator
Y7Dn employed by the rank statistic T‘k:}; (defined in 1} satisfies Assumption VD. Then, under

all sequences {\,n € AxcrLr:n > 1},

(a) CLR, = LM, + 0,(1) —4 X3 and 7k}, —, 00 if ¢' = p,

(b) nh_)rglo P(CLR, > c(1 —a,rkl)) = o if ¢ = p,

(¢) (CLRy,7k}) —a (CLRy, ™) if ' < p, and

(d) nh_)rglo P(CLR, > c¢(1 — a,rk})) = P(CLRy, > ¢(1 — o, 7)) if ¢' < p, provided

P(CLRh = C(l — a,?h)) =0.
Under all subsequences {wy,} and all sequences {\,, n € AxkcrLr > 1}, parts (a)-(d) hold with n
replaced with w,,.

Comments: (i) The CLR critical value function ¢(1 — «,r) is the 1 — a quantile of clr(r). By

definition,

1
cr(r) = 3 (X;% + xz,p —r+ \/(XZ% + X%,p —r)2+ 4X,%7“) , (19.27)

where the chi-square random variables X;Q; and Xifp are independent. If 7 := rj,(Dy, M},) does not
depend on M, then, conditional on Dy, 73 is a constant and LM, and .J;, are independent and
distributed as Xz27 and X%—p (see the paragraph following ) In this case, even when ¢f = p,

P(CLRy, > ¢(1 — a,7p)) = Ep, P(CLRy, > ¢(1 — a,7)|Dp) = a, (19.28)

as desired, where the first equality holds by the law of iterated expectations and the second equality
holds because 7, is a constant conditional on Dj, and ¢(1 — a,7) is the 1 — a quantile of the
conditional distribution of clr(7),) given Dy, which equals that of CLR), given Dj,.

(ii) However, when 7, := r,(Dy, M}) depends on M, the distribution of 7 conditional on

Dy, is not a pointmass distribution. Rather, conditional on Dy, 7, is a random variable that is not

65



independent of LM}, Jp,, and CLR;,. In consequence, the second equality in (19.28)) does not hold
and the asymptotic null rejection probability of Kleibergen’s CLR test may be larger or smaller
than a depending upon the sequence {\,, € Axcrr:n > 1} (or {A\y, n € AkcrLr :n > 1}) when
qT <p.

Next, we use Lemma [I9.5] to provide an expression for the asymptotic size of Kleibergen’s CLR
test based on the Robin and Smith (2000) rank statistic with Jacobian-variance weighting.

Theorem 19.6 Let the parameter space for F be Frxcorr. Suppose the variance matriz estimator
Von employed by the rank statistic Tk';fl (defined in l’ satisfies Assumption VD. Then, the
asymptotic size of Kleibergen’s CLR test based on rk;rL is

AsySz = max{a, sup P(CLRy, > ¢(1 — «a, 7))}
heH

provided P(CLRy, = ¢(1 — «, 7)) =0 for all h € H.

Comments: (i) Comment (i) to Theorem also applies to Theorem [19.6]

(ii) Theorem and Lemma combine to prove Theorem [19.1]

(iii) A CS version of Theorem holds with the parameter space Fg kcrr in place of Fxcrr,
see Comment (v) to Theorem and the Comment to Proposition m

19.5 Correct Asymptotic Size of Equally-Weighted CLR Tests
Based on the Robin-Smith Rank Statistic

In this subsection, we consider equally-weighted CLR tests, a special case of which is considered
in Section [} By definition, an equally-weighted CLR test is a CLR test that is based on a rk,
statistic that depends on ﬁn only through Wnﬁn for some general k x k weighting matrix Wn
We show that such tests have correct asymptotic size when they are based on the rank statistic
of Robin and Smith (2000) and employ a general weight matrix Wn € RF*F that satisfies certain
conditions. In contrast, the results in Section |§| consider the specific weight matrix Qn /2 ¢ phxk,
The reason for considering these tests in this section is that the asymptotic results can be obtained
as a relatively simple by-product of the results in Section[19.4] All that is required is a slight change
in Assumption VD.

The rank statistic that we consider here is
rk} = Amin(nD, W/ WynDy). (19.29)

We replace Assumption VD in Section by the following assumption.
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Assumption W: For any sequence {\,; € Agcrr : n > 1}, the random k x k weight matrix
W,, is such that nl/ 2(Wn - W}n) —q W, for some non-random k x k matrices {W}n :n > 1} and
some random k x k matrix W), € RF*k W}n — W;{ for some nonrandom pd k x k matrix WhT, the
convergence is joint with the convergence in , and (g,, D, W) has a mean zero multivariate
normal distribution with pd variance matrix. The same condition holds for any subsequence {w;, }

and any sequence {\y, » € Axcrr :n > 1} with w, in place of n throughout.

If one takes Mn (= ‘751/2) =I,® Wn in Assumption VD, then D} = Wnﬁn and the rank

n

statistics in (19.3) and (19.29) are the same. Thus, Assumption W is analogous to Assumption

VD with Mn =1,® Wn and Mp, = I, ® W}n Note, however, that the latter matrix does not
typically satisfy the condition in Assumption VD that Mg, is defined in ((19.6)), i.e., the condition
that Mg, = (q)l;f(ci))_l/z. Nevertheless, the results in Section |19.4] hold with Assumption VD
replaced by Assumption W and with Mp = I, ® W};, D} = W}EFGi, and My, = I, ® Wp. With
these changes, 52 = W;{ﬁh in (19.14)) (because ((IDZeC(Gi))_l/z is replaced by Ip®W;[), ZL is defined
as in (|19.15)) with ﬁ}; as just given, and ML is defined as in (|19.19) with M};p_qf = Whh4h;p_qf.
Below we show the key result that M};p_qf = kx(r=d") for rk}, defined in ((19.29). By ((19.20)),

this implies that

!

et Bl at) (19.30)

Th(ﬁh;Mh) = )\min((ZT ),hT h,p—qt

h,p—qt/) "3 p—qt

when ¢f < p. Note that the rhs in does not depend on M, and, hence, is a function only
of Dy. That is, r,(Dy, M},) = 74(D},). Given that r,(Dy,, M},) does not depend on M}, Comment
(i) to Lemma implies that P(CLRy, > ¢(1 — ,7;)) = « under all subsequences {w,} and all
sequences {Ay, » € Axcrr : n > 1}. This and Theorem m give the following result.

Corollary 19.7 Let the parameter space for F' be Fxcopr. Suppose the rank statistic Tk;fL (defined
n ) 1s based on a weight matriz /Wn that satisfies Assumption W. Then, the asymptotic size
of the corresponding equally-weighted version of Kleibergen’s CLR test (defined in Section |5 with
rkn (0) = kL) equals a.

Comment: A CS version of Corollary holds with the parameter space Fo xcrr in place of
FrcrLr, see Comment (v) to Theorem and the Comment to Proposition m

Now, we establish that Mlll,p_qf (= Whh4h£ p—qf) = 0F*(P=4") We have

W)hy :=lm W} Ep,G; =limC}, Th Bl =nllimY} Al (19.31)

where C}n T}n (B}:-,n)’ is the singular value decomposition of W}nEFnGi, T}n is the k X p matrix

with the singular values of VVIT%EFn G;, denoted by {7';r F,iN > 1} for 7 < p, on the main diagonal
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and zeroes elsewhere, and C}n and B}n are the corresponding k£ x k£ and p X p orthogonal matrices
of singular vectors, as defined in 1’ Hence, lim TL exists, call it T;rl, and equals hyh4h£. That

is, the singular value decomposition of W;: hy is
Wihy = hiTIRY. (19.32)

The k x p matrix TL has the limits of the singular values of W;Ln Er G; on its main diagonal and

zeroes elsewhere. Let T}: j for j < p denote the limits of these singular values. By the definition of

1/2.1

q', T;rw. =0forj=gq'+1,...,p (because n Tip, — hJ{J < 00). In consequence, TL can be written

as
i 0d" x(p—a")
.'. o h, 1- T P S T T
T = ()(k—qTq)qu ok—a")x(—a") |’ where X, jy = Diag{7y, 1, . T) g1} (19:33)
In addition,
04" x(p—aq")
h;h;p_qf _ ) (19.34)
-
Thus, we have
—1 — _ = —
Mh,p—qT L= Wh(W}I) 1W}11‘h4h;p—qf - Wh(W}I) 1h;§’r.}rzh;h;p_qf
t q" x(p—q") q" x(p—q")
= W(W) 'kl Thpat O 0
h 3 ot—ahxat  (k—a")x(p—q") I, gt
— ka(pqu)’ (19.35)

where the first equality holds by the paragraph following Assumption W and uses the condition in
Assumption W that W;{ is pd and the second equality holds by (]19.33[) and (119.34[). This completes
the proof of Corollary

19.6 Proofs of Results Stated in Sections [19.2] and [19.4

For notational simplicity, the proofs in this section are for the sequence {n}, rather than a

subsequence {wy, : n > 1}. The same proofs hold for any subsequence {wy, : n > 1}.

Proof of Theorem Theorem follows from Theorem which imposes Assumption
VD, and Lemma which verifies Assumption VD when Vibn is defined by |' U

Proof of Lemma Consider any sequence {\, , € Axcrr : n > 1}. By the CLT result in
(19.11), the linear expansion of n*/2(D,, — Ep, G;) in (15.1)), and the definitions of g, and Dy, in
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(19.13)), we have
n2(Gn, Dy — Ep, Gi) =4 (G, Dh). (19.36)

Next, we apply the delta method to the CLT result in (19.11]) and the function a(-) defined in
(19.16). The mean component in the Ihs quantity in (19.11] is (0@+DA, vech(EF, fF f')"). We have
op+Dk
vech(Er, f} f})

—-1/2
= vech <<Epnvec(Gi - EFTLGZ')U(BC(GZ' - EFnGi)/ - F%ic(Gi)Q;wiPﬁC(Gi)/) / >

A\ —1/2
= vech ((CI’%ERC(G’)) > = vech(MFp,), (19.37)
where FEC(G") and Qp, are defined in 1) the first equality uses the definitions of a(-) and f;

(given in ([19.16) and lb respectively), the second equality holds by the definition of @EC(G")

in (10.15)), and the third equality holds by the definition of Mg, in (19.6). Also, Ep, f7 f —
hio,p+ and hyo g+ is pd. Hence, a(-) is well defined and continuously partially differentiable at
lim 0PV vech(Ep, f7 f')) = (0P*D* wech(hyg s+)"), as required for the application of the
delta method.

The delta method gives

n f‘* 0(P+1)k
n2(A, —vech(Mg,)) = n*/? [ a [ n! ‘ —a
im1 \ vech (fff') vech(Er, f7 f7)
—a ApLp, (19.38)

where the first equality holds by and the definitions of a(-) and A,, in , the convergence
holds by the delta method using the CLT result in (19.11)) and the definition of Ay, following (19.16).

Applying the inverse vech(-) operator, namely, vechlzp{ kp(-), to both sides of gives the
reconfigured convergence result

’I’Ll/Q(UGCh’;p{kp(An)) — Mp,) —q4 vech];p{kp(zhfh) = My, (19.39)

where the last equality holds by the definition of M} in (19.18]).
The convergence results in ((19.36)) and (19.39)) hold jointly because both rely on the convergence

result in (19.11)).
‘We show below that

n?(Voy — (vechy) ., (An)) %) = 0p(1). (19.40)
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This and the delta method applied again (using the function £(A) = A~Y2 for a pd kp x kp matrix
A) give
M2V % = vech ) (An)) = 0p(1) (19.41)

because vech,;;kp(An) = (@ZeC(Gi))_lm—i—o (1) and @Uec( ) is pd (because hyg, s+ is pd and (IDUEC( i) —
Qhio,-Q" for some full row rank matrix ). Equations (19.36 , m, and ((19.41)) establish the

result of the lemma.

Now we prove ([19.40)). We have
‘7Dn =nt Z vec(G vec(G — @n)/ — an 1?;

= (n_l Z vec(G; — Ep, Gi)vec(G; — EFnGi)'> - (Uec(@n — Ep, G;)vec(Gy, — Ep, Gi)')

=1
— (B~ veel@u — B, G05,) (B~ 3udh) (T~ vec(Gr — Er, G)d)’

=n! Z vec(G; — Ep, G;)vec(G; — Eg,G;)' — fn?z;lf; + Op(n_l), (19.42)
i=1

where the second equality holds by subtracting and adding Fr,G; and some algebra, by the defi-
nitions of Q and Fn in ., and ( , and by the definitions of Q and Fn in and
the third equality holds because (i) the second summand on the lhs of the third equality is Op(n_ )
because n'/2vec(G, — Ep, Gi) = Op(1) (by the CLT using the moment conditions in F, defined in
1) and (ii) n'/2g, = O,(1) (by Lemma ), n2vec(G, — Ep,G;) = Op(1), and T, = Op(1),

ﬁgl = 0,(1), T, = Op(1), and Q= Op(1) (by the justification given for )

Excluding the O,(n~!) term, the rhs in (19.42)) equals (vechkplkp(A )) 2. Hence, ((19.40) holds

and the proof is complete. [J

Proof of Theorem [19.3] The proof is similar to that of Lemma [10.3] in Section [I0] with
Wn =W, = I, U,=U, = I,,, and the following quantities g, ﬁn, D,, (= Er,G;), Bng, Tng, Cn,
and T, replaced by ¢, ]_/5;2, D}, (= D} ), B g ol

gt C’JL, and TL, respectively. The proof employs
the notational simplifications in (9.1). We can write

D} B!
n,qt

(vl )7 =DiB! (! )7t +n'2(Df - DHB! (Ml )7 (19.43)

an
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By the singular value decomposition, D;rl = CILTLB);I. Thus, we obtain

I
TT T— TTT’T T—l_‘rT q' Pyt
I
_ q _
cl ofk—atyxat Cn,q*' (19.44)
Let D,, = (ﬁln, ...,ﬁpn) € R*¥*? and Dy, = (Dyp, ey Dpp) € RF*P_ We have
p —~— o~ —~ ~
n'?(D} - D}) = n'/*Y " (MyjnDjn — Myjr, Er,Gij, ..., Mypju Djn — Myjr, Er, Gij)
j=1
p —_—
= Z Ml]nn ]n - EF G’Lj) +n 1/2 (Mljn - Mlan)EFnGij> )
7j=1
ijn”1/2(DJn — Ep, GZ]) + ”1/2(ijn - ijFn)EFnGij]
p
—q Y (MynDjn + Myjphaj, ..o My D+ Mpjnha j), (19.45)

=1

where the convergence holds by Lemma in Section Assumption VD, and Er,G;j — hg,
(by the definition of hy ;).

Combining ((19.43))-(19.45)) gives

DiBl (YT

n,qt

- A
P = i op(1) =y Bl = A (19.46)

n,gt — IqT )

where the equality uses n!/27 T F, — oo forall j < ¢" by the definition of ¢t and BT’Z qTB
the convergence holds by the definition of Al

Al in (19.15).

341" and the last equality holds by the definition of

Using the singular value decomposition D}; = C’JLTLB}L{ again, we obtain

12 pt gt 1204yt gir gt 1/2 At et 07" (=a")
n DTLBn,pqu =n'C} Y] B} Bn,pfq]\ =n'"C}T]
Ip—qt
04" *(p—q") ¢ x(p—q')
- T Ty 1o
=ch| n2xl | o hd | Diagihl i ohl) | = RS, g (1947)
0k—p)x(p—a") 0k—p)x(p—a")

where the second equality uses BTIB;QJ = I,,, the convergence holds by the definitions of hJf and hJr j
for j = 1,...,p, and the last equality holds by the definition of h]L gt in the paragraph following
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(19.10), which uses ((10.17)).
By (19.45) and B!

pf

5p_qtr Ve have

np—qt

2D} - DN)B! _  —aDhhy M, (19.48)

2,p—

using the definitions of EIL and M27p_qf in (|19.14) and (19.19)), respectively.

Using (19.47) and ((19.48), we get

n'2DIBT = nl'2DIBT 42D} - DI)B!

nnp—q nn,p—qf n,p—qt
T ~t
—d hgh.]l:?p—qf +thTp qT +Mhp qT Ahp qT +Mhp qT7 (1949)
where the last equality holds by the definition of Ah p—gt 11 ([19.15)).

Equations (19.46)) and (19.49) combine to give

n'?DIT} = n'?D}BlSE = (DiB! (X! )7 e'?DiB! )

n nql‘

T
(AthﬂAhp q

using the definitions of S}, and T}l in , Z;{l in , and HJ}[L in .

By Lemma n'/2(G,, Dy — Ep, G;) —q (Gh, Dp). This convergence is joint with that in
because the latter just relies on the convergence of n'/?2 (ﬁn — Er,G;), which is part of the
former, and of n'/2 (Mn — Mp,) —4 My, which holds jointly with the former by Assumption VD.

I, ) = AL+ M, (19.50)

This establishes the convergence result of Theorem [19.3]
The independence of g;, and (Eh,ZL) follows from the independence of g, and Dj,, which holds
by Lemma and the fact that ZIL is a nonrandom function of Dj,. OJ

Proof of Lemma The proof of Lemma [19.4] is analogous to the proof of Theorem with
Wn =W, = I, Un = U, = I, and the following quantities g, ﬁn, D,, (= EF,Gi), Kjn, Bn, Bng,

Sn: Snig: TiF,, and hs g replaced by ¢f, D}, D}, (= D% ), &1, Bl B o St st " 7hp,, and h3 .

respectively. Theorem rather than Lemma is employed to obtam the results in ((17.37)).

In consequence, Ay, g and Zh’p_q are replaced by ZL gt —i—M; ot and ZL p—gt +M,T1 p—qt respectively,

where Ah gt M;r1 qT = ZL gt (because ML,qT ;= Qkxd' by (19.19)). The quantities Ay, and Ay,

are replaced by Ah,qf and ZL,p—qT + MIW_QT in (17.37) and in the rest of the proof of Theorem
10.4} Note that (17.39)) holds with h3, replaced by h + because Ah gt = h;qT by (19.15) (just as
Zhyq = h3 ). Because (/}n = U,,, the matrices /Tn and Ajn for j =1,2,3 (defined in w) are all
zero matrices, which simplifies the expressions in — considerably.
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The proof of Theorem uses Lemma to obtain . Hence, an analogue of Lemma
@ is needed, where the changes listed in the first paragraph of this proof are made and hg ; and
C, are replaced by hg,j and C;E, respectively. In addition, Fyy is replaced by Frxcorr (because
Freorr C Fwu for dwy sufficiently small and My sufficiently large using the facts that FoNFywy
equals Fy for dyy sufficiently small and My sufficiently large by the argument following ([10.5))
and Frxorr C Fo by the argument following (19.5)). Because ﬁn = U,, the matrices A\jn for
j=1,2,3 (defined in ) are all zero matrices, which simplifies the expressions in —
considerably. For to go through with the changes listed above (in particular, with /Wn, ﬁn,
D,,, and U, replaced by Iy, ZA)IL, DIL, and I, respectively), we need to show that

n'/2(D} — DI) = 0,(1). (19.51)

By (5.4) with & = 6y (and with the dependence of various quantities on 6y suppressed for

notational simplicity), we have

p ]\71111 ]\/len
Z (MyjuDjn, -y MyjaDjn), where M= | 1 - 1 |=V,/2 eR* (19.52)
= Mpln Mppn
By (19.6]), we have
p
= (Myjp,Djn, --; Myir, Djn) (19.53)
j=1

using Dy, = (D1n, ..., Dpn), and Dj, := Ep, Gy; for j=1,...,p

For s =1,...,p, we have

~

nl/Q(Msjnﬁjn - stnDjn) = Msjnnl/z(Djn - D]n) + n1/2(Msgn - syFn) in — =0 ( )7 (1954)

where nl/Q(ZA)jn—Djn) = 0p(1) (by Lemma, 1/2( sjin—MsjF,) = Op(1) (because n1/2(Mn—
Mp,) —a M}, by Assumption VD), Mg, = O(1) (because Mp = (@?C( )) 172, <I>Uec( ) defined
in 1) satisfies CIDUeC( )= Varp(vec(G;) —F?C(G")Q;lgi) = [~ Epvec(Gy) g\t : Lp|Varp(f?),
and Amin(Varp(fF)) > 02 by the definition of Fxcrp in ), and Dj, = O(1) (by the moment
conditions in F, defined in (3.3)).

Hence,

p
nl/Q(D;‘; - D;[L) = Z 'I”Ll/Z[(MljnDjn, ceey ijnDjn) - (MljF"Djna ceey ijFnDjn)] = Op(l) (1955)
j=1
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This completes the proof of the analogue of Lemma which completes the proof of parts (a)-(d)
of Lemma [19.4

For part (e) of Lemmal[19.4] the results of parts (a)-(d) hold jointly with those in Theorem [19.3]
rather than those in Lemma because Theorem is used to obtain the results in ,
rather than Lemma [I0.3] This completes the proof. [J

Proof of Lemma The proof of parts (a) and (b) is the same as the proof of Theorem [12.1]
for the case where Assumption R(a) holds (which states that rk, —, co) using Lemma [19.4(a),
which shows that rk}; —q 00 if ¢ = p.

The proofs of parts (c) and (d) are the same as in (12.5)-(12.9) in the proof of Theorem for
the case where Assumption R(b) holds, using Theorem and Lemma M(b) in place of Lemma
with 74,(Dp, M) (defined in ) in place of r,(D},), and for part (d), with the proviso
that P(CLRy, = ¢(1 — a,7)) = 0. (The proof in Theorem that P(CLRy, = ¢(1 — a,73)) = 0
does not go through in the present case because 7, = rh(ﬁh,ﬂh) is not necessarily a constant
conditional on Dy, and alternatively, conditional on (D, M}), LM}, and Jj are not necessarily
independent and distributed as X; and Xi—p-) Note that does not necessarily hold in the

present case, because 7y = rh(ﬁh,ﬂh) is not necessarily a constant conditional on Dj,. O

The proof of Theorem [19.6] given below uses Corollary 2.1(a) of ACG, which is stated below as
Proposition [19.8] It is a generic asymptotic size result. Unlike Proposition [10.1] above, Proposition
applies when the asymptotic size is not necessarily equal to the nominal size a.. Let {¢,, : n > 1}
be a sequence of tests of some null hypothesis whose null distributions are indexed by a parameter
A with parameter space A. Let RP,(\) denote the null rejection probability of ¢, under \. For
a finite nonnegative integer .J, let {h,(A\) = (h1n(N), ..., hun(N)) € R’ : n > 1} be a sequence of
functions on A. Define H as in ((10.1]).

For a sequence of scalar constants {C,, : n > 1}, let C}, — [C] 0, C2,00] denote that C o <

liminf, .o C), <limsup,_,. C, < C2 .

Assumption B: For any subsequence {w,} of {n} and any sequence {\,,, € A:n > 1} for which
haw, (Aw,) — h € H, RP,,,(Ay,) — [RP~(h), RPT(h)] for some RP~(h), RP*(h) € [0, 1].

Proposition 19.8 (ACG, Corollary 2.1(a)) Under Assumption B, the tests {¢, : n > 1} have
AsySz = limsupsupyep RP,(A) € [supyey RP™(h),suppcg RPT(h)].

n—oo

Comments: (i) Corollary 2.1(a) of ACG is stated for CS’s, rather than tests. But, following
Comment 4 to Theorem 2.1 of ACG, with suitable adjustments (as in Proposition above) it

applies to tests as well.
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(ii) Under Assumption B, if RP~(h) = RP™(h) for all h € H, then AsySz = sup,cy RP(h).
We use this to prove Theorem m The result of Proposition for the case where RP~(h) #
RP™(h) for some h € H is used when proving Comment (i) to Theorem and the Comment to
Theorem

Proof of Theorem Theorem follows from Lemma and Proposition because
Lemma verifies Assumption B with RP~(h) = RP*(h) = a when ¢' = p and with RP~(h) =
RP*(h) = P(CLRy, > ¢(1 — a,7)) when ¢f < p. O

19.7 Proof of Lemma [5.2

Proof of Lemma Define J,,(0) by the decomposition AR, (0) = LM, (0) + J,(0). Under all
subsequences {wy } and all sequences {\,, p : 7 > 1} with Ay, , € Ag in (10.10), (11.2) and (12.6))

imply that
_ 1
Juw, (6o) Jh Gnhs.g & Mg, hs, g/ [
—>d J— ~ 1/2 1/2 , (1956)
LMy, (o) LMy, Thhsy " Px by Gns

where Ay, is defined in (10.17)). Note that the parameter space Ag for A defined in ((10.9)) is equivalent
to the parameter space Fy, see Comment (i) to Theorem m
Equation ((19.56|) and the CMT imply that the test statistic in (5.7)) converges in distribution

to

1/ _ — —
sup [2 <LMh+Jh—7’+\/(LMh+Jh—T)2+4LMh'T'>—0(1_0477")]- (19.57)

r€[0,00]

Conditional on Ay, LM} and J;, are independent and distributed as X;2; and X%_p, respectively.
Therefore, the conditional distribution of the random variable in given A}, is the same as the
distribution of the quantity in . Since the latter does not depend on Ay, the same statement
holds for the unconditional distribution of the random variable in .

The results of the previous paragraph verify Assumption B* (stated just above Proposition
10.1]) with the limit of the rejection probabilities in Assumption B*, i.e., lim;, oo RPy, (Aw, ), equal
to the probability that the random variable in is positive. The asymptotic size result of the

Lemma now follows by Proposition [10.1] [J

20 Proof of Theorem [7.1]

Theorem of AG1. Suppose the LM test, the CLR test with moment-variance weighting,
and when p = 1 the CLR test with Jacobian-variance weighting are defined as in this section,

the parameter space for F is Frgg for the first two tests and Frs jvwp=1 for the third test, and
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Assumption V holds. Then, these tests have asymptotic sizes equal to their nominal size o € (0,1)
and are asymptotically similar (in a uniform sense). Analogous results hold for the corresponding

CS’s for the parameter spaces Fo rso and Fo 18,7vWwp=1-

The proof of Theorem [7.1] is analogous to that of Theorems 4.1 [5.3] and 6.1} In the time series
case, for tests, we define A = (A1, ..., Ag.p) and {A, , : n > 1} asin (10.9) and ((10.11)), respectively,

but with A5 r defined differently than in the i.i.d. case. (For CS’s in the time series case, we make

the adjustments outlined in the Comment to Proposition [10.1]) We define

!/

m . .
>\5,F = Vi = Z jo 9i 9i—m

(20.1)
. vec(G; — ErG) vec(Gi—m — ErGi—pm)

In consequence, A5 f, — hs implies that Vg, — hs and the condition in Assumption V holds with
V' = hs. The difference in the definitions of A5 p in the ii.d. and time series cases reflects the
difference in the definitions of ZvFec(Gi) in these two cases. See the discussion following 1) of AG1
above regarding the latter.

The proof of Theorem uses the CLT given in the following lemma.

Lemma 20.1 Let f; := (g;,vec(G;)"). We have: wn/? S (fi — Eg, fi) —a N(OPHDR hg) under

all subsequences {wy,} and all sequences { Ay, p : n > 1}.

Proof of Theorem The proof is the same as the proofs of Theorems [{.1] [5.3] and [6.1]
(given in Sections and respectively, above) and the proofs of Lemmas and and
Theorem m (given in Sections and |17 above), upon which the former proofs rely, for the
i.i.d. case with some modifications. The modifications affect the proofs of Lemmas and
and the proof of Theorem No modifications are needed elsewhere.

The first modification is the change in the definition of A5 r described in .

The second modification is that Qn = ﬁn(eo) —p hs 4 not by the WLLN but by Assumption
V and the definition of Qn(ﬂ) in . In the time series case, by definition, A5 p := Vp, so
hs :=lim A5 i, = lim Vf, . By definition, hs 4 is the upper left & x k submatrix of hs and 1 is the
upper left k x k submatrix of Vy by and . Hence, h5 4 = limQp,. By the definition of
Frs, Amin(QF) > 6 VF € Frg. Hence, hs 4 is pd.

Let hsq,q be the k x k submatrix of hs that corresponds to the submatrix fjn(ﬁ) of ‘7”(0) in
1’ for j = 1,...,p. The third modification is that fjn = fjn(%) = hs,g;g +0p(1) in in
the proof of Lemma (rather than fjn = EF,Gijg. + op(1)) for j = 1,...,p and this holds by
Assumption V and the definition of fjn(é?) in (rather than by the WLLN).
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We write

hs,G1g

hsg M
hs = 9 RG] for hsg € RO hs gy = : € RP**kand hs,g € RPPP,

hscg hsa
h5,Gpg

(20.2)

The fourth modification is that 1~/Dn in in the proof of Theorem is defined as described
in Section EL rather than as in . In addition, ‘7Dn —p h7 in holds with h7 = hsq —
h57Gg(h5,g)_1h’5’Gg by Assumption V, rather than by the WLLN.

The fifth modification is the use of a WLLN and CLT for triangular arrays of strong mixing
random vectors, rather than i.i.d. random vectors, for the quantities in the proof of Lemma [10.2
and elsewhere. For the WLLN, we use Example 4 of Andrews (1988), which shows that for a strong
mixing row-wise-stationary triangular array {W; : i < n} we have n=t 3" (&(W;) — Eg, E(W;)) —»
0 for any real-valued function £(-) (that may depend on n) for which sup, >, Er, [[£(W;)|[*T° < oo
for some & > 0. For the CLT, we use Lemma [20.1 n as follows. The joint convergence of n'/2g, and
n'2(D,, — Ep, G;) in the proof of Lemma is obtained from , modified by the second and

third modifications above, and the following result:

n-1/2 Ti U n1/2
Z — Bp,((Wy)) = heont I Z — Ep, i)
- &g 5,9 p
—d N(O(p+1)k, Ly, ), where
gi I, Ok xpk 9gi

C(W;) = . = » , (20.3)
vec(Gi)—h&Ggh&ggi —hs,Gghs,  Ipk vec(G;)

fi = (¢, vec(G;)"), and the convergence holds by Lemma Using (20.2)), the variance matrix
Ly, in (20.3)) takes the form:

L I 0Dk hsg DGy L —hylh,
5 —
—hsaghsy  Ipk hsag  hsc OPRXE L
Ik kapk h5,g kapk h5,g kapk
- 1 vec(Gy) - vec(Gy) , where
—hs.cghs ;  Ipk hscg @, QPkxk o,
G; _
©; ) = hs G — hs,gehs Sh g (20.4)

Equations (15.1)) (modified as described above), (20.3)), and (20.4) combine to give the result of

Lemma [I0.2] for the time series case.
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The sixth modification occurs in the proof of Lemma [10.3(d) in Section in this SM. In
the time series case, the proof goes through as is, except that the calculations in (16.13) are
not needed because X% (and, hence, ¥% as well) is defined with its underlying components re-

centered at their means (which is needed to ensure that X% is a convergent sum). The latter

cl QpGiB
automatically holds and lim \I/v,:c( Fnok=a Frop=at2) _

n

implies that lim \Ilvec( i) (I)Z%(Gi)

vec(h3k q 7g/ Gih2,p—q&2)
(I)h

(which, in the i.i.d. case, is proved in ((16.13]).
This completes the proof of Theorem [7.1] O

Proof of Lemma For notational simplicity, we prove the result for the sequence {n} rather
than a subsequence {w, : n > 1}. The same proof applies for any subsequence. By the Cramér-
Wold device, it suffices to prove the result with f; — Er, f; and hs replaced by s(W;) =V (f;— EFr, fi)
and V' hsb, respectively, for arbitrary b € R®TDE First, we show

lim Varp, (n_1/2 > s(Wi)> = b'hsb, (20.5)
=1

where by assumption \s g, = > o Ep, s(W;)s(Wi_p,) — hs. By change of variables, we have

n n—1 n—1
Varg, (n_l/zzs(Wi)> = Y Covp,(s(Wi),s(Wiim))— > ‘m|coan( (Wi), $(Wi—m)).
i=1 m=—n-+1 m=—n+1 n
(20.6)
This gives
Varg, <n—1/223(m)> — V' \s.p, b
(%s) n—1 ‘m|
<23 ||Covk, (s(Wi), s(Wim))| + > —|ICovr, (s(Wi), s(Wim))ll. - (20.7)
m=n m=—n+1

By a standard strong mixing covariance inequality, e.g., see Davidson (1994, p. 212),

sup ||Covp(s(W;), s(Wi—m))|| < C’lozzﬂ/(%w (m) < CLCY N =D/ - where dy/(247) > 1,
e (20.8)
for some C < oo, where the second inequality uses the definition of Frg in . In consequence,
both terms on the rhs of converge to zero. This and b’ A5 5, b — b'hsb establish .

When b'hsb = 0, we have lim,,_,co Varg, (n=Y/2 3", s(W;)) = 0, which implies that n=1/2 37"
s(W;) —q N(0,b'hsb) = 0. When b'hsb > 0, we can assume o2 = Varg, (n= /230 s(W;)) > ¢
for some ¢ > 0 Vn > 1 without loss of generality. We apply the triangular array CLT in Corollary
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1 of de Jong (1997) with (using de Jong’s notation) 8 = v = 0, ¢p; := n~ 20, ', and X,; =
n~12s(W;)o,, . Now we verify conditions (a)-(c) of Assumption 2 of de Jong (1997). Condition (a)
holds automatically. Condition (b) holds because c,; > 0 and Eg, | Xpi/cni|*™7 = Eg, |s(W;)]?T7 <
2||b||>*"M < oo VF,, € Frs. Condition (c) holds by taking V,; = X,; (where V,; is the random
variable that appears in the definition of near epoch dependence in Definition 2 of de Jong (1997)),
dni = 0, and using ag, (m) < Om~? VE, € Frg for d > (2 +7)/y and C < co. By Corollary 1 of

de Jong (1997), we have X,; —4 N(0,1). This and (20.5) give
—1/22 W;) —a N(0,6 hsb), (20.9)

as desired. [
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