Supplement to: Dynamic Panel Anderson-Hsiao Estimation with Roots Near Unity*

Peter C. B. Phillips
Yale University, University of Auckland, Singapore Management University $\xi^{\mathcal{G}}$ University of Southampton

July 25, 2015

This supplement provides detailed derivations and proofs of the results in the paper "Dynamic Panel Anderson-Hsiao Estimation with Roots Near Unity".

Proof of Theorem 1. Part (i) follows by the Lindeberg Lévy CLT

$$
\begin{equation*}
\frac{1}{\sqrt{n}} \sum_{i=1}^{n}\binom{\sum_{t=2}^{T} \Delta u_{i t} y_{i t-2}}{\sum_{t=2}^{T} \Delta y_{i t-1} y_{i t-2}} \Rightarrow N\left(0, V_{T}\right), \tag{0.1}
\end{equation*}
$$

with

$$
V_{T}=\left(\begin{array}{cc}
\mathbb{E}\left(\sum_{t=2}^{T} \Delta u_{i t} y_{i t-2}\right)^{2} & \mathbb{E}\left(\sum_{t=2}^{T} \Delta u_{i t} y_{i t-2}\right)\left(\sum_{t=2}^{T} \Delta y_{i t-1} y_{i t-2}\right) \tag{0.2}\\
\mathbb{E}\left(\sum_{t=2}^{T} \Delta u_{i t} y_{i t-2}\right)\left(\sum_{t=2}^{T} \Delta y_{i t-1} y_{i t-2}\right) & \mathbb{E}\left(\sum_{t=2}^{T} \Delta y_{i t-1} y_{i t-2}\right)^{2}
\end{array}\right)
$$

To evaluate it is convenient to use partial summation

$$
\begin{equation*}
\sum_{t=2}^{T} \Delta u_{i t} y_{i t-2}=u_{i T} y_{i T-2}-u_{i 1} y_{i 0}-\sum_{t=3}^{T} u_{i t-1} \Delta y_{i t-2} \tag{0.3}
\end{equation*}
$$

To compute V_{T}, note that

$$
\mathbb{E}\left(\sum_{t=2}^{T} \Delta u_{i t} y_{i t-2}\right)^{2}=\mathbb{E}\left\{\left(u_{i T} y_{i T-2}-u_{i 1} y_{i 0}\right)-\sum_{t=3}^{T} u_{i t-1} u_{i t-2}\right\}^{2}
$$

[^0]\[

$$
\begin{aligned}
& =\mathbb{E}\left(u_{i T} y_{i T-2}-u_{i 1} y_{i 0}\right)^{2}-2 \mathbb{E}\left\{\left(u_{i T} y_{i T-2}-u_{i 1} y_{i 0}\right)\left(\sum_{t=3}^{T} u_{i t-1} u_{i t-2}\right)\right\}+\mathbb{E}\left(\sum_{t=3}^{T} u_{i t-1} u_{i t-2}\right)^{2} \\
& =\mathbb{E} u_{i T}^{2} y_{i T-2}^{2}+\mathbb{E} u_{i 1}^{2} y_{i 0}^{2}+\sum_{t=3}^{T} \mathbb{E}\left(u_{i t-1}^{2} u_{i t-2}^{2}\right) \\
& =\sigma^{4} T_{2}+2 \sigma^{2} \mathbb{E} y_{i 0}^{2}+\sigma^{4} T_{2}=2 \sigma^{4} T_{2},
\end{aligned}
$$
\]

the final line following if the initial condition $y_{i 0}=0$, which will be assumed in the calculations below. The large n asymptotic results will continue to hold for $y_{i 0}=O_{p}(1)$ even for finite T with some obvious minor adjustments to the variance matrix expressions involving quantities of $O(1)$ in T. Next

$$
\begin{aligned}
\mathbb{E}\left(\sum_{t=2}^{T} \Delta y_{i t-1} y_{i t-2}\right)^{2} & =\mathbb{E}\left(\sum_{t=2}^{T} u_{i t-1} y_{i t-2}\right)^{2}=\sigma^{2} \sum_{t=2}^{T} \mathbb{E} y_{i t-2}^{2}=\sigma^{4} \sum_{t=2}^{T}(t-2) \\
& =\sigma^{4} T_{2} T_{1} / 2
\end{aligned}
$$

and, with $y_{i 0}=0\left(\right.$ or up to $O(1)$ in T if $\left.y_{i 0} \neq 0\right)$

$$
\begin{aligned}
& \mathbb{E}\left(\sum_{t=2}^{T} \Delta u_{i t} y_{i t-2}\right)\left(\sum_{t=2}^{T} u_{i t-1} y_{i t-2}\right)=\mathbb{E}\left\{\left(\left(u_{i T} y_{i T-2}-u_{i 1} y_{i 0}\right)-\sum_{t=3}^{T} u_{i t-1} u_{i t-2}\right)\left(\sum_{t=2}^{T} u_{i t-1} y_{i t-2}\right)\right\} \\
= & -\mathbb{E}\left(\sum_{t=3}^{T} u_{i t-1} u_{i t-2}\right)\left(\sum_{t=2}^{T} u_{i t-1} y_{i t-2}\right)-\mathbb{E}\left(u_{i 1} y_{i 0}\right)^{2} \\
= & -\mathbb{E}\left\{\sum_{t=3}^{T}\left(u_{i t-1} u_{i t-2}\right)\left(u_{i t-1} y_{i t-2}\right)+\sum_{s, t=3 ; s \neq t}^{T}\left(u_{i t-1} u_{i t-2}\right)\left(u_{i s-1} y_{i s-2}\right)\right\} \\
= & -\sum_{t=3}^{T} \mathbb{E} u_{i t-1}^{2} u_{i t-2}^{2}=-\sigma^{4} \sum_{t=3}^{T} 1=-\sigma^{4} T_{2} .
\end{aligned}
$$

Then

$$
V_{T}=\left(\begin{array}{cc}
2 \sigma^{4} T_{2} & -\sigma^{4} T_{2} \\
-\sigma^{4} T_{2} & \sigma^{4} T_{2} T_{1} / 2
\end{array}\right)=\sigma^{4} T_{2}\left(\begin{array}{cc}
2 & -1 \\
-1 & T_{1} / 2
\end{array}\right)
$$

as stated.
For Part (ii), simply write $\rho_{I V}-1=\frac{N_{n T}}{D_{n T}}$, and note from (i) that $\left(N_{n T}, D_{n T}\right) \underset{n \rightarrow \infty}{\Rightarrow}$
$\sigma^{2} T_{2}^{1 / 2}\left(\xi_{N, T}, \xi_{D, T}\right)$, where $\left(\xi_{N, T}, \xi_{D, T}\right)$ is bivariate $N\left(0,\left[\begin{array}{cc}2 & -1 \\ -1 & T_{1} / 2\end{array}\right]\right)$. Next, decompose $\xi_{N, T}$ as $\xi_{N, T}=\xi_{N . D, T}+\frac{-1}{T_{1} / 2} \xi_{D, T}$ where $\xi_{N . D, T} \equiv N\left(0,2-\frac{(-1)^{2}}{T_{1} / 2}\right)=N\left(0,2\left(1-\frac{1}{T_{1}}\right)\right)$ is independent of $\xi_{D, T}$, so that

$$
\binom{\xi_{N . D, T}}{\xi_{D, T}} \equiv N\left(0,\left[\begin{array}{cc}
2\left(1-\frac{1}{T_{1}}\right) & 0 \\
0 & T_{1} / 2
\end{array}\right]\right) .
$$

Combining these results, we have by joint weak convergence and continuous mapping that as $n \rightarrow \infty$ with T fixed,

$$
\begin{align*}
\rho_{I V}-1 & =\frac{N_{T}}{D_{T}} \underset{n \rightarrow \infty}{\Rightarrow} \frac{\xi_{N, T}}{\xi_{D, T}}=\frac{\xi_{N . D, T}-\frac{2}{T_{1}} \xi_{D, T}}{\xi_{D, T}} \tag{0.4}\\
& =-\frac{2}{T_{1}}+\frac{\xi_{N \cdot D, T}}{\xi_{D, T}}=-\frac{2}{T_{1}}+\frac{2\left(1-\frac{1}{T_{1}}\right)^{1 / 2}}{T_{1}^{1 / 2}} \frac{\zeta_{N}}{\zeta_{D}} \\
& \equiv-\frac{2}{T_{1}}+2 \frac{\left(1-\frac{1}{T_{1}}\right)^{1 / 2}}{T_{1}^{1 / 2}} \mathbb{C} \tag{0.5}
\end{align*}
$$

where $\left(\zeta_{N}, \zeta_{D}\right) \equiv N\left(0, I_{2}\right)$ and \mathbb{C} is a standard Cauchy variate. Thus

$$
\begin{equation*}
\rho_{I V}-1 \underset{n \rightarrow \infty}{\Rightarrow}-\frac{2}{T_{1}}+2 \frac{\left(1-\frac{1}{T_{1}}\right)^{1 / 2}}{T_{1}^{1 / 2}} \mathbb{C} \tag{0.6}
\end{equation*}
$$

yielding the stated result.
Proof of Theorem 2. By definition we have

$$
\begin{aligned}
\rho_{I V}-1 & =\frac{\sum_{i=1}^{n} \sum_{t=2}^{T} \Delta u_{i t} y_{i t-2}}{\sum_{i=1}^{n} \sum_{t=2}^{T} \Delta y_{i t-1} y_{i t-2}} \\
& =\frac{\sum_{i=1}^{n}\left\{\left(u_{i T} y_{i T-2}-u_{i 1} y_{i 0}\right)-\sum_{t=3}^{T} u_{i t-1} u_{i t-2}\right\}}{\sum_{i=1}^{n} \sum_{t=2}^{T} u_{i t-1} y_{i t-2}},
\end{aligned}
$$

and rescaling gives

$$
\begin{equation*}
\sqrt{T}\left(\rho_{I V}-1\right)=\frac{\sum_{i=1}^{n} \frac{1}{\sqrt{T}}\left\{\left(u_{i T} y_{i T-2}-u_{i 1} y_{i 0}\right)-\sum_{t=3}^{T} u_{i t-1} u_{i t-2}\right\}}{\sum_{i=1}^{n} \frac{1}{T} \sum_{t=2}^{T} u_{i t-1} y_{i t-2}} . \tag{0.7}
\end{equation*}
$$

By partial summation

$$
\sum_{t=1}^{T} u_{i t} y_{i t-1}=\sum_{t=1}^{T} u_{i t}\left(\sum_{s=1}^{t-1} u_{i s}+y_{i 0}\right)=\frac{1}{2}\left\{\left(\sum_{t=1}^{T} u_{i t}\right)^{2}-\sum_{t=1}^{T} u_{i t}^{2}\right\}+\sum_{t=1}^{T} u_{i t} y_{i 0} .
$$

Using the fact that $\mathbb{E}\left(u_{i t} u_{i s} u_{i s-1}\right)=0$ for all (t, s), we have by standard functional limit theory for $r \in[0,1]$

$$
T^{-1 / 2} \sum_{t=1}^{\lfloor T r\rfloor}\left[\begin{array}{c}
u_{i t} \\
u_{i t} u_{i t-1}
\end{array}\right] \Rightarrow\left[\begin{array}{c}
B_{i}(r) \\
G_{i}(r)
\end{array}\right] \equiv B M\left(\left[\begin{array}{cc}
\sigma^{2} & 0 \\
0 & \sigma^{4}
\end{array}\right]\right),
$$

where B_{i} and G_{i} are independent Brownian motions for all i. Then, since $y_{i 0}=O_{p}(1)$ and $T^{-1} \sum_{t=1}^{T} u_{i t}=o_{p}(1)$, we deduce the joint weak convergence (Phillips, 1987a, 1989)

$$
\left[\begin{array}{c}
T^{-1 / 2} \sum_{t=1}^{T} u_{i t} \tag{0.8}\\
T^{-1} \sum_{t=1}^{T} u_{i t} y_{i t-1} \\
T^{-1} \sum_{t=1}^{T} u_{i t} u_{i t-1}
\end{array}\right] \underset{T \rightarrow \infty}{\Rightarrow}\left[\begin{array}{c}
B_{i}(1) \\
\frac{1}{2}\left\{B_{i}(1)^{2}-\sigma^{2}\right\} \\
G_{i}(1)
\end{array}\right]=\left[\begin{array}{c}
B_{i}(1) \\
\int_{0}^{1} B_{i} d B_{i} \\
G_{i}(1)
\end{array}\right]
$$

Since $u_{i t}$ is iid over t and i, it follows that $u_{i T} \Rightarrow u_{i \infty}$ as $T \rightarrow \infty$, where the limit variates $\left\{u_{i \infty}\right\}$ are independent over i and have the same distribution as $u_{i t}$. Note that $u_{i T}$ is independent of $\left(T^{-1 / 2} \sum_{t=1}^{T_{1}} u_{i t}, T^{-1} \sum_{t=1}^{T_{1}} u_{i t} y_{i t-1}, T^{-1} \sum_{t=1}^{T_{1}} u_{i t} u_{i t-1}\right)$ and, hence, asymptotically independent of $\left(T^{-1 / 2} \sum_{t=1}^{T} u_{i t}, T^{-1} \sum_{t=1}^{T} u_{i t} y_{i t-1}, T^{-1} \sum_{t=1}^{T} u_{i t} u_{i t-1}\right)$. It follows that $u_{i \infty}$ is independent of the vector of limit variates 0.8). We therefore have the combined weak convergence

$$
\left[\begin{array}{c}
T^{-1 / 2} \sum_{t=1}^{T} u_{i t} \tag{0.9}\\
T^{-1} \sum_{t=1}^{T} u_{i t} y_{i t-1} \\
T^{-1 / 2} \sum_{t=1}^{T} u_{i t} u_{i t-1} \\
u_{i T}
\end{array}\right] \underset{T \rightarrow \infty}{\Rightarrow}\left[\begin{array}{c}
B_{i}(1) \\
\frac{1}{2}\left\{B_{i}(1)^{2}-\sigma^{2}\right\} \\
G_{i}(1) \\
u_{i \infty}
\end{array}\right]=\left[\begin{array}{c}
B_{i}(1) \\
\int_{0}^{1} B_{i} d B_{i} \\
G_{i}(1) \\
u_{i \infty}
\end{array}\right] .
$$

Setting $G_{i}=G_{i}(1)$, the stated result

$$
\begin{equation*}
\sqrt{T}\left(\rho_{I V}-1\right) \underset{T \rightarrow \infty}{\Rightarrow} \frac{\sum_{i=1}^{n}\left\{u_{i \infty} B_{i}(1)-G_{i}\right\}}{\sum_{i=1}^{n} \frac{1}{2}\left\{B_{i}(1)^{2}-\sigma^{2}\right\}} \tag{0.10}
\end{equation*}
$$

follows from (0.7) and (0.9) by continuous mapping.
For part (ii) we consider sequential asymptotics in which $T \rightarrow \infty$ is followed by $n \rightarrow \infty$. Observe that $u_{i \infty} B_{i}(1)-G_{i}$ is $i i d$ over i with zero mean and variance

$$
\mathbb{E}\left\{u_{i \infty} B_{i}(1)-G_{i}(1)\right\}^{2}=\mathbb{E}\left(u_{i \infty}^{2}\right) \mathbb{E}\left(B_{i}(1)^{2}\right)+\mathbb{E}\left(G_{i}(1)^{2}\right)=2 \sigma^{4}
$$

and is uncorrelated with $B_{i}(1)^{2}$. Since $\left\{B_{i}(1)^{2}-\sigma^{2}\right\}$ is iid with zero mean and variance $2 \sigma^{4}$, application of the Lindeberg Lévy CLT as $n \rightarrow \infty$ gives

$$
\left[\begin{array}{c}
n^{-1 / 2} \sum_{i=1}^{n}\left\{u_{i \infty} B_{i}(1)-G_{i}\right\} \tag{0.11}\\
n^{-1 / 2} \sum_{i=1}^{n} \frac{1}{2}\left\{B_{i}(1)^{2}-\sigma^{2}\right\}
\end{array}\right] \underset{n \rightarrow \infty}{\Rightarrow}\left[\begin{array}{c}
\left(2 \sigma^{4}\right)^{1 / 2} \zeta_{N} \\
\left(\sigma^{4} / 2\right)^{1 / 2} \zeta_{D}
\end{array}\right],
$$

where $\left(\zeta_{N}, \zeta_{D}\right) \equiv N\left(0, I_{2}\right)$. Hence,

$$
\begin{equation*}
\sqrt{T}\left(\rho_{I V}-1\right)_{(n, T)_{\text {seq }} \rightarrow \infty}^{\Rightarrow} 2 \mathbb{C} \tag{0.12}
\end{equation*}
$$

giving the required result.
Proof of Theorem 3. We proceed by examining a set of sufficient conditions for joint convergence limit theory developed in Phillips and Moon (1999). In particular, we consider conditions that suffice to ensure that sequential convergence as $(n, T)_{\text {seq }} \rightarrow \infty$ (i.e., $T \rightarrow \infty$ followed by $n \rightarrow \infty$) implies joint convergence $(n, T) \rightarrow \infty$ where there is no restriction on the diagonal path in which n and T pass to infinity.

We start by defining the vector of standardized components appearing in the numerator and denominator of $\rho_{I V}$
$X_{n T}=\left(n^{-1 / 2} \sum_{i=1}^{n} \frac{1}{\sqrt{T}}\left\{\left(u_{i T} y_{i T-2}-u_{i 1} y_{i 0}\right)-\sum_{t=3}^{T} u_{i t-1} u_{i t-2}\right\}, n^{-1 / 2} \sum_{i=1}^{n}\left(\frac{1}{T} \sum_{t=2}^{T} u_{i t-1} y_{i t-2}\right)\right)^{\prime}$.

From 0.9 and 0.11 we have the sequential convergence

$$
\begin{align*}
X_{n T} \underset{T \rightarrow \infty}{\Rightarrow} X_{n} & :=\left(n^{-1 / 2} \sum_{i=1}^{n}\left\{u_{i \infty} B_{i}(1)-G_{i}(1)\right\}, n^{-1 / 2} \sum_{i=1}^{n} \frac{1}{2}\left\{B_{i}(1)^{2}-\sigma^{2}\right\}\right)^{\prime} \\
\underset{n \rightarrow \infty}{\Rightarrow} X: & =\left(\left(2 \sigma^{4}\right)^{1 / 2} \zeta_{N},\left(\frac{\sigma^{4}}{2}\right)^{1 / 2} \zeta_{D}\right) \tag{0.14}
\end{align*}
$$

which in turn implies the sequential limit $\sqrt{T}\left(\rho_{I V}-1\right) \underset{(n, T)_{\text {seq }} \rightarrow \infty}{\Rightarrow} 2 \mathbb{C}$ given in 0.12 . By Lemma 6(b) of Phillips and Moon (1999), when $X_{n T} \underset{T \rightarrow \infty}{\Rightarrow} X_{n} \underset{n \rightarrow \infty}{\Rightarrow} X$ sequentially, joint weak convergence $X_{n T} \Rightarrow X$ as $(n, T) \rightarrow \infty$ holds if and only if

$$
\begin{equation*}
\limsup _{n, T \rightarrow \infty}\left|\mathbb{E} f\left(X_{n T}\right)-\mathbb{E} f\left(X_{n}\right)\right|=0 \tag{0.15}
\end{equation*}
$$

for all bounded, continuous real functions f on \mathbb{R}^{2}.
Simple primitive conditions sufficient for 0.15 to hold are available in the case where the components of the random quantity $X_{n T}$ involve averages of iid random variables as in the present case where we have $X_{n T}=n^{-1 / 2} \sum_{i=1}^{n} Y_{i T}$ with the $Y_{i T}$ independent over i. Component-wise we have

$$
X_{n T}=\left(X_{1 n T}, X_{2 n T}\right)^{\prime}:=\left(n^{-1 / 2} \sum_{i=1}^{n} Y_{1 i T}, n^{-1 / 2} \sum_{i=1}^{n} Y_{2 i T}\right)
$$

where $Y_{i T}=\left(Y_{1 i T}, Y_{2 i T}\right)^{\prime}$ with

$$
\begin{aligned}
& Y_{1 i T}=\frac{1}{\sqrt{T}}\left\{\left(u_{i T} y_{i T-2}-u_{i 1} y_{i 0}\right)-\sum_{t=3}^{T} u_{i t-1} u_{i t-2}\right\}_{T \rightarrow \infty}^{\Rightarrow} Y_{1 i}:=u_{i \infty} B_{i}(1)-G_{i}(1), \\
& Y_{2 i T}=\frac{1}{T} \sum_{t=2}^{T} u_{i t-1} y_{i t-2} \underset{T \rightarrow \infty}{\Rightarrow} Y_{2 i}:=\frac{1}{2}\left\{B_{i}(1)^{2}-\sigma^{2}\right\}
\end{aligned}
$$

for all i. The working probability space can be expanded as needed to ensure that the (limit) random quantities $Y_{i}:=\left(Y_{1 i}, Y_{2 i}\right)^{\prime}$ are defined in the same space for all i so that averages involving $\sum_{i=1}^{n} Y_{i}$ are meaningful. In this framework we can use a result on joint convergence by Phillips and Moon (1999) - see lemma PM below - to verify condition 0.15). In what follows we use the notation of lemma PM.

We proceed to verify these conditions for $Y_{i T}$ and Y_{i}. First, $Y_{i T}$ is integrable since

$$
\begin{aligned}
\mathbb{E}\left|u_{i T} y_{i T-2}\right| & \leq\left(\mathbb{E}\left|u_{i T}\right|^{2} \mathbb{E}\left|y_{i T-2}\right|^{2}\right)^{1 / 2}<\infty \\
\mathbb{E}\left|\sum_{t=2}^{T} u_{i t-1} u_{i t-2}\right| & \leq T \mathbb{E}\left|u_{i t-1} u_{i t-2}\right| \leq T \mathbb{E}\left(u_{i t}^{2}\right)<\infty, \\
\mathbb{E}\left|\sum_{t=2}^{T} u_{i t-1} y_{i t-2}\right| & \leq \sum_{t=2}^{T} \mathbb{E}\left|u_{i t-1} y_{i t-2}\right| \leq \sum_{t=2}^{T}\left(\mathbb{E} u_{i t-1}^{2} \mathbb{E} y_{i t-2}^{2}\right)^{1 / 2}<\infty .
\end{aligned}
$$

To show (i) holds, observe that

$$
\begin{align*}
\mathbb{E}\left\|Y_{i T}\right\|^{2} & =\mathbb{E} Y_{1 i T}^{2}+\mathbb{E} Y_{2 i T}^{2} \\
& =\frac{1}{T} \mathbb{E}\left\{u_{i T} y_{i T-2}-\sum_{t=3}^{T} u_{i t-1} u_{i t-2}\right\}^{2}+\frac{1}{T^{2}} \mathbb{E}\left(\sum_{t=2}^{T} u_{i t-1} y_{i t-2}\right)^{2} \\
& =2 \sigma^{4} \frac{T-2}{T}+\sigma^{4} \frac{1}{T^{2}} \sum_{t=2}^{T}(t-2)<\infty \tag{0.16}
\end{align*}
$$

when $y_{i 0}=0$, with obviously valid extension to the case where $y_{i 0}=O_{p}(1)$ with finite second moments. Then

$$
\limsup _{n, T \rightarrow \infty} \frac{1}{n} \sum_{i=1}^{n} \mathbb{E}\left\|Y_{i T}\right\|=\limsup _{T \rightarrow \infty} \mathbb{E}\left\|Y_{i T}\right\| \leq \limsup _{T \rightarrow \infty}\left(\mathbb{E}\left\|Y_{i T}\right\|^{2}\right)^{1 / 2}<\infty
$$

as required. To show (ii) holds, simply observe that $\mathbb{E} Y_{i T}=\mathbb{E} Y_{i}=0$. To show (iii) holds, note that

$$
\limsup _{n, T \rightarrow \infty} \frac{1}{n} \sum_{i=1}^{n} \mathbb{E}\left\|Y_{i T}\right\| \mathbf{1}\left\{\left\|Y_{i T}\right\|>n \epsilon\right\}=\limsup _{T \rightarrow \infty} \mathbb{E}\left\|Y_{i T}\right\| \mathbf{1}\left\{\left\|Y_{i T}\right\|>n \epsilon\right\}=0, \text { for all } \epsilon>0
$$

since $\sup _{T} \mathbb{E}\left\|Y_{i T}\right\|^{2}<\infty$ by virtue of 0.16 . Finally, note that

$$
\limsup _{n \rightarrow \infty} \frac{1}{n} \sum_{i=1}^{n} \mathbb{E}\left\|Y_{i}\right\| \mathbf{1}\left\{\left\|Y_{i}\right\|>n \epsilon\right\}=\underset{n \rightarrow \infty}{\limsup \mathbb{E}}\left\|Y_{i}\right\| \mathbf{1}\left\{\left\|Y_{i}\right\|>n \epsilon\right\}=0,
$$

since $\mathbb{E}\left\|Y_{i}\right\|^{2}<\infty$, proving (iv). Hence, condition 0.15 holds and we have joint weak
convergence

$$
X_{n T}=n^{-1 / 2} \sum_{i=1}^{n} Y_{i T} \underset{n, T \rightarrow \infty}{\Rightarrow} X:=\left(\left(2 \sigma^{4}\right)^{1 / 2} \zeta_{N},\left(\frac{\sigma^{4}}{2}\right)^{1 / 2} \zeta_{D}\right)
$$

irrespective of the divergence rates of n and T to infinity. By continuous mapping, the required result follows for the GMM estimator so that $\sqrt{T}\left(\rho_{I V}-1\right) \underset{n, T \rightarrow \infty}{\Rightarrow} 2 \mathbb{C}$ jointly as $(n, T) \rightarrow \infty$ irrespective of the order and rates of divergence of the respective sample sizes.

Lemma PM (Phillips and Moon, 1999, theorem 1) Suppose the $m \times 1$ random vectors $Y_{i T}$ are independent across i for all T and integrable. Assume that $Y_{i T} \Rightarrow Y_{i}$ as $T \rightarrow \infty$ for all i. Then, condition (0.15) holds if the following hold:
(i) $\limsup _{n, T \rightarrow \infty} \frac{1}{n} \sum_{i=1}^{n} E\left\|Y_{i T}\right\|<\infty$,
(ii) $\limsup _{n, T \rightarrow \infty} \frac{1}{n} \sum_{i=1}^{n}\left\|\mathbb{E} Y_{i T}-\mathbb{E} Y_{i}\right\|<\infty$,
(iii) $\limsup _{n, T \rightarrow \infty} \frac{1}{n} \sum_{i=1}^{n} E\left\|Y_{i T}\right\| 1\left\{\left\|Y_{i T}\right\|>n \epsilon\right\}=0$, for all $\epsilon>0$
(iv) $\limsup _{n \rightarrow \infty} \frac{1}{n} \sum_{i=1}^{n} E\left\|Y_{i}\right\| 1\left\{\left\|Y_{i}\right\|>n \epsilon\right\}=0$, for all $\epsilon>0$

Proof of Theorem 4. In case (i) T is fixed as well as $c<0$, which implies that $\rho=1+\frac{c}{\sqrt{T}}$ is fixed. So large n asymptotics follow as in the (asymptotically) stationary case. By defintion we have $y_{i t}=\alpha_{i}(1-\rho)+\rho y_{i t-1}+u_{i t}=-\frac{\alpha_{i} c}{\sqrt{T}}+\left(1+\frac{c}{\sqrt{T}}\right) y_{i t-1}+u_{i t}$ and $\Delta y_{i t}=\rho \Delta y_{i t-1}+\Delta u_{i t}$ so that $\Delta y_{i t}=\alpha_{i}(1-\rho)+(\rho-1) y_{i t-1}+u_{i t}=-\frac{\alpha_{i}}{\sqrt{T}}+\frac{c}{\sqrt{T}} y_{i t-1}+u_{i t}$. Then, as usual, $\mathbb{E}\left(u_{i t} y_{i t-2}\right)=\mathbb{E}\left(\Delta u_{i t} y_{i t-2}\right)=0$ and orthogonality holds. When $y_{i 0}=0$, back substitution gives

$$
y_{i t}=\alpha_{i}\left(1-\rho^{t}\right)+\sum_{j=0}^{t-1} \rho^{j} u_{i t-j}
$$

and $\mathbb{E}\left(y_{i t}\right)=\alpha_{i}\left(1-\rho^{t}\right), \operatorname{Var}\left(y_{i t}\right)=\sigma^{2} \sum_{j=0}^{t-1} \rho^{2 j}=\sigma^{2} \frac{1-\rho^{2 t}}{1-\rho^{2}}$, and $\mathbb{E}\left(y_{i t}^{2}\right)=\sigma^{2} \frac{1-\rho^{2 t}}{1-\rho^{2}}+$
$\alpha_{i}^{2}\left(1-\rho^{t}\right)^{2}$. Instrument relevance is determined by the magnitude of the moment

$$
\begin{align*}
\mathbb{E}\left(\Delta y_{i t-1} y_{i t-2}\right) & =\mathbb{E}\left(\left\{\alpha_{i}(1-\rho)+(\rho-1) y_{i t-2}+u_{i t-1}\right\} y_{i t-2}\right) \\
& =\alpha_{i}^{2}(1-\rho)\left(1-\rho^{t-2}\right)+(\rho-1)\left\{\sigma^{2} \frac{1-\rho^{2(t-2)}}{1-\rho^{2}}+\alpha_{i}^{2}\left(1-\rho^{t-2}\right)^{2}\right\} \\
& =-\sigma^{2} \frac{1-\rho^{2(t-2)}}{1+\rho}-\alpha_{i}^{2}(1-\rho)\left(1-\rho^{t-2}\right) \rho^{t-2} \tag{0.17}
\end{align*}
$$

which is nonzero for $c<0$ and zero when $c=0$, corresponding to the unit root case ($\rho=1$) considered earlier. Note that in the fully stationary case where initial conditions are in the infinite past so that $y_{i 0}=\alpha_{i}+\sum_{j=0}^{\infty} \rho^{j} u_{i,-j}$ and $y_{i t}=\alpha_{i}+\sum_{j=0}^{\infty} \rho^{j} u_{t-j}$ we have

$$
\begin{aligned}
\mathbb{E}\left(\Delta y_{i t-1} y_{i t-2}\right) & =\alpha_{i}^{2}(1-\rho)+(\rho-1) \mathbb{E}\left(y_{i t}^{2}\right)=\alpha_{i}^{2}(1-\rho)-(1-\rho)\left\{\frac{\sigma^{2}}{1-\rho^{2}}+\alpha_{i}^{2}\right\} \\
& =-\frac{\sigma^{2}}{1+\rho}
\end{aligned}
$$

which corresponds with the leading term of 0.17 when $t \rightarrow \infty$ with $|\rho|<1$.
Now consider the numerator and denominator of the centred and scaled GMM estimate

$$
\begin{equation*}
\sqrt{n}\left(\rho_{I V}-\rho\right)=\frac{\frac{1}{\sqrt{n}} \sum_{i=1}^{n} \sum_{t=2}^{T} \Delta u_{i t} y_{i t-2}}{\frac{1}{n} \sum_{i=1}^{n} \sum_{t=2}^{T} \Delta y_{i t-1} y_{i t-2}}=: \frac{N_{n T}}{D_{n T}} \tag{0.18}
\end{equation*}
$$

First, noting that $\Delta y_{i t-1} y_{i t-2}$ is quadratic in α_{i}, and using $T_{j}=T-j$ and $\sigma_{\alpha}^{2}=\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{i=1}^{n} \alpha_{i}^{2}$, the denominator of (0.18) takes the following form as $n \rightarrow \infty$

$$
\begin{align*}
& \frac{1}{n} \sum_{i=1}^{n} \sum_{t=2}^{T} \Delta y_{i t-1} y_{i t-2} \rightarrow_{p} \lim _{n \rightarrow \infty} \frac{1}{n} \sum_{i=1}^{n} \mathbb{E}\left(\sum_{t=2}^{T} \Delta y_{i t} y_{i t-2}\right) \\
= & \lim _{n \rightarrow \infty} \frac{1}{n} \sum_{i=1}^{n} \sum_{t=2}^{T}\left\{-\sigma^{2} \frac{1-\rho^{2(t-2)}}{1+\rho}+\alpha_{i}^{2}(1-\rho)\left(1-\rho^{t-2}\right)\left[1-\left(1-\rho^{t-2}\right)\right]\right\} \\
= & -\frac{\sigma^{2}}{1+\rho}\left[T_{1}-\frac{1-\rho^{2 T_{1}}}{1-\rho^{2}}\right]+\sigma_{\alpha}^{2}(1-\rho)\left[T_{1}-\frac{1-\rho^{T_{1}}}{1-\rho}\right]-\sigma_{\alpha}^{2}(1-\rho)\left[T_{1}-2 \frac{1-\rho^{T_{1}}}{1-\rho}+\frac{1-\rho^{2 T_{1}}}{1-\rho^{2}}\right] \\
= & -\frac{\sigma^{2}}{1+\rho}\left[T_{1}-\frac{1-\rho^{2 T_{1}}}{1-\rho^{2}}\right]+\sigma_{\alpha}^{2}(1-\rho)\left[\frac{1-\rho^{T_{1}}}{1-\rho}-\frac{1-\rho^{2 T_{1}}}{1-\rho^{2}}\right] \\
= & -\frac{\sigma^{2}}{1+\rho}\left[T_{1}-\frac{1-\rho^{2 T_{1}}}{1-\rho^{2}}\right]+\sigma_{\alpha}^{2}\left[1-\rho^{T_{1}}-\frac{1-\rho^{2 T_{1}}}{1+\rho}\right], \tag{0.19}
\end{align*}
$$

which is again zero when $c=0(\rho=1)$. Turning to the numerator, we have $\mathbb{E}\left(\Delta u_{i t} y_{i t-2}\right)=$ 0 by orthogonality and by a standard CLT argument for fixed T as $n \rightarrow \infty$

$$
\frac{1}{\sqrt{n}} \sum_{i=1}^{n}\left(\sum_{t=2}^{T} \Delta u_{i t} y_{i t-2}\right) \Rightarrow N\left(0, v_{T}\right)
$$

with

$$
v_{T}=\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{i=1}^{n} \mathbb{E}\left(\sum_{t=2}^{T} \Delta u_{i t} y_{i t-2}\right)^{2}
$$

We evaluate the above variance as follows. Using partial summation and $y_{i 0}=0$, we have

$$
\begin{equation*}
\sum_{t=2}^{T} \Delta u_{i t} y_{i t-2}=u_{i T} y_{i T-2}-u_{i 1} y_{i 0}-\sum_{t=3}^{T} u_{i t-1} \Delta y_{i t-2}=u_{i T} y_{i T-2}-\sum_{t=3}^{T} u_{i t-1} \Delta y_{i t-2} \tag{0.20}
\end{equation*}
$$

with variance

$$
\begin{aligned}
\mathbb{E}\left(u_{i T} y_{i T-2}-\sum_{t=3}^{T} u_{i t-1} \Delta y_{i t-2}\right)^{2} & =\sigma^{2} \mathbb{E}\left(y_{i T-2}\right)^{2}+\sigma^{2} \mathbb{E} \sum_{t=3}^{T}\left(\Delta y_{i t-2}\right)^{2} \\
& =\sigma^{4} \frac{1-\rho^{2 T_{2}}}{1-\rho^{2}}+\alpha_{i}^{2} \sigma^{2}\left(1-\rho^{T_{2}}\right)^{2}+\sigma^{2} \mathbb{E} \sum_{t=3}^{T}\left(\Delta y_{i t-2}\right)^{2}
\end{aligned}
$$

Using $\mathbb{E}\left(y_{i t}\right)=\alpha_{i}\left(1-\rho^{t}\right), \operatorname{Var}\left(y_{i t}\right)=\sigma^{2} \sum_{j=0}^{t-1} \rho^{2 j}=\sigma^{2} \frac{1-\rho^{2 t}}{1-\rho^{2}}, \mathbb{E}\left(y_{i t}^{2}\right)=\sigma^{2} \frac{1-\rho^{2 t}}{1-\rho^{2}}+$ $\alpha_{i}^{2}\left(1-\rho^{t}\right)^{2}$, and $\Delta y_{i t}=\alpha_{i}(1-\rho)+(\rho-1) y_{i t-1}+u_{i t}$, the final term $\sum_{t=3}^{T} \mathbb{E}\left(\Delta y_{i t-2}\right)^{2}$ above is

$$
\begin{aligned}
& \sum_{t=3}^{T}\left\{\alpha_{i}^{2}(1-\rho)^{2}+(1-\rho)^{2} \mathbb{E}\left(y_{i t-3}^{2}\right)+\sigma^{2}-2 \alpha_{i}^{2}(1-\rho)^{2}\left(1-\rho^{t-3}\right)\right\} \\
= & \sigma^{2} T_{2}-T_{2} \alpha_{i}^{2}(1-\rho)^{2}+2 \alpha_{i}^{2}(1-\rho)^{2}\left(\frac{1-\rho^{T_{2}}}{1-\rho}\right)+(1-\rho)^{2} \sum_{t=3}^{T} \mathbb{E}\left(y_{i t-3}^{2}\right) \\
= & \sigma^{2} T_{2}-T_{2} \alpha_{i}^{2}(1-\rho)^{2}+2 \alpha_{i}^{2}(1-\rho)\left(1-\rho^{T_{2}}\right)+(1-\rho)^{2} \frac{\sigma^{2}}{1-\rho^{2}}\left[T_{2}-\frac{1-\rho^{2 T_{2}}}{1-\rho^{2}}\right] \\
& +\alpha_{i}^{2}(1-\rho)^{2}\left[T_{2}-2 \frac{1-\rho^{T_{2}}}{1-\rho}+\frac{1-\rho^{2 T_{2}}}{1-\rho^{2}}\right]
\end{aligned}
$$

$$
\begin{aligned}
& =\sigma^{2} T_{2}\left[1+\frac{(1-\rho)}{1+\rho}\right]-\frac{\sigma^{2}\left(1-\rho^{2 T_{2}}\right)}{(1+\rho)^{2}}+2 \alpha_{i}^{2}(1-\rho)\left(1-\rho^{T_{2}}\right)+\alpha_{i}^{2}(1-\rho)^{2}\left[-2 \frac{1-\rho^{T_{2}}}{1-\rho}+\frac{1-\rho^{2 T_{2}}}{1-\rho^{2}}\right] \\
& =\frac{2 \sigma^{2} T_{2}}{1+\rho}-\frac{\sigma^{2}\left(1-\rho^{2 T_{2}}\right)}{(1+\rho)^{2}}+\alpha_{i}^{2}(1-\rho) \frac{1-\rho^{2 T_{2}}}{1+\rho}
\end{aligned}
$$

Then

$$
\begin{aligned}
& \mathbb{E}\left(u_{i T} y_{i T-2}-\sum_{t=3}^{T} u_{i t-1} \Delta y_{i t-2}\right)^{2}=\sigma^{4} \frac{1-\rho^{2 T_{2}}}{1-\rho^{2}}+\alpha_{i}^{2} \sigma^{2}\left(1-\rho^{T_{2}}\right)^{2}+\sigma^{2} \mathbb{E} \sum_{t=3}^{T}\left(\Delta y_{i t-2}\right)^{2} \\
= & \sigma^{4} \frac{1-\rho^{2 T_{2}}}{1-\rho^{2}}+\alpha_{i}^{2} \sigma^{2}\left(1-\rho^{T_{2}}\right)^{2}+\frac{2 \sigma^{4} T_{2}}{1+\rho}-\frac{\sigma^{4}\left(1-\rho^{2 T_{2}}\right)}{(1+\rho)^{2}}+\alpha_{i}^{2} \sigma^{2}(1-\rho) \frac{1-\rho^{2 T_{2}}}{1+\rho} \\
= & \frac{2 \sigma^{4} T_{2}}{1+\rho}+\sigma^{4} \frac{2 \rho\left(1-\rho^{2 T_{2}}\right)}{\left(1-\rho^{2}\right)(1+\rho)}+\alpha_{i}^{2} \sigma^{2}\left(1-\rho^{T_{2}}\right)^{2}+\alpha_{i}^{2} \sigma^{2}(1-\rho) \frac{\left(1-\rho^{2 T_{2}}\right)}{1+\rho} \\
= & \frac{2 \sigma^{4} T_{2}}{1+\rho}+\sigma^{4} \frac{2 \rho\left(1-\rho^{2 T_{2}}\right)}{\left(1-\rho^{2}\right)(1+\rho)}+\alpha_{i}^{2} \sigma^{2}\left(1-\rho^{T_{2}}\right)\left[1-\rho^{T_{2}}+\frac{(1-\rho)\left(1+\rho^{T_{2}}\right)}{1+\rho}\right],
\end{aligned}
$$

and

$$
\begin{align*}
& \quad \omega_{N T}=\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{i=1}^{n} \mathbb{E}\left(\sum_{t=2}^{T} \Delta u_{i t} y_{i t-2}\right)^{2} \\
& = \tag{0.21}\\
& \frac{2 \sigma^{4} T_{2}}{1+\rho}+\sigma^{4} \frac{2 \rho\left(1-\rho^{2 T_{2}}\right)}{\left(1-\rho^{2}\right)(1+\rho)}+\sigma_{\alpha}^{2} \sigma^{2}\left(1-\rho^{T_{2}}\right)\left[1-\rho^{T_{2}}+\frac{(1-\rho)\left(1+\rho^{T_{2}}\right)}{1+\rho}\right]
\end{align*}
$$

From (0.19) we have

$$
\begin{equation*}
\omega_{D T}=\left\{-\frac{\sigma^{2}}{1+\rho}\left[T_{1}-\frac{1-\rho^{2 T_{1}}}{1-\rho^{2}}\right]+\sigma_{\alpha}^{2}\left[1-\rho^{T_{1}}-\frac{1-\rho^{2 T_{1}}}{1+\rho}\right]\right\}^{2}=: v_{D T}^{2} \tag{0.22}
\end{equation*}
$$

which leads to the asymptotic variance

$$
\begin{align*}
\omega_{T}^{2} & =\frac{\omega_{N T}}{\omega_{D T}}=\frac{\frac{2 \sigma^{4} T_{2}}{1+\rho}+\sigma^{4} \frac{2 \rho\left(1-\rho^{2 T_{2}}\right)}{\left(1-\rho^{2}\right)(1+\rho)}+\sigma_{\alpha}^{2} \sigma^{2}\left(1-\rho^{T_{2}}\right)\left[1-\rho^{T_{2}}+\frac{(1-\rho)\left(1+\rho^{T_{2}}\right)}{1+\rho}\right]}{\left\{-\frac{\sigma^{2}}{1+\rho}\left[T_{1}-\frac{1-\rho^{2 T_{1}}}{1-\rho^{2}}\right]+\sigma_{\alpha}^{2}\left[1-\rho^{T_{1}}-\frac{1-\rho^{2 T_{1}}}{1+\rho}\right]\right\}^{2}} \\
& =\frac{2(1+\rho)}{T_{1}}+O\left(\frac{1}{T_{1}^{3 / 2}}\right) \tag{0.23}
\end{align*}
$$

giving the stated result for (i). The error magnitude as $T \rightarrow \infty$ in the asymptotic expansion 0.23 is justified as follows. Since $c<0$ is fixed we have $1-\rho^{2}=-2 \frac{c}{\sqrt{T}}-\frac{c^{2}}{T}$ and

$$
\begin{equation*}
\frac{1-\rho^{2 T}}{1-\rho^{2}}=\frac{1-\left[1+\frac{c}{\sqrt{T}}\right]^{2 T}}{-2 \frac{c}{\sqrt{T}}-\frac{c^{2}}{T}} \sim \frac{1-e^{c \frac{c T}{\sqrt{T}}}}{-2 \frac{c}{\sqrt{T}}-\frac{c^{2}}{T}} \sim \frac{\sqrt{T}}{-2 c} . \tag{0.24}
\end{equation*}
$$

Then, by direct calculation as $T \rightarrow \infty$

$$
\begin{align*}
\frac{\omega_{N T}}{\omega_{D T}} & =\frac{\frac{2 \sigma^{4} T_{2}}{1+\rho}+\sigma^{4} \frac{2 \rho}{(1+\rho)}\left(\frac{\sqrt{T_{2}}}{-2 c}\right)+\sigma_{\alpha}^{2} \sigma^{2}\left(1-e^{c T_{2} / \sqrt{T}}\right)\left[1-e^{c T_{2} / \sqrt{T}}-c \frac{1+e^{c T_{2} / \sqrt{T}}}{\sqrt{T}(1+\rho)}\right]}{\left\{-\frac{\sigma^{2}}{1+\rho}\left[T_{1}-\left(\frac{\sqrt{T}}{-2 c}\right)\left(1-e^{c T_{1} / \sqrt{T}}\right)\right]+\sigma_{\alpha}^{2}\left[1-e^{c T_{1} / \sqrt{T}}-\frac{1-e^{2 c T_{1} / \sqrt{T}}}{1+\rho}\right]\right\}^{2}} \\
& =\frac{2(1+\rho)}{T_{1}}+O\left(\frac{1}{T_{1}^{3 / 2}}\right) . \tag{0.25}
\end{align*}
$$

The sequential limit theory (ii) follows directly from (i) and the asymptotic expansion 0.23) of ω_{T}^{2}.

If $\rho=1+\frac{c}{T \gamma}$ with $\gamma \in(0,1)$, it is clear that the above fixed (T, c) limit theory as $n \rightarrow \infty$ continues to hold. Then, as $T \rightarrow \infty$, we have in place of (0.24)

$$
\frac{1-\rho^{2 T}}{1-\rho^{2}}=\frac{1-\left[1+\frac{c}{T^{\gamma}}\right]^{2 T}}{-2 \frac{c}{T^{\gamma}}-\frac{c^{2}}{T^{\gamma}}} \sim \frac{1-e^{2 c T^{1-\gamma}}}{-2 \frac{c}{T^{\gamma}}-\frac{c^{2}}{T^{\gamma}}} \sim \frac{T^{\gamma}}{-2 c}
$$

leading to

$$
\frac{\omega_{N T}}{\omega_{D T}}=\frac{2(1+\rho)}{T_{1}}+O\left(\frac{1}{T_{1}^{2-\gamma}}\right) \sim \frac{4}{T_{1}}+O\left(\frac{1}{T_{1}^{2-\gamma}}\right) .
$$

It follows that (ii) continues to hold with the same convergence rate $\sqrt{n T}$ and same limit variance 4 for all $\gamma \in(0,1)$.

When $\gamma=1$, the sequential normal limit theory in (ii) still holds but the variance of the limiting distribution changes. Observe that in this case

$$
\frac{1-\rho^{2 T}}{1-\rho^{2}}=\frac{1-\left[1+\frac{c}{T}\right]^{2 T}}{-2 \frac{c}{T}-\frac{c^{2}}{T}} \sim \frac{1-e^{2 c}}{-2 \frac{c}{T}-\frac{c^{2}}{T}} \sim \frac{T\left(1-e^{2 c}\right)}{-2 c} .
$$

Using (0.21) we then have the following limit behavior as $T \rightarrow \infty$

$$
\frac{\omega_{N T}}{\omega_{D T}} \sim \frac{\sigma^{4} T_{2}+\sigma^{4} T_{2} \frac{\left(1-e^{2 c}\right)}{-2 c}+O(1)}{\left\{-\frac{\sigma^{2} T_{1}}{2}\left[1-\frac{\left(1-e^{2 c}\right)}{-2 c}\right]+O(1)\right\}^{2}}=\frac{4}{T_{1}} \frac{1+\frac{\left(1-e^{2 c}\right)}{-2 c}}{\left[1-\frac{\left(1-e^{2 c}\right)}{-2 c}\right]^{2}}\{1+o(1)\}
$$

so that

$$
\omega_{T}^{2}=\frac{-8 c}{T_{1}} \frac{\left(1-2 c-e^{2 c}\right)}{\left(1+2 c-e^{2 c}\right)^{2}}\{1+o(1)\} .
$$

Hence

$$
\begin{equation*}
\sqrt{n T}\left(\rho_{I V}-\rho\right) \underset{(T, n)_{\mathrm{seq}} \rightarrow \infty}{\Rightarrow} N\left(0,(-8 c) \frac{\left(1-2 c-e^{2 c}\right)}{\left(1+2 c-e^{2 c}\right)^{2}}\right) \tag{0.26}
\end{equation*}
$$

so the $\sqrt{n T}$ Gaussian limit theory holds but with a different variance when $\rho=1+\frac{c}{T}$. Observe that

$$
(-8 c) \frac{\left(1-2 c-e^{2 c}\right)}{\left(1+2 c-e^{2 c}\right)^{2}} \sim \frac{8}{c^{2}} \rightarrow \infty \quad \text { as } c \rightarrow 0
$$

indicating that the variance in 0.26 diverges and the $\sqrt{n T}$ convergence rate fails as the unit root is approached via $c \rightarrow 0$.

Next, examine the case where $\rho=1+\frac{c}{T \gamma}$ with $\gamma>1$ and $c<0$, so that ρ is in the immediate vicinity of unity, closer than the LUR case but still satisfying $\rho<1$ for fixed T. In that case, we still have Gaussian limit theory as $n \rightarrow \infty$ because $|\rho|<1$. To find the limit theory as $(T, n)_{\text {seq }} \rightarrow \infty$ we consider the behavior of the numerator and denominator of ω_{T}. First, note that $\log \left[1+\frac{c}{T^{\gamma}}\right]^{2 T}=\frac{2 c}{T^{\gamma-1}}-\frac{c^{2}}{T^{2 \gamma-1}}+O\left(\frac{1}{T^{3 \gamma-1}}\right)$ so that $\left[1+\frac{c}{T^{\gamma}}\right]^{2 T}=1+\frac{2 c}{T^{\gamma-1}}-\frac{c^{2}}{T^{2 \gamma-1}}+\frac{1}{2}\left(\frac{2 c}{T^{\gamma-1}}\right)^{2}+O\left(\frac{1}{T^{2 \gamma-2}}\right)$ giving

$$
\begin{aligned}
& \frac{1-\rho^{2 T}}{1-\rho^{2}}=\frac{1-\left[1+\frac{c}{T^{\gamma}}\right]^{2 T}}{-2 \frac{c}{T^{\gamma}}-\frac{c^{2}}{T^{2 \gamma}}}=\frac{1-\left[1+\frac{2 c}{T^{\gamma-1}}-\frac{c^{2}}{T^{2 \gamma-1}}+\frac{1}{2}\left(\frac{2 c}{T^{\gamma-1}}\right)^{2}+O\left(\frac{1}{T^{3(\gamma-1)}}\right)\right]}{-2 \frac{c}{T^{\gamma}}-\frac{c^{2}}{T^{2 \gamma}}} \\
= & \frac{-2 c T+\frac{c^{2}}{T^{\gamma-1}}-\frac{2 c^{2}}{T^{\gamma-2}}+o\left(\frac{1}{T^{\gamma-2}}\right)}{-2 c\left\{1+\frac{1}{2} \frac{c}{T^{\gamma}}+O\left(\frac{1}{T^{2 \gamma}}\right)\right\}}=\left\{T+c T^{2-\gamma}+O\left(T^{1-\gamma}\right)\right\}\left\{1+\frac{1}{2} \frac{c}{T^{\gamma}}+O\left(\frac{1}{T^{2 \gamma}}\right)\right\}^{-1} \\
= & T+c T^{2-\gamma}+O\left(\frac{1}{T^{\gamma-1}}\right) .
\end{aligned}
$$

Using this result and $\omega_{D T}=v_{D T}^{2}$ with $v_{D T}=-\frac{\sigma^{2}}{1+\rho}\left[T_{1}-\frac{1-\rho^{2 T_{1}}}{1-\rho^{2}}\right]+\sigma_{\alpha}^{2}\left[1-\rho^{T_{1}}-\frac{1-\rho^{2 T_{1}}}{1+\rho}\right]$,
we have

$$
\begin{aligned}
v_{D T}= & -\frac{\sigma^{2}}{1+\rho}\left[c T_{1}^{2-\gamma}\{1+o(1)\}\right]+\sigma_{\alpha}^{2}\left\{-\left[\frac{c}{T_{1}^{\gamma-1}}+\frac{T_{1}\left(T_{1}-1\right)}{2}\left(\frac{c}{T_{1}^{\gamma}}\right)^{2}+O\left(\frac{1}{T_{1}^{3(\gamma-1)}}\right)\right]\right. \\
& \left.-\frac{-\frac{2 c}{T_{1}^{\gamma-1}}-\frac{T_{1}\left(T_{1}-1\right)}{2}\left(\frac{c}{T_{1}^{\gamma}}\right)^{2}+O\left(\frac{1}{T_{1}^{3(\gamma-1)}}\right)}{2+\frac{2 c}{T_{1}^{\gamma-1}}\{1+o(1)\}}\right\} \\
= & -\frac{c \sigma^{2}}{1+\rho} T_{1}^{2-\gamma}\{1+o(1)\}+\sigma_{\alpha}^{2}\left[-\frac{2 c}{T_{1}^{\gamma-1}}-\frac{1}{2} \frac{c^{2}}{T_{1}^{2(\gamma-1)}}+O\left(\frac{1}{T_{1}^{3(\gamma-1)}}\right)\right. \\
& +\left\{\frac{c}{T_{1}^{\gamma-1}}+\frac{T_{1}\left(T_{1}-1\right)}{4}\left(\frac{c}{T_{1}^{\gamma}}\right)^{2}+O\left(\frac{1}{T_{1}^{3(\gamma-1)}}\right)\right\}\left\{1+\frac{c}{\left.\left.T_{1}^{\gamma-1}\{1+o(1)\}\right\}^{-1}\right]}\right. \\
= & -\frac{c \sigma^{2}}{1+\rho} T_{1}^{2-\gamma}\{1+o(1)\}+\sigma_{\alpha}^{2}\left[-\frac{c}{T_{1}^{\gamma-1}}-\frac{1}{4} \frac{c^{2}}{T_{1}^{2(\gamma-1)}}+O\left(\frac{1}{T_{1}^{3(\gamma-1)}}\right)\right]\{1+o(1)\} \\
= & \left\{-\frac{c \sigma^{2}}{1+\rho} T_{1}^{2-\gamma}-c \sigma_{\alpha}^{2} \frac{c}{\left.T_{1}^{\gamma-1}\right\}\{1+o(1)\}=-\frac{c \sigma^{2}}{2} T_{1}^{2-\gamma}\{1+o(1)\},}\right.
\end{aligned}
$$

so that the denominator is $\omega_{D T}=\frac{c^{2} \sigma^{4}}{4} T_{1}^{4-2 \gamma}\{1+o(1)\}$. The numerator $\omega_{N T}$ is

$$
\begin{aligned}
& \frac{2 \sigma^{4} T_{2}}{1+\rho}+\sigma^{4} \frac{2 \rho\left(1-\rho^{2 T_{2}}\right)}{\left(1-\rho^{2}\right)(1+\rho)}+\sigma_{\alpha}^{2} \sigma^{2}\left(1-\rho^{T_{2}}\right)\left[1-\rho^{T_{2}}+\frac{(1-\rho)\left(1+\rho^{T_{2}}\right)}{1+\rho}\right] \\
= & \sigma^{4} T_{2}\left\{1-\frac{c}{T_{1}^{\gamma-1}}\right\}\{1+o(1)\}+\sigma^{4} \frac{\left(2+\frac{2 c}{T^{\gamma}}\right)}{\left(2+\frac{c}{T^{\gamma}}\right)}\left\{T+c T^{2-\gamma}-\frac{1}{2} \frac{c}{T^{\gamma-1}}+O\left(\frac{T}{T^{2(\gamma-1)}}\right)\right\} \\
& +\sigma_{\alpha}^{2} \sigma^{2}\left\{-2 c T_{2}-\frac{2 T_{2}\left(2 T_{2}-1\right)}{2} \frac{c^{2}}{T_{2}^{\gamma}}+O\left(\frac{T^{3}}{T^{2 \gamma}}\right)\right\} \\
& \times\left\{-\left[\frac{c}{T_{2}^{\gamma-1}}+\frac{T_{2}\left(T_{2}-1\right)}{2}\left(\frac{c}{T_{2}^{\gamma}}\right)^{2}\{1+o(1)\}\right]-\frac{\frac{2 c}{T^{\gamma-1}}\left[1+\frac{2 c}{T_{2}^{\gamma-1}}+\frac{2 T_{2}\left(2 T_{2}-1\right)}{2}\left(\frac{c}{T_{2}^{\gamma}}\right)^{2}\{1+o(1)\}\right]}{2+\frac{2 c}{T^{\gamma-1}}\{1+o(1)\}}\right\} \\
= & \left\{2 \sigma^{4} T_{2}+2 \sigma_{\alpha}^{2} \sigma^{2}(-c) T\left(\frac{-2 c}{T_{2}^{\gamma-1}}\right)\right\}[1+o(1)]=2 \sigma^{4} T_{2}[1+o(1)] .
\end{aligned}
$$

Combining these results we obtain

$$
\omega_{T}^{2}=\frac{\omega_{N T}}{\omega_{D T}}=\frac{2 \sigma^{4} T_{2}[1+o(1)]}{\left\{\frac{c^{2} \sigma^{4}}{2} T_{1}^{4-2 \gamma}\{1+o(1)\}\right\}^{2}\{1+o(1)\}}=\frac{8 T_{2}}{c^{2} T_{1}^{2(2-\gamma)}}\{1+o(1)\}
$$

It now follows that for $\rho=1+\frac{c}{T^{\gamma}}$ with $c<0$ fixed and $\gamma>1$

$$
\sqrt{n T^{3-2 \gamma}}\left(\rho_{I V}-\rho\right) \underset{(T, n)_{\mathrm{seq}} \rightarrow \infty}{\Rightarrow} N\left(0, \frac{8}{c^{2}}\right)
$$

Hence when ρ is closer to unity than a local unit root, the $\sqrt{n T}$ rate of convergence is reduced to $\sqrt{n} T^{\frac{3-2 \gamma}{2}}$. When $\gamma=\frac{3}{2}$ the rate of convergence is simply \sqrt{n} and for $\gamma>\frac{3}{2}$ the large n Gaussian asymptotic distribution $N\left(0, \omega_{T}^{2}\right)$ diverges as $T \rightarrow \infty$ because $\omega_{T}^{2}=$ $\frac{8 T_{2}}{c^{2} T_{1}^{2(2-\gamma)}}\{1+o(1)\}$ diverges with T. In this event, sequential $(T, n)_{\text {seq }} \rightarrow \infty$ asymptotics fail. In effect, the convergence rate is slower than \sqrt{n} and the non-Gaussian Cauchy limit theory cannot be captured in these $(T, n)_{\text {seq }}$ directional sequential asymptotics even though $\rho=1+\frac{c}{T^{\gamma}}$ with $\gamma>1$ is in closer proximity to a unit root than the usual local unit root case with $\gamma=1$.

Proof of Theorem 5. In the mildly integrated case where $\rho=1+\frac{c}{\sqrt{T}}$ we have $y_{i t}=-\frac{\alpha_{i} c}{\sqrt{T}}+\left(1+\frac{c}{\sqrt{T}}\right) y_{i t-1}+u_{i t}$ and $\Delta y_{i t}=\rho \Delta y_{i t-1}+\Delta u_{i t}$ so that $\Delta y_{i t}=-\frac{\alpha_{i} c}{\sqrt{T}}+$ $\frac{c}{\sqrt{T}} y_{i t-1}+u_{i t}=\alpha_{i}(1-\rho)+(\rho-1) y_{i t-1}+u_{i t}$. By partial summation, as shown above, we have $\sum_{t=2}^{T} \Delta u_{i t} y_{i t-2}=u_{i T} y_{i T-2}-u_{i 1} y_{i 0}-\sum_{t=3}^{T} u_{i t-1} \Delta y_{i t-2}$, so that

$$
\begin{equation*}
\rho_{I V}-\rho=\frac{\sum_{i=1}^{n}\left\{\left(u_{i T} y_{i T-2}-u_{i 1} y_{i 0}\right)-\sum_{t=3}^{T} u_{i t-1}\left[-\frac{\alpha_{i} c}{\sqrt{T}}+\frac{c}{\sqrt{T}} y_{i t-3}+u_{i t-2}\right]\right\}}{\sum_{i=1}^{n} \sum_{t=2}^{T}\left\{-\frac{\alpha_{i} c}{\sqrt{T}}+\frac{c}{\sqrt{T}} y_{i t-2}+u_{i t-1}\right\} y_{i t-2}} \tag{0.27}
\end{equation*}
$$

Rescaling and using $y_{i 0}=0$ gives

$$
\begin{equation*}
\sqrt{T}\left(\rho_{I V}-\rho\right)=\frac{\sum_{i=1}^{n} \frac{1}{\sqrt{T}}\left\{u_{i T} y_{i T-2}-\sum_{t=3}^{T} u_{i t-1}\left[-\frac{\alpha_{i} c}{\sqrt{T}}+\frac{c}{\sqrt{T}} y_{i t-3}+u_{i t-2}\right]\right\}}{\sum_{i=1}^{n} \frac{1}{T} \sum_{t=2}^{T}\left\{-\frac{\alpha_{i} c}{\sqrt{T}}+\frac{c}{\sqrt{T}} y_{i t-2}+u_{i t-1}\right\} y_{i t-2}} \tag{0.28}
\end{equation*}
$$

Since $\frac{1}{\sqrt{T}} \sum_{t=2}^{T} u_{i t-1} u_{i t-2} \Rightarrow G_{i} \equiv N\left(0, \sigma^{4}\right), \frac{1}{T} \sum_{t=2}^{T} u_{i t-1}=o_{p}(1)$, and $\frac{1}{T} \sum_{t=2}^{T} u_{i t-1} y_{i t-3}=$
$o_{p}(1)$ - see 0.30 below - the numerator is

$$
\begin{align*}
& \sum_{i=1}^{n} \frac{1}{\sqrt{T}}\left\{u_{i T} y_{i T-2}-\sum_{t=3}^{T} u_{i t-1}\left[-\frac{\alpha_{i} c}{\sqrt{T}}+\frac{c}{\sqrt{T}} y_{i t-3}+u_{i t-2}\right]\right\} \\
= & -\sum_{i=1}^{n} \frac{1}{\sqrt{T}} \sum_{t=3}^{T} u_{i t-1} u_{i t-2}+o_{p}(1) \Rightarrow-\sum_{i=1}^{n} G_{i}(1) \tag{0.29}
\end{align*}
$$

Using Phillips and Magdalinos (2007, theorem 3.2) we find that

$$
\begin{equation*}
T^{-3 / 2} \sum_{t=2}^{T} y_{i t}^{2} \rightarrow_{p} \frac{\sigma^{2}}{-2 c}, T^{-3 / 4} \sum_{t=2}^{T} y_{i t-1} u_{i t} \Rightarrow N\left(0, \frac{\sigma^{4}}{-2 c}\right), \text { and } T^{-3 / 2} \sum_{t=2}^{T} y_{i t}=o_{p}(1) \tag{0.30}
\end{equation*}
$$

The denominator of 0.28 therefore satisfies

$$
\begin{equation*}
\sum_{i=1}^{n} \frac{1}{T} \sum_{t=2}^{T}\left\{-\frac{\alpha_{i} c}{\sqrt{T}}+\frac{c}{\sqrt{T}} y_{i t-2}+u_{i t-1}\right\} y_{i t-2} \rightarrow_{p} \sum_{i=1}^{n}\left\{c \frac{\sigma^{2}}{-2 c}\right\} \tag{0.31}
\end{equation*}
$$

Hence, using 0.29 and 0.31 we have $\sqrt{T}\left(\rho_{I V}-\rho\right) \underset{T \rightarrow \infty}{\Rightarrow} \frac{2}{n \sigma^{2}} \sum_{i=1}^{n} G_{i}=\frac{2}{n} \sum_{i=1}^{n} \zeta_{i}$ where $\zeta_{i} \sim_{i i d} N(0,1)$. Then

$$
\begin{equation*}
\sqrt{n T}\left(\rho_{I V}-\rho\right) \underset{T \rightarrow \infty}{\Rightarrow} \frac{2}{\sqrt{n}} \sum_{i=1}^{n} \zeta_{i} \underset{n \rightarrow \infty}{\Rightarrow} N(0,4) \tag{0.32}
\end{equation*}
$$

which gives (i) and then leads directly to the sequential limit $\sqrt{n T}\left(\rho_{I V}-\rho\right)_{(n, T)_{\text {seq }} \rightarrow \infty}^{\Rightarrow}$ $N(0,4)$.

Proof of Theorem 6. The proof follows the same lines as the proof of Theorem 3 above. As before, we define the vector of standardized components appearing in the numerator and denominator of $\sqrt{T}\left(\rho_{I V}-\rho\right)$ in 0.28)

$$
X_{n T}=\left(X_{1 n T}, X_{2 n T}\right)^{\prime}:=\left(n^{-1 / 2} \sum_{i=1}^{n} Y_{1 i T}, n^{-1} \sum_{i=1}^{n} Y_{2 i T}\right)
$$

where $Y_{i T}=\left(Y_{1 i T}, Y_{2 i T}\right)^{\prime}$ with

$$
\begin{aligned}
Y_{1 i T} & =\frac{1}{\sqrt{T}}\left\{u_{i T} y_{i T-2}-\sum_{t=3}^{T} u_{i t-1}\left[-\frac{\alpha_{i} c}{\sqrt{T}}+\frac{c}{\sqrt{T}} y_{i t-3}+u_{i t-2}\right]\right\} \underset{T \rightarrow \infty}{\Rightarrow} Y_{1 i}:=-G_{i}(1), \\
Y_{2 i T} & =\frac{1}{T} \sum_{t=2}^{T}\left\{-\frac{\alpha_{i} c}{\sqrt{T}}+\frac{c}{\sqrt{T}} y_{i t-2}+u_{i t-1}\right\} y_{i t-2} \underset{T \rightarrow \infty}{\Rightarrow} Y_{2 i}:=c \frac{\sigma^{2}}{-2 c}
\end{aligned}
$$

From (0.29) and (0.31) we have the sequential convergence

$$
\begin{align*}
& X_{n T} \underset{T \rightarrow \infty}{\Rightarrow} X_{n}: \\
& \underset{n \rightarrow \infty}{\Rightarrow} X:=\left(-n^{-1 / 2} \sum_{i=1}^{n} G_{i}(1), n^{-1} \sum_{i=1}^{n}\left\{c \frac{\sigma^{2}}{-2 c}\right\}\right)^{\prime} \tag{0.33}\\
&\left.\sigma^{2} \zeta,-\frac{\sigma^{2}}{2}\right), \text { where } \zeta=N(0,1)
\end{align*}
$$

which in turn implies the sequential limit $\sqrt{n T}\left(\rho_{I V}-\rho\right) \underset{n \rightarrow \infty, T \rightarrow \infty}{\Rightarrow} N(0,4)$ given in 0.12 . Since $X_{n T} \underset{T \rightarrow \infty}{\Rightarrow} X_{n} \underset{n \rightarrow \infty}{\Rightarrow} X$ sequentially, joint weak convergence $X_{n T} \Rightarrow X$ as $(n, T) \rightarrow \infty$ holds in the same manner as Theorem 3 with only minor definitional changes. First, $Y_{i T}$ is integrable just as before. To show Lemma A(i) holds, observe that

$$
\begin{aligned}
& \mathbb{E}\left\|Y_{i T}\right\|^{2}=\mathbb{E} Y_{1 i T}^{2}+\mathbb{E} Y_{2 i T}^{2} \\
= & \frac{1}{T} \mathbb{E}\left\{u_{i T} y_{i T-2}-\sum_{t=3}^{T} u_{i t-1}\left(-\frac{\alpha_{i} c}{\sqrt{T}}+\frac{c}{\sqrt{T}} y_{i t-3}+u_{i t-2}\right)\right\}^{2} \\
& +\frac{1}{T^{2}} \mathbb{E}\left\{\sum_{t=2}^{T}\left(-\frac{\alpha_{i} c}{\sqrt{T}}+\frac{c}{\sqrt{T}} y_{i t-2}+u_{i t-1}\right) y_{i t-2}\right\}^{2} \\
= & \frac{\sigma^{2}}{T} \mathbb{E} y_{i T-2}^{2}+\frac{1}{T} \mathbb{E}\left\{\sum_{t=3}^{T} u_{i t-1}\left(-\frac{\alpha_{i} c}{\sqrt{T}}+\frac{c}{\sqrt{T}} y_{i t-3}+u_{i t-2}\right)\right\}^{2} \\
= & \frac{\sigma^{2}}{T} \mathbb{E} y_{i T-2}^{2}+\frac{1}{T} \mathbb{E}\left(\sum_{t=3}^{T} u_{i t-1} u_{i t-2}\right)^{2}+\frac{c^{2} \alpha_{i}^{2}}{T^{2}} \mathbb{E}\left(\sum_{t=3}^{T} u_{i t-1}\right)^{2}+\frac{c^{2}}{T^{2}} \mathbb{E}\left(\sum_{t=3}^{T} u_{i t-1} y_{i t-3}\right)^{2} \\
& -\frac{2 \alpha_{i} c}{T^{3 / 2}} \mathbb{E}\left(\sum_{t=3}^{T} u_{i t-1} \sum_{s=3}^{T} u_{i s-2}\right)-\frac{2 \alpha_{i} c^{2}}{T^{2}} \mathbb{E}\left(\sum_{t=3}^{T} u_{i t-1} \sum_{s=3}^{T} y_{i s-3}\right)+\frac{2 c}{T^{3 / 2}} \mathbb{E}\left(\sum_{t=3}^{T} u_{i t-1} u_{i t-2} \sum_{s=3}^{T} y_{i s-3}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{\sigma^{4}}{-2 c} \frac{\sqrt{T_{2}}}{T}+\sigma^{4} \frac{T_{2}}{T}+O\left(\frac{1}{T}\right)+\frac{c^{2} \sigma^{2}}{T^{2}} \sum_{t=3}^{T} \mathbb{E} y_{i t-3}^{2}+O\left(\frac{1}{\sqrt{T}}\right)+O\left(\frac{1}{T}\right)+O\left(\frac{1}{\sqrt{T}}\right) \\
& =\sigma^{4} \frac{T_{2}}{T}+o(1)
\end{aligned}
$$

since from $0.24 \mathbb{E}\left(y_{i t}^{2}\right)=\sigma^{2} \frac{1-\rho^{2 t}}{1-\rho^{2}}+\alpha_{i}^{2}\left(1-\rho^{t}\right)^{2}=\sigma^{2} \frac{\sqrt{t}}{-2 c}\{1+o(1)\}$. Then $\mathbb{E}\left\|Y_{i T}\right\|^{2}<\infty$ and we deduce that

$$
\limsup _{n, T \rightarrow \infty} \frac{1}{n} \sum_{i=1}^{n} \mathbb{E}\left\|Y_{i T}\right\|=\limsup _{T \rightarrow \infty} \mathbb{E}\left\|Y_{i T}\right\| \leq \limsup _{T \rightarrow \infty}\left(\mathbb{E}\left\|Y_{i T}\right\|^{2}\right)^{1 / 2}<\infty
$$

as required. Condition (ii) holds, as we again have $\mathbb{E} Y_{i T}=\mathbb{E} Y_{i}=0$; and condition (iii) and (iv) hold because $\sup _{T} \mathbb{E}\left\|Y_{i T}\right\|^{2}<\infty$ and $\mathbb{E}\left\|Y_{i}\right\|^{2}<\infty$. We then have joint weak convergence

$$
X_{n T}=n^{-1 / 2} \sum_{i=1}^{n} Y_{i T} \underset{n, T \rightarrow \infty}{\Rightarrow} X:=\left(\sigma^{2} \zeta, \frac{\sigma^{2}}{2}\right)
$$

irrespective of the divergence rates of n and T to infinity. By continuous mapping, the required result follows for the IV estimator so that $\sqrt{T}\left(\rho_{I V}-\rho\right) \underset{n, T \rightarrow \infty}{\Rightarrow} N(0,4)$ holds jointly as $(n, T) \rightarrow \infty$ irrespective of the order and rates of divergence.

Proof of Theorem 7. We have $\rho=1+\frac{c}{T^{\gamma}}$ for some fixed $c<0$ and let $T \rightarrow \infty$. In this case, $y_{i t}=-\frac{\alpha_{i} c}{T \gamma}+\left(1+\frac{c}{T^{\gamma}}\right) y_{i t-1}+u_{i t}$ and $\Delta y_{i t}=\rho \Delta y_{i t-1}+\Delta u_{i t}$ so that $\Delta y_{i t}=$ $-\frac{\alpha_{i} c}{T^{\gamma}}+\frac{c}{T^{\gamma}} y_{i t-1}+u_{i t}$. As before, we have

$$
\begin{equation*}
\sqrt{T}\left(\rho_{I V}-\rho\right)=\frac{\frac{1}{\sqrt{T}} \sum_{i=1}^{n}\left\{\left(u_{i T} y_{i T-2}-u_{i 1} y_{i 0}\right)-\sum_{t=3}^{T} u_{i t-1}\left[-\frac{\alpha_{i} c}{T^{\gamma}}+\frac{c}{T^{\gamma}} y_{i t-3}+u_{i t-2}\right]\right\}}{\frac{1}{T} \sum_{i=1}^{n} \sum_{t=2}^{T}\left\{-\frac{\alpha_{i} c}{T^{\gamma}}+\frac{c}{T^{\gamma}} y_{i t-2}+u_{i t-1}\right\} y_{i t-2}} \tag{0.34}
\end{equation*}
$$

We use the following results from Phillips and Magdalinos (2007) and Magdalinos and Phillips (2009), which hold for all $\gamma \in(0,1)$,
$T^{-1-\gamma} \sum_{t=2}^{T} y_{i t}^{2} \rightarrow_{p} \frac{\sigma^{2}}{-2 c}, T^{-(1+\gamma) / 2} \sum_{t=2}^{T} y_{i t-1} u_{i t} \Rightarrow N\left(0, \frac{\sigma^{4}}{-2 c}\right)$, and $T^{-1 / 2-\gamma} \sum_{t=2}^{T} y_{i t}=O_{p}(1)$.
Then, since $\frac{1}{\sqrt{T}} \sum_{t=2}^{T} u_{i t-1} u_{i t-2} \Rightarrow G_{i} \equiv N\left(0, \sigma^{4}\right), \frac{1}{T^{1 / 2+\gamma}} \sum_{t=2}^{T} u_{i t-1}=o_{p}(1)$, and $\frac{1}{T^{1 / 2+\gamma}} \sum_{t=2}^{T} u_{i t-1} y_{i t-3}=$
$o_{p}(1)$ when $\gamma \in(0,1)$, the numerator of (0.34) is

$$
\begin{aligned}
& \sum_{i=1}^{n} \frac{1}{\sqrt{T}}\left\{u_{i T} y_{i T-2}-\sum_{t=3}^{T} u_{i t-1}\left[-\frac{\alpha_{i} c}{T^{\gamma}}+\frac{c}{T^{\gamma}} y_{i t-3}+u_{i t-2}\right]\right\} \\
= & -\sum_{i=1}^{n} \frac{1}{\sqrt{T}} \sum_{t=3}^{T} u_{i t-1} u_{i t-2}+o_{p}(1) \Rightarrow-\sum_{i=1}^{n} G_{i}(1) .
\end{aligned}
$$

Using (0.35), we find that the denominator of (0.34) satisfies

$$
\sum_{i=1}^{n} \frac{1}{T} \sum_{t=2}^{T}\left\{-\frac{\alpha_{i} c}{T^{\gamma}}+\frac{c}{T^{\gamma}} y_{i t-2}+u_{i t-1}\right\} y_{i t-2} \rightarrow_{p} \sum_{i=1}^{n}\left\{c \frac{\sigma^{2}}{-2 c}\right\}=-\frac{\sigma^{2} n}{2}
$$

Hence, as $T \rightarrow \infty$

$$
\sqrt{T}\left(\rho_{I V}-\rho\right) \underset{T \rightarrow \infty}{\Rightarrow} \frac{-\sum_{i=1}^{n} G_{i}}{-\frac{\sigma^{2}}{2} n}=\frac{\sigma^{2} \sum_{i=1}^{n} \zeta_{i}}{-\frac{\sigma^{2}}{2} n}, \quad \text { where } \zeta_{i} \sim_{i i d} N(0,1)
$$

Then, as $T \rightarrow \infty$ is followed by $n \rightarrow$, we have

$$
\sqrt{n T}\left(\rho_{I V}-\rho\right) \underset{T \rightarrow \infty}{\Rightarrow} \frac{2}{\sqrt{n}} \sum_{i=1}^{n} \zeta_{i} \underset{n \rightarrow \infty}{\Rightarrow} N(0,4), \text { for all } \gamma \in(0,1)
$$

Next consider the case $\gamma=1$. The numerator of (0.34) is then

$$
\begin{aligned}
& \sum_{i=1}^{n} \frac{1}{\sqrt{T}}\left\{u_{i T} y_{i T-2}-\sum_{t=3}^{T} u_{i t-1}\left[-\frac{\alpha_{i} c}{T}+\frac{c}{T} y_{i t-3}+u_{i t-2}\right]\right\} \\
= & \sum_{i=1}^{n} \frac{1}{\sqrt{T}}\left\{u_{i T} y_{i T-2}-\sum_{t=3}^{T} u_{i t-1} u_{i t-2}\right\}+o_{p}(1) \underset{T \rightarrow \infty}{\Rightarrow} u_{i \infty} K_{c i}(1)-\sum_{i=1}^{n} G_{i}(1),
\end{aligned}
$$

since by standard functional limit theory for near integrated processes (Phillips, 1987b) we have

$$
\left(\frac{1}{T^{1 / 2}} y_{i T}, \frac{1}{T} \sum_{t=2}^{T} y_{i t-1} u_{i t}\right) \underset{T \rightarrow \infty}{\Rightarrow}\left(K_{c i}(r), \int_{0}^{1} K_{c i} d B_{i}\right)
$$

where $B_{i}(r)=: \sigma W_{i}(r)$ are iid Brownian motions with common variance σ^{2}, and $K_{c i}(r)=$
$\int_{0}^{r} e^{c(r-s)} d B_{i}(s)=: \sigma J_{c i}(r)$ is a linear diffusion. The denominator of 0.34 satisfies

$$
\sum_{i=1}^{n} \frac{1}{T} \sum_{t=2}^{T}\left\{-\frac{\alpha_{i} c}{T}+\frac{c}{T} y_{i t-2}+u_{i t-1}\right\} y_{i t-2} \underset{T \rightarrow \infty}{\Rightarrow} \sum_{i=1}^{n}\left\{c \int_{0}^{1} K_{c i}(r)^{2} d r+\int_{0}^{1} K_{c i} d B_{i}\right\}
$$

Hence

$$
\begin{equation*}
\sqrt{T}\left(\rho_{I V}-\rho\right) \underset{T \rightarrow \infty}{\Rightarrow} \frac{\sum_{i=1}^{n}\left\{u_{i \infty} K_{c i}(1)-\sum_{i=1}^{n} G_{i}\right\}}{\sum_{i=1}^{n}\left\{c \int_{0}^{1} K_{c i}(r)^{2} d r+\int_{0}^{1} K_{c i}(r) d B_{i}\right\}}=\frac{\sum_{i=1}^{n}\left\{\left(\sigma^{-1} u_{i \infty}\right) J_{c i}(1)-\zeta_{i}\right\}}{\sum_{i=1}^{n}\left\{c \int_{0}^{1} J_{c i}(r)^{2} d r+\int_{0}^{1} J_{c i} d W_{i}\right\}}, \tag{0.36}
\end{equation*}
$$

where the $\zeta_{i} \sim_{i i d} N(0,1)$ and are independent of the W_{i} and $u_{i \infty}$ for all i. This gives the first part of (ii). Scaling the numerator and denominator of 0.36, noting that $\int_{0}^{1} J_{c i}(r) d W_{i}$ has zero mean and finite variance, and using the independence of $\zeta_{i}, u_{i \infty}$, and W_{i}, we obtain

$$
\begin{aligned}
& \sqrt{n T}\left(\rho_{I V}-\rho\right)_{T \rightarrow \infty}^{\Rightarrow} \frac{\frac{1}{\sqrt{n}} \sum_{i=1}^{n}\left\{\left(\sigma^{-1} u_{i \infty}\right) J_{c i}(1)-\zeta_{i}\right\}}{\frac{1}{n} \sum_{i=1}^{n}\left\{c \int_{0}^{1} J_{c i}(r)^{2} d r+\int_{0}^{1} J_{c i}(r) d W_{i}\right\}} \\
& \Rightarrow \Rightarrow \infty \frac{N\left(0, \frac{1-2 c-e^{2 c}}{-2 c}\right)}{c \mathbb{E}\left(\int_{0}^{1} J_{c i}(r)^{2} d r\right)}= \\
& N\left(0,-8 c \frac{1-2 c-e^{2 c}}{\left(e^{2 c}-1-2 c\right)^{2}}\right),
\end{aligned}
$$

since, using results in Phillips (1987b), we have $\mathbb{E}\left(\int_{0}^{1} J_{c i}(r)^{2} d r\right)=\frac{e^{2 c}-1-2 c}{(2 c)^{2}}$ and

$$
\mathbb{E}\left\{\left(\sigma^{-1} u_{i \infty}\right) J_{c i}(1)-\zeta_{i}\right\}^{2}=\mathbb{E}\left(\sigma^{-1} u_{i \infty}\right)^{2} \mathbb{E} J_{c i}(1)^{2}+\mathbb{E} \zeta_{i}^{2}=1+\frac{1-e^{2 c}}{-2 c}=\frac{1-2 c-e^{2 c}}{-2 c} .
$$

Hence, when $\gamma=1$, we have

$$
\begin{equation*}
\sqrt{n T}\left(\rho_{I V}-\rho\right) \underset{(n, T) \rightarrow \infty}{\Rightarrow} N\left(0,(-8 c) \frac{1-2 c-e^{2 c}}{\left(e^{2 c}-1-2 c\right)^{2}}\right) \tag{0.37}
\end{equation*}
$$

From Lemma 2 of Phillips (1987b) we have

$$
\left((-2 c) \int_{0}^{1} J_{c i}(r)^{2} d r,(-2 c)^{1 / 2} \int_{0}^{1} J_{c i}(r) d W_{i}\right) \underset{c \rightarrow 0}{\Rightarrow}\left(1, Z_{i}\right), \quad Z_{i} \sim_{i i d} N(0,1,)
$$

and $\frac{1-2 c-e^{2 c}}{-2 c}=2\{1+o(1)\}$ as $c \rightarrow 0$, so that

$$
\begin{equation*}
(-8 c) \frac{1-2 c-e^{2 c}}{\left(e^{2 c}-1-2 c\right)^{2}} \sim(-8 c) \frac{(-4 c)}{\left\{\frac{1}{2}(2 c)^{2}\right\}^{2}}=\frac{8}{c^{2}} \text { for small } c \sim 0 \tag{0.38}
\end{equation*}
$$

which explodes as $c \rightarrow 0$, consonant with the unit root case where we only have \sqrt{T} convergence. Observe that both 0.37 and 0.38 correspond to earlier results with the reverse order of sequential convergence $(T, n)_{\text {seq }} \rightarrow \infty$.

Next suppose $\gamma>1$ so that $\rho=1+\frac{c}{T \gamma}$ is closer to unity than the LUR case with $\gamma=1$. In this case, the numerator and denominator of (0.34) have the same limits as in the unit root case, viz.,

$$
\begin{aligned}
& \sum_{i=1}^{n} \frac{1}{\sqrt{T}}\left\{u_{i T} y_{i T-2}-\sum_{t=3}^{T} u_{i t-1}\left[-\frac{\alpha_{i} c}{T^{\gamma}}+\frac{c}{T^{\gamma}} y_{i t-3}+u_{i t-2}\right]\right\} \\
= & \sum_{i=1}^{n} \frac{1}{\sqrt{T}}\left\{u_{i T} y_{i T-2}-\sum_{t=3}^{T} u_{i t-1} u_{i t-2}\right\}+o_{p}(1) \underset{T \rightarrow \infty}{\Rightarrow} \sum_{i=1}^{n}\left\{u_{i \infty} B_{i}(1)-G_{i}\right\},
\end{aligned}
$$

and

$$
\sum_{i=1}^{n} \frac{1}{T} \sum_{t=2}^{T}\left\{-\frac{\alpha_{i} c}{T^{\gamma}}+\frac{c}{T^{\gamma}} y_{i t-2}+u_{i t-1}\right\} y_{i t-2} \underset{T \rightarrow \infty}{\Rightarrow} \sum_{i=1}^{n}\left\{\int_{0}^{1} B_{i} d B_{i}\right\}
$$

Then

$$
\begin{aligned}
& \sqrt{T}\left(\rho_{I V}-\rho\right) \underset{T \rightarrow \infty}{\Rightarrow} \frac{\sum_{i=1}^{n}\left\{u_{i \infty} B_{i}(1)-G_{i}\right\}}{\sum_{i=1}^{n} \int_{0}^{1} B_{i} d B_{i}}=\frac{\frac{1}{\sqrt{n}} \sum_{i=1}^{n}\left\{\left(\sigma^{-1} u_{i \infty}\right) W_{i}(1)-\zeta_{i}\right\}}{\frac{1}{\sqrt{n}} \sum_{i=1}^{n} \int_{0}^{1} W_{i} d W_{i}} \underset{n \rightarrow \infty}{\Rightarrow} 2 \mathbb{C}, \\
& \text { since }\left(\frac{1}{\sqrt{n}} \sum_{i=1}^{n}\left\{\left(\sigma^{-1} u_{i \infty}\right) W_{i}(1)-\zeta_{i}\right\}, \frac{1}{\sqrt{n}} \sum_{i=1}^{n} \int_{0}^{1} W_{i} d W_{i}\right)_{n \rightarrow \infty}^{\Rightarrow} N\left(0,\left[\begin{array}{cc}
2 & 0 \\
0 & 1 / 2
\end{array}\right]\right) .
\end{aligned}
$$

1 References

Magdalinos, T. and P. C. B. Phillips (2009). "Limit theory for cointegrated systems with moderately integrated and moderately explosive regressors", 25, 482-526.

Phillips, P. C. B. (1987a). "Time Series Regression with a Unit Root," Econometrica, 55,

277-302.
Phillips, P. C. B. (1987b). "Towards a Unified Asymptotic Theory for Autoregression," Biometrika 74, 535-547.

Phillips, P. C. B. (1989). "Partially identified econometric models," Econometric Theory 5, 181-240.

Phillips, P. C. B., T. Magdalinos (2007), "Limit Theory for Moderate Deviations from a Unit Root," Journal of Econometrics 136, 115-130.

Phillips, P.C.B. and H.R. Moon (1999) : Linear Regression Limit Theory for Nonstationary Panel Data," Econometrica, 67, 1057-1111.

[^0]: *The author acknowledges support from the NSF under Grant No. SES 12-58258.

