%2multibyte Version: 5.50.0.2960 CodePage: 936 \documentclass[11pt]{article} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \usepackage{amssymb} \usepackage{amsmath} \usepackage{amsfonts} \usepackage{geometry} \usepackage[onehalfspacing]{setspace} \usepackage{numinsec} \usepackage{harvard} \usepackage{hyperref} \setcounter{MaxMatrixCols}{10} %TCIDATA{OutputFilter=LATEX.DLL} %TCIDATA{Version=5.50.0.2960} %TCIDATA{Codepage=936} %TCIDATA{} %TCIDATA{BibliographyScheme=BibTeX} %TCIDATA{Created=Saturday, July 19, 2008 23:46:52} %TCIDATA{LastRevised=Saturday, July 25, 2015 12:20:27} %TCIDATA{} %TCIDATA{} %TCIDATA{Language=American English} %TCIDATA{CSTFile=40 LaTeX article.cst} %TCIDATA{PageSetup=72,72,72,72,0} %TCIDATA{Counters=arabic,1} %TCIDATA{AllPages= %H=36 %F=36 %} \newtheorem{theorem}{Theorem}[section] \newtheorem{acknowledgement}[theorem]{Acknowledgement} \newtheorem{algorithm}[theorem]{Algorithm} \newtheorem{axiom}[theorem]{Axiom} \newtheorem{case}[theorem]{Case} \newtheorem{claim}[theorem]{Claim} \newtheorem{conclusion}[theorem]{Conclusion} \newtheorem{condition}[theorem]{Condition} \newtheorem{conjecture}[theorem]{Conjecture} \newtheorem{corollary}[theorem]{Corollary} \newtheorem{criterion}[theorem]{Criterion} \newtheorem{definition}[theorem]{Definition} \newtheorem{example}[theorem]{Example} \newtheorem{exercise}[theorem]{Exercise} \newtheorem{lemma}{Lemma}[section] \newtheorem{notation}{Notation}[section] \newtheorem{problem}[theorem]{Problem} \newtheorem{proposition}{Proposition}[section] \newtheorem{remark}{Remark}[section] \newtheorem{solution}[theorem]{Solution} \newtheorem{summary}[theorem]{Summary} \newenvironment{proof}[1][Proof]{\noindent \textbf{#1.} }{\ \rule{0.5em}{0.5em}} \input{tcilatex} \begin{document} \title{Supplement to: Dynamic Panel Anderson-Hsiao Estimation with Roots Near Unity\thanks{% The author acknowledges support from the NSF under Grant No. SES 12-58258.}} \author{Peter C. B. Phillips \\ %EndAName \emph{Yale University, University of Auckland,}\\ \emph{Singapore Management University \& University of Southampton}} \maketitle This supplement provides detailed derivations and proofs of the results in the paper \textquotedblleft Dynamic Panel Anderson-Hsiao Estimation with Roots Near Unity\textquotedblright .\vspace{0.08in} \begin{proof}[Proof of Theorem 1] Part (i) follows by the Lindeberg L\'{e}vy CLT% \begin{equation} \frac{1}{\sqrt{n}}\sum_{i=1}^{n}\left( \begin{array}{c} \sum_{t=2}^{T}\Delta u_{it}y_{it-2} \\ \sum_{t=2}^{T}\Delta y_{it-1}y_{it-2}% \end{array}% \right) \Rightarrow N\left( 0,V_{T}\right) , \label{aa1} \end{equation}% with \begin{equation} V_{T}=\left( \begin{array}{cc} \mathbb{E}\left( \sum_{t=2}^{T}\Delta u_{it}y_{it-2}\right) ^{2} & \mathbb{E}% \left( \sum_{t=2}^{T}\Delta u_{it}y_{it-2}\right) \left( \sum_{t=2}^{T}\Delta y_{it-1}y_{it-2}\right) \\ \mathbb{E}\left( \sum_{t=2}^{T}\Delta u_{it}y_{it-2}\right) \left( \sum_{t=2}^{T}\Delta y_{it-1}y_{it-2}\right) & \mathbb{E}\left( \sum_{t=2}^{T}\Delta y_{it-1}y_{it-2}\right) ^{2}% \end{array}% \right) . \label{aa2} \end{equation}% To evaluate it is convenient to use partial summation \begin{equation} \sum_{t=2}^{T}\Delta u_{it}y_{it-2}=u_{iT}y_{iT-2}-u_{i1}y_{i0}-\sum_{t=3}^{T}u_{it-1}\Delta y_{it-2} \label{aa0} \end{equation}% To compute $V_{T},$ note that \begin{equation*} \mathbb{E}\left( \sum_{t=2}^{T}\Delta u_{it}y_{it-2}\right) ^{2}=\mathbb{E}% \left\{ \left( u_{iT}y_{iT-2}-u_{i1}y_{i0}\right) -\sum_{t=3}^{T}u_{it-1}u_{it-2}\right\} ^{2} \end{equation*}% \begin{eqnarray*} &=&\mathbb{E}\left( u_{iT}y_{iT-2}-u_{i1}y_{i0}\right) ^{2}-2\mathbb{E}% \left\{ \left( u_{iT}y_{iT-2}-u_{i1}y_{i0}\right) \left( \sum_{t=3}^{T}u_{it-1}u_{it-2}\right) \right\} +\mathbb{E}\left( \sum_{t=3}^{T}u_{it-1}u_{it-2}\right) ^{2} \\ &=&\mathbb{E}u_{iT}^{2}y_{iT-2}^{2}+\mathbb{E}u_{i1}^{2}y_{i0}^{2}+% \sum_{t=3}^{T}\mathbb{E}\left( u_{it-1}^{2}u_{it-2}^{2}\right) \\ &=&\sigma ^{4}T_{2}+2\sigma ^{2}\mathbb{E}y_{i0}^{2}+\sigma ^{4}T_{2}=2\sigma ^{4}T_{2}, \end{eqnarray*}% the final line following if the initial condition $y_{i0}=0,$ which will be assumed in the calculations below. The large $n$ asymptotic results will continue to hold for $y_{i0}=O_{p}\left( 1\right) $ even for finite $T$ with some obvious minor adjustments to the variance matrix expressions involving quantities of $O\left( 1\right) $ in $T.$ Next% \begin{eqnarray*} \mathbb{E}\left( \sum_{t=2}^{T}\Delta y_{it-1}y_{it-2}\right) ^{2} &=&% \mathbb{E}\left( \sum_{t=2}^{T}u_{it-1}y_{it-2}\right) ^{2}=\sigma ^{2}\sum_{t=2}^{T}\mathbb{E}y_{it-2}^{2}=\sigma ^{4}\sum_{t=2}^{T}\left( t-2\right) \\ &=&\sigma ^{4}T_{2}T_{1}/2, \end{eqnarray*}% and, with $y_{i0}=0$ (or up to $O\left( 1\right) $ in $T$ if $y_{i0}\not=0)$ \begin{eqnarray*} &&\mathbb{E}\left( \sum_{t=2}^{T}\Delta u_{it}y_{it-2}\right) \left( \sum_{t=2}^{T}u_{it-1}y_{it-2}\right) =\mathbb{E}\left\{ \left( \left( u_{iT}y_{iT-2}-u_{i1}y_{i0}\right) -\sum_{t=3}^{T}u_{it-1}u_{it-2}\right) \left( \sum_{t=2}^{T}u_{it-1}y_{it-2}\right) \right\} \\ &=&-\mathbb{E}\left( \sum_{t=3}^{T}u_{it-1}u_{it-2}\right) \left( \sum_{t=2}^{T}u_{it-1}y_{it-2}\right) -\mathbb{E}\left( u_{i1}y_{i0}\right) ^{2} \\ &=&-\mathbb{E}\left\{ \sum_{t=3}^{T}\left( u_{it-1}u_{it-2}\right) \left( u_{it-1}y_{it-2}\right) +\sum_{s,t=3;s\not=t}^{T}\left( u_{it-1}u_{it-2}\right) \left( u_{is-1}y_{is-2}\right) \right\} \\ &=&-\sum_{t=3}^{T}\mathbb{E}u_{it-1}^{2}u_{it-2}^{2}=-\sigma ^{4}\sum_{t=3}^{T}1=-\sigma ^{4}T_{2}. \end{eqnarray*}% Then% \begin{equation*} V_{T}=\left( \begin{array}{cc} 2\sigma ^{4}T_{2} & -\sigma ^{4}T_{2} \\ -\sigma ^{4}T_{2} & \sigma ^{4}T_{2}T_{1}/2% \end{array}% \right) =\sigma ^{4}T_{2}\left( \begin{array}{cc} 2 & -1 \\ -1 & T_{1}/2% \end{array}% \right) , \end{equation*}% as stated. For Part (ii), simply write $\rho _{IV}-1=\frac{N_{nT}}{D_{nT}},$ and note from (i) that $\left( N_{nT},D_{nT}\right) \underset{n\rightarrow \infty }{% \Rightarrow }$ $\sigma ^{2}T_{2}^{1/2}\left( \xi _{N,T},\xi _{D,T}\right) $, where $\left( \xi _{N,T},\xi _{D,T}\right) $ is bivariate $N\left( 0,\left[ \begin{array}{cc} 2 & -1 \\ -1 & T_{1}/2% \end{array}% \right] \right) .$ Next, decompose $\xi _{N,T}$ as $\xi _{N,T}=\xi _{N.D,T}+% \frac{-1}{T_{1}/2}\xi _{D,T}$ where $\xi _{N.D,T}\equiv N\left( 0,2-\frac{% \left( -1\right) ^{2}}{T_{1}/2}\right) =N\left( 0,2\left( 1-\frac{1}{T_{1}}% \right) \right) $ is independent of $\xi _{D,T},$ so that% \begin{equation*} \left( \begin{array}{c} \xi _{N.D,T} \\ \xi _{D,T}% \end{array}% \right) \equiv N\left( 0,\left[ \begin{array}{cc} 2\left( 1-\frac{1}{T_{1}}\right) & 0 \\ 0 & T_{1}/2% \end{array}% \right] \right) . \end{equation*}% Combining these results, we have by joint weak convergence and continuous mapping that as $n\rightarrow \infty $ with $T$ fixed,% \begin{eqnarray} \rho _{IV}-1 &=&\frac{N_{T}}{D_{T}}\underset{n\rightarrow \infty }{% \Rightarrow }\frac{\xi _{N,T}}{\xi _{D,T}}=\frac{\xi _{N.D,T}-\frac{2}{T_{1}}% \xi _{D,T}}{\xi _{D,T}} \label{gg27} \\ &=&-\frac{2}{T_{1}}+\frac{\xi _{N.D,T}}{\xi _{D,T}}=-\frac{2}{T_{1}}+\frac{% 2\left( 1-\frac{1}{T_{1}}\right) ^{1/2}}{T_{1}^{1/2}}\frac{\zeta _{N}}{\zeta _{D}} \notag \\ &\equiv &-\frac{2}{T_{1}}+2\frac{\left( 1-\frac{1}{T_{1}}\right) ^{1/2}}{% T_{1}^{1/2}}\mathbb{C}\text{,} \label{gg7} \end{eqnarray}% where $\left( \zeta _{N},\zeta _{D}\right) \equiv N\left( 0,I_{2}\right) $ and $\mathbb{C}$ is a standard Cauchy variate. Thus% \begin{equation} \rho _{IV}-1\underset{n\rightarrow \infty }{\Rightarrow }-\frac{2}{T_{1}}+2% \frac{\left( 1-\frac{1}{T_{1}}\right) ^{1/2}}{T_{1}^{1/2}}\mathbb{C}\text{,} \label{gg17} \end{equation}% yielding the stated result.\vspace{0.08in} \end{proof} \begin{proof}[Proof of Theorem 2] By definition we have% \begin{eqnarray*} \rho _{IV}-1 &=&\frac{\sum_{i=1}^{n}\sum_{t=2}^{T}\Delta u_{it}y_{it-2}}{% \sum_{i=1}^{n}\sum_{t=2}^{T}\Delta y_{it-1}y_{it-2}} \\ &=&\frac{\sum_{i=1}^{n}\left\{ \left( u_{iT}y_{iT-2}-u_{i1}y_{i0}\right) -\sum_{t=3}^{T}u_{it-1}u_{it-2}\right\} }{\sum_{i=1}^{n}% \sum_{t=2}^{T}u_{it-1}y_{it-2}}, \end{eqnarray*}% and rescaling gives \begin{equation} \sqrt{T}\left( \rho _{IV}-1\right) =\frac{\sum_{i=1}^{n}\frac{1}{\sqrt{T}}% \left\{ \left( u_{iT}y_{iT-2}-u_{i1}y_{i0}\right) -\sum_{t=3}^{T}u_{it-1}u_{it-2}\right\} }{\sum_{i=1}^{n}\frac{1}{T}% \sum_{t=2}^{T}u_{it-1}y_{it-2}}. \label{gg12} \end{equation}% By partial summation \begin{equation*} \sum_{t=1}^{T}u_{it}y_{it-1}=\sum_{t=1}^{T}u_{it}\left( \sum_{s=1}^{t-1}u_{is}+y_{i0}\right) =\frac{1}{2}\left\{ \left( \sum_{t=1}^{T}u_{it}\right) ^{2}-\sum_{t=1}^{T}u_{it}^{2}\right\} +\sum_{t=1}^{T}u_{it}y_{i0}. \end{equation*}% Using the fact that $\mathbb{E}\left( u_{it}u_{is}u_{is-1}\right) =0$ for all $\left( t,s\right) $, we have by standard functional limit theory for $% r\in \left[ 0,1\right] $ \begin{equation*} T^{-1/2}\sum_{t=1}^{\lfloor Tr\rfloor }\left[ \begin{array}{c} u_{it} \\ u_{it}u_{it-1}% \end{array}% \right] \Rightarrow \left[ \begin{array}{c} B_{i}\left( r\right) \\ G_{i}\left( r\right)% \end{array}% \right] \equiv BM\left( \left[ \begin{array}{cc} \sigma ^{2} & 0 \\ 0 & \sigma ^{4}% \end{array}% \right] \right) , \end{equation*}% where $B_{i}$ and $G_{i}$ are independent Brownian motions for all $i.$ Then, since $y_{i0}=O_{p}\left( 1\right) $ and $T^{-1}% \sum_{t=1}^{T}u_{it}=o_{p}\left( 1\right) ,$ we deduce the joint weak convergence (Phillips, 1987a, 1989)% \begin{equation} \left[ \begin{array}{c} T^{-1/2}\sum_{t=1}^{T}u_{it} \\ T^{-1}\sum_{t=1}^{T}u_{it}y_{it-1} \\ T^{-1}\sum_{t=1}^{T}u_{it}u_{it-1}% \end{array}% \right] \underset{T\rightarrow \infty }{\Rightarrow }\left[ \begin{array}{c} B_{i}\left( 1\right) \\ \frac{1}{2}\left\{ B_{i}\left( 1\right) ^{2}-\sigma ^{2}\right\} \\ G_{i}\left( 1\right)% \end{array}% \right] =\left[ \begin{array}{c} B_{i}\left( 1\right) \\ \int_{0}^{1}B_{i}dB_{i} \\ G_{i}\left( 1\right)% \end{array}% \right] . \label{gg16} \end{equation}% Since $u_{it}$ is $iid$ over $t$ and $i,$ it follows that $u_{iT}\Rightarrow u_{i\infty }$ as $T\rightarrow \infty ,$ where the limit variates $\left\{ u_{i\infty }\right\} $ are independent over $i$ and have the same distribution as $u_{it}.$ Note that $u_{iT}$ is independent of $\left( T^{-1/2}\sum_{t=1}^{T_{1}}u_{it},T^{-1}% \sum_{t=1}^{T_{1}}u_{it}y_{it-1},T^{-1}\sum_{t=1}^{T_{1}}u_{it}u_{it-1}% \right) $ and, hence, asymptotically independent of $\left( T^{-1/2}\sum_{t=1}^{T}u_{it},T^{-1}\sum_{t=1}^{T}u_{it}y_{it-1},T^{-1}% \sum_{t=1}^{T}u_{it}u_{it-1}\right) .$ It follows that $u_{i\infty }$ is independent of the vector of limit variates (\ref{gg16}). We therefore have the combined weak convergence% \begin{equation} \left[ \begin{array}{c} T^{-1/2}\sum_{t=1}^{T}u_{it} \\ T^{-1}\sum_{t=1}^{T}u_{it}y_{it-1} \\ T^{-1/2}\sum_{t=1}^{T}u_{it}u_{it-1} \\ u_{iT}% \end{array}% \right] \underset{T\rightarrow \infty }{\Rightarrow }\left[ \begin{array}{c} B_{i}\left( 1\right) \\ \frac{1}{2}\left\{ B_{i}\left( 1\right) ^{2}-\sigma ^{2}\right\} \\ G_{i}\left( 1\right) \\ u_{i\infty }% \end{array}% \right] =\left[ \begin{array}{c} B_{i}\left( 1\right) \\ \int_{0}^{1}B_{i}dB_{i} \\ G_{i}\left( 1\right) \\ u_{i\infty }% \end{array}% \right] . \label{gg19} \end{equation}% Setting $G_{i}=G_{i}\left( 1\right) ,$ the stated result \begin{equation} \sqrt{T}\left( \rho _{IV}-1\right) \underset{T\rightarrow \infty }{% \Rightarrow }\frac{\sum_{i=1}^{n}\left\{ u_{i\infty }B_{i}\left( 1\right) -G_{i}\right\} }{\sum_{i=1}^{n}\frac{1}{2}\left\{ B_{i}\left( 1\right) ^{2}-\sigma ^{2}\right\} } \label{gg28} \end{equation}% follows from (\ref{gg12}) and (\ref{gg19}) by continuous mapping. For part (ii) we consider sequential asymptotics in which $T\rightarrow \infty $ is followed by $n\rightarrow \infty .$ Observe that $u_{i\infty }B_{i}\left( 1\right) -G_{i}$ is $iid$ over $i$ with zero mean and variance \begin{equation*} \mathbb{E}\left\{ u_{i\infty }B_{i}\left( 1\right) -G_{i}\left( 1\right) \right\} ^{2}=\mathbb{E}\left( u_{i\infty }^{2}\right) \mathbb{E}\left( B_{i}\left( 1\right) ^{2}\right) +\mathbb{E}\left( G_{i}\left( 1\right) ^{2}\right) =2\sigma ^{4}, \end{equation*}% and is uncorrelated with $B_{i}\left( 1\right) ^{2}.$ Since $\left\{ B_{i}\left( 1\right) ^{2}-\sigma ^{2}\right\} $ is $iid$ with zero mean and variance $2\sigma ^{4},$ application of the Lindeberg L\'{e}vy CLT as $% n\rightarrow \infty $ gives% \begin{equation} \left[ \begin{array}{c} n^{-1/2}\sum_{i=1}^{n}\left\{ u_{i\infty }B_{i}\left( 1\right) -G_{i}\right\} \\ n^{-1/2}\sum_{i=1}^{n}\frac{1}{2}\left\{ B_{i}\left( 1\right) ^{2}-\sigma ^{2}\right\}% \end{array}% \right] \underset{n\rightarrow \infty }{\Rightarrow }\left[ \begin{array}{c} \left( 2\sigma ^{4}\right) ^{1/2}\zeta _{N} \\ \left( \sigma ^{4}/2\right) ^{1/2}\zeta _{D}% \end{array}% \right] , \label{gg18} \end{equation}% where $\left( \zeta _{N},\zeta _{D}\right) \equiv N\left( 0,I_{2}\right) .$ Hence, \begin{equation} \sqrt{T}\left( \rho _{IV}-1\right) \underset{\left( n,T\right) _{\func{seq}% }\rightarrow \infty }{\Rightarrow }2\mathbb{C}, \label{gg15} \end{equation}% giving the required result. \vspace{0.08in} \end{proof} \begin{proof}[Proof of Theorem 3] We proceed by examining a set of sufficient conditions for joint convergence limit theory developed in Phillips and Moon (1999). In particular, we consider conditions that suffice to ensure that sequential convergence as $% \left( n,T\right) _{\mathrm{\func{seq}}}\rightarrow \infty $ (i.e., $% T\rightarrow \infty $ followed by $n\rightarrow \infty )$ implies joint convergence $\left( n,T\right) \rightarrow \infty $ where there is no restriction on the diagonal path in which $n$ and $T$ pass to infinity. We start by defining the vector of standardized components appearing in the numerator and denominator of $\rho _{IV}$ \begin{equation} X_{nT}=\left( n^{-1/2}\sum_{i=1}^{n}\frac{1}{\sqrt{T}}\left\{ \left( u_{iT}y_{iT-2}-u_{i1}y_{i0}\right) -\sum_{t=3}^{T}u_{it-1}u_{it-2}\right\} ,n^{-1/2}\sum_{i=1}^{n}\left( \frac{1}{T}\sum_{t=2}^{T}u_{it-1}y_{it-2}% \right) \right) ^{\prime }. \label{gg21} \end{equation}% From (\ref{gg19}) and (\ref{gg18}) we have the sequential convergence \begin{eqnarray} X_{nT}\underset{T\rightarrow \infty }{\Rightarrow }X_{n} &:&=\left( n^{-1/2}\sum_{i=1}^{n}\left\{ u_{i\infty }B_{i}\left( 1\right) -G_{i}\left( 1\right) \right\} ,n^{-1/2}\sum_{i=1}^{n}\frac{1}{2}\left\{ B_{i}\left( 1\right) ^{2}-\sigma ^{2}\right\} \right) ^{\prime } \notag \\ \underset{n\rightarrow \infty }{\Rightarrow }X &:&=\left( \left( 2\sigma ^{4}\right) ^{1/2}\zeta _{N},\left( \frac{\sigma ^{4}}{2}\right) ^{1/2}\zeta _{D}\right) , \label{gg23} \end{eqnarray}% which in turn implies the sequential limit $\sqrt{T}\left( \rho _{IV}-1\right) \underset{\left( n,T\right) _{\func{seq}}\rightarrow \infty }{% \Rightarrow }2\mathbb{C}$ given in (\ref{gg15}). By Lemma 6(b) of Phillips and Moon (1999), when $X_{nT}\underset{T\rightarrow \infty }{\Rightarrow }% X_{n}\underset{n\rightarrow \infty }{\Rightarrow }X$ sequentially, joint weak convergence $X_{nT}\Rightarrow X$ as $\left( n,T\right) \rightarrow \infty $ holds if and only if% \begin{equation} \underset{n,T\rightarrow \infty }{\lim \sup }\left\vert \mathbb{E}f\left( X_{nT}\right) -\mathbb{E}f\left( X_{n}\right) \right\vert =0 \label{gg20} \end{equation}% for all bounded, continuous real functions $f$ on $\mathbb{R}^{2}$. Simple primitive conditions sufficient for (\ref{gg20}) to hold are available in the case where the components of the random quantity $X_{nT}$ involve averages of $iid$ random variables as in the present case where we have $X_{nT}=n^{-1/2}\sum_{i=1}^{n}Y_{iT}$ with the $Y_{iT}$ independent over $i.$ Component-wise we have% \begin{equation*} X_{nT}=\left( X_{1nT},X_{2nT}\right) ^{\prime }:=\left( n^{-1/2}\sum_{i=1}^{n}Y_{1iT},n^{-1/2}\sum_{i=1}^{n}Y_{2iT}\right) , \end{equation*}% where $Y_{iT}=\left( Y_{1iT},Y_{2iT}\right) ^{\prime }$ with \begin{eqnarray*} Y_{1iT} &=&\frac{1}{\sqrt{T}}\left\{ \left( u_{iT}y_{iT-2}-u_{i1}y_{i0}\right) -\sum_{t=3}^{T}u_{it-1}u_{it-2}\right\} \underset{T\rightarrow \infty }{\Rightarrow }Y_{1i}:=u_{i\infty }B_{i}\left( 1\right) -G_{i}\left( 1\right) , \\ Y_{2iT} &=&\frac{1}{T}\sum_{t=2}^{T}u_{it-1}y_{it-2}\underset{T\rightarrow \infty }{\Rightarrow }Y_{2i}:=\frac{1}{2}\left\{ B_{i}\left( 1\right) ^{2}-\sigma ^{2}\right\} , \end{eqnarray*}% for all $i.$ The working probability space can be expanded as needed to ensure that the (limit) random quantities $Y_{i}:=\left( Y_{1i},Y_{2i}\right) ^{\prime }$ are defined in the same space for all $i$ so that averages involving $\sum_{i=1}^{n}Y_{i}$ are meaningful. In this framework we can use a result on joint convergence by Phillips and Moon (1999) -- see lemma PM below -- to verify condition (\ref{gg20}). In what follows we use the notation of lemma PM. We proceed to verify these conditions for $Y_{iT}$ and $Y_{i}.$ First, $% Y_{iT}$ is integrable since% \begin{eqnarray*} \mathbb{E}\left\vert u_{iT}y_{iT-2}\right\vert &\leq &\left( \mathbb{E}% \left\vert u_{iT}\right\vert ^{2}\mathbb{E}\left\vert y_{iT-2}\right\vert ^{2}\right) ^{1/2}<\infty , \\ \mathbb{E}\left\vert \sum_{t=2}^{T}u_{it-1}u_{it-2}\right\vert &\leq &T% \mathbb{E}\left\vert u_{it-1}u_{it-2}\right\vert \leq T\mathbb{E}\left( u_{it}^{2}\right) <\infty , \\ \mathbb{E}\left\vert \sum_{t=2}^{T}u_{it-1}y_{it-2}\right\vert &\leq &\sum_{t=2}^{T}\mathbb{E}\left\vert u_{it-1}y_{it-2}\right\vert \leq \sum_{t=2}^{T}\left( \mathbb{E}u_{it-1}^{2}\mathbb{E}y_{it-2}^{2}\right) ^{1/2}<\infty . \end{eqnarray*}% To show (i) holds, observe that \begin{eqnarray} \mathbb{E}\left\Vert Y_{iT}\right\Vert ^{2} &=&\mathbb{E}Y_{1iT}^{2}+\mathbb{% E}Y_{2iT}^{2} \notag \\ &=&\frac{1}{T}\mathbb{E}\left\{ u_{iT}y_{iT-2}-\sum_{t=3}^{T}u_{it-1}u_{it-2}\right\} ^{2}+\frac{1}{T^{2}}% \mathbb{E}\left( \sum_{t=2}^{T}u_{it-1}y_{it-2}\right) ^{2} \notag \\ &=&2\sigma ^{4}\frac{T-2}{T}+\sigma ^{4}\frac{1}{T^{2}}\sum_{t=2}^{T}\left( t-2\right) <\infty , \label{gg22} \end{eqnarray}% when $y_{i0}=0,$ with obviously valid extension to the case where $% y_{i0}=O_{p}\left( 1\right) $ with finite second moments. Then \begin{equation*} \underset{n,T\rightarrow \infty }{\lim \sup }\frac{1}{n}\sum_{i=1}^{n}% \mathbb{E}\left\Vert Y_{iT}\right\Vert =\underset{T\rightarrow \infty }{\lim \sup }\mathbb{E}\left\Vert Y_{iT}\right\Vert \leq \underset{T\rightarrow \infty }{\lim \sup }\left( \mathbb{E}\left\Vert Y_{iT}\right\Vert ^{2}\right) ^{1/2}<\infty , \end{equation*}% as required. To show (ii) holds, simply observe that $\mathbb{E}Y_{iT}=% \mathbb{E}Y_{i}=0.$ To show (iii) holds, note that \begin{equation*} \underset{n,T\rightarrow \infty }{\lim \sup }\frac{1}{n}\sum_{i=1}^{n}% \mathbb{E}\left\Vert Y_{iT}\right\Vert \mathbf{1}\left\{ \left\Vert Y_{iT}\right\Vert >n\epsilon \right\} =\underset{T\rightarrow \infty }{\lim \sup }\mathbb{E}\left\Vert Y_{iT}\right\Vert \mathbf{1}\left\{ \left\Vert Y_{iT}\right\Vert >n\epsilon \right\} =0,\text{ for all }\epsilon >0, \end{equation*}% since $\sup_{T}\mathbb{E}\left\Vert Y_{iT}\right\Vert ^{2}<\infty $ by virtue of (\ref{gg22}). Finally, note that \begin{equation*} \underset{n\rightarrow \infty }{\lim \sup }\frac{1}{n}\sum_{i=1}^{n}\mathbb{E% }\left\Vert Y_{i}\right\Vert \mathbf{1}\left\{ \left\Vert Y_{i}\right\Vert >n\epsilon \right\} =\underset{n\rightarrow \infty }{\lim \sup }\mathbb{E}% \left\Vert Y_{i}\right\Vert \mathbf{1}\left\{ \left\Vert Y_{i}\right\Vert >n\epsilon \right\} =0, \end{equation*}% since $\mathbb{E}\left\Vert Y_{i}\right\Vert ^{2}<\infty ,$ proving (iv). Hence, condition (\ref{gg20}) holds and we\ have joint weak convergence% \begin{equation*} X_{nT}=n^{-1/2}\sum_{i=1}^{n}Y_{iT}\underset{n,T\rightarrow \infty }{% \Rightarrow }X:=\left( \left( 2\sigma ^{4}\right) ^{1/2}\zeta _{N},\left( \frac{\sigma ^{4}}{2}\right) ^{1/2}\zeta _{D}\right) , \end{equation*}% irrespective of the divergence rates of $n$ and $T$ to infinity. By continuous mapping, the required result follows for the GMM estimator so that $\sqrt{T}\left( \rho _{IV}-1\right) \underset{n,T\rightarrow \infty }{% \Rightarrow }2\mathbb{C}$ jointly as $\left( n,T\right) \rightarrow \infty $ irrespective of the order and rates of divergence of the respective sample sizes. \end{proof} \begin{description} \item[Lemma PM (Phillips and Moon, 1999, theorem 1)] \textit{Suppose the }$% m\times 1$\textit{\ random vectors }$Y_{iT}$\textit{\ are independent across }$i$\textit{\ for all }$T$\textit{\ and integrable. Assume that }$% Y_{iT}\Rightarrow Y_{i}$\textit{\ as }$T\rightarrow \infty $\textit{\ for all }$i.$\textit{\ Then, condition (\ref{gg20}) holds if the following hold:% \newline (i) }$\underset{n,T\rightarrow \infty }{\lim \sup }\frac{1}{n}% \sum_{i=1}^{n}E\left\Vert Y_{iT}\right\Vert <\infty ,$\textit{\newline (ii) }$\underset{n,T\rightarrow \infty }{\lim \sup }\frac{1}{n}% \sum_{i=1}^{n}\left\Vert \mathbb{E}Y_{iT}-\mathbb{E}Y_{i}\right\Vert <\infty ,$\textit{\newline (iii) }$\underset{n,T\rightarrow \infty }{\lim \sup }\frac{1}{n}% \sum_{i=1}^{n}E\left\Vert Y_{iT}\right\Vert 1\left\{ \left\Vert Y_{iT}\right\Vert >n\epsilon \right\} =0,$\textit{\ for all }$\epsilon >0$% \textit{\newline (iv) }$\underset{n\rightarrow \infty }{\lim \sup }\frac{1}{n}% \sum_{i=1}^{n}E\left\Vert Y_{i}\right\Vert 1\left\{ \left\Vert Y_{i}\right\Vert >n\epsilon \right\} =0,$\textit{\ for all }$\epsilon >0% \vspace{0.08in}$ \end{description} \begin{proof}[Proof of Theorem 4] In case (i) $T$ is fixed as well as $c<0,$ which implies that $\rho =1+\frac{% c}{\sqrt{T}}$ is fixed. So large $n$ asymptotics follow as in the (asymptotically) stationary case. By defintion we\ have $y_{it}=\alpha _{i}\left( 1-\rho \right) +\rho y_{it-1}+u_{it}=-\frac{\alpha _{i}c}{\sqrt{T}% }+\left( 1+\frac{c}{\sqrt{T}}\right) y_{it-1}+u_{it}$ and $\Delta y_{it}=\rho \Delta y_{it-1}+\Delta u_{it}$ so that $\Delta y_{it}=\alpha _{i}\left( 1-\rho \right) +\left( \rho -1\right) y_{it-1}+u_{it}=-\frac{% \alpha _{i}c}{\sqrt{T}}+\frac{c}{\sqrt{T}}y_{it-1}+u_{it}.$ Then, as usual, $% \mathbb{E}\left( u_{it}y_{it-2}\right) =\mathbb{E}\left( \Delta u_{it}y_{it-2}\right) =0$ and orthogonality holds. When $y_{i0}=0,$ back substitution gives% \begin{equation*} y_{it}=\alpha _{i}\left( 1-\rho ^{t}\right) +\sum_{j=0}^{t-1}\rho ^{j}u_{it-j}, \end{equation*}% and $\mathbb{E}\left( y_{it}\right) =\alpha _{i}\left( 1-\rho ^{t}\right) ,$ $\mathbb{V}\mathrm{ar}\left( y_{it}\right) =\sigma ^{2}\sum_{j=0}^{t-1}\rho ^{2j}=\sigma ^{2}\frac{1-\rho ^{2t}}{1-\rho ^{2}},$ and $\mathbb{E}\left( y_{it}^{2}\right) =\sigma ^{2}\frac{1-\rho ^{2t}}{1-\rho ^{2}}+\alpha _{i}^{2}\left( 1-\rho ^{t}\right) ^{2}.$ Instrument relevance is determined by the magnitude of the moment \begin{eqnarray} \mathbb{E}\left( \Delta y_{it-1}y_{it-2}\right) &=&\mathbb{E}\left( \left\{ \alpha _{i}\left( 1-\rho \right) +\left( \rho -1\right) y_{it-2}+u_{it-1}\right\} y_{it-2}\right) \notag \\ &=&\alpha _{i}^{2}\left( 1-\rho \right) \left( 1-\rho ^{t-2}\right) +\left( \rho -1\right) \left\{ \sigma ^{2}\frac{1-\rho ^{2\left( t-2\right) }}{% 1-\rho ^{2}}+\alpha _{i}^{2}\left( 1-\rho ^{t-2}\right) ^{2}\right\} \notag \\ &=&-\sigma ^{2}\frac{1-\rho ^{2\left( t-2\right) }}{1+\rho }-\alpha _{i}^{2}\left( 1-\rho \right) \left( 1-\rho ^{t-2}\right) \rho ^{t-2} \label{aa3} \end{eqnarray}% which is nonzero for $c<0$ and zero when $c=0,$ corresponding to the unit root case $\left( \rho =1\right) $ considered earlier. Note that in the fully stationary case where initial conditions are in the infinite past so that $y_{i0}=\alpha _{i}+\sum_{j=0}^{\infty }\rho ^{j}u_{i,-j}$ and $% y_{it}=\alpha _{i}+\sum_{j=0}^{\infty }\rho ^{j}u_{t-j}$ we have \begin{eqnarray*} \mathbb{E}\left( \Delta y_{it-1}y_{it-2}\right) &=&\alpha _{i}^{2}\left( 1-\rho \right) +\left( \rho -1\right) \mathbb{E}\left( y_{it}^{2}\right) =\alpha _{i}^{2}\left( 1-\rho \right) -\left( 1-\rho \right) \left\{ \frac{% \sigma ^{2}}{1-\rho ^{2}}+\alpha _{i}^{2}\right\} \\ &=&-\frac{\sigma ^{2}}{1+\rho }, \end{eqnarray*}% which corresponds with the leading term of (\ref{aa3}) when $t\rightarrow \infty $ with $\left\vert \rho \right\vert <1$. Now consider the numerator and denominator of the centred and scaled GMM estimate% \begin{equation} \sqrt{n}\left( \rho _{IV}-\rho \right) =\frac{\frac{1}{\sqrt{n}}% \sum_{i=1}^{n}\sum_{t=2}^{T}\Delta u_{it}y_{it-2}}{\frac{1}{n}% \sum_{i=1}^{n}\sum_{t=2}^{T}\Delta y_{it-1}y_{it-2}}=:\frac{N_{nT}}{D_{nT}}. \label{aa8} \end{equation}% First, noting that $\Delta y_{it-1}y_{it-2}$ is quadratic in $\alpha _{i},$ and using $T_{j}=T-j$ and $\sigma _{\alpha }^{2}=\lim_{n\rightarrow \infty }% \frac{1}{n}\sum_{i=1}^{n}\alpha _{i}^{2},$ the denominator of (\ref{aa8}) takes the following form as $n\rightarrow \infty $% \begin{eqnarray} &&\frac{1}{n}\sum_{i=1}^{n}\sum_{t=2}^{T}\Delta y_{it-1}y_{it-2}\rightarrow _{p}\lim_{n\rightarrow \infty }\frac{1}{n}\sum_{i=1}^{n}\mathbb{E}\left( \sum_{t=2}^{T}\Delta y_{it}y_{it-2}\right) \notag \\ &=&\lim_{n\rightarrow \infty }\frac{1}{n}\sum_{i=1}^{n}\sum_{t=2}^{T}\left\{ -\sigma ^{2}\frac{1-\rho ^{2\left( t-2\right) }}{1+\rho }+\alpha _{i}^{2}\left( 1-\rho \right) \left( 1-\rho ^{t-2}\right) \left[ 1-\left( 1-\rho ^{t-2}\right) \right] \right\} \notag \\ &=&-\frac{\sigma ^{2}}{1+\rho }\left[ T_{1}-\frac{1-\rho ^{2T_{1}}}{1-\rho ^{2}}\right] +\sigma _{\alpha }^{2}\left( 1-\rho \right) \left[ T_{1}-\frac{% 1-\rho ^{T_{1}}}{1-\rho }\right] -\sigma _{\alpha }^{2}\left( 1-\rho \right) % \left[ T_{1}-2\frac{1-\rho ^{T_{1}}}{1-\rho }+\frac{1-\rho ^{2T_{1}}}{1-\rho ^{2}}\right] \notag \\ &=&-\frac{\sigma ^{2}}{1+\rho }\left[ T_{1}-\frac{1-\rho ^{2T_{1}}}{1-\rho ^{2}}\right] +\sigma _{\alpha }^{2}\left( 1-\rho \right) \left[ \frac{1-\rho ^{T_{1}}}{1-\rho }-\frac{1-\rho ^{2T_{1}}}{1-\rho ^{2}}\right] \notag \\ &=&-\frac{\sigma ^{2}}{1+\rho }\left[ T_{1}-\frac{1-\rho ^{2T_{1}}}{1-\rho ^{2}}\right] +\sigma _{\alpha }^{2}\left[ 1-\rho ^{T_{1}}-\frac{1-\rho ^{2T_{1}}}{1+\rho }\right] , \label{aa10} \end{eqnarray}% which is again zero when $c=0$ ($\rho =1)$. Turning to the numerator, we have $\mathbb{E}\left( \Delta u_{it}y_{it-2}\right) =0$ by orthogonality and by a standard CLT\ argument for fixed $T$ as $n\rightarrow \infty $% \begin{equation*} \frac{1}{\sqrt{n}}\sum_{i=1}^{n}\left( \sum_{t=2}^{T}\Delta u_{it}y_{it-2}\right) \Rightarrow N\left( 0,v_{T}\right) \end{equation*}% with% \begin{equation*} v_{T}=\lim_{n\rightarrow \infty }\frac{1}{n}\sum_{i=1}^{n}\mathbb{E}\left( \sum_{t=2}^{T}\Delta u_{it}y_{it-2}\right) ^{2} \end{equation*}% We evaluate the above variance as follows. Using partial summation and $% y_{i0}=0,$ we have% \begin{equation} \sum_{t=2}^{T}\Delta u_{it}y_{it-2}=u_{iT}y_{iT-2}-u_{i1}y_{i0}-\sum_{t=3}^{T}u_{it-1}\Delta y_{it-2}=u_{iT}y_{iT-2}-\sum_{t=3}^{T}u_{it-1}\Delta y_{it-2}, \label{aa4} \end{equation}% with variance \begin{eqnarray*} \mathbb{E}\left( u_{iT}y_{iT-2}-\sum_{t=3}^{T}u_{it-1}\Delta y_{it-2}\right) ^{2} &=&\sigma ^{2}\mathbb{E}\left( y_{iT-2}\right) ^{2}+\sigma ^{2}\mathbb{E% }\sum_{t=3}^{T}\left( \Delta y_{it-2}\right) ^{2} \\ &=&\sigma ^{4}\frac{1-\rho ^{2T_{2}}}{1-\rho ^{2}}+\alpha _{i}^{2}\sigma ^{2}\left( 1-\rho ^{T_{2}}\right) ^{2}+\sigma ^{2}\mathbb{E}% \sum_{t=3}^{T}\left( \Delta y_{it-2}\right) ^{2}. \end{eqnarray*}% Using $\mathbb{E}\left( y_{it}\right) =\alpha _{i}\left( 1-\rho ^{t}\right) , $ $\mathbb{V}\mathrm{ar}\left( y_{it}\right) =\sigma ^{2}\sum_{j=0}^{t-1}\rho ^{2j}=\sigma ^{2}\frac{1-\rho ^{2t}}{1-\rho ^{2}},$ $\mathbb{E}\left( y_{it}^{2}\right) =\sigma ^{2}\frac{1-\rho ^{2t}}{1-\rho ^{2}}+\alpha _{i}^{2}\left( 1-\rho ^{t}\right) ^{2},$ and $\Delta y_{it}=\alpha _{i}\left( 1-\rho \right) +\left( \rho -1\right) y_{it-1}+u_{it},$ the final term $\sum_{t=3}^{T}\mathbb{E}\left( \Delta y_{it-2}\right) ^{2}$ above is \begin{eqnarray*} &&\sum_{t=3}^{T}\left\{ \alpha _{i}^{2}\left( 1-\rho \right) ^{2}+\left( 1-\rho \right) ^{2}\mathbb{E}\left( y_{it-3}^{2}\right) +\sigma ^{2}-2\alpha _{i}^{2}\left( 1-\rho \right) ^{2}\left( 1-\rho ^{t-3}\right) \right\} \\ &=&\sigma ^{2}T_{2}-T_{2}\alpha _{i}^{2}\left( 1-\rho \right) ^{2}+2\alpha _{i}^{2}\left( 1-\rho \right) ^{2}\left( \frac{1-\rho ^{T_{2}}}{1-\rho }% \right) +\left( 1-\rho \right) ^{2}\sum_{t=3}^{T}\mathbb{E}\left( y_{it-3}^{2}\right) \\ &=&\sigma ^{2}T_{2}-T_{2}\alpha _{i}^{2}\left( 1-\rho \right) ^{2}+2\alpha _{i}^{2}\left( 1-\rho \right) \left( 1-\rho ^{T_{2}}\right) +\left( 1-\rho \right) ^{2}\frac{\sigma ^{2}}{1-\rho ^{2}}\left[ T_{2}-\frac{1-\rho ^{2T_{2}}}{1-\rho ^{2}}\right] \\ &&+\alpha _{i}^{2}\left( 1-\rho \right) ^{2}\left[ T_{2}-2\frac{1-\rho ^{T_{2}}}{1-\rho }+\frac{1-\rho ^{2T_{2}}}{1-\rho ^{2}}\right] \end{eqnarray*}% \begin{eqnarray*} &=&\sigma ^{2}T_{2}\left[ 1+\frac{\left( 1-\rho \right) }{1+\rho }\right] -% \frac{\sigma ^{2}\left( 1-\rho ^{2T_{2}}\right) }{\left( 1+\rho \right) ^{2}}% +2\alpha _{i}^{2}\left( 1-\rho \right) \left( 1-\rho ^{T_{2}}\right) +\alpha _{i}^{2}\left( 1-\rho \right) ^{2}\left[ -2\frac{1-\rho ^{T_{2}}}{1-\rho }+% \frac{1-\rho ^{2T_{2}}}{1-\rho ^{2}}\right] \\ &=&\frac{2\sigma ^{2}T_{2}}{1+\rho }-\frac{\sigma ^{2}\left( 1-\rho ^{2T_{2}}\right) }{\left( 1+\rho \right) ^{2}}+\alpha _{i}^{2}\left( 1-\rho \right) \frac{1-\rho ^{2T_{2}}}{1+\rho }. \end{eqnarray*}% Then% \begin{eqnarray*} &&\mathbb{E}\left( u_{iT}y_{iT-2}-\sum_{t=3}^{T}u_{it-1}\Delta y_{it-2}\right) ^{2}=\sigma ^{4}\frac{1-\rho ^{2T_{2}}}{1-\rho ^{2}}+\alpha _{i}^{2}\sigma ^{2}\left( 1-\rho ^{T_{2}}\right) ^{2}+\sigma ^{2}\mathbb{E}% \sum_{t=3}^{T}\left( \Delta y_{it-2}\right) ^{2} \\ &=&\sigma ^{4}\frac{1-\rho ^{2T_{2}}}{1-\rho ^{2}}+\alpha _{i}^{2}\sigma ^{2}\left( 1-\rho ^{T_{2}}\right) ^{2}+\frac{2\sigma ^{4}T_{2}}{1+\rho }-% \frac{\sigma ^{4}\left( 1-\rho ^{2T_{2}}\right) }{\left( 1+\rho \right) ^{2}}% +\alpha _{i}^{2}\sigma ^{2}\left( 1-\rho \right) \frac{1-\rho ^{2T_{2}}}{% 1+\rho } \\ &=&\frac{2\sigma ^{4}T_{2}}{1+\rho }+\sigma ^{4}\frac{2\rho \left( 1-\rho ^{2T_{2}}\right) }{\left( 1-\rho ^{2}\right) \left( 1+\rho \right) }+\alpha _{i}^{2}\sigma ^{2}\left( 1-\rho ^{T_{2}}\right) ^{2}+\alpha _{i}^{2}\sigma ^{2}\left( 1-\rho \right) \frac{\left( 1-\rho ^{2T_{2}}\right) }{1+\rho } \\ &=&\frac{2\sigma ^{4}T_{2}}{1+\rho }+\sigma ^{4}\frac{2\rho \left( 1-\rho ^{2T_{2}}\right) }{\left( 1-\rho ^{2}\right) \left( 1+\rho \right) }+\alpha _{i}^{2}\sigma ^{2}\left( 1-\rho ^{T_{2}}\right) \left[ 1-\rho ^{T_{2}}+% \frac{\left( 1-\rho \right) \left( 1+\rho ^{T_{2}}\right) }{1+\rho }\right] , \end{eqnarray*}% and% \begin{eqnarray} &&\omega _{NT}=\lim_{n\rightarrow \infty }\frac{1}{n}\sum_{i=1}^{n}\mathbb{E}% \left( \sum_{t=2}^{T}\Delta u_{it}y_{it-2}\right) ^{2} \notag \\ &=&\frac{2\sigma ^{4}T_{2}}{1+\rho }+\sigma ^{4}\frac{2\rho \left( 1-\rho ^{2T_{2}}\right) }{\left( 1-\rho ^{2}\right) \left( 1+\rho \right) }+\sigma _{\alpha }^{2}\sigma ^{2}\left( 1-\rho ^{T_{2}}\right) \left[ 1-\rho ^{T_{2}}+\frac{\left( 1-\rho \right) \left( 1+\rho ^{T_{2}}\right) }{1+\rho }% \right] . \label{aa9} \end{eqnarray}% From (\ref{aa10}) we have% \begin{equation} \omega _{DT}=\left\{ -\frac{\sigma ^{2}}{1+\rho }\left[ T_{1}-\frac{1-\rho ^{2T_{1}}}{1-\rho ^{2}}\right] +\sigma _{\alpha }^{2}\left[ 1-\rho ^{T_{1}}-% \frac{1-\rho ^{2T_{1}}}{1+\rho }\right] \right\} ^{2}=:v_{DT}^{2} \label{aa11} \end{equation}% which leads to the asymptotic variance% \begin{eqnarray} \omega _{T}^{2} &=&\frac{\omega _{NT}}{\omega _{DT}}=\frac{\frac{2\sigma ^{4}T_{2}}{1+\rho }+\sigma ^{4}\frac{2\rho \left( 1-\rho ^{2T_{2}}\right) }{% \left( 1-\rho ^{2}\right) \left( 1+\rho \right) }+\sigma _{\alpha }^{2}\sigma ^{2}\left( 1-\rho ^{T_{2}}\right) \left[ 1-\rho ^{T_{2}}+\frac{% \left( 1-\rho \right) \left( 1+\rho ^{T_{2}}\right) }{1+\rho }\right] }{% \left\{ -\frac{\sigma ^{2}}{1+\rho }\left[ T_{1}-\frac{1-\rho ^{2T_{1}}}{% 1-\rho ^{2}}\right] +\sigma _{\alpha }^{2}\left[ 1-\rho ^{T_{1}}-\frac{% 1-\rho ^{2T_{1}}}{1+\rho }\right] \right\} ^{2}} \notag \\ &=&\frac{2\left( 1+\rho \right) }{T_{1}}+O\left( \frac{1}{T_{1}^{3/2}}% \right) , \label{aa12} \end{eqnarray}% giving the stated result for (i). The error magnitude as $T\rightarrow \infty $ in the asymptotic expansion (\ref{aa12}) is justified as follows. Since $c<0$ is fixed we have $1-\rho ^{2}=-2\frac{c}{\sqrt{T}}-\frac{c^{2}}{T% }$ and \begin{equation} \frac{1-\rho ^{2T}}{1-\rho ^{2}}=\frac{1-\left[ 1+\frac{c}{\sqrt{T}}\right] ^{2T}}{-2\frac{c}{\sqrt{T}}-\frac{c^{2}}{T}}\thicksim \frac{1-e^{c\frac{2T}{% \sqrt{T}}}}{-2\frac{c}{\sqrt{T}}-\frac{c^{2}}{T}}\thicksim \frac{\sqrt{T}}{% -2c}. \label{aa14} \end{equation}% Then, by direct calculation as $T\rightarrow \infty $% \begin{eqnarray} \frac{\omega _{NT}}{\omega _{DT}} &=&\frac{\frac{2\sigma ^{4}T_{2}}{1+\rho }% +\sigma ^{4}\frac{2\rho }{\left( 1+\rho \right) }\left( \frac{\sqrt{T_{2}}}{% -2c}\right) +\sigma _{\alpha }^{2}\sigma ^{2}\left( 1-e^{cT_{2}/\sqrt{T}% }\right) \left[ 1-e^{cT_{2}/\sqrt{T}}-c\frac{1+e^{cT_{2}/\sqrt{T}}}{\sqrt{T}% \left( 1+\rho \right) }\right] }{\left\{ -\frac{\sigma ^{2}}{1+\rho }\left[ T_{1}-\left( \frac{\sqrt{T}}{-2c}\right) \left( 1-e^{cT_{1}/\sqrt{T}}\right) % \right] +\sigma _{\alpha }^{2}\left[ 1-e^{cT_{1}/\sqrt{T}}-\frac{% 1-e^{2cT_{1}/\sqrt{T}}}{1+\rho }\right] \right\} ^{2}} \notag \\ &=&\frac{2\left( 1+\rho \right) }{T_{1}}+O\left( \frac{1}{T_{1}^{3/2}}% \right) . \label{aa13} \end{eqnarray}% The sequential limit theory (ii) follows directly from (i) and the asymptotic expansion (\ref{aa12}) of $\omega _{T}^{2}.$ If $\rho =1+\frac{c}{T^{\gamma }}$ with $\gamma \in \left( 0,1\right) ,$ it is clear that the above fixed $\left( T,c\right) $ limit theory as $% n\rightarrow \infty $ continues to hold. Then, as $T\rightarrow \infty ,$ we have in place of (\ref{aa14}) \begin{equation*} \frac{1-\rho ^{2T}}{1-\rho ^{2}}=\frac{1-\left[ 1+\frac{c}{T^{\gamma }}% \right] ^{2T}}{-2\frac{c}{T^{\gamma }}-\frac{c^{2}}{T^{\gamma }}}\thicksim \frac{1-e^{2cT^{1-\gamma }}}{-2\frac{c}{T^{\gamma }}-\frac{c^{2}}{T^{\gamma }% }}\thicksim \frac{T^{\gamma }}{-2c} \end{equation*}% leading to \begin{equation*} \frac{\omega _{NT}}{\omega _{DT}}=\frac{2\left( 1+\rho \right) }{T_{1}}% +O\left( \frac{1}{T_{1}^{2-\gamma }}\right) \thicksim \frac{4}{T_{1}}% +O\left( \frac{1}{T_{1}^{2-\gamma }}\right) . \end{equation*}% It follows that (ii) continues to hold with the same convergence rate $\sqrt{% nT}$ and same limit variance $4$ for all $\gamma \in \left( 0,1\right) .$ When $\gamma =1,$ the sequential normal limit theory in (ii) still holds but the variance of the limiting distribution changes. Observe that in this case \begin{equation*} \frac{1-\rho ^{2T}}{1-\rho ^{2}}=\frac{1-\left[ 1+\frac{c}{T}\right] ^{2T}}{% -2\frac{c}{T}-\frac{c^{2}}{T}}\thicksim \frac{1-e^{2c}}{-2\frac{c}{T}-\frac{% c^{2}}{T}}\thicksim \frac{T\left( 1-e^{2c}\right) }{-2c}. \end{equation*}% Using (\ref{aa9}) we then have the following limit behavior as $T\rightarrow \infty $% \begin{equation*} \frac{\omega _{NT}}{\omega _{DT}}\sim \frac{\sigma ^{4}T_{2}+\sigma ^{4}T_{2}% \frac{\left( 1-e^{2c}\right) }{-2c}+O\left( 1\right) }{\left\{ -\frac{\sigma ^{2}T_{1}}{2}\left[ 1-\frac{\left( 1-e^{2c}\right) }{-2c}\right] +O\left( 1\right) \right\} ^{2}}=\frac{4}{T_{1}}\frac{1+\frac{\left( 1-e^{2c}\right) }{-2c}}{\left[ 1-\frac{\left( 1-e^{2c}\right) }{-2c}\right] ^{2}}\left\{ 1+o\left( 1\right) \right\} , \end{equation*}% so that% \begin{equation*} \omega _{T}^{2}=\frac{-8c}{T_{1}}\frac{\left( 1-2c-e^{2c}\right) }{\left( 1+2c-e^{2c}\right) ^{2}}\left\{ 1+o\left( 1\right) \right\} . \end{equation*}% Hence \begin{equation} \sqrt{nT}\left( \rho _{IV}-\rho \right) \underset{\left( T,n\right) _{% \mathrm{\func{seq}}}\rightarrow \infty }{\Rightarrow }N\left( 0,\left( -8c\right) \frac{\left( 1-2c-e^{2c}\right) }{\left( 1+2c-e^{2c}\right) ^{2}}% \right) , \label{aa45} \end{equation}% so the $\sqrt{nT}$ Gaussian limit theory holds but with a different variance when $\rho =1+\frac{c}{T}.$ Observe that \begin{equation*} \left( -8c\right) \frac{\left( 1-2c-e^{2c}\right) }{\left( 1+2c-e^{2c}\right) ^{2}}\sim \frac{8}{c^{2}}\rightarrow \infty \text{ \ as }% c\rightarrow 0, \end{equation*}% indicating that the variance in (\ref{aa45}) diverges and the $\sqrt{nT}$ convergence rate fails as the unit root is approached via $c\rightarrow 0.$ Next, examine the case where $\rho =1+\frac{c}{T^{\gamma }}$ with $\gamma >1$ and $c<0,$ so that $\rho $ is in the immediate vicinity of unity, closer than the LUR case but still satisfying $\rho <1$ for fixed $T.$ In that case, we still have Gaussian limit theory as $n\rightarrow \infty $ because $% \left\vert \rho \right\vert <1.$ To find the limit theory as $\left( T,n\right) _{\mathrm{\func{seq}}}\rightarrow \infty $ we consider the behavior of the numerator and denominator of $\omega _{T}.$ First, note that $\log \left[ 1+\frac{c}{T^{\gamma }}\right] ^{2T}=\frac{2c}{T^{\gamma -1}}-% \frac{c^{2}}{T^{2\gamma -1}}+O\left( \frac{1}{T^{3\gamma -1}}\right) $ so that $\left[ 1+\frac{c}{T^{\gamma }}\right] ^{2T}=1+\frac{2c}{T^{\gamma -1}}-% \frac{c^{2}}{T^{2\gamma -1}}+\frac{1}{2}\left( \frac{2c}{T^{\gamma -1}}% \right) ^{2}+O\left( \frac{1}{T^{2\gamma -2}}\right) $ giving \begin{eqnarray*} &&\frac{1-\rho ^{2T}}{1-\rho ^{2}}=\frac{1-\left[ 1+\frac{c}{T^{\gamma }}% \right] ^{2T}}{-2\frac{c}{T^{\gamma }}-\frac{c^{2}}{T^{2\gamma }}}=\frac{1-% \left[ 1+\frac{2c}{T^{\gamma -1}}-\frac{c^{2}}{T^{2\gamma -1}}+\frac{1}{2}% \left( \frac{2c}{T^{\gamma -1}}\right) ^{2}+O\left( \frac{1}{T^{3\left( \gamma -1\right) }}\right) \right] }{-2\frac{c}{T^{\gamma }}-\frac{c^{2}}{% T^{2\gamma }}} \\ &=&\frac{-2cT+\frac{c^{2}}{T^{\gamma -1}}-\frac{2c^{2}}{T^{\gamma -2}}% +o\left( \frac{1}{T^{\gamma -2}}\right) }{-2c\left\{ 1+\frac{1}{2}\frac{c}{% T^{\gamma }}+O\left( \frac{1}{T^{2\gamma }}\right) \right\} }=\left\{ T+cT^{2-\gamma }+O\left( T^{1-\gamma }\right) \right\} \left\{ 1+\frac{1}{2}% \frac{c}{T^{\gamma }}+O\left( \frac{1}{T^{2\gamma }}\right) \right\} ^{-1} \\ &=&T+cT^{2-\gamma }+O\left( \frac{1}{T^{\gamma -1}}\right) . \end{eqnarray*}% Using this result and $\omega _{DT}=v_{DT}^{2}$ with $v_{DT}=-\frac{\sigma ^{2}}{1+\rho }\left[ T_{1}-\frac{1-\rho ^{2T_{1}}}{1-\rho ^{2}}\right] +\sigma _{\alpha }^{2}\left[ 1-\rho ^{T_{1}}-\frac{1-\rho ^{2T_{1}}}{1+\rho }% \right] ,$ we have \begin{eqnarray*} v_{DT} &=&-\frac{\sigma ^{2}}{1+\rho }\left[ cT_{1}^{2-\gamma }\left\{ 1+o\left( 1\right) \right\} \right] +\sigma _{\alpha }^{2}\left\{ -\left[ \frac{c}{T_{1}^{\gamma -1}}+\frac{T_{1}\left( T_{1}-1\right) }{2}\left( \frac{c}{T_{1}^{\gamma }}\right) ^{2}+O\left( \frac{1}{T_{1}^{3\left( \gamma -1\right) }}\right) \right] \right. \\ &&\left. -\frac{-\frac{2c}{T_{1}^{\gamma -1}}-\frac{T_{1}\left( T_{1}-1\right) }{2}\left( \frac{c}{T_{1}^{\gamma }}\right) ^{2}+O\left( \frac{1}{T_{1}^{3\left( \gamma -1\right) }}\right) }{2+\frac{2c}{% T_{1}^{\gamma -1}}\left\{ 1+o\left( 1\right) \right\} }\right\} \\ &=&-\frac{c\sigma ^{2}}{1+\rho }T_{1}^{2-\gamma }\left\{ 1+o\left( 1\right) \right\} +\sigma _{\alpha }^{2}\left[ -\frac{2c}{T_{1}^{\gamma -1}}-\frac{1}{% 2}\frac{c^{2}}{T_{1}^{2\left( \gamma -1\right) }}+O\left( \frac{1}{% T_{1}^{3\left( \gamma -1\right) }}\right) \right. \\ &&\left. +\left\{ \frac{c}{T_{1}^{\gamma -1}}+\frac{T_{1}\left( T_{1}-1\right) }{4}\left( \frac{c}{T_{1}^{\gamma }}\right) ^{2}+O\left( \frac{1}{T_{1}^{3\left( \gamma -1\right) }}\right) \right\} \left\{ 1+\frac{c% }{T_{1}^{\gamma -1}}\left\{ 1+o\left( 1\right) \right\} \right\} ^{-1}\right] \\ &=&-\frac{c\sigma ^{2}}{1+\rho }T_{1}^{2-\gamma }\left\{ 1+o\left( 1\right) \right\} +\sigma _{\alpha }^{2}\left[ -\frac{c}{T_{1}^{\gamma -1}}-\frac{1}{4% }\frac{c^{2}}{T_{1}^{2\left( \gamma -1\right) }}+O\left( \frac{1}{% T_{1}^{3\left( \gamma -1\right) }}\right) \right] \left\{ 1+o\left( 1\right) \right\} \\ &=&\left\{ -\frac{c\sigma ^{2}}{1+\rho }T_{1}^{2-\gamma }-c\sigma _{\alpha }^{2}\frac{c}{T_{1}^{\gamma -1}}\right\} \left\{ 1+o\left( 1\right) \right\} =-\frac{c\sigma ^{2}}{2}T_{1}^{2-\gamma }\left\{ 1+o\left( 1\right) \right\} , \end{eqnarray*}% so that the denominator is $\omega _{DT}=\frac{c^{2}\sigma ^{4}}{4}% T_{1}^{4-2\gamma }\left\{ 1+o\left( 1\right) \right\} .$ The numerator $% \omega _{NT}$ is \begin{eqnarray*} &&\frac{2\sigma ^{4}T_{2}}{1+\rho }+\sigma ^{4}\frac{2\rho \left( 1-\rho ^{2T_{2}}\right) }{\left( 1-\rho ^{2}\right) \left( 1+\rho \right) }+\sigma _{\alpha }^{2}\sigma ^{2}\left( 1-\rho ^{T_{2}}\right) \left[ 1-\rho ^{T_{2}}+\frac{\left( 1-\rho \right) \left( 1+\rho ^{T_{2}}\right) }{1+\rho }% \right] \\ &=&\sigma ^{4}T_{2}\left\{ 1-\frac{c}{T_{1}^{\gamma -1}}\right\} \left\{ 1+o\left( 1\right) \right\} +\sigma ^{4}\frac{\left( 2+\frac{2c}{T^{\gamma }}% \right) }{\left( 2+\frac{c}{T^{\gamma }}\right) }\left\{ T+cT^{2-\gamma }-% \frac{1}{2}\frac{c}{T^{\gamma -1}}+O\left( \frac{T}{T^{2\left( \gamma -1\right) }}\right) \right\} \\ &&+\sigma _{\alpha }^{2}\sigma ^{2}\left\{ -2cT_{2}-\frac{2T_{2}\left( 2T_{2}-1\right) }{2}\frac{c^{2}}{T_{2}^{\gamma }}+O\left( \frac{T^{3}}{% T^{2\gamma }}\right) \right\} \\ &&\times \left\{ -\left[ \frac{c}{T_{2}^{\gamma -1}}+\frac{T_{2}\left( T_{2}-1\right) }{2}\left( \frac{c}{T_{2}^{\gamma }}\right) ^{2}\left\{ 1+o\left( 1\right) \right\} \right] -\frac{\frac{2c}{T^{\gamma -1}}\left[ 1+% \frac{2c}{T_{2}^{\gamma -1}}+\frac{2T_{2}\left( 2T_{2}-1\right) }{2}\left( \frac{c}{T_{2}^{\gamma }}\right) ^{2}\left\{ 1+o\left( 1\right) \right\} % \right] }{2+\frac{2c}{T^{\gamma -1}}\left\{ 1+o\left( 1\right) \right\} }% \right\} \\ &=&\left\{ 2\sigma ^{4}T_{2}+2\sigma _{\alpha }^{2}\sigma ^{2}\left( -c\right) T\left( \frac{-2c}{T_{2}^{\gamma -1}}\right) \right\} \left[ 1+o\left( 1\right) \right] =2\sigma ^{4}T_{2}\left[ 1+o\left( 1\right) % \right] . \end{eqnarray*}% Combining these results we obtain% \begin{equation*} \omega _{T}^{2}=\frac{\omega _{NT}}{\omega _{DT}}=\frac{2\sigma ^{4}T_{2}% \left[ 1+o\left( 1\right) \right] }{\left\{ \frac{c^{2}\sigma ^{4}}{2}% T_{1}^{4-2\gamma }\left\{ 1+o\left( 1\right) \right\} \right\} ^{2}\left\{ 1+o\left( 1\right) \right\} }=\frac{8T_{2}}{c^{2}T_{1}^{2\left( 2-\gamma \right) }}\left\{ 1+o\left( 1\right) \right\} . \end{equation*}% It now follows that for $\rho =1+\frac{c}{T^{\gamma }}$ with $c<0$ fixed and $\gamma >1$% \begin{equation*} \sqrt{nT^{3-2\gamma }}\left( \rho _{IV}-\rho \right) \underset{\left( T,n\right) _{\mathrm{\func{seq}}}\rightarrow \infty }{\Rightarrow }N\left( 0,% \frac{8}{c^{2}}\right) . \end{equation*}% Hence when $\rho $ is closer to unity than a local unit root, the $\sqrt{nT}$ rate of convergence is reduced to $\sqrt{n}T^{\frac{3-2\gamma }{2}}.$ When $% \gamma =\frac{3}{2}$ the rate of convergence is simply $\sqrt{n}$ and for $% \gamma >\frac{3}{2}$ the large $n$ Gaussian asymptotic distribution $N\left( 0,\omega _{T}^{2}\right) $ diverges as $T\rightarrow \infty $ because $% \omega _{T}^{2}=\frac{8T_{2}}{c^{2}T_{1}^{2\left( 2-\gamma \right) }}\left\{ 1+o\left( 1\right) \right\} $ diverges with $T.$ In this event, sequential $% \left( T,n\right) _{\mathrm{\func{seq}}}\rightarrow \infty $ asymptotics fail. In effect, the convergence rate is slower than $\sqrt{n}$ and the non-Gaussian Cauchy limit theory cannot be captured in these $\left( T,n\right) _{\mathrm{\func{seq}}}$ directional sequential asymptotics even though $\rho =1+\frac{c}{T^{\gamma }}$ with $\gamma >1$ is in closer proximity to a unit root than the usual local unit root case with $\gamma =1. $ \vspace{0.08in} \end{proof} \begin{proof}[Proof of Theorem 5] In the mildly integrated case where $\rho =1+\frac{c}{\sqrt{T}}$ we have $% y_{it}=-\frac{\alpha _{i}c}{\sqrt{T}}+\left( 1+\frac{c}{\sqrt{T}}\right) y_{it-1}+u_{it}$ and $\Delta y_{it}=\rho \Delta y_{it-1}+\Delta u_{it}$ so that $\Delta y_{it}=-\frac{\alpha _{i}c}{\sqrt{T}}+\frac{c}{\sqrt{T}}% y_{it-1}+u_{it}=\alpha _{i}\left( 1-\rho \right) +\left( \rho -1\right) y_{it-1}+u_{it}.$ By partial summation, as shown above, we have $% \sum_{t=2}^{T}\Delta u_{it}y_{it-2}=u_{iT}y_{iT-2}-u_{i1}y_{i0}-\sum_{t=3}^{T}u_{it-1}\Delta y_{it-2}$, so that% \begin{equation} \rho _{IV}-\rho =\frac{\sum_{i=1}^{n}\left\{ \left( u_{iT}y_{iT-2}-u_{i1}y_{i0}\right) -\sum_{t=3}^{T}u_{it-1}\left[ -\frac{% \alpha _{i}c}{\sqrt{T}}+\frac{c}{\sqrt{T}}y_{it-3}+u_{it-2}\right] \right\} }{\sum_{i=1}^{n}\sum_{t=2}^{T}\left\{ -\frac{\alpha _{i}c}{\sqrt{T}}+\frac{c% }{\sqrt{T}}y_{it-2}+u_{it-1}\right\} y_{it-2}}. \label{aa19} \end{equation}% Rescaling and using $y_{i0}=0$ gives \begin{equation} \sqrt{T}\left( \rho _{IV}-\rho \right) =\frac{\sum_{i=1}^{n}\frac{1}{\sqrt{T}% }\left\{ u_{iT}y_{iT-2}-\sum_{t=3}^{T}u_{it-1}\left[ -\frac{\alpha _{i}c}{% \sqrt{T}}+\frac{c}{\sqrt{T}}y_{it-3}+u_{it-2}\right] \right\} }{% \sum_{i=1}^{n}\frac{1}{T}\sum_{t=2}^{T}\left\{ -\frac{\alpha _{i}c}{\sqrt{T}}% +\frac{c}{\sqrt{T}}y_{it-2}+u_{it-1}\right\} y_{it-2}}. \label{aa16} \end{equation}% Since $\frac{1}{\sqrt{T}}\sum_{t=2}^{T}u_{it-1}u_{it-2}\Rightarrow G_{i}\equiv N\left( 0,\sigma ^{4}\right) ,$ $\frac{1}{T}% \sum_{t=2}^{T}u_{it-1}=o_{p}\left( 1\right) ,$ and $\frac{1}{T}% \sum_{t=2}^{T}u_{it-1}y_{it-3}=o_{p}\left( 1\right) $ -- see (\ref{aa30}) below -- the numerator is% \begin{eqnarray} &&\sum_{i=1}^{n}\frac{1}{\sqrt{T}}\left\{ u_{iT}y_{iT-2}-\sum_{t=3}^{T}u_{it-1}\left[ -\frac{\alpha _{i}c}{\sqrt{T}}+% \frac{c}{\sqrt{T}}y_{it-3}+u_{it-2}\right] \right\} \notag \\ &=&-\sum_{i=1}^{n}\frac{1}{\sqrt{T}}\sum_{t=3}^{T}u_{it-1}u_{it-2}+o_{p}% \left( 1\right) \Rightarrow -\sum_{i=1}^{n}G_{i}\left( 1\right) . \label{aa17} \end{eqnarray}% Using Phillips and Magdalinos (2007, theorem 3.2) we find that \begin{equation} T^{-3/2}\sum_{t=2}^{T}y_{it}^{2}\rightarrow _{p}\frac{\sigma ^{2}}{-2c}% ,T^{-3/4}\sum_{t=2}^{T}y_{it-1}u_{it}\Rightarrow N\left( 0,\frac{\sigma ^{4}% }{-2c}\right) ,\text{ and }T^{-3/2}\sum_{t=2}^{T}y_{it}=o_{p}\left( 1\right) . \label{aa30} \end{equation}% The denominator of (\ref{aa16}) therefore satisfies \begin{equation} \sum_{i=1}^{n}\frac{1}{T}\sum_{t=2}^{T}\left\{ -\frac{\alpha _{i}c}{\sqrt{T}}% +\frac{c}{\sqrt{T}}y_{it-2}+u_{it-1}\right\} y_{it-2}\rightarrow _{p}\sum_{i=1}^{n}\left\{ c\frac{\sigma ^{2}}{-2c}\right\} . \label{aa18} \end{equation}% Hence, using (\ref{aa17}) and (\ref{aa18}) we have$\sqrt{T}\left( \rho _{IV}-\rho \right) \underset{T\rightarrow \infty }{\Rightarrow }\frac{2}{% n\sigma ^{2}}\sum_{i=1}^{n}G_{i}=\frac{2}{n}\sum_{i=1}^{n}\zeta _{i}$ where $% \zeta _{i}\thicksim _{iid}N\left( 0,1\right) .$ Then \begin{equation} \sqrt{nT}\left( \rho _{IV}-\rho \right) \underset{T\rightarrow \infty }{% \Rightarrow }\frac{2}{\sqrt{n}}\sum_{i=1}^{n}\zeta _{i}\underset{% n\rightarrow \infty }{\Rightarrow }N\left( 0,4\right) , \label{aa20} \end{equation}% which gives (i) and then leads directly to the sequential limit $\sqrt{nT}% \left( \rho _{IV}-\rho \right) \underset{\left( n,T\right) _{\func{seq}% }\rightarrow \infty }{\Rightarrow }N\left( 0,4\right) .$\vspace{0.08in} \end{proof} \begin{proof}[Proof of Theorem 6] The proof follows the same lines as the proof of Theorem 3 above. As before, we define the vector of standardized components appearing in the numerator and denominator of $\sqrt{T}\left( \rho _{IV}-\rho \right) $ in (\ref{aa16}) \begin{equation*} X_{nT}=\left( X_{1nT},X_{2nT}\right) ^{\prime }:=\left( n^{-1/2}\sum_{i=1}^{n}Y_{1iT},n^{-1}\sum_{i=1}^{n}Y_{2iT}\right) , \end{equation*}% where $Y_{iT}=\left( Y_{1iT},Y_{2iT}\right) ^{\prime }$ with \begin{eqnarray*} Y_{1iT} &=&\frac{1}{\sqrt{T}}\left\{ u_{iT}y_{iT-2}-\sum_{t=3}^{T}u_{it-1}% \left[ -\frac{\alpha _{i}c}{\sqrt{T}}+\frac{c}{\sqrt{T}}y_{it-3}+u_{it-2}% \right] \right\} \underset{T\rightarrow \infty }{\Rightarrow }% Y_{1i}:=-G_{i}\left( 1\right) , \\ Y_{2iT} &=&\frac{1}{T}\sum_{t=2}^{T}\left\{ -\frac{\alpha _{i}c}{\sqrt{T}}+% \frac{c}{\sqrt{T}}y_{it-2}+u_{it-1}\right\} y_{it-2}\underset{T\rightarrow \infty }{\Rightarrow }Y_{2i}:=c\frac{\sigma ^{2}}{-2c}. \end{eqnarray*}% From (\ref{aa17}) and (\ref{aa18}) we have the sequential convergence \begin{eqnarray} X_{nT}\underset{T\rightarrow \infty }{\Rightarrow }X_{n} &:&=\left( -n^{-1/2}\sum_{i=1}^{n}G_{i}\left( 1\right) ,n^{-1}\sum_{i=1}^{n}\left\{ c% \frac{\sigma ^{2}}{-2c}\right\} \right) ^{\prime } \notag \\ \underset{n\rightarrow \infty }{\Rightarrow }X &:&=\left( \sigma ^{2}\zeta ,-% \frac{\sigma ^{2}}{2}\right) ,\text{ where }\zeta =N\left( 0,1\right) , \label{aa21} \end{eqnarray}% which in turn implies the sequential limit $\sqrt{nT}\left( \rho _{IV}-\rho \right) \underset{n\rightarrow \infty ,T\rightarrow \infty }{\Rightarrow }% N\left( 0,4\right) $ given in (\ref{gg15}). Since $X_{nT}\underset{% T\rightarrow \infty }{\Rightarrow }X_{n}\underset{n\rightarrow \infty }{% \Rightarrow }X$ sequentially, joint weak convergence $X_{nT}\Rightarrow X$ as $\left( n,T\right) \rightarrow \infty $ holds in the same manner as Theorem 3 with only minor definitional changes. First, $Y_{iT}$ is integrable just as before. To show Lemma A(i) holds, observe that% \begin{eqnarray*} &&\mathbb{E}\left\Vert Y_{iT}\right\Vert ^{2}=\mathbb{E}Y_{1iT}^{2}+\mathbb{E% }Y_{2iT}^{2} \\ &=&\frac{1}{T}\mathbb{E}\left\{ u_{iT}y_{iT-2}-\sum_{t=3}^{T}u_{it-1}\left( -% \frac{\alpha _{i}c}{\sqrt{T}}+\frac{c}{\sqrt{T}}y_{it-3}+u_{it-2}\right) \right\} ^{2} \\ &&+\frac{1}{T^{2}}\mathbb{E}\left\{ \sum_{t=2}^{T}\left( -\frac{\alpha _{i}c% }{\sqrt{T}}+\frac{c}{\sqrt{T}}y_{it-2}+u_{it-1}\right) y_{it-2}\right\} ^{2} \\ &=&\frac{\sigma ^{2}}{T}\mathbb{E}y_{iT-2}^{2}+\frac{1}{T}\mathbb{E}\left\{ \sum_{t=3}^{T}u_{it-1}\left( -\frac{\alpha _{i}c}{\sqrt{T}}+\frac{c}{\sqrt{T}% }y_{it-3}+u_{it-2}\right) \right\} ^{2} \\ &=&\frac{\sigma ^{2}}{T}\mathbb{E}y_{iT-2}^{2}+\frac{1}{T}\mathbb{E}\left( \sum_{t=3}^{T}u_{it-1}u_{it-2}\right) ^{2}+\frac{c^{2}\alpha _{i}^{2}}{T^{2}}% \mathbb{E}\left( \sum_{t=3}^{T}u_{it-1}\right) ^{2}+\frac{c^{2}}{T^{2}}% \mathbb{E}\left( \sum_{t=3}^{T}u_{it-1}y_{it-3}\right) ^{2} \\ &&-\frac{2\alpha _{i}c}{T^{3/2}}\mathbb{E}\left( \sum_{t=3}^{T}u_{it-1}\sum_{s=3}^{T}u_{is-2}\right) -\frac{2\alpha _{i}c^{2}% }{T^{2}}\mathbb{E}\left( \sum_{t=3}^{T}u_{it-1}\sum_{s=3}^{T}y_{is-3}\right) +\frac{2c}{T^{3/2}}\mathbb{E}\left( \sum_{t=3}^{T}u_{it-1}u_{it-2}\sum_{s=3}^{T}y_{is-3}\right) \end{eqnarray*}% \begin{eqnarray*} &=&\frac{\sigma ^{4}}{-2c}\frac{\sqrt{T_{2}}}{T}+\sigma ^{4}\frac{T_{2}}{T}% +O\left( \frac{1}{T}\right) +\frac{c^{2}\sigma ^{2}}{T^{2}}\sum_{t=3}^{T}% \mathbb{E}y_{it-3}^{2}+O\left( \frac{1}{\sqrt{T}}\right) +O\left( \frac{1}{T}% \right) +O\left( \frac{1}{\sqrt{T}}\right) \\ &=&\sigma ^{4}\frac{T_{2}}{T}+o\left( 1\right) , \end{eqnarray*}% since from (\ref{aa14}) $\mathbb{E}\left( y_{it}^{2}\right) =\sigma ^{2}% \frac{1-\rho ^{2t}}{1-\rho ^{2}}+\alpha _{i}^{2}\left( 1-\rho ^{t}\right) ^{2}=\sigma ^{2}\frac{\sqrt{t}}{-2c}\left\{ 1+o\left( 1\right) \right\} .$ Then $\mathbb{E}\left\Vert Y_{iT}\right\Vert ^{2}<\infty $ and we deduce that \begin{equation*} \underset{n,T\rightarrow \infty }{\lim \sup }\frac{1}{n}\sum_{i=1}^{n}% \mathbb{E}\left\Vert Y_{iT}\right\Vert =\underset{T\rightarrow \infty }{\lim \sup }\mathbb{E}\left\Vert Y_{iT}\right\Vert \leq \underset{T\rightarrow \infty }{\lim \sup }\left( \mathbb{E}\left\Vert Y_{iT}\right\Vert ^{2}\right) ^{1/2}<\infty , \end{equation*}% as required. Condition (ii) holds, as we again have $\mathbb{E}Y_{iT}=% \mathbb{E}Y_{i}=0;$ and condition (iii)\ and (iv) hold because $\sup_{T}% \mathbb{E}\left\Vert Y_{iT}\right\Vert ^{2}<\infty $ and $\mathbb{E}% \left\Vert Y_{i}\right\Vert ^{2}<\infty .$ We then have joint weak convergence% \begin{equation*} X_{nT}=n^{-1/2}\sum_{i=1}^{n}Y_{iT}\underset{n,T\rightarrow \infty }{% \Rightarrow }X:=\left( \sigma ^{2}\zeta ,\frac{\sigma ^{2}}{2}\right) , \end{equation*}% irrespective of the divergence rates of $n$ and $T$ to infinity. By continuous mapping, the required result follows for the IV estimator so that $\sqrt{T}\left( \rho _{IV}-\rho \right) \underset{n,T\rightarrow \infty }{% \Rightarrow }N\left( 0,4\right) $ holds jointly as $\left( n,T\right) \rightarrow \infty $ irrespective of the order and rates of divergence.% \vspace{0.08in} \end{proof} \begin{proof}[Proof of Theorem 7] We have $\rho =1+\frac{c}{T^{\gamma }}$\textit{\ }for some fixed\textit{\ }$% c<0$ and let $T\rightarrow \infty .$ In this case, $y_{it}=-\frac{\alpha _{i}c}{T^{\gamma }}+\left( 1+\frac{c}{T^{\gamma }}\right) y_{it-1}+u_{it}$ and $\Delta y_{it}=\rho \Delta y_{it-1}+\Delta u_{it}$ so that $\Delta y_{it}=-\frac{\alpha _{i}c}{T^{\gamma }}+\frac{c}{T^{\gamma }}% y_{it-1}+u_{it}.$ As before, we have% \begin{equation} \sqrt{T}\left( \rho _{IV}-\rho \right) =\frac{\frac{1}{\sqrt{T}}% \sum_{i=1}^{n}\left\{ \left( u_{iT}y_{iT-2}-u_{i1}y_{i0}\right) -\sum_{t=3}^{T}u_{it-1}\left[ -\frac{\alpha _{i}c}{T^{\gamma }}+\frac{c}{% T^{\gamma }}y_{it-3}+u_{it-2}\right] \right\} }{\frac{1}{T}% \sum_{i=1}^{n}\sum_{t=2}^{T}\left\{ -\frac{\alpha _{i}c}{T^{\gamma }}+\frac{c% }{T^{\gamma }}y_{it-2}+u_{it-1}\right\} y_{it-2}}. \label{aa23} \end{equation}% We use the following results from Phillips and Magdalinos (2007) and Magdalinos and Phillips (2009), which hold for all $\gamma \in \left( 0,1\right) ,$ \begin{equation} T^{-1-\gamma }\sum_{t=2}^{T}y_{it}^{2}\rightarrow _{p}\frac{\sigma ^{2}}{-2c}% ,T^{-\left( 1+\gamma \right) /2}\sum_{t=2}^{T}y_{it-1}u_{it}\Rightarrow N\left( 0,\frac{\sigma ^{4}}{-2c}\right) ,\text{ and }T^{-1/2-\gamma }\sum_{t=2}^{T}y_{it}=O_{p}\left( 1\right) . \label{aa22} \end{equation}% Then, since $\frac{1}{\sqrt{T}}\sum_{t=2}^{T}u_{it-1}u_{it-2}\Rightarrow G_{i}\equiv N\left( 0,\sigma ^{4}\right) ,$ $\frac{1}{T^{1/2+\gamma }}% \sum_{t=2}^{T}u_{it-1}=o_{p}\left( 1\right) ,$ and $\frac{1}{T^{1/2+\gamma }}% \sum_{t=2}^{T}u_{it-1}y_{it-3}=o_{p}\left( 1\right) $ when $\gamma \in \left( 0,1\right) ,$ the numerator of (\ref{aa23}) is \begin{eqnarray*} &&\sum_{i=1}^{n}\frac{1}{\sqrt{T}}\left\{ u_{iT}y_{iT-2}-\sum_{t=3}^{T}u_{it-1}\left[ -\frac{\alpha _{i}c}{T^{\gamma }}% +\frac{c}{T^{\gamma }}y_{it-3}+u_{it-2}\right] \right\} \\ &=&-\sum_{i=1}^{n}\frac{1}{\sqrt{T}}\sum_{t=3}^{T}u_{it-1}u_{it-2}+o_{p}% \left( 1\right) \Rightarrow -\sum_{i=1}^{n}G_{i}\left( 1\right) . \end{eqnarray*}% Using (\ref{aa22}), we find that the denominator of (\ref{aa23}) satisfies \begin{equation*} \sum_{i=1}^{n}\frac{1}{T}\sum_{t=2}^{T}\left\{ -\frac{\alpha _{i}c}{% T^{\gamma }}+\frac{c}{T^{\gamma }}y_{it-2}+u_{it-1}\right\} y_{it-2}\rightarrow _{p}\sum_{i=1}^{n}\left\{ c\frac{\sigma ^{2}}{-2c}% \right\} =-\frac{\sigma ^{2}n}{2}. \end{equation*}% Hence, as $T\rightarrow \infty $ \begin{equation*} \sqrt{T}\left( \rho _{IV}-\rho \right) \underset{T\rightarrow \infty }{% \Rightarrow }\frac{-\sum_{i=1}^{n}G_{i}}{-\frac{\sigma ^{2}}{2}n}=\frac{% \sigma ^{2}\sum_{i=1}^{n}\zeta _{i}}{-\frac{\sigma ^{2}}{2}n},\text{ \ where }\zeta _{i}\thicksim _{iid}N\left( 0,1\right) . \end{equation*}% Then, as $T\rightarrow \infty $ is followed by $n\rightarrow ,$ we have \begin{equation*} \sqrt{nT}\left( \rho _{IV}-\rho \right) \underset{T\rightarrow \infty }{% \Rightarrow }\frac{2}{\sqrt{n}}\sum_{i=1}^{n}\zeta _{i}\underset{% n\rightarrow \infty }{\Rightarrow }N\left( 0,4\right) ,\text{ for all }% \gamma \in \left( 0,1\right) . \end{equation*} Next consider the case $\gamma =1.$ The numerator of (\ref{aa23}) is then \begin{eqnarray*} &&\sum_{i=1}^{n}\frac{1}{\sqrt{T}}\left\{ u_{iT}y_{iT-2}-\sum_{t=3}^{T}u_{it-1}\left[ -\frac{\alpha _{i}c}{T}+\frac{c}{% T}y_{it-3}+u_{it-2}\right] \right\} \\ &=&\sum_{i=1}^{n}\frac{1}{\sqrt{T}}\left\{ u_{iT}y_{iT-2}-\sum_{t=3}^{T}u_{it-1}u_{it-2}\right\} +o_{p}\left( 1\right) \underset{T\rightarrow \infty }{\Rightarrow }u_{i\infty }K_{ci}\left( 1\right) -\sum_{i=1}^{n}G_{i}\left( 1\right) , \end{eqnarray*}% since by standard functional limit theory for near integrated processes (Phillips, 1987b) we have% \begin{equation*} \left( \frac{1}{T^{1/2}}y_{iT},\frac{1}{T}\sum_{t=2}^{T}y_{it-1}u_{it}% \right) \underset{T\rightarrow \infty }{\Rightarrow }\left( K_{ci}\left( r\right) ,\int_{0}^{1}K_{ci}dB_{i}\right) , \end{equation*}% where $B_{i}\left( r\right) =:\sigma W_{i}\left( r\right) $ are $iid$ Brownian motions with common variance $\sigma ^{2},$ and $K_{ci}\left( r\right) =\int_{0}^{r}e^{c\left( r-s\right) }dB_{i}\left( s\right) =:\sigma J_{ci}\left( r\right) $ is a linear diffusion. The denominator of (\ref{aa23}% ) satisfies \begin{equation*} \sum_{i=1}^{n}\frac{1}{T}\sum_{t=2}^{T}\left\{ -\frac{\alpha _{i}c}{T}+\frac{% c}{T}y_{it-2}+u_{it-1}\right\} y_{it-2}\underset{T\rightarrow \infty }{% \Rightarrow }\sum_{i=1}^{n}\left\{ c\int_{0}^{1}K_{ci}\left( r\right) ^{2}dr+\int_{0}^{1}K_{ci}dB_{i}\right\} . \end{equation*}% Hence% \begin{equation} \sqrt{T}\left( \rho _{IV}-\rho \right) \underset{T\rightarrow \infty }{% \Rightarrow }\frac{\sum_{i=1}^{n}\left\{ u_{i\infty }K_{ci}\left( 1\right) -\sum_{i=1}^{n}G_{i}\right\} }{\sum_{i=1}^{n}\left\{ c\int_{0}^{1}K_{ci}\left( r\right) ^{2}dr+\int_{0}^{1}K_{ci}\left( r\right) dB_{i}\right\} }=\frac{\sum_{i=1}^{n}\left\{ \left( \sigma ^{-1}u_{i\infty }\right) J_{ci}\left( 1\right) -\zeta _{i}\right\} }{\sum_{i=1}^{n}\left\{ c\int_{0}^{1}J_{ci}\left( r\right) ^{2}dr+\int_{0}^{1}J_{ci}dW_{i}\right\} }, \label{aa24} \end{equation}% where the $\zeta _{i}\thicksim _{iid}N\left( 0,1\right) $ and are independent of the $W_{i}$ and $u_{i\infty }$ for all $i.$ This gives the first part of (ii). Scaling the numerator and denominator of (\ref{aa24}), noting that $\int_{0}^{1}J_{ci}\left( r\right) dW_{i}$ has zero mean and finite variance, and using the independence of $\zeta _{i},u_{i\infty },$ and $W_{i},$ we obtain% \begin{eqnarray*} \sqrt{nT}\left( \rho _{IV}-\rho \right) \underset{T\rightarrow \infty }{% \Rightarrow } &&\frac{\frac{1}{\sqrt{n}}\sum_{i=1}^{n}\left\{ \left( \sigma ^{-1}u_{i\infty }\right) J_{ci}\left( 1\right) -\zeta _{i}\right\} }{\frac{1% }{n}\sum_{i=1}^{n}\left\{ c\int_{0}^{1}J_{ci}\left( r\right) ^{2}dr+\int_{0}^{1}J_{ci}\left( r\right) dW_{i}\right\} } \\ \underset{n\rightarrow \infty }{\Rightarrow }\frac{N\left( 0,\frac{% 1-2c-e^{2c}}{-2c}\right) }{c\mathbb{E}\left( \int_{0}^{1}J_{ci}\left( r\right) ^{2}dr\right) } &=&N\left( 0,-8c\frac{1-2c-e^{2c}}{\left( e^{2c}-1-2c\right) ^{2}}\right) , \end{eqnarray*}% since, using results in Phillips (1987b), we have $\mathbb{E}\left( \int_{0}^{1}J_{ci}\left( r\right) ^{2}dr\right) =\frac{e^{2c}-1-2c}{\left( 2c\right) ^{2}}$ and \begin{equation*} \mathbb{E}\left\{ \left( \sigma ^{-1}u_{i\infty }\right) J_{ci}\left( 1\right) -\zeta _{i}\right\} ^{2}=\mathbb{E}\left( \sigma ^{-1}u_{i\infty }\right) ^{2}\mathbb{E}J_{ci}\left( 1\right) ^{2}+\mathbb{E}\zeta _{i}^{2}=1+% \frac{1-e^{2c}}{-2c}=\frac{1-2c-e^{2c}}{-2c}. \end{equation*}% Hence, when $\gamma =1,$ we have% \begin{equation} \sqrt{nT}\left( \rho _{IV}-\rho \right) \underset{\left( n,T\right) \rightarrow \infty }{\Rightarrow }N\left( 0,\left( -8c\right) \frac{% 1-2c-e^{2c}}{\left( e^{2c}-1-2c\right) ^{2}}\right) \label{aa36} \end{equation}% From Lemma 2 of Phillips (1987b)\ we have \begin{equation*} \left( \left( -2c\right) \int_{0}^{1}J_{ci}\left( r\right) ^{2}dr,\left( -2c\right) ^{1/2}\int_{0}^{1}J_{ci}\left( r\right) dW_{i}\right) \underset{% c\rightarrow 0}{\Rightarrow }\left( 1,Z_{i}\right) ,\text{ \ }Z_{i}\thicksim _{iid}N\left( 0,1,\right) \end{equation*}% and $\frac{1-2c-e^{2c}}{-2c}=2\left\{ 1+o\left( 1\right) \right\} $ as $% c\rightarrow 0,$ so that \begin{equation} \left( -8c\right) \frac{1-2c-e^{2c}}{\left( e^{2c}-1-2c\right) ^{2}}% \thicksim \left( -8c\right) \frac{\left( -4c\right) }{\left\{ \frac{1}{2}% \left( 2c\right) ^{2}\right\} ^{2}}=\frac{8}{c^{2}}\text{ \ for small }c\sim 0 \label{aa37} \end{equation}% which explodes as $c\rightarrow 0,$ consonant with the unit root case where we only have $\sqrt{T}$ convergence. Observe that both (\ref{aa36}) and (\ref% {aa37}) correspond to earlier results with the reverse order of sequential convergence $\left( T,n\right) _{\func{seq}}\rightarrow \infty .$ Next suppose $\gamma >1$ so that $\rho =1+\frac{c}{T^{\gamma }}$ is closer to unity than the LUR case with $\gamma =1.$ In this case, the numerator and denominator of (\ref{aa23}) have the same limits as in the unit root case, viz.,% \begin{eqnarray*} &&\sum_{i=1}^{n}\frac{1}{\sqrt{T}}\left\{ u_{iT}y_{iT-2}-\sum_{t=3}^{T}u_{it-1}\left[ -\frac{\alpha _{i}c}{T^{\gamma }}% +\frac{c}{T^{\gamma }}y_{it-3}+u_{it-2}\right] \right\} \\ &=&\sum_{i=1}^{n}\frac{1}{\sqrt{T}}\left\{ u_{iT}y_{iT-2}-\sum_{t=3}^{T}u_{it-1}u_{it-2}\right\} +o_{p}\left( 1\right) \underset{T\rightarrow \infty }{\Rightarrow }\sum_{i=1}^{n}\left\{ u_{i\infty }B_{i}\left( 1\right) -G_{i}\right\} , \end{eqnarray*}% and% \begin{equation*} \sum_{i=1}^{n}\frac{1}{T}\sum_{t=2}^{T}\left\{ -\frac{\alpha _{i}c}{% T^{\gamma }}+\frac{c}{T^{\gamma }}y_{it-2}+u_{it-1}\right\} y_{it-2}\underset% {T\rightarrow \infty }{\Rightarrow }\sum_{i=1}^{n}\left\{ \int_{0}^{1}B_{i}dB_{i}\right\} . \end{equation*}% Then \begin{equation*} \sqrt{T}\left( \rho _{IV}-\rho \right) \underset{T\rightarrow \infty }{% \Rightarrow }\frac{\sum_{i=1}^{n}\left\{ u_{i\infty }B_{i}\left( 1\right) -G_{i}\right\} }{\sum_{i=1}^{n}\int_{0}^{1}B_{i}dB_{i}}=\frac{\frac{1}{\sqrt{% n}}\sum_{i=1}^{n}\left\{ \left( \sigma ^{-1}u_{i\infty }\right) W_{i}\left( 1\right) -\zeta _{i}\right\} }{\frac{1}{\sqrt{n}}\sum_{i=1}^{n}% \int_{0}^{1}W_{i}dW_{i}}\underset{n\rightarrow \infty }{\Rightarrow }2% \mathbb{C}, \end{equation*}% since $\left( \frac{1}{\sqrt{n}}\sum_{i=1}^{n}\left\{ \left( \sigma ^{-1}u_{i\infty }\right) W_{i}\left( 1\right) -\zeta _{i}\right\} ,\frac{1}{% \sqrt{n}}\sum_{i=1}^{n}\int_{0}^{1}W_{i}dW_{i}\right) \underset{n\rightarrow \infty }{\Rightarrow }N\left( 0,\left[ \begin{array}{cc} 2 & 0 \\ 0 & 1/2% \end{array}% \right] \right) .$ \newline \end{proof} \section{References} \begin{description} \item Magdalinos, T. and P. C. B. Phillips (2009). \textquotedblleft Limit theory for cointegrated systems with moderately integrated and moderately explosive regressors\textquotedblright , 25, 482-526. \item Phillips, P. C. B. (1987a). \textquotedblleft Time Series Regression with a Unit Root,\textquotedblright\ \textit{Econometrica,} 55, 277--302. \item Phillips, P. C. B. (1987b). \textquotedblleft Towards a Unified Asymptotic Theory for Autoregression,\textquotedblright\ \textit{Biometrika} 74, 535--547. \item Phillips, P. C. B. (1989). \textquotedblleft Partially identified econometric models,\textquotedblright\ \textit{Econometric Theory} 5, 181--240. \item Phillips, P. C. B., T. Magdalinos (2007), "Limit Theory for Moderate Deviations from a Unit Root," \textit{Journal of Econometrics} 136, 115-130. \item Phillips, P.C.B. and H.R. Moon (1999) : Linear Regression Limit Theory for Nonstationary Panel Data,\textquotedblright\ \textit{Econometrica, }67, 1057-1111. \end{description} \end{document}