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S.1 Proof of Lemma 2 (Covering Number of Kernel Transfor-

mations)

Terminologies in this proof follow those of van der Vaart and Wellner (1996; hereafter referred to as

VW96). First, observe that K(�) can be decomposed into

K (z) = K1 (z)�K2 (z) ; (S.1)

since it is of bounded variation, where K1 and K2 are bounded monotone functions. By (S.1) and

re-parametrization, we have

K � fK1 �K2 j K1 2 K1 and K2 2 K2g ; (S.2)

where Kl := fKl (ap+ b) j a 2 (0;1) ; b 2 Rg for l = 1; 2. Since K (�) is bounded by �K, there exists a

(uniformly) bounded envelope function Ml (�) for Kl (l = 1; 2).

Note that the set of subgraphs of functions fap+ b j a 2 (0;1) ; b 2 Rg is a VC-class with the VC

index 3, which is shown by an argument that is similar to the proof of Lemma 2.6.16 of VW96 (the set

of subgraphs of functions fap+ b j a 2 (0;1) and b 2 Rg cannot shatter any three-point set while it

can shatter some two-point set in R2). Then, since Kl (�) is monotone, each Kl is also a VC-class with

the VC-index at most 3, which follows from Lemma 9.9 (viii) of Kosorok (2008).

Using Theorem 2.6.7 of VW96, we can �nd the upper bound of the uniform covering number of Kl,

i.e.,

supQN(� kMlkQ;r ;Kl;Lr (Q)) � �l��2r for � 2 (0; 1) ; (S.3)

S - 1



for some constant �l (> 0) that is independent of Q. It then holds that for each Q,

N(�4 kM1 +M2kQ;r ;K;Lr (Q)) � N(�4 kM1 +M2kQ;r ;K1 �K2;Lr (Q))

� N(� kM1kQ;r ;K1;Lr (Q))N(� kM2kQ;r ;�K2;Lr (Q))

=
Y

l=1;2
N(� kMlkQ;r ;Kl;Lr (Q)); (S.4)

where the �rst inequality holds by (S.2); the second holds by Lemma 16 of Nolan and Pollard (1987);

and the last equality holds by the fact that �K2 and K2 have the same covering number. From (S.3) and

(S.4), it holds that

supQN(�4 kM1 +M2kQ;r ;K;Lr (Q)) �
Y

l=1;2
supQN(� kMlkQ;r ;Kl;Lr (Q))

� �1�2��4r:

Since 4 kM1 +M2kQ;r � 8 �K, we have shown that the inequality (43) holds with some constant � = �1�2,

completing the proof. �

S.2 Proof of Theorem 5 (Uniform Convergence of the Di¤usion

Estimator)

Using Ito�s lemma: �
X(j+1)� �Xj�

�2 ���2 (x) = 2Z (j+1)�

j�

[Xs �Xj�]� (Xs) ds

+2

Z (j+1)�

j�

[Xs �Xj�]� (Xs) dWs +

Z (j+1)�

j�

�
�2 (Xs)� �2 (x)

�
ds; (S.5)

we have the following decomposition:

supx2R j	̂�2 (x)� �̂ (x)�2 (x) j �
P5

i=1Vi;

where

V1 := 2 sup
x2R

�����(1=Th)Xn�1

j=1
K
�
Xj��x
h

�
B (Xj�)

Z (j+1)�

j�

[Xs �Xj�]� (Xs) ds

����� ;
V2 := 2 sup

x2R

�����(1=Th)Xn�1

j=1
K
�
Xj��x
h

�
B (Xj�)

Z (j+1)�

j�

[Xs �Xj�]� (Xs) dWs

����� ;
V3 := sup

x2R

�����(1=Th)Xn�1

j=1
K
�
Xj��x
h

�
B (Xj�)

Z (j+1)�

j�

[�2 (Xs)� �2 (Xj�)]ds

����� ;
V4 := sup

x2R

����n� 1nh

Z 1

�1
K

�
p� x

h

�
B (p)� (p) [�2 (p)� �2 (x)]dp

���� ;
V5 := sup

x2R
(1=nh)

���Xn�1

j=1
f�j� (x)� E[�j� (x)]g

��� ;
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and

�j� (x) := K
�
Xj��x
h

�
B (Xj�) [�

2 (Xj�)� �2 (x)]:

Below, we verify the following results:

V1 = Op(� log (1=�) +
p
(log n)=nh); (S.6)

V2 = Op(
p
(log n) =nh); (S.7)

V3 = Op(� +
p
(log n)=nh); (S.8)

V4 = O(h2); (S.9)

V5 = Op(
p
(log n)=nh): (S.10)

These imply the �rst part of the theorem. The convergence of �̂ (x) can be veri�ed in the same way as

in the proof of Theorem 8 of Hansen (2008), and hence, its proof is omitted.

Proof of (S.6). Since Xs �Xj� =
R s
j�
� (Xu) du+

R s
j�
� (Xu) dWu, we obtain

B(Xj�)

Z (j+1)�

j�

[Xs �Xj�]� (Xs) ds =

Z (j+1)�

j�

B1=2(Xj�) [Xs �Xj�]B
1=2(Xj�)[� (Xs)� �(Xj�)]ds

+B1=2(Xj�)�(Xj�)

Z (j+1)�

j�

Z s

j�

B1=2 (Xj�)� (Xu) duds

+B (Xj�)�(Xj�)

Z (j+1)�

j�

Z s

j�

� (Xu) dWuds:

By Theorem 1 and (19), the �rst and second terms on the RHS are Oa:s:(�2 log (1=�)) and Oa:s:(�2)

uniformly over j, respectively, where we note that � (�) is at most of polynomial growth (as assumed in

(A3.i)). Therefore,

V1 � 2 sup
x2R

(1=nh)
Xn�1

j=1

���K �Xj��xh

����� [Oa:s:(� log (1=�)) +Oa:s:(�)]
+ 2 sup

x2R
(1=nh)

Xn�1

j=1
K
�
Xj��x
h

�
B (Xj�)�(Xj�)

Z (j+1)�

j�

Z s

j�

� (Xu) dWuds

=: 2V11 + 2V12:

By the uniform boundedness of � (�), we have

supx2R (1=nh)
Pn�1

j=1

���K �Xj��xh

���� = Op (1) ;

which is derived in the proof of Theorem 2 (see the term R11), and therefore, V11 = Op(� log (1=�)). To
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derive the rate of V12, observe thatZ (j+1)�

j�

Z s

j�

� (Xu) dWuds =

Z (j+1)�

j�

Z (j+1)�

u

ds� (Xu) dWu

=

Z (j+1)�

j�

[(j + 1)�� u]� (Xu) dWu;

which holds by changing the order of (stochastic) integrals. Therefore, V12 can be written as the sum

of martingale di¤erences. It can be represented by a continuous martingale with index r 2 [0; 1] (in the

same way as the term U3 in the proof of Theorem 4), and we can show that V12 = Op(
p
(log n) =nh) in

the same way as V2 below (and we omit details for brevity).

Proof of (S.7). Let

%s;j� := B (Xj�) [

Z s

j�

� (Xu) du+

Z s

j�

� (Xu) dWu]� (Xs) ;

e� (s; j) := 1fsupv2[j�;s]B1=2(Xj�)[j�(Xv)��(Xj�)j+j�(Xv)��(Xj�)j]�1g;

where e� is an indicator function de�ned for each (s; j) with s 2 [j�; (j + 1)�]. Using e�, we also de�ne

�%s;j� :=

�Z s

j�

fB1=2 (Xj�)� (Xj�) +B1=2 (Xj�) [� (Xu)� � (Xj�)]e� (u; j)gdu

+

Z s

j�

fB1=2 (Xj�)� (Xj�) +B1=2 (Xj�) [� (Xu)� � (Xj�)]ge� (u; j) dWu

�
�
�
B (Xj�)� (Xj�) +B (Xj�) [� (Xs)� � (Xj�)] e� (s; j)

	
: (S.11)

Then, we can write

%s;j� = �%s;j� + ~%s;j�;

where ~%s;j� is de�ned through the same form as �%s;j� with e� (u; j) and e� (s; j) replaced by [1�e� (u; j)]

and [1� e� (s; j)], respectively. Therefore, we can also write

V2 = 2 sup
x2R

�����(1=Th)Xn�1

j=1
K
�
Xj��x
h

�Z (j+1)�

j�

�%s;j�dWs

�����
+ 2 sup

x2R

�����(1=Th)Xn�1

j=1
K
�
Xj��x
h

�Z (j+1)�

j�

~%s;j�dWs

�����
=: 2V21 + 2V22:

By Theorem 1, there exists some ~� > 0 such that for any � � ~�,

max1�j�n�1 sups2[j�;(j+1)�] j1� e� (s; j)j = 0 almost surely,
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implying that V22 = 0 almost surely for su¢ ciently small �. Therefore, the convergence rate of V2 is

determined by that of V21.

To derive the rate of V21, we note that

�%s;j� � C0

�
�+

Z s

j�

fB1=2 (Xj�)� (Xj�) +B1=2 (Xj�) [� (Xu)� � (Xj�)]ge� (u; j) dWu

�
(S.12)

for some constant C0 > 0, which follows from the de�nition of �%s;j�. Since the integrand of the stochastic

integral on the RHS of (S.12) is uniformly bounded over j and u 2 [j�; s], we can apply the same

argument as those for (15) and (19). That is, we let

�%s;j� = �%s;j�1f�%s;j��p� log��1g + �%s;j�1f�%s;j�>p� log��1g;

where the second term is exactly zero for su¢ ciently small � (uniformly over j and s 2 [j�; (j + 1)�]),

implying that the rate of V21 is determined by that of

�V21 := sup
x2R

�����(1=Th)Xn�1

j=1
K
�
Xj��x
h

�Z (j+1)�

j�

�%s;j�1f�%s;j��p� log��1gdWs

����� :
To derive the rate of �V21, we consider a �nite covering fKk (h)g�(h)k=1 of the set of functions:

K (h) :=
�
K

�
p� x

h

� ���� x 2 R� for each h > 0:

By Lemma 2, we can �nd fKk (h)g�(h)k=1 such that each Kk (h) has the center gk (�) := K
� ��xk

h

�
; for any

probability measure Q,

8" 2 (0; 1) ; 8g 2 Kk (h) ; f
R
jg � gkj�r dQg1=�r � "8 �K; and � (h) � �"�4�r; (S.13)

for some constant � (> 0) (independent of h) and for any �r � 1. Then,

�V21 � n�1
Th

max
k2f1;:::;v(h)g

sup
g2Kk(h)

1
n�1

Xn�1

j=1
jgk (Xj�)� g (Xj�)j

�����
Z (j+1)�

j�

�%s;j�1f�%s;j��p� log��1gdWs

�����
+ (1=Th) max

k2f1;:::;v(h)g

�����Xn�1

j=1
gk (Xj�)

Z (j+1)�

j�

�%s;j�1f�%s;j��p�log��1gdWs

�����
=: �V211 + �V212:

S - 5



By the Hölder and Burkholder-Davis-Gundy (BDG) inequalities, we have for any �r > 1,

�V211 � n�1
Th

�
max

k2f1;:::;v(h)g
sup

g2Kk(h)

1
n�1

Xn�1

j=1
jgk (Xj�)� g (Xj�)j�r

�1=�r
�
�

1
n�1

Xn�1

j=1

�Z (j+1)�

j�

�%s;j�1f�%s;j��p� log��1gdWs

�����r=(�r�1)�(�r�1)=�r
� n�1

Th
"8 �K �

�
Op(�

�r=(�r�1)(log��1)�r=(�r�1))
	(�r�1)=�r

= Op(h
�1" log��1)

= Op(h
�1" log n) = Op(

p
(log n)=nh); (S.14)

where the last two equalities have used the condition ��1 � n{ (implying that log��1 = O(log n)) and

" =
p
h=n(log n): (S.15)

To �nd the probability bound of the second term �V212, we note that
Pn�1

j=1 gk (Xj�)
R (j+1)�
j�

�%s;j�dWs

can be written as a continuous martingale indexed by r 2 [0; 1] in the same way as in the proof of Theorem

3 (see the expression for the term U3), whose quadratic variation at r = 1 is given by

Jn;T (xk; h) =
Xn�1

j=1
K2
�
Xj��xk

h

�Z (j+1)�

j�

�%2s;j�1f�%s;j��p� log��1gds

with xk being a point in R satisfying g2k (�) = K2
� ��xk

h

�
. This Jn;T (k) satis�es

Jn;T (xk; h) � �K2T�[log (1=�)]2 uniformly over k,

as well as

E[Jn;T (xk; h)] � n max
1�j�n�1

E[K2
�
Xj��xk

h

�
�%2s;j�]

� CJTh�[log(1=�)]
2 uniformly over k,

for some constant CJ > 0, which follows from the BDG inequality (with the upper bound (S.12)) and the

change-of-variable argument (with the uniform boundedness of �). Applying the exponential inequality

for continuous martingales (Ex. 3.16 in Ch. IV of Revuz and Yor, 1999), for each a > 0 and each y, we
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have

Pr
h
�V212 � a

p
(log n)=nh

i
� v (h)

�
Pr

�
(1=Th)

����n�1P
j=1

gk (Xj�)
R (j+1)�
j�

�%s;j�1f�%s;j��p� log��1gdWs

���� � a
p
(log n)=nh; Jn;T (k) � y

�
+ Pr [jJn;T (xk; h)� E[Jn;T (xk; h)]j � y=2] + Pr [E[Jn;T (xk; h)] � y=2]

�
� O(n2�rh�2�r(log n)2�r)

�
2 exp

�
�a

2[(log n)=nh]T 2h2

aTh�

�
+ Pr [jJn;T (xk; h)� E[Jn;T (xk; h)]j � aTh�]

�
= O(n2�rh�2�r(log n)2�r � n�a)

+O(n2�rh�2�r(log n)2�r)� Pr [jJn;T (xk; h)� E[Jn;T (xk; h)]j � aTh�] ; (S.16)

where the second inequality holds with y = 2aTh� (for su¢ ciently large a) since v (h) � �"�4�r, "�4�r =

O (n2�rh�2�r(log n)2�r) (recall " =
p
h=n(log n) in (S.15)) and

Pr [E [Jn;T (xk; h)] � y=2] � Pr [CJTh� � aTh�] = 0:

The �rst term on the RHS of (S.16) approaches zero as n!1 (for n large enough). To �nd the bound

of the second term on the RHS of (S.16), we apply the Bernstein-type inequality in Lemma 3. To this

end, we write

Jn;T (xk; h)� E [Jn;T (xk; h)] =
Xn�1

j=1
fZj;n � E [Zj;n]g ;

where

Zj;n := K2
�
Xj��xk

h

�Z (j+1)�

j�

�%2s;j�1f�%s;j��
p
� log��1gds:

By the boundedness ofK and the de�nition of �%s;j� in (S.11), we can �nd some constant CZ > 0 such that

max1�j�n�1 jZj;nj � CZ �K
2�2 (log��1)

2. By the change-of-variable argument and the BDG inequality,

we can also �nd some constant $Z satisfying E[j
Pm

j=1Zj;nj2] � $Zm
2h�4. Given these, we have for

m � minfaTh�=4 �K2�2 (log��1)
2
; n� 1g and for each a > 0, we have

Pr [jJn;T (k)� E [Jn;T (k)]j � aTh�]

= Pr
h���Pn�1

j=1Zj;n
��� � aTh�

i
� 4 exp

�
� �a2T 2h2�2

64n ($Zm�4h) + (4=3) [CZ �K2�2 (log��1)2] (aTh�)m

�
+ 4Anm�1�����

� 4 exp
�
� �a2 (log n)
64$Z= (log��1)2 + (4=3)CZ �K2a

�
+O(h�1��n�� (log n)3(1+�)���)

= O
�
n�a + h�1��n�� (log n)3(1+�)���

�
;
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where we have set m = nh= (log n) (log��1)
2 and used log��1 = O (log n) for the last two lines. There-

fore, using h�1 = O(n# (log n)�1) and ��1 = O(n{), we can write the second term on the RHS of (S.16)

as

O(n2�rh�2�r(log n)2�r)
h
n�a + h�1��n�� (log n)3(1+�)���

i
= O

�
n�a+2�r+4# + n��(1�#�{)+2�r+#(2�r+1)(log n)4�r+4(1+�)

�
;

which approaches zero as n!1 for a large enough if

2�r + #(2�r + 1)

1� #� �
< �:

Since we may pick any �r > 1 in (S.14), we have this inequality satis�ed as long as

2 + 3#

1� #� �
< �:

Therefore, given this condition on �, we have shown that �V212 = Op(
p
(log n)=nh), completing the proof

of (S.7).

Proof of (S.8). The convergence rate of V3 can be derived in the same way as those of V1 and V2, and

we here outline only the main points. Since �2 (�) is twice continuously di¤erentiable, we can apply Ito�s

lemma to �2 (Xs)� �2 (Xj�) to obtain

V3 � sup
x2R

�����(1=Th)Xn�1

j=1
K
�
Xj��x
h

�
B (Xj�)

Z (j+1)�

j�

Z s

j�

m3 (Xu) duds

�����
+ sup

x2R

�����(1=Th)Xn�1

j=1
K
�
Xj��x
h

�
B (Xj�)

Z (j+1)�

j�

Z s

j�

@�2 (Xu)� (Xu) dWuds

����� ;
where m3 (x) := @�2 (x)� (x) + @2�2 (x)�2 (x) =2. Setting  (x) = m3 (x), this  (x) satis�es the con-

ditions of Theorem 1 and thus, we have B (Xj�)m3 (Xu) = Oa:s: (1) uniformly as discussed in deriving

(19), and we can show that the �rst term on the RHS is Op (�). The second term is Op(
p
(log n) =nh),

which follows from the same arguments as those for V12 and V2 (we omit details for brevity).

Proof of (S.9). We look at

V4 =
n� 1
n

Z 1

�1
K (q) [H (qh+ x)�H (x)] dq +

Z 1

�1
K (q) [l (qh+ x)� l (x)]�2 (x) dp

�
�
h2=2

� Z 1

�1
q2K (q) dq � sup

x2R
jH 00 (x)j+

�
h2=2

� Z 1

�1
q2K (q) jl00 (�qh+ x)j�2 (x) dq;

where we have set H (x) = B (x)� (x)�2 (x) and l (x) = B (x)� (x); the inequality follows from the usual

Talyor-expansion argument with � 2 [0; 1] (which depends on q, h, and x). Then, we can check that
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V4 = O (h2), since we have supx2R jH 00 (x)j < 1 (by the condition that �2 2 D(B; �)), as well as the

compactness of the support of K and the following bound:

jl00 (�qh+ x)j�2 (x)1fjqj�cKg

� 4CB
�
maxk=0;1;2 supx2R

��@k� (x)���� sup
x;y2R

B (y)�2 (x)1fjx�yj�cKhg

� 4CB
�
maxk=0;1;2 supx2R

��@k� (x)���� sup
x;y2R

B (y) �C0[1 + jxj�q2 ]1fjx�yj�cKhg

� �C1 + �C1B (y) [jyj+ jx� yj]�q2+1 1fjx�yj�cKhg

� �C1 + �C1B (y) 2
�q2
�
jyj�q2+1 + jx� yj�q2+1

�
1fjx�yj�cKhg

� �C1 + �C12
�q2
�
supy2RB (y) jyj

�q2+1 + supy2RB (y) (cKh)
�q2+1

�
<1; (S.17)

where the �rst inequality holds since maxk=0;1;2 supx2R
��@k� (x)�� < 1 and maxk=1;2 j@kB (x) j � CB �

B (x); the second inequality holds since there exists some constant �C0 > 0 such that �2 (x) � �C0
�
1 + jxj�q2+1

�
(by the condition that �2 (x) = O(jxj�q2) as jxj ! 1 for �q2 � 0); the third inequality holds with a constant
�C1 = 4CB

�
maxk=0;1;2 supx2R

��@k� (x)��� �C0 2 (0;1); and the fourth inequality follows from the Jensen

inequality.

Proof of (S.10). To bound the term V5, we consider a compact set [�Tn; Tn] � R with Tn !1, whose

growing rate is speci�ed below, and its �nite covering fIkg�(n)k=1 such that [�Tn; Tn] � [
�(n)
k=1Ik, each Ik is

a closed ball in R with its center xk and radius rn, and � (n) = Tn=rn. Then, we can write

V5 (x) � sup
jxj>Tn

(1=nh)
Xn�1

j=1
j�j� (x)� E [�j� (x)] j

+ max
k2f1;:::;�(h)g

sup
x2Ik

(1=nh)
Xn�1

j=1
fj�j� (x)� �j�(xk)j+ jE[�j� (x)]� E[�j�(xk)]jg

+ max
k2f1;:::;�(h)g

���(1=nh)Xn�1

j=1
f�j�(xk)� E[�j�(xk)]g

���
=: V51 + V52 + V53;

where we consider the bounds of these three terms below.

To �nd the bound of V51, we let

��j� (x) := �j� (x)1fjXj�j�Tn=2g; and ~�j� (x) := �j� (x)1fjXj�j>Tn=2g;

and observe that

V51 � sup
jxj>Tn

(1=nh)
Xn�1

j=1

����j� (x)� E[��j� (x)]
��+ sup

jxj>Tn
(1=nh)

Xn�1

j=1

���~�j� (x)� E[~�j� (x)]
��� : (S.18)
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For jxj > Tn and jXj�j � Tn=2, it holds that (Xj� � x) =h � Tn=2h. Therefore, for su¢ ciently large n

with Tn=2h � cK , K ((Xj� � x)=h) = 0 and the �rst term on the RHS of (S.18) is zero. To �nd the

bound of the second term, we also observe that

sup
jx�yj�cKh

B1=2 (y)
���2 (y)� �2 (x)

��
= sup

jx�yj�cKh
B1=2 (y)

��@�2 (y + �(x� y))
�� jx� yj

� sup
jx�yj�cKh

B1=2 (y) �C2
�
1 + jy + �(x� y)j�q2+1

�
cKh

� O (h) + �C2 sup
jx�yj�cKh

B1=2 (y) 2�q2
�
jyj�q2+1 + j�(x� y)j�q2+1

�
cKh

= O(h); (S.19)

for some constant �C2 > 0, where the �rst equality follows from the mean-value theorem with some

� 2 [0; 1] (which depends on x and y); the two inequalities use the polynomial growth condition of @�2

and the Jensen inequality. Thus, we have

sup
jxj>Tn

(1=nh)
Xn�1

j=1

���~�j� (x)���
� (1=nh) �K

Xn�1

j=1
1fjXj��xj�cKhgB

1=2(Xj�)
���2(Xj�)� �2 (x)

���B1=2(Xj�)1fjXj�j>Tn=2g

� (1=nh) �K
Xn�1

j=1
sup

jx�yj�cKh
B1=2 (y)

���2 (y)� �2 (x)
���B1=2 (Xj�) jXj�j

�d= (Tn=2)
�d

= O(1=T �d
n );

for any �d > 0, where the last equality holds since B1=2 (x) jxjd is uniformly bounded. We can also show

that

sup
jxj>Tn

(1=nh)
Xn�1

j=1

���E[~�j� (x)]��� = O(1=T �d
n )

in the same way. From these, we can conclude that V51 = O(1=T �d
n ).

To bound the term V52, note that for any x 2 Ik, jx� xkj � rn. This implies that for an event

En;j�(x; xk) := fmaxfjXj� � xj ; jXj� � xkjg � cKh+ rng ;

which is de�ned in 
 for each (n; j�; x; xk), we have

fjXj� � xj � cKhg = fjXj� � xj � cKh & jXj� � xkj � cKh+ rng

� En;j�(x; xk);

fjXj� � xkj � cKhg � En;j�(x; xk):
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Therefore, for any x 2 Ik,

j�j� (x)� �j� (xk)j

� B (Xj�)�
2 (Xj�)

���K �Xj��xh

�
�K

�
Xj��xk

h

����+K
�
Xj��x
h

�
B (Xj�)1En;j(x;xk)

���2 (x)� �2 (xk)
��

+B (Xj�)�
2 (xk)1fjXj��xj�cKh or jXj��xj�cKhg

���K �Xj��xh

�
�K

�
Xj��xk

h

����
�
�
supx2RB (x)�

2 (x)
	
�K jxk � xj =h+ �KB (Xj�)1En;j(x;xk)

���2 (x)� �2 (xk)
��

+B (Xj�)�
2 (xk)1En;j(x;xk)

�K jxk � xj =h

� O (rn=h) +O (rn) +O (rn=h)

= O (rn=h) ;

uniformly over x, xk, and j, where the �rst inequality uses the triangle inequalities as well as the fact

that if jXj� � xj > cKh and jXj� � xj > cKh, then

K(
Xj��x
h
) = K(

Xj��xk
h

) = 0 and 1fjXj��xj�cKh or jXj��xj�cKhg � 1En;j(x;xk);

the second inequality uses the Lipschitz continuity and uniform boundedness ofK; and the third inequality

holds because we have

B (Xj�)1En;j(x;xk)
���2 (x)� �2 (xk)

��
� B (Xj�)1En;j(x;xk)

��@�2 (�x+ (1� �)xk)
��� jx� xkj

�
�
B (Xj�)

��@�2 (Xj�)
��+B (Xj�)

��@�2 (Xj�)� @�2 (�x+ (1� �)xk)
��	1En;j(x;xk) � jx� xkj

�
�
supx2RB (x)

��@�2 (x)��+ supjx�yj�cKh+rn B (x) ��@�2 (x)� @�2 (y)
��	� rn

= O (rn) and

B (Xj�)�
2 (xk)1En;j(x;xk) = O (1) ;

uniformly over x, xk, and j, which follow from the same arguments as those for deriving (S.17) and

(S.19). From these, we can conclude that V52 = O(rn=h
2). Now, by setting Tn = [nh= (log n)]1=2

�d and

rn =
p
h3 (log n) =n, we can let both V51(= (1=T �d

n )) and V52 be Op(
p
(log n) =nh).

Finally, to investigate the rate of V53, we derive the bound

�2�;m := E

����Pm
j=1f�j�(xk)� E[�j�(xk)]g

���2� for m � (n� 1) ;

and then apply the exponential inequality. For this purpose, we observe that

E[f�j� (xk)� E[�j� (xk)]g2]

� 2h
Z 1

�1
K2 (q)B2 � � (qh+ xk) [�

2 (qh+ xk)� �2 (xk)]
2dq = O(h3);
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uniformly over xk and j�, where the last equality follows from (S.19). We can �nd some constant

~! 2 (0;1) such that �2�;m � ~!m2h3, and also some constant C� 2 (0;1) such that

�j� (x) = K
�
Xj��x
h

�
B (Xj�)

��@�2 (�Xj� � (1� �)x)
�� jXj� � xj 1fjXj��xj�cKhg

� �K sup
x;y2R; j�j���

B (x)
��@�2 (y)�� cKh � C�h;

which follows from the compactness of the support of K. Then, applying Lemma 3, we have for each

a > 0,

Pr
h
V53 � a

p
(log n) =nh

i
�
X�(n)

k=1
Pr
h���Xn�1

j=1
f�j�(xk)� E[�j�(xk)]g

��� � a
p
(log n) =nhnh

i
� � (n)

(
4 exp

(
� a2 (log n)

64~!mh2 + (8=3) (2C�h) a
p
(log n) =nhm

)
+
4n

m
A (m�)��

)

� (Tn=rn)
(
4 exp

(
� a2 (log n)

64~!
p
nh5= (log n) + 16C�a=3

)
+ 4Anm�1�����

)
� (Tn=rn)� 4n�a

2=[64~! ~C+16C�a=3] + 4A (Tn=rn)nm�1�����; (S.20)

where the third inequality holds by setting m =
p
n=h (log n) (� minf(a

p
(log n) =nhnh)=C�h; n � 1g

for a large enough), and the last equality holds since nh5= (log n) � ~C for some constant ~C > 0 (whose

existence follows from (29)). Now, by the de�nitions of Tn(= [nh= (log n)]1=2 �d) and rn(=
p
h3 (log n) =n),

we have

� (n) = Tn=rn = (log n)�(1+1=
�d)=2 h�(3�1=

�d)=2n(1+1=
�d)=2;

which is a polynomial order of n, and the �rst term on the RHS of (S.20) approaches zero as n!1 for

a large enough. Regarding the second term, recalling the de�nition of m and the conditions ��1 � n�,

we have

(Tn=rn)nm�1����� � (log n)�(�+2+1= �d)=2 h(��2+1= �d)=2n(��+2��+2+1= �d)=2;

which approaches zero (as n!1) if

�� + 2��+ 2 < 0() 2= (1� 2�) < �;

where we note that �d can be any arbitrarily large integer. Now, the proof of Theorem 5 is completed. �

S.3 Convergence ResultsWhenMixing Coe¢ cients Decay Slowly

In this section, we present some results which complement the convergence results in Theorems 2-5,

focusing on the case when the decay rate of the mixing coe¢ cients in (10) is slow.
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General Convergence Results with Possibly Small �: Theorem 2 requires at least � > 5 as in

the condition (22), but the following theorem allows for any � > 0. At the price of possibly small �,

we must have a slower convergence rate of
p
(log T ) =T �h (than that of

p
(log T ) =Th in Theorem 2).

We also note that smaller � requires smaller �, implying a slower convergence rate of the bandwidth h

through (21).

Theorem S.1. Suppose that the same conditions as in Theorem 2 hold with the condition (22) replaced

by � � 5�= (1� �). Then, it holds that as n; T !1 and �; h! 0,

sup
x2I

jGn;T (x)� E[Gn;T (x)]j = Op(
p
� log (1=�)) +Op(

p
(log T ) =T �h):

Proof of Theorem S.1. The proof proceeds in the same way as in that of Theorem 2. Since only the rate

of the term R2 di¤ers, we omit details and outline only the main points for R2 � R21 +R22. To �nd the

rate of R21, we set

" = h
p
(log T ) =T �h; (S.21)

instead of (51). This means that R21 = O(
p
(log T ) =T �h). To derive the rate of R22, we use the

Bernstein-type inequality. To this end, observe the following moment bound:

E[j
Pm

j=1Yn;j (k; h) j2] � m
Pm

j=1E
�
Y 2
n;j (k; h)

�
� $m2h;

uniformly over k and h, where the �rst inequality holds by the Jensen inequality for m � (n� 1), and
the second holds by the moment bound derived in (55).

Now, we apply Lemma 3 to
Pn�1

j=1Yn;j (k; h) with

Zn;j = Yn;j (k; h) and �2m = �
2
m (k; h) := E[j

Pm
j=1Yn;j (k; h) j2];

for each (k; h). Let � = a
�
(log T ) =T �h

�1=2
nh and m = T (1��)=� in (44), where m � (n� 1) and

m < �=4CY are satis�ed for large T (since � 2 (0; 1) and (log T ) =T �h! 0). Then, it holds that for any

a > 0,

Pr
h
R22 � a

p
(log T ) =T �h

i
�
X�(h)

k=1
Pr
h���Xn�1

j=1
Yn;j (k; h)

��� � a
p
(log T ) =T �hnh

i
� � (h)

(
4 exp

(
�

a2
�
(log T ) =T �h

�
n2h2

64n$mh+ (8=3)CY a
p
(log T ) =T �hnhm

)
+
4n

m
� (m�)

)

� 4�"�4
(
exp

(
� a2 log T

64$ + (8=3)CY a
p
(log T ) =T �h

)
+ AT ���(1��)

)
� 4� (log T )�4

n
T 4��a

2=[64$+(8=3)CY a] + AT 5���(1��)
o
;
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where the second inequality holds by (44) and (55); the third inequality uses (10) in (A2), �� (h) � �"�4,�
and �m = T (1��)=��; and the last inequality holds for large T since " = h

p
(log T ) =T �h de�ned in (S.21),

h�2 � T 2� (log T )�2, and
p
(log T ) =T �h � 1 (for large T ). Therefore, for a > 0 large enough,

Pr
h
R22 � a

p
(log T ) =T �h

i
! 0 as T !1;

if

5� � � (1� �) � 0, � � �= (5 + �) :

Given this inequality and the rate of R21, we obtain R22 = Op(
p
(log T ) =T �h), as desired.

The next theorem also concerns the small-� case. While Theorem 3 allows for any � > 0 (unlike

Theorem 2), its probability bound is associated with the convergence rate of
p
(log T ) =Th. If we have a

slower rate of
p
(log T ) =T �h (as in Theorem S.1), we can derive a sharper inequality for the probability

bound of Mn;T (x):

Theorem S.2. Suppose that the same conditions as in Theorem 3 hold. Then, as n; T ! 1 and

�; h! 0, it holds that for each a(> 0) and each x 2 I,

Pr
h
Mn;T (x) � a

p
(log T ) =T �h

i
� 2T�a2=2 + 4 exp

n
�aCM (Th)1��

o
+ 4AT��h��(�+1);

for each � 2 (0; 1), where CM (> 0) is some constant independent of x.

Proof of Theorem S.2. Since we use the same arguments as those for Theorem 3, we outline only the

main points. Given the same notation as in the proof of Theorem 3, we have for any � 2 (0; 1),

Pr
h
Mn;T (x) � a

p
(log T ) =T �h

i
� Pr

h
jN1 (x; h)j � aTh

p
(log T ) =T �h

i
� Pr

h
jN1 (x; h)j � aTh

p
(log T ) =T �h; hN (x; h)i1 � y

i
+ Pr [hN (x; h)i1 > y]

� 2 exp
�
�a2 (log T ) =2

	
+ Pr

�
hN (x; h)i1 > aT 2��h

�
= 2T�a

2=2 + Pr
�
hN (x; h)i1 > aT 2��h

�
; (S.22)

where the third inequality holds by (57) with � = aTh
p
(log T ) =T �h and y = aT 2��h. By applying

the Bernstein-type inequality for mixing arrays in Lemma 3 to hN (x; h)i1 and using arguments quite
analogous to those for (59)-(61), we can also derive

Pr
�
hN (x; h)i1 > aT 2��h

�
� 4 exp

n
�aCM (Th)1��

o
+ 4AT��h��(�+1):

This, together with (S.22), implies the desired result.
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Uniform Convergence Rates of Nadaraya-Watson Type Estimators with Possibly Small �:

The next two theorems are small-� counterparts of Theorems 4 and 5. While Theorem S.4 on the

convergence of the di¤usion function estimator provides rates in terms of T (slower than
p
(log n)=nh),

it imposes only minimal conditions, allowing for discontinuous kernels with unbounded support. It also

relaxes the conditions on the derivatives of � and �:

Theorem S.3 (Drift Function Estimation with Possibly Small �). Suppose that the same conditions as

in Theorem 4 hold but replace the condition on the exponent of the mixing coe¢ cient � by

� � max
�
5�= (1� �) ;

�
4� + �2 + 2�

�
=
�
1� �2

�	
.

Then the convergence results in (27)-(28) hold with a?n;T replaced by

a�n;T := h2 +
p
� log (1=�) +

p
(log T ) =T �h:

Proof of Theorem S.3. Proof arguments proceed in the same way as those for the proof of Theorem 4

while we employ convergence results of Theorems S.1-S.2, instead of Theorems 2-3. We omit details for

brevity.

Theorem S.4 (Di¤usion Function Estimation with Possibly Small �). Suppose that Assumption 1 holds;

supx2R � (x) <1; the observation interval � and the bandwidth h satisfy

��1 = O(T �) and (log T ) =T �h! 0;

as T !1 and �; h! 0, for some constants � > 0 and � 2 (0; 1);

�2 (�) 2 D (B; �) ; [j@� (x)j+ j@� (x)j] = O(jxj~q2) as jxj ! 1 for some ~q2 � 0.

Let cn;T , �n;T , a?n;T , and a
�
n;T be sequences de�ned in Theorems 4 and S.3. Then, the following results hold

(as n; T !1 and �; h! 0):

(i-a) If

� � max
�
5�= (1� �) ;

�
4� + �2

�
=
�
1� �2

�	
,

then,

sup
x2R

j	̂�2 (x)�B (x)�2 (x)� (x) j = Op
�
a�n;T

�
: (S.23)

(i-b) Further if a�n;T=�n;T ! 0,

sup
jxj�cn;T

j�̂2 (x)� �2 (x) j = Op
�
a�n;T=�n;T

�
:

(ii) If

� � max f5 (1 + �) = (1� �) ; (2 + 3�) = (1� �)g ,

then, the convergence results in (i-a) and (i-b) hold with a�n;T replaced by a
?
n;T .
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Proof of Theorem S.4. Using (S.5), we split the LHS of (S.23) into three terms:

sup
x2R

j	̂�2 (x)�B (x)�2 (x)� (x) j �
X4

i=1
Vi;

where

V1 := sup
x2R

�����(2=Th)Xn�1

j=1
K
�
Xj��x
h

�
B (Xj�)

Z (j+1)�

j�

[Xs �Xj�]� (Xs) ds

����� ;
V2 := sup

x2R

�����(2=Th)Xn�1

j=1
K
�
Xj��x
h

�
B (Xj�)

Z (j+1)�

j�

[Xs �Xj�]� (Xs) dWs

����� ;
V3 := sup

x2R

�
(1=Th)

Xn�1

j=1
K
�
Xj��x
h

�
B (Xj�)

Z (j+1)�

j�

�2 (Xs) ds

� (1=h)E[K
�
Xj��x
h

�
B (Xj�)�

2 (Xj�)]

�
;

V4 := sup
x2R

����(1=h)Z 1

�1
K

�
p� x

h

�
B (p)�2 (p)� (p) dp�B (x)�2 (x)� (x)

���� :
Below, we investigate these four terms. First, by Theorem 1 and (19), we have

B (Xj�) [Xs �Xj�]� (Xs) = B1=2 (Xj�) [Xs �Xj�]�B1=2 (Xj�)� (Xs)

= Oa:s:(
p
� log (1=�));

uniformly. This implies that V1 = Op(
p
� log (1=�)), since

supx2R (1=nh)
Xn�1

j=1

���K �Xj��xh

���� = Op (1) ;

which is derived in the proof of Theorem 2. Next, applying Theorem S.1 (resp. Theorem 2) to V3 with

 (�) = �2 (�), we can immediately obtain V3 = Op (a
�
T ) (resp. Op (a

?
T )) under the condition on � in part

(i) (resp. part (ii)). We can also show that V4 = O (h2) in the same way as for the term U2 in the proof

of Theorem 4. We subsequently show that

V2 = Op(
p
(log T ) =T �h) for part (i); and Op(

p
(log T ) =Th) for part (ii), (S.24)

under the stated conditions. Given these, we can obtain the desired convergence results for supx2R j	̂�2 (x)�
B (x)�2 (x)� (x) j, which in turn allow us to drive the desired convergence results for j�̂2 (x)� �2 (x) j in
the same way as in the proof of Theorem 8 in Hansen (2008) (we omit details for brevity).

Proof of (S.24). We use arguments analogous to those for U2 in Theorem 4, and thus only outline the

main points. Look at

B (Xj�) [Xs �Xj�]� (Xs)

= B1=2 (Xj�) [

Z s

j�

� (Xu) du+

Z s

j�

� (Xu) dWu]�B1=2 (Xj�)� (Xj�)

+B1=2 (Xj�) [

Z s

j�

� (Xu) du+

Z s

j�

� (Xu) dWu]�B1=2 (Xj�) [� (Xs)� � (Xj�)] ;
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and de�ne

f� (s; j) := 1n
B1=2(Xj�)[j

R s
j�
�(Xu)duj+j

R s
j�
�(Xu)dWuj+j�(Xs)��(Xj�)j]��1=2 log(1=�)

o:
Then,

V2 = (2=Th) sup
x2R

�����Xn�1

j=1
K
�
Xj��x
h

�Z (j+1)�

j�

B (Xj�) [Xs �Xj�]� (Xs) f� (s; j) dWs

�����
+ (2=Th) sup

x2R

�����Xn�1

j=1
K
�
Xj��x
h

�Z (j+1)�

j�

B (Xj�) [Xs �Xj�]� (Xs) [1� f� (s; j)]dWs

�����
=: �V2 + ~V2:

Using the same arguments as those used to derive the result (S.7) in the proof of Theorem 5, we have
~V2 = 0 almost surely for su¢ ciently small �. Therefore, the convergence rate of V2 is determined by that

of �V2. Letting

q (s; j�) := B (Xj�) [Xs �Xj�]� (Xs) f� (s; j) ;

we have

�V2 � (1=Th) max
k2f1;:::;�(h)g

sup
g2Kk(h)

Xn�1

j=1
jgk (Xj�)� g (Xj�)j

�����
Z (j+1)�

j�

q (s; j�) dWs

�����
+ max
k2f1;:::;�(h)g

�����(1=Th)Xn�1

j=1
K
�
Xj��x
h

�Z (j+1)�

j�

q (s; j�) dWs

�����
=: �V21 + �V22;

where fKk (h)g�(h)k=1 is the �nite covering of K (h), as de�ned in the proof of Theorem 5, satisfying (S.13)

with � (h) � �"�4�r (for some constant � > 0 and any �r > 1). In the same way as in (S.14), we can show
that

�V21 = Op(h
�1" log��1): (S.25)

By Theorems S.2 and 3, for any a > 0,

Pr
h
�V22 � a

p
(log T ) =T �h

i
� �"�4�r

h
2T�a

2=2 + 4 expf�aCM (Th)1��g+ 4AT��h��(�+1)
i
; (S.26)

Pr
h
�V22 � a

p
(log T ) =Th

i
� �"�4�r

h
2T�a

2=2 + T�aCM + 4AT��h�(�+1) (log T )1��
i
: (S.27)

Now, we can derive the convergence result of �V2 under the condition on � of part (i). We let " =p
h=T �(log T ) and obtain �V21 = Op(

p
(log T ) =T �h), since ��1 = O(T �) and log��1 = O(log T ). Then,

by using (S.26) and the condition that h�1 = O(T �= (log T )), we can show that as T !1,

Pr
h
�V22 � a

p
(log T ) =T �h

i
! 0;

for any a large enough if

"�4�r � T��h��(�+1) = O((log T )2�r��(�+1) � T��+4�r�+�
2(�+1))
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approaches zero, which occurs as long as

�� + 4�r� + �2 (� + 1) < 0() 4�r� + �2 < �
�
1� �2

�
:

Recalling that any �r > 1 can be selected, we can see that the last inequality is satis�ed if 4� + �2 <

� (1� �2). We now have �V2 = Op(
p
(log T ) =T �h), as desired for the part (i) case.

Finally, suppose that the condition on � of part (ii) holds. In this case, plugging " =
p
h=T (log T )

into (S.25) and (S.27), we have �V21 = Op(
p
(log T ) =Th), and Pr

h
�V22 � a

p
(log T ) =Th

i
! 0 as T !1

for any a large enough if

"�4�r � T��h�(�+1) (log T )1�� = O((log T )2�r��(�+1) � T��(1��)+2�r+(2�r+1)�)

approaches zero, which occurs as long as

2�r + (2�r + 1) � < � (1� �) :

We can obtain this inequality if 2 + 3� < � (1� �), since any �r > 1 can be picked. The proof is now

completed.

S.4 E¤ects of the Damping Function

In this section, we brie�y investigate the e¤ects of the damping function by presenting bias, variance,

and mean-squared-error (MSE) expressions of the estimators (4) and (5) as well as by providing some

graphical illustration.

Bias and Variance Expressions: The exact expressions are di¢ cult to analyze, and we derive their

approximations for each x 2 (l; r):

E
�
(�̂ (x)� � (x))2

�
' B2� (x) + V� (x) ;

E
h�
�̂2 (x)� �2 (x)

�2i ' B2�2 (x) + V�2 (x) ;
where

B� (x) := h2
�
(d=dx) [B (x)� (x)]� �0 (x)

B (x)� (x)
+
(d2=dx2) [B (x)� (x)]

2B (x)

�Z 1

�1
z2K (z) dz;

V� (x) := (1=Th)
�
�2 (x) =� (x)

� Z 1

�1
K2 (z) dz;

B�2 (x) := h2
�
(d=dx)

�
B (x)�2 (x)

�
� �0 (x)

B (x)� (x)
+
(d2=dx2) [B (x)�2 (x)]

2B (x)

�Z 1

�1
z2K (z) dz;

V�2 (x) := (1=nh) 2
�
�4 (x) =� (x)

� Z 1

�1
K2 (z) dz:
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We can derive these approximations by using the standard method as in Pagan and Ullah (1999). For

their validation, we require some conditions on the existence of moments, the decay rate of the mixing

coe¢ cients, and the shrinking rate of �. For brevity, we omit such detailed conditions and derivations

for the approximations, which are obtained analogously to the ones provided in Kanaya and Kristensen

(2014), who also provide the precise meaning of "'." B� (x) and B�2 (x) correspond to the biases of the

estimators. V� (x) and V�2 (x) correspond to their variances, which are the same as the variances of the

asymptotic normal distributions. Obviously, the damping function a¤ects only the bias properties, and

the variance components are of the same form as those of the standard NW estimators.

Graphical Illustration of E¤ects of the Damping Function: To see the e¤ects of B (�) in �-

nite samples, we compare the standard NW estimator ~� (x) and its damped version �̂ (x) with B (x) =

exp f�cx2g, with c = 0:1 and 10. The following graphs are based on the same simulated path of the

Ornstein-Uhlenbeck process dXs = � (m�Xs) dt+�dWs, where (�;m; �2) = (0:85837; 0:089102; 0:0021854),

which is Aït-Sahalia�s (1996a) estimate for short-term interest rates; (T;�; n) = (25; 1=52; 1300); h =

4ŝn�1=5 (this bandwidth has been used in Stanton, 1997; see p. 360 of Chapman and Pearson, 2000);

and ~� (x) and �̂ (x) are evaluated over equally-spaced 50 grid points between 1 and 99 percentiles of the

invariant distribution of the process (0:0061 and 0:1721, respectively). As we can see in the two �gures,

the NW estimates and their damped versions perfectly coincide for both c = 0:1 and 10, even with the one

hundred times di¤erence in the scale parameter c. While these are only based on one sample, it has been

quite di¢ cult to obtain some other samples/examples in which ~� (x) and �̂ (x) look signi�cantly di¤erent

for some other choices of date-generating-process, sample-size, and bandwidth settings. We have found

a similar result for the di¤usion function estimation. From these, we conclude that the e¤ects of the

damping function B are not signi�cant, where we again note that B�s e¤ects are cancelled out between

the numerator and denominator parts.
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Figure: Comparison of Nadaraya-Watson estimates and their damped versions.

S.5 Estimation of Non-Negative Valued Processes

In this section, we provide some discussion and results for processes with I = (0;1) or [0;1), as many

parametric models for short-term interest rates have such a state space I. While we here focus on the

case where the left end point of I is 0, we can also think of some other cases (e.g., the left end point is

�nite and non-zero and/or the right one is also bounded), to which the results obtained for I = (0;1)

or [0;1) carry over (if suitable modi�cations are made).

When I has a �nite end point, the choice of B (x) = exp f�cx2g, as considered in Sections 3, may

not be su¢ cient. For example, Aït-Sahalia (1996b, 1999) considers a parametric di¤usion model with

S - 20



I = (0;1) and the drift function

�� (x) := �0 + �1x+ �22 + �3=x;

which diverges as x! 0. To accommodate this kind of model, we can think of a damping function such

as

B (x) = xb expf�x2g; (S.28)

with some b > 2. This choice of B allows us to establish the conclusion of Theorem 1, even with a drift

function such as �� (x).

When the left end point of I is 0, we can also think of a case where the invariant density � may not

be bounded around x = 0. Processes with this feature can be easily found. Among others, we can think

of the CIR process:

dXs = �(� �Xs)ds+ �
p
XsdWs; (S.29)

with �; �; � > 0. If 2��=�2 > 0, the stationary solution to (S.29) exists and its invariant density � (�) is

given by the gamma distribution with 2��=�2 and �2=2� being the shape and scale parameters, respec-

tively. Given that 2��=�2 2 (0; 1), the left boundary l = 0 is attainable. In this case, the process has the

gamma distribution as its invariant distribution by making l instantaneously re�ecting (for construction

of this kind of process, see discussions in Section 2 on the behavior of the process running over an in�nite

time horizon, after the hit on l = 0; see also discussions on p. 441 of Forman and Sørensen, 2008). In

this case, � (x)!1 as x! 0. This process with 2��=�2 2 (0; 1) satis�es the mixing condition in (A2.ii)

with a geometric decay rate (i.e. � = 1).1 This sort of process with unbounded � (x) at the end point

can also be handled through the choice of B as in (S.28), which can ensure the uniform boundedness of

B (x)� (x). We note that the integrability of the density implies � (x) � x�q (with some q 2 (0; 1)) in

the neighborhood of 0 and thus, the divergence rates of �0 (x) and �00 (x) around zero are also at most of

the polynomial order.

For the case � (x) ! 1 as x ! 0, we can still verify the uniform convergence of �̂ (x) and �̂2 (x)

over I = (0;1), given the damping function as in (S.28). In Theorem 2, we have supposed the uniform

boundedness of �(x), but this condition can be removed if we slightly change the relevant conditions,

1This can be checked by noting the following facts: i) the process is conservative and reversible (see Sections 8-9 in Kent,

1978); ii) the spectrum of its (in�nitesimal) generator is discrete and has a gap left to zero, which is given by f�jg with
�j = ��j (see, e.g., p. 334 of KT81); and iii) both i) and ii) imply that fXsg is geometrically �-mixing (see discussions on
p. 799 of Hansen and Scheinkman, 1995, as well as those in Hansen et al., 1998). Note that in the case 2��=�2 > 1, neither

of the boundaries is attracting, and we can also check the geometric mixing property of the process by the same argument

or by using, for example, Corollary 5.5 of Chen et al. (2010).
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such as replacing � (�) 2 D (B; �)�with

 (�) 2 D(B1=2; �) and sup
x2(0;1)

B1=2 (x)� (x) <1; (S.30)

for example. As seen in the proof of Theorem 2, we need to show that the following object:

sup
x2(0;1)

(�=Th)
Xn�1

j=1
K
�
Xj��x
h

�
(S.31)

is bounded (in probability). However, it may not be so if � (x) is unbounded. In this case, instead of

(S.31), we consider

sup
x2(0;1)

(�=Th)
Xn�1

j=1
K
�
Xj��x
h

�
B1=2 (Xj�) ;

whose Op-boundedness is guaranteed under the condition that supx2(0;1)B
1=2 (x)� (x) < 1, where we

note that even for the case with I = [0;1) (i.e., the process may attain the point 0), the supremum with

respect to x needs to be taken over (0;1) instead of [0;1) if �(0) is unbounded. The same argument

applies to Theorem 3 for which the conditions in (S.30) can be used to relax the uniform boundedness of

� (x).

Under the condition in (S.30), we can still verify the same convergence rates of the variance e¤ect

terms as in Theorems 2-3 even with an unbounded � (x) around x = 0. However, the boundedness of

the end point in general slows down the convergence rate of the smoothing bias. This observation is

summarized in the following remark:

Remark S.1. (i) Let I = (0;1) or [0;1). Then, given the conditions in (S.30) and the kernel function
K satisfying (B2), it holds that as h! 0,

sup
x2(0;1)

�� �Gn;T (x)�H (x)
�� = O(h); (S.32)

where H (x) = B (x) (x)� (x). This slower convergence occurs because we cannot use the symmetricity

property of the kernel in the neighborhood of zero (i.e.,
R1
�1xK (x) dx = 0) to kill the �rst-order term

of the smoothing bias (therefore, if I 6= R, the use of higher-order kernels does not improve the uniform
convergence rate over I). This kind of phenomenon, the so-called boundary bias, is observed if the end

point of the support is bounded and the symmetric kernel is used (see arguments in Bouezmarni and

Scaillet, 2005) while the boundary bias may be avoided by using asymmetric kernels as in Bouezmarni et

al. (2005) and Gospodinov and Hirukawa (2012). We note that the supremum is taken over the open set

(0;1) in (S.32), which avoids the inde�niteness at x = 0 when I = [0;1) and � (0) is unbounded (we
may have [0;1) in (S.32) if 0 is a point attainable by the process and if �(0) <1).
(ii) If we use some special kernel and restrict the domain of x, we can recover the smoothing-bias rate

of h2. That is, when we assume that K (�) is a non-negative valued kernel with bounded support (resp.
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the normal kernel), then under the conditions in (S.30),

sup
x2[r(h);1)

�� �Gn;T (x)�H (x)
�� = O

�
h2
�
; (S.33)

as h! 0, where r (h) (! 0) is a trimming sequence with r (h) = �cKh and cK := inf fc < 0 : K (c) > 0g
(resp. r (h) = 2h

p
log (1=h)).

We can apply the results (S.32)-(S.33) to obtain the uniform rates of �̂ (x) and �̂2 (x) when I = (0;1)

or [0;1).

Proof of the Statements in Remark S.1. Let I = (0;1) or I = [0;1). (i) We prove (S.32) here:�� �Gn;T (x)�H (x)
�� = sup

x2(0;1)

����Z 1

�x=h
K (q) [H (qh+ x)�H (x)] dq

����
= sup

x2(0;1)

����Z 1

�x=h
K (q)H 0 (~x) qhdq

����
� sup

x2(0;1)
jH 0 (x)jh

Z 1

�1
jqK (q)j dq = O (h) ;

where we note that qh + x 2 I (if x 2 I and q 2 (�x=h;1)) for the second inequality; and the third
equality holds by the Taylor expansion (~x is on the line segment connecting x to qh+x and the expansion

is valid for any x 2 (0;1)).
(ii) Suppose that K (�) is a non-negative valued kernel whose support is bounded or it is the normal
kernel. We prove (S.33) here:�� �Gn;T (x)�H (x)

��
= sup

x2[r(h);1)

����Z 1

�x=h
K (q)

�
H 0 (x) qh+ (1=2)H 00 (~x) (qh)2

�
dq

����
� h sup

x2(0;1)
jH 0 (x)j � sup

x2[r(h);1)

����Z 1

�x=h
qK (q) dq

����+ �h2=2� Z 1

�x=h
q2 jK (q)j dq sup

x2(0;1)
jH 00 (x)j ; (S.34)

where we can easily check that the second term on the RHS is O(h2). If the support of K (�) is bounded
and r (h) = �cKh(> 0) with cK = inf fc < 0 : K (c) > 0g, then the �rst-order term on the RHS is zero

since
R1
�x=h qK (q) dq =

R1
cK
qK (q) dq = 0 for any x 2 [�cKh;1). If K (�) is the normal kernel and

r (h) = 2h
p
log (1=h), then

sup
x2[r(h);1)

����Z 1

�x=h
qK (q) dq

���� = sup
x2[r(h);1)

����Z 1

x=h

qK (q) dq

����
� (2�)�1=2

Z 1

r(h)=h

[q exp
�
�q2=4

	
] exp

�
�q2=4

	
dq

� (2�)�1=2
Z 1

0

q exp
�
�q2=4

	
dq � expf� (r (h) =h)2 =4g

= O (h) ;

where the �rst equality holds since
R1
�1qK (q) dq = 0. From these arguments, we can show that the RHS

of (S.34) is O (h2) to complete the proof.
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