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Abstract

This supplement contains the proofs of Theorems 4.1 and 4.2 of Aucejo et al. (2015, Section 4),

along with two intermediate results that are required for these proofs. All definitions required for this

supplement can be found in Aucejo et al. (2015). Finally, the derivations in this supplement follow closely

results in Andrews and Shi (2013) (hereafter, referred to as AS13).
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S1 Results on inference

Proof of Theorem 4.1. The proof of this result follows closely the arguments in AS13 (Theorem 2(a)). Notice

that Assumption A.2 implies their Assumptions S1-S2, Assumption A.5 implies the manageability of the

stochastic processes implied by their Assumption M, and Assumption A.6 implies their Assumption GMS1.

Suppose that Eq. (4.6) does not hold. In this case, we can find a subsequence {an}n≥1 of {n}n≥1 and

a sequence {(θan , Fan) ∈ F̄0}n≥1 s.t. PFan
(θan 6∈ CSan) > α ∀n ∈ N. By the compactness implicit in

the definition of F̄0, we can find a further subsequence {bn}n≥1 of {an}n≥1 s.t. {(θbn , Fbn) ∈ F̄0}n≥1 ∈
SubSeq(h2) for some limiting variance-covariance kernel h2, where SubSeq(h2) is as in Definition A.4. By

this and Assumption A.5, Lemmas S2.1-S2.2 imply that:(
vbn,Fbn

(θbn , ·)
ĥ2,bn,Fbn

(θbn , ·)

)
d→

(
vh2

(·)
h2(·)

)

as stochastic processes indexed by (x, ν) ∈ G. This and Assumptions A.2 and A.6 allow us to establish AS13

(Lemmas A2-A5). In turn, these can be used to contradict PFbn
(θbn 6∈ CSbn) > α ∀n ∈ N, thus concluding

the proof.

Proof of Theorem 4.2. The proof of this result follows closely the arguments in AS13 (Theorem 3), with the

exception of certain steps. For the sake of completeness, we sketch the main steps of the proof and point

out the differences with the one in AS13.

Consider the following derivation:

PF (θ ∈ CSn) = PF (Tn(θ) ≤ c(ϕn(θ, ·), ĥ2,n(θ, ·), 1− α+ η) + η)

≤ PF (Tn(θ) ≤ c(0, ĥ2,n(θ, ·), 1− α+ η) + η)

= PF (n−χ/2Tn(θ) ≤ n−χ/2(c(0, ĥ2,n(θ, ·), 1− α+ η) + η)),

where the first line holds by definition of ĉn(θ, 1 − α), the second line holds by definition of ϕn(θ, ·) and

c(·, ĥ2,n(θ, ·), 1−α+η), combined with Assumptions A.2(b) and A.6, which imply that ϕn(θ, ·) ≥ 0, and in the

last line χ is as in Assumption A.2(g). The proof is completed by showing that (a) PF (n−χ/2Tn(θ) ≥ C)→ 1

for some C > 0 and (b) c(0, ĥ2,n(θ, ·), 1−α+η) = Op(1), which imply that n−χ/2(c(0, ĥ2,n(θ, ·), 1−α+η)+η) =

op(1). The proof of (b) is identical to the proof in AS13 (which requires our Assumptions A.2 and A.5). On

the other hand, our proof of (a) is slightly different, and so we devote the remainder of this proof to develop

this argument.

By definition, θ 6∈ ΘS(F ) implies that ∃j ≤ p s.t. EF [Mj(Z, θ, x, ν)] < 0 for some (x, ν) ∈ G. Under

Assumptions A.2(c,e,f) and A.4, we can use the arguments in the proof of Theorem A.3 to define a set A ⊂ G
with positive Lebesgue measure s.t. EF [Mj(Z, θ, x, ν)] ≤ −ε ∀(x, ν) ∈ A. As a consequence,

S(EF [M(Z, θ, x, ν)], V arF [M(Z, θ, x, ν)] + λDF (θ)) ≥ η ∀(x, ν) ∈ A

for some δ > 0. By Assumptions A.2(a) and A.3, this implies that:∫
(x,ν)∈A

S(D
−1/2
F (θ)EF [M(Z, θ, x, ν)], h2,F (θ, x, ν) + λIp×p)dµ(x, ν) ≥ ηµ(A) > 0. (S1.1)
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To complete the proof, consider the following derivation:

n−χ/2Tn(θ) = n−χ/2
∫

(x,ν)∈G
S(vn,F (θ, x, ν) + h1,n,F (θ, x, ν), ĥ2,n,F (θ, x, ν) + λIp×p)dµ(x, ν)

=

∫
(x,ν)∈G

S(n−1/2vn,F (θ, x, ν) +D
−1/2
F (θ)EF [M(Z, θ, x, ν)], ĥ2,n,F (θ, x, ν) + λIp×p)dµ(x, ν)

≥
∫

(x,ν)∈A
S(n−1/2vn,F (θ, x, ν) +D

−1/2
F (θ)EF [M(Z, θ, x, ν)], ĥ2,n,F (θ, x, ν) + λIp×p)dµ(g)

p→
∫

(x,ν)∈A
S(D

−1/2
F (θ)EF [M(Z, θ, x, ν)], h2,F (θ, x, ν) + λIp×p)dµ(x, ν) ≥ ηµ(A) > 0, (S1.2)

where the first line holds by definition of Tn(θ), the second line holds by Assumption A.2(g) and by definition

of h1,n,F (θ, x, ν), the third line holds by A ⊂ G and Assumption A.2(c), the convergence in the fourth line

holds by the same argument described in the next paragraph, and the last expression is positive by Eq.

(S1.1). By Eq. (S1.2), PF (n−χ/2Tn(θ) ≥ ηµ(A)/2) → 1 for some ηµ(A)/2 > 0, which implies the desired

result.

To conclude the proof, it suffices to justify the convergence in the fourth line of Eq. (S1.2). For a fixed

parameter (θ, F ) ∈ F , Lemmas S2.1-S2.2 (see Section S2 in this supplement) imply that:(
vn,F (θ, ·)
ĥ2,n,F (θ, ·)

)
d→

(
vh2,F

(θ, ·)
h2,F (θ, ·)

)

as stochastic processes indexed by (x, ν) ∈ G. In turn, this implies that:

sup
(x,ν)∈G

∥∥∥∥∥
(
n−1/2vn,F (θ, x, ν)

ĥ2,n,F (θ, x, ν)

)
−

(
0

h2,F (θ, x, ν)

)∥∥∥∥∥ p→ 0.

The convergence in the fourth line of Eq. (S1.2) is a result of this, the almost sure representation theorem,

the bounded convergence theorem, and Assumption A.2(d).

S2 Auxiliary results

Lemma S2.1. Assume Assumption A.5 and that {(θkn , Fkn) ∈ F̄0}n≥1 ∈ SubSeq(h2) for an arbitrary

subsequence {kn}n≥1 of {n}n≥1. Then,

vkn,Fkn
(θkn , ·)

d→ vh2(·),

as stochastic processes indexed by (x, ν) ∈ G, where vh2
is a Rp-valued Gaussian process with zero mean and

variance-covariance kernel h2(·, ·) on G × G.

Proof. This result follows from AS13 (Lemmas A1(a) and E3). We describe the main ideas behind these

arguments for the sake of completeness. Throughout this proof, we replace the subsequence {kn}n≥1 by the

original sequence {n}n≥1 in order to simplify the notation.

Suppose that {(θn, Fn) ∈ F̄0}n≥1 ∈ SubSeq(h2). By Pollard (1990, Theorem 10.2), the desired result is

a consequence of the following conditions:
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(1) (G, ρ) is a totally bounded pseudo-metric space, where ρ is the following pseudo-metric:

ρ2((x, ν), (x̃, ν̃)) ≡ lim
n→∞

(Trace(V arFn [D
−1/2
Fn

(θn)(M(Z, θn, x, ν)−M(Z, θn, x̃, ν̃)]),

(2) The finite dimensional convergence holds, i.e., ∀(a, L) ∈ Rp/0 × N and ∀{(xs, νs)}Ls=1 ⊂ G,

{a′vn,Fn
(θn, xs, νs)}Ls=1 converges in distribution to an L-dimensional Gaussian distribution with zero

mean and variance covariance matrix with (s1, s2) component given by a′h2((xs1 , νs1), (xs2 , νs2))a.

(3) {vn,Fn(θn, x, ν) : (x, ν) ∈ G}n≥1 is stochastically equicontinuous with respect to ρ.

To prove these conditions, AS13 use the Crámer-Wold device. In particular, AS13 (Lemma A1(a)) shows

that these conditions hold if, for all a ∈ Rp/0, the following three conditions hold:

(a) (G, ρa) is a totally bounded pseudo-metric space, where ρa is the following pseudo-metric:

ρ2
a((x, ν), (x̃, ν̃)) ≡ lim

n→∞
V arFn [D

−1/2
Fn

(θn)a′(M(Z, θn, x, ν)−M(Z, θn, x̃, ν̃)], (S2.1)

(b) The finite dimensional convergence holds, i.e., ∀L and ∀{(xs, νs)}Ls=1 ⊂ G, {a′vn,Fn(θn, xs, νs)}Ls=1 con-

verges in distribution to an L-dimensional Gaussian distribution with zero mean and variance covariance

matrix with (s1, s2) component given by a′h2((xs1 , νs1), (xs2 , νs2))a. This convergence uniquely deter-

mines a Gaussian distribution va concentrated on the space of uniformly ρa(·)-continuous bounded

functionals on G, Uρa(G),

(c) a′vn,Fn(θn, ·)
d→ va.

To prove conditions (a)-(c), we rely on AS13 (Lemma E3), which extends Pollard (1990, Theorem 10.6,

page 53) to triangular array stochastic processes. Fix a ∈ Rp/0 and (x, ν), (x̃, ν̃) ∈ G arbitrarily and define:

fa,n,i(ω, x, ν) ≡ n−1/2a′D
−1/2
Fn

(θn)(Mn(Zi, θn, x, ν)− EFn [Mn(Zi, θn, x, ν)]),

ρ2
n,a((x, ν), (x̃, ν̃)) ≡ n EFn [fa,n,i(ω, x, ν)− fa,n,i(ω, x̃, ν̃)]2. (S2.2)

By definition, notice that a′vn,Fn
(θn, x, ν) =

∑n
i=1 fa,n,i(ω, x, ν). AS13 (Lemma E3) show that conditions

(a)-(c) hold provided that, ∀a ∈ Rp/0, the following results hold:

(i) {fa,n,i(ω, x, ν) : (x, ν) ∈ G}ni=1 is manageable with respect to some envelopes {Fa,n,i(ω)}ni=1,

(ii) limn→∞EFn [fa,n,i(ω, x, ν)fa,n,i(ω, x̃, ν̃)] = a′h2((x, ν), (x̃, ν̃))a for all (x, ν), (x̃, ν̃) ∈ G,

(iii) lim supn→∞
∑n
i=1EFn

[F 2
a,n,i] <∞,

(iv) limn→∞
∑n
i=1EFn

[F 2
a,n,i1[Fa,n,i > ε]] = 0 for all ε > 0,

(v) The pseudo-metric ρa in Eq. (S2.1) satisfies ρa((x, ν), (x̃, ν̃)) ≡ limn→∞ ρn,a((x, ν), (x̃, ν̃)) for all

(x, ν), (x̃, ν̃) ∈ G and, for all deterministic sequences {(xn, νn) ∈ G}n≥1 and {(x̃n, ν̃n) ∈ G}n≥1,

ρa((xn, νn), (x̃n, ν̃n))→ 0 implies that ρn,a((xn, νn), (x̃n, ν̃n))→ 0,

The verification of these conditions is similar to that in AS13.
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Condition (i). By Assumption A.5, {a′M(Zi, θ, x, ν) : (x, ν) ∈ G}ni=1 is manageable with respect to the

envelopes {a′M(Zi, θ)}ni=1. By the definitions in Eq. (S2.2) and AS13 (Lemma E1), it then follows that

{fa,n,i(ω, x, ν) : (x, ν) ∈ G}ni=1 is manageable with respect to envelopes {Fa,n,i(ω)}ni=1 defined as follows:

Fa,n,i(ω) ≡ n−1/2a′D
−1/2
Fn

(θn)(Mn(Zi, θn) + EFn
[Mn(Zi, θn)]).

Condition (ii)-(v). While the definitions of our stochastic processes and envelopes are slightly different

from those in AS13, one can still complete this proof by using similar arguments to those in AS13 (Lemma

E3).

Lemma S2.2. Assume Assumption A.5 and that {(θkn , Fkn) ∈ F̄0}n≥1 ∈ SubSeq(h2) for an arbitrary

subsequence {kn}n≥1 of {n}n≥1. Then,

sup
(xn,νn),(x̃n,ν̃n)∈G

||ĥ2,kn,Fkn
(θkn , (xn, νn), (x̃n, ν̃n))− h2((xn, νn), (x̃n, ν̃n))|| p→ 0.

Proof. This result follows from AS13 (Lemmas A1(b)). We describe the main ideas behind these arguments

for the sake of completeness. Throughout this proof, we replace the subsequence {kn}n≥1 by the original

sequence {n}n≥1 in order to simplify the notation.

Consider the following derivation:

sup
(x,ν),(x̃,ν̃)∈G

||ĥ2,n,Fn
((x, ν), (x̃, ν̃))− h2((x, ν), (x̃, ν̃))|| ≤{

sup(x,ν),(x̃,ν̃)∈G ||ĥ2,n,Fn
((x, ν), (x̃, ν̃))− h2,Fn

((x, ν), (x̃, ν̃))||
+ sup(x,ν),(x̃,ν̃)∈G ||h2,Fn

((x, ν), (x̃, ν̃))− h2((x, ν), (x̃, ν̃))||

}
.

The RHS is a sum of two terms. By {(θn, Fn) ∈ F̄0}n≥1 ∈ SubSeq(h2), the second term converges to zero.

Hence, it suffices to show that the first term is op(1).

For any s1, s2 = 1, . . . , p, the (s1, s2)-component of ĥ2,n,Fn
((x, ν), (x̃, ν̃)) is given by:

ĥ2,n,Fn
((x, ν), (x̃, ν̃))(s1,s2)

= n−1σ−1
s1 (θn)σ−1

s2 (θn)

n∑
i=1

(Ms1(Zi, θn, x, ν)− M̄n,s1(θn, x, ν))(Ms2(Zi, θn, x̃, ν̃)− M̄n,s2(θn, x̃, ν̃))

= n−1
n∑
i=1

fmmn,i,s1,s2(ω, (x, ν), (x̃, ν̃))−

(
n−1

n∑
i=1

fmn,i,s1(ω, x, ν)

)(
n−1

n∑
i=1

fmn,i,s2(ω, x̃, ν̃)

)
.

where we have relied on the i.i.d. assumption implicit in (θn, Fn) ∈ F̄0 and the following definitions:

fmn,i,s(ω, x, ν) ≡ Ms(Zi, θn, x, ν)− EFn [Ms(Zi, θn, x, ν)],

fmmn,i,s,š(ω, (x, ν), (x̃, ν̃)) ≡ fmn,i,s(ω, x, ν)× fmn,i,š(ω, x̃, ν̃).

Notice that, by definition, EFn
[fmn,i,s(ω, x, ν)] = EFn

[fmn,i,š(ω, x̃, ν̃)] = 0 and EFn
[fmmn,i,s,š(ω, (x, ν), (x̃, ν̃))] =
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h2,Fn
((x, ν), (x̃, ν̃))(s,š). Based on this argument, the desired result follows from proving that ∀s, š = 1, . . . , p,

sup
(x,ν)∈G

∥∥∥∥∥n−1
n∑
i=1

fmn,i,s(ω, x, ν)− EFn [fmn,i,s(ω, x, ν)]

∥∥∥∥∥ p→ 0,

sup
(x,ν),(x̃,ν̃)∈G

∥∥∥∥∥n−1
n∑
i=1

fmmn,i,s,š(ω, (x, ν), (x̃, ν̃))− EFn
[fmmn,i,s,š(ω, (x, ν), (x̃, ν̃))]

∥∥∥∥∥ p→ 0.

To complete this task we rely on AS13 (Lemma E2), which extends Pollard (1990, Theorem 8.2) to triangular

array stochastic processes. This result requires that, for arbitrary s, š = 1, . . . , p, we verify certain conditions

on the following triangular array of processes:

(i) {{fmn,i,s(ω, x, ν) : (x, ν) ∈ G}ni=1}n≥1,

(ii) {{fmmn,i,s,š(ω, (x, ν), (x̃, ν̃)) : (x, ν), (x̃, ν̃) ∈ G}ni=1}n≥1.

Conditions for (i). By Assumption A.5, {M(Zi, θ, x, ν) : (x, ν) ∈ G}ni=1 is manageable with respect to

the envelopes {M(Zi, θ)}ni=1. From this, it follows that {Ms(Zi, θ, x, ν) : (x, ν) ∈ G}ni=1 is manageable with

respect to the envelopes {Ms(Zi, θ)}ni=1. By AS13 (Lemma E1), it then follows that {fmn,i,s(ω, x, ν) : (x, ν) ∈
G}ni=1 is manageable with respect to envelopes {Fn,i,s(ω)}ni=1 defined as follows:

Fn,i,s(ω) ≡ σ−1
s (θn)(Ms(Zi, θn) + EFn

[Ms(Zi, θn)]). (S2.3)

To complete the argument, it suffices to show that n−1
∑n
i=1EFn [F 1+η

n,i,s] ≤ Ǩ for some Ǩ < ∞, η > 0, and

all n ∈ N. For this purpose, consider the following derivation for η = 1 + δ with δ > 0 as in Definition A.1:

EFn
[F 2+δ
n,i,s] = EFn

[(σ−1
s (θn)(Ms(Zi, θn) + EFn

[Ms(Zi, θn)]))2+δ] ≤ 22+δEFn
[|σ−1

s (θn)Ms(Zi, θn)|2+δ],

where the equality holds by Eq. (S2.3), the inequality holds by the convexity of x2+δ. The de-

sired result then follows immediately from (θn, Fn) ∈ F̄0, as this implies that F 2+δ
n,i,s is i.i.d. and that

EFn
[|σ−1

j (θn)Mn,j(Z, θn)|2+δ] < K for all j = 1, . . . , p and n ∈ N.

Conditions for (ii). By our previous verification, {fmn,i,s(ω, (x, ν)) : (x, ν) ∈ G}ni=1 is manageable

with respect to envelopes {Fn,i,s(ω)}ni=1 with Fn,i,s(ω) as in Eq. (S2.3) for s = 1, . . . , p. From this,

fmmn,i,s,š(ω, (x, ν), (x̃, ν̃)) ≡ fmn,i,s(ω, x, ν)fmn,i,š(ω, x̃, ν̃), and the arguments in the proof of AS13 (Lemma A1(b)),

it then follows that {fmmn,i,s,š(ω, (x, ν), (x̃, ν̃)) : (x, ν), (x̃, ν̃) ∈ G}ni=1 is manageable with respect to envelopes

{Fn,i,s,š(ω)}ni=1 defined by:

Fn,i,s,š(ω) ≡ σ−1
s (θn)σ−1

š (θn)(Ms(Zi, θn) + EFn
[Ms(Zi, θn)])(Mš(Zi, θn) + EFn

[Mš(Zi, θn)]). (S2.4)

To complete the argument, it suffices to show that n−1
∑n
i=1EFn

[F
2+δ/2
n,i,s,š ] ≤ Ǩ for some Ǩ <∞, η > 0, and

all n ∈ N. For this purpose, consider the following derivation for η = 1 + δ/2 with δ > 0 as in Definition A.1:

EFn [F
2+δ/2
n,i,s,š ] = EFn [(σ−1

s (θn)σ−1
š (θn)(Ms(Zi, θn) + EFn [Ms(Zi, θn)])(Mš(Zi, θn) + EFn [Mš(Zi, θn)]))2+δ/2]

≤ 42+δEFn [|σ−1
s (θn)Ms(Zi, θn)||σ−1

š (θn)Mš(Zi, θn)|2+δ/2]

≤ 42+δ{EFn [|σ−1
s (θn)Ms(Zi, θn)|2+δ]}(2+δ/2)/(2+δ){EFn [|σ−1

š (θn)Mš(Zi, θn)|2+δ]}(2+δ/2)/(2+δ),

where the first line holds by Eq. (S2.4), the second line holds by the convexity of x2+δ/2, and the third line

follows from Hölder’s inequality. The desired result then follows immediately from (θn, Fn) ∈ F̄0, as this
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implies that F
2+δ/2
n,i,s,š is i.i.d. and that EFn

[|σ−1
j (θn)Mn,j(Z, θn)|2+δ] < K for all j = 1, . . . , p and n ∈ N.
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