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This supplement provides detailed derivations and proofs of the results in the paper

“Dynamic Panel Anderson-Hsiao Estimation with Roots Near Unity”.

Proof of Theorem 1. Part (i) follows by the Lindeberg Lévy CLT
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To evaluate it is convenient to use partial summation
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the final line following if the initial condition y;o = 0, which will be assumed in the calcula-
tions below. The large n asymptotic results will continue to hold for y;0 = O, (1) even for
finite T with some obvious minor adjustments to the variance matrix expressions involving
quantities of O (1) in T Next
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and, with y;0 = 0 (or up to O (1) in T if y;0 # 0)
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For Part (ii), simply write p;,, — 1 = gz;, and note from (i) that (Nnr, Dpr) =
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as stated.
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Combining these results, we have by joint weak convergence and continuous mapping that

as n — oo with T fixed,
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yielding the stated result. m

Proof of Theorem 2. By definition we have
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and rescaling gives
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Using the fact that E (uiuisuis—1) = 0 for all (¢,s), we have by standard functional limit

theory for r € [0, 1]
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where B; and G; are independent Brownian motions for all 4. Then, since y;0 = O, (1) and
T-! Zthl uit = 0p (1), we deduce the joint weak convergence (Phillips, 1987a, 1989)
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Since w; is iid over ¢t and %, it follows that w;p = ;0 as T — o0, where the limit
variates {ujo} are independent over ¢ and have the same distribution as wu;. Note that
u;r 1s independent of (T_1/2 tT;l wig, T71 221 WirYit—1, T ™1 221 uituit,1> and, hence,
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follows that u;s is independent of the vector of limit variates . We therefore have the

combined weak convergence
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Setting G; = G; (1), the stated result
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follows from and by continuous mapping.

For part (ii) we consider sequential asymptotics in which T' — oo is followed by n — oc.
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Observe that u;sB; (1) — G; is iid over i with zero mean and variance
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and is uncorrelated with B; (1)%. Since {Bi (1) - 02} is 74d with zero mean and variance

204, application of the Lindeberg Lévy CLT as n — oo gives
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giving the required result. m

Proof of Theorem 3. We proceed by examining a set of sufficient conditions for joint
convergence limit theory developed in Phillips and Moon (1999). In particular, we consider

conditions that suffice to ensure that sequential convergence as (n, 7)., — oo (i.e., T — o0

seq
followed by n — oo) implies joint convergence (n,7’) — oo where there is no restriction on
the diagonal path in which n and T pass to infinity.

We start by defining the vector of standardized components appearing in the numerator

and denominator of pry
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From and (0.11)) we have the sequential convergence
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which in turn implies the sequential limit /7 (p;, — 1) = 2C given in (0.12)). By
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Lemma 6(b) of Phillips and Moon (1999), when X, = X, = X sequentially, joint

weak convergence X, 7 = X as (n,T) — oo holds if and only if
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for all bounded, continuous real functions f on R2.

Simple primitive conditions sufficient for to hold are available in the case where
the components of the random quantity X,,7 involve averages of 7¢d random variables as
in the present case where we have X,,r = n=1/2 Z?:l Y,r with the Y;r independent over 7.

Component-wise we have
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for all . The working probability space can be expanded as needed to ensure that the
(limit) random quantities Y; := (Y3;, Y2;)" are defined in the same space for all i so that
averages involving » " | Y; are meaningful. In this framework we can use a result on joint
convergence by Phillips and Moon (1999) — see lemma PM below — to verify condition
(0.15)). In what follows we use the notation of lemma PM.



We proceed to verify these conditions for Y;7 and Y;. First, Y;r is integrable since
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< TE|ui—1ui—2| < TE (uf)) < oo,

T T

1/2
< ZEWn 1Yit—2 SZ (Bug,_1Byj; o) < o
t=2 t=2

E|Yir|*? = EYZ;+EY,

1 d (L i
= TE {UiTyiT2 - Z Uit—luit—2} + ﬁE (Z Uit—lyit—2>
t=3 t=2

T

T 1
ot 22 (t —2) (0.16)
t=2

= 244

when y;0 = 0, with obviously valid extension to the case where y;0 = O, (1) with finite

second moments. Then
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as required. To show (ii) holds, simply observe that EY;r = EY; = 0. To show (iii) holds,
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since B||Y;||* < oo, proving (iv). Hence, condition (0.15) holds and we have joint weak
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irrespective of the divergence rates of n and T to infinity. By continuous mapping, the

required result follows for the GMM estimator so that VT (p, — 1) T:> 2C jointly as
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Lemma PM (Phillips and Moon, 1999, theorem 1) Suppose the m x 1 random vec-
tors Yy are independent across i for all T and integrable. Assume that Yyr = Y; as
T — oo for all i. Then, condition holds if the following hold:
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Proof of Theorem 4. In case (i) T is fixed as well as ¢ < 0, which implies that
p=1+ ﬁ is fixed. So large n asymptotics follow as in the (asymptotically) stationary
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oz? (1 — pt)2 . Instrument relevance is determined by the magnitude of the moment
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which is nonzero for ¢ < 0 and zero when ¢ = 0, corresponding to the unit root case (p = 1)
considered earlier. Note that in the fully stationary case where initial conditions are in the

infinite past so that ;0 = a; + Z;'io Pui—j and yir = o + Z;’;O P us—; we have
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which corresponds with the leading term of (0.17)) when ¢ — oo with |p| < 1.

Now consider the numerator and denominator of the centred and scaled GMM estimate
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which is again zero when ¢ = 0 (p = 1). Turning to the numerator, we have E (Au;yit—2)

0 by orthogonality and by a standard CLT argument for fixed T" as n — oo
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We evaluate the above variance as follows. Using partial summation and y;o = 0, we have
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giving the stated result for (i). The error magnitude as " — oo in the asymptotic expansion

0.23) is justified as follows. Since ¢ < 0 is fixed we have 1 — p? = —2% — % and

2L
1—p [ ﬁ] 1-eVr VT (0.24)
c? c c? _9n" ’
L=p? 25-F -5 %

Then, by direct calculation as T' — oo

20Ty | 42 (ﬁ) + o202 (1 _ ecTz/\/:?) [1 _ T /NT _ Cl+eCT2/ﬁ}

wNT (1+p) \ — VT (1+p)
o () (e e ey
= Q(ITJIP) +0 <T§p> : (0.25)

The sequential limit theory (ii) follows directly from (i) and the asymptotic expansion

of 3.

If p =1+ 75 with v € (0,1), it is clear that the above fixed (T',c) limit theory as

n — oo continues to hold. Then, as T'— oo, we have in place of ((0.24))
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It follows that (ii) continues to hold with the same convergence rate vnT and same limit
variance 4 for all v € (0,1).
When 7 = 1, the sequential normal limit theory in (ii) still holds but the variance of

the limiting distribution changes. Observe that in this case
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Using ((0.21) we then have the following limit behavior as 7" — oo
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so the v/nT Gaussian limit theory holds but with a different variance when p = 1+ £.
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indicating that the variance in diverges and the v/nT convergence rate fails as the
unit root is approached via ¢ — 0.

Next, examine the case where p = 1 + 75 with v > 1 and ¢ < 0, so that p is in
the immediate vicinity of unity, closer than the LUR case but still satisfying p < 1 for
fixed T In that case, we still have Gaussian limit theory as n — oo because |p| < 1. To

find the limit theory as (7,n),, — oo we consider the behavior of the numerator and
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we have
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Combining these results we obtain
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It now follows that for p = 1 + & with ¢ < 0 fixed and v > 1
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Hence when p is closer to unity than a local unit root, the vnT rate of convergence is
3—-2

reduced to /nT 2 ~. When v = 5 the rate of convergence is simply /n and for v > %

the large n Gaussian asymptotic dlstrlbutlon N (0 wT) diverges as T' — oo because wT =

82 {1+ 0(1)} diverges with T. In this event, sequential (T',n)

S20-m — 00 asymptotics
1

seq
fail. In effect, the convergence rate is slower than /n and the non-Gaussian Cauchy limit

theory cannot be captured in these (T,n) . directional sequential asymptotics even though

seq
p =1+ 75 with v > 1 is in closer proximity to a unit root than the usual local unit root

case withy=1. m

Proof of Theorem 5. In the mildly integrated case where p = 1 + % we have

yie = =5 + (1 + f) Yit—1 + uie and Ayiy = pAyi—1 + Aug so that Ay = — % +
ﬁylt_l +ui = a; (1 —p) + (p— 1) yir—1 + uir. By partial summation, as shown above, we
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Rescaling and using y;0 = 0 gives
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op (1) — see (0.30) below — the numerator is
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Z: ﬁ {UiTyiT—2 - 53 Ut —1 [_ﬁ + ﬁyit—3 + uit—2:| }
= - Uit—1Ujt—2 + O ) = — G; (1) . (029)
3 a0, (1) -3

Using Phillips and Magdalinos (2007, theorem 3.2) we find that

T 2 T 4 T
_ o _ o _
T 3/2Zyz'2t —p T%,T 3/423/1171%@& = N (07 _20> ; and T 3/2Zyit =0p(1).
t=2 t=2

t=2
(0.30)
The denominator of ((0.28|) therefore satisfies
2
Z Z { \/—yzt 2+ Uit— 1} Yit—2 —p Z { _20} (031)

Hence, using (0.29) and (0.31) we havev'T (pryy — p) e # Y Gi= %Z?:l ¢; where
—00
¢; ~iia N (0,1). Then

VT (ppy — ) = oon@ = N(0,4), (0.32)

n—oo

which gives (i) and then leads directly to the sequential limit vVnT (ps, — p) ( T):>
n

seq

N(0,4). m

Proof of Theorem 6. The proof follows the same lines as the proof of Theorem 3 above.
As before, we define the vector of standardized components appearing in the numerator
and denominator of VT (p;, — p) in (0.28)

Xor = (X1nr, Xonr) 1= ( 2 Zyl T, ZYZZ'T> :
=1

16



where Y7 = (Y7, Yoir) with

T
1
Yir = Wia {UiTyiTZ - tz;un 1 [ \F \fyn 3+ Uit— 2} } Tfoo Y, = -G; (1),
T
1 ;c c o2
Yor = T — {_\/ZT + ﬁyitﬁ + Uitl} Yit—2 => Yo = 0_726

From (0.29)) and (0.31)) we have the sequential convergence

n !
Xnr Too Xn = <_n1/2 Z Gi(1),n™" Z { 20})
i—1

2
= X : = <024,—02>, where ¢ = N (0,1), (0.33)

n—oo

which in turn implies the sequential limit vnT (pry — p) = N (0,4) given in (0.12)).
n— —00

)

Since X,,r = X,, = X sequentially, joint weak convergence X, = X as (n,T) — oo
— 00

T n— oo
holds in the same manner as Theorem 3 with only minor definitional changes. First, Y;r

is integrable just as before. To show Lemma A(i) holds, observe that

2
E||Yir||* = EYZr + BV

2
= *E {UzTsz 9 — Zuzt 1 ( —=Yit—3 + uit—2>}
— \f \/T
1 L ?
aic |
+T2E{;< JT \Fyzt 2+ Ujt—1 | Yit— 2}
2 1 T 2
o a;c ¢
= TE?J?TQ + TE {; Ujt—1 <— ZT + ﬁyit—S + Uit—2> }
2

o2 1 d c?a? d i c? d ’
= =Byl o+ B (Z Uit 1Uit—2 | + 5B (Z Uitl) + —E (Z Uitlyit3>
T T — T T
2ac T T 204Z T
~ 732 E Z Ujt—1 Z Ujs—2 | — E Z Uit—1 Z Yis—3 T3/2 Z Uit—1Uit—2 Z Yis—3
t=3 s=3
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—2c T T T
T
= 04?2%-0(1),
since from ([0.24 E(yft) = 2 —i—oz (1— ) :Uz_i;c {1+0(1)}-ThenEHYiT”2<OO

and we deduce that

/2

lim sup —~ ZEHYzT” = hmsupElleTH < hmsup (EHYiTH ) < 00,
n,T—oo0 T

as required. Condition (ii) holds, as we again have EY;7 = EY; = 0; and condition (iii)

and (iv) hold because supp B ||Yir[|?> < oo and E||Y;||> < co. We then have joint weak

convergence

2
XT—nWZYT = Xi= <02<,02>,

77,4)00

irrespective of the divergence rates of n and T to infinity. By continuous mapping, the
required result follows for the IV estimator so that VT (p;, — p) T:> N (0,4) holds
n,T'—o0

jointly as (n,T) — oo irrespective of the order and rates of divergence. m

Proof of Theorem 7. We have p = 1 + % for some fixed ¢ < 0 and let " — oco. In

this case, yir = =9 + (1 + 75) Yir—1 + uir and Ay = pAyir—1 + Auy so that Ay =

_a4c
T

+ 75 Yit—1 + . As before, we have

ﬁ Yoy {(UiTyiT72 — UnYio) — Yopeg Uit—1 [~ HE + S yie-3 + uitd]}

T (oo — ) =
v =) DI Yo (-5 +

T Yit—2 + Uz‘tq} Yit—2
(0.34)

We use the following results from Phillips and Magdalinos (2007) and Magdalinos and
Phillips (2009), which hold for all v € (0,1),

T 2 T 4 T
1 g _ (e} _1/92—
TS g T B2 gy gy = N <0, _26) L and 7727 gy = 0, (1).
t=2 t=2 t=2
(0.35)
Then, since ﬁ Zthz Uip—1Ui—2 = G; = N (O, 04) , T1/++v EtTZQ uit—1 = 0p (1), and TTlQ"r’Y Zthz Uit—1Yit—3 =

18



0, (1) when v € (0,1), the numerator of (0.34)) is
p
"1 r a;C c
; ﬁ {UiTyiT—2 — tZ; Ujt—1 [—TfZV + ﬁyit—i’) + Uit—2:| }
n 1 T n
= — Z —_— Z Uit—1Uip—2 + 0p (1) = — Z Gi(1).
i=1 VT i=1

t=3

Using (0.35)), we find that the denominator of ((0.34)) satisfies

£l n
! Qic < Z g o°‘n
1= = —

2 .
VT (prv —p) = 2 = ——, where (; ~iq N (0,1).
— n
Then, as T' — oo is followed by n —, we have

2 n
VnT(PlV—mTfOO\/ﬁ;Ci = N(0,4), for all v € (0,1).

n—oo

Next consider the case v = 1. The numerator of is then
L a a;c ¢
; ﬁ {uiTyiT2 - Z; Ujt—1 [_T + TYit—3 + uitd} }
no T )
= ; ﬁ {UiTyiTZ - ;uit—luit—2} + o0, (1) Tj)o Uiso K oi (1) — ; Gi (1),

since by standard functional limit theory for near integrated processes (Phillips, 1987b) we

T 1
1 1
o YiTs Yit—1Uqgt = <K (7") 7/ K. dB) )
<T1/2 i ; i i ) oo ci 0 cidDj

where B; (r) =: W, (r) are iid Brownian motions with common variance o2, and K; (r) =

have
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Jo er=9)dB; (s) =: 0J.; (r) is a linear diffusion. The denominator of (0.34) satisfies

12{

=1 t=2

n

[671#
: + yzt 2+ Ujt— l}yzt 2 :> Z{ / Kcz d?“—i—/ Kcde}

Hence

\/T(PIV—P) = Zz 1{u100 CZ( ) Zz 1G} _ z 1{(0 u’LOO) cz( ) Cz}

oo s e fy K (P dr 4+ f) K (0 dBi} Sy (e fy T (02 dr + iy Jed Wi}
(0.36)
where the (; ~;;q N (0, 1) and are independent of the W; and u;, for all 4. This gives the first
part of (ii). Scaling the numerator and denominator of , noting that fo ci (1) dW;

has zero mean and finite variance, and using the independence of ¢;, uj00, and W, we obtaln

\/’ Zz 1 {(U uZOO) ci ( ) Cz}
=
oo % doiny { fo i (r)? dr + fo ci (1) dW; }

N (0 1—37—2) o
N 2c _ N(O, se 1—2c—e 2) 7
n—oo @ <f0 cz d?“) (620 -1 26)

VnT (prv —p)

since, using results in Phillips (1987b), we have E ( fo i dr) = % and

1 — e 1—2c—e2

B { (0 tioo) Jei (1) = (i} = B (07 o) " Bids (1) + BCF = 1+

“2¢c —2c
Hence, when v = 1, we have
1—2c—e*
vnT — = N (0, —8c > 0.37
(prv = p) (0. T) 00 (—8¢) (2 _1- 20)2 ( )

From Lemma 2 of Phillips (1987b) we have

1 1
<(—20) /0 Jei (1) dr, (—2¢)Y/? /0 Jm-(r)dwi) = (L2, Zi~ia N(0,1,)
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and”%—Q{l—i—o( )} as ¢ — 0, so that

1—2c—e* —4 8
(—8¢) S meme (—8c) _ (o) = — for small ¢ ~ 0 (0.38)

(e2¢ — 1 — 2¢)? {% (26)2}2 c?

which explodes as ¢ — 0, consonant with the unit root case where we only have /T
convergence. Observe that both (0.37) and (0.38)) correspond to earlier results with the
reverse order of sequential convergence (T, n),, — 0o.

Next suppose v > 1 so that p = 1+ 75 is closer to unity than the LUR case with v = 1.

In this case, the numerator and denomlnator of (| - ) have the same limits as in the unit

root case, viz.,

T
1 o;C c
E T {uzTsz 2 — E Ust—1 [ ,TZ T o Yit—3 + Uj— 2} }

i=1 pr
- Z 7T {uiTyiT_Q o Z uit_luit_Q} + Op (1) Tf?oo Z {uzooBz (1) - G'L} 9
=1 t:3 i—1
and
U oac c 1
= _t i i i BZdB'L ]
HT;{ T’Y+T’7yt2+utl}yt2 = Z{/O }
Then
1 n -1, ‘ .
VT (pry = p) iz {um B:(1) -Gt _ Vva 2ina {(07 M wie) Wi (1) — G} = 2C
n 1 n—oo ’
e >y Jy BidB; ﬁ S o WidW;

2 0
since (ﬁ S { (07 i) Wi (1) = (5} ﬁ > i fol WidWi) ne N (0’ [ 0 1/2 ]) '
m
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