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1 Comments on further results in Martellosio (2010)

Here we comment on problems in some results in Martellosio (2010) that have not been discussed
in the main body of our article, referred to as PP in what follows. We also discuss if and how these
problems can be �xed.

1.1 Comments on Lemmata D.2 and D.3 in Martellosio (2010)

Here we discuss problems with Lemmata D.2 and D.3 in Martellosio (2010) which are phrased in
a spatial error model context. Correct versions of these lemmata, which furthermore are also not
restricted to spatial regression models, have been given in Section 2.2.4 of PP. Both lemmata in
Martellosio (2010) concern the quantity ��, which is de�ned on p. 165 of Martellosio (2010) as
follows:

"For an exact invariant test of � = 0 against � > 0 in a SAR(1) model, �� is the in�mum
of the set of values of � 2 (0; 1] such that the limiting power does not vanish."

In this de�nition � denotes a generic symbol for the size of the test. Taken literally, the de�nition
refers to one test only and hence does not make sense (as there is then only one associated value
of �). From later usage of this de�nition in Martellosio (2010), it seems that the author had
in mind a family of tests (rejection regions) like �� = fy 2 Rn : T (y) > �g, where T is a test
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statistic. Interpreting Martellosio�s de�nition this way, it is clear that under the assumptions made
in Martellosio (2010) (see Remark 2.1(ii) and Remark 2.3 in PP) his �� coincides with �� (T )
de�ned in (23) in PP.
Lemma D.2 of Martellosio (2010), p. 181, then reads as follows:

"Consider a model G(X�; �2[(I � �W 0)(I � �W )]�1), where G(�;�) denotes some mul-
tivariate distribution with mean � and variance matrix �. When an invariant critical re-
gion for testing � = 0 against � > 0 is in form (9) [i.e., is of the form fy 2 Rn : T (y) > �g
for some univariate test statistic T ], and is such that fmax is not contained in its bound-
ary, �� = Pr(T (z) > T (fmax);z � G(0; I))."

The statement of this lemma as well as its proof are problematic for the following reasons:

1. The lemma makes a statement about ��, which is a quantity that depends not only on one
speci�c critical region, but on a family of critical regions corresponding to a family of critical
values � against which the test statistic is compared. The critical region usually depends
on � and so does its boundary (cf. Proposition 2.11 in PP). Therefore, the assumption "...
fmax is not contained in its [the invariant critical region�s] boundary..." has little meaning in
this context as it is not clear to which one of the many rejection regions the statement refers
to. [Alternatively, if one interprets the statement of the lemma as requiring fmax not to be
contained in the boundary of every rejection region in the family considered, this leads to a
condition that typically will never be satis�ed.]

2. The proof of the lemma is based on Corollary 1 in Martellosio (2010), the proof of which is
incorrect as it is based on the incorrect Theorem 1 of Martellosio (2010).

3. The proof implicitly uses a continuity assumption on the cumulative distribution function of
the test statistic under the null at the point T (fmax) which is not satis�ed in general.

Next we turn to Lemma D.3 in Martellosio (2010), which reads:

"Consider a test that, in the context of a spatial error model with symmetric W , rejects
� = 0 for small values of a statistic �0B�, where B is an (n�k)�(n�k) known symmetric
matrix that does not depend on �, and � is as de�ned in Section 2.2. Provided that
fmax =2 bd(�), �� = 0 if and only if Cfmax 2 E1(B), and �� = 1 if and only if
Cfmax 2 En�k(B)."

Here � refers to the size of the test, � is given by sign(yi)Cy=kCyk for some �xed i 2 f1; : : : ; ng,
and � is not explicitly de�ned, but presumably denotes a rejection region corresponding to the
test statistic �0B�. [Although the test statistic is not de�ned whenever Cy = 0, this does not pose
a severe problem here since Martellosio (2010) considers only absolutely continuous distributions
and since he assumes k < n; cf. Remark 2.13 in PP. Note furthermore that the factor sign(yi)
is irrelevant here.] Furthermore, E1(B) (En�k(B)) denotes the eigenspace corresponding to the
smallest (largest) eigenvalue of B, and C in Martellosio (2010) stands for CX . The statement of
the lemma and its content are inadequate for the following reasons:

1. The proof of this lemma is based on Lemma D.2 of Martellosio (2010) which is invalid as
discussed above.
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2. Again, as in the statement of Lemma D.2 of Martellosio (2010), the author assumes that �...
fmax =2 bd(�) ...�, which is not meaningful, as the boundary typically depends on the critical
value.

3. The above lemma in Martellosio (2010) requires W to be symmetric (although this is actually
not used in the proof). Nevertheless, it is later applied to nonsymmetric weights matrices in
the proof of Proposition 1 in Martellosio (2010).

As a point of interest we note that naively applying Lemma D.3 in Martellosio (2010) to the case
where B is a multiple of the identity matrix In�k leads to the contradictory statement 0 = �� = 1.
However, in case B is a multiple of In�k, the test statistic degenerates, and thus the size of the test
is 0 or 1, a case that is ruled out in Martellosio (2010) from the very beginning.

1.2 Comments on Proposition 1 and Lemma E.4 in Martellosio (2010)

Proposition 1 in Martellosio (2010) considers the pure SAR(1) model, i.e., k = 0 is assumed. This
proposition reads as follows:

"Consider testing � = 0 against � > 0 in a pure SAR(1) model. The limiting power of
the Cli¤-Ord test [cf. eq. (2) below] or of a test (8) [cf. eq. (1) below] is 1 irrespective
of � [the size of the test] if and only if fmax is an eigenvector of W 0."

We note that, while not explicit in the above statement, it is understood in Martellosio (2010)
that 0 � � < ��1max is assumed. Similarly, the case n = 1 is not ruled out explicitly in the statement
of the proposition, but it seems to be implicitly understood in Martellosio (2010) that n � 2 holds
(note that in case n = 1 the test statistics degenerate and therefore the associated tests trivially
have size equal to 0 or 1, depending on the choice of the critical value).
The test de�ned in equation (8) of Martellosio (2010) rejects for small values of

y0(In � ��W 0)(In � ��W )y=kyk2; (1)

where 0 < �� < ��1max is speci�ed by the user. The argument in the proof of the proposition in
Martellosio (2010) for this class of tests is incorrect for the following reasons:

1. The proof is based on Lemma D.3 in Martellosio (2010) which is incorrect as discussed in
Section 1.1 above.

2. Even if Lemma D.3 in Martellosio (2010) were correct and could be used, this lemma would
only deliver the result �� = 0 which does not imply, without a further argument, that the
limiting power is equal to one for every size � 2 (0; 1). By de�nition of ��, �� = 0 only
implies that the limiting power is nonzero for every size � 2 (0; 1).

For the case of the Cli¤-Ord test, i.e., the test rejecting for small values of

�y0Wy=kyk2 = �0:5y0(W +W 0)y=kyk2; (2)

Martellosio (2010) argues that this can be reduced to the previously considered case, the proof of
which is �awed as just shown. Apart from this, the reduction argument, which we now quote, has
its own problems:
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"... By Lemma D.3 with B = ��1(��) [which equals (In � ��W 0)(In � ��W )], in order
to prove that the limiting power of test (8) [cf. eq. (1) above] is 1 for any � [the size
of the test], we need to show that W 0fmax = �maxfmax is necessary and su¢ cient for
fmax 2 En(�(��)). Clearly, if this holds for any �� > 0, it holds for ��! 0 too, establishing
also the part of the proposition regarding the Cli¤-Ord test. ..."

The problem here is that it is less than clear what the precise mathematical "approximation"
argument is. If we interpret it as deriving limiting power equal to 1 for the Cli¤-Ord test from
the corresponding result for tests of the form (8) and the fact that the Cli¤-Ord test emerges
as a limit of these tests for �� ! 0, then this involves an interchange of two limiting operations,
namely �! ��1max and ��! 0, for which no justi�cation is provided. Alternatively, one could try to
interpret the "approximation" argument as an argument that tries to derive fmax 2 En(W +W 0)
from fmax 2 En(�(��)) for every �� > 0; of course, such an argument would need some justi�cation
which, however, is not provided. We note that this argument could perhaps be saved by using the
arguments we provide in the proof of Proposition 4.10 in PP, but the proof of our correct version
of Proposition 1 in Martellosio (2010), i.e., Proposition 4.9 in Section 4.1 of PP, is more direct and
does not need such a reasoning. Furthermore, note that the proof of Proposition 4.9 in PP is based
on our Proposition 2.26 in PP, which is a correct version of Lemma D.3 in Martellosio (2010) and
which delivers not only the conclusion �� = 0, but the stronger conclusion that the limiting power
is indeed equal to 1 for every size in (0; 1).
We now turn to a discussion of Lemma E.4 of Martellosio (2010), which is again a statement

about the Cli¤-Ord test and tests of the form (8) in Martellosio (2010), but now in the context
of the SEM (i.e., k > 0 is possible). The statement and the proof of the lemma su¤er from the
following shortcomings (again Lemma E.4 implicitly assumes that 0 � � < ��1max holds):

1. The proof of the lemma is based on Lemma D.3 in Martellosio (2010), which is incorrect (cf.
the discussion in Section 1.1 above).

2. The proof uses non-rigorous arguments such as arguments involving a �limiting matrix�with
an in�nite eigenvalue. Additionally, continuity of the dependence of eigenspaces on the un-
derlying matrix is used without providing the necessary justi�cation.

3. For the case of the Cli¤-Ord test the same unjusti�ed reduction argument as in the proof of
Proposition 1 of Martellosio (2010) is used, cf. the preceding discussion.

For a correct version of Lemma E.4 of Martellosio (2010) see Proposition 4.10 in Section 4.1 of
PP. As a point of interest we furthermore note that cases where the test statistics become degenerate
(e.g., the case n� k = 1) are not ruled out explicitly in Lemma E.4 in Martellosio (2010); in these
cases �� = 1 (and not �� = 0) holds.

1.3 Comments on Propositions 3, 4, and 5 in Martellosio (2010)

The proof of the part of Proposition 3 of Martellosio (2010) regarding point-optimal invariant tests
seems to be correct except for the case where span(X)? is contained in one of the eigenspaces of
�(�). In this case the test statistic of the form (8) in Martellosio (2010) is degenerate (see Section
4.3 of PP) and does not give the point-optimal invariant test (except in the trivial case where
the size is 0 or 1, a case always excluded in Martellosio (2010)). However, this problem is easily
�xed by observing that the point-optimal invariant test in this case is given by the randomized
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test ' � �, which is trivially unbiased. Two minor issues in the proof are as follows: (i) Lemma
E.3 in Martellosio (2010) can only be applied as long as z2i > 0 for every i 2 H. Fortunately, the
complement of this event is a null-set allowing the argument to go through. (ii) The expression
�stochastically larger�in the paragraph following (E.4) should read �stochastically smaller�. We also
note that the assumption of Gaussianity can easily be relaxed to elliptical symmetry in view of
GX -invariance of the tests considered.
More importantly, the proof of the part of Proposition 3 of Martellosio (2010) concerning locally

best invariant tests is highly de�cient for at least two reasons: First, it is claimed that locally best
invariant tests are of the form (7) in Martellosio (2010) with Q = d�(�)=d�j�=0. While this is correct
under regularity conditions (including a di¤erentiability assumption on �(�)), such conditions are,
however, missing in Proposition 3 of Martellosio (2010). Also, the case where span(X)? is contained
in one of the eigenspaces of �(�) has to be treated separately, as then the locally best invariant
test is given by the randomized test ' � �. Second, the proof uses once more an unjusti�ed
approximation argument in an attempt to reduce the case of locally best invariant tests to the
case of point-optimal invariant tests. It is not clear what the precise nature of the approximation
argument is. Furthermore, even if the approximation argument could be somehow repaired to
deliver unbiasedness of locally best invariant tests, it is less than clear that strict unbiasedness
could be obtained this way as strict inequalities are not preserved by limiting operations.
We next turn to the part of Proposition 4 of Martellosio (2010) regarding point-optimal invariant

tests.1 As in the case of Proposition 3 discussed above, the case where span(X)? is contained in one
of the eigenspaces of �(�) has to be treated separately, and Gaussianity can be relaxed to elliptical
symmetry. We note that the clause �if and only if�in the last but one line of p. 185 of Martellosio
(2010) should read �if�. We also note that the veri�cation of the �rst displayed inequality on p. 186
of Martellosio (2010) could be shortened (using Lemma E.3 (more precisely, the more general result
referred to in the proof of this lemma) with ai = �i(W )=� i(�), bi = �2i (��), and pi = z2i =�

2
i (�) to

conclude that the �rst display on p. 186 holds almost surely, and furthermore that it holds almost
surely with equality if and only if all bi or all ai are equal, which is equivalent to all �i(W ) for
i 2 H being equal).
Again, the proof of the part of Proposition 4 of Martellosio (2010) concerning locally best

invariant tests is de�cient as it is based on the same unjusti�ed approximation argument mentioned
before.
We next turn to Proposition 5 of Martellosio (2010). In the last of the three cases considered

in this proposition, both test statistics are degenerate and hence the power functions are trivially
constant equal to 0 or 1 (a case ruled out in Martellosio (2010)). More importantly, the proof
of Proposition 5 is severely �awed for several reasons, of which we only discuss a few: First, the
proof makes use of Corollary 1 of Martellosio (2010), the proof of which is based on the incorrect
Theorem 1 in Martellosio (2010); it also makes use of Lemma E.4 and Proposition 4 of Martellosio
(2010) which are incorrect as discussed before. Second, even if these results used in the proof were
correct as they stand, additional problems would arise: Lemma E.4 only delivers �� = 0, and
not the stronger conclusion that the limiting power equals 1, as would be required in the proof.
Furthermore, Proposition 4 has Gaussianity of the errors as a hypothesis, while such an assumption
is missing in Proposition 5.
We conclude by mentioning that a correct version of the part of Proposition 5 of Martellosio

(2010) concerning tests of the form (8) in Martellosio (2010) can probably be obtained by substi-
tuting our Corollary 4.5 and Proposition 4.10 for Corollary 1 and Lemma E.4 of Martellosio (2010)

1While not explicit in the statement of this proposition, it is implicitly assumed that 0 � � < ��1max holds.
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in the proof, but we have not checked the details. For the Cli¤-Ord test this does not seem to work
in the same way as the corresponding case of Proposition 4 of Martellosio (2010) is lacking a proof
as discussed before.

2 Proofs of auxiliary results in PP

Proof of Lemma D.1: Let B be a Borel set in Sn�1 and let � : Rnn f0g ! Sn�1 be given by
� (z) = z= kzk. Then

Pr(s 2 B) = Pr(z 2 ��1 (B)) =
Z
Rnnf0g

1��1(B) (z) p (z) dz =

Z
(0;1)�Sn�1

1��1(B) (rs) p (rs) dH(r; s)

whereH is the pushforward measure of �Rn (restricted to Rnn f0g) under the map z 7! (kzk ; z= kzk).
But H is nothing else than the product of the measure on (0;1) with Lebesgue density rn�1 and
the surface measure c�Sn�1 on Sn�1 where c is given in the lemma (cf. Stroock (1999)). In
view of Tonelli�s theorem (observe all functions involved are nonnegative) and since 1��1(B) (rs) =
1��1(B) (s) = 1B (s) clearly holds for s 2 Sn�1, we obtain

Pr(s 2 B) =
Z
Sn�1

1B (s)

 
c

Z
(0;1)

p (rs) rn�1d�(0;1)(r)

!
d�Sn�1 (s) ;

which establishes the claims except for the last one. We next prove the �nal claim. First, observe
that for every Borel set B in Sn�1 we have �Sn�1 (B) > 0 if and only if �Rn

�
��1 (B)

�
> 0.

[This is seen as follows: Specializing what has been proved so far to the case where z follows a
standard Gaussian distribution, shows that in this case s is uniformly distributed on Sn�1. Hence,
�Sn�1 (B) = Pr(s 2 B) = Pr(z 2 ��1 (B)). But then the equivalence of the Gaussian measure
with �Rn establishes that �Sn�1 (B) > 0 if and only if �Rn

�
��1 (B)

�
> 0.] Let now B satisfy

�Sn�1 (B) > 0. Clearly, Pr(s 2 B) = Pr(z 2 ��1 (B)) � Pr(z 2 ��1 (B) \ V ) where V is an open
neighborhood of the origin on which p is positive �Rn -almost everywhere. But then we must have
�Rn

�
��1 (B) \ V

�
> 0, because �Rn

�
��1 (B)

�
> 0 follows as a consequence of �Sn�1 (B) > 0 as just

shown above and because ��1 (B) can be written as a countable union of the sets j
�
��1 (B) \ V

�
with j 2 N. By the assumption on p we can now conclude that Pr(z 2 ��1 (B) \ V ) > 0 holds.
Hence, we have established that Pr(s 2 B) > 0 holds whenever �Sn�1 (B) > 0 is satis�ed. �
Proof of Lemma D.3: Part 1 is obvious. To prove Part 2 we denote the distribution of z=kzk

by G and the distribution of r by H. Because z= kzk and r are independent, the joint distribution of
z=kzk and r on Sn�1 � (0;1), equipped with the product �-�eld, is given by the product measure
G
H. Therefore, the distribution of zy is the push-forward measure of G
H under the mapping
m(s; r) = rs. Hence for every A 2 B(Rn) we have, using Tonelli�s theorem and the fact that G and
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H have densities g and h, respectively, that

Pr(zy 2 A) =
Z
Sn�1�(0;1)

1A(rs)d(G
H)(s; r) =
Z
(0;1)

Z
Sn�1

1A(rs)dG(s)dH(r)

=

Z
(0;1)

Z
Sn�1

1A(rs)g(s)d�Sn�1(s)h(r)d�(0;1)(r)

=

Z
(0;1)

rn�1
Z
Sn�1

1A(rs)g(s)r
1�nh (r) d�Sn�1(s)d�(0;1)(r)

=

Z
(0;1)

rn�1
Z
Sn�1

f (rs) d�Sn�1(s)d�(0;1)(r);

where for x 2 Rn the function f is given by

f(x) =

(
1A(x)g(x=kxk)kxk1�nh (kxk) if x 6= 0
0 if x = 0:

Since f is clearly a non-negative and Borel-measurable function, we can apply Theorem 5.2.2 in
Stroock (1999) to see that

Pr(zy 2 A) =
Z
(0;1)

rn�1
Z
Sn�1

f(rs)d�Sn�1(s)d�(0;1)(r)

=

Z
Rn
c�1f(x)d�Rn(x) =

Z
Rn
1A(x)g

y(x)d�Rn(x):

This establishes the second part of the lemma. To prove the third part denote by Dgy � Rn, Dg �
Sn�1 and Dh � (0;1) the discontinuity points of gy, g, and h, respectively, which are measurable.
Using Part 2 of the lemma we see that x 6= 0, x=kxk 2 RnnDg, and kxk 2 RnnDh imply x 2 RnnDgy .
Therefore, negating the statement, we see that 1D

gy
(x) � 1f0g(x) + 1Dg

(x=kxk) + 1Dh
(kxk) must

hold which implies

�Rn(Dgy) =

Z
Rn
1D

gy
(x)d�Rn(x) �

Z
Rn
1Dg

(x=kxk)d�Rn(x) +
Z
Rn
1Dh

(kxk)d�Rn(x): (3)

Using again Theorem 5.2.2 in Stroock (1999) we see thatZ
Rn
1Dg (x=kxk)d�Rn(x) =

Z
(0;1)

rn�1
Z
Sn�1

1Dg (s)cd�Sn�1(s)d�(0;1)(r)

=

Z
(0;1)

c�Sn�1(Dg)r
n�1d�(0;1)(r) = 0;

because �Sn�1(Dg) = 0 holds by assumption. Similarly, we obtainZ
Rn
1Dh

(kxk)d�Rn(x) =
Z
Sn�1

Z
(0;1)

rn�11Dh
(r)d�(0;1)(r)cd�Sn�1(s) = 0;

because the inner integral is zero as a consequence of the assumption that �(0;1)(Dh) = 0. Together
with Equation (3) the last two displays establish �Rn(Dgy) = 0. To prove Part 4 denote by Zgy � Rn,
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Zg � Sn�1, and Zh � (0;1) the zero sets of gy, g, and h, respectively, which are obviously
measurable. Replacing Dgy , Dg, and Dh with Zgy , Zg, and Zh, respectively, in the argument used
above then establishes Part 4. To prove the last part, we observe that g being constant �Sn�1-
almost everywhere implies that z=kzk is uniformly distributed on Sn�1. Since z=kzk is independent
of r, which is distributed as the square root of a �2 with n degrees of freedom, it is now obvious
that zy is Gaussian with mean zero and covariance matrix In. �
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