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Appendix A. Power Comparison for Example 4.2

Here we conduct a power comparison between the C(α) test and the Breusch and Pagan

(1979) LM test described in Example 4.2. Two different alternative βi distributions are

considered. The first one assumes βi takes value 0 for i = 1, . . . ,N/2 and cN−1/4 for

i = N/2 + 1, . . . ,N. We let c take 51 distinct values equally spaced from 0 to
√

50. The

second case assumes βi ∼ N(0,σ2) with σ taking 21 distinct values from 0 to 1. For simplic-

ity, we consider the case with dimension two, where both x covariates are standard normal

variables. The sample size is fixed at 400 with 10000 replications. Figure 1 presents the

power curve for the 10 % nominal level. In both cases, the C(α) test dominate the power

curve of the LM test based on the usual χ2 asymptotics.
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Figure 1. Power Comparison of Slope Heterogeneity Test for Linear Re-
gression Model: The left figure corresponds to the first experiment and the
right to the second. The dotted curve corresponds to the power curve of the
C(α) test based on the mixture of χ2 asymptotics and the solid curve for the
LM test based on the χ2

3 asymptotics.
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Appendix B. Computational Details in Examples 4.3

Joint test for Gaussian panel data model. The information matrix for (ξ, θ) =

(ξ1, ξ2,µ0,σ2
0) is

I =

(
Iξξ Iξθ

Iθξ Iθθ

)
=
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σ4
0
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0 0
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We further find

Iξ.θ = Iξξ − IξθI
−1
θθIθξ =

(
2NT(T − 1)/σ4

0 0

0 NT(T/2 + 1)

)
and

IξθI
−1
θθ =

(
0 2

0 σ2
0

)
.

As we have remarked in Section 3, the diagonality of Iξ.θ provides much convenience for

finding the optimal test statistics. Denote

Tn :=

(
t1n

t2n

)
= I

−1/2
ξ.θ

(∑
i vi1 − 2

∑
i v4i∑
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)
=
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0/T
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(∑
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2 −NT/2
) )

Replacing (µ0,σ2
0) by their MLEs yields the joint C(α) test.

Appendix C. Claim in Section 5

Here we provide the detail derivation for the claim in Section 4 that the reparameterization

adopted in Chesher (1984) and Cox (1983) for heterogeneity test requires extra moment

conditions on U for second derivative of log density with respect to the test parameter to

be bounded.

Proposition 1. For iid random variable Y1, . . . ,Yn each with density function
∫
p(y; λ0 +

τ
√
ηui)dF(ui), where Ui is a random variable with zero mean and unit variance. The

second-order derivative of the log density with respect to η evaluated under η = 0 is un-

bounded unless E(U3) = 0 and E(U4) <∞.
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Proof. Denote the log density as l = log
∫
p(y; λ0+τ

√
ηui)dF(ui). The first order derivative

with respect to η is

∇ηl|η=0 =
τ
∫
∇λp(y; λ0)udF(u)

2
√
η
∫
p(y; λ0)dF(u)

=
τ2

2
E(U2)

∇2
λp(y; λ0)

p(y; λ0)

The last step is obtained by applying the l’Hôpital’s rule.

The second order derivative is

∇2
ηl
∣∣
η=0

=
τ2

√
η
∫
∇2
λp(y;λ0)u

2dF(u)−τ
∫
∇λp(y;λ0)udF(u)

4η
√
η
∫
p(y;λ0)dF(u)

∣∣∣
η=0

−
(
∇ηl|η=0

)2

=
τ3

∫
∇3
λp(y;λ0)u

3dF(u)

12
√
η
∫
p(y;λ0)dF(u)

∣∣∣
η=0

−
(
∇ηl|η=0

)2

Provided that ∇3
λp(y; λ0) is not degenerately zero, ∇2

ηl is unbounded unless E(U3) = 0 and

E(U4) <∞ so that we can apply l’Hôpital’s rule again and get

∇2
ηl
∣∣
η=0

=
τ4

12

[
E(U4)

∇4
λp(y; λ0)

p(y; λ0)
− 3E(U2)2

(∇2
λp(y; λ0)

p(y; λ0)

)2
]
<∞
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