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9 Outline

This SM provides proofs of the results stated in AG1. It also provides some complementary

results to those in AG1.

Section 10 states some basic results that are used in all of the proofs. These results also are

used in AG2 and should be useful for establishing the asymptotic sizes of other tests for moment

condition models when strong identi�cation is not assumed. Given the results in Section 10, Section

11 proves Theorem 4.1, Section 12 proves Theorem 6.1, and Section 13 proves Theorem 5.3.

Section 14 shows that the eigenvalue condition in F0; de�ned in (3.9), is not redundant in
Theorems 4.1, 5.3, and 6.1.

Sections 15, 16, and 17 prove Lemma 10.2, Lemma 10.3, and Theorem 10.4, respectively, which

appear in Section 10.

Section 18 proves that the conditions in (3.10) and (3.11) are su¢ cient for the second condition

in F0j :
Section 19 proves Theorem 5.1 and Lemma 5.2. Section 19 also determines the asymptotic

size of Kleibergen�s (2005) CLR test with Jacobian-variance weighting that employs the Robin and

Smith (2000) rank statistic, de�ned in Section 5, for the general case of p � 1: When p = 1; the

asymptotic size of this test is correct. But, when p � 2; we cannot show that its asymptotic size
is necessarily correct (because the sample moments and the rank statistic can be asymptotically

dependent under some sequences of distributions). Section 19 provides some simulation results for

this test.

Section 20 proves Theorem 7.1, which provides results for time series observations.

For notational simplicity, throughout the SM, we often suppress the argument �0 for various

quantities that depend on the null value �0: Throughout the SM, the quantities BF ; CF ; and

(�1F ; :::; �pF ) are de�ned using the general de�nitions given in (10.6)-(10.8), rather than the de�n-

itions given in Section 3, which are a special case of the former de�nitions.

For notational simplicity, the proofs in Sections 15-17 are for the sequence fng; rather than a
subsequence fwn : n � 1g: The same proofs hold for any subsequence fwn : n � 1g: The proofs in
these three sections use the following simpli�ed notation. De�ne

Dn := EFnGi; 
n := 
Fn ; Bn := BFn ; Cn := CFn ; Bn = (Bn;q; Bn;p�q); Cn = (Cn;q; Cn;k�q);

Wn :=WFn ; W2n :=W2Fn ; Un := UFn ; and U2n := U2Fn ; (9.1)

where q = qh is de�ned in (10.16), Bn;q 2 Rp�q; Bn;p�q 2 Rp�(p�q); Cn;q 2 Rk�q; and Cn;k�q 2
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Rk�(k�q): De�ne

�n;q := Diagf�1Fn ; :::; � qFng 2 Rq�q; �n;p�q := Diagf� (q+1)Fn ; :::; �pFng 2 R
(p�q)�(p�q); and

�n :=

2664
�n;q 0q�(p�q)

0(p�q)�q �n;p�q

0(k�p)�q 0(k�p)�(p�q)

3775 2 Rk�p: (9.2)

Note that �n is the diagonal matrix of singular values of WnDnUn; see (10.8).

10 Basic Framework and Results for the Proofs

10.1 Uniformity

The proofs of Theorems 4.1, 5.3, and 6.1 use Corollary 2.1(c) in ACG. The latter result provides

general su¢ cient conditions for the correct asymptotic size and (uniform) asymptotic similarity of

a sequence of tests.

We now state Corollary 2.1(c) of ACG. Let f�n : n � 1g be a sequence of tests of some null
hypothesis whose null distributions are indexed by a parameter � with parameter space �: Let

RPn(�) denote the null rejection probability of �n under �: For a �nite nonnegative integer J; let

fhn(�) = (h1n(�); :::; hJn(�))0 2 RJ : n � 1g be a sequence of functions on �: De�ne

H := fh 2 (R [ f�1g)J : hwn(�wn)! h for some subsequence fwng

of fng and some sequence f�wn 2 � : n � 1gg: (10.1)

Assumption B�: For any subsequence fwng of fng and any sequence f�wn 2 � : n � 1g for which
hwn(�wn)! h 2 H; RPwn(�wn)! � for some � 2 (0; 1):

Proposition 10.1 (ACG, Corollary 2.1(c)) Under Assumption B�; the tests f�n : n � 1g have
asymptotic size � and are asymptotically similar (in a uniform sense). That is, AsySz := lim sup

n!1
sup�2�RPn(�) = � and lim inf

n!1
inf�2�RPn(�) = lim sup

n!1
sup�2�RPn(�):

Comments: (i) By Comment 4 to Theorem 2.1 of ACG, Proposition 10.1 provides asymptotic

size and similarity results for nominal 1 � � con�dence sets (CS�s), rather than tests, by de�ning

� as one would for a test, but having it depend also on the parameter that is restricted by the

null hypothesis, by enlarging the parameter space � correspondingly (so it includes all possible

values of the parameter that is restricted by the null hypothesis), and by replacing (i) �n by a CS

based on a sample of size n; (ii) � by 1 � �; (iii) RPn(�) by CPn(�); where CPn(�) denotes the
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coverage probability of the CS under � when the sample size is n; and (iv) the �rst lim sup
n!1

sup�2�

that appears by lim inf
n!1

inf�2� : In the present case, where the null hypotheses are of the form

H0 : � = �0 for � 2 �; for CS�s, �0 is taken to be a subvector of � and � is speci�ed so that the
value of this subvector ranges over �:

(ii) In the application of Proposition 10.1 to prove Theorems 4.1 and 6.1, one takes � to be

a one-to-one transformation of F0 for tests, and one takes � to be a one-to-one transformation of
F�;0 for CS�s. With these changes, the proofs for tests and CS�s are the same. In consequence, we
provide explicit proofs for tests only and obtain the proofs for CS�s by analogous applications of

Proposition 10.1. In the application of Proposition 10.1 to prove Theorem 5.3, the same is done

but with FJVW;p=1 in place of F0:
(iii) We prove the test results in Theorems 4.1, 5.3, and 6.1 using Proposition 10.1 by verifying

Assumption B� for suitable choices of � and hn(�):

10.2 Random Weight Matrices cWn and bUn

We prove results for statistics that depend on random weight matrices cWn 2 Rk�k and bUn 2
Rp�p: In particular, we consider statistics of the formcWn

bDn
bUn and functions of this statistic, wherebDn is de�ned in (3.2). The de�nitions of the random weight matrices cWn and bUn depend upon the

statistic that is of interest. They are taken to be of the form

cWn :=W1(cW2n) 2 Rk�k and bUn := U1(bU2n) 2 Rp�p; (10.2)

where cW2n and bU2n are random �nite-dimensional quantities, such as matrices, andW1(�) and U1(�)
are nonrandom functions that are assumed below to be continuous on certain sets. The estimatorscW2n and bU2n have corresponding population quantities W2F and U2F ; respectively. For examples,

see Examples 1-3 immediately below. Thus, the population quantities corresponding to cWn andbUn are
WF :=W1(W2F ) and UF := U1(U2F ); (10.3)

respectively.

Example 1: With Kleibergen�s (2005) LM test and the CLR test with moment-variance weighting,

which are considered in Sections 4 and 6, respectively, we take

cWn = b
�1=2n and bUn = Ip: (10.4)

In this case, the functions W1(�) and U1(�) are the identity functions, and the corresponding popu-
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lation quantities are WF =W2F = 

�1=2
F ; where 
F := EF gig

0
i; see (3.6), and UF = U2F = Ip:

Example 2: For a CLR test based on an equally-weighted statistic other than b
�1=2n
bDn; such asfWn

bDn; as in Comment (ii) to Theorem 6.1, one de�nes a pd matrix fWn as desired and one takescWn = fWn and bUn = UF = U2F = Ip:

Example 3: With Kleibergen�s (2005) CLR test with Jacobian-variance weighting and p = 1;

which is considered in Section 5, we determine the asymptotic distribution of the rank statistic

in (5.10) by taking cWn = eV �1=2Dn and bUn = Ip: In this case, the functions W1(�) and U1(�) are as
in Example 1, and the corresponding population quantities are WF = W2F = (V arF (vec(Gi)) �
�
vec(Gi)
F 
�1F �

vec(Gi)0
F )�1=2 = (	

vec(Gi)
F �EFGiEFG0i)�1=2; and UF = U2F = Ip: For this test, we need

the asymptotic distribution of the LM statistic. In consequence, for this test, we also establish

some asymptotic results with cWn and bUn de�ned as in Example 1.
Examples 4 & 5: The results of this section are used in AG2 when the asymptotic sizes of two

new SR-CQLR tests are determined. For the SR-CQLR tests, cWn = b
�1=2n and it is convenient to

take W1(�) = (�)�1=2 and cW2n = b
n; and the matrix bUn is a nonlinear transformation U1(�) of a
matrix estimator, which is di¤erent for the two tests. For brevity, we do not de�ne the nonlinear

transformation or the two matrix estimators here.

We provide results for distributions F in the following set of null distributions:

FWU := fF 2 F : �min(WF ) � �WU ; �min(UF ) � �WU ; jjWF jj �MWU ; and jjUF jj �MWUg
(10.5)

for some constants �WU > 0 and MWU < 1; where F is de�ned in (3.3). The set FWU \ F0 is
used to establish results for Kleibergen�s LM and the CLR test with moment-variance weighting,

considered in Section 6, using the fact that F0 = FWU \ F0 for �WU > 0 su¢ ciently small and

MWU < 1 su¢ ciently large. This holds because for all F 2 F0; �min(WF ) = �min(

�1=2
F ) =

�
�1=2
max (
F ) � jj
F jj�1=2 � M

�1=2
� for some M� < 1 (because jj
F jj = jjEF gig0ijj � M� for some

M� < 1 by the moment conditions in F); jjWF jj = jj
�1=2F jj � �
�1=2
min (
F ) � ��1=2 (using the

�min(EF gig
0
i) � � condition in F), where � > 0; �min(UF ) = �min(Ip) = 1; and jjUF jj = jjIpjj = p:

10.3 Reparametrization

To apply Proposition 10.1, we reparametrize the null distribution F to a vector �: The vector �

is chosen such that for a subvector of � convergence of a drifting subsequence of the subvector (after

suitable renormalization) yields convergence in distribution of the test statistic and convergence in

distribution of the critical value in the case of the CLR tests.
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To be consistent with the use of general weight matrices cWn and bUn in this section, we provide
more general de�nitions of � jF ; BF ; and CF here than are given in Section 3. These general

de�nitions reduce to the de�nitions given in Section 3 when WF = 

�1=2
F and UF = Ip:

The vector � depends on the following quantities. Let

BF denote a p� p orthogonal matrix of eigenvectors of U 0F (EFGi)0W 0
FWF (EFGi)UF (10.6)

ordered so that the corresponding eigenvalues (�1F ; :::; �pF ) are nonincreasing. The matrix BF is

such that the columns of WF (EFGi)UFBF are orthogonal. Let

CF denote a k � k orthogonal matrix of eigenvectors of WF (EFGi)UFU
0
F (EFGi)

0W 0
F (10.7)

ordered so that the corresponding eigenvalues are (�1F ; :::; �pF ; 0; :::; 0) 2 Rk: The matrices BF

and CF are not uniquely de�ned. We let BF denote one choice of the matrix of eigenvectors of

U 0F (EFGi)
0W 0

FWF (EFGi)UF and analogously for CF : Let

(�1F ; :::; �pF ) denote the p singular values of WF (EFGi)UF ; (10.8)

which are nonnegative, ordered so that � jF is nonincreasing. (Some of these singular values may

be zero.) As is well-known, the squares of the p singular values of a k � p matrix A with k � p

equal the p eigenvalues of A0A and the largest p eigenvalues of AA0: In consequence, �jF = �2jF for

j = 1; :::; p:
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De�ne the elements of � to be

�1;F := (�1F ; :::; �pF )
0 2 Rp;

�2;F := BF 2 Rp�p;

�3;F := CF 2 Rk�k;

�4;F := (EFGi1; :::; EFGip) 2 Rk�p;

�5;F := EF

0@ gi

vec(Gi)

1A0@ gi

vec(Gi)

1A0 2 R(p+1)k�(p+1)k;
�6;F = (�6;1F ; :::; �6;(p�1)F )

0 := (
�2F
�1F

; :::;
�pF

� (p�1)F
)0 2 Rp�1; where 0=0 := 0;

�7;F := W2F ;

�8;F := U2F ;

�9;F := F; and

� = �F := (�1;F ; :::; �9;F ): (10.9)

For simplicity, when writing � = (�1;F ; :::; �9;F ); we allow the elements to be scalars, vectors,

matrices, and distributions and likewise in similar expressions. If p = 1; no vector �6;F appears in

� because �1;F only contains a single element. The vector �6;F is only used in the proofs for CLR

tests. It could be deleted when considering only an LM test. The dimensions of W2F and U2F

depend on the choices of cWn = W1(cW2n) and bUn = U1(bU2n): We let �5;gF denote the upper left
k � k submatrix of �5;F: Thus, �5;gF = EF gig

0
i = 
F :

We consider the parameter space �0 for �; which corresponds to FWU \ F0; where FWU and

F0 are de�ned in (10.5) and (3.9), respectively. The parameter space �0 and the function hn(�)
are de�ned by

�0 := f� : � = (�1;F ; :::; �9;F ) for some F 2 FWU \ F0g and

hn(�) := (n1=2�1;F ; �2;F ; �3;F ; �4;F ; �5;F ; �6;F ; �7;F ; �8;F ): (10.10)

By the de�nition of F ; �0 indexes distributions that satisfy the null hypothesis H0 : � = �0: The

dimension J of hn(�) equals the number of elements in (�1;F ; :::; �8;F ): Redundant elements in

(�1;F ; :::; �8;F ); such as the redundant o¤-diagonal elements of the symmetric matrix �5;F ; are not

needed, but do not cause any problem. Note that two parameter spaces denoted by �1 and �2;

which are larger than �0; are considered for the two SR-CQLR tests analyzed in AG2. (We also

use �2 in this paper, see (10.11) below.)
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We de�ne � and hn(�) as in (10.9) and (10.10) because, as shown below, the asymptotic dis-

tributions of the test statistics under a sequence fFn : n � 1g for which hn(�Fn)! h 2 H depend

on the behavior of limn1=2�1;Fn ; as well as lim�m;Fn for m = 2; :::; 8: For example, the LM statis-

tic in (4.2) depends on b
�1=2n
bDn; or equivalently, on n1=2b
�1=2n

bDnBFnSn (because projections are

invariant to rescaling and right-hand side (rhs) transformations by nonsingular matrices), where

Sn is a pd diagonal matrix that is designed to make this quantity Op(1) and not op(1): We show

that this quantity is asymptotically equivalent to n1=2
�1=2Fn
bDnBFnSn: In turn, the latter quan-

tity depends on n1=2
�1=2Fn
bGnBFn = n1=2


�1=2
Fn

( bGnBFn � EFnGiBFn) + n1=2

�1=2
Fn

EFnGiBFn : The

quantity vec(n1=2
�1=2Fn
( bGnBFn � EFnGiBFn)) has a nondegenerate asymptotic normal distribu-

tion by the central limit theorem (CLT), using the behavior of lim�s;Fn for s = 2; 4; 5; the fact

that BFn is an orthogonal matrix, and the restriction in F0: Hence, the asymptotic behavior of
vec(n1=2


�1=2
Fn

bGnBFn) depends on that of n1=2
�1=2Fn
EFnGiBFn : Using the SVD of 
�1=2Fn

EFnGi;

the latter is shown below to equal �3;FnDiagfn1=2�1;Fng; where Diagfn1=2�1;Fng denotes the k� p
matrix with n1=2�1;Fn on the main diagonal and zeros elsewhere.

In Example 1 of Section 10.2 applied to the linear model (2.2), we have WF = 

�1=2
F and

� jF is the jth singular value of �
�1=2F EFZiY
0
2i = �
�1=2F EFZiZ

0
i�; where 
F = EFu

2
iZiZ

0
i for

j = 1; :::; p: As is well known, if � is close to zero, weak instrument problems occur. But, as we

show, matrices � that are close to being singular, without their columns being close to zero, also

lead to weak IV problems. This is captured in the present set-up by �pF being close to zero in the

sense that limn1=2�pFn <1: If this occurs, then weak identi�cation problems arise.
For notational convenience,

f�n;h : n � 1g denotes a sequence f�n 2 �2 : n � 1g for which hn(�n)! h 2 H; where

�2 := f� : � = (�1;F ; :::; �9;F ) for some F 2 FWUg (10.11)

and H is de�ned in (10.1) with � replaced by �2: Analogously, for any subsequence fwn : n � 1g;
f�wn;h : n � 1g denotes a sequence f�wn 2 �2 : n � 1g for which hwn(�wn)! h 2 H: By de�nition,
�0 � �2: We use the parameter space �2 in many places in the paper, rather than �0; for two

reasons. First, this makes it clear where the conditions speci�ed in F0 (and �0) are really needed.
Second, some of the results given here are used in AG2, which does not employ the smaller set �0;

but does use �2: By the de�nitions of �2 and FWU ; f�n;h : n � 1g is a sequence of distributions
that satis�es the null hypothesis H0 : � = �0:

We decompose h (de�ned by (10.1), (10.9), and (10.10)) analogously to the decomposition of

the �rst eight components of �: h = (h1; :::; h8); where �m;F and hm have the same dimensions
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for m = 1; :::; 8: We further decompose the vector h1 as h1 = (h1;1; :::; h1;p)0; where the elements of

h1 could equal 1: We decompose h6 as h6 = (h6;1; :::; h6;p�1)0: In addition, we let h5;g denote the
upper left k � k submatrix of h5: In consequence, under a sequence f�n;h : n � 1g; we have

n1=2� jFn ! h1;j � 0 8j � p; �m;Fn ! hm 8m = 2; :::; 8;

�5;gFn = 
Fn = EFngig
0
i ! h5;g; and �6;jFn ! h6;j 8j = 1; :::; p� 1: (10.12)

By the conditions in F ; de�ned in (3.3), h5;g is pd.
The smallest and largest singular values of WF (EFGi)UF (i.e., �pF and �1F ) can be related to

those of EFGi (i.e., spF and s1F ) for F 2 FWU via

c1sjF � � jF � c2sjF for j = 1 and j = p for some constants 0 < c1 < c2 <1 (10.13)

that do not depend on F: As shown below, the parameter � is strongly or semi-strongly identi�ed

under f�n;h : n � 1g if limn1=2�pFn = 1: In consequence of (10.13), this holds i¤ limn1=2spFn =
1: The parameters are weakly identi�ed in the standard sense if limn1=2� jFn < 1 8j � p or,

equivalently, if limn1=2�1Fn <1; which holds by (10.13) i¤ limn1=2s1Fn <1: The parameters are
weakly identi�ed in the non-standard sense if limn1=2�1Fn =1 and limn1=2�pFn <1; which holds
by (10.13) i¤ limn1=2s1Fn =1 and limn1=2spFn <1:

The proof of (10.13) is as follows. For notational simplicity, we drop the subscript F in some

of the calculations. We have

�min(U
0EG0iW

0WEGiU)

= min
�:jj�jj=1

(U�=jjU�jj)0EG0iW 0WEGi(U�=jjU�jj) � jjU�jj2

� min
�:jj�jj=1

�0EG0iW
0WEGi� � �max(U 0U)

= min
�:jj�jj=1

(EGi�=jjEGi�jj)0W 0W (EGi�=jjEGi�jj) � jjEGi�jj2 � �max(U 0U)

� �max(W
0W )�min(EG

0
iEGi)�max(U

0U)

� c22�min(EG
0
iEGi); where

c2 := sup
F2FWU

[�max(W
0
FWF )�max(U

0
FUF )]

1=2 <1 (10.14)

and the last inequality holds by the conditions in FWU (de�ned in (10.5)). Because the smallest

eigenvalues of U 0EG0iW
0WEGiU and EG0iEGi equal the squares of the smallest singular values

of WEGiU and EGi; respectively, (10.14) establishes the second inequality in (10.13) for j = p:

Analogous calculations establish the lower bound in (10.14) for j = p and the bounds for j = 1
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by replacing min and � by max and �; respectively, in the appropriate places and taking c1 :=
infF2FWU

[�min(W
0
FWF )�min(U

0
FUF )]

1=2 > 0:

10.4 Assumption WU

We assume that the random weight matrices cWn = W1(cW2n) and bUn = U1(bU2n) de�ned in
(10.2) satisfy the following assumption that depends on a suitably chosen parameter space ��

(� �2); such as �2; �0; or �1:

Assumption WU for the parameter space �� � �2: Under all subsequences fwng and all
sequences f�wn;h : n � 1g with �wn;h 2 ��;

(a) cW2wn !p h7 (:= limW2Fwn );

(b) bU2wn !p h8 (:= limU2Fwn ); and

(c) W1(�) is a continuous function at h7 on some set W2 that contains f�7;F (= W2F ) : � =

(�1;F ; :::; �9;F ) 2 ��g and contains cW2wn wp!1 and U1(�) is a continuous function at h8 on some
set U2 that contains f�8;F (= U2F ) : � = (�1;F ; :::; �9;F ) 2 ��g and contains bU2wn wp!1:

In Assumption WU and elsewhere below, �all sequences f�wn;h : n � 1g�means �all sequences
f�wn;h : n � 1g for any h 2 H� and likewise with n in place of wn: Note that, by de�nition, a

sequence f�wn;h : n � 1g determines a sequence of distributions fFwn : n � 1g; see (10.9).
Assumption WU for the parameter space �0 is veri�ed in Comment (ii) to Theorem 12.1 given

below for the CLR test with moment-variance weighting, which is considered in Section 6. It also

holds for Kleibergen�s LM test (for the same parameter space �0) by the same argument (becausecW2n; bU2n; W1(�); and U1(�) are the same for these two tests, see (10.4)).

10.5 Basic Results

For any square-integrable random vector ai and F; Fn 2 F ; de�ne

�aiF := V arF (ai � (EFa`g0`)
�1F gi) and �
ai
h := lim�

ai
Fwn

(10.15)

whenever the limit exists, where the distributions fFwn : n � 1g correspond to f�wn;h : n � 1g
for any subsequence fwn : n � 1g: Note that �aiF = 	aiF � EFaiEFa

0
i (because 	

ai
F = EF bib

0
i for

bi = ai � (EFa`g0`)

�1
F gi and EF gi = 0k):

A basic result that is used in the proofs of results for all of the tests considered in this paper

and AG2 is the following.
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Lemma 10.2 Under all sequences f�n;h : n � 1g;

n1=2

0@ bgn
vec( bDn � EFnGi)

1A!d

0@ gh

vec(Dh)

1A � N

0@0(p+1)k;
0@ h5;g 0k�pk

0pk�k �
vec(Gi)
h

1A1A :

Under all subsequences fwng and all sequences f�wn;h : n � 1g; the same result holds with n replaced
with wn:

Comments: (i) The variance matrix �vec(Gi)h depends on h only through h4 and h5: The assump-

tions allow �vec(Gi)h to be singular.

(ii) Suppose one eliminates the �min(EF gig0i) � � condition in F and one de�nes bDn in (3.2)

with b
n replaced by an eigenvalue-adjusted matrix, denoted by b
"n; which is constructed to have
its smallest eigenvalue greater than or equal to " > 0 multiplied by its largest eigenvalue, see AG2

for the details of such a construction. In this case, the result of Lemma 10.2 still holds and all of

the other asymptotic results following from Lemma 10.2 still hold, except the independence of gh

and Dh: However, this independence is key because it is used in the conditioning argument that

establishes the correct asymptotic size of all of the tests that are shown to have correct asymptotic

size. Without it, these tests do not necessarily have correct asymptotic size. In consequence, we

de�ne bDn in (3.2) using b
n; not b
"n:
The reason that independence does not necessarily hold when bDn is de�ned using b
"n; rather

than b
n; is that the covariance term EFn [Gij�EFnGij� (EFnG`jg0`)(
"Fn)
�1gi]g0i typically does not

equal 0k�k when 
"Fn 6= 
Fn ; whereas EFn [Gij � EFnGij � (EFnG`jg0`)

�1
Fn
gi]g

0
i necessarily equals

0k�k; see the proof of Lemma 10.2 in Section 15 below for more details.

(iii) The proofs of Lemma 10.2 and other results in this section are given in Sections 15-17

below.

The following is a key de�nition. Consider a sequence f�n;h : n � 1g: Let q = qh (2 f0; :::; pg)
be such that

h1;j =1 for 1 � j � qh and h1;j <1 for qh + 1 � j � p; (10.16)

where h1;j := limn1=2� jFn � 0 for j = 1; :::; p by (10.12) and the distributions fFn : n � 1g
correspond to f�n;h : n � 1g de�ned in (10.11). Such a q exists because fh1;j : j � pg are
nonincreasing in j (since f� jF : j � pg are the ordered singular values of WF (EFGi)UF ; as de�ned

in (10.8)). As de�ned, q is the number of singular values of WFn(EFnGi)UFn that diverge to

in�nity when multiplied by n1=2: Roughly speaking, q is the number of parameters, or one-to-one

transformations of the parameters, that are strongly or semi-strongly identi�ed.

The following quantities appear in Lemma 10.3 below, which gives the asymptotic distribution
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of bDn after suitable rotations and rescaling, but without the recentering (by subtracting EFnGi)

that appears in Lemma 10.2. We partition h2 and h3 and de�ne �h as follows:

h2 = (h2;q; h2;p�q); h3 = (h3;q; h3;k�q); h
�
1;p�q :=

2664
0q�(p�q)

Diagfh1;q+1; :::; h1;pg
0(k�p)�(p�q)

37752 Rk�(p�q);
�h = (�h;q;�h;p�q) 2 Rk�p; �h;q := h3;q; �h;p�q := h3h

�
1;p�q + h71Dhh81h2;p�q;

h71 := W1(h7); and h81 := U1(h8); (10.17)

where h2;q 2 Rp�q; h2;p�q 2 Rp�(p�q); h3;q 2 Rk�q; h3;k�q 2 Rk�(k�q); �h;q 2 Rk�q; �h;p�q 2
Rk�(p�q); h71 2 Rk�k; h81 2 Rp�p; and Dh is de�ned in Lemma 10.2. For simplicity, there is some

abuse of notation here, e.g., h2;q and h2;p�q denote di¤erent matrices even if p� q happens to equal
q: Note that when Assumption WU holds h71 = limWFn = limW1(W2Fn) and h81 = limUFn =

limU1(U2Fn) under f�n;h : n � 1g:
The case where q = p (i.e., n1=2� jFn !1 for all j � p) is the strong or semi-strong identi�cation

case. In this case, no h2;p�q; h�1;p�q; and �h;p�q matrices appear in (10.17), �h = h3;q = h3;p; and

�h is non-random. In consequence, the limit in distribution (or probability) of the normalized

matrix n1=2WFn
bDnUFnTn; where Tn 2 Rp�p is de�ned below, is non-random, see Lemma 10.3

below. When q < p; identi�cation is weak and the limit of this matrix is random.

Now we provide some motivation for Lemma 10.3, which is stated below. To show that the

LM statistic has a �2p asymptotic distribution we need to determine the asymptotic behavior of bDn

without the recentering by EFnGi that occurs in Lemma 10.2. In addition, to determine the as-

ymptotic distribution of the rkn statistic in (6.2), we need to determine the asymptotic distribution

of WFn
bDnUFn without recentering by EFnGi: (Furthermore, to determine the asymptotic distribu-

tions of the two SR-CQLR test statistics and conditional critical values considered in AG2, we need

to determine the asymptotic distribution of WFn
bDnUFn without recentering by EFnGi:) To do so,

we post-multiply WFn
bDnUFn �rst by BFn and then by a nonrandom diagonal matrix Sn 2 Rp�p

(which may depend on Fn and h). The matrix Sn rescales the columns of WFn
bDnUFnBFn to ensure

that n1=2WFn
bDnUFnBFnSn converges in distribution to a (possibly) random matrix that is �nite

a.s. and not almost surely zero. For F 2 FWU \ F0; it ensures that the (possibly) random limit

matrix has full column rank with probability one. For example, in the case of the LM statistic,

these transformations are applied with WFn = 

�1=2
Fn

and UFn = Ip:

For the LM statistic and the CLR statistics that employ it, we need the full column rank

property of the limit random matrix in order to apply the continuous mapping theorem (CMT).
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For the LM statistic, the full rank property ensures that the quantity bD0
n
b
�1n bDn (whose inverse

appears in the expression for LMn; see (4.2)), is nonsingular asymptotically with probability one

after bDn has been transformed and rescaled to yield n1=2

�1=2
Fn

bDnBFnSn: Note that Pb
�1=2n
bDn ; which

appears in the de�nition of LMn in (4.2), can be written as

Pb
�1=2n
bDn := b
�1=2n

bDn( bD0
n
b
�1n bDn)

�1 bD0
n
b
�1=2n

= (b
�1=2n 
1=2n )(n1=2
�1=2n
bDnTn)

h
(n1=2
�1=2n

bDnTn)
0(b
�1=2n 
1=2n )0(b
�1=2n 
1=2n )

� (n1=2
�1=2n
bDnTn)

i�1
(n1=2
�1=2n

bDnTn)
0(
1=2n

b
�1=2n ); where

Tn := BFnSn 2 Rp�p and 
n := 
Fn (= EFngig
0
i); (10.18)

provided Tn has full rank and 
n is pd. In consequence, these transformations do not a¤ect the

value or distribution of the LM statistic.

Note that the two SR-CQLR test statistics considered in AG2 do not depend on an LM statistic

and do not require the asymptotic distribution of n1=2WFn
bDnUFnBFnSn to have full column rank

a.s.

De�ne

Sn := Diagf(n1=2�1Fn)�1; :::; (n1=2� qFn)�1; 1; :::; 1g 2 Rp�p; (10.19)

where q = qh is de�ned in (10.16). Note that � jFn > 0 for n large for j � q and, hence, Sn is well

de�ned for n large, because n1=2� jFn !1 for all j � q:

The proof of Theorem 11.1 for the LM test, the proofs of Theorems 10.4 and 12.1 for the CLR

test with moment-variance weighting, and the proofs for the two SR-CQLR tests in AG2 use the

following lemma. The p� p matrix Tn is de�ned in (10.18).

Lemma 10.3 Suppose Assumption WU holds for some non-empty parameter space �� � �2:

Under all sequences f�n;h : n � 1g with �n;h 2 ��;

n1=2(bgn; bDn � EFnGi;WFn
bDnUFnTn)!d (gh; Dh;�h);

where (a) (gh; Dh) are de�ned in Lemma 10.2, (b) �h is the nonrandom function of h and Dh

de�ned in (10.17), (c) (Dh;�h) and gh are independent, (d) if Assumption WU holds with �� = �0;

WF = 

�1=2
F ; and UF = Ip; then �h has full column rank p with probability one, and (e) under all

subsequences fwng and all sequences f�wn;h : n � 1g with �wn;h 2 ��; the convergence result above
and the results of parts (a)-(d) hold with n replaced with wn:

Comments: (i) Lemma 10.3(c)-(d) are key properties of the asymptotic distribution of n1=2(bgn;
13



WFn
bDnUFnTn) that lead to the LM statistic having a �2p asymptotic distribution and the CLR test

with moment-variance weighting having correct asymptotic size. Lemma 10.3(c) is a key property

that leads to the correct asymptotic size of the two SR-CQLR tests in AG2. Lemma 10.3(d) is not

needed for these tests because they do not rely on an LM statistic.

(ii) The conditions in F0 are used in the proofs to obtain the result of Lemma 10.3(d) and are
not used elsewhere in the proofs, except where Lemma 10.3(d) is used.

The following theorems are used only for the CLR tests. For the proof of Theorem 4.1 concerning

Kleibergen�s (2005) LM test, one can go from here to Section 11.

Let b�jn denote the jth eigenvalue of nbU 0n bD0
n
cW 0
n
cWn

bDn
bUn; 8j = 1; :::; p; (10.20)

ordered to be nonincreasing in j: By de�nition, �min(nbU 0n bD0
n
cW 0
n
cWn

bDn
bUn) = b�pn: Also, the jth

singular value of n1=2cWn
bDn
bUn equals b�1=2jn :

Theorem 10.4 Suppose Assumption WU holds for some non-empty parameter space �� � �2:

Under all sequences f�n;h : n � 1g with �n;h 2 ��;
(a) b�pn !p 1 if q = p;

(b) b�pn !d �min(�
0
h;p�qh3;k�qh

0
3;k�q�h;p�q) if q < p;

(c) b�jn !p 1 for all j � q;

(d) the (ordered) vector of the smallest p�q eigenvalues of nbU 0n bD0
n
cW 0
n
cWn

bDn
bUn; i.e., (b�(q+1)n; :::;b�pn)0; converges in distribution to the (ordered) p�q vector of the eigenvalues of �0h;p�qh3;k�qh03;k�q

��h;p�q 2 R(p�q)�(p�q);
(e) the convergence in parts (a)-(d) holds jointly with the convergence in Lemma 10.3, and

(f) under all subsequences fwng and all sequences f�wn;h : n � 1g with �wn;h 2 ��; the results
in parts (a)-(e) hold with n replaced with wn:

Comments: (i) The statistic b�pn = �min(nbU 0n bD0
n
cW 0
n
cWn

bDn
bUn) in Theorem 10.4(a) and (b) is a

Robin and Smith (2000)-type rank statistic.

(ii) Theorem 10.4(a) and (b) is used to determine the asymptotic behavior of the statistic

rkn de�ned in (6.2) (which is employed by the CLR test with moment-variance weighting that is

considered in Section 6). More speci�cally, Theorem 10.4(a) and (b) is used to verify Assumption

R in Section 12 below.

(iii) Theorem 10.4(c) and (d) is used to determine the asymptotic behavior of the critical

value functions for the two SR-CQLR tests considered in AG2 (with cWn and bUn de�ned suitably).
Because Theorem 10.4(c) and (d) are immediate by-products of the proofs of Theorem 10.4(a) and

(b), they are stated and proved here, rather than in AG2.
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(iv) The statement of Theorem 3 in Kleibergen (2005) is di¢ cult to interpret because the

expression given for the conditional asymptotic distribution of the CLR statistic involves Kleiber-

gen�s (2005) statistic rk(�0); which is a �nite-sample object. Based on Theorem 10.4, (12.7) below

provides the asymptotic distribution of a class of CLR statistics in terms of an asymptotic version

of the rank statistic employed, which is necessary for a precise statement of the asymptotic distri-

bution. The class of CLR statistics considered are those de�ned in (5.1) and based on the rank

statistic in Theorem 10.4 for some choices of cWn and bUn; which is a Robin and Smith (2000)-type
rank statistic. In particular, taking cWn = b
�1=2n and bUn = Ip gives the rank statistic de�ned in

(6.2).

11 Asymptotic Size of the Nonlinear LM Test

In this section, we prove Theorem 4.1 for the LM test.

We state a theorem that veri�es Assumption B� of ACG (stated in Section 10) for the LM

test. The following theorem applies with cWn = b
�1=2n ; WF = 

�1=2
F ; and bUn = UF = Ip: (These

de�nitions a¤ect the de�nition of �n;h; which appears in the theorem).

Theorem 11.1 The asymptotic null rejection probabilities of the nominal size � 2 (0; 1) LM test

equal � under all subsequences fwng and all sequences f�wn;h : n � 1g with �wn;h 2 �0 8n � 1:

Comments: (i) The requirement that �wn;h 2 �0 (de�ned in (10.10)) implies that the parameter
space for F is F0 (de�ned in (3.9)) for the results given in Theorems 4.1 and 11.1 (because the
restrictions in FWU are not binding, see the discussion in the paragraph containing (10.5)).

(ii) Proposition 10.1 and Theorem 11.1 prove Theorem 4.1 for the LM test. The proof of

Theorem 4.1 for the LM CS is analogous, see Comments (i) and (ii) to Proposition 10.1.

For notational simplicity, we prove Theorem 11.1 for the sequence fng; rather than a subse-
quence fwn : n � 1g: We note here that the same proof holds for any subsequence fwn : n � 1g:

Proof of Theorem 11.1. Let 
n := 
Fn : We derive the limiting distribution of the statistic

LMn using the CMT applied to 

�1=2
n n1=2bgn; b
�1=2n 


1=2
n ; and n1=2
�1=2n

bDnTn; where the latter two

quantities appear in the expression on the rhs of (10.18). Note that b
n !p h5;g by the WLLN, 
n !
h5;g; and h5;g is pd. Thus, b
�1=2n 


1=2
n !p Ik: By Lemma 10.3 applied withWF = 


�1=2
F and UF = Ip

(which results from taking cWn = b
�1=2n and bUn = Ip), we get (

�1=2
n n1=2bgn; n1=2
�1=2n

bDnTn) !d

(h
�1=2
5;g gh;�h): For the CMT to apply, it is enough to show that the function f : Rk�p ! Rk�k

de�ned by f(D) := D(D0D)�1D0 for D 2 Rk�p is continuous on a set C � Rk�p with P (�h 2
C) = 1: This holds because the function f2(D;L) := LD((LD)0(LD))�1D0L0 for a nonsingular
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k � k matrix L is continuous at (D; Ik) if f(D) is continuous at D: Note that f is continuous at

each D that has full column rank. And, by Lemma 10.3(d), �h has full column rank a.s. because

�n;h 2 �0; Fn 2 F0; WF = 

�1=2
F ; and UF = Ip: Hence, f is continuous a.s. By b
�1=2n 


1=2
n !p Ik;

the convergence result in Lemma 10.3, and the CMT, we have

PD�
n
b
�1=2n n1=2bgn = D�

n(D
�0
nD

�
n)
�1D�0

n
b
�1=2n n1=2bgn !d vh := P�hh

�1=2
5;g gh; (11.1)

where D�
n := (b
�1=2n 


1=2
n )n1=2


�1=2
n

bDnTn:

Conditional on �h; v
0
hvh is distributed as �

2
p because (i) �h and gh are independent by property

(c) in Lemma 10.3, (ii) h�1=25;g gh is conditionally distributed as N(0
k; Ik) by gh � N(0k; h5;g) and

(i), and (iii) P�h is �xed given �h and projects onto a space of dimension p a.s. by property

(d) in Lemma 10.3. Because the �2p distribution does not depend on �h; v
0
hvh is unconditionally

distributed as �2p as well. In consequence, using the CMT again, we have

LMn !d LMh := v0hvh � �2p: (11.2)

Given this result and the use of the �2p;1�� critical value by the LM test, we obtain the conclusion

of Theorem 11.1 for the LM test: limPFn(LMn > �2p;1��) = �: �

12 Asymptotic Size of the CLR Test with Moment-Variance

Weighting

In this section, we prove Theorem 6.1, which concerns the CLR test (and CS) with moment-

variance weighting based on the Robin-Smith rank statistic. In fact, for the CLR test de�ned by

(5.1)-(5.2), we prove a stronger result than that given in Theorem 6.1. We establish Theorem 6.1

for a CLR test that is based on any rank statistic rkn that satis�es a high-level assumption, denoted

Assumption R, not just the rank statistic rkn(�0) de�ned in (6.2). Then, we verify Assumption R for

the moment-variance-weighted Robin-Smith rank statistic rkn(�0) in (6.2). Note that Assumption

R does not hold for the rank statistic in (5.5) when p � 2:
Section 19.5 below provides additional asymptotic size results for equally-weighted CLR tests

(and CS�s), which are CLR tests that are based on rkn statistics that depend on bDn only throughfWn
bDn for some k � k weighting matrix fWn: These results show that equally-weighted CLR tests

(and CS�s) based on the Robin and Smith (2000) rank statistic with a general weight matrix fWn

(2 Rk�k) have correct asymptotic size under suitable conditions on fWn: One can view these results

as verifying Assumption R for a broad class of rkn statistics. In contrast, the results in the present
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section establish the correct asymptotic size of CLR tests (and CS�s) under the high-level condition

Assumption R and for the Robin and Smith (2000) rank statistic when fWn is the moment-variance

weighting matrix b
�1=2n ; see Comment (ii) to Theorem 12.1 below.

The high-level condition on the rank statistic rkn is the following.

Assumption R: For any subsequence fwng and any sequence f�wn;h : n � 1g with �wn;h 2 �0
8n � 1 either (a) rkwn !p rh = 1 or (b) rkwn !d rh(Dh) for some nonrandom function rh :

Rk�p ! R; where Dh is de�ned in Lemma 10.2, and the convergence is joint with that in Lemma

10.2.

In Assumption R, by rkwn !p 1; we mean that for every K < 1 we have P�0;�wn (rkwn >

K)! 1; where P�0;�wn (�) denotes probability under �wn when the true parameter vector equals �0:
The following theorem applies when the LM statistic is de�ned as in (4.2) with projection ontob
�1=2n
bDn: In consequence, the quantities in (10.2) in the present case arecWn = b
�1=2n ; WF = 


�1=2
F ;

and bUn = UF = Ip: (These de�nitions a¤ect the de�nition of �n;h; which appears in the theorem).

Theorem 12.1 For any statistic rkn that satis�es Assumption R, the asymptotic null rejection

probabilities of the nominal size � 2 (0; 1) CLR test de�ned in (4.2)-(5.2) based on rkn equal �

under all subsequences fwng and all sequences f�wn;h : n � 1g with �wn;h 2 �0 8n � 1:

Comments: (i) Theorem 12.1 and Proposition 10.1 imply that a nominal size � CLR test based on

any rank statistic that satis�es Assumption R has asymptotic size � and is asymptotically similar.

Analogous CS results (to the test results stated in Theorem 12.1) hold for a parameter space ��;0

that is a reparametrization of F�;0 and is de�ned as �0 is de�ned, but with the adjustments outlined
in Comments (i) and (ii) to Proposition 10.1.

(ii) Theorems 10.4 and 12.1 and Proposition 10.1 establish the test results of Theorem 6.1.

This holds because Theorem 10.4(a), (b), (e), and (f) with cWn = b
�1=2n and bUn = Ip imply

that Assumption R holds for the CLR test with moment-variance weighting, that is considered in

Section 6, which uses the Robin and Smith (2000) rkn statistic de�ned in (6.2). (In the present

context, Theorem 10.4 requires that Assumption WU holds for the parameter space �0: It holds

with cWn = cW2n; W1(w) = w for w 2 Rk�k; W2 = Rk�k; bUn = bU2n; U1(u) = u for u 2 Rp�p; and
U2 = Rp�p; because cWn = b
�1=2n !p h

�1=2
5;g under all sequences f�n;h : n � 1g with �n;h 2 �0 andbUn = Ip for all n � 1:) In particular, Assumption R holds with rh = 1 if q = p and with rh(Dh)

equal to the smallest eigenvalue of �
0
h;p�qh3;k�qh

0
3;k�q�h;p�q if q < p (where �h;p�q and h3;k�q are

de�ned in (10.17) based on WF = 

�1=2
F and UF = Ip): The CS results of Theorem 6.1 hold by

Theorem 10.4, Comment (i) to Theorem 12.1, and Comment (i) to Proposition 10.1.
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(iii) Theorem 5.1 shows that Assumption R does not hold in general for rank statistics based

on eVDn and bDy
n; de�ned in (5.3)-(5.4), when p � 2: The reason is that for some sequences of

distributions the asymptotic distribution of bDy
n and, hence, the rank statistic rkn depends on Dh

and M
y
h 6= 0k�p; not just on Dh alone.

For notational simplicity, the following proof is for the sequence fng; rather than a subsequence
fwn : n � 1g: The same proof holds for any subsequence fwn : n � 1g:

Proof of Theorem 12.1. Let

Jn := nbg0nb
�1=2n Mb
�1=2n
bDn b
�1=2n bgn: (12.1)

It follows from (4.2) that

ARn = LMn + Jn: (12.2)

We now distinguish two cases. First, suppose Assumption R(a) holds: rkn !p 1: By (12.2) and
some algebra, we have (ARn � rkn)2 + 4LMn � rkn = (LMn � Jn + rkn)2 + 4LMn � Jn: Therefore,

CLRn =
1

2

�
LMn + Jn � rkn +

p
(LMn � Jn + rkn)2 + 4LMn � Jn

�
: (12.3)

Using a mean-value expansion of the square-root expression in (12.3) about (LMn�Jn+ rkn)2; we
have

p
(LMn � Jn + rkn)2 + 4LMn � Jn = LMn � Jn + rkn + (2

p
�n)

�14LMn � Jn (12.4)

for an intermediate value �n between (LMn � Jn + rkn)
2 and (LMn � Jn + rkn)

2 + 4LMn � Jn: It
follows that CLRn = LMn + op(1)!d �

2
p using (11.2) and (

p
�n)

�1 = op(1) (which holds because

rkn !p 1; LMn = Op(1); and Jn = Op(1) by (12.6) below). Analogously, it can be shown that the

critical value c(1��; rkn); de�ned above (5.2), of the CLR test converges in probability to �2p;1��:
The result of Theorem 12.1 then follows by the de�nition of convergence in distribution.

Second, suppose Assumption R(b) holds. Then, using Lemma 10.2, we have (n1=2bgn; n1=2( bDn�
EFnGi); rkn) !d (gh; Dh; rh(Dh)): By the proof of Lemma 10.3 applied with WF = 


�1=2
F and

UF = Ip (which correspond to cWn = b
�1=2n and bUn = Ip); using the former result in place of

(n1=2bgn; n1=2( bDn � EFnGi))!d (gh; Dh) gives

(n1=2bgn; n1=2( bDn � EFnGi); n1=2
�1=2n
bDnTn; rkn)!d (gh; Dh;�h; rh(Dh)); (12.5)

where 
n := 
Fn ; (Dh;�h) and gh are independent, and �h has full column rank p with probability
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one by Lemma 10.3(d) (because we are considering sequences f�wn;h : n � 1g with �wn;h 2 �0
8n � 1; WF = 


�1=2
F ; and UF = Ip): In addition, b
n !p h5;g; h5;g is pd, and Mb
�1=2n

bDn =
M�b
�1=2n 


1=2
n

�
n1=2


�1=2
n

bDnTn because Tn (de�ned in (10.18)) and 
�1=2n are nonsingular. These results

and the CMT imply that

Jn !d Jh := g0hh
�1=2
5;g M�h

h
�1=2
5;g gh: (12.6)

The convergence results in (11.2) and (12.6) and rkn !d rh(Dh) hold jointly by (12.5) and the

de�nitions of LMn and Jn in (4.2) and (12.1).

Note that LMh = g0hh
�1=2
5;g P�hh

�1=2
5;g gh by (11.1) and (11.2). Conditional on �h; P�hh

�1=2
5;g gh

andM�h
h
�1=2
5;g gh have a joint normal distribution with zero covariance (because V ar(h

�1=2
5;g gh) = Ik

and P�hM�h
= 0k�k) and, hence, are independent. The same holds true conditional onDh; because

�h is a nonrandom function of Dh and Dh is independent of gh: In consequence, conditional on

Dh; LMh and Jh are independent and distributed as �2p and �
2
k�p; respectively.

Using the convergence results in (12.5) and (12.6), the de�nition of CLRn in (5.1) with ARn =

LMn + Jn substituted in, and the CMT, we obtain

CLRn !d CLRh :=
1

2

�
LMh + Jh � rh +

q
(LMh + Jh � rh)2 + 4LMrh

�
; (12.7)

where rh := rh(Dh):

The function c(1��; r) (de�ned in (5.2)) is continuous in r on R+ by the absolute continuity of
the distributions of �2p and �

2
k�p; which appear in clr(r) (also de�ned in (5.2)), and the continuity

of clr(r) in r a.s. This, rkn !d rh; and (12.7) yield

CLRn � c(1� �; rkn)!d CLRh � c(1� �; rh): (12.8)

Therefore, by the de�nition of convergence in distribution, we have

P�0;�n(CLRn > c(1� �; rkn))! P (CLRh > c(1� �; rh)) (12.9)

provided P (CLRh = c(1 � �; rh)) = 0; which holds because P (CLRh = c(1 � �; rh)jDh) = 0 a.s.

The latter holds because conditional on Dh; CLRh is absolutely continuous (by (12.7) since LMh

and Jh are independent and distributed as �2p and �
2
k�p and rh is a nonrandom function of Dh)

and c(1� �; rh) is a constant.
From above, conditional on Dh; LMh and Jh are independent and distributed as �2p and �

2
k�p;

respectively, and rh is a constant. Thus, conditional on Dh; CLRh and clr(rh) have the same

distribution. By de�nition, c(1� �; rh) is the 1� � quantile of the absolutely continuous random
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variable clr(rh) for any constant rh: Hence,

P (CLRh > c(1� �; rh)jDh) = � a.s. (12.10)

Because the left-hand side conditional probability equals � a.s. and � does not depend on Dh; the

unconditional probability P (CLRh > c(1 � �; rh)) equals � as well. Combined with (12.9), this

gives the desired result. �

13 Asymptotic Size of the CLR Test with Jacobian-Variance

Weighting when p = 1

In this section, we prove the test results of Theorem 5.3, which concerns Kleibergen�s CLR test

(and CS) with Jacobian-variance weighting when p = 1: The CS results of Theorem 5.3 hold by an

analogous argument, see Comments (i) and (ii) to Proposition 10.1.

Proof of Theorem 5.3. We prove the test results of Theorem 5.3 using Proposition 10.1 and

results (or variants of results) in Lemma 10.3 and Theorems 10.4, 11.1, and 12.1. The proof is made

more complicated by the fact that we need to use two di¤erent de�nitions of cWn: To obtain the

asymptotic distribution of the LM statistic (which is a component of the CLR statistic), we need

to take cWn = b
�1=2n and bUn = 1; because the LM statistic (de�ned in (4.2)) depends on b
�1=2n
bDn:

But, to obtain the asymptotic distribution of the rank statistic rkn := n bDn
0 eV �1Dn

bDn (de�ned in

(5.10)), we need to take cWn = eV �1=2Dn and bUn = 1; because rkn depends on eV �1=2Dn
bDn:

For notational simplicity, we establish results below for sequences fng; rather than subsequences
fwng of fng: Subsequence results hold by replacing n by wn in the proofs.

We proceed as follows. First, we apply Lemma 10.3 exactly as in the proof of Theorem 11.1 withcWn = b
�1=2n ; bUn = 1; WF = 

�1=2
F ; and UF = 1: This yields n1=2(bgn; bDn�EFnGi;WFn

bDnUFnTn)!d

(gh; Dh;�h) for sequences f�n;h : n � 1g that correspond to distributions F in FWU \F0 based on
these de�nitions of WF and UF : As discussed in the paragraph containing (10.5), F0 = FWU \ F0
for �WU su¢ ciently small and MWU su¢ ciently large. We employ constants �WU and MWU for

which this holds. The joint convergence result above yields the asymptotic distributions of the

ARn; LMn; and Jn statistics via the calculations in (11.1), (11.2), (12.1), (12.2), and (12.6).

Next, we takecWn = eV �1=2Dn ; bUn = 1; WF =W2F = (V arF (Gi)��GiF 

�1
F �

Gi0
F )�1=2; where �GiF and


F are de�ned in (3.6),W1(�) equals the identity function onW2 := Rk�k; UF = U2F = 1; and U1(�)
equals the identity function on U2 := R: We consider distributions in FJVW;p=1 (which is a subset
of F0 when �3 = �2 by the paragraph following (5.9)). We obtain the asymptotic distribution of rkn
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under the corresponding sequences f�n;h : n � 1g (which di¤er from the sequences f�n;h : n � 1g in
the previous paragraph due to the di¤erence between the two de�nitions of WF ): More speci�cally,

we verify the convergence results in Assumption R for rkn := n bD0
n
eV �1Dn

bDn (de�ned in (5.10)) for the

f�n;h : n � 1g sequences of this paragraph. The result of Theorem 10.4(a), (b), (e), and (f) veri�es

the convergence results in Assumption R for sequences f�n;h : n � 1g for which Fn 2 FJVW;p=1
8n � 1 provided Assumption WU holds for such sequences with cW2n = cWn = eV �1=2Dn ; W1(�) equal
to the identity function, bU2n = bUn = 1; U1(�) equal to the identity function, and the parameter
space �� being equal to �JVW;p=1 := f� : � = (�1;F ; :::; �9;F ) for some F 2 FWU \ FJVW;p=1g:
Here FWU is de�ned in (10.5) with WF = (V arF (Gi) � �GiF 


�1
F �

Gi0
F )�1=2 and UF = 1: Note that

FJVW;p=1 = FWU \ FJVW;p=1 for �WU > 0 su¢ ciently small and MWU < 1 su¢ ciently large

(and we employ constants �WU and MWU that satisfy these conditions). This holds because for all

F 2 FJVW;p=1; �min(WF ) = �min((V arF (Gi)��GiF 

�1
F �

Gi0
F )�1=2) = �

�1=2
max (V arF (Gi)��GiF 


�1
F �

Gi0
F )

� �
�1=2
max (EFGiG

0
i) � M

�1=2
+ for some M+ < 1 (because EFGiG0i � (V arF (Gi) � �

Gi
F 


�1
F �

Gi0
F ) =

EFGiEFG
0
i+�

Gi
F 


�1
F �

Gi0
F is psd and jjEFGiG0ijj �M+ for someM+ <1 by the moment conditions

in F); jjWF jj = jj(V arF (Gi)��GiF 

�1
F �

Gi0
F )�1=2jj � �

�1=2
min (V arF (Gi)��

Gi
F 


�1
F �

Gi0
F ) � �

�1=2
3 (using

the condition in FJVW;p=1 and the fact that V arF (Gi) � �GiF 

�1
F �

Gi0
F = 	GiF � EFGiEFG

0
i using

the de�nition of 	GiF in (3.6)), where �3 > 0; and jjUF jj = �min(UF ) = 1:

Assumption WU(b) holds automatically with h8 = 1 because bU2n := 1: The requirement of

Assumption WU(c) that W1(�) is continuous at h7 and U1(�) is continuous at h8 also holds auto-
matically because W1(�) and U1(�) are identity functions.

Assumption WU(a) for the parameter space �JVW;p=1 requires that cW2n !p h7 (:= limW2Fn):

For sequences f�n;h : n � 1g; we have

eVDn : = n�1
nX
i=1

(Gi � bGn)(Gi � bGn)0 � b�nb
�1n b�0n
= EFn(Gi � EFnGi)(Gi � EFnGi)0 � �GiFn


�1
Fn
�Gi0Fn

+ op(1)

= W�2
2Fn

+ op(1)

! p h
�2
7 ; (13.1)

where the �rst equality holds by (5.3), the second equality holds by the WLLN�s applied multiple

times and Slutsky�s Theorem using the conditions in F ; the third equality holds by the de�nition
of W2F ; and the convergence holds because W2Fn = �7;Fn ! h7 by the de�nition of the sequence

f�n;h : n � 1g and h7 is pd (since h7 = limW2Fn and the eigenvalues of W
�2
2F are bounded above

for F 2 F): Equation (13.1) and Slutsky�s Theorem give eV �1=2Dn !p h7 because h�27 is pd using
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the condition in FJVW;p=1 that �min(	GiF � EFGiEFG
0
i) � �: In consequence, Assumption WU(a)

holds.

This completes the veri�cation of Assumption WU for the parameter space �JVW;p=1 and, in

consequence, the veri�cation of the convergence results of Assumption R for rkn for sequences

f�n;h : n � 1g de�ned in the fourth paragraph of this proof.
Now we consider sequences f�n;h : n � 1g that satisfy the conditions on f�n;h : n � 1g given in

both the third and fourth paragraphs of this proof. These sequences correspond to distributions F

in FJVW;p=1: These sequences satisfy the convergence conditions in (8.11) using the de�nitions in
(8.9) and (8.10) with � jF ; BF ; CF ; andW2F de�ned based onWF = 


�1=2
F and with these quantities

based on WF = (V arF (Gi)��GiF 

�1
F �

Gi0
F )�1=2: In consequence, for these sequences of distributions

f�n;h : n � 1g; the results above establish the asymptotic distributions of the ARn; LMn; Jn; and

rkn statistics and the convergence is joint because all of the convergence results are based on the

underlying CLT result in Lemma 10.2. Given this joint convergence, by the same arguments as

given in the proof of Theorem 12.1, we obtain that the CLR test with Jacobian-variance weighting

has asymptotic null rejection probabilities equal to � under all such sequences f�n;h : n � 1g (and
all subsequences of such sequences).

Finally, we apply Proposition 8.1 with � and hn(�) given by the concatenation of the � vectors

and hn(�) functions used in the third and fourth paragraphs above and with � given by the product

space of the � spaces used in these paragraphs. (Redundant elements of � and hn(�) do not cause

any problems.) The result of the previous paragraph veri�es Assumption B� for this choice �;

hn(�); and �: In consequence, Proposition 8.1 implies that the Jacobian-variance weighted CLR

test has correct asymptotic size and is asymptotically similar when p = 1: �

14 The Eigenvalue Condition in F0

In this section, we show that the restriction �p�j(	jF (�)) � �1 > 0 in F0j ; de�ned in (3.9),
is not redundant. If this restriction is weakened to �p�j(	jF (�)) > 0; we show that, for some

models, some sequences of distributions, and some (consistent) choices of variance and covariance

estimators, the LM statistic in (4.2) has a �2k asymptotic distribution. This leads to over-rejection

of the null when the standard �2p critical value is used and the parameters are over-identi�ed (i.e.,

k > p): On the other hand, we show that the LM statistic equals zero a.s. for some models and

some distributions F if the condition �p�j(	jF (�)) � �1 > 0 is removed entirely. This implies that

the LM test also under-rejects the null hypothesis and is nonsimilar in both �nite samples and

asymptotically for some F:
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All of the CLR tests considered in Sections 5 and 6, except that of Smith (2007), are functions

of the LM statistic in (4.2) (and other statistics). In consequence, the aberrant behavior of the LM

statistic and test demonstrated in this section, when the restriction �p�j(	jF (�)) � �1 > 0 in F0
is weakened or eliminated, carries over to the CLR statistics and tests in Sections 5 and 6. Smith�s

(2007) CLR test is a function of the LM statistic in (4.2) but with b
�1=2n
bDn replaced by bDy

n:

14.1 Eigenvalue Condition Counter-Examples

For simplicity, we consider the case p = 1 in this section. As above, the null hypothesis is

H0 : � = �0:

Lemma 14.1 (a) Suppose F0 is de�ned with the condition �p�j(	jF (�)) > 0 in place of

�p�j(	jF (�)) � �1 > 0 in F0j for all j 2 f0; :::; pg; where p = 1: Suppose b
n(�) is de�ned in
(3.1) and b�1n(�) = n�1

Pn
i=1Gi(�)gi(�)

0 (which di¤ers from its de�nition in (3.2)). Then, there

exist moment functions g(Wi; �) and a sequence of null distributions fFn 2 F0 : n � 1g for whichb
n = b
n(�0) and b�1n = b�1n(�0) are well-behaved (in the sense that b
n � EFngig
0
i !p 0

k�k andb�1n � EFnGig0i !p 0
k�k) and LMn(�0) = ARn(�0) + op(1)!d �

2
k:

(b) Suppose F0 is de�ned with the condition �p�j(	jF (�)) � �1 > 0 deleted in F0j for all
j 2 f0; :::; pg; where p = 1: Suppose b
n(�) and b�1n(�) are de�ned in (3.1) and (3.2), respectively.
Then, there exists moment functions and a null distribution F 2 F0 for which LMn(�0) = 0 a:s:

for all n � 1:

Comments: (i) The model we use to prove Lemma 14.1(a) is the linear IV regression model with

one endogenous rhs variable and (for simplicity) no exogenous variables. Speci�cally, the model is

y1i = y2i� + ui and y2i = Z 0i� + v2i; (14.1)

where y1i; �; y2i; v2i 2 R; Zi; � 2 Rk; v2i = �ui + ��i for some random variable �i; � = (1 � �2)1=2;

and the observations are i.i.d. across i for any given n: The parameter space F� for the distribution
F of the random vector Wi = (y1i; y2i; Z

0
i)
0 is

F� := fF : (14:1) holds with � = �0; � = �F 2 Rk; � = �F 2 (�1; 1);

Zi; ui; and �i are mutually independent, EFui = EF �i = 0;

EFu
2
i = EF �

2
i = 1; EF jj(ui; �i; Z 0iZi)jj2+
 �M; and �min(EFZiZ 0i) � �g (14.2)

for some 
; � > 0 and M <1: As de�ned, � is the correlation between ui and v2i:
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The moment functions are g(Wi; �) = Zi(y1i � y2i�): When the null value �0 is the true value,

this gives gi = gi(�0) = Ziui and Gi = Gi(�0) = �Ziy2i: The set F� is a subset of F0 when the
latter is de�ned with the condition �p�j(	jF (�)) > 0 in place of �p�j(	jF (�)) � �1 > 0: This holds

because (i) for all F 2 F�; �min(	vec(Gi)F ) > 0 (by the argument in the paragraph that contains

(3.12) because �min(EFZiZ 0i) > 0 and �min(EF "i"
0
i) > 0; where "i = (ui;��ui � ��i)

0 for � 2

(�1; 1)); (ii) �min(EF gig0i) = EFu
2
i�min(EFZiZ

0
i) � � > 0; and (iii) �p�j(	

C0F;k�j

�1=2
F GiBF;p�j�

F ) �
�min(	

vec(Gi)
F )M�2=(2+
) for all � 2 Rp�j with jj�jj = 1 and all j 2 f0; :::; pg (by the results and

arguments in the paragraphs that contain (18.1)-(18.3), which verify that condition (iv), stated

in (3.10), is a su¢ cient condition for the �p�j(�) condition in F0j): The quantity �min(	vec(Gi)F ) is

arbitrarily close to zero for � arbitrarily close to one.

We consider a sequence of distributions fFn 2 F� : n � 1g for which �Fn = 0k for all n � 1; �n
(= �Fn)! 1; and EFnZiZ

0
i does not depend on n: For these distributions,

Gi = ��ngi + �nG�i ; where G�i := �Zi�i and �n := (1� �2n)1=2: (14.3)

In this case, the IV�s are irrelevant and the degree of endogeneity is close to perfect for n large.

(ii) The model we consider in Lemma 14.1(b) is the same as that in part (a) except that F�

allows for � = �F 2 (�1; 1] and we consider a single distribution F with � = 0k and � = 1; rather

than a drifting sequence of distributions. For this distribution, �min(	
vec(Gi)
F ) = 0:

(iii) The intuition for the results in Lemma 14.1(a) and (b) is as follows. As (14.3) shows, Gi

is close to being proportional to gi when �Fn = 0
k and �n is close to one. And, when �Fn = 0

k and

�n = 1; they are exactly proportional. By averaging over i = 1; :::; n and by taking expectations, the

same properties are seen to hold for bGn and bgn and their population counterparts. In consequence,bDn (:= bGn � b�nb
�1n bgn when p = 1) is close to 0k (because it is a sample version of the L2(F )

projection of Gi on gi) and the same is true of the population counterpart of bDn (because it is the

L2(F ) projection of Gi on gi). The latter implies that the direction of the k-vector bDn is primarily

random. In consequence, this direction turns out to be sensitive to the speci�cation of the sample

matrices b�n and b
n even within the class of consistent estimators of their population counterparts.
One consistent choice of b�n and b
n (used in Lemma 14.1(a)) yields bDn to be very close to

being proportional to bgn: In this case, the projection of b
�1=2n bgn onto b
�1=2n
bDn is asymptotically

equivalent to b
�1=2n bgn itself. The LM statistic is a quadratic form in this projection k-vector

(i.e., Pb
�1=2n
bDn b
�1=2n bgn) multiplied by n: Hence, it behaves asymptotically like a quadratic form inb
�1=2n bgn multiplied by n; which is just the AR statistic. This explains the result in Lemma 14.1(a).
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On the other hand, when �n = 1 (which implies that bGn = �bgn by (14.3)), another consistent
choice of b�n and b
n (used in Lemma 14.1(b)) yields bDn = 0k a.s. In this case, the projection ofb
�1=2n bgn onto b
�1=2n

bDn equals 0k a.s. Hence, the LM statistic (which is a quadratic form in this

projection times n) equals zero a.s. This explains the result in Lemma 14.1(b).

(iv) The result of Lemma 14.1(a) also holds for the model described in Comment (ii). Hence,

drifting sequences of distributions are not required to show the result of Lemma 14.1(a) if one

removes the condition �p�j(	jF (�)) � �1 > 0 entirely from F0j : Furthermore, the result of Lemma
14.1(a) can be extended to cover weak IV cases (in which � = �n 6= 0k; but �n ! 0k su¢ ciently

quickly as n!1); rather than the irrelevant IV case (in which � = 0k):
(v) In the extreme case of the model, where � = 1 and � = 0; the endogenous variables y1i

and y2i are identical, which is similar to perfect multicollinearity in linear regression. However, the

result of Lemma 14.1(a) does not require either � to be exactly equal to one or � to be exactly

equal to zero.

(vi) Finite sample simulations corroborate the asymptotic result given in Lemma 14.1(a). For

the model and LM test described in Comment (i) with k = 5; � = 0k; � = 1; Zi � N(05; I5);

(ui; �i) � N(02; I2); and Zi independent of (ui; �i); the null rejection rate of the nominal 5% LM

test is 59:4% when n = 200 and 57:6% when n = 1000: However, when � deviates from 1 even by

a small amount, the magnitude of over-rejection drops very quickly. The null rejection rate of this

nominal 5% LM test is 10:1% when � = 0:99 and n = 200 and 12:9% when � = 0:998 and n = 1000:

(These simulation results are based on 50; 000 simulation repetitions.)

(vii) The conditions of Lemma 14.1(a) and (b) are consistent with those of Theorem 1 of

Kleibergen (2005). This implies that the �2p asymptotic distribution of the LM statistic obtained

in the latter only holds under additional conditions, such as those in F0:

14.2 Proof of Lemma 14.1

Proof of Lemma 14.1. To prove part (a), we use the model de�ned in (14.1)-(14.3). We have

bGn = ��nbgn + �n bG�n; where bG�n := n�1
nP
i=1

G�i ; and

b�1n = n�1
nP
i=1

Gig
0
i = n�1

nP
i=1
(��ngi + �nG�i )g0i = ��nb
n � �nbgnbg0n + �nb��1n; where

b��1n := n�1
nP
i=1

G�i g
0
i: (14.4)

We choose f�n : n � 1g to converge to one su¢ ciently fast that n�n ! 0; where �n = (1��2n)1=2
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by (14.3). For example, we can take �n = (1� n�3)1=2: Using the results above, we obtain

bDn = bGn � b�1nb
�1n bgn
= ��nbgn + �n bG�n � [��nb
n � �nbgnbg0n + �nb��1n]b
�1n bgn
= �n(bg0nb
�1n bgn)bgn + �n( bG�n � b��1nb
�1n bgn): (14.5)

This gives

egn := bgn + n�n�n = bDn=(�nbg0nb
�1n bgn); where
�n := ( bG�n � b��1nb
�1n bgn)=(�nnbg0nb
�1n bgn) = Op(n

�1=2) and egn = bgn + op(n�1=2); (14.6)

where �n = Op(n
�1=2) because �n ! 1; bG�n = Op(n

�1=2) by the CLT since EFnG
�
i = �EFnZi �

EFn�i = 0
k; b��1nb
�1n = Op(1) by the WLLN applied twice and �min(EFngig

0
i) = �min(EFnZiZ

0
i) �

� > 0; bgn = Op(n
�1=2) by the CLT, and (nbg0nb
�1n bgn)�1 = Op(1); which holds by the CMT because

ARn = nbg0nb
�1n bgn !d �
2
k (by the CLT, WLLN, and CMT) and �

2
k > 0 a.s., and lastly the result

for egn in the second line of (14.6) holds by �n = Op(n
�1=2) and n�n = o(1):

Projections are invariant to nonzero scalar multiplications of the matrix that de�nes the pro-

jection. That is, PA = PcA for any matrix A and any scalar c 6= 0: We have �nbg0nb
�1n bgn 6= 0 wp!1
because (nbg0nb
�1n bgn)�1 = Op(1) and �n ! 1: So, the LM statistic is unchanged wp!1 when bDn is

replaced by bDn=(�nbg0nb
�1n bgn) = egn = bgn + op(n�1=2) using (14.6). Thus, we have
LMn := nbg0nb
�1=2n Pb
�1=2n

bDn b
�1=2n bgn
= nbg0nb
�1=2n Pb
�1=2n egn b
�1=2n bgn + op(1)
= nbg0nb
�1n egn(eg0nb
�1n egn)�1eg0nb
�1n bgn + op(1)
= nbg0nb
�1n bgn + op(1) = ARn + op(1)!d �

2
k; (14.7)

which completes the proof of part (a).

Next, we prove part (b). In this case, we use the model in (14.1)-(14.3) with �n = 1 and �n = 0

for all n � 1: In consequence, Gi = �gi and bGn = �bgn: Given the de�nitions of b
n and b�1n in
(3.1) and (3.2), this yields

b�1n = n�1
nP
i=1

Gig
0
i � bGnbg0n = �n�1 nP

i=1
gig

0
i + bgnbg0n = �b
n;bDn = bGn � b�1nb
�1n bgn = 0k; and

LMn := nbg0nb
�1=2n Pb
�1=2n
bDn b
�1=2n bgn = nbg0nb
�1=2n P0k b
�1=2n bgn = 0 (14.8)
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for all n � 1; where the projection matrix, P0k ; onto 0k equals 0k�k: �

15 Proof of Lemma 10.2

Lemma 10.2 of AG1. Under all sequences f�n;h : n � 1g;

n1=2

0@ bgn
vec( bDn � EFnGi)

1A!d

0@ gh

vec(Dh)

1A � N

0@0(p+1)k;
0@ h5;g 0k�pk

0pk�k �
vec(Gi)
h

1A1A :

Under all subsequences fwng and all sequences f�wn;h : n � 1g; the same result holds with n

replaced with wn:

Proof of Lemma 10.2. We have

n1=2vec( bDn �Dn) = n�1=2
nX
i=1

vec(Gi �Dn)�

0BBB@
b�1n
...b�pn

1CCCA b
�1n n1=2bgn (15.1)

= n�1=2
nX
i=1

26664vec(Gi �Dn)�

0BBB@
EFnG`1g

0
`

...

EFnG`pg
0
`

1CCCA
�1Fngi
37775+ op(1);

where the second equality holds by (i) the weak law of large numbers (WLLN) applied to n�1
Pn

`=1

G`jg
0
` for j = 1; :::; p; n

�1Pn
`=1 vec(G`); and n

�1Pn
`=1 g`g

0
`; (ii) EFngi = 0

k; (iii) h5;g = lim
Fn is

pd, and (iv) the CLT, which implies that n1=2bgn = Op(1):

Using (15.1), the convergence result of Lemma 10.2 holds (with n in place of wn) by the

Lyapunov triangular-array multivariate CLT using the moment restrictions in F . The limiting
covariance matrix between n1=2vec( bDn �Dn) and n1=2bgn in Lemma 10.2 is a zero matrix because

EFn [Gij �Dnj � (EFnG`jg0`)
�1Fngi]g
0
i = 0

k�k; (15.2)

where Dnj denotes the jth column of Dn; using EFngi = 0
k for j = 1; :::; p: By the CLT, the limiting

variance matrix of n1=2vec( bDn �Dn) in Lemma 10.2 equals

limV arFn(vec(Gi)� (EFnvec(G`)g0`)
�1Fngi) = lim�
vec(Gi)
Fn

= �
vec(Gi)
h ; (15.3)

see (10.15), and the limit exists because (i) the components of �vec(Gi)Fn
are comprised of �4;Fn and

submatrices of �5;Fn and (ii) �s;Fn ! hs for s = 4; 5: By the CLT, the limiting variance matrix of
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n1=2bgn equals limEFngig0i = h5;g: �

16 Proof of Lemma 10.3

Lemma 10.3 of AG1. Suppose Assumption WU holds for some non-empty parameter space

�� � �2: Under all sequences f�n;h : n � 1g with �n;h 2 ��;

n1=2(bgn; bDn � EFnGi;WFn
bDnUFnTn)!d (gh; Dh;�h);

where (a) (gh; Dh) are de�ned in Lemma 10.2, (b) �h is the nonrandom function of h and Dh

de�ned in (10.17), (c) (Dh;�h) and gh are independent, (d) if Assumption WU holds with �� = �0;

WF = 

�1=2
F ; and UF = Ip; then �h has full column rank p with probability one and (e) under all

subsequences fwng and all sequences f�wn;h : n � 1g with �wn;h 2 ��; the convergence result above
and the results of parts (a)-(d) hold with n replaced with wn:

The proof of part (d) of Lemma 10.3 uses the following two lemmas and corollary.

Lemma 16.1 Suppose � 2 Rk�p has a multivariate normal distribution (with possibly singular

variance matrix ), k � p; and the variance matrix of �� 2 Rk has rank at least p for all nonrandom
vectors � 2 Rp with jj�jj = 1: Then, P (� has full column rank p) = 1:

Comments: (i) Let Condition � denote the condition of the lemma on the variance of ��:

A su¢ cient condition for Condition � is that vec(�) has a pd variance matrix (because �� =

(�0 
 Ik)vec(�)): The converse is not true. This is proved in Comment (iii) below.
(ii) A weaker su¢ cient condition for Condition � is that the variance matrix of �� 2 Rk has

rank k for all constant vectors � 2 Rp with jj�jj = 1: The latter condition holds i¤V ar(� 0vec(�)) > 0
for all � 2 Rpk of the form � = � 
 � for some � 2 Rp and � 2 Rk with jj�jj = 1 and jj�jj = 1

(because (�0 
 �0)vec(�) = vec(�0��) = �0��): In contrast, vec(�) has a pd variance matrix i¤

V ar(� 0vec(�)) > 0 for all � 2 Rpk with jj�jj = 1:
(iii) For example, the following matrix � satis�es the su¢ cient condition given in Comment (ii)

for Condition � (and hence Condition � holds), but not the su¢ cient condition given in Comment

(i). Let Zj for j = 1; 2; 3 be independent standard normal random variables. De�ne

� =

0@ Z1 Z2

Z3 Z1

1A : (16.1)

Obviously, V ar(vec(�)) is not pd. On the other hand, writing � = (�1; �2)
0 and � = (�1; �2)

0; we
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have

V ar(�0��) = V ar(�1[Z1�1 + Z2�2] + �2[Z3�1 + Z1�2])

= V ar((�1�1 + �2�2)Z1 + �1�2Z2 + �2�1Z3)

= (�1�1 + �2�2)
2 + (�1�2)

2 + (�2�1)
2: (16.2)

Now, (�1�2)
2 = 0 implies �1 = 0 or �2 = 0 and (�2�1)

2 = 0 implies �2 = 0 or �1 = 0: In addition,

�1 = 0 implies �2 6= 0; �2 = 0 implies �1 6= 0; etc. So, the two cases where (�1�2)2 = (�2�1)2 = 0
are: (�1; �1) = (0; 0) and (�2; �2) = (0; 0): But, (�1; �1) = (0; 0) implies (�1�1+�2�2)

2 = (�2�2)
2 > 0

and (�2; �2) = (0; 0) implies (�1�1 + �2�2)
2 = (�1�1)

2 > 0: Hence, V ar(�0��) > 0 for all � and �

with jj�jj = jj�jj = 1; V ar(��) is pd for all � 2 R2 with jj�jj2 = 1; and the su¢ cient condition given
in Comment (ii) for Condition � holds.

(iv) Condition � allows for redundant rows in �; which corresponds to redundant moment

conditions in the application of Lemma 16.1. Suppose a matrix � satis�es Condition �: Then, one

adds one or more rows to �; which consist of one or more of the existing rows of � or some linear

combinations of them. (In fact, the added rows can be arbitrary provided the resulting matrix has a

multivariate normal distribution.) Call the new matrix �+: The matrix �+ also satis�es Condition

� (because the rank of the variance of �+� is at least as large as the rank of the variance of ��;

which is p):

Corollary 16.2 Suppose �q� 2 Rk�q� is a nonrandom matrix with full column rank q� and �p�q� 2
Rk�(p�q�) has a multivariate normal distribution (with possibly singular variance matrix ) and k � p:

Let M 2 Rk�k be a nonsingular matrix such that M�q� = (e1; :::; eq�); where el denotes the l-th

coordinate vector in Rk: DecomposeM = (M 0
1;M

0
2)
0 withM1 2 Rq��k andM2 2 R(k�q�)�k: Suppose

the variance matrix of M2�p�q��2 2 Rk�q� has rank at least p � q� for all nonrandom vectors

�2 2 Rp�q� with jj�2jj = 1: Then, for � = (�q� ;�p�q�) 2 Rk�p; we have P (� has full column rank

p) = 1:

Comment: Corollary 16.2 follows from Lemma 16.1 by the following argument. We have

M� =

0@ M1�q� M1�p�q�

M2�q� M2�p�q�

1A =

0@ Iq� M1�p�q�

0(k�q�)�q� M2�p�q�

1A : (16.3)

The matrix � has full column rank p i¤M� has full column rank p i¤M2�p�q� has full column

rank p� q�: The Corollary now follows from Lemma 16.1 applied with �; k; p; and � replaced by

M2�p�q� ; k � q�; p� q�; and �2; respectively.
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The following lemma is a special case of Cauchy�s interlacing eigenvalues result, e.g., see Hwang

(2004). As above, for a symmetric matrix A; let �1(A) � �2(A) � ::: denote the eigenvalues of A:

Let A�r denote a principal submatrix of A of order r � 1: That is, A�r denotes A with some choice
of r rows and the same r columns deleted.

Proposition 16.3 Let A by a symmetric k � k matrix. Then, �k(A) � �k�1(A�1) � �k�1(A) �
::: � �2(A) � �1(A�1) � �1(A):

The following is a straightforward corollary of Proposition 16.3.

Corollary 16.4 Let A by a symmetric k � k matrix and let r 2 f1; :::; k � 1g: Then, (a) �m(A) �
�m(A�r) for m = 1; :::; k � r and (b) �m(A) � �m�r(A�r) for m = r + 1; :::; k:

Proof of Lemma 10.3. First, we prove the convergence result in Lemma 10.3. The singular value

decomposition of WnDnUn is

WnDnUn = Cn�nB
0
n; (16.4)

because Bn is a matrix of eigenvectors of U 0nD
0
nW

0
nWnDnUn; Cn is a matrix of eigenvectors of

WnDnUnU
0
nD

0
nW

0
n; and �n is the k� p matrix with the singular values f� jFn : j � pg of WnDnUn

on the diagonal (ordered so that � jFn � 0 is nonincreasing in j).
Using (16.4), we get

WnDnUnBn;q�
�1
n;q = Cn�nB

0
nBn;q�

�1
n;q = Cn�n

0@ Iq

0(p�q)�q

1A��1n;q = Cn

0@ Iq

0(k�q)�q

1A= Cn;q;

(16.5)

where the second equality uses B0nBn = Ip: Hence, we obtain

Wn
bDnUnBn;q�

�1
n;q = WnDnUnBn;q�

�1
n;q +Wnn

1=2( bDn �Dn)UnBn;q(n
1=2�n;q)

�1

= Cn;q + op(1)!p h3;q = �h;q; (16.6)

where the second equality uses n1=2� jFn ! 1 for all j � q (by the de�nition of q in (10.16)),

Wn = O(1) (by the condition jjWF jj � M1 < 1 8F 2 FWU ; see (10.5)), n1=2( bDn �Dn) = Op(1)

(by Lemma 10.2), Un = O(1) (by the condition jjUF jj � M1 < 1 8F 2 FWU ; see (10.5)), and

Bn;q ! h2;q with jjvec(h2;q)jj < 1 (by (10.12) using the de�nitions in (10.17) and (9.1)). The

convergence in (16.6) holds by (10.12), (10.17), and (9.1), and the last equality in (16.6) holds by

the de�nition of �h;q in (10.17).
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Using (16.4) again, we have

n1=2WnDnUnBn;p�q = n1=2Cn�nB
0
nBn;p�q = n1=2Cn�n

0@ 0q�(p�q)

Ip�q

1A

= Cn

0BB@
0q�(p�q)

n1=2�n;p�q

0(k�p)�(p�q)

1CCA! h3

0BB@
0q�(p�q)

Diagfh1;q+1; :::; h1;pg
0(k�p)�(p�q)

1CCA = h3h
�
1;p�q; (16.7)

where the second equality uses B0nBn = Ip; the convergence holds by (10.12) using the de�nitions

in (10.17) and (9.2), and the last equality holds by the de�nition of h�1;p�q in (10.17).

Using (16.7) and Lemma 10.2, we get

n1=2Wn
bDnUnBn;p�q = n1=2WnDnUnBn;p�q +Wnn

1=2( bDn �Dn)UnBn;p�q

! d h3h
�
1;p�q + h71Dhh81h2;p�q = �h;p�q; (16.8)

where Bn;p�q ! h2;p�q; Wn ! h71; and Un ! h81 by (10.3), (10.12), (10.17), and Assumption WU

using the de�nitions in (9.1) and the last equality holds by the de�nition of �h;p�q in (10.17).

Equations (16.6) and (16.8) combine to prove

n1=2Wn
bDnUnTn = n1=2Wn

bDnUnBnSn = (Wn
bDnUnBn;q�

�1
n;q; n

1=2Wn
bDnUnBn;p�q)

! d (�h;q;�h;p�q) = �h (16.9)

using the de�nition of Sn in (10.19). The convergence is joint with that in Lemma 10.2 because it

just relies on the convergence of n1=2( bDn �Dn); which is part of the former. This establishes the

convergence result of Lemma 10.3.

Properties (a) and (b) in Lemma 10.3 hold by de�nition. Property (c) in Lemma 10.3 holds by

Lemma 10.2 and property (b) in Lemma 10.3.

Now, we prove property (d). We have

h02;p�qh2;p�q = limB
0
n;p�qBn;p�q = Ip�q and h03;qh3;q = limC

0
n;qCn;q = Iq (16.10)

because Bn and Cn are orthogonal matrices by (10.6) and (10.7). Hence, if q = p; then �h =

�h;q = h3;q; �
0
h�h = Ip; and �h has full column rank.

Hence, it su¢ ces to consider the case where q < p and �n;h 2 �0 8n � 1; which is assumed in part
(d). We prove part (d) for this case by applying Corollary 16.2 with q� = q; �q� = �h;q (= h3;q);
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�p�q� = �h;p�q; M = h03; M1 = h03;q; M2 = h03;k�q; �2 2 Rp�q; and � = �h: Corollary 16.2

gives the desired result that P (�h has full column rank p) = 1: The condition in Corollary 16.2

that �M�q� = (e1; :::; eq�)�holds in this case because h
0
3�h;q = h03h3;q = (e1; :::; eq): The condition

in Corollary 16.2 that �the variance matrix of M2�p�q��2 2 Rk�q� has rank at least p � q� for

all nonrandom vectors �2 2 Rp�q� with jj�2jj = 1� in this case becomes �the variance matrix of

h03;k�q�h;p�q�2 2 Rk�q has rank at least p� q for all nonrandom vectors �2 2 Rp�q with jj�2jj = 1:�
It remains to establish the latter property, which is equivalent to

�p�q
�
V ar(h03;k�q�h;p�q�2)

�
> 0 8�2 2 Rp�q with jj�2jj = 1: (16.11)

We have

V ar(h03;k�q�h;p�q�2) = V ar(h03;k�qh
�1=2
5;g Dhh2;p�q�2)

= ((h2;p�q�2)
0 
 (h03;k�qh

�1=2
5;g ))V ar(vec(Dh))((h2;p�q�2)
 (h03;k�qh

�1=2
5;g )0)

= ((h2;p�q�2)
0 
 (h03;k�qh

�1=2
5;g ))�

vec(Gi)
h ((h2;p�q�2)
 (h03;k�qh

�1=2
5;g )0)

= �
h03;k�qh

�1=2
5;g Gih2;p�q�2

h ; (16.12)

where the �rst equality holds by the de�nition of �h;p�q in (10.17) and the fact that h71 = h
�1=2
5;g

and h81 = Ip by the conditions in part (d) of Lemma 10.3, the second and fourth equalities use

the general formula vec(ABC) = (C 0 
 A)vec(B); the third equality holds because vec(Dh) �
N(0pk;�

vec(Gi)
h ) by Lemma 10.2, and the fourth equality uses the de�nition of the variance matrix

�aih in (10.15) for an arbitrary random vector ai:

Next, we show that �
h03;k�qh

�1=2
5;g Gih2;p�q�2

h equals the expected outer-product matrix

lim	
C0n;k�q


�1=2
n GiBn;p�q�2

Fn
:

�
h03;k�qh

�1=2
5;g Gih2;p�q�2

h

= ((h2;p�q�2)
0 
 (h03;k�qh

�1=2
5;g ))�

vec(Gi)
h ((h2;p�q�2)
 (h03;k�qh

�1=2
5;g )0)

= lim((Bn;p�q�2)
0 
 (C 0n;k�q
�1=2n ))�

vec(Gi)
Fn

((Bn;p�q�2)
 (C 0n;k�q
�1=2n )0)

= lim((Bn;p�q�2)
0 
 (C 0n;k�q
�1=2n ))	

vec(Gi)
Fn

((Bn;p�q�2)
 (C 0n;k�q
�1=2n )0)

� lim((Bn;p�q�2)0 
 (C 0n;k�q
�1=2n ))EFnvec(Gi) � EFnvec(Gi)0((Bn;p�q�2)
 (C 0n;k�q
�1=2n )0)

= lim((Bn;p�q�2)
0 
 (C 0n;k�q
�1=2n ))	

vec(Gi)
Fn

((Bn;p�q�2)
 (C 0n;k�q
�1=2n )0)

� limEFnvec(C 0n;k�q
�1=2n GiBn;p�q�2) � EFnvec(C 0n;k�q
�1=2n GiBn;p�q�2)
0

= lim	
C0n;k�q


�1=2
n GiBn;p�q�2

Fn
; (16.13)
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where the general formula vec(ABC) = (C 0 
 A)vec(B) is used multiple times, the limits exist by

the conditions imposed on the sequence f�n;h : n � 1g; the second equality uses Bn;p�j ! h2;p�j ;

Cn;k�q ! h3;k�q; and 

�1=2
n ! h

�1=2
5;g ; the third equality uses the de�nitions of 	aiF and �aiF

given in (3.6) and (10.15), respectively, and the last equality uses EFnvec(C
0
n;k�q


�1=2
n GiBn;p�q) =

vec(C 0n;k�q

�1=2
n DnBn;p�q) = O(n�1=2) by (16.7) with Wn = 


�1=2
n :

We can write lim	vec(C
0
n


�1=2
n GiBn)

Fn
as the limit of a subsequence fnm : m � 1g of matrices

	
vec(C0nm


�1=2
nm GiBnm )

Fnm
for which Fnm 2 F0j for all m � 1 for some j = 0; :::; q: It cannot be the case

that j > q; because if j > q; then we obtain a contradiction because n1=2m � jFnm ! 1 as m ! 1
by the �rst condition of F0j and n1=2m � jFnm 91 as m!1 by the de�nition of q in (10.16).

Now, we �x an arbitrary j 2 f0; :::; qg: The continuity of the �p�j(�) function and the �p�j(�)
condition in F0j imply that, for all � 2 Rp�j with jj�jj = 1;

�p�j

�
lim	

C0nm;k�j

�1=2
nm GiBnm;p�j�

Fnm

�
= lim�p�j

�
	
C0nm;k�j


�1=2
nm GiBnm;p�j�

Fnm

�
> 0: (16.14)

For all �2 2 Rp�q with jj�2jj = 1; let � = (0q�j0; �02)0 2 Rp�j : Then, Bnm;p�j� = Bnm;p�q�2 and, by

(16.14),

�p�j

�
lim	

C0nm;k�j

�1=2
nm GiBnm;p�q�2

Fnm

�
> 0 8�2 2 Rp�q with jj�2jj = 1: (16.15)

Next, we apply Corollary 16.4(b) with A = lim	
C0nm;k�j


�1=2
nm GiBnm;p�q�2

Fnm
and A�(q�j) = lim

	
C0nm;k�q


�1=2
nm GiBnm;p�q�2

Fnm
; m = p � j; r = q � j; where A�(q�j) equals A with its �rst q � j rows

and columns deleted in the present case and p > q implies that m = p � j � 1 for all j = 0; :::; q:
Corollary 16.4 and (16.15) give

�p�q

�
lim	

C0nm;k�q

�1=2
nm GiBnm;p�q�2

Fnm

�
> 0 8�2 2 Rp�q with jj�2jj = 1: (16.16)

Equations (16.12), (16.13), and (16.16) combine to establish (16.11) and the proof of part (d)

is complete.

Part (e) of the Lemma holds by replacing n by the subsequence value wn throughout the

arguments given above. �

Proof of Lemma 16.1. It su¢ ces to show that P (�� = 0k for some � 2 Rp with jj�jj = 1) = 0:
For any constant 
 > 0; there exists a constant K
 <1 such that P (jjvec(�)jj > K
) � 
:

Given " > 0; let fB(�s; ") : s = 1; :::; N"g be a �nite cover of f� 2 Rp : jj�jj = 1g; where jj�sjj = 1
and B(�s; ") is a ball in R

p centered at �s of radius ": It is possible to choose f�s : s = 1; :::; N"g
such that the number, N"; of balls in the cover is of order "�p+1: That is, N" � C1"

�p+1 for some
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constant C1 <1:
Let �r denote the rth row of � for r = 1; :::; k written as a column vector. If � 2 B(�s; "); we

have

jj�� ���sjj =
 

kX
r=1

(�0r(� � �s))2
!1=2

�
 

kX
r=1

jj�rjj2jj� � �sjj2
!1=2

= "jjvec(�)jj; (16.17)

where the inequality holds by the Cauchy-Bunyakovsky-Schwarz inequality. If � 2 B(�s; ") and

�� = 0k; this gives

jj��sjj � "jjvec(�)jj: (16.18)

Suppose Z� 2 Rp has a multivariate normal distribution with pd variance matrix. Then, for

any " > 0;

P (jjZ�jj � ") =

Z
fjjzjj�"g

fZ�(z)dz � sup
z2Rk

fZ�(z)

Z
fjjzjj�"g

dz � C2"
p (16.19)

for some constant C2 < 1; where fZ�(z) denotes the density of Z� with respect to Lebesgue
measure, which exists because the variance matrix of Z� is pd, and the inequalities hold because

the density of a multivariate normal is bounded and the volume of a sphere in Rp of radius " is

proportional to "p:

For any � 2 Rp with jj�jj = 1; let B���B0� be a spectral decomposition of V ar(��); where �� is
the diagonal k � k matrix with the eigenvalues of V ar(��) on its diagonal in nonincreasing order

and B� is an orthogonal k� k matrix whose columns are eigenvectors of V ar(��) that correspond
to the eigenvalues in ��: By assumption, the rank of V ar(��) is p or larger. In consequence,

the �rst p diagonal elements of �� are positive. We have jj��jj = jjB0���jj and V ar(B0���) =
B0�V ar(��)B� = ��: Let (B0���)p denote the p vector that contains the �rst p elements of the k

vector B0���: Let ��p denote the upper left p� p submatrix of ��: We have V ar((B0���)p) = ��p

and ��p is pd (because the �rst p diagonal elements of �� are positive).
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Now, given any 
 > 0 and " > 0; we have

P (�� = 0k for some � 2 Rp with jj�jj = 1)

= P
�
[N"s=1 [�2B(�s;"):jj�jj=1 f�� = 0

kg
�

� P
�
[N"s=1fjj��sjj � "jjvec(�)jjg

�
� P

�
[N"s=1fjj��sjj � "jjvec(�)jjg \ fjjvec(�)jj � K
g

�
+ P (jjvec(�)jj > K
)

� P
�
[N"s=1fjj��sjj � "K
g

�
+ 


�
N"X
s=1

P (jj��sjj � "K
) + 


�
N"X
s=1

P (jj(B0�s��s)pjj � "K
) + 


� N"C2K
p

"
p + 


� C1"
�p+1C2K

p

"
p + 


! 
 as "! 0; (16.20)

where the �rst inequality holds by (16.18) using � 2 B(�s; "); the third inequality uses the de�nition
of K
 ; the third last inequality holds because jj(B0�s��s)pjj � jjB

0
�s
��sjj = jj��sjj using the de�ni-

tions in the paragraph that follows the paragraph that contains (16.19), the second last inequality

holds by (16.19) with Z� = (B0�s��s)p and the fact that the variance matrix of (B
0
�s
��s)p is pd by

the argument given in the paragraph following (16.19), and the last inequality holds by the bound

given above on N":

Because 
 > 0 is arbitrary, (16.20) implies that P (�� = 0k for some � 2 Rp with jj�jj = 1) = 0;
which completes the proof. �

17 Proof of Theorem 10.4

Theorem 10.4 of AG1. Suppose Assumption WU holds for some non-empty parameter space

�� � �2: Under all sequences f�n;h : n � 1g with �n;h 2 ��;
(a) b�pn !p 1 if q = p;

(b) b�pn !d �min(�
0
h;p�qh3;k�qh

0
3;k�q�h;p�q) if q < p;

(c) b�jn !p 1 for all j � q;

(d) the (ordered) vector of the smallest p�q eigenvalues of nbU 0n bD0
n
cW 0
n
cWn

bDn
bUn; i.e., (b�(q+1)n; :::;b�pn)0; converges in distribution to the (ordered) p�q vector of the eigenvalues of �0h;p�qh3;k�qh03;k�q

��h;p�q 2 R(p�q)�(p�q);
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(e) the convergence in parts (a)-(d) holds jointly with the convergence in Lemma 10.3, and

(f) under all subsequences fwng and all sequences f�wn;h : n � 1g with �wn;h 2 ��; the results
in parts (a)-(e) hold with n replaced with wn:

The proof of Theorem 10.4 uses the following rate of convergence lemma. This lemma is a key

technical contribution of the paper.

Lemma 17.1 Suppose Assumption WU holds for some non-empty parameter space �� � �2:

Under all sequences f�n;h : n � 1g with �n;h 2 �� and for which q de�ned in (10.16) satis�es
q � 1; we have (a) b�jn !p 1 for j = 1; :::; q and (b) when p > q; b�jn = op((n

1=2� `Fn)
2) for all

` � q and j = q + 1; :::; p: Under all subsequences fwng and all sequences f�wn;h : n � 1g with
�wn;h 2 ��; the same result holds with n replaced with wn:

Proof of Lemma 17.1. By the de�nitions in (10.9) and (10.12), h6;j := lim � (j+1)Fn=� jFn for

j = 1; :::; p � 1: By the de�nition of q in (10.16), h6;q = 0 if q < p: If q = p; h6;q is not de�ned by

(10.9) and (10.12) and we de�ne it here to equal zero. Because � jF is nonnegative and nonincreasing

in j; h6;j 2 [0; 1]: If h6;j > 0; then f� jFn : n � 1g and f� (j+1)Fn : n � 1g are of the same order of
magnitude, i.e., 0 < lim � (j+1)Fn=� jFn � 1:11 We group the �rst q singular values into groups that
have the same order of magnitude within each group. Let Gh (2 f1; :::; qg) denote the number of
groups. (We have Gh � 1 because q � 1 is assumed in the statement of the lemma.) Note that

Gh equals the number of values in fh6;1; :::; h6;qg that equal zero. Let rg and r�g denote the indices
of the �rst and last singular values, respectively, in the gth group for g = 1; :::; Gh: Thus, r1 = 1;

r�g = rg+1�1; where rGh+1 is de�ned to equal q+1; and r�Gh = q: Note that rg and r�g depend on h:

By de�nition, the singular values in the gth group, which have the gth largest order of magnitude,

are f� rgFn : n � 1g; :::; f� r�gFn : n � 1g: By construction, h6;j > 0 for all j 2 frg; :::; r�g � 1g for
g = 1; :::; Gh: (The reason is: if h6;j is equal to zero for some j 2 frg; :::; r�g�1g; then f� r�gFn : n � 1g
is of smaller order of magnitude than f� rgFn : n � 1g; which contradicts the de�nition of r�g :) Also
by construction, lim � j0Fn=� jFn = 0 for any (j; j

0) in groups (g; g0); respectively, with g < g0: Note

that when p = 1 we have Gh = 1 and r1 = r�1 = 1:

The eigenvalues fb�jn : j � pg of nbU 0n bD0
n
cW 0
n
cWn

bDn
bUn are solutions to the determinantal equation

jnbU 0n bD0
n
cW 0
n
cWn

bDn
bUn��Ipj = 0: Equivalently, by multiplying this equation by ��2r1Fnn�1jB0nU 0n bU�10n j

� jbU�1n UnBnj; they are solutions to

j��2r1FnB
0
nU

0
n
bD0
n
cW 0
n
cWn

bDnUnBn � (n1=2� r1Fn)�2�B0nU 0n bU�10n
bU�1n UnBnj = 0 (17.1)

11Note that supj�1;F2FWU
� jF < 1 by the conditions jjWF jj � M1 and jjUF jj � M1 in FWU and the moment

conditions in F : Thus, f� jFn : n � 1g does not diverge to in�nity, and the �order of magnitude�of f� jFn : n � 1g
refers to whether this sequence converges to zero, and how slowly or quickly it does, when it does converge to zero.
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wp!1; using jA1A2j = jA1j�jA2j for any conformable square matrices A1 and A2; jBnj > 0; jUnj > 0
(by the conditions in FWU in (10.5) because �� � �2 and �2 only contains distributions in FWU );

jbU�1n j > 0 wp!1 (because bUn !p h81 by (10.2), (10.12), (10.17), and Assumption WU(b) and (c)

and h81 is pd), and � r1Fn > 0 for n large (because n
1=2� r1Fn ! 1 for r1 � q): (For simplicity, we

omit the quali�er wp!1 from some statements below.) Thus, f(n1=2� r1Fn)�2b�jn : j � pg solve

j��2r1FnB
0
nU

0
n
bD0
n
cW 0
n
cWn

bDnUnBn � �(Ip + bAn)j = 0 or
j(Ip + bAn)�1��2r1FnB0nU 0n bD0

n
cW 0
n
cWn

bDnUnBn � �Ipj = 0; where

bAn =
24 bA1n bA2nbA02n bA3n

35 := B0nU
0
n
bU�10n

bU�1n UnBn � Ip (17.2)

for bA1n 2 Rr�1�r�1 ; bA2n 2 Rr�1�(p�r�1); and bA3n 2 R(p�r�1)�(p�r�1) and the second line is obtained by
multiplying the �rst line by j(Ip + bAn)�1j:

We have

��1r1Fn
cWn

bDnUnBn

= ��1r1Fn(
cWnW

�1
n )WnDnUnBn � (n1=2� r1Fn)�1cWnn

1=2( bDn �Dn)UnBn

= ��1r1Fn(
cWnW

�1
n )Cn�n +Op((n

1=2� r1Fn)
�1) (17.3)

= (Ik + op(1))Cn

2664
h�6;r�1

+ o(1) 0r
�
1�(p�r�1)

0(p�r
�
1)�r�1 O(� r2Fn=� r1Fn)

(p�r�1)�(p�r�1)

0(k�p)�r
�
1 0(k�p)�(p�r

�
1)

3775+Op((n1=2� r1Fn)�1)

! p h3

24 h�6;r�1
0r

�
1�(p�r�1)

0(k�r
�
1)�r�1 0(k�r

�
1)�(p�r�1)

35 ; where h�6;r�1 := Diagf1; h6;1; h6;1h6;2; :::;
r�1�1Y
`=1

h6;`g;

h�6;r�1
2 Rr�1�r�1 ; h�6;r�1 := 1 when r

�
1 = 1; O(� r2Fn=� r1Fn)

(p�r�1)�(p�r�1) denotes a diagonal (p�r�1)�(p�
r�1) matrix whose diagonal elements are O(� r2Fn=� r1Fn); the second equality uses (16.4), cWn !p h71

(by Assumption WU(a) and (c)), jjh71jj = jj limWnjj < 1 (by the conditions in FWU de�ned in

(10.5)), n1=2( bDn�Dn) = Op(1) (by Lemma 10.2), Un = O(1) (by the conditions in FWU ); and Bn =

O(1) (because Bn is orthogonal), the third equality usescWnW
�1
n !p Ik (becausecWn !p h71; h71 :=

limWn; and h71 is pd by the conditions in FWU ); � jFn=� r1Fn =

j�1Y
`=1

(� (`+1)Fn=� `Fn) =

j�1Y
`=1

h6;`+ o(1)

for j = 2; :::; r�1; and � jFn=� r1Fn = O(� r2Fn=� r1Fn) for j = r2; :::; p (because f� jFn : j � pg are
nonincreasing in j); and the convergence uses Cn ! h3; � r2Fn=� r1Fn ! 0 (by the de�nition of r2);

and n1=2� r1Fn ! 1 (by (10.16) because r1 � q): Note that, for matrices that are written as O(�);
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we sometimes provide the dimensions of the matrix as superscripts for clarity, and sometimes we

do not provide the dimensions for simplicity.

Equation (17.3) yields

��2r1FnB
0
nU

0
n
bD0
n
cW 0
n
cWn

bDnUnBn ! p

24 h�6;r�1
0r

�
1�(p�r�1)

0(k�r
�
1)�r�1 0(k�r

�
1)�(p�r�1)

350h03h3
24 h�6;r�1

0r
�
1�(p�r�1)

0(k�r
�
1)�r�1 0(k�r

�
1)�(p�r�1)

35
=

24 h�26;r�1
0r

�
1�(p�r�1)

0(p�r
�
1)�r�1 0(p�r

�
1)�(p�r�1)

35 ; (17.4)

where the equality holds because h03h3 = limC
0
nCn = Ik using (10.7).

In addition, we have bAn := B0nU
0
n
bU�10n

bU�1n UnBn � Ip !p 0
p�p (17.5)

using bU�1n Un !p Ip (because bUn !p h81 by Assumption WU(b) and (c), h81 := limUn; and h81 is

pd by the conditions in FWU ); Bn ! h2; and h02h2 = Ip (because Bn is orthogonal for all n � 1):
The ordered vector of eigenvalues of a matrix is a continuous function of the matrix by Elsner�s

Theorem, see Stewart (2001, Thm. 3.1, pp. 37�38). Hence, by the second line of (17.2), (17.4),

(17.5), and Slutsky�s Theorem, the largest r�1 eigenvalues of �
�2
r1Fn

B0n bU 0n bD0
n
cW 0
n
cWn

bDn
bUnBn (i.e.,

f(n1=2� r1Fn)�2b�jn : j � r�1g by the de�nition of b�jn), satisfy
((n1=2� r1Fn)

�2b�1n; :::; (n1=2� r1Fn)�2b�r�1n)!p (1; h
2
6;1; h

2
6;1h

2
6;2; :::;

r�1�1Y
`=1

h26;`) and so

b�jn !p 1 8j = 1; :::; r�1 (17.6)

because n1=2� r1Fn ! 1 (by (10.16) since r1 � q) and h6;` > 0 for all ` 2 f1; :::; r�1 � 1g (as noted
above). By the same argument, the smallest p � r�1 eigenvalues of �

�2
r1Fn

B0n bU 0n bD0
n
cW 0
n
cWn

bDn
bUnBn;

i.e., f(n1=2� r1Fn)�2b�jn : j = r�1 + 1; :::; pg; satisfy

(n1=2� r1Fn)
�2b�jn !p 0 8j = r�1 + 1; :::; p: (17.7)

If Gh = 1; (17.6) proves part (a) of the lemma and (17.7) proves part (b) of the lemma (because

in this case r�1 = q and � r1Fn=� `Fn = O(1) for all ` � q by the de�nitions of q and Gh): Hence, from

here on, we assume that Gh � 2:
Next, de�ne Bn;j1;j2 to be the p� (j2 � j1) matrix that consists of the j1 + 1; :::; j2 columns of

Bn for 0 � j1 < j2 � p: Note that the di¤erence between the two subscripts j1 and j2 equals the

number of columns of Bn;j1;j2 ; which is useful for keeping track of the dimensions of the Bn;j1;j2
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matrices that appear below. By de�nition, Bn = (Bn;0;r�1 ; Bn;r�1 ;p):

By (17.3) (excluding the convergence part) applied once with Bn;r�1 ;p in place of Bn as the far-

right multiplicand and applied a second time with Bn;0;r�1 in place of Bn as the far-right multiplicand,

we have

%n := ��2r1FnB
0
n;0;r�1

U 0n bD0
n
cW 0
n
cWn

bDnUnBn;r�1 ;p

=

24 h�6;r�1
+ o(1)

0(k�r
�
1)�r�1

350C 0n(Ik + op(1))Cn
24 0r

�
1�(p�r�1)

O(� r2Fn=� r1Fn)
(k�r�1)�(p�r�1)

35
+Op((n

1=2� r1Fn)
�1)

= op(� r2Fn=� r1Fn) +Op((n
1=2� r1Fn)

�1); (17.8)

where the last equality holds because (i) C 0n(Ik + op(1))Cn = Ik + op(1); (ii) when Ik appears in

place of C 0n(Ik + op(1))Cn; the �rst summand on the left-hand side (lhs) of the last equality equals

0r
�
1�(p�r�1); and (iii) when op(1) appears in place of C 0n(Ik + op(1))Cn; the �rst summand on the lhs

of the last equality equals an r�1 � (p� r�1) matrix with elements that are op(� r2Fn=� r1Fn):
De�ne

b�1n(�) := ��2r1FnB
0
n;0;r�1

U 0n bD0
n
cW 0
n
cWn

bDnUnBn;0;r�1 � �(Ir�1 + bA1n) 2 Rr�1�r�1 ;b�2n(�) := %n � � bA2n 2 Rr�1�(p�r�1); and (17.9)b�3n(�) := ��2r1FnB
0
n;r�1 ;p

U 0n bD0
n
cW 0
n
cWn

bDnUnBn;r�1 ;p � �(Ip�r�1 + bA3n) 2 R(p�r�1)�(p�r�1):
As in the �rst line of (17.2), f(n1=2� r1Fn)�2b�jn : j � pg solve

0 = j��2r1FnB
0
nU

0
n
bD0
n
cW 0
n
cWn

bDnUnBn � �(Ip + bAn)j
=

������
24 b�1n(�) b�2n(�)b�2n(�)0 b�3n(�)

35������
= jb�1n(�)j � jb�3n(�)� b�2n(�)0b��11n (�)b�2n(�)j
= jb�1n(�)j � j��2r1FnB0n;r�1 ;pU 0n bD0

n
cW 0
n
cWn

bDnUnBn;r�1 ;p � %
0
n
b��11n (�)%n

��(Ip�r�1 + bA3n � bA02nb��11n (�)%n � %0nb��11n (�) bA2n + � bA02nb��11n (�) bA2n)j; (17.10)

where the third equality uses the standard formula for the determinant of a partitioned matrix (i.e.,

the determinant of � =

24 �1 �2

�02 �3

35 equals j�j = j�1j � j�3� �02��11 �2j provided �1 is nonsingular, e.g.,

see Rao (1973, p. 32)) and the result given in (17.11) below, which shows that b�1n(�) is nonsingular
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wp!1 for � equal to any solution (n1=2� r1Fn)�2b�jn to the �rst equality in (17.10) for j � p; and

the last equality holds by algebra.

Now we show that, for j = r�1+1; :::; p; (n
1=2� r1Fn)

�2b�jn cannot solve the determinantal equation
jb�1n(�)j = 0; wp!1; where this determinant is the �rst multiplicand on the rhs of (17.10). This
implies that f(n1=2� r1Fn)�2b�jn : j = r�1 + 1; :::; pg must solve the determinantal equation based on
the second multiplicand on the rhs of (17.10) wp!1: For j = r�1 + 1; :::; p; we have

e�j1n := b�1n((n1=2� r1Fn)�2b�jn)
= ��2r1FnB

0
n;0;r�1

U 0n bD0
n
cW 0
n
cWn

bDnUnBn;0;r�1 � (n
1=2� r1Fn)

�2b�jn(Ir�1 + bA1n)
= h�26;r�1 + op(1)� op(1)(Ir�1 + op(1))

= h�26;r�1 + op(1); (17.11)

where the second last equality holds by (17.4), (17.5), and (17.7). Equation (17.11) and �min(h�26;r�1 ) >

0 (which follows from the de�nition of h�6;r�1 in (17.3) and the fact that h6;` > 0 for all ` 2
f1; :::; r�1 � 1g) establish the result stated in the �rst sentence of this paragraph.

For j = r�1+1; :::; p; plugging (n
1=2� r1Fn)

�2b�jn into the second multiplicand on the rhs of (17.10)
gives

0 = j��2r1FnB
0
n;r�1 ;p

U 0n bD0
n
cW 0
n
cWn

bDnUnBn;r�1 ;p + op((� r2Fn=� r1Fn)
2) +Op((n

1=2� r1Fn)
�2)

�(n1=2� r1Fn)�2b�jn(Ip�r�1 + bAj2n)j; where (17.12)bAj2n : = bA3n � bA02ne��1j1n%n � %0ne��1j1n bA2n + (n1=2� r1Fn)�2b�jn bA02ne��1j1n bA2n 2 R(p�r�1)�(p�r�1)
using (17.8) and (17.11). Multiplying (17.12) by �2r1Fn=�

2
r2Fn

gives

0 = j��2r2FnB
0
n;r�1 ;p

U 0n bD0
n
cW 0
n
cWn

bDnUnBn;r�1 ;p + op(1)� (n
1=2� r2Fn)

�2b�jn(Ip�r�1 + bAj2n)j (17.13)

using Op((n1=2� r2Fn)
�2) = op(1) (because r2 � q by the de�nition of r2 and n1=2� jFn ! 1 for all

j � q by the de�nition of q in (10.16)).

Thus, f(n1=2� r2Fn)�2b�jn : j = r�1 + 1; :::; pg solve

0 = j��2r2FnB
0
n;r�1 ;p

U 0n bD0
n
cW 0
n
cWn

bDnUnBn;r�1 ;p + op(1)� �(Ip�r�1 + bAj2n)j: (17.14)

For j = r�1 + 1; :::; p; we have bAj2n = op(1); (17.15)
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because bA2n = op(1) and bA3n = op(1) (by (17.5)), e��1j1n = Op(1) (by (17.11)), %n = op(1) (by (17.8)

since � r2Fn � � r1Fn and n
1=2� r1Fn ! 1); and (n1=2� r1Fn)�2b�jn = op(1) for j = r�1 + 1; :::; p (by

(17.7)).

Now, we repeat the argument from (17.2) to (17.15) with the expression in (17.14) replacing that

in the �rst line of (17.2), with (17.15) replacing (17.5), and with j = r�2+1; :::; p;
bAj2n; Bn;p�r�1 ; � r2Fn ;

� r3Fn ; r
�
2 � r�1; p� r�2; and h�6;r�2 = Diagf1; h6;r�1+1; h6;r�1+1h6;r�1+2; :::;

r�2�1Y
`=r�1+1

h6;`g 2 R(r
�
2�r�1)�(r�2�r�1)

in place of j = r�1 + 1; :::; p;
bAn; Bn; � r1Fn ; � r2Fn ; r�1; p � r�1; and h

�
6;r�1

; respectively. (The fact

that bAj2n depends on j; whereas bAn does not, does not a¤ect the argument.) In addition, Bn;0;r�1
and Bn;r�1 ;p in (17.8)-(17.10) are replaced by the matrices Bn;r�1 ;r�2 and Bn;r�2 ;p (which consist of the

r�1 + 1; :::; r
�
2 columns of Bn and the last p� r�2 columns of Bn; respectively.) This argument gives

the analogues of (17.6) and (17.7), which are

b�jn !p 1 8j = r2; :::; r
�
2 and (n

1=2� r2Fn)
�2b�jn = op(1) 8j = r�2 + 1; :::; p: (17.16)

In addition, the analogue of (17.14) is the same as (17.14) but with bAj3n in place of bAj2n; wherebAj3n is de�ned just as bAj2n is de�ned in (17.12) but with bA2j2n and bA3j2n in place of bA2n and bA3n;
respectively, where

bAj2n =
24 bA1j2n bA2j2nbA02j2n bA3j2n

35 (17.17)

for bA1j2n 2 Rr�2�r�2 ; bA2j2n 2 Rr�2�(p�r�1�r�2); and bA3j2n 2 R(p�r�1�r�2)�(p�r�1�r�2):
Repeating the argument Gh � 2 more times yields

b�jn !p 1 8j = 1; :::; r�Gh and (n
1=2� rgFn)

�2b�jn = op(1) 8j = r�g + 1; :::; p; 8g = 1; :::; Gh: (17.18)

A formal proof of this �repetition of the argument Gh�2more times�is given below using induction.
Because r�Gh = q; the �rst result in (17.18) proves part (a) of the lemma.

The second result in (17.18) with g = Gh implies: for all j = q + 1; :::; p;

(n1=2� rGhFn)
�2b�jn = op(1) (17.19)

because r�Gh = q: Either rGh = r�Gh = q or rGh < r�Gh = q: In the former case, (n1=2� qFn)
�2b�jn =
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op(1) for j = q + 1; :::; p by (17.19). In the latter case, we have

lim
� qFn
� rGhFn

= lim
� r�GhFn

� rGhFn
=

r�Gh
�1Y

j=rGh

h6;j > 0; (17.20)

where the inequality holds because h6;` > 0 for all ` 2 frGh ; :::; r�Gh � 1g; as noted at the beginning
of the proof. Hence, in this case too, (n1=2� qFn)

�2b�jn = op(1) for j = q + 1; :::; p by (17.19) and

(17.20). Because � `Fn � � qFn for all ` � q; this establishes part (b) of the lemma.

Now we establish by induction the results given in (17.18) that are obtained heuristically by

�repeating the argument Gh�2 more times.�The induction proof shows that subtleties arise when
establishing the asymptotic negligibility of certain terms.

Let ogp denote a symmetric (p � r�g�1) � (p � r�g�1) matrix whose (`;m) element for `;m =

1; :::; p�r�g�1 is op(� (r�g�1+`)Fn� (r�g�1+m)Fn=�
2
rgFn

)+Op((n
1=2� rgFn)

�1): Note that ogp = op(1) because

r�g�1 + ` � rg for ` � 1 (since � jFn are nonincreasing in j) and n1=2� rgFn !1 for g = 1; :::; Gh:

We now show by induction over g = 1; :::; Gh that wp!1 f(n1=2� rgFn)�2b�jn : j = r�g�1+1; :::; pg
solve

j��2rgFnB
0
n;r�g�1;p

U 0n bD0
n
cW 0
n
cWn

bDnUnBn;r�g�1;p + ogp � �(Ip�r�g�1 + bAjgn)j = 0 (17.21)

for some (p� r�g�1)� (p� r�g�1) symmetric matrices bAjgn = op(1) and ogp (where the matrices that

are ogp may depend on j):

The initiation step of the induction proof holds because (17.21) holds with g = 1 by the �rst line

of (17.2) with bAjgn := bAn and ogp = 0 for g = 1 (and using the fact that, for g = 1; r�g�1 = r�0 := 0

and Bn;r�g�1;p = Bn;0;p = Bn):

For the induction step of the proof, we assume that (17.21) holds for some g 2 f1; :::; Gh � 1g
and show that it then also holds for g + 1: By an argument analogous to that in (17.3), we have

��1rgFn
cWn

bDnUnBn;r�g�1;p = (Ik + op(1))Cn

2664
0r

�
g�1�(p�r�g�1)

Diagf� rgFn ; :::; �pFng=� rgFn
0(k�p)�(p�r

�
g�1)

3775+Op((n1=2� rgFn)�1)

!p h3

0BB@
2664

0r
�
g�1�(r�g�r�g�1)

h�6;r�g

0(k�r
�
g)�(r�g�r�g�1)

3775 ; 0k�(p�r�g)
1CCA ; where h�6;r�g := Diagf1; h6;rg ; :::;

r�g�1Y
j=r�g�1+1

h6;jg;

(17.22)

h�6;r�g 2 R
(r�g�r�g�1)�(r�g�r�g�1); and h�6;r�g := 1 when r

�
g = 1:

42



Equation (17.22) and h03h3 = limC
0
nCn = Ik yield

��2rgFnB
0
n;r�g�1;p

U 0n bD0
n
cW 0
n
cWn

bDnUnBn;r�g�1;p !p

24 h�26;r�g 0(r
�
g�r�g�1)�(p�r�g)

0(p�r
�
g)�(r�g�r�g�1) 0(p�r

�
g)�(p�r�g)

35 : (17.23)

By (17.21) and ogp = op(1); we have wp!1 f(n1=2� rgFn)�2b�jn : j = r�g�1 + 1; :::; pg solve
j(Ip�r�g�1 + bAjgn)�1��2rgFnB0n;r�g�1;pU 0n bD0

n
cW 0
n
cWn

bDnUnBn;r�g�1;p + op(1) � �Ip�r�g�1 j = 0: Hence, by

(17.23), bAjgn = op(1) (which holds by the induction assumption), and the same argument as used

to establish (17.6) and (17.7), we obtain

b�jn !p 1 8j = r�g�1 + 1; :::; r
�
g and (n

1=2� rgFn)
�2b�jn !p 0 8j = r�g + 1; :::; p: (17.24)

Let o�gp denote an (r
�
g � r�g�1)� (p� r�g) matrix whose elements in column j for j = 1; :::; p� r�g

are op(� (r�g+j)Fn=� rgFn) +Op((n
1=2� rgFn)

�1): Note that o�gp = op(1):

By (17.22) applied once with Bn;r�g ;p in place of Bn;r�g�1;p as the far-right multiplicand and

applied a second time with Bn;r�g�1;r�g in place of Bn;r�g�1;p as the far-right multiplicand, we have

%gn

:= ��2rgFnB
0
n;r�g�1;r

�
g
U 0n bD0

n
cW 0
n
cWn

bDnUnBn;r�g ;p

=

2664
0r

�
g�1�(r�g�r�g�1)

Diagf� (r�g�1+1)Fn ; :::; � r�gFng=� rgFn
0(k�r

�
g)�(r�g�r�g�1)

3775
0

C 0n(Ik + op(1))Cn

2664
0r

�
g�(p�r�g)

Diagf� (r�g+1)Fn ; :::; �pFng=� rgFn
0(k�p)�(p�r

�
g)

3775
+Op((n

1=2� rgFn)
�1)

= o�gp; (17.25)

where %gn 2 R(r
�
g�r�g�1)�(p�r�g); Diagf� (r�g�1+1)Fn ; :::; � r�gFng=� rgFn = h�6;r�g + o(1) = O(1) and the

last equality holds because (i) C 0n(Ik + op(1))Cn = Ik + op(1); (ii) when Ik appears in place of

C 0n(Ik + op(1))Cn; then the contribution from the �rst summand on the lhs of the last equality

in (17.25) equals 0(r
�
g�r�g�1)�(p�r�g); and (iii) when op(1) appears in place of C 0n(Ik + op(1))Cn; the

contribution from the �rst summand on the lhs of the last inequality in (17.25) equals an o�gp matrix.

We partition the (p� r�g�1)� (p� r�g�1) matrices ogp and bAjgn as follows:
ogp =

0@ o1gp o2gp

o02gp o3gp

1A and bAjgn =
24 bA1jgn bA2jgnbA02jgn bA3jgn

35 ; (17.26)
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where o1gp; bA1jgn 2 R(r
�
g�r�g�1)�(r�g�r�g�1); o2gp; bA2jgn 2 R(r

�
g�r�g�1)�(p�r�g); and o3gp; bA3jgn

2 R(p�r�g)�(p�r�g); for j = r�g�1 + 1; :::; p and g = 1; :::; Gh: De�ne

b�1jgn(�) := ��2rg B
0
n;r�g�1;r

�
g
U 0n bD0

n
cW 0
n
cWn

bDnUnBn;r�g�1;r�g + o1gp � �(Ir�g�r�g�1 + bA1jgn);b�2jgn(�) := %gn + o2gp � � bA2jgn; and (17.27)b�3jgn(�) := ��2rgFnB
0
n;r�g ;p

U 0n bD0
n
cW 0
n
cWn

bDnUnBn;r�g ;p + o3gp � �(Ip�r�g + bA3jgn);
where b�1jgn(�); b�2jgn(�); and b�3jgn(�) have the same dimensions as o1gp; o2gp; and o3gp; respectively.

From (17.21), we have wp!1 f(n1=2� rgFn)�2b�jn : j = r�g�1 + 1; :::; pg solve

0 = j��2rgFnB
0
n;r�g�1;p

U 0n bD0
n
cW 0
n
cWn

bDnUnBn;r�g�1;p + ogp � �(Ip�r�g�1 + bAjgn)j
= jb�1jgn(�)j � jb�3jgn(�)� b�2jgn(�)0b��11jgn(�)b�2jgn(�)j
= jb�1jgn(�)j � j��2rgFnB0n;r�g ;pU 0n bD0

n
cW 0
n
cWn

bDnUnBn;r�g ;p + o3gp � (%gn + o2gp)
0b��11jgn(�)(%gn + o2gp)

��[Ip�r�g + bA3jgn � bA02jgnb��11jgn(�)(%gn + o2gp)� (%gn + o2gp)0b��11jgn(�) bA2jgn
+� bA02jgnb��11jgn(�) bA2jgn]j; (17.28)

where the second equality holds by the same argument as for (17.10) and uses the result given in

(17.29) below which shows that b�1jgn(�) is nonsingular wp!1 when � equals (n1=2� rgFn)�2b�jn for
j = r�g + 1; :::; p:

Now we show that, for j = r�g+1; :::; p; (n
1=2� rgFn)

�2b�jn cannot solve the determinantal equation
jb�1jgn(�)j = 0 for n large, where this determinant is the �rst multiplicand on the rhs of (17.28)

and, hence, it must solve the determinantal equation based on the second multiplicand on the rhs

of (17.28). For j = r�g + 1; :::; p; we have

e�1jgn := b�1jgn((n1=2� rgFn)�2b�jn) = h�26;r�g + op(1); (17.29)

by the same argument as in (17.11), using o1gp = op(1) and bA1jgn = op(1) (which holds by the

de�nition of bA1jgn following (17.21)). Equation (17.29) and �min(h�26;r�g ) > 0 establish the result

stated in the �rst sentence of this paragraph.

For j = r�g+1; :::; p; plugging (n
1=2� rgFn)

�2b�jn into the second multiplicand on the rhs of (17.28)
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gives

0 = j��2rgFnB
0
n;r�g ;p

U 0n bD0
n
cW 0
n
cWn

bDnUnBn;r�g ;p + o3gp � (%gn + o2gp)
0e��11jgn(%gn + o2gp)

�(n1=2� rgFn)�2b�jn(Ip�r�g + bAj(g+1)n)j; wherebAj(g+1)n : = bA3jgn � bA02jgne��11jgn(%gn + o2gp)� (%gn + o2gp)0e��11jgn bA2jgn
+(n1=2� rgFn)

�2b�jn bA02jgne��11jgn bA2jgn (17.30)

and bAj(g+1)n 2 R(p�r�g)�(p�r�g): The last two summands on the rhs of the �rst line of (17.30) satisfy
o3gp � (%gn + o2gp)0e��11jgn(%gn + o2gp) = o3gp � (o�gp + o2gp)0(h��26;r�g

+ op(1))(o
�
gp + o2gp)

= o3gp � o�0gpo�gp = (�2rg+1Fn=�
2
rgFn)o(g+1)p; (17.31)

where (i) the �rst equality uses (17.25) and (17.29), (ii) the second equality uses o2gp = o�gp (which

holds because the (j;m) element of o2gp for j = 1; :::; r�g�r�g�1 and m = 1; :::; p�r�g is op(� (r�g�1+j)Fn
�� (r�g+m)Fn=�

2
rgFn

)+Op((n
1=2� rgFn)

�1) = op(� (r�g+m)Fn=� rgFn)+Op((n
1=2� rgFn)

�1) since r�g�1+j �
rg) and (h��26;r�g

+op(1))o
�
gp = o�gp (which holds because h

�
6;r�g

is diagonal and �min(h�26;r�g ) > 0); (iii) the

last equality uses the fact that the (j;m) element of (�2rgFn=�
2
rg+1Fn

)o�0gpo
�
gp for j;m = 1; :::; p � r�g

is the sum of a term that is op(� (r�g+j)Fn� (r�g+m)Fn=�
2
rgFn

)(�2rgFn=�
2
rg+1Fn

) = op(� (r�g+j)Fn� (r�g+m)Fn

=�2rg+1Fn) and a term that is Op((n1=2� rgFn)
�2)(�2rgFn=�

2
rg+1Fn

) = Op((n
1=2� rg+1Fn)

�2) and, hence,

(�2rgFn=�
2
rg+1Fn

)o�0gpo
�
gp is o(g+1)p (using the de�nition of o(g+1)p); and (iv) the last equality uses the

fact that the (j;m) element of (�2rgFn=�
2
rg+1Fn

)o3gp for j;m = 1; :::; p � r�g is op(� (r�g+j)Fn� (r�g+m)Fn

=�2rgFn)(�
2
rgFn

=�2rg+1Fn) + Op((n
1=2� rgFn)

�1)(�2rgFn=�
2
rg+1Fn

) = op(� (r�g+j)Fn� (r�g+m)Fn=�
2
rg+1Fn

)

+Op((n
1=2� rg+1Fn)

�1)(� rgFn=� rg+1Fn); which again is the same order as the (j;m) element of o(g+1)p

(using � rgFn=� rg+1Fn � 1):
The calculations in (17.31) are a key part of the induction proof. The de�nitions of the terms

ogp and o�gp (given preceding (17.21) and (17.25), respectively) are chosen so that the results in

(17.31) hold.

For j = r�g + 1; :::; p; we have bAj(g+1)n = op(1); (17.32)

because bA2jgn = op(1) and bA3jgn = op(1) by (17.21), e��11jgn = Op(1) (by (17.29)), %gn+ o2gp = op(1)

(by (17.25) since o�gp = op(1)); and (n1=2� rgFn)
�2b�jn = op(1) (by (17.24)).
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Inserting (17.31) and (17.32) into (17.30) and multiplying by �2rgFn=�
2
rg+1Fn

gives

0 = j��2rg+1FnB
0
n;r�g ;p

U 0n bD0
n
cW 0
n
cWn

bDnUnBn;r�g ;p + o(g+1)p � (n
1=2� rg+1Fn)

�2b�jn(Ip�r�g + bAj(g+1)n)j:
(17.33)

Thus, wp!1; f(n1=2� rg+1Fn)�2b�jn : j = rg+1; :::; pg solve

0 = j��2rg+1FnB
0
n;r�g ;p

U 0n bD0
n
cW 0
n
cWn

bDnUnBn;r�g ;p + o(g+1)p � �(Ip�r�g + bAj(g+1)n)j: (17.34)

This establishes the induction step and concludes the proof that (17.21) holds for all g = 1; :::; Gh:

Finally, given that (17.21) holds for all g = 1; :::; Gh; (17.24) gives the results stated in (17.18)

and (17.18) gives the results stated in the Lemma by the argument in (17.18)-(17.20). �

Now we use the approach in Johansen (1991, pp. 1569-1571) and Robin and Smith (2000, pp.

172-173) to prove Theorem 10.4. In these papers, asymptotic results are established under a �xed

true distribution under which certain population eigenvalues are either positive or zero. Here we

need to deal with drifting sequences of distributions under which these population eigenvalues may

be positive or zero for any given n; but the positive ones may drift to zero as n !1; possibly at
di¤erent rates. This complicates the proof. In particular, the rate of convergence result of Lemma

17.1(b) is needed in the present context, but not in the �xed distribution scenario considered in

Johansen (1991) and Robin and Smith (2000).

Proof of Theorem 10.4. Theorem 10.4(a) and (c) follow immediately from Lemma 17.1(a).

Next, we assume q < p and we prove part (b). The eigenvalues fb�jn : j � pg of nbUn bD0
n
cW 0
n
cWn

� bDn
bUn are the ordered solutions to the determinantal equation jnbUn bD0

n
cW 0
n
cWn

bDn
bUn � �Ipj = 0:

Equivalently, with probability that goes to one (wp!1), they are the solutions to

jQ�n(�)j = 0; where Q�n(�) := nSnB
0
nU

0
n
bD0
n
cW 0
n
cWn

bDnUnBnSn � �S0nB0nU 0n bU�10n
bU�1n UnBnSn;

(17.35)

because jSnj > 0; jBnj > 0; jUnj > 0; and jbUnj > 0 wp!1. Thus, �min(nbU 0n bD0
n
cW 0
n
cWn

bDn
bUn) equals

the smallest solution, b�pn; to jQ�n(�)j = 0 wp!1. (For simplicity, we omit the quali�er wp!1 that
applies to several statements below.)

We write Q�n(�) in partitioned form using

BnSn = (Bn;qSn;q; Bn;p�q); where

Sn;q := Diagf(n1=2�1Fn)�1; :::; (n1=2� qFn)�1g 2 Rq�q: (17.36)
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The convergence result of Lemma 10.3 for n1=2Wn
bDnUnTn (= n1=2Wn

bDnUnBnSn) can be written

as

n1=2Wn
bDnUnBn;qSn;q !p �h;q := h3;q and n1=2Wn

bDnUnBn;p�q !d �h;p�q; (17.37)

where �h;q and �h;p�q are de�ned in (10.17).

We have cWnW
�1
n !p Ik and bUnU�1n !p Ip (17.38)

because cWn !p h71 := limWn (by Assumption WU(a) and (c)), bUn !p h81 := limUn (by Assump-

tion WU(b) and (c)), and h71 and h81 are pd (by the conditions in FWU ):

By (17.35)-(17.38), we have

Q�n(�) =

24 Iq + op(1) h03;qn
1=2Wn

bDnUnBn;p�q + op(1)

n1=2B0n;p�qU
0
n
bD0
nW

0
nh3;q + op(1) n1=2B0n;p�qU

0
n
bD0
nW

0
nWnn

1=2 bDnUnBn;p�q + op(1)

35
��

24 S2n;q 0q�(p�q)

0(p�q)�q Ip�q

35� �
24 Sn;qA1nSn;q Sn;qA2n

A02nSn;q A3n

35 ; where (17.39)

bAn =
24 A1n A2n

A
0
2n A3n

35 := B0nU
0
n
bU�10n

bU�1n UnBn � Ip = op(1) for A1n 2 Rq�q; A2n 2 Rq�(p�q);

and A3n 2 R(p�q)�(p�q); bAn is de�ned in (17.39) just as in (17.5), and the �rst equality uses
�h;q := h3;q and �

0
h;q�h;q = h03;qh3;q = limC

0
n;qCn;q = Iq (by (10.7), (10.9), (10.12), and (10.17)).

Note that Ajn and bAjn (de�ned in (17.2)) are not the same in general for j = 1; 2; 3; because their
dimensions di¤er. For example, A1n 2 Rq�q; whereas bA1n 2 Rr�1�r�1 :

If q = 0 (< p); then Bn = Bn;p�q and

nB0n bU 0n bD0
n
cW 0
n
cWn

bDn
bUnBn

= nB0n(U
�1
n
bUn)0B�10n B0nU

0
n
bD0
nW

0
n

�cWnW
�1
n

�0 �cWnW
�1
n

�
(Wn

bDnUnBn)B
�1
n (U�1n bUn)Bn

! d �
0
h;p�q�h;p�q; (17.40)

where the convergence holds by (17.37) and (17.38) and �h;p�q is de�ned as in (10.17) with q = 0:

The smallest eigenvalue of a matrix is a continuous function of the matrix (by Elsner�s Theorem, see

Stewart (2001, Thm. 3.1, pp. 37�38)). Hence, the smallest eigenvalue of nB0n bU 0n bD0
n
cW 0
n
cWn

bDn
bUnBn

converges in distribution to the smallest eigenvalue of�
0
h;p�qh3;k�qh

0
3;k�q�h;p�q (using h3;k�qh03;k�q =

h3h
0
3 = Ik when q = 0), which proves part (b) of Theorem 10.4 when q = 0:

In the remainder of the proof of part (b), we assume 1 � q < p; which is the remaining case
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to be considered in the proof of part (b). The formula for the determinant of a partitioned matrix

and (17.39) give

jQ�n(�)j = jQ�1n(�)j � jQ�2n(�)j; where

Q�1n(�) : = Iq + op(1)� �S2n;q � �Sn;qA1nSn;q;

Q�2n(�) : = n1=2B0n;p�qU
0
n
bD0
nW

0
nWnn

1=2 bDnUnBn;p�q + op(1)� �Ip�q � �A3n

�[n1=2B0n;p�qU 0n bD0
nW

0
nh3;q + op(1)� �A02nSn;q](Iq + op(1)� �S2n;q � �Sn;qA1nSn;q)�1

�[h03;qn1=2Wn
bDnUnBn;p�q + op(1)� �Sn;qA2n]; (17.41)

none of the op(1) terms depend on �; and the equation in the �rst line holds provided Q�1n(�) is

nonsingular.

By Lemma 17.1(b) (which applies for 1 � q < p); for j = q + 1; :::; p; we have b�jnS2n;q = op(1)

and b�jnSn;qA1nSn;q = op(1): Thus,

Q�1n(b�jn) = Iq + op(1)� b�jnS2n;q � b�jnSn;qA1nSn;q = Iq + op(1): (17.42)

By (17.35) and (17.41), jQ�n(b�jn)j = jQ�1n(b�jn)j � jQ�2n(b�jn)j = 0 for j = 1; :::; p: By (17.42),

jQ�1n(b�jn)j 6= 0 for j = q + 1; :::; p wp!1. Hence, wp!1,

jQ�2n(b�jn)j = 0 for j = q + 1; :::; p: (17.43)

Now we plug in b�jn for j = q + 1; :::; p into Q�2n(�) in (17.41) and use (17.42). We have

Q�2n(b�jn) = nB0n;p�qU
0
n
bD0
nW

0
nWn

bDnUnBn;p�q + op(1)

�[n1=2B0n;p�qU 0n bD0
nW

0
nh3;q + op(1)](Iq + op(1))[h

0
3;qn

1=2Wn
bDnUnBn;p�q + op(1)]

�b�jn[Ip�q +A3n � (n1=2B0n;p�qU 0n bD0
nW

0
nh3;q + op(1))(Iq + op(1))Sn;qA2n

�A02nSn;q(Iq + op(1))(h03;qn1=2Wn
bDnUnBn;p�q + op(1))

+b�jnA02nSn;q(Iq + op(1))Sn;qA2n]: (17.44)

The term in square brackets on the last three lines of (17.44) that multiplies b�jn equals
Ip�q + op(1); (17.45)

because A3n = op(1) (by (17.39)), n1=2Wn
bDnUnBn;p�q = Op(1) (by (17.37)), Sn;q = o(1) (by the

de�nitions of q and Sn;q in (10.16) and (17.36), respectively, and h1;j := limn1=2� jFn); A2n = op(1)
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(by (17.39)), and b�jnA02nSn;q(Iq+op(1))Sn;qA2n = A02nb�jnS2n;qA2n+A02nb�jnSn;qop(1)Sn;qA2n = op(1)

(using b�jnS2n;q = op(1) and A2n = op(1)):

Equations (17.44) and (17.45) give

Q�2n(b�jn) = n1=2B0n;p�qU
0
n
bD0
nW

0
n[Ik � h3;qh03;q]n1=2Wn

bDnUnBn;p�q + op(1)� b�jn[Ip�q + op(1)]
= n1=2B0n;p�qU

0
n
bD0
nW

0
nh3;k�qh

0
3;k�qn

1=2Wn
bDnUnBn;p�q + op(1)� b�jn[Ip�q + op(1)]

:= Mn;p�q � b�jn[Ip�q + op(1)]; (17.46)

where the second equality uses Ik = h3h
0
3 = h3;qh

0
3;q + h3;k�qh

0
3;k�q (because h3 = limCn is an

orthogonal matrix) and the last line de�nes the (p� q)� (p� q) matrix Mn;p�q:

Equations (17.43) and (17.46) imply that fb�jn : j = q+1; :::; pg are the p� q eigenvalues of the
matrix

M�
n;p�q := [Ip�q + op(1)]

�1=2Mn;p�q[Ip�q + op(1)]
�1=2 (17.47)

by pre- and post-multiplying the quantities in (17.46) by the rhs quantity [Ip�q + op(1)]
�1=2 in

(17.46). By (17.37),

M�
n;p�q !d �

0
h;p�qh3;k�qh

0
3;k�q�h;p�q: (17.48)

The vector of (ordered) eigenvalues of a matrix is a continuous function of the matrix (by

Elsner�s Theorem, see Stewart (2001, Thm. 3.1, pp. 37�38)). By (17.48), the matrix M�
n;p�q

converges in distribution. In consequence, by the CMT, the vector of eigenvalues of M�
n;p�q; viz.,

fb�jn : j = q + 1; :::; pg; converges in distribution to the vector of eigenvalues of the limit matrix
�
0
h;p�qh3;k�qh

0
3;k�q�h;p�q; which proves part (d) of Theorem 10.4. In addition, �min(nbU 0n bD0

n
cW 0
n

�cWn
bDn
bUn); which equals the smallest eigenvalue, b�pn; converges in distribution to the smallest

eigenvalue of �
0
h;p�qh3;k�qh

0
3;k�q�h;p�q; which completes the proof of part (b) of Theorem 10.4.

The convergence in parts (a)-(d) of Theorem 10.4 is joint with that in Lemma 10.3 because it

just relies on the convergence in distribution of n1=2Wn
bDnUnTn; which is part of the former. This

establishes part (e) of Theorem 10.4.

Part (f) of Theorem 10.4 holds by the same proof as used for parts (a)-(e) with n replaced by

wn: �
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18 Proofs of Su¢ ciency of Several Conditions for the �p�j(�)
Condition in F0j

In this section, we show that the conditions in (3.10) and (3.11) are su¢ cient for the second

condition in F0j ; which is �p�j(	
C0F;k�j


�1=2
F GiBF;p�j�

F ) � �1 8� 2 Rp�j with jj�jj = 1:
Condition (i) in (3.10) is su¢ cient by the following argument:

�p�j

�
	
C0F;k�j


�1=2
F GiBF;p�j�

F

�
� �p�j

�
	
C
0
F;p�j


�1=2
F GiBF;p�j�

F

�
= �min

�
(�0 
 Ip�j)	

vec(C
0
F;p�j


�1=2
F GiBF;p�j)

F (� 
 Ip�j)
�

= min
�2Rp�j :jj�jj=1

�
(� 
 Ip�j)�
jj(� 
 Ip�j)�jj

�0
	
vec(C

0
F;p�j


�1=2
F GiBF;p�j)

F

(� 
 Ip�j)�
jj(� 
 Ip�j)�jj

� jj(� 
 Ip�j)�jj2

� min
�2R(p�j)2 :jj�jj=1

�0	
vec(C

0
F;p�j


�1=2
F GiBF;p�j)

F � � min
�2Rp�j :jj�jj=1

jj(� 
 Ip�j)�jj2

= �min

�
	
vec(C

0
F;p�j


�1=2
F GiBF;p�j)

F

�
; (18.1)

where the �rst inequality holds by Corollary 16.4(a) with m = p � j and r = k � p (because

	
C
0
F;p�j


�1=2
F GiBF;p�j�

F is a submatrix of 	
C0F;k�j


�1=2
F GiBF;p�j�

F ; since 	
C0F;k�j


�1=2
F GiBF;p�j�

F =

C 0F;k�j	


�1=2
F GiBF;p�j�

F CF;k�j ; likewise with C 0F;k�j replaced by C
0
F;p�j ; and by de�nition the rows of

C
0
F;p�j are a collection of p�j rows of C 0F;k�j); the �rst equality holds because the (p�j)-th largest

eigenvalue of a (p� j)� (p� j) matrix equals its minimum eigenvalue and by the general formula

vec(ABC) = (C 0
A)vec(B); and the last equality holds because jj(�
Ip�j)�jj2 = �0(�0�
Ip�j)� =
�0� = 1 using jj�jj = jj�jj = 1:

Condition (ii) in (3.10) is su¢ cient by su¢ cient condition (i) in (3.10) and the following:

�min

�
	
vec(C

0
F;p�j


�1=2
F GiBF;p�j)

F

�
= min

�2R(p�j)2 :jj�jj=1

�
(Ip�j 
 CF;p�j)�
jj(Ip�j 
 CF;p�j)�jj

�0
	
vec(


�1=2
F GiBF;p�j)

F

(Ip�j 
 CF;p�j)�
jj(Ip�j 
 CF;p�j)�jj

�jj(Ip�j 
 CF;p�j)�jj2

� min
�2R(p�j)k:jj�jj=1

� 0	
vec(


�1=2
F GiBF;p�j)

F � � min
�2R(p�j)2 :jj�jj=1

jj(Ip�j 
 CF;p�j)�jj2

= �min

�
	
vec(


�1=2
F GiBF;p�j)

F

�
; (18.2)
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where the last equality uses jj(Ip�j 
CF;p�j)�jj2 = �0(Ip�j 
C
0
F;p�jCF;p�j)� = 1 because the rows

of C
0
F;p�j are orthonormal and jj�jj = 1:
Condition (iii) in (3.10) is su¢ cient by su¢ cient condition (ii) in (3.10) and a similar argument

to that given in (18.2) using the fact that min 2Rpk:jj jj=1 jj(B0F;p�j 
 Ik) jj2 = 1 because the

columns of BF;p�j are orthonormal.

Condition (iv) in (3.10) is su¢ cient by su¢ cient condition (iii) in (3.10) and a similar argument

to that given in (18.2) usingmin�2Rpk:jj�jj=1 jj(Ip


�1=2
F )�jj2 �M�2=(2+
) forM as in the de�nition

of F in place of min
�2R(p�j)2 :jj�jj=1 jj(Ip�j 
 CF;p�j)�jj2 = 1: The latter inequality holds by the

following calculations:

�0(Ip 
 
�1F )� =
pX
j=1

(�j=jj�j jj)0
�1F (�j=jj�j jj)� jj�j jj
2

�
pX
j=1

�min(

�1
F )� jj�j jj

2 = 1=�max(
F ) �M�2=(2+
); (18.3)

where � = (�01; :::; �
0
p)
0 for �j 2 Rk 8j � p; the sums are over j for which �j 6= 0k; the second equal-

ity uses jj�jj = 1; and the last inequality holds because �max(
F ) = max�2Rk:jj�jj=1EF (�
0gi)2 �

EF jjgijj2 = ((EF jjgijj2)1=2)2 � ((EF jjgijj2+
)1=(2+
))2 � M2=(2+
) by successively applying the

Cauchy-Bunyakovsky-Schwarz inequality, Lyapunov�s inequality, and the moment bound EF jjgijj2+


�M in F :
Conditions (v) and (vi) in (3.10) are su¢ cient by the following argument. Write

	
vec(Gi)
F = (MF ; Ipk)�

fi
F (MF ; Ipk)

0; where MF = �(EF vec(Gi)g0i)(EF gig0i)�1 2 Rpk�k: (18.4)

We have

�min(	
vec(Gi)
F ) = min

�2Rpk:jj�jj=1
�0(MF ; Ipk)�

fi
F (MF ; Ipk)

0�

= min
�2Rpk:jj�jj=1

�
(MF ; Ipk)

0�

jj(MF ; Ipk)0�jj

�0
�fiF

�
(MF ; Ipk)

0�

jj(MF ; Ipk)0�jj

�
� jj(MF ; Ipk)

0�jj2

� min
�2R(p+1)k:jj�jj=1

�0�fiF �

= �min(�
fi
F ); (18.5)

where the inequality uses jj(MF ; Ipk)
0�jj2 = �0� + �0M 0

FMF� � 1 for � 2 Rpk with jj�jj = 1:

This shows that condition (v) is su¢ cient for su¢ cient condition (iv) in (3.10). Since �fiF =

V arF (fi) + EF fiEF f
0
i ; condition (vi) is su¢ cient for su¢ cient condition (v) in (3.10).
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The condition in (3.11) is su¢ cient by the following argument:

�p�j

�
	
C0F;k�j


�1=2
F GiBF;p�j�

F

�
� �p

�
	
C0F


�1=2
F GiBF;p�j�

F

�
= �p

�
	


�1=2
F GiBF;p�j�

F

�
; (18.6)

where the �rst inequality holds by Corollary 16.4(b) with m = p and r = j and the equality holds

because 	
C0F


�1=2
F GiBF;p�j�

F = C 0F	


�1=2
F GiBF;p�j�

F CF and CF is orthogonal.

19 Asymptotic Size of Kleibergen�s CLR Test with Jacobian-

Variance Weighting and the Proof of Theorem 5.1

In this section, we establish the asymptotic size of Kleibergen�s CLR test with Jacobian-variance

weighting when the Robin and Smith (2000) rank statistic (de�ned in (5.5)) is employed. This rank

statistic depends on a variance matrix estimator eVDn: See Section 5 for the de�nition of the test.
We provide a formula for the asymptotic size of the test that depends on the speci�cs of the moment

conditions considered and does not necessarily equal its nominal size �: First, in Section 19.1, we

provide an example that illustrates the results in Theorem 5.1 and Comment (v) to Theorem 5.1.

In Section 19.2, we establish the asymptotic size of the test based on eVDn de�ned as in (5.3). In
Section 19.3, we report some simulation results for a linear instrumental variable (IV) model with

two rhs endogenous variables. In Section 19.4, we establish the asymptotic size of Kleibergen�s CLR

test with Jacobian-variance weighting under a general assumption that allows for other de�nitions

of eVDn:
In Section 19.5, we show that equally-weighted versions of Kleibergen�s CLR test have correct

asymptotic size when the Robin and Smith (2000) rank statistic is employed and a general equal-

weighting matrix fWn is employed. This result extends the result given in Theorem 6.1 in Section

6, which applies to the speci�c case where fWn = b
�1=2n ; as in (6.2). The results of Section 19.5 are

a relatively simple by-product of the results in Section 19.4.

Proofs of the results stated in this section are given in Section 19.6.

Lemma 5.2 is proved in Section 19.7.

Theorem 5.1 follows from Lemma 19.2 and Theorem 19.3, which are stated in Section 19.4.

As stated in footnote 4 in Section 2 of AG1, �under sequences Fn such that

n1=2EFnG(Wi; �) converges to a �nite matrix, n1=2 bDn(�) and n1=2bgn(�) (= n�1=2
Pn

i=1 g(Wi; �))

are asymptotically independent (see Lemmas 10.2 and 10.3 in Section 10 in this SM). Therefore, if

r(bVn; n1=2 bDn(�)) is a continuous function of n1=2 bDn(�) and a weighting matrix bVn (that converges
in probability to a positive de�nite matrix), then by the continuous mapping theorem (CMT),
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n1=2bgn(�) and r(bVn; n1=2 bDn(�)) are also asymptotically independent.�

Footnote 4 of AG1 also states �however, under sequences for which a component of n1=2EFnG(Wi; �)

diverges to plus or minus in�nity, the CMT cannot be applied because n1=2 bDn(�) does not converge

in distribution, but rather, some component of it diverges to plus or minus in�nity in probability (see

Lemma 10.3 in Section 10 in this SM when h1;j =1 for some j � p): In this case, r(bVn; n1=2 bDn(�))

may not have an asymptotic distribution, and if it does, r(bVn; n1=2 bDn(�)) and n1=2bgn(�) are not
necessarily asymptotically independent.�

The following is a simple example of the latter situation when p = 2: Let r(bVn; n1=2 bDn(�)) =bV12njjn1=2 bD1n(�)jj; where bV12n is the (1, 2) component of bVn and bD1n(�) is the �rst column ofbDn(�): Assume bVn � V !p 0 for some matrix V and n1=2(bVn � V ) !d �; where � is a mean zero

normal random matrix. Assume that under Fn the �rst column EFnG1(Wi; �) of EFnG(Wi; �) is

a �xed nonzero vector, Ge1 say. Assume that the (1; 2) element of V; denoted by V12; equals zero

under Fn: Then, bD1n(�)!p G
e
1 (see Lemma 10.2 in Section 10 in this SM) and bV12njjn1=2 bD1n(�)jj =

n1=2(bV12n � V12)jj bD1n(�)jj !d �12jjGe1jj: But, in general there is no reason why �12 and the random
limit of n1=2bgn(�) are independent. For simplicity, the previous example is somewhat contrived,
because rank statistics typically are not of the form bV12njjn1=2 bD1n(�)jj: But, components of rank
statistics may be of this form. Section 19.1, which follows, provides a more concrete example of

this type of situation.

19.1 An Example

Here we provide an example that illustrates the result of Theorem 5.1. In this example, the true

distribution F does not depend on n: Suppose p = 2; EFGi = (1k; 0k); where ck = (c; :::; c)0 2 Rk

for c = 0; 1; n1=2( bDn � EFGi)!d Dh under F for some random matrix Dh = (D1h; D2h) 2 Rk�2:
Suppose for fMn = eV �1=2Dn andMF = I2k; we have n1=2(fMn�MF )!d Mh under F for some random

matrix Mh 2 R2k�2k: (The convergence results n1=2( bDn � EFGi)!d Dh and n1=2(fMn �MF )!d

Mh are established in Lemmas 10.2 and 19.2, respectively, in Section 10 and Section 19.4 in this

SM under general conditions.) We have

bDy
n = vec�1k;p(

eV �1=2Dn vec( bDn)) =
�fM11n

bD1n + fM12n
bD2n;fM21n

bD1n + fM22n
bD2n� ; (19.1)

where bDn = ( bD1n; bD2n); fMj`n for j; ` = 1; 2 are the four k � k submatrices of fMn; and likewise

for Mj`F for j; ` = 1; 2: Let M j`h for j; ` = 1; 2 denote the four k � k submatrices of Mh: We let
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T yn = Diagfn�1=2; 1g: Then, we have

n1=2 bDy
nT

y
n =

�fM11n
bD1n + fM12n

bD2n; n1=2fM21n
bD1n + fM22nn

1=2 bD2n�
! d

�
Ik1

k + 0k�k0k; M21h1
k + IkD2h

�
=
�
1k;M21h1

k +D2h

�
; (19.2)

where the convergence uses n1=2fM21n !d M21h (because M21F = 0k�k) and n1=2 bD2n !d D2h

(because EFGi2 = 0k): Equation (19.2) shows that the asymptotic distribution of n1=2 bDy
nT

y
n depends

on the randomness of the variance estimator eVDn through M21h:

It may appear that this example is quite special and the asymptotic behavior in (19.2) only

arises in special circumstances, because EFGi = (1k; 0k); M21F = 0k�k; and MF = I2k in this

example. But this is not true. The asymptotic behavior in (19.2) arises quite generally, as shown

in Theorem 5.1, whenever p � 2:12

If one replaces eV �1=2Dn by its probability limit, MF ; in the de�nition of bDy
n; then the calculations

in (19.2) hold but with n1=2fM21n replaced by n1=2M21F = 0
k�k in the �rst line and, hence, M21h

replaced by 0k�k in the second line. Hence, in this case, the asymptotic distribution only depends

on Dh: Hence, Comment (iv) to Theorem 5.1 holds in this example.

Suppose one de�nes bDy
n by fWn

bDn as in Comment (v) to Theorem 5.1. This yields equal

weighting of each column of bDn: This is equivalent to replacing eV �1=2Dn by I2
fWn in the de�nition

of bDy
n in (19.1). In this case, the o¤-diagonal k � k blocks of I2 
fWn are 0k�k and, hence, fM21n

in the �rst line of (19.2) equals 0k�k; which implies that M21h = 0
k�k in the second line of (19.2).

Thus, the asymptotic distribution of bDy
n does not depend on the asymptotic distribution of the

(normalized) weight matrix estimator fWn: It only depends on the probability limit of fWn; as stated

in Comment (v) to Theorem 5.1.

19.2 Asymptotic Size of Kleibergen�s CLR Test with Jacobian-Variance

Weighting

In this subsection, we determine the asymptotic size of Kleibergen�s CLR test when bDn is

weighted by eVDn; de�ned in (5.3), which yields what we call Jacobian-variance weighting, and the
Robin and Smith (2000) rank statistic is employed. This rank statistic is de�ned in (5.5) with

� = �0: For convenience, we restate the de�nition here:

rkn = rkyn := �min(n( bDy
n)
0 bDy

n); where bDy
n := vec�1k;p(

eV �1=2Dn vec( bDn)) (19.3)

12When the matrix M21F 6= 0k�k; the argument in (19.2) does not go through because n1=2fM21n does not converge
in distribution (since n1=2(fM21n�M21F )!d M21h by assumption). In this case, one has to alter the de�nition of T yn
so that it rotates the columns of bDn before rescaling them. The rotation required depends on both MF and EFGi:
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(so bDy
n is as in (5.4) with � = �0): As in Section 5, the function vec�1k;p(�) is the inverse of the

vec(�) function for k�p matrices. Thus, the domain of vec�1k;p(�) consists of kp-vectors and its range
consists of k � p matrices. Let

b�yjn denote the jth eigenvalue of n( bDy
n)
0 bDy

n; for j = 1; :::; p; (19.4)

ordered to be nonincreasing in j: By de�nition, �min(n( bDy
n)0 bDy

n) = b�ypn: Also, the jth singular value
of n1=2 bDy

n equals (b�yjn)1=2:
De�ne the parameter space FKCLR for the distribution F by

FKCLR := fF 2 F : �min(V arF ((g0i; vec(Gi)0)0)) � �2; EF jj(g0i; vec(Gi)0)0jj4+
 �Mg; (19.5)

where �2 > 0 and 
 > 0 and M <1 are as in the de�nition of F in (3.3). Note that FKCLR � F0
when �1 in F0 satis�es �1 � M�2=(2+
)�2; by condition (vi) in (3.10). Let vech(�) denote the half
vectorization operator that vectorizes the nonredundant elements in the columns of a symmetric

matrix (that is, the elements on or below the main diagonal). The moment condition in FKCLR is
imposed because the asymptotic distribution of the rank statistic rkyn depends on a triangular array

CLT for vech(f�i f
�0
i ); which employs 4 + 
 moments for f�i ; where f

�
i := (g0i; vec(Gi � EFnGi)

0)0

as in (5.6). The �min(�) condition in FKCLR ensures that eVDn is positive de�nite wp!1; which is
needed because eVDn enters the rank statistic rkyn via eV �1=2Dn ; see (19.3).

For a �xed distribution F; eVDn estimates �vec(Gi)F de�ned in (10.15), where �vec(Gi)F is pd

by its de�nition in (10.15) and the �min(�) condition in FKCLR: More speci�cally, �vec(Gi)F is pd

because by (10.15) �vec(Gi)F := V arF (vec(Gi)� (EF vec(G`)g0`)

�1
F gi) = (�(EF vec(G`)g0`)


�1
F ; Ipk)

V arF ((g
0
i; vec(Gi)

0)0)(�(EF vec(G`)g0`)

�1
F ; Ipk)

0; where (�(EF vec(G`)g0`)

�1
F ; Ipk) 2 Rpk�(p+1)k has

full row rank pk and V arF ((g0i; vec(Gi)
0)0) is pd by the �min(�) condition in FKCLR: Let

MF =

26664
M11F � � � M1pF

...
. . .

...

Mp1F � � � MppF

37775 := (�vec(Gi)F )�1=2 and (19.6)

Dy
F :=

pX
j=1

(M1jFEFGij ; :::;MpjFEFGij) 2 Rk�p; where Gi = (Gi1; :::; Gip) 2 Rk�p:
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Let (� y1F ; :::; �
y
pF ) denote the singular values of D

y
F : De�ne

ByF 2 Rp�p to be an orthogonal matrix of eigenvectors of Dy0
FD

y
F and

CyF 2 Rk�k to be an orthogonal matrix of eigenvectors of Dy
FD

y0
F (19.7)

ordered so that the corresponding eigenvalues (�y1F ; :::; �
y
pF ) and (�

y
1F ; :::; �

y
pF ; 0; :::; 0) 2 Rk; respec-

tively, are nonincreasing. We have �yjF = (�
y
jF )

2 for j = 1; :::; p: Note that (19.7) gives de�nitions of

BF and CF that are similar to the de�nitions in (10.6) and (10.7), but di¤er because D
y
F replaces

WF (EFGi)UF in the de�nitions.

De�ne (�1;F ; :::; �9;F ) as in (10.9) with �7;F = WF = 

�1=2
F ; �8;F = Ip; and W1(�) and U1(�)

equal to identity functions. De�ne

�10;F = V arF

0@ f�i

vech (f�i f
�0
i )

1A 2 Rd��d� ; (19.8)

where d� := (p+1)k+(p+1)k((p+1)k+1)=2: De�ne (�y1;F ; �
y
2;F ; �

y
3;F ; �

y
6;F ) as (�1;F ; �2;F ; �3;F ; �6;F )

are de�ned in (10.9) but with f� yjF : j � pg; ByF ; and C
y
F in place of f� jF : j � pg; BF ; and CF ;

respectively.

De�ne

� = �F := (�1;F ; :::; �10;F ; �
y
1;F ; �

y
2;F ; �

y
3;F ; �

y
6;F ); (19.9)

�KCLR := f� : � = (�1;F ; :::; �10;F ; �y1;F ; �
y
2;F ; �

y
3;F ; �

y
6;F ) for some F 2 FKCLRg; and

hn(�) := (n
1=2�1;F ; �2;F ; �3;F ; �4;F ; �5;F ; �6;F ; �7;F ; �8;F ; �10;F ; n

1=2�y1;F ; �
y
2;F ; �

y
3;F ; �

y
6;F ):

Let f�n;h 2 �KCLR : n � 1g denote a sequence f�n 2 �KCLR : n � 1g for which hn(�n)! h 2 H;
for H as in (10.1). The asymptotic variance of n1=2vec( bDn � EFnGi) is �

vec(Gi)
h under f�n;h 2

�KCLR : n � 1g by Lemma 10.2.
De�ne h1;j for j � p and hs for s = 2; :::; 8 as in (10.12), q = qh as in (10.16), h2;q; h2;p�q; h3;q;

h3;p�q; and h�1;p�q as in (10.17), and �n; �n;q; and �n;p�q as in (9.2). Note that h7 = h
�1=2
5;g and

h8 = Ip due to the de�nitions of �7;F and �8;F given above, where h5;g (= limEFngig
0
i) denotes the

upper left k � k submatrix of h5; as in Section 10.
For a sequence f�n;h 2 �KCLR : n � 1g; we have

h10 =

24 h10;f� h10;f�f�2

h10;f�2f� h10;f�2f�2

35 := limV arFn
0@ f�i

vech (f�i f
�0
i )

1A 2 Rd��d� : (19.10)
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Note that h10;f� 2 R(p+1)k�(p+1)k is pd by the de�nition of FKCLR in (19.5).
With � yjF ; B

y
F ; and C

y
F in place of � jF ; BF ; and CF ; respectively, de�ne h

y
1;j for j � p and hys

for s = 2; 3; 6 as in (10.12) as analogues to the quantities without the y superscript, de�ne qy = qyh

as in (10.16), de�ne hy
2;qy

; hy
2;p�qy ; h

y
3;qy

; hy
3;k�qy ; and h

y�
1;p�qy as in (10.17), and de�ne �

y
n; �

y
n;qy

;

and �y
n;p�qy as in (9.2). The quantity q

y determines the asymptotic behavior of rkyn: By de�nition,

qy is the largest value j (� p) for which limn1=2� yjFn = 1 under f�n;h 2 �KCLR : n � 1g: It is
shown below that if qy = p; then rkyn !p 1; whereas if qy < p; then rkyn converges in distribution

to a nondegenerate random variable, see Lemma 19.4.

By the CLT, for any sequence f�n;h 2 �KCLR : n � 1g;

n�1=2
nX
i=1

0@ f�i

vech (f�i f
�0
i � EFnf�i f�0i )

1A!d Lh � N(0d
�
; h10); where

Lh = (L
0
h;1; L

0
h;2; L

0
h;3)

0 for Lh;1 2 Rk; Lh;2 2 Rkp; and Lh;3 2 R(p+1)k((p+1)k+1)=2(19.11)

and the CLT holds using the moment conditions in FKCLR: Note that by the de�nitions of h4 :=
limEFnGi and h5 := limEFn(g

0
i; vec(Gi)

0)0(g0i; vec(Gi)
0); we have

h10;f� =

24 h5;g h5;gG

h5;Gg h5;G � vec(h4)vec(h4)0

35 ; where h5 =
24 h5;g h5;gG

h5;Gg h5;G

35 (19.12)

for h5;g 2 Rk�k; h5;Gg 2 Rkp�k; and h5;G 2 Rkp�kp:
We now provide new, but distributionally equivalent, de�nitions of gh and Dh:

gh := Lh;1 and vec(Dh) := Lh;2 � h5;Ggh�15;gLh;1: (19.13)

These de�nitions are distributionally equivalent to the previous de�nitions of gh and Dh given

in Lemma 10.2, because by either set of de�nitions gh and vec(Dh) are independent mean zero

random vectors with variance matrices h5;g and �
vec(Gi)
h (= h5;G�vec(h4)vec(h4)0�h5;Ggh�15;gh05;Gg);

respectively, where �vec(Gi)h is de�ned in (10.15) and is pd (because �vec(Gi)h = lim�
vec(Gi)
Fn

and

�min(�
vec(Gi)
Fn

) is bounded away from zero by its de�nition in (10.15) and the �min(�) condition in
FKCLR):
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De�ne

D
y
h :=

pX
j=1

(M1jhDjh; :::;MpjhDjh) 2 Rk�p; where

26664
M11h � � � M1ph

...
. . .

...

Mp1h � � � Mpph

37775 := (�vec(Gi)h )�1=2;

(19.14)

Dh = (D1h; :::; Dph); and Dh is de�ned in (19.13). De�ne

�
y
h = (�

y
h;qy ;�

y
h;p�qy) 2 R

k�p; �
y
h;qy := hy

3;qy
2 Rk�qy ; and

�
y
h;p�qy := hy3h

y�
1;p�qy +D

y
hh
y
2;p�qy 2 R

k�(p�qy): (19.15)

Let a(�) be the function from Rd
�
to Rkp(kp+1)=2 that maps

n�1
nX
i=1

0@ f�i

vech (f�i f
�0
i )

1A into (19.16)

An := vech

0@ n�1 nX
i=1

vec(Gi � EFnGi)vec(Gi � EFnGi)0 � e�ne
�1n e�0n
!�1=21A ; where

e
n := n�1
nX
i=1

gig
0
i 2 Rk�k and e�n := n�1

nX
i=1

vec(Gi � EFnGi)g0i 2 Rpk�k:

Note that a(�) does not depend on the n�1
Pn

i=1 f
�
i part of its argument. Also, a(�) is well de�ned

and continuously partially di¤erentiable at any value of its argument for which n�1
Pn

i=1 f
�
i f

�0
i

is pd. (The function a(�) is well de�ned in this case because n�1
Pn

i=1 vec(Gi � EFnGi)vec(Gi �
EFnGi)

0�e�ne
�1n e�0n= (�e�ne
�1n ; Ipk)n
�1Pn

i=1 f
�
i f

�0
i (�e�ne
�1n ; Ipk)

0 and (�e�ne
�1n ; Ipk) 2 Rpk�(p+1)k

has full row rank pk:) We de�ne Ah as follows:

Ah denotes the (kp)(kp+ 1)=2� d� matrix of partial derivatives of a(�)

evaluated at (0(p+1)k0; vech(h10;f�)
0)0; (19.17)

where the latter vector is the limit of the mean vector of (f�0i ; vech (f
�
i f

�0
i )

0)0 under f�n;h 2 �KCLR :
n � 1g:

De�ne

Mh := vech�1kp;kp(AhLh) 2 R
kp�kp; (19.18)

where vech�1kp;kp(�) denotes the inverse of the vech(�) operator applied to symmetric kp�kp matrices.
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De�ne

M
y
h := (M

y
h;qy ;M

y
h;p�qy) := (0

k�qy ;M
y
h;p�qy) 2 R

k�p; where (19.19)

M
y
h;p�qy :=

pX
j=1

(M1jhh4;j ; :::;Mpjhh4;j)h
y
2;p�qy 2 R

k�(p�qy); Mh =

26664
M11h � � � M1ph

...
. . .

...

Mp1h � � � Mpph

37775 ;

and h4 = (h4;1; :::; h4;p) 2 Rk�p:
Below (in Lemma 19.4), we show that the asymptotic distribution of rkyn under sequences

f�n;h 2 �KCLR : n � 1g with qy < p is given by

rh(Dh;Mh) := �min((�
y
h;p�qy +M

y
h;p�qy)

0hy
3;k�qyh

y0
3;k�qy(�

y
h;p�qy +M

y
h;p�qy)); (19.20)

where �
y
h;p�qy is a nonrandom function of Dh by (19.14) and (19.15) and M

y
h;p�qy is a nonrandom

function of Mh by (19.19). For sequences f�n;h 2 �KCLR : n � 1g with qy = p; we show that

rkn !p rh :=1:
We de�ne �h; as in (10.17), as follows:

�h = (�h;q;�h;p�q) 2 Rk�p; �h;q := h3;q; and �h;p�q := h3h
�
1;p�q + h7Dhh8h2;p�q; where

h2 = (h2;q; h2;p�q); h3 = (h3;q; h3;k�q); h
�
1;p�q :=

2664
0q�(p�q)

Diagfh1;q+1; :::; h1;pg
0(k�p)�(p�q)

37752 Rk�(p�q): (19.21)

In the present case, h7 = h
�1=2
5;g and h8 = Ip because the CLRn statistic depends on bDn throughb
�1=2n

bDn; which appears in the LMn statistic. (The CLRn statistic also depends on bDn through

the rank statistic.) This means that Assumption WU for the parameter space �KCLR (de�ned in

Section 10.4) holds with cWn = b
�1=2n ; bUn = Ip; h7 = h
�1=2
5;g ; and h8 = Ip: Thus, the distribution of

�h depends on Dh; q; and hs for s = 1; 2; 3; 5:

Below (in Lemma 19.5), we show that the asymptotic distribution of the CLRn statistic under

sequences f�n;h 2 �KCLR : n � 1g with qy < p is given by

CLRh :=
1

2

�
LMh + Jh � rh +

q
(LMh + Jh � rh)2 + 4LMrh

�
; where

LMh := v0hvh � �2p; vh := P�hh
�1=2
5;g gh; Jh := g0hh

�1=2
5;g M�h

h
�1=2
5;g gh � �2k�p; and

rh := rh(Dh;Mh): (19.22)
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The quantities (gh; Dh;Mh) are speci�ed in (19.13) and (19.18) (and (gh; Dh) are the same as in

Lemma 10.2). The de�nitions of vh; LMh; Jh; and CLRh in (19.22) are the same as in (11.1),

(11.2), (12.6), and (12.7), respectively.

Conditional on Dh; LMh and Jh are independent and distributed as �2p and �
2
k�p; respectively

(see the paragraph following (12.6)). For sequences f�n;h 2 �KCLR : n � 1g with qy = p; we show

that the asymptotic distribution of the CLRn statistic is CLRh := LMh := v0hvh � �2p; where

vh := P�hh
�1=2
5;g gh:

The critical value function c(1 � �; r) is de�ned in (5.2) for 0 � r < 1: For r = 1; we de�ne
c(1� �; r) to be the 1� � quantile of the �2p distribution.

Now we state the asymptotic size of Kleibergen�s CLR test based on Robin and Smith (2000)

statistic with eVDn de�ned in (5.3).
Theorem 19.1 Let the parameter space for F be FKCLR: Suppose the variance matrix estimatoreVDn employed by the rank statistic rkyn (de�ned in (19.3)) is de�ned by (5.3). Then, the asymptotic
size of Kleibergen�s CLR test based on the rank statistic rkyn is

AsySz = maxf�; sup
h2H

P (CLRh > c(1� �; rh))g

provided P (CLRh = c(1� �; rh)) = 0 for all h 2 H:

Comments: (i) The proviso in Theorem 19.1 is a continuity condition on the distribution function

of CLRh � c(1 � �; rh) at zero. If the proviso in Theorem 19.1 does not hold, then the following

weaker conclusion holds:

AsySz (19.23)

2 [maxf�; sup
h2H

P (CLRh > c(1� �; rh))g;maxf�; sup
h2H

lim
x"0

P (CLRh > c(1� �; rh) + x)g]:

(ii) Conditional on (Dh;Mh); gh has a multivariate normal distribution a.s. (because (gh; Dh;

Mh) has a multivariate normal distribution unconditionally). Note that gh is independent of

Dh: The proviso in Theorem 19.1 holds whenever gh has a non-zero variance matrix conditional on

(Dh;Mh) a.s. for all h 2 H: This holds because (a) P (CLRh = c(1��; rh)) = E(Dh;Mh)
P (CLRh =

c(1��; rh)jDh;Mh) by the law of iterated expectations, (b) some calculations show that CLRh =

c(1 � �; rh) i¤ (rh + c)LMh = �cJh + c2 + crh i¤ X
0
hXh = c2 + crh; where c := c(1 � �; rh)

and Xh := ((rh + c)
1=2(P�hh

�1=2
5;g gh)

0; c1=2(M�h
h
�1=2
5;g gh)

0)0 using (19.22), (c) P�h +M�h
= Ik and

P�hM�h
= 0k�k; and (d) conditional on (Dh;Mh); rh; c; and �h are constants.
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(iii) When p = 1; the formula for AsySz in Theorem 19.1 reduces to � and the proviso holds

automatically. That is, Kleibergen�s CLR test has correct asymptotic size when p = 1: This holds

because when p = 1 the quantity M
y
h in (19.19) equals 0

k�p by Comment (ii) to Theorem 19.3

below. This implies that rh(Dh;Mh) in (19.20) does not depend on Mh: Given this, the proof that

P (CLRh > c(1��; rh) = � for all h 2 H and that the proviso holds is the same as in (12.9)-(12.10)

in the proof of Theorem 12.1.

(iv) Theorem 19.1 is proved by showing that it is a special case of Theorem 19.6 below, which is

similar but applies not to eVDn de�ned in (5.3), but to an arbitrary estimator eVDn (of the asymptotic
variance �vec(Gi)h of n1=2vec( bDn�EFnGi)) that satis�es an Assumption VD (which is stated below).
Lemma 19.2 below shows that the estimator eVDn de�ned in (5.3) satis�es Assumption VD.

(v) A CS version of Theorem 19.1 holds with the parameter space F�;KCLR in place of FKCLR;
where F�;KCLR := f(F; �0) : F 2 FKCLR(�0); �0 2 �g and FKCLR(�0) is the set FKCLR de�ned in
(19.5) with its dependence on �0 made explicit. The proof of this CS result is as outlined in the

Comment to Proposition 10.1. For the CS result, the h index and its parameter space H are as

de�ned above, but h also includes �0 as a subvector, and H allows this subvector to range over �:

19.3 Simulation Results

In this section, for a particular linear IV regression model, we simulate (i) correlations between

M
y
h;p�qy (de�ned in (19.19)) and gh and (ii) some asymptotic null rejection probabilities (NRP�s)

of Kleibergen�s CLR test that uses Jacobian-variance weighting and employs the Robin and Smith

(2000) rank statistic. The model has p = 2 rhs endogenous variables and k = 15 IV�s. The model

is

y1i = Y 02i�0 + ui and Y2i = �0Zi + V2i; (19.24)

where y1i; ui 2 R; Y2i; V2i 2 R2; �0 2 R2; Zi = (Zi1; :::; Zik)
0 2 Rk; and � 2 Rk�2: We take

Zij � �21 � 1 i.i.d. for j = 1; :::; k; ui � jjZijjeui; (eui; V 02i)0 � N(0;��); (eui; V 02i)0 independent of Zi;
and �� 2 R3�3 with diagonal elements 1 and o¤-diagonal elements �: This data generating process
(DGP) involves an asymmetric distribution for Zij and conditional heteroskedasticity in ui: We

take � = �n = (e1; e2cn
�1=2); where ej 2 Rk denote the jth coordinate vector for j = 1; 2: We

consider integer values of the constant c in [0; 30]; � = :5; �0 = (0; 0)
0, and nominal size 5% for the

tests. We also experimented with additional DGPs for (ui; V 02i; Z
0
i)
0 and k 2 f5; 10g and nominal

size of 1% but no important additional insights were gained from these simulations.

In this model, we have gi = Ziui and Gi = �ZiY 02i: Furthermore, h1;1 = 1 and h1;2 is a

�nite nonnegative number that depends on c. The quantities hy1;j for j = 1; 2 (de�ned just below
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(19.10)) are not available in closed form, so we simulate them using a very large value of n; viz.,

n = 2; 000; 000: We use 4; 000; 000 simulation repetitions to compute the correlations between the

jth elements of M
y
h;p�qy and gh for j = 1; :::; k and the asymptotic NRP�s of the CLR test. To

conserve space we do not report the correlations between the jth and kth elements of these vectors

for j 6= k. The data-dependent critical values for the test are computed using a look-up table that

gives the critical values for each �xed value r of the rank statistic in a grid from 0 to 10; 000 with a

step size of :005; :05; and 1 for r 2 [0; 100]; [100; 1000]; and [1000; 10000]; respectively: These critical
values are computed using 4; 000; 000 simulation repetitions. Note that for p = 2; the dimension

d� := (p + 1)k + (p + 1)k((p + 1)k + 1)=2 in (19.8) equals 135; 495; and 1080, for k = 5; 10; 15;

respectively, and simulation with 4 million repetitions becomes computationally involved for large

k:

(i) The simulations provide evidence for the �ndings given in Theorem 5.1 that M
y
h;p�qy (the

second column of M
y
h 2 Rk�2) and gh are correlated asymptotically in some models under some

sequences of distributions. For example, when k = 15 the simulated correlations between the jth

elements ofM
y
h;p�qy and gh for j = 1; 8; 15 take on the values :32; :11; and �:06; respectively, for all

values c 2 [0; 30]: In consequence, it is not possible to show the Jacobian-variance weighted CLR
test has correct asymptotic size via a conditioning argument that relies on the independence of

�
y
h;p�qy +M

y
h;p�qy and gh:

(ii) Next, we report the asymptotic NRP results for Kleibergen�s CLR test that uses Jacobian-

variance weighting and the Robin and Smith (2000) rank statistic. The asymptotic NRP�s are

found to be between 4:99% and 5:11% for the values of c considered. These values are close to the

nominal size of 5:00%: Whether the di¤erence is due to simulation noise or not is not clear. The

simulation standard error based on the formula 100 � (�(1� �)=reps)1=2; where reps = 4; 000; 000

is the number of simulation repetitions, is :01: However, this formula does not take into account

simulation error from the computation of the critical values and from error in approximation of hy1;j .

For comparison, we also simulated the asymptotic NRP of the LM test (that has asymptotic size

equal to nominal size) and �nd them to be between 5.01% and 5.02% for the values of c considered.

We conclude that, for the model and error distribution considered, the asymptotic NRP�s of

Kleibergen�s CLR test with Jacobian-variance weighting is quite close to its nominal size. This

occurs even though there are non-negligible correlations between M
y
h;p�qy and gh: Whether this

occurs for all parameters and distributions in the linear IV model, and whether it occurs in other

moment condition model, is an open question. It appears to be a question that can only be answered

on a case by case basis.
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19.4 Asymptotic Size of Kleibergen�s CLR Test for General eVDn Estimators

In this section, we determine the asymptotic size of Kleibergen�s CLR test (de�ned in Section 5)

using the Robin and Smith (2000) rank statistic based on a general �Jacobian-variance�estimatoreVDn (= eVDn(�0)) that satis�es the following Assumption VD.
The �rst two results of this section, viz., Lemma 19.2 and Theorem 19.3, combine to establish

Theorem 5.1, see Comment (i) to Theorem 19.3. The �rst and last results of this section, viz.,

Lemma 19.2 and Theorem 19.6, combine to prove Theorem 19.1.

The proofs of the results in this section are given in Section 19.6.

Assumption VD: For any sequence f�n;h 2 �KCLR : n � 1g; the estimator eVDn is such that
n1=2(fMn �MFn) !d Mh for some random matrix Mh 2 Rkp�kp (where fMn = eV �1=2Dn and MFn is

de�ned in (19.6)), the convergence is joint with

n1=2

0@ bgn
vec( bDn � EFnGi)

1A!d

0@ gh

vec(Dh)

1A � N

0@0(p+1)k;
0@ h5;g 0k�pk

0pk�k �
vec(Gi)
h

1A1A ; (19.25)

and (gh; Dh;Mh) has a mean zero multivariate normal distribution with pd variance matrix. The

same condition holds for any subsequence fwng and any sequence f�wn;h 2 �KCLR : n � 1g with
wn in place of n throughout.

Note that the convergence in (19.25) holds by Lemma 10.2.

The following lemma veri�es Assumption VD for the estimator eVDn de�ned in (5.3).
Lemma 19.2 The estimator eVDn de�ned in (5.3) satis�es Assumption VD. Speci�cally,

n1=2(bgn; bDn�EFnGi;fMn�MFn)!d (gh; Dh;Mh); where fMn := eV �1=2Dn ; MFn := (�
vec(Gi)
Fn

)�1=2; and

(gh; Dh;Mh) has a mean zero multivariate normal distribution de�ned by (19.11) and (19.13)-

(19.18) with pd variance matrix.

Comment: As stated in the paragraph containing (19.21), bDn is de�ned in Lemma 19.2 and

Theorem 19.3 below with cWn = b
�1=2n and bUn = Ip:

De�ne

Syn := Diagf(n1=2� y1Fn)
�1; :::; (n1=2� yqFn)

�1; 1; :::; 1g 2 Rp�p and T yn := BynS
y
n; (19.26)

where Byn is de�ned in (19.7).

The asymptotic distribution of n1=2 bDy
nT

y
n is given in the following theorem.
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Theorem 19.3 Suppose Assumption VD holds. For all sequences f�n;h 2 �KCLR : n � 1g;
n1=2(bgn; bDn � EFnGi; bDy

nT
y
n) !d (gh; Dh;�

y
h +M

y
h); where �

y
h is a nonrandom a¢ ne function of

Dh de�ned in (19.14) and (19.15), M
y
h is a nonrandom linear (i.e., a¢ ne and homogeneous of

degree one) function of Mh de�ned in (19.19), (gh; Dh;Mh) has a mean zero multivariate normal

distribution, and gh and Dh are independent. Under all subsequences fwng and all sequences
f�wn;h 2 �KCLR : n � 1g; the same result holds with n replaced with wn:

Comments: (i) Note that the random variables (gh;�
y
h;M

y
h) in Theorem 5.1 have a multivariate

normal distribution whose mean and variance matrix depend on limV arFn((f
�0
i ; vec (f

�
i f

�0
i )

0) and

on the limits of certain functions of EFnGi by (19.11)-(19.19). This, Lemma 19.2, and Theorem

19.3 combine to prove Theorem 5.1 of AG1.

(ii) From (19.19), M
y
h = 0k�p if p = 1 (because qy = 0 implies q = 0 which, in turn, implies

h4 = 0
k and qy = 1 implies M

y
h;p�qy has no columns).

13 For p � 2; M y
h = 0

k�p if p = qy (because

M
y
h;p�qy has no columns) or if h4;j = 0k for all j � p: The former holds if the singular values

(�1Fn ; :::; �pFn) of D
y
Fn
satisfy n1=2� jFn ! 1 for all j � p (i.e., all parameters are strongly or

semi-strongly identi�ed). The latter occurs if EFnGi ! 0k�p (i.e., all parameters are either weakly

identi�ed in the standard sense or semi-strongly identi�ed). These two condition fail to hold when

one or more parameters are strongly identi�ed and one or more parameters are weakly identi�ed

or jointly weakly identi�ed.

(iii) For example, when p = 2 the conditions in Comment (ii) (under which M y
h = 0

k�p) fail to

hold if EFnGi1 6= 0k does not depend on n and n1=2EFnGi2 ! c for some c 2 Rk:

The following lemma establishes the asymptotic distribution of rkyn:

Lemma 19.4 Let the parameter space for F be FKCLR: Suppose the variance matrix estimatoreVDn employed by the rank statistic rkyn (de�ned in (19.3)) satis�es Assumption VD. Then, under
all sequences f�n;h 2 �KCLR : n � 1g;

(a) rkyn := b�ypn !p 1 if qy = p;

(b) rkyn := b�ypn !d rh(Dh;Mh) if qy < p; where rh(Dh;Mh) is de�ned in (19.20) using (19.19)

with Mh de�ned in Assumption VD (rather than in (19.18)),

(c) b�yjn !p 1 for all j � qy;

(d) the (ordered) vector of the smallest p� qy singular values of n1=2 bDy
n; i.e., ((b�y(qy+1)n)1=2; :::;

(b�ypn)1=2)0; converges in distribution to the (ordered) p � qy vector of the singular values of

13Note that qy = 0 implies q = 0 when p = 1 because n1=2Dy
Fn
= n1=2MFnEFnGi = O(1) when qy = 0 (by the

de�nition of qy) and this implies that n1=2EFnGi = O(1) using the �rst condition in FKCLR: In turn, the latter
implies that n1=2
�1=2Fn

EFnGi = O(1) using the last condition in F . That is, q = 0 (since WF = 

�1=2
F and UF = Ip

because cWn = b
�1=2n and bUn = Ip in the present case, see the Comment to Lemma 19.2).
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hy0
3;k�qy(�

y
h;p�qy +M

y
h;p�qy) 2 R(k�q

y)�(p�qy); where M
y
h;p�qy is de�ned in (19.19) with Mh de�ned

in Assumption VD (rather than in (19.18)),

(e) the convergence in parts (a)-(d) holds jointly with the convergence in Theorem 19.3, and

(f) under all subsequences fwng and all sequences f�wn;h 2 �KCLR : n � 1g; parts (a)-(e) hold
with n replaced with wn:

The following lemma gives the joint asymptotic distribution of CLRn and rk
y
n and the asymp-

totic null rejection probabilities of Kleibergen�s CLR test.

Lemma 19.5 Let the parameter space for F be FKCLR: Suppose the variance matrix estimatoreVDn employed by the rank statistic rkyn (de�ned in (19.3)) satis�es Assumption VD. Then, under
all sequences f�n;h 2 �KCLR : n � 1g;

(a) CLRn = LMn + op(1)!d �
2
p and rk

y
n !p 1 if qy = p;

(b) lim
n!1

P (CLRn > c(1� �; rkyn)) = � if qy = p;

(c) (CLRn; rkyn)!d (CLRh; rh) if q
y < p; and

(d) lim
n!1

P (CLRn > c(1� �; rkyn)) = P (CLRh > c(1� �; rh)) if qy < p; provided

P (CLRh = c(1� �; rh)) = 0:

Under all subsequences fwng and all sequences f�wn;h 2 �KCLR � 1g; parts (a)-(d) hold with n
replaced with wn:

Comments: (i) The CLR critical value function c(1 � �; r) is the 1 � � quantile of clr(r): By

de�nition,

clr(r) :=
1

2

�
�2p + �

2
k�p � r +

q
(�2p + �

2
k�p � r)2 + 4�2pr

�
; (19.27)

where the chi-square random variables �2p and �
2
k�p are independent. If rh := rh(Dh;Mh) does not

depend on Mh; then, conditional on Dh; rh is a constant and LMh and Jh are independent and

distributed as �2p and �
2
k�p (see the paragraph following (12.6)). In this case, even when q

y = p;

P (CLRh > c(1� �; rh)) = EDh
P (CLRh > c(1� �; rh)jDh) = �; (19.28)

as desired, where the �rst equality holds by the law of iterated expectations and the second equality

holds because rh is a constant conditional on Dh and c(1 � �; rh) is the 1 � � quantile of the

conditional distribution of clr(rh) given Dh; which equals that of CLRh given Dh:

(ii) However, when rh := rh(Dh;Mh) depends on Mh; the distribution of rh conditional on

Dh is not a pointmass distribution. Rather, conditional on Dh; rh is a random variable that is not
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independent of LMh; Jh; and CLRh: In consequence, the second equality in (19.28) does not hold

and the asymptotic null rejection probability of Kleibergen�s CLR test may be larger or smaller

than � depending upon the sequence f�n;h 2 �KCLR : n � 1g (or f�wn;h 2 �KCLR : n � 1g) when
qy < p:

Next, we use Lemma 19.5 to provide an expression for the asymptotic size of Kleibergen�s CLR

test based on the Robin and Smith (2000) rank statistic with Jacobian-variance weighting.

Theorem 19.6 Let the parameter space for F be FKCLR: Suppose the variance matrix estimatoreVDn employed by the rank statistic rkyn (de�ned in (19.3)) satis�es Assumption VD. Then, the
asymptotic size of Kleibergen�s CLR test based on rkyn is

AsySz = maxf�; sup
h2H

P (CLRh > c(1� �; rh))g

provided P (CLRh = c(1� �; rh)) = 0 for all h 2 H:

Comments: (i) Comment (i) to Theorem 19.1 also applies to Theorem 19.6.

(ii) Theorem 19.6 and Lemma 19.2 combine to prove Theorem 19.1.

(iii) A CS version of Theorem 19.6 holds with the parameter space F�;KCLR in place of FKCLR;
see Comment (v) to Theorem 19.1 and the Comment to Proposition 10.1.

19.5 Correct Asymptotic Size of Equally-Weighted CLR Tests

Based on the Robin-Smith Rank Statistic

In this subsection, we consider equally-weighted CLR tests, a special case of which is considered

in Section 6. By de�nition, an equally-weighted CLR test is a CLR test that is based on a rkn

statistic that depends on bDn only through fWn
bDn for some general k � k weighting matrix fWn:

We show that such tests have correct asymptotic size when they are based on the rank statistic

of Robin and Smith (2000) and employ a general weight matrix fWn 2 Rk�k that satis�es certain
conditions. In contrast, the results in Section 6 consider the speci�c weight matrix b
�1=2n 2 Rk�k:
The reason for considering these tests in this section is that the asymptotic results can be obtained

as a relatively simple by-product of the results in Section 19.4. All that is required is a slight change

in Assumption VD.

The rank statistic that we consider here is

rkyn := �min(n bD0
n
fW 0
n
fWn

bDn): (19.29)

We replace Assumption VD in Section 19.4 by the following assumption.
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Assumption W: For any sequence f�n;h 2 �KCLR : n � 1g; the random k � k weight matrixfWn is such that n1=2(fWn �W y
Fn
)!d W h for some non-random k � k matrices fW y

Fn
: n � 1g and

some random k� k matrix W h 2 Rk�k; W y
Fn
!W y

h for some nonrandom pd k� k matrix W y
h; the

convergence is joint with the convergence in (19.25), and (gh; Dh;W h) has a mean zero multivariate

normal distribution with pd variance matrix. The same condition holds for any subsequence fwng
and any sequence f�wn;h 2 �KCLR : n � 1g with wn in place of n throughout.

If one takes fMn (= eV �1=2Dn ) = Ip 
 fWn in Assumption VD, then bDy
n = fWn

bDn and the rank

statistics in (19.3) and (19.29) are the same. Thus, Assumption W is analogous to Assumption

VD with fMn = Ip 
 fWn and MFn = Ip 
W y
Fn
: Note, however, that the latter matrix does not

typically satisfy the condition in Assumption VD that MFn is de�ned in (19.6), i.e., the condition

that MFn = (�
vec(Gi)
Fn

)�1=2: Nevertheless, the results in Section 19.4 hold with Assumption VD

replaced by Assumption W and with MF = Ip 
W y
F ; D

y
F = W y

FEFGi; and Mh = Ip 
W h: With

these changes, D
y
h =W y

hDh in (19.14) (because (�
vec(Gi)
h )�1=2 is replaced by Ip
W y

h); �
y
h is de�ned

as in (19.15) with D
y
h as just given, and M

y
h is de�ned as in (19.19) with M

y
h;p�qy =W hh4h

y
2;p�qy :

Below we show the key result that M
y
h;p�qy = 0

k�(p�qy) for rkyn de�ned in (19.29). By (19.20),

this implies that

rh(Dh;Mh) := �min((�
y
h;p�qy)

0hy
3;k�qyh

y0
3;k�qy(�

y
h;p�qy)) (19.30)

when qy < p: Note that the rhs in (19.30) does not depend on Mh and, hence, is a function only

of Dh: That is, rh(Dh;Mh) = rh(Dh): Given that rh(Dh;Mh) does not depend on Mh; Comment

(i) to Lemma 19.5 implies that P (CLRh > c(1� �; rh)) = � under all subsequences fwng and all
sequences f�wn;h 2 �KCLR : n � 1g: This and Theorem 19.6 give the following result.

Corollary 19.7 Let the parameter space for F be FKCLR: Suppose the rank statistic rkyn (de�ned
in (19.29)) is based on a weight matrix fWn that satis�es Assumption W. Then, the asymptotic size

of the corresponding equally-weighted version of Kleibergen�s CLR test (de�ned in Section 5 with

rkn(�) = rkyn) equals �:

Comment: A CS version of Corollary 19.7 holds with the parameter space F�;KCLR in place of
FKCLR; see Comment (v) to Theorem 19.1 and the Comment to Proposition 10.1.

Now, we establish that M
y
h;p�qy (=W hh4h

y
2;p�qy) = 0

k�(p�qy): We have

W y
hh4 := limW

y
Fn
EFnGi = limC

y
Fn
�yFnB

y0
Fn
= hy3 lim�

y
Fn
hy02 ; (19.31)

where CyFn�
y
Fn
(ByFn)

0 is the singular value decomposition of W y
Fn
EFnGi; �

y
Fn
is the k � p matrix

with the singular values of W y
Fn
EFnGi; denoted by f�

y
jFn

: n � 1g for j � p; on the main diagonal
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and zeroes elsewhere, and CyFn and B
y
Fn
are the corresponding k� k and p� p orthogonal matrices

of singular vectors, as de�ned in (19.7). Hence, lim�yn exists, call it �
y
h; and equals h

y0
3 h4h

y
2: That

is, the singular value decomposition of W y
hh4 is

W y
hh4 = hy3�

y
hh
y0
2 : (19.32)

The k�p matrix �yh has the limits of the singular values ofW
y
Fn
EFnGi on its main diagonal and

zeroes elsewhere. Let � yh;j for j � p denote the limits of these singular values. By the de�nition of

qy; � yh;j = 0 for j = qy+1; :::; p (because n1=2� yjFn ! hy1;j <1): In consequence, �
y
h can be written

as

�yh =

24 �y
h;qy

0q
y�(p�qy)

0(k�q
y)�qy 0(k�q

y)�(p�qy)

35 ; where �y
h;qy

:= Diagf� yh;1; :::; �
y
h;qy
g: (19.33)

In addition,

hy02 h
y
2;p�qy =

0@ 0q
y�(p�qy)

Ip�qy

1A : (19.34)

Thus, we have

M
y
h;p�qy : =W h(W

y
h)
�1W y

hh4h
y
2;p�qy =W h(W

y
h)
�1hy3�

y
hh
y0
2 h

y
2;p�qy

= W h(W
y
h)
�1hy3

24 �y
h;p�qy 0q

y�(p�qy)

0(k�q
y)�qy 0(k�q

y)�(p�qy)

350@ 0q
y�(p�qy)

Ip�qy

1A
= 0k�(p�q

y); (19.35)

where the �rst equality holds by the paragraph following Assumption W and uses the condition in

Assumption W thatW y
h is pd and the second equality holds by (19.33) and (19.34). This completes

the proof of Corollary 19.7.

19.6 Proofs of Results Stated in Sections 19.2 and 19.4

For notational simplicity, the proofs in this section are for the sequence fng; rather than a
subsequence fwn : n � 1g: The same proofs hold for any subsequence fwn : n � 1g:

Proof of Theorem 19.1. Theorem 19.1 follows from Theorem 19.6, which imposes Assumption

VD, and Lemma 19.2, which veri�es Assumption VD when eVDn is de�ned by (5.3). �
Proof of Lemma 19.2. Consider any sequence f�n;h 2 �KCLR : n � 1g: By the CLT result in
(19.11), the linear expansion of n1=2( bDn � EFnGi) in (15.1), and the de�nitions of gh and Dh in

68



(19.13), we have

n1=2(bgn; bDn � EFnGi)!d (gh; Dh): (19.36)

Next, we apply the delta method to the CLT result in (19.11) and the function a(�) de�ned in
(19.16). The mean component in the lhs quantity in (19.11) is (0(p+1)k0; vech(EFnf

�
i f

�0
i )

0)0:We have

a

0@0@ 0(p+1)k

vech(EFnf
�
i f

�0
i )

1A1A
= vech

��
EFnvec(Gi � EFnGi)vec(Gi � EFnGi)0 � �

vec(Gi)
Fn


�1Fn�
vec(Gi)0
Fn

��1=2�
= vech

��
�
vec(Gi)
Fn

��1=2�
= vech(MFn); (19.37)

where �vec(Gi)Fn
and 
Fn are de�ned in (3.6), the �rst equality uses the de�nitions of a(�) and f�i

(given in (19.16) and (5.6), respectively), the second equality holds by the de�nition of �vec(Gi)Fn

in (10.15), and the third equality holds by the de�nition of MFn in (19.6). Also, EFnf
�
i f

�0
i !

h10;f� and h10;f� is pd. Hence, a(�) is well de�ned and continuously partially di¤erentiable at
lim(0(p+1)k0; vech(EFnf

�
i f

�0
i )

0)0 = (0(p+1)k0; vech(h10;f�)
0)0; as required for the application of the

delta method.

The delta method gives

n1=2(An � vech(MFn)) = n1=2

0@a
0@n�1 nX

i=1

0@ f�i

vech (f�i f
�0
i )

1A1A� a
0@ 0(p+1)k

vech(EFnf
�
i f

�0
i )

1A1A
! d AhLh; (19.38)

where the �rst equality holds by (19.37) and the de�nitions of a(�) and An in (19.16), the convergence
holds by the delta method using the CLT result in (19.11) and the de�nition of Ah following (19.16).

Applying the inverse vech(�) operator, namely, vech�1kp;kp(�); to both sides of (19.38) gives the
recon�gured convergence result

n1=2(vech�1kp;kp(An))�MFn)!d vech
�1
kp;kp(AhLh) =Mh; (19.39)

where the last equality holds by the de�nition of Mh in (19.18).

The convergence results in (19.36) and (19.39) hold jointly because both rely on the convergence

result in (19.11).

We show below that

n1=2(eVDn � (vech�1kp;kp(An))�2) = op(1): (19.40)
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This and the delta method applied again (using the function `(A) = A�1=2 for a pd kp� kp matrix
A) give

n1=2(eV �1=2Dn � vech�1kp;kp(An)) = op(1) (19.41)

because vech�1kp;kp(An) = (�
vec(Gi)
h )�1=2+op(1) and �

vec(Gi)
h is pd (because h10;f� is pd and �

vec(Gi)
h =

Qh10;f�Q
0 for some full row rank matrix Q). Equations (19.36), (19.39), and (19.41) establish the

result of the lemma.

Now we prove (19.40). We have

eVDn := n�1
nX
i=1

vec(Gi � bGn)vec(Gi � bGn)0 � b�nb
�1n b�0n
=

 
n�1

nX
i=1

vec(Gi � EFnGi)vec(Gi � EFnGi)0
!
�
�
vec( bGn � EFnGi)vec( bGn � EFnGi)0�

�
�e�n � vec( bGn � EFnGi)bg0n��e
n � bgnbg0n��1 �e�n � vec( bGn � EFnGi)bg0n�0

= n�1
nX
i=1

vec(Gi � EFnGi)vec(Gi � EFnGi)0 � e�ne
�1n e�0n +Op(n�1); (19.42)

where the second equality holds by subtracting and adding EFnGi and some algebra, by the de�-

nitions of b
n and b�n in (3.1), (3.2), and (5.3), and by the de�nitions of e
n and e�n in (19.16) and
the third equality holds because (i) the second summand on the lhs of the third equality is Op(n�1)

because n1=2vec( bGn � EFnGi) = Op(1) (by the CLT using the moment conditions in F ; de�ned in
(3.3)) and (ii) n1=2bgn = Op(1) (by Lemma 10.3)), n1=2vec( bGn � EFnGi) = Op(1); and b�n = Op(1);b
�1n = Op(1); e�n = Op(1); and e
�1n = Op(1) (by the justi�cation given for (15.1)).

Excluding the Op(n�1) term, the rhs in (19.42) equals (vech�1kp;kp(An))
�2: Hence, (19.40) holds

and the proof is complete. �

Proof of Theorem 19.3. The proof is similar to that of Lemma 10.3 in Section 10 withcWn = Wn = Ik; bUn = Un = Ip; and the following quantities q; bDn; Dn (= EFnGi); Bn;q; �n;q; Cn;

and �n replaced by qy; bDy
n; D

y
n (= Dy

Fn
); By

n;qy
; �y

n;qy
; Cyn; and �

y
n; respectively. The proof employs

the notational simpli�cations in (9.1). We can write

bDy
nB

y
n;qy
(�y

n;qy
)�1 = Dy

nB
y
n;qy
(�y

n;qy
)�1 + n1=2( bDy

n �Dy
n)B

y
n;qy
(n1=2�y

n;qy
)�1: (19.43)
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By the singular value decomposition, Dy
n = Cyn�

y
nB

y0
n : Thus, we obtain

Dy
nB

y
n;qy
(�y

n;qy
)�1 = Cyn�

y
nB

y0
nB

y
n;qy
(�y

n;qy
)�1 = Cyn�

y
n

0@ Iqy

0(p�q
y)�qy

1A(�y
n;qy
)�1

= Cyn

0@ Iqy

0(k�q
y)�qy

1A= Cy
n;qy

: (19.44)

Let bDn = ( bD1n; :::; bDpn) 2 Rk�p and Dh = (D1h; :::; Dph) 2 Rk�p: We have

n1=2( bDy
n �Dy

n) = n1=2
pX
j=1

(fM1jn
bDjn �M1jFnEFnGij ; :::;fMpjn

bDjn �MpjFnEFnGij)

=

pX
j=1

[fM1jnn
1=2( bDjn � EFnGij) + n1=2(fM1jn �M1jFn)EFnGij ; :::;

fMpjnn
1=2( bDjn � EFnGij) + n1=2(fMpjn �MpjFn)EFnGij ]

! d

pX
j=1

(M1jhDjh +M1jhh4;j ; :::;MpjhDjh +Mpjhh4;j); (19.45)

where the convergence holds by Lemma 10.2 in Section 10, Assumption VD, and EFnGij ! h4;j

(by the de�nition of h4;j):

Combining (19.43)-(19.45) gives

bDy
nB

y
n;qy
(�y

n;qy
)�1 = Cy

n;qy
+ op(1)!p h

y
3;qy

= �
y
h;qy ; (19.46)

where the equality uses n1=2� yjFn ! 1 for all j � qy by the de�nition of qy and B0
n;qyBn;qy = Iqy ;

the convergence holds by the de�nition of hy
3;qy

; and the last equality holds by the de�nition of

�
y
h;qy in (19.15).

Using the singular value decomposition Dy
n = Cyn�

y
nB

y0
n again, we obtain

n1=2Dy
nB

y
n;p�qy = n1=2Cyn�

y
nB

y0
nB

y
n;p�qy = n1=2Cyn�

y
n

0@ 0q
y�(p�qy)

Ip�qy

1A

= Cyn

0BB@
0q

y�(p�qy)

n1=2�y
n;p�qy

0(k�p)�(p�q
y)

1CCA! hy3

0BB@
0q

y�(p�qy)

Diagfhy
1;qy+1

; :::; hy1;pg
0(k�p)�(p�q

y)

1CCA = hy3h
y�
1;p�qy ; (19.47)

where the second equality uses By0nB
y
n = Ip; the convergence holds by the de�nitions of h

y
3 and h

y
1;j

for j = 1; :::; p; and the last equality holds by the de�nition of hy�
1;p�qy in the paragraph following
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(19.10), which uses (10.17).

By (19.45) and By
n;p�qy ! hy

2;p�qy ; we have

n1=2( bDy
n �Dy

n)B
y
n;p�qy !d D

y
hh
y
2;p�qy +M

y
h;p�qy ; (19.48)

using the de�nitions of D
y
h and M

y
h;p�qy in (19.14) and (19.19), respectively.

Using (19.47) and (19.48), we get

n1=2 bDy
nB

y
n;p�qy = n1=2Dy

nB
y
n;p�qy + n

1=2( bDy
n �Dy

n)B
y
n;p�qy

! d h
y
3h
y�
1;p�qy +D

y
hh
y
2;p�qy +M

y
h;p�qy = �

y
h;p�qy +M

y
h;p�qy ; (19.49)

where the last equality holds by the de�nition of �
y
h;p�qy in (19.15).

Equations (19.46) and (19.49) combine to give

n1=2 bDy
nT

y
n = n1=2 bDy

nB
y
nS

y
n = ( bDy

nB
y
n;qy
(�y

n;qy
)�1; n1=2 bDy

nB
y
n;p�qy)

! d (�
y
h;qy ;�

y
h;p�qy +M

y
h;p�qy) = �

y
h +M

y
h (19.50)

using the de�nitions of Syn and T
y
n in (19.26), �

y
h in (19.15), and M

y
h in (19.19).

By Lemma 10.2, n1=2(bgn; bDn � EFnGi) !d (gh; Dh): This convergence is joint with that in

(19.50) because the latter just relies on the convergence of n1=2( bDn �EFnGi); which is part of the
former, and of n1=2(fMn �MFn) !d Mh; which holds jointly with the former by Assumption VD.

This establishes the convergence result of Theorem 19.3.

The independence of gh and (Dh;�
y
h) follows from the independence of gh and Dh; which holds

by Lemma 10.2, and the fact that �
y
h is a nonrandom function of Dh: �

Proof of Lemma 19.4. The proof of Lemma 19.4 is analogous to the proof of Theorem 10.4 withcWn = Wn = Ik; bUn = Un = Ip; and the following quantities q; bDn; Dn (= EFnGi); b�jn; Bn; Bn;q;
Sn; Sn;q; � jFn ; and h3;q replaced by q

y; bDy
n; D

y
n (= Dy

Fn
); b�yjn; Byn; Byn;qy ; Syn; Syn;qy ; � yjFn ; and hy3;qy ;

respectively. Theorem 19.3, rather than Lemma 10.3, is employed to obtain the results in (17.37).

In consequence, �h;q and �h;p�q are replaced by �
y
h;qy+M

y
h;qy and �

y
h;p�qy+M

y
h;p�qy ; respectively,

where �
y
h;qy +M

y
h;qy = �

y
h;qy (because M

y
h;qy := 0

k�qy by (19.19)). The quantities �h;q and �h;p�q

are replaced by �
y
h;qy and �

y
h;p�qy +M

y
h;p�qy in (17.37) and in the rest of the proof of Theorem

10.4. Note that (17.39) holds with h3;q replaced by h
y
3;qy

because �
y
h;qy = hy

3;qy
by (19.15) (just as

�h;q = h3;q): Because bUn = Un; the matrices bAn and Ajn for j = 1; 2; 3 (de�ned in (17.39)) are all
zero matrices, which simpli�es the expressions in (17.41)-(17.44) considerably.
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The proof of Theorem 10.4 uses Lemma 17.1 to obtain (17.42). Hence, an analogue of Lemma

17.1 is needed, where the changes listed in the �rst paragraph of this proof are made and h6;j and

Cn are replaced by h
y
6;j and C

y
n; respectively. In addition, FWU is replaced by FKCLR (because

FKCLR � FWU for �WU su¢ ciently small andMWU su¢ ciently large using the facts that F0\FWU

equals F0 for �WU su¢ ciently small and MWU su¢ ciently large by the argument following (10.5)

and FKCLR � F0 by the argument following (19.5)). Because bUn = Un; the matrices bAjn for
j = 1; 2; 3 (de�ned in (17.2)) are all zero matrices, which simpli�es the expressions in (17.9)-(17.12)

considerably. For (17.3) to go through with the changes listed above (in particular, with cWn; bDn;

Dn; and Un replaced by Ik; bDy
n; D

y
n; and Ip; respectively), we need to show that

n1=2( bDy
n �Dy

n) = Op(1): (19.51)

By (5.4) with � = �0 (and with the dependence of various quantities on �0 suppressed for

notational simplicity), we have

bDy
n =

pX
j=1

(fM1jn
bDjn; :::;fMpjn

bDjn); where fMn =

26664
fM11n � � � fM1pn

...
. . .

...fMp1n � � � fMppn

37775:= eV �1=2Dn 2Rkp�kp: (19.52)

By (19.6), we have

Dy
n =

pX
j=1

(M1jFnDjn; :::;MpjFnDjn) (19.53)

using Dn = (D1n; :::; Dpn); and Djn := EFnGij for j = 1; :::; p:

For s = 1; :::; p; we have

n1=2(fMsjn
bDjn �MsjFnDjn) = fMsjnn

1=2( bDjn �Djn) + n
1=2(fMsjn �MsjFn)Djn = Op(1); (19.54)

where n1=2( bDjn�Djn) = Op(1) (by Lemma 10.2), n1=2(fMsjn�MsjFn) = Op(1) (because n1=2(fMn�
MFn) !d Mh by Assumption VD), MsjFn = O(1) (because MF = (�

vec(Gi)
F )�1=2; �

vec(Gi)
F de�ned

in (10.15) satis�es �vec(Gi)F := V arF (vec(Gi)��vec(Gi)F 
�1F gi) = [�EF vec(Gi)g0i
�1F : Ipk]V arF (f
�
i );

and �min(V arF (f�i )) � �2 by the de�nition of FKCLR in (19.5)), and Djn = O(1) (by the moment

conditions in F , de�ned in (3.3)).
Hence,

n1=2( bDy
n �Dy

n) =

pX
j=1

n1=2[(fM1jn
bDjn; :::;fMpjn

bDjn)� (M1jFnDjn; :::;MpjFnDjn)] = Op(1): (19.55)
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This completes the proof of the analogue of Lemma 17.1, which completes the proof of parts (a)-(d)

of Lemma 19.4.

For part (e) of Lemma 19.4, the results of parts (a)-(d) hold jointly with those in Theorem 19.3,

rather than those in Lemma 10.3, because Theorem 19.3 is used to obtain the results in (17.37),

rather than Lemma 10.3. This completes the proof. �

Proof of Lemma 19.5. The proof of parts (a) and (b) is the same as the proof of Theorem 12.1

for the case where Assumption R(a) holds (which states that rkn !p 1) using Lemma 19.4(a),
which shows that rkyn !d 1 if qy = p:

The proofs of parts (c) and (d) are the same as in (12.5)-(12.9) in the proof of Theorem 12.1 for

the case where Assumption R(b) holds, using Theorem 19.3 and Lemma 19.4(b) in place of Lemma

10.3, with rh(Dh;Mh) (de�ned in (19.20)) in place of rh(Dh); and for part (d), with the proviso

that P (CLRh = c(1 � �; rh)) = 0: (The proof in Theorem 12.1 that P (CLRh = c(1 � �; rh)) = 0

does not go through in the present case because rh = rh(Dh;Mh) is not necessarily a constant

conditional on Dh and alternatively, conditional on (Dh;Mh); LMh and Jh are not necessarily

independent and distributed as �2p and �
2
k�p:) Note that (12.10) does not necessarily hold in the

present case, because rh = rh(Dh;Mh) is not necessarily a constant conditional on Dh: �

The proof of Theorem 19.6 given below uses Corollary 2.1(a) of ACG, which is stated below as

Proposition 19.8. It is a generic asymptotic size result. Unlike Proposition 10.1 above, Proposition

19.8 applies when the asymptotic size is not necessarily equal to the nominal size �: Let f�n : n � 1g
be a sequence of tests of some null hypothesis whose null distributions are indexed by a parameter

� with parameter space �: Let RPn(�) denote the null rejection probability of �n under �: For

a �nite nonnegative integer J; let fhn(�) = (h1n(�); :::; hJn(�))
0 2 RJ : n � 1g be a sequence of

functions on �: De�ne H as in (10.1).

For a sequence of scalar constants fCn : n � 1g; let Cn ! [C1;1; C2;1] denote that C1;1 �
lim infn!1Cn � lim supn!1Cn � C2;1:

Assumption B: For any subsequence fwng of fng and any sequence f�wn 2 � : n � 1g for which
hwn(�wn)! h 2 H; RPwn(�wn)! [RP�(h); RP+(h)] for some RP�(h); RP+(h) 2 [0; 1]:

Proposition 19.8 (ACG, Corollary 2.1(a)) Under Assumption B, the tests f�n : n � 1g have
AsySz := lim sup

n!1
sup�2�RPn(�) 2 [suph2H RP�(h); suph2H RP+(h)]:

Comments: (i) Corollary 2.1(a) of ACG is stated for CS�s, rather than tests. But, following

Comment 4 to Theorem 2.1 of ACG, with suitable adjustments (as in Proposition 19.8 above) it

applies to tests as well.
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(ii) Under Assumption B, if RP�(h) = RP+(h) for all h 2 H; then AsySz = suph2H RP+(h):
We use this to prove Theorem 19.6. The result of Proposition 19.8 for the case where RP�(h) 6=
RP+(h) for some h 2 H is used when proving Comment (i) to Theorem 19.1 and the Comment to

Theorem 19.6.

Proof of Theorem 19.6. Theorem 19.6 follows from Lemma 19.5 and Proposition 19.8 because

Lemma 19.5 veri�es Assumption B with RP�(h) = RP+(h) = � when qy = p and with RP�(h) =

RP+(h) = P (CLRh > c(1� �; rh)) when qy < p: �

19.7 Proof of Lemma 5.2

Proof of Lemma 5.2. De�ne Jn(�) by the decomposition ARn(�) = LMn(�) + Jn(�): Under all

subsequences fwng and all sequences f�wn;h : n � 1g with �wn;h 2 �0 in (10.10), (11.2) and (12.6)
imply that �

Jwn(�0)

LMwn(�0)

�
!d

�
Jh
LMh

�
�
�
g0hh

�1=2
5;g M�h

h
�1=2
5;g gh

g0hh
�1=2
5;g P�hh

�1=2
5;g gh;

�
; (19.56)

where�h is de�ned in (10.17). Note that the parameter space �0 for � de�ned in (10.9) is equivalent

to the parameter space F0; see Comment (i) to Theorem 11.1.

Equation (19.56) and the CMT imply that the test statistic in (5.7) converges in distribution

to

sup
r2[0;1]

�
1

2

�
LMh + Jh � r +

q
(LMh + Jh � r)2 + 4LMh � r

�
� c(1� �; r)

�
: (19.57)

Conditional on �h; LMh and Jh are independent and distributed as �2p and �
2
k�p; respectively.

Therefore, the conditional distribution of the random variable in (19.57) given �h is the same as the

distribution of the quantity in (5.8). Since the latter does not depend on �h; the same statement

holds for the unconditional distribution of the random variable in (19.57).

The results of the previous paragraph verify Assumption B� (stated just above Proposition

10.1) with the limit of the rejection probabilities in Assumption B�, i.e., limn!1RPwn(�wn); equal

to the probability that the random variable in (5.8) is positive. The asymptotic size result of the

Lemma now follows by Proposition 10.1. �

20 Proof of Theorem 7.1

Theorem 7.1 of AG1. Suppose the LM test, the CLR test with moment-variance weighting,

and when p = 1 the CLR test with Jacobian-variance weighting are de�ned as in this section,

the parameter space for F is FTS;0 for the �rst two tests and FTS;JV W;p=1 for the third test, and
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Assumption V holds. Then, these tests have asymptotic sizes equal to their nominal size � 2 (0; 1)
and are asymptotically similar (in a uniform sense). Analogous results hold for the corresponding

CS�s for the parameter spaces F�;TS;0 and F�;TS;JV W;p=1:

The proof of Theorem 7.1 is analogous to that of Theorems 4.1, 5.3, and 6.1. In the time series

case, for tests, we de�ne � = (�1;F ; :::; �9;F ) and f�n;h : n � 1g as in (10.9) and (10.11), respectively,
but with �5;F de�ned di¤erently than in the i.i.d. case. (For CS�s in the time series case, we make

the adjustments outlined in the Comment to Proposition 10.1.) We de�ne

�5;F := VF =

1X
m=�1

EF

0@ gi

vec(Gi � EFGi)

1A0@ gi�m

vec(Gi�m � EFGi�m)

1A0 : (20.1)

In consequence, �5;Fn ! h5 implies that VFn ! h5 and the condition in Assumption V holds with

V = h5: The di¤erence in the de�nitions of �5;F in the i.i.d. and time series cases re�ects the

di¤erence in the de�nitions of �vec(Gi)F in these two cases. See the discussion following (7.1) of AG1

above regarding the latter.

The proof of Theorem 7.1 uses the CLT given in the following lemma.

Lemma 20.1 Let fi := (g0i; vec(Gi)
0)0: We have: w�1=2n

Pwn
i=1(fi�EFnfi)!d N(0

(p+1)k; h5) under

all subsequences fwng and all sequences f�wn;h : n � 1g:

Proof of Theorem 7.1. The proof is the same as the proofs of Theorems 4.1, 5.3, and 6.1

(given in Sections 11, 12, and 13, respectively, above) and the proofs of Lemmas 10.2 and 10.3 and

Theorem 10.4 (given in Sections 15, 16, and 17 above), upon which the former proofs rely, for the

i.i.d. case with some modi�cations. The modi�cations a¤ect the proofs of Lemmas 10.2 and 10.3

and the proof of Theorem 5.3. No modi�cations are needed elsewhere.

The �rst modi�cation is the change in the de�nition of �5;F described in (20.1).

The second modi�cation is that b
n = b
n(�0) !p h5;g not by the WLLN but by Assumption

V and the de�nition of b
n(�) in (7.4). In the time series case, by de�nition, �5;F := VF ; so

h5 := lim�5;Fn = limVFn : By de�nition, h5;g is the upper left k � k submatrix of h5 and 
F is the
upper left k � k submatrix of VF by (7.1) and (20.1). Hence, h5;g = lim
Fn : By the de�nition of

FTS ; �min(
F ) � � 8F 2 FTS : Hence, h5;g is pd.
Let h5;Gjg be the k � k submatrix of h5 that corresponds to the submatrix b�jn(�) of bVn(�) in

(7.4) for j = 1; :::; p: The third modi�cation is that b�jn = b�jn(�0) = h5;Gjg + op(1) in (15.1) in

the proof of Lemma 10.2 (rather than b�jn = EFnGijg
0
i + op(1)) for j = 1; :::; p and this holds by

Assumption V and the de�nition of b�jn(�) in (7.4) (rather than by the WLLN).
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We write

h5 =

0@ h5;g h05;Gg

h5;Gg h5;G

1A for h5;g 2 Rk�k; h5;Gg =

0BBB@
h5;G1g
...

h5;Gpg

1CCCA 2 Rpk�k; and h5;G 2 Rpk�pk:

(20.2)

The fourth modi�cation is that eVDn in (13.1) in the proof of Theorem 5.3 is de�ned as described
in Section 7, rather than as in (5.3). In addition, eVDn !p h7 in (13.1) holds with h7 = h5;G �
h5;Gg(h5;g)

�1h05;Gg by Assumption V, rather than by the WLLN.

The �fth modi�cation is the use of a WLLN and CLT for triangular arrays of strong mixing

random vectors, rather than i.i.d. random vectors, for the quantities in the proof of Lemma 10.2

and elsewhere. For the WLLN, we use Example 4 of Andrews (1988), which shows that for a strong

mixing row-wise-stationary triangular array fWi : i � ng we have n�1
Pn

i=1(�(Wi)�EFn�(Wi))!p

0 for any real-valued function �(�) (that may depend on n) for which supn�1EFn jj�(Wi)jj1+� <1
for some � > 0: For the CLT, we use Lemma 20.1 as follows. The joint convergence of n1=2bgn and
n1=2( bDn�EFnGi) in the proof of Lemma 10.2 is obtained from (15.1), modi�ed by the second and

third modi�cations above, and the following result:

n�1=2
nX
i=1

(�(Wi)� EFn�(Wi)) =

0@ Ik 0k�pk

�h5;Ggh�15;g Ipk

1An�1=2
nX
i=1

(fi � EFnfi)

!d N(0
(p+1)k; Lh5); where

�(Wi) :=

0@ gi

vec(Gi)� h5;Ggh�15;ggi

1A =

0@ Ik 0k�pk

�h5;Ggh�15;g Ipk

1A0@ gi

vec(Gi)

1A ; (20.3)

fi = (g
0
i; vec(Gi)

0)0; and the convergence holds by Lemma 20.1. Using (20.2), the variance matrix

Lh5 in (20.3) takes the form:

Lh5 =

0@ Ik 0k�pk

�h5;Ggh�15;g Ipk

1A0@ h5;g h5;Gg0

h5;Gg h5;G

1A0@ Ik �h�15;gh05;Gg
0pk�k Ipk

1A
=

0@ Ik 0k�pk

�h5;Ggh�15;g Ipk

1A0@ h5;g 0k�pk

h5;Gg �
vec(Gi)
h

1A =

0@ h5;g 0k�pk

0pk�k �
vec(Gi)
h

1A ; where

�
vec(Gi)
h = h5;G � h5;Ggh�15;gh05;Gg: (20.4)

Equations (15.1) (modi�ed as described above), (20.3), and (20.4) combine to give the result of

Lemma 10.2 for the time series case.
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The sixth modi�cation occurs in the proof of Lemma 10.3(d) in Section 16 in this SM. In

the time series case, the proof goes through as is, except that the calculations in (16.13) are

not needed because �aiF (and, hence, 	aiF as well) is de�ned with its underlying components re-

centered at their means (which is needed to ensure that �aiF is a convergent sum). The latter

implies that lim	vec(Gi)Fn
= �

vec(Gi)
h automatically holds and lim	

vec(C0Fn;k�q

�1=2
Fn

GiBFn;p�q�2)

Fn
=

�
vec(h03;k�qh

�1=2
5;g Gih2;p�q�2)

h (which, in the i.i.d. case, is proved in (16.13).

This completes the proof of Theorem 7.1. �

Proof of Lemma 20.1. For notational simplicity, we prove the result for the sequence fng rather
than a subsequence fwn : n � 1g: The same proof applies for any subsequence. By the Cramér-
Wold device, it su¢ ces to prove the result with fi�EFnfi and h5 replaced by s(Wi) = b0(fi�EFnfi)
and b0h5b; respectively, for arbitrary b 2 R(p+1)k: First, we show

limV arFn

 
n�1=2

nX
i=1

s(Wi)

!
= b0h5b; (20.5)

where by assumption �5;Fn =
P1

m=�1EFns(Wi)s(Wi�m)! h5: By change of variables, we have

V arFn

 
n�1=2

nX
i=1

s(Wi)

!
=

n�1X
m=�n+1

CovFn(s(Wi); s(Wi�m))�
n�1X

m=�n+1

jmj
n
CovFn(s(Wi); s(Wi�m)):

(20.6)

This gives 




V arFn
 
n�1=2

nX
i=1

s(Wi)

!
� b0�5;Fnb







� 2

1X
m=n

jjCovFn(s(Wi); s(Wi�m))jj+
n�1X

m=�n+1

jmj
n
jjCovFn(s(Wi); s(Wi�m))jj: (20.7)

By a standard strong mixing covariance inequality, e.g., see Davidson (1994, p. 212),

sup
F2FTS

jjCovF (s(Wi); s(Wi�m))jj � C1�

=(2+
)
F (m) � C1C


=(2+
)m�d
=(2+
); where d
=(2+
) > 1;

(20.8)

for some C1 <1; where the second inequality uses the de�nition of FTS in (7.2). In consequence,
both terms on the rhs of (20.7) converge to zero. This and b0�5;Fnb! b0h5b establish (20.5).

When b0h5b = 0; we have limn!1 V arFn(n
�1=2Pn

i=1 s(Wi)) = 0; which implies that n�1=2
Pn

i=1

s(Wi) !d N(0; b
0h5b) = 0: When b0h5b > 0; we can assume �2n = V arFn(n

�1=2Pn
i=1 s(Wi)) � c

for some c > 0 8n � 1 without loss of generality. We apply the triangular array CLT in Corollary
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1 of de Jong (1997) with (using de Jong�s notation) � = 
 = 0; cni := n�1=2��1n ; and Xni :=

n�1=2s(Wi)�
�1
n : Now we verify conditions (a)-(c) of Assumption 2 of de Jong (1997). Condition (a)

holds automatically. Condition (b) holds because cni > 0 and EFn jXni=cnij2+
 = EFn js(Wi)j2+
 �
2jjbjj2+
M < 1 8Fn 2 FTS : Condition (c) holds by taking Vni = Xni (where Vni is the random

variable that appears in the de�nition of near epoch dependence in De�nition 2 of de Jong (1997)),

dni = 0; and using �Fn(m) � Cm�d 8Fn 2 FTS for d > (2 + 
)=
 and C < 1: By Corollary 1 of
de Jong (1997), we have Xni !d N(0; 1): This and (20.5) give

n�1=2
nX
i=1

s(Wi)!d N(0; b
0h5b); (20.9)

as desired. �
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