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This section contains detailed proofs of all the theoretical results from the main text,

together with additional lemmas and propositions. Equations which first appear in this sec-

tion would be labelled as (A??) while those which have already appeared in the main text

are referenced by the Arabic number already assigned to them. Also in this section, sym-

bols sup
x

, sup
x,τ

or sup
x,τ,β

stand for sup lim taken with respect to x ∈ D, τ ∈ [τ∗, 1 − τ∗], and

β ∈ Rn(A). Similarly, the phrase uniformly in x, τ means uniformly in x ∈ D, τ ∈ [τ∗, 1−τ∗].

Proof of Lemma 1.With hn → 0, nhpn/ log n→∞ as n→∞, and the sequence of weights

Bnk(x) chosen to be the Gasser-Muller’s type weights, Theorem 2.2 of Gonzalez-Manteigaa

and Cadarso-Suarez (1994) states that

sup
x,τ
|F̂KM (t|x)− F0(t|x)| = O

(
h2
n +

( log n

nhpn

)1/2)
,

F̂KM (t|x)− F0(t|x) =
{1− F0(t|x)}

nhpn

n∑
k=1

K̃hn(Xkx)ϕ(Yk, dk, t,x) +O
(
h2
n +

( log n

nhpn

)3/4)
,

uniformly in x ∈ D and t. Their line of arguments is still valid with other forms of weights,

as long as
∑n

k=1Bnk(x) = 1. Specifically, for the generalized K-M estimator F̂KM (.|Xi) of

(10) with local polynomial weights, we have, with probability one

sup
x,τ
|F̂KM (t|x)− F0(t|x)| = O

(
hs3n +

(
logn
nhpn

)1/2)
,

F̂KM (t|x)− F0(t|x) = {1−F0(t|x)}
nhpn

n∑
k=1

B̃nk(x)ϕ(Yk, dk, t,x) +O
(
hs3n +

(
logn
nhpn

)3/4)
. (A.1)
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Note that with nh
p+4/3s3
n / log n < ∞ (Assumption [A7]), the term hs3n can be absorbed to

form part of O
(

(nhpn/log n)−3/4
)

.

Plug (A.1) into the definition of F̂Sn (.|.), and we have again with probability one,

F̂Sn (t|x) =

∫ {
F0(s|x) +

1

nhpn

n∑
k=1

B̃nk(x){1− F0(s|x)}ϕ(Yk, dk, s,x)
}
K̄(

s− t
h1n

)
1

h1n
ds

= F0(t|x) +
{1− F0(t|x)}

nhpn

n∑
k=1

B̃nk(x)χ(Yk, dk, t,x) +O
(
h2

1n +
( log n

nhpn

)3/4)
,(A.2)

where

χ(Yk, dk, t,x) =

∫
{1− F0(s|x)}ϕ(Yk, dk, s,x)

1

h1n
K̄
(s− t
h1n

)
ds.

Since E[χ(Yk, dk, t,x)] = 0, E|ϕ(Yk, dk, t + h1ns,x) − ϕ(Yk, dk, t,x)| = O(h1n), and h1n =

O((nhpn/ log n)−1/2) (Assumption [A8]), we have, with probability one,

{1− F0(t|x)}
nhpn

n∑
k=1

B̃nk(x)χ(Yk, dk, t,x)− {1− F0(t|x)}
nhpn

n∑
k=1

B̃nk(x)ϕ(Yk, dk, t,x)

= O({h1n log n

nhpn
}1/2) = O({ log n

nhpn
}3/4). (A.3)

With h2
1n = O(hs3n ) (Assumption [A7]), Lemma 1 thus follows from (A.2) and (A.3). �

To keep the exposition simple, we illustrate by focusing on the case where K(.) is the

uniform density on [−1, 1]p. The arguments could be easily adapted for the case of a general

symmetric probability density in Rp with a compact support. Rewrite (9) as∑
i∈Sn(x)

[
win(τ)ρτ (Yi − β>µn(Xix)) + (1− win(τ))ρτ (Y +∞ − β>µn(Xix))

]
, (A.4)

where the index set Sn(x) = {i : 1 ≤ i ≤ n, |Xix| ≤ δn} with cardinality Nn(x) = ](Sn(x)).

Denote the minimizer of (A.4) as β̂nτ (x); and to facilitate the discussion on its properties,

we implicitly assume the following simple facts; see also Chaudhuri (1991) and Kong , Linton

and Xia (2013).

[FACT1] For any positive integer m, let x be a vector in Rm and p(x) be an arbitrary

nonzero polynomial in x. Then, the Lebesgue measure of the set {x|p(x) = 0} is 0.

[FACT2] Let X(1), · · · ,X(m) be independent random vectors in Rm with the property that

Prob(X(i) ∈ H) = 0 for all i = 1, · · · , n, and any given linear subspace H of Rm such that

dim(H) ≤ m−1. Then the collection {X(1), · · · ,X(m)} is almost surely linearly independent.

[FACT3] For any x ∈ D, denote by ωδn(t,x), the conditional density of δ−1
n (X−x), given

that |X− x| ≤ δn. Then ωδn(t,x) converges to the uniform density on [−1, 1]p uniformly in

t as well as in x ∈ D.
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For any given x ∈ D, let [DXn(x)] be the Nn(x)× n(A) matrix with rows {µ>n (Xix), i ∈

Sn(x)}, and V Yn(x) be the Nn(x)× 1 vector {Yi, i ∈ Sn(x)}. For any subset h ⊂ Sn(x) such

that ](h) = n(A), denote by [DXn(x,h)], the n(A)× n(A) matrix with rows {µ>n (Xix), i ∈

h}, and by V Yn(x,h), the n(A)× 1 vector {Yi, i ∈ h}. Define

Hn(x) = {h : h ⊂ Sn(x), ](h) = n(A), [DXn(x,h)] has full rank}.

The following two propositions describe two critical facts about the minima of (A.4).

Proposition 1. For any given x ∈ D such that [DXn(x)] has rank n(A), then there is a

subset h ∈ Hn(x), such that (A.4) has at least one minimum of the form

β̂nτ (x) = [DXn(x,h)]−1V Yn(x,h).

Proof. Similar to the proof for Theorem 3.1 in Koenker and Bassett (1978), this roughly

follows from the following linear programming formulation of the minimization of (A.4):

min
u+i , u

−
i

∑
i∈Sn(x)

win(τ)[τu+
i + (1− τ)u−i ] +

∑
i∈Sn(x)

τ(1− win(τ))(u+
i − u

−
i ), (A.5)

subject to

Yi − β>µn(Xix) = u+
i − u

−
i ;

β ∈ Rn(A); u+
i , u

−
i ≥ 0, i = 1, · · · , Nn(x).

Note that we have implicitly used the following fact

ρτ{Y +∞ − β>µn(Xix)} = τ(Y +∞ − Yi + u+
i − u

−
i ).

An equivalence to problem (A.5) is

min
u+i , u

−
i

∑
i∈Sn(x)

[τu+
i + (win(τ)− τ)u−i ], (A.6)

subject to

V Yn(x)− [DXn(x)]β = u+ − u−;

(β,u+,u−) ∈ Rn(A) ×R2Nn(x)
+ ;

u+ = (u+
i , i ∈ Sn(x)); u− = (u−i , i ∈ Sn(x)).

According to Theorem 7.7.4 in Gill, Murray and Wright (1991), problem (A.6) has a vertex

solution, i.e. there exists some subset h ∈ Hn(x), such that u+
i = u−i = 0, i ∈ h, which is

equivalent to the statement in Proposition 1. �

3



Let 1n(A) stand for the n(A)× 1 vector of ones, and for any x ∈ D and h ∈ Hn(x), define

wn(h|τ) = (win(τ), i ∈ h), and

Ln(x,h|τ) =
[
DXn(x,h)

]−1∑
i∈h̄

[
win(τ)I{Yi ≤ µ>n (Xix)β̂nτ (x)} − τ

]
µn(Xix),

where h̄ = Sn(x)\h denotes the complement of h in Sn(x).

Proposition 2. If, for some h ∈ Hn(x), β̂nτ (x) = [DXn(x,h)]−1V Yn(x,h) is a minimum

(not necessarily a unique one) of (A.4), then we must have

Ln(x,h|τ) ∈ [τ1n(A) −wn(h|τ), τ1n(A)], (A.7)

where [τ1n(A) −wn(h|τ), τ1n(A)] is the n(A)−fold Cartesian product of the closed intervals

{[τ − win(τ), τ ], i ∈ h}. Further, β̂nτ (x) is a unique minima if and only if Ln(x,h|τ) ∈

(τ1n(A) −wn(h|τ), τ1n(A)).

Proof. Rewrite optimization problem (A.6) as minimizing with respect to β the following

quantity

ψ(β) =
∑

i∈Sn(x)

[τ − win(τ)

2
+
win(τ)

2
sign(Yi − µ>n (Xix)β)][Yi − µ>n (Xix)β].

Its directional derivative in direction a, a unit vector in Rn(A),

ψ′(β; a) =
∑

i∈Sn(x)

{win(τ)

2
− win(τ)

2
sign∗[Yi − µ>n (Xix)β;−µ>n (Xix)a]− τ

}
µ>n (Xix)a,(A.8)

where

sign∗(u; z) =

{
sign(u) if u 6= 0,
sign(z) if u = 0.

This can be derived as follows. For small enough δ > 0,

ψ(β + δa) =
∑

i∈Sn(x)

{τ − win(τ)

2
+
win(τ)

2
sign[Yi − µ>n (Xix)(β + δa)]}{Yi − µ>n (Xix)(β + δa)}.

Therefore,

ψ(β + δa)− ψ(β)

=
∑

i∈Sn(x)

win(τ)

2

[
sign{Yi − µ>n (Xix)(β + δa)} − sign{Yi − µ>n (Xix)β}

]
{Yi − µ>n (Xix)β}

−δa>
∑

i∈Sn(x)

[τ − win(τ)

2
+
win(τ)

2
sign{Yi − µ>n (Xix)(β + δa)}]µn(Xix).
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Consider each individual term and as δ → 0, the first term vanishes, and the second term

when divided by δ converges to ψ′(β; a) defined in (A.8).

Now since ψ(β) is convex in β, it attains a (local) minimum at β̂nτ (x) if and only if

ψ′(β̂nτ (x); a) > 0 for all a 6= 0. Note that at β̂nτ (x) = [DXn(x,h)]−1V Yn(x,h),

ψ′(β̂nτ (x); a) =
∑
i∈h

[
win(τ)

2
+
win(τ)

2
sign(µ>n (Xix)a)− τ ]µ>n (Xix)a

+
∑
i∈h̄

{win(τ)

2
− win(τ)

2
sign∗[Yi − µ>n (Xix)β̂nτ (x);−µ>n (Xix)a]− τ

}
µ>n (Xix)a.

Letting ν = (νi; i ∈ h) = [DXn(x,h)]a, we have that ψ′(β̂nτ (x); a) > 0 for all a 6= 0, if and

only if

0 <
∑
i∈h

[
(
win(τ)

2
− τ)νi +

win(τ)

2
|νi|
]

+
∑
i∈h̄

{win(τ)

2
− win(τ)

2
sign∗

[
Yi − µ>n (Xix)β̂nτ (x);

−µn(Xix)[DXn(x,h)]−1ν
]
− τ
}
× µ>n (Xix)>[DXn(x,h)]−1ν,

for all ν 6= 0. This is equivalent to

τ1n(A) −wn(h) <
∑
i∈h̄

{win(τ)

2
− win(τ)

2
sign∗

[
Yi − µ>n (Xix)β̂nτ (x);−µn(Xix)[DXn(x,h)]−1ν

]
−τ
}
× [DXn(x,h)]−1µn(Xix) < τ1n(A), (A.9)

for all ν 6= 0. As once given h thus β̂nτ (x), observations {(Yi,Xi) : i ∈ h̄} behave like

independent random vectors, consequently according to [FACT2], the event that for some

i ∈ h̄,

Yi − µn(Xix)>β̂nτ (x) = Yi − µn(Xix)[DXn(x,h)]−1V Yn(x,h) = 0

has probability zero, since it means at least n(A) + 1 independent random vectors lie on a

certain hyperplane of dimension n(A). Therefore, (A.9) reduces to

τ1n(A) −wn(h) <
∑
i∈h̄

{win(τ)

2
− win(τ)

2
sign

[
Yi − µ>n (Xix)β̂nτ (x)

]
−τ
}
× [DXn(x,h)]−1µn(Xix) < τ1n(A),

as required. �

Below are some classical results in kernel smoothing which will be repeatedly referred to

throughout this section: with probability one,

sup
x
|(nδpn)−1Nn(x)− fX(x)| = o(1), (A.10)

sup
x,τ
|Σnτ (x)− [1−G(Qτ (x)|x)]f0(Qτ (x)|x)Σ(A)| = O(δn + (nhpn/ log n)−1/2), (A.11)

sup
x
|Σ̃n(x)− fX(x)Σ(Ã)| = O

(
(nhpn/ log n)−1/2 + hn

)
. (A.12)
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Also for notational simplicity, we shall write F0(.|Xi), f0(.|Xi), G(.|Xi), g(.|Xi) as Fi0(.),

fi(.), Gi(.) and gi(.), respectively. For any given x ∈ Rp, β ∈ Rn(A) and F (.|x) a conditional

distribution function defined with any x ∈ D, write

Zni(x,β, F |τ) =
[
wi(τ |F )I{Yi ≤ β>µn(Xix)} − τ

]
µn(Xix), i ∈ Sn(x),

H̃n(x,β, F |τ) = Ei[Zni(x,β, F |τ)],

where Ei(.) denotes expectation taken with respect to the joint distribution of ξi = (Yi,Xi, di).

Regarding the convergence rate of β̂nτ (x) that is uniform in x ∈ D and τ ∈ [τ∗, 1 − τ∗],

we have

Lemma 3. Under conditions in Theorem 1, we have

sup
x,τ
|β̂nτ (x)− βnτ (x)| = Op(τn). (A.13)

Proof. First of all, according to Proposition 2 there exists some finite constant φ1 such that

sup
x,τ
|
∑

i∈Sn(x)

Zni(x, β̂nτ (x), F̂n(.|.)|τ)| ≤ φ1. (A.14)

Secondly, according to the first assertion of Proposition 7, if τ̃1−α
n /{δ2pα

n log n} <∞, then

sup
x,τ,β
|
∑

i∈Sn(x)

[Zni(x,β, F̂n(.|.)|τ)− Zni(x,β, F0|τ)]| = Op((nδ
p
n log n)1/2) (A.15)

On the other hand, based on Proposition 4 below, there exists positive constants ε∗1, c
∗
1 and

M∗2 , such that ∣∣∣H̃n(x,β, F0|τ)
]∣∣∣ ≥ min(ε∗1, c

∗
1|β − βnτ (x)|) (A.16)

uniformly in x, τ and β whenever

|β − βnτ (x)| ≥M∗3 [nδpn/ log n]−1/2,

where M∗3 > M∗2 .

Combining (A.14), (A.15), (A.16) and the facts that ](h) = n(A), min
x,τ

(nδpn)−1](h̄) > 0

almost surely, we can conclude that for large enough K1(> M∗2 ),

lim sup
n

Prob{sup
x,τ
|β̂nτ (x)− βnτ (x)| ≥ K1[nδpn/ log n]−1/2}

≤ lim
n
Prob{sup

x,β
|
∑
i

I(|Xix| ≤ δn)[Zni(x,β, F0|τ)− H̃n(x,β, F0|τ)]| ≥ K1

2
(nδpn log n)1/2}.
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Finally, we invoke Theorem II.37 of Pollard (1984) to show that for large enough K1, the

probability on the right hand side of the above is of o(1) as n → ∞. To this aim, first note

that the following classes of functions (i) : {µn(Xix) : x ∈ D}, (ii) : {I(Yi ≤ β>µn(Xix)) :

β ∈ Rn(A), x ∈ D}, (iii) : {I(|Xix| ≤ δn) : x ∈ D} and (iv){wi(τ |F0) : τ ∈ [τ∗, 1 − τ∗]}

are all Euclidean for a constant envelope (Lemma (2.13) of Pakes and Pollard, 1989; Lemma

18 and Lemma 22 of Nolan and Pollard, 1987). The closer properties of Euclidean classes

further dictates that {I(|Xix| ≤ δn)Zni(x,β, F0|τ) : β ∈ Rn(A), x ∈ D, τ ∈ [τ∗, 1 − τ∗]} is

also Euclidean, thus the conditions required by Theorem II.37 of Pollard (1984) are met. The

proof is thus complete by noting that E[I(|Xix| ≤ δn)Zni(x,β, F0|τ)] = O(δpn) uniformly in

β ∈ Rn(A), x ∈ D and τ ∈ [τ∗, 1− τ∗]. �

As the random vector Zni(x,β, F |τ) plays a central role in the proof of Theorem 1, let

us take a look at its expectation. Observing that

wi(τ |F )I{Yi ≤ β>µn(Xix)} − τ

= I{Ci > β>µn(Xix), Ti ≤ β>µn(Xix)}+ I{Ci ≤ β>µn(Xix), Ti ≤ Ci}

+I{Ci ≤ β>µn(Xix), Ti > Ci}
[
1− 1− τ

1− Fi(Ci)
I{Fi(Ci) < τ}

]
− τ, (A.17)

E{I(Ci > t, Ti < t)|Xi = x} = [1−G(t|x)]F0(t|x),

E{I(Ci > t, Ti < Ci)|Xi = x} =

∫ t

−∞
F0(u|x)g(u|x)du,

we have

H̃n(x,β, F |τ) =

∫
[−1,1]p

µ(t){R1(β>µ(t)|x + δnt) +RF (β>µ(t)|x + δnt, τ)− τ}ωδn(t,x)dt,

where

R1(s|x) = [1−G(s|x)]F0(s|x) +

∫ s

−∞
F0(u|x)g(u|x)du,

RF (s|x, , τ) =

∫ s

−∞
{1− F0(u|x)}

[
1− 1− τ

1− F (u|x)
I{F (u|x) < τ}

]
g(u|x)du.

In the case where F (.|.) = F0(.|.), we have

R1(s|x) +RF0(s|x, τ) = [1−G(s|x)]F0(s|x) +G(s|x)− (1− τ)

∫ min(s,Qτ (x))

−∞
g(u|x)du.

Proof of Theorem 1. This consists of the following steps.

Step 1: For any given t ∈ [−1, 1]p, and β close enough to βnτ (x), let s1 = µ(t)>βnτ (x)

and s2 = µ(t)>β. Bear in mind the observation that for Ci lying above Qτ (Xi), the
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quantile fit will not be affected if the entire weight is shifted to Y +∞; see also Wang

and Wang (2009). Therefore, assumptions [A2]-[A4] and [FACT3] imply that

R1(s2|x) +RF0(s2|x, τ)−R1(s1|x)−RF0(s1|x, τ)

= [1−G(Qτ (x)|x)]f0(Qτ (x)|x)µ(t)>{β − βnτ (x)}+O(τ2
n + |δn|2s2), (A.18)

and thus for any β close enough to βnτ (x),

H̃n(x,β, F0|τ)− H̃n(x,βnτ (x), F0|τ)

= Σn(x){β − βnτ (x)}+O(|β − βnτ (x)|2 + |δn|2s2), (A.19)

uniformly in t, x and τ .

Step 2: Define the following n(A)−dimensional random vector

χn(x,β, F0|τ) =
∑
i

I(|Xix| ≤ δn)[Zni(x,β, F0|τ)− H̃n(x,β, F0|τ)]

−
∑
i

I(|Xix| ≤ δn)[Zni(x,βnτ (x), F0|τ)− H̃n(x,βnτ (x), F0|τ)].

As argued in the last paragraph in the proof of Lemma 3, {I(|Xix| ≤ δn)Zni(x,β, F0|τ) :

β ∈ Rn(A), x ∈ D, τ ∈ (0, 1)} is Euclidean, hence the conditions required by Theorem

II.37 of Pollard (1984) are met. As E[I(|Xix| ≤ δn){Zni(x,β, F0|τ)−Zni(x,βnτ (x), F0|τ)}]2 =

O(δpnτn) uniformly in x, τ and β ∈ Rn(A), whenever |β − βnτ (x)| ≤ K1τn, there exists

some finite K1 > 0, such that with probability one,

sup
x,τ,|β−βnτ (x)|≤K1τn

|χn(x,β, F0|τ)| = O((nδpnτn log n)1/2). (A.20)

Step 3: Combining (A.19) and (A.20), we have

1

Nn(x)

∑
i∈Sn(x)

[
wi0I{Yi ≤ Qnτ (Xi,x)} − τ

]
µn(Xix)

=
1

Nn(x)
χn(x) + H̃n(x, β̂nτ (x), F0|τ)− H̃n(x,βnτ (x), F0|τ)

+
1

Nn(x)

∑
i∈Sn(x)

[wi0(τ)I{Yi ≤ Q̂nτ (Xi,x)} − τ ]µn(Xix)

= Σn(x)[β̂nτ (x)− βnτ (x)] +
1

Nn(x)

∑
i∈Sn(x)

µn(Xix)[win(τ)I{Yi ≤ Q̂nτ (Xi,x)} − τ ]

+
1

Nn(x)

∑
i∈Sn(x)

µn(Xix)(wi0(τ)− win(τ))
[
I{Yi ≤ Q̂nτ (Xi,x)} − I{Yi ≤ Qnτ (Xi,x)}

]
+

1

Nn(x)

∑
i∈Sn(x)

µn(Xix)(wi0(τ)− win(τ))I{Yi ≤ Qnτ (Xi,x)}+O(τ3/4
n + δ2s2

n ).

The assertion in Theorem 1 thus follows from Propositions 7, 2 and 5. �

8



Proof of Corollary 1. We only need to show that the difference between the covariance

matrices of these two estimators is positive definite. For illustration purposes, we focus on the

covariance matrices of their respective ‘staple’ terms, not in the least because as discussed

in Section 4, the ‘correction’ terms will become relatively negligible if the K-M estimator

converges fast enough.

To this aim, we start with quantifying the variances of the following two random variables.

(A)
di

1−G(Yi|Xi)
[τ − I{Yi ≤ Qnτ (Xi,x)}] (B) wi0(τ)I{Yi ≤ Qnτ (Xi,x)} − τ.

Given Xi, the second moments of term (A) is in the first order equal to

E{[τ − I{Ti ≤ Qτ (Xi)}]2/(1−G(Ti|Xi))}.

As for that of term (B), first note that

B2 = (1− τ)2I{Ci > Ti, Ti < Qnτ (Xi,x)}+ τ2I{Ci > Ti, Ti > Qnτ (Xi,x)}

+τ2I{Ci < Ti, Ci > Qnτ (Xi,x)}

+(1− τ)2 F 2
i (Ci|Xi)

[1− Fi(Ci|Xi)]2
I{Ci < Ti, Ci < Qnτ (Xi,x)}

= B1 +B2 +B3 +B4

As B2 +B3 = τ2I{Ci > Qnτ (Xi,x)}I{Ti > Qnτ (Xi,x)}, we have E(B2 +B3) = τ2(1−τ)[1−

G(Qτ (Xi)|Xi)] + o(1). For the remaining two terms,

B1 = (1− τ)2I{Ti < Qnτ (Xi,x)} − (1− τ)2I{Ci < Ti, Ti < Qnτ (Xi,x)}

and consequently, E(B1 +B4) = (1− τ)2τ + (1− τ)2E
{
I{Ci ≤ Qτ (Xi)} F0(Ci|Xi)

1−F0(Ci|Xi)

}
+ o(1).

Therefore,

EB2 = τ(1− τ)[1−G(Qτ (Xi)|Xi)] + (1− τ)2E
[
I{Ci ≤ Qτ (Xi)}

F0(Ci|Xi)

1− F0(Ci|Xi)

]
+ o(1).

Consequently, up to the first order we have

Cov(βnτ (x)) =
Σ−1(A)]Σ̃(A)Σ−1(A)

δpnf2
0 (Qτ (x)|x)

{1−G(Qτ (x)|x)}−2

×{τ(1− τ)[1−G(Qτ (Xi)|Xi)] + (1− τ)2E
[
I{Ci ≤ Qτ (Xi)}

F0(Ci|Xi)

1− F0(Ci|Xi)

]
}

≤ Σ−1(A)]Σ̃(A)Σ−1(A)

δpnf2
0 (Qτ (x)|x)

τ(1− τ)

{1−G(Qτ (x)|x)}2
,

Cov(ĉnτ (x)) =
Σ−1(A)]Σ̃(A)Σ−1(A)

δpnf2
0 (Qτ (x)|x)

E
{ [τ − I{Ti ≤ Qτ (Xi)}]2

1−G(Ti|Xi)

}
This finishes the proof. �
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Proposition 4. If δs2n = O(τn), then there exist positive constants ε1, c1 and M1, such that

for all x and τ ,

|H̃n(x,β, F0|τ)| ≥ min(ε1, c1|β − βnτ (x)|) (A.21)

whenever |β − βnτ (x)| ≥M1(nδpn/ log n)−1/2.

Proof. This is split into several steps.

Steps 1: We show that there exist constants M2 > 0 and ε1 > 0, such that for all x and

τ ,|H̃n(x,β, F0|τ)| ≥ ε1, whenever |β − βnτ (x)| ≥M2.

If this is false, we can construct three sequences of vectors {βn∗} in Rn(A), {xn∗} in

Rp, {τn∗} such that with ∆n∗ ≡ βn∗ − βn0(xn∗) and n∗ → ∞, we have |∆n∗ | → ∞

and H̃n(xn∗ ,βn∗ , F0|τn∗) → 0. Without loss of generality, we can assume ∆n∗/‖∆n∗‖ →

some ∆∗ ∈ Rn(A), such that ‖∆∗‖ = 1, xn∗ → some x0 ∈ D and τn∗ → some τ0 ∈

[τ∗, 1− τ∗].

As µ(t)>βnτ (x) is uniformly bounded over t ∈ [−1, 1]p, x ∈ D and τ ∈ [τ∗, 1 − τ∗], we

have for any given t ∈ [−1, 1]p, µ(t)>βn∗ must tend to either +∞ or −∞, depending on

whether µ(t)>∆∗ is positive or negative, respectively. Specifically, for those t ∈ [−1, 1]p such

that µ(t)>∆∗ < 0,

R1(µ(t)>βn∗ |xn∗ + δn∗t) +RF0(µ(t)>βn∗ |xn∗ + δn∗t, τn∗)→ 0, (A.22)

as n∗ →∞; while for those t ∈ [−1, 1]p, such that µ(t)>∆∗ > 0, we have as n∗ →∞,

R1(t>βn∗ |xn∗ + δn∗t) +RF (t>βn∗ |xn∗ + δn∗t, τn∗)− τn∗

→ (1− τ0){1−G(Qτ0(x0)|x0)}. (A.23)

Since the region [−1, 1]p ∩ {t : µ(t)>∆∗ = 0} must have Legesque measure zero, if

|H̃n(βn∗ , F,xn∗)| → 0, as n∗ → ∞, (A.22), (A.23) and a straightforward application of the

dominated convergence theorem then yield

τ0

∫
[−1,1]p∩{t>∆∗<0}

µ(t)dt = (1− τ0){1−G(Qτ (x0)|x0)}
∫

[−1,1]p∩{t>∆∗>0}
µ(t)dt.

Multiplying either side by ∆∗, we get

τ0

∫
[−1,1]p∩{µ(t)>∆∗<0}

µ(t)>∆∗dt = (1− τ0){1−G(Qτ0(x0)|x0)}
∫

[−1,1]p∩{µ(t)>∆∗>0}
µ(t)>∆∗dt.

As τ0 ∈ [τ∗, 1− τ∗] and whence G(Qτ0(x0)|x0) < 1, the above equality implies that the two

regions [−1, 1]p ∩ {µ(t)>∆∗ < 0} and [−1, 1]p ∩ {µ(t)>∆∗ > 0} must both have Legesque

measure zero. This contradicts [FACT1].
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Step 2: Note that for any s ∈ R and x ∈ Rp,

R1(s|x) +RF0(s|x, τ)− τ = {1−G(s|x)}{F0(s|x)− τ}

+(1− τ){G(s|x)−
∫ min(s,Qτ (x))

−∞
g(u|x)du}. (A.24)

For any given β ∈ Rn(A), write ∆ ≡ β − βnτ (x), and thus for any given t ∈ [−1, 1]p,

β>µ(t) = ∆>µ(t) +Qτ (x + tδn)− r(tδn,x), and

F0(β>µ(t)|x + δnt)− τ = h(∆,x, t, τ)∆>µ(t) +O(δs2n ) (A.25)

uniformly in t,x, τ and ∆, where

h(∆,x, t, τ)

=
F0(∆>µ(t) +Qτ (x + tδn)− r(tδn,x)|x + δnt)− F0(Qτ (x + tδn)− r(tδn,x)|x + δnt)

∆>µ(t)

if ∆>µ(t) 6= 0, and is defined arbitrarily otherwise, since for nonzero ∆, the set [−1, 1]p∩{t :

µ(t)>∆ = 0} has Lebesque measure zero. In view of [A3], there exists b > 0, such that the

density f0(.|x) is continuous and bounded away from zero in the interval [Qτ (x)−b,Qτ (x)+b]

uniformly in x and τ ∈ [τ∗, 1− τ∗]. Suppose s2 in [A2] and the bandwidth δn are such that

|r(tδn,x| = O(δs2n ) < b for all x and t ∈ [−1, 1]p. Therefore, there exists some M3 > 0, such

that

inf
|∆| ≤M2, t ∈ [−1, 1]p

x, τ ∈ [τ∗, 1− τ∗]

h(∆,x, t) > M3. (A.26)

Similar to (A.25), it could be shown that

G(β>µ(t)|x + tδn)− Pr{Ci < min[Qτ (x + tδn),β>µ(t)]|x + δnt}

= I{∆>µ(t) > r(tδn,x)}h̃(∆,x, t, τ)∆>µ(t) +O(δs4n ),

again uniformly in t,x, τ ∈ [τ∗, 1− τ∗] and ∆, where

h̃(∆,x, t)

=
G(∆>µ(t) +Qτ (x + tδn)− r(tδn,x)|x + δnt)−G(Qτ (x + tδn)− r(tδn,x)|x + δnt)

∆>µ(t)
,

which is always nonnegative.
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Step 3: Write Q̂nτ (x + tδn,x) = β̂>nτ (x)µ(t). Combining the results in Step 2, we have∫
[−1,1]p

µ(t)
[
{1−G(s|x + δnt)}{F0(s|x + δnt)− τ}

+(1− τ){G(s|x + δnt)− Pr{Ci < min(Qτ (x + δnt), s)|x}}
]
dt

≥
[ ∫

[−1,1]p
{1−G(s|x + δnt)}h(∆,x, t, τ)µ(t)µ(t)>dt

]
∆ +O(δs4n )

≥ M3(1− b2)
[ ∫

I{|µ(t)| ≤ b1/2}µ(t)µ(t)>dt
]
∆, (A.27)

where the last inequality(A.27) follows from [A4] and (A.26). Denote by λ1(> 0), the smallest

eigenvalue of the positive definite matrix∫
I{|µ(t)| ≤ b1/2}µ(t)µ(t)>dt.

It can be seen that

|H̃n(x,β, F0|τ)| ≥ λ1M3(1− b2)|β − βnτ (x)|;

this together with the conclusion in Step 1 leads to (A.21). �

Proposition 5. Suppose conditions in Theorem 1 hold. We have

1

Nn(x)

∑
i∈Sn(x)

[
µn(Xix)(wi0(τ)− win(τ))I{Yi ≤ Qnτ (Xi,x)}

−Ei{µn(Xix)(wi0(τ)− win(τ))I{Yi ≤ Qnτ (Xi,x)}}
]

= Op

{
τn

( τ̃1−α
n

δpαn log n

)1/2}
uniformly in x, τ , where Ei(.) stands for expectation taken with respect to the joint distribution

of (Xi, Yi) with the other argument held fixed.

The proof of Proposition 5 is based on the concept of stochastic equicontinuity in empirical

process. To start with, we introduce the definition of ε−covering number. Let S be a sample

space and S, the sigma field. Let P be a probability measure on S and F be a class of

measurable functions from S to Rd. Denote by (F , ‖.‖∞) and (F , ‖.‖L2(P )), the subset of

metric spaces equipped with different norms, the first with the supremum norm and the

second, the L2(P ) norm. The ε−covering number N(ε, ‖.‖L2(P ),F) is defined to be the

minimum number of balls of radius ε with respect to the L2(P ) norm needed to cover the set

F . N(ε, ‖.‖∞,F) is similarly defined.

Proof. A useful identity is that, for given x, τ, and a generic conditional distribution function

F (.|.),

(wi0(τ)− win(τ))I{Yi ≤ Qnτ (Xi,x)}µn(Xix)

= (1− τ)[Zn1(ξi|x, F0, τ)− Zn1(ξi|x, F, τ) + Zn2(ξi|x, F, τ)], i ∈ Sn(x), (A.28)
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where win(τ) ≡ wi(τ |F (.|.)),

Zn1(ξi|x, F, τ) = µn(Xix)I{|Xix| ≤ δn}I{Ci ≤ Qnτ (Xi,x), Ti > Ci}
I{Fi(Ci) ≤ τ}

1− Fi0(Ci)
,

Zn2(ξi|x, F, τ) = I{|Xix| ≤ δn}I{Ci ≤ Qnτ (Xi,x), Ti > Ci, Fi(Ci) ≤ τ}

× Fi0(Ci)− Fi(Ci)
(1− Fi0(Ci))(1− Fi(Ci))

µn(Xix).

We start with proving

sup
F (.|.)∈Fn

∣∣∣ 1

nδpn

n∑
i=1

[
Zn1(ξi|x, F, τ)− Zn1(ξi|x, F0, τ)

−E{Zn1(ξi|x, F, τ)− Zn1(ξi|x, F0, τ)}
]∣∣∣ = op{(nδpn/ε)−1/2}. (A.29)

Let H = {Zn1(ξ|x, F, τ) : x ∈ D, F (.|.) ∈ Cs4M ((0, 1)⊗D)}. The proof follows the same lines as

those for the Equicontinuity Lemma (Pollard, 1984, pp. 150), provided that the ε−covering

number N(ε, ‖.‖L2(Pn),H) satisfies condition (16) therein, where Pn(.) denotes the empirical

measure that puts mass n−1 at each of Zn1(ξi|x, F, τ), i = 1, · · · , n.

Next, note the following simple but useful fact: for any real values |a| < 1, |b| < 1, and

x, y ∈ {0, 1}, it holds that |ax − by|2 ≤ |x − y| + |a − b|2. An application of this inequality

yields

|Zn1(ξ|x, F, τ)− Zn1(ξ|x′, F ′, τ)|2 ≤ |µn(Xix)I{|Xix| ≤ δn}I{Ci ≤ Qnτ (Xi,x)} −

µn(Xix′)I{|Xix′ | ≤ δn}I{Ci ≤ Qnτ (Xi,x
′)}|+ |I{Fi(Ci) ≤ τ} − I{F ′i (Ci) ≤ τ}|.

This in turn implies that the upper bound for ε−covering number N(ε, ‖.‖L2(Pn),H) is, the

product of N(ε, ‖.‖L2(Pn),F1), the ε
2−covering number of

F1 = {µn(Xix)I{|Xix| ≤ δn}I{Ci ≤ Qnτ (Xi,x)} : x ∈ D, τ ∈ [τ∗, 1− τ∗]} (A.30)

and ε2/4−covering number N(ε2/4, ‖.‖∞, Cs4M ((0, 1)⊗D)). On one hand, by Lemmas 2.6.15,

2.6.18 and 2.6.20 of van der Vaart and Wellner (1989) and Example 38 of Pollard (1984)

(pp.35), F1 of (A.30) is VC-subgraph class of functions with a constant envelope and thus

according to Theorem 2.6.7 of van der Vaart et al. (1989), there exist some universal constants

K1 > 0, W > 0 such that

sup
P
N(ε,F1, ‖.‖L2(P )) ≤ K1ε

−W for any ε > 0. (A.31)

On the other hand, Theorem 2.7.1 of van der Vaart et al. (1989) states that there exists some

constant K2 depending only on p, s4 and the Legesque measure of the set (0, 1) ⊗ D, such

that

logN(ε2/4, Cs4M ((0, 1)⊗D), ‖.‖∞) ≤ K2ε
−2(p+1)/s4 for any ε > 0.

13



This together with (A.31) implies that there exists some constant K3 such that

sup
P

logN(ε, ‖.‖L2(P ),H) ≤ K3ε
−2(p+1)/s4 . (A.32)

If s4 > p+1, (A.32) means that the requirement on the covering integral-condition (16) of the

Equi-continuity Lemma (Pollard, 1984, pp. 150) is satisfied and (A.29) consequently holds.

The handling of Zn2(ξi|x, F, τ) is much simpler and leads to results similar to (A.29). �

Proposition 6. Suppose conditions in Theorem 1 hold. We have

Ei[(wi0(τ)− win(τ))I{Yi ≤ Qnτ (Xi,x)}µn(Xix)]

=
1

n

∑
j

Ei

[
B̃hn(Xj ;Xi)I{|Xix| ≤ δn}µn(Xix)Φ(Xi, Yj , dj |τ)

]
(A.33)

+O
(
δpn‖F (.|.)− F0(.|.)‖2 + δpn(nhpn/ log n)−3/4 + δpnh

s4
n

)
.

where the term O(.) is uniform in x, τ and F (.|.) ∈ Fn.

Proof. This implies dealing with the terms introduced in (A.28). First note that through

arguments used to derive (A.19), for F (.|.) such that ‖F (.|.) − F0(.|.)‖ can be arbitrarily

small, we have

Ei[Zn1(ξi|x, F, τ)− Zn1(ξi|x, F0, τ)]

= Ei

[
I{i ∈ Sn(x)}µn(Xix)

{
G(F−1(τ |Xi)|Xi)−G(Qτ (Xi)|Xi)

}]
= Ei

[
I{i ∈ Sn(x)}µn(Xix){ g

f0
}(Qτ (Xi)|Xi){τ − F (Qτ (Xi)|Xi)}

]
+O(δpn‖F (.|.)− F0(.|.)‖2),

where the second equality follows from the following observations

G(F−1(τ |x)|x)−G(Qτ (x)|x) = g(Qτ (x)|x){F−1(τ |x)− F−1
0 (τ |x)}{1 + o(1)},

F−1(τ |x)− F−1
0 (τ |x) =

τ − F (Qτ (x)|x)

f0(Qτ (x)|x)
+O(‖F (.|.)− F0(.|.)‖2),

where again the terms O(.) and o(.) are both unform in x, τ and F (.|.) ∈ Fn. Note that

second equality above was proved by van der Vaart (1998) and was also used in Wang et al.

(2009) for linear CQR. With F (.|.) = F̂Sn , invoke Lemma 1 with t = Qτ (Xi), x = Xi, plug it

into (A.34) and we have

Ei[Zn1(ξi|x, F, τ)− Zn1(ξi|x, F0, τ)]

=
1

nhpn

n∑
j=1

Ei

[
I{i ∈ Sn(x)}µn(Xix)B̃nj(Xj ;Xi){

g

f0
}(Qτ (Xi)|Xi)ϕ(Yj , dj , Qτ (Xi),Xi)

]
+O{δpn‖F (.|.)− F0(.|.)‖2 + δpn

( log n

nhpn

)3/4
+ δpnh

s4
n },
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once again unform in x, τ and F (.|.) ∈ Fn. Similar results can be proved for the expectation

of Zn2(ξi|x, F, τ). Note that

1

n

∑
j

Ei

[
B̃hn(Xj ;Xi)I{|Xix| ≤ δn}µn(Xix)I{Ci ≤ Qnτ (Xi,x), Fi(Ci) ≤ τ}

Fi0(Ci)− Fi(Ci)
(1− Fi(Ci))

]
=

1

n

∑
j

Ei

[
B̃hn(Xj ;Xi)I{|Xix| ≤ δn}µn(Xix)I{Ci ≤ Qτ (Xi)}

Fi0(Ci)− Fi(Ci)
(1− Fi0(Ci))

]
+O(δs2n ‖F (.|.)− F0(.|.)‖+ ‖F (.|.)− F0(.|.)‖2),

and consequently (A.33) holds. Depending on the ratio δn/hn, the leading term in (A.33)

above admits the following asymptotic expressions:

• δn = o(hn),

γ(A)fX(x)
δpn
n

∑
j

B̃hn(Xj ;x)Φ(x, Yj , dj) +O(δp+1
n τ̃n); (A.34)

• if δn/hn →∞,

1

n

∑
j∈Sn(x)

fX(Xj)µn(Xjx)Φ(Xj , Yj , dj) +O(δpnhnτn/δn); (A.35)

• δn � hn,

fX(x)
δpn
n

∑
j

Bhn(Xj ;x)Φ(x, Yj , dj) +O(δp+1
n τ̃n), (A.36)

where Bhn(Xj ;x) =
∫

[−1,1]p B̃hn(Xj ;x + δnt)µ(t)dt. �

Proposition 7. Suppose conditions in Theorem 1 hold. We have

sup
τ,x,β

1

Nn(x)

∣∣∣ ∑
i∈Sn(x)

[Zni(x,β, F̂n|τ)− Zni(x,β, F0|τ)]
∣∣∣ = Op

{
τn +

( τ̃
(1−α)
n

δpαn log n

)1/2
τn

}
;

sup
τ,x,β

1

Nn(x)

∣∣∣ ∑
i∈Sn(x)

µn(Xix)(wi0(τ)− win(τ))
[
I{Yi ≤ β>µn(Xix)} − I{Yi ≤ Qnτ (Xi,x)}

]∣∣∣
= Op{τnτ̃n +

( τ̃
(1−α)
n

δpαn log n

)1/2
τ (3−α)/2
n }.

Proof. The arguments are exactly the same as those used to prove Propositions 5 and 6. �
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