LIKELIHOOD INFERENCE IN AN AUTOREGRESSION WITH FIXED EFFECTS: SUPPLEMENTARY MATERIAL

Geert Dhaene
University of Leuven, Department of Economics, Naamsestraat 69, B-3000 Leuven, Belgium
geert.dhaene@kuleuven.be
Koen Jochmans
Sciences Po, Department of Economics, 28 rue des Saints-Pères, 75007 Paris, France koen.jochmans@sciencespo.fr

Tables 1 to 3 below present simulation results for the same design as in the main text, but for a more extensive range of parameter values and sample sizes. We ran a full factorial design with

$$
\begin{aligned}
N & =100,250,500,1000,2500,5000,10000 \\
T & =2,4,6,8,16,24
\end{aligned}
$$

and

- in the first-order autoregression (Table 1),

$$
\rho_{0}=.8, .9, .99 ; \quad \psi=0,1,2
$$

- in the second-order autoregression (Table 2),

$$
\rho_{0}=\binom{.6}{.2},\binom{1}{-.2} ; \quad \psi=.3,1,2
$$

- in the first-order autoregression with a covariate (Table 3),

$$
\theta_{0}=\binom{\rho_{0}}{\beta_{0}}=\binom{.5}{.5},\binom{.9}{.1},\binom{.99}{.01} ; \quad \gamma=.5, .99 ; \quad \psi=0,1,2
$$

We ran 10,000 replications at each design point.

Table 1. Simulation results for the first-order autoregression

N	T	ψ	ρ_{0}	bias			std			ci. 95		
				$\widehat{\rho}_{\text {al }}$	$\widehat{\rho}_{\text {ab }}$	$\widehat{\rho}_{\text {hk }}$	$\widehat{\rho}_{\text {al }}$	$\widehat{\rho}_{\text {ab }}$	$\widehat{\rho}_{\text {hk }}$	$\widehat{\rho}_{\text {al }}$	$\widehat{\rho}_{\text {ab }}$	$\widehat{\rho}_{\text {hk }}$
100	2	0	. 5	-. 142	-	-. 747	. 267	-	. 153	. 819	. 921	. 000
100	2	1	. 5	. 027	-	-. 373	. 266	-	. 141	. 903	. 934	. 090
100	2	2	. 5	. 019	-	. 111	. 166	-	. 113	. 946	. 945	. 880
100	4	0	. 5	. 008	-. 039	$-.295$. 141	. 148	. 066	. 924	. 926	. 004
100	4	1	. 5	. 016	-. 053	-. 139	. 124	. 164	. 067	. 945	. 928	. 327
100	4	2	. 5	. 001	-. 016	. 071	. 064	. 082	. 056	. 946	. 936	. 684
100	6	0	. 5	. 008	-. 032	-. 147	. 091	. 082	. 051	. 952	. 920	. 131
100	6	1	. 5	. 002	-. 048	-. 073	. 068	. 096	. 049	. 952	. 914	. 580
100	6	2	. 5	-. 001	-. 021	. 043	. 044	. 063	. 041	. 945	. 930	. 744
100	8	0	. 5	. 001	-. 026	-. 085	. 056	. 057	. 042	. 953	. 918	. 400
100	8	1	. 5	-. 001	-. 040	-. 045	. 048	. 070	. 040	. 943	. 907	. 730
100	8	2	. 5	-. 001	-. 023	. 028	. 036	. 051	. 034	. 946	. 930	. 812
100	16	0	. 5	. 000	-. 019	-. 021	. 028	. 030	. 026	. 944	. 902	. 841
100	16	1	. 5	-. 001	-. 027	-. 013	. 027	. 035	. 025	. 947	. 879	. 899
100	16	2	. 5	-. 001	-. 023	. 009	. 023	. 032	. 023	. 944	. 893	. 902
100	24	0	. 5	. 000	-. 018	-. 010	. 021	. 022	. 020	. 943	. 878	. 907
100	24	1	. 5	-. 0001	-. 023	-. 006	. 020	. 025	. 020	. 948	. 852	. 926
100	24	2	. 5	. 000	-. 020	. 004	. 019	. 024	. 018	. 943	. 869	. 925
100	2	0	. 9	-. 144	-	-. 551	. 265	-	. 151	. 821	. 925	. 014
100	2	1	. 9	-. 094	-	-. 472	. 267	-	. 153	. 845	. 923	. 050
100	2	2	. 9	-. 006	-	-. 288	. 270	-	. 145	. 884	. 931	. 323
100	4	0	. 9	-. 083	$-.483$	-. 294	. 127	. 413	. 073	. 843	. 730	. 006
100	4	1	. 9	-. 044	$-.537$	-. 227	. 126	. 455	. 072	. 879	. 748	. 055
100	4	2	. 9	. 013	-. 150	-. 085	. 126	. 266	. 066	. 922	. 900	. 648
100	6	0	. 9	-. 051	$-.283$	-. 203	. 086	. 210	. 051	. 858	. 691	. 006
100	6	1	. 9	-. 020	$-.383$	$-.145$. 085	. 245	. 049	. 904	. 645	. 080
100	6	2	. 9	. 011	$-.128$	-. 029	. 082	. 151	. 044	. 944	. 864	. 837
100	8	0	. 9	-. 033	-. 191	-. 154	. 066	. 127	. 039	. 876	. 669	. 008
100	8	1	. 9	-. 009	-. 283	-. 104	. 067	. 166	. 038	. 914	. 576	. 124
100	8	2	. 9	. 008	-. 113	-. 008	. 059	. 106	. 033	. 949	. 815	. 890
100	16	0	. 9	-. 003	$-.077$	-. 072	. 038	. 043	. 022	. 925	. 572	. 041
100	16	1	. 9	. 002	-. 130	-. 043	. 037	. 061	. 021	. 944	. 381	. 324
100	16	2	. 9	. 000	-. 082	. 008	. 023	. 050	. 017	. 958	. 583	. 869
100	24	0	. 9	. 001	-. 050	-. 041	. 027	. 025	. 015	. 951	. 478	. 157
100	24	1	. 9	. 001	-. 083	-. 024	. 023	. 034	. 015	. 952	. 274	. 514
100	24	2	. 9	. 000	-. 068	. 007	. 015	. 033	. 012	. 943	. 365	. 854
100	2	0	. 99	-. 144	-	-. 506	. 265	-	. 151	. 821	. 925	. 034
100	2	1	. 99	-. 135	-	-. 495	. 267	-	. 153	. 821	. 918	. 043
100	2	2	. 99	-. 125	-	-. 475	. 266	-	. 150	. 827	. 929	. 053
100	4	0	. 99	$-.087$	$-.773$	-. 258	. 123	. 474	. 073	. 835	. 651	. 023
100	4	1	. 99	$-.082$	$-.771$	-. 249	. 123	. 475	. 072	. 839	. 656	. 027
100	4	2	. 99	-. 068	-. 737	-. 229	. 123	. 472	. 072	. 849	. 675	. 049
100	6	0	. 99	-. 060	$-.587$	-. 174	. 082	. 276	. 050	. 839	. 447	. 022
100	6	1	. 99	-. 056	-. 584	$-.167$. 080	. 272	. 049	. 852	. 448	. 029
100	6	2	. 99	-. 042	-. 550	-. 145	. 080	. 279	. 049	. 871	. 493	. 075
100	8	0	. 99	-. 046	$-.472$	-. 132	. 062	. 198	. 038	. 847	. 280	. 022
100	8	1	. 99	-. 043	-. 469	$-.125$. 061	. 193	. 038	. 850	. 281	. 033
100	8	2	. 99	-. 028	-. 434	-. 104	. 060	. 198	. 037	. 881	. 337	. 098
100	16	0	. 99	-. 025	-. 255	-. 068	. 031	. 081	. 020	. 843	. 034	. 020
100	16	1	. 99	-. 020	-. 254	-. 061	. 031	. 080	. 020	. 867	. 033	. 045
100	16	2	. 99	-. 009	$-.227$	-. 043	. 030	. 080	. 019	. 910	. 057	. 213
100	24	0	. 99	-. 016	-. 172	$-.047$. 021	. 047	. 014	. 857	. 003	. 019
100	24	1	. 99	-. 012	-. 173	-. 040	. 021	. 047	. 013	. 873	. 004	. 055
100	24	2	. 99	$-.003$	$-.150$	-. 024	. 021	. 046	. 012	. 920	. 009	. 358

Notes: Data generated as $y_{i t}=\rho_{0} y_{i t-1}+\alpha_{i}+\varepsilon_{i t}(i=1, \ldots, N ; t=1, \ldots T)$ with $\alpha_{i} \sim \mathcal{N}(0,1), \varepsilon_{i t} \sim \mathcal{N}(0,1)$, and ψ the degree of outlyingness of the initial observations $y_{i 0}$. Entries: bias, standard deviation (std), and coverage rate of 95% confidence interval (ci.95) of adjusted likelihood ($\widehat{\rho}_{\mathrm{al}}$), Arellano-Bond ($\widehat{\rho}_{\mathrm{ab}}$), and Hahn-Kuersteiner ($\widehat{\rho}_{\mathrm{hk}}$) estimators; '-' indicates non-existence of the moment; 10, 000 Monte Carlo replications.

Table 1. Simulation results for the first-order autoregression (cont'd)

N	T	ψ	ρ_{0}	bias			std			$\mathrm{ci}_{1.95}$		
				$\widehat{\rho}_{\text {al }}$	$\widehat{\rho}_{\text {ab }}$	$\widehat{\rho}_{\text {hk }}$	$\widehat{\rho}_{\text {al }}$	$\widehat{\rho}_{\text {ab }}$	$\widehat{\rho}_{\text {hk }}$	$\widehat{\rho}_{\text {al }}$	$\widehat{\rho}_{\text {ab }}$	$\widehat{\rho}_{\text {hk }}$
250	2	0	. 5	-. 125	-	-. 750	. 203	-	. 095	. 819	. 926	. 000
250	2	1	. 5	. 036		-. 375	. 204	-	. 089	. 924	. 942	. 003
250	2	2	. 5	. 008		. 109	. 096		. 071	. 956	. 951	. 672
250	4	0	. 5	. 013	-. 017	-. 295	. 110	. 097	. 043	. 932	. 937	. 000
250	4	1	. 5	. 005	-. 023	-. 140	. 078	. 106	. 042	. 954	. 938	. 051
250	4	2	. 5	. 001	-. 006	. 072	. 040	. 053	. 036	. 945	. 945	. 385
250	6	0	. 5	. 002	-. 013	-. 147	. 055	. 051	. 033	. 960	. 937	. 004
250	6	1	. 5	. 000	-. 019	-. 072	. 041	. 063	. 031	. 951	. 940	. 261
250	6	2	. 5	. 000	-. 008	. 044	. 028	. 040	. 026	. 947	. 941	. 508
250	8	0	. 5	. 001	-. 011	-. 085	. 035	. 037	. 027	. 950	. 939	. 078
250	8	1	. 5	. 000	-. 017	-. 043	. 030	. 045	. 026	. 945	. 931	. 515
250	8	2	. 5	. 000	-. 009	. 029	. 023	. 033	. 022	. 947	. 943	. 644
250	16	0	. 5	. 000	-. 008	-. 021	. 018	. 019	. 017	. 948	. 933	. 708
250	16	1	. 5	. 000	-. 011	-. 012	. 017	. 022	. 016	. 951	. 924	. 856
250	16	2	. 5	. 000	-. 009	. 009	. 015	. 021	. 015	. 945	. 923	. 864
250	24	0	. 5	. 000	-. 007	-. 009	. 013	. 014	. 013	. 948	. 920	. 866
250	24	1	. 5	. 000	-. 009	-. 005	. 013	. 016	. 013	. 947	. 909	. 906
250	24	2	. 5	. 000	-. 009	. 004	. 012	. 015	. 012	. 947	. 915	. 906
250	2	0	. 9	-. 123	-	-. 549	. 200	-	. 094	. 823	. 926	. 000
250	2	1	. 9	-. 075	-	-. 474	. 200	-	. 094	. 856	. 928	. 000
250	2	2	. 9	. 009	-	-. 289	. 204	-	. 091	. 909	. 934	. 056
250	4	0	. 9	-. 062	-. 276	-. 292	. 096	. 329	. 046	. 850	. 810	. 000
250	4	1	. 9	-. 026	-. 369	-. 227	. 097	. 398	. 046	. 892	. 804	. 000
250	4	2	. 9	. 016	-. 056	-. 082	. 096	. 164	. 042	. 940	. 927	. 384
250	6	0	. 9	-. 037	-. 150	-. 202	. 064	. 148	. 031	. 874	. 808	. 000
250	6	1	. 9	-. 008	-. 242	-. 144	. 067	. 200	. 031	. 906	. 759	. 001
250	6	2	. 9	. 008	-. 054	-. 029	. 058	. 094	. 027	. 952	. 913	. 739
250	8	0	. 9	-. 022	-. 096	-. 153	. 050	. 089	. 025	. 886	. 803	. 000
250	8	1	. 9	-. 001	-. 172	-. 103	. 051	. 126	. 024	. 929	. 716	. 003
250	8	2	. 9	. 004	-. 051	-. 008	. 038	. 067	. 021	. 955	. 881	. 879
250	16	0	. 9	. 001	-. 036	-. 071	. 029	. 029	. 014	. 939	. 765	. 000
250	16	,	. 9	. 003	-. 074	-. 043	. 026	. 042	. 013	. 955	. 589	. 051
250	16	2	. 9	. 000	-. 041	. 008	. 014	. 032	. 011	. 954	. 759	. 817
250	24	0	. 9	. 001	-. 023	-. 041	. 018	. 016	. 010	. 958	. 716	. 005
250	24	1	. 9	. 000	-. 045	-. 024	. 014	. 024	. 009	. 957	. 517	. 191
250	24	2	. 9	. 000	-. 037	. 007	. 009	. 023	. 008	. 950	. 597	. 777
250	2		. 99	-. 123	-	-. 504	. 200	-	. 094	. 823	. 926	. 000
250	2	1	. 99	-. 116	-	-. 496	. 200	-	. 095	. 827	. 924	. 000
250	2	2	. 99	-. 102	-	-. 476	. 199	-	. 095	. 839	. 932	. 000
250	4	0	. 99	-. 067	-. 764	-. 256	. 094	. 466	. 046	. 840	. 665	. 000
250	4	1	. 99	-. 063	-. 758	-. 249	. 093	. 470	. 046	. 845	. 673	. 000
250	4	2	. 99	-. 049	-. 695	-. 227	. 092	. 465	. 046	. 866	. 701	. 000
250	6	0	. 99	-. 047	-. 582	-. 173	. 061	. 276	. 031	. 848	. 460	. 000
250	6	1	. 99	-. 043	-. 580	-. 166	. 063	. 278	. 031	. 849	. 467	. 000
250	6	2	. 99	-. 030	-. 514	-. 145	. 062	. 277	. 031	. 873	. 539	. 001
250	8	0	. 99	-. 036	-. 458	-. 131	. 046	. 196	. 024	. 848	. 296	. 000
250	8	1	. 99	-. 031	-. 463	-. 123	. 046	. 195	. 024	. 862	. 297	. 000
250	8	2	. 99	-. 019	-. 407	-. 103	. 046	. 194	. 024	. 887	. 374	. 002
250	16	0	. 99	-. 018	-. 240	-. 067	. 023	. 080	. 012	. 857	. 041	. 000
250	16	1	. 99	-. 014	-. 251	-. 061	. 023	. 081	. 012	. 876	. 031	. 000
250	16	2	. 99	-. 004	-. 208	-. 042	. 023	. 080	. 012	. 913	. 084	. 015
250	24	0	. 99	-. 012	-. 157	-. 046	. 016	. 044	. 008	. 858	. 005	. 000
250	24	1	. 99	-. 008	-. 168	-. 039	. 016	. 047	. 008	. 881	. 004	. 000
250	24	2	. 99	$-.001$	-. 136	-. 024	. 016	. 044	. 008	. 932	. 017	. 063

Notes: Data generated as $y_{i t}=\rho_{0} y_{i t-1}+\alpha_{i}+\varepsilon_{i t}(i=1, \ldots, N ; t=1, \ldots T)$ with $\alpha_{i} \sim \mathcal{N}(0,1), \varepsilon_{i t} \sim \mathcal{N}(0,1)$, and ψ the degree of outlyingness of the initial observations $y_{i 0}$. Entries: bias, standard deviation (std), and coverage rate of 95% confidence interval (ci.95) of adjusted likelihood ($\widehat{\rho}_{\mathrm{al}}$), Arellano-Bond ($\widehat{\rho}_{\mathrm{ab}}$), and Hahn-Kuersteiner ($\widehat{\rho}_{\mathrm{hk}}$) estimators; '- ' indicates non-existence of the moment; 10,000 Monte Carlo replications.

Table 1. Simulation results for the first-order autoregression (cont'd)

N	T	ψ	ρ_{0}	bias			std			ci. 95		
				$\widehat{\rho}_{\text {al }}$	$\widehat{\rho}_{\text {ab }}$	$\widehat{\rho}_{\text {hk }}$	$\widehat{\rho}_{\text {al }}$	$\widehat{\rho}_{\text {ab }}$	$\widehat{\rho}_{\text {hk }}$	$\widehat{\rho}_{\text {al }}$	$\widehat{\rho}_{\text {ab }}$	$\widehat{\rho}_{\text {hk }}$
500	2	0	. 5	-. 106	-	-. 750	. 162	-	. 067	. 833	. 927	. 000
500	2	,	. 5	. 033	-	-. 375	. 168	-	. 063	. 931	. 953	. 000
500	2	2	. 5	. 004		. 108	. 067		. 051	. 952	. 950	. 400
500	4	0	. 5	. 012	-. 008	-. 295	. 088	. 069	. 030	. 946	. 942	. 000
500	4	1	. 5	. 003	-. 010	-. 139	. 053	. 076	. 030	. 958	. 943	. 002
500	4	2	. 5	. 000	-. 003	. 072	. 028	. 038	. 025	. 949	. 946	. 125
500	6	0	. 5	. 001	-. 006	-. 146	. 038	. 037	. 023	. 955	. 943	. 000
500	6	1	. 5	. 000	-. 010	-. 072	. 029	. 045	. 022	. 954	. 943	. 056
500	6	2	. 5	. 000	-. 004	. 044	. 020	. 028	. 018	. 947	. 946	. 243
500	8	0	. 5	. 000	-. 006	-. 085	. 025	. 026	. 019	. 946	. 941	. 002
500	8		. 5	. 000	-. 008	-. 043	. 021	. 032	. 018	. 948	. 939	. 246
500	8	2	. 5	. 000	-. 005	. 029	. 016	. 023	. 015	. 951	. 949	. 431
500	16	0	. 5	. 000	-. 004	-. 021	. 012	. 014	. 012	. 951	. 939	. 509
500	16	1	. 5	. 000	-. 006	-. 011	. 012	. 016	. 011	. 949	. 936	. 781
500	16	2	. 5	. 000	-. 004	. 009	. 010	. 015	. 010	. 948	. 940	. 807
500	24	0	. 5	. 000	-. 004	-. 009	. 009	. 010	. 009	. 947	. 933	. 791
500	24	1	. 5	. 000	-. 005	-. 005	. 009	. 011	. 009	. 949	. 929	. 887
500	24	2	. 5	. 000	-. 004	. 004	. 008	. 011	. 008	. 947	. 929	. 887
500	2	0	. 9	-. 107	-	-. 550	. 164	-	. 067	. 826	. 931	. 000
500	2	1	. 9	-. 060	-	-. 475	. 164	-	. 067	. 864	. 930	. 000
500	2	2	. 9	. 012		-. 290	. 169	-	. 065	. 913	. 945	. 002
500	4	0	. 9	-. 052	-. 157	-. 292	. 078	. 258	. 033	. 851	. 861	. 000
500	4	1	. 9	-. 018	-. 227	-. 226	. 080	. 320	. 032	. 900	. 854	. 000
500	4	2	. 9	. 013	-. 026	-. 082	. 076	. 115	. 030	. 951	. 937	. 135
500	6	0	. 9	-. 030	-. 082	-. 201	. 053	. 112	. 023	. 872	. 870	. 000
500	6	1	. 9	-. 001	-. 147	-. 143	. 055	. 153	. 022	. 924	. 834	. 000
500	6	2	. 9	. 005	-. 028	-. 028	. 041	. 066	. 020	. 957	. 933	. 601
500	8	0	. 9	-. 016	-. 052	-. 153	. 041	. 065	. 018	. 892	. 868	. 000
500	8	1	. 9	. 003	-. 104	-. 102	. 043	. 094	. 017	. 933	. 802	. 000
500	8	2	. 9	. 001	-. 027	-. 008	. 025	. 047	. 015	. 961	. 915	. 864
500	16	0	. 9	. 002	-. 019	-. 071	. 023	. 020	. 010	. 944	. 852	. 000
500	16	1	. 9	. 002	-. 042	-. 042	. 019	. 031	. 009	. 957	. 740	. 001
500	16	2	. 9	. 000	-. 023	. 008	. 010	. 023	. 008	. 954	. 845	. 731
500	24	0	. 9	. 001	-. 012	-. 041	. 013	. 011	. 007	. 960	. 828	. 000
500	24	1	. 9	. 000	-. 025	-. 023	. 010	. 017	. 007	. 957	. 699	. 024
500	24	2	. 9	. 000	-. 021	. 007	. 006	. 016	. 005	. 950	. 756	. 638
500	2	0	. 99	-. 107	-	-. 505	. 164	-	. 067	. 826	. 931	. 000
500	2	1	. 99	-. 102	-	-. 497	. 163	-	. 067	. 831	. 928	. 000
500	2	2	. 99	-. 090	-	-. 476	. 164	-	. 067	. 842	. 932	. 000
500	4	0	. 99	-. 056	-. 748	-. 256	. 076	. 474	. 033	. 839	. 671	. 000
500	4	1	. 99	-. 054	-. 756	-. 248	. 076	. 474	. 032	. 844	. 681	. 000
500	4	2	. 99	-. 039	-. 640	-. 226	. 076	. 489	. 032	. 864	. 727	. 000
500	6	0	. 99	-. 040	-. 560	-. 172	. 050	. 273	. 022	. 851	. 475	. 000
500	6	1	. 99	-. 033	-. 579	-. 164	. 050	. 279	. 022	. 857	. 474	. 000
500	6	2	. 99	-. 022	-. 469	-. 144	. 050	. 271	. 022	. 884	. 577	. 000
500	8	0	. 99	-. 030	-. 442	-. 130	. 038	. 192	. 017	. 845	. 310	. 000
500	8	1	. 99	-. 025	-. 459	-. 123	. 038	. 194	. 017	. 860	. 296	. 000
500	8	2	. 99	-. 014	-. 367	-. 103	. 038	. 190	. 016	. 884	. 425	. 000
500	16	0	. 99	-. 015	-. 218	-. 067	. 019	. 077	. 009	. 852	. 055	. 000
500	16	1	. 99	-. 010	-. 240	-. 060	. 019	. 080	. 009	. 878	. 040	. 000
500	16	2	. 99	-. 002	-. 180	-. 042	. 019	. 074	. 008	. 924	. 125	. 000
500	24	0	. 99	-. 010	-. 137	-. 046	. 013	. 042	. 006	. 852	. 011	. 000
500	24		. 99	-. 006	-. 161	-. 039	. 013	. 046	. 006	. 886	. 005	. 000
500	24	2	. 99	. 001	-. 116	-. 023	. 013	. 041	. 006	. 936	. 034	. 002

Notes: Data generated as $y_{i t}=\rho_{0} y_{i t-1}+\alpha_{i}+\varepsilon_{i t}(i=1, \ldots, N ; t=1, \ldots T)$ with $\alpha_{i} \sim \mathcal{N}(0,1), \varepsilon_{i t} \sim \mathcal{N}(0,1)$, and ψ the degree of outlyingness of the initial observations $y_{i 0}$. Entries: bias, standard deviation (std), and coverage rate of 95% confidence interval (ci.95) of adjusted likelihood ($\widehat{\rho}_{\mathrm{al}}$), Arellano-Bond ($\widehat{\rho}_{\mathrm{ab}}$), and Hahn-Kuersteiner ($\widehat{\rho}_{\mathrm{hk}}$) estimators; '-' indicates non-existence of the moment; 10,000 Monte Carlo replications.

Table 1. Simulation results for the first-order autoregression (cont'd)

N	T	ψ	ρ_{0}	bias			std			ci. 95		
				$\widehat{\rho}_{\text {al }}$	$\widehat{\rho}_{\text {ab }}$	$\widehat{\rho}_{\text {hk }}$	$\widehat{\rho}_{\text {al }}$	$\widehat{\rho}_{\text {ab }}$	$\widehat{\rho}_{\text {hk }}$	$\widehat{\rho}_{\text {al }}$	$\widehat{\rho}_{\text {ab }}$	$\widehat{\rho}_{\text {hk }}$
1000	2	0	. 5	-. 090	-	-. 750	. 134	-	. 047	. 834	. 930	. 000
1000	2	1	. 5	. 027	-	-. 374	. 135	-	. 044	. 943	. 954	. 000
1000	2	2	. 5	. 001	-	. 108	. 046	-	. 035	. 950	. 951	. 116
1000	4	0	. 5	. 011	$-.003$	-. 294	. 068	. 049	. 021	. 948	. 951	. 000
1000	4	1	. 5	. 002	$-.005$	-. 139	. 036	. 054	. 021	. 957	. 947	. 000
1000	4	2	. 5	. 000	-. 002	. 072	. 020	. 026	. 017	. 952	. 952	. 009
1000	6	0	. 5	. 001	-. 003	-. 146	. 026	. 026	. 016	. 952	. 951	. 000
1000	6	1	. 5	. 000	-. 005	$-.072$. 021	. 032	. 015	. 949	. 944	. 001
1000	6	2	. 5	. 000	-. 002	. 045	. 014	. 020	. 013	. 950	. 949	. 046
1000	8	0	. 5	. 000	$-.003$	$-.085$. 017	. 019	. 013	. 953	. 947	. 000
1000	8	1	. 5	. 000	$-.004$	$-.043$. 015	. 023	. 013	. 948	. 946	. 047
1000	8	2	. 5	. 000	-. 002	. 029	. 011	. 017	. 011	. 949	. 946	. 164
1000	16	0	. 5	. 000	-. 002	-. 021	. 009	. 010	. 008	. 946	. 939	. 240
1000	16	1	. 5	. 000	-. 003	-. 012	. 008	. 011	. 008	. 952	. 944	. 640
1000	16	2	. 5	. 000	-. 002	. 009	. 007	. 010	. 007	. 946	. 942	. 699
1000	24	0	. 5	. 000	-. 002	-. 009	. 007	. 007	. 006	. 950	. 942	. 659
1000	24	1	. 5	. 000	-. 002	-. 005	. 006	. 008	. 006	. 949	. 943	. 845
1000	24	2	. 5	. 000	-. 002	. 004	. 006	. 008	. 006	. 952	. 942	. 854
1000	2	0	. 9	-. 090	-	-. 550	. 134	-	. 048	. 833	. 933	. 000
1000	2	1	. 9	-. 044	-	-. 475	. 135	-	. 047	. 874	. 930	. 000
1000	2	2	. 9	. 021	-	-. 289	. 142	-	. 046	. 925	. 956	. 000
1000	4	0	. 9	-. 043	-. 079	-. 291	. 064	. 194	. 023	. 853	. 905	. 000
1000	4	1	. 9	-. 008	-. 119	-. 226	. 066	. 234	. 023	. 909	. 892	. 000
1000	4	2	. 9	. 009	-. 014	-. 082	. 057	. 081	. 021	. 956	. 943	. 012
1000	6	0	. 9	-. 023	$-.043$	$-.201$. 044	. 081	. 016	. 873	. 909	. 000
1000	6	1	. 9	. 002	$-.079$	$-.143$. 046	. 110	. 016	. 926	. 887	. 000
1000	6	2	. 9	. 002	$-.013$	$-.028$. 028	. 046	. 014	. 963	. 943	. 368
1000	8	0	. 9	-. 011	$-.027$	-. 152	. 034	. 046	. 012	. 899	. 911	. 000
1000	8	1	. 9	. 005	-. 058	-. 102	. 036	. 069	. 012	. 937	. 867	. 000
1000	8	2	. 9	. 001	-. 013	$-.007$. 017	. 033	. 010	. 961	. 930	. 827
1000	16	0	. 9	. 002	-. 010	$-.071$. 019	. 015	. 007	. 949	. 899	. 000
1000	16	1	. 9	. 001	-. 023	-. 042	. 013	. 022	. 006	. 960	. 840	. 000
1000	16	2	. 9	. 000	-. 012	. 008	. 007	. 016	. 005	. 948	. 895	. 573
1000	24	0	. 9	. 000	-. 006	$-.041$. 009	. 008	. 005	. 961	. 882	. 000
1000	24	1	. 9	. 000	-. 014	$-.023$. 007	. 012	. 005	. 952	. 814	. 001
1000	24	2	. 9	. 000	-. 011	. 007	. 005	. 011	. 004	. 947	. 846	. 417
1000	2	0	. 99	-. 090	-	-. 505	. 134	-	. 048	. 833	. 933	. 000
1000	2	1	. 99	$-.085$	-	-. 497	. 134	-	. 047	. 835	. 931	. 000
1000	2	2	. 99	-. 072	,	$-.475$. 135	-	. 047	. 846	. 934	. 000
1000	4	0	. 99	-. 048	$-.735$	$-.255$. 063	. 463	. 023	. 841	. 689	. 000
1000	4	1	. 99	-. 043	-. 743	-. 248	. 063	. 468	. 023	. 845	. 684	. 000
1000	4	2	. 99	-. 030	$-.546$	-. 226	. 063	. 456	. 023	. 873	. 757	. 000
1000	6	0	. 99	-. 032	-. 534	-. 172	. 042	. 269	. 016	. 840	. 498	. 000
1000	6	1	. 99	-. 028	-. 561	$-.164$. 042	. 274	. 016	. 858	. 486	. 000
1000	6	2	. 99	-. 015	-. 391	-. 144	. 042	. 261	. 015	. 888	. 649	. 000
1000	8	0	. 99	-. 025	-. 405	-. 130	. 031	. 185	. 012	. 848	. 346	. 000
1000	8	1	. 99	-. 020	-. 444	-. 123	. 031	. 192	. 012	. 861	. 320	. 000
1000	8	2	. 99	-. 009	$-.297$	-. 102	. 031	. 177	. 012	. 904	. 526	. 000
1000	16	0	. 99	-. 012	-. 185	$-.067$. 016	. 068	. 006	. 848	. 095	. 000
1000	16	1	. 99	-. 0008	$-.227$	$-.060$. 016	. 078	. 006	. 881	. 049	. 000
1000	16	2	. 99	. 000	-. 144	-. 042	. 016	. 065	. 006	. 925	. 208	. 000
1000	24	0	. 99	-. 008	-. 108	$-.046$. 011	. 036	. 004	. 854	. 040	. 000
1000	24	1	. 99	-. 004	$-.147$	$-.039$. 011	. 045	. 004	. 897	. 010	. 000
1000	24	2	. 99	. 001	$-.090$	$-.023$. 011	. 035	. 004	. 942	. 086	. 000

Notes: Data generated as $y_{i t}=\rho_{0} y_{i t-1}+\alpha_{i}+\varepsilon_{i t}(i=1, \ldots, N ; t=1, \ldots T)$ with $\alpha_{i} \sim \mathcal{N}(0,1), \varepsilon_{i t} \sim \mathcal{N}(0,1)$, and ψ the degree of outlyingness of the initial observations $y_{i 0}$. Entries: bias, standard deviation (std), and coverage rate of 95% confidence interval (ci.95) of adjusted likelihood ($\widehat{\rho}_{\mathrm{al}}$), Arellano-Bond ($\widehat{\rho}_{\mathrm{ab}}$), and Hahn-Kuersteiner ($\widehat{\rho}_{\mathrm{hk}}$) estimators; '- ' indicates non-existence of the moment; 10, 000 Monte Carlo replications.

Table 1. Simulation results for the first-order autoregression (cont'd)

N	T	ψ	ρ_{0}	bias			std			ci. 95		
				$\widehat{\rho}_{\text {al }}$	$\widehat{\rho}_{\text {ab }}$	$\widehat{\rho}_{\text {hk }}$	$\widehat{\rho}_{\text {al }}$	$\widehat{\rho}_{\text {ab }}$	$\widehat{\rho}_{\text {hk }}$	$\widehat{\rho}_{\text {al }}$	$\widehat{\rho}_{\text {ab }}$	$\widehat{\rho}_{\text {hk }}$
2500	2	0	. 5	$-.075$	-	-. 750	. 105	-	. 030	. 827	. 924	. 000
2500	2	1	. 5	. 015	-	-. 375	. 091	-	. 028	. 954	. 956	. 000
2500	2	2	. 5	. 001		. 107	. 029	-	. 023	. 950	. 949	. 001
2500	4	0	. 5	. 005	$-.002$	$-.294$. 044	. 031	. 013	. 959	. 947	. 000
2500	4	1	. 5	. 000	-. 002	-. 139	. 023	. 034	. 013	. 951	. 948	. 000
2500	4	2	. 5	. 000	-. 001	. 072	. 012	. 016	. 011	. 953	. 952	. 000
2500	6	0	. 5	. 000	-. 001	-. 146	. 016	. 017	. 010	. 950	. 947	. 000
2500	6	1	. 5	. 000	$-.002$	$-.072$. 013	. 020	. 010	. 950	. 949	. 000
2500	6	2	. 5	. 000	$-.001$. 044	. 009	. 013	. 008	. 948	. 948	. 000
2500	8	0	. 5	. 000	-. 001	$-.084$. 011	. 012	. 008	. 950	. 951	. 000
2500	8	1	. 5	. 000	-. 001	$-.043$. 010	. 014	. 008	. 950	. 946	. 000
2500	8	2	. 5	. 000	-. 001	. 029	. 007	. 011	. 007	. 951	. 948	. 006
2500	16	0	. 5	. 000	-. 001	-. 021	. 006	. 006	. 005	. 949	. 951	. 015
2500	16	1	. 5	. 000	-. 001	$-.012$. 005	. 007	. 005	. 951	. 945	. 314
2500	16	2	. 5	. 000	-. 001	. 009	. 005	. 007	. 005	. 953	. 949	. 409
2500	24	0	. 5	. 000	-. 001	-. 009	. 004	. 004	. 004	. 953	. 951	. 347
2500	24	1	. 5	. 000	-. 001	$-.005$. 004	. 005	. 004	. 950	. 948	. 706
2500	24	2	. 5	. 000	-. 001	. 004	. 004	. 005	. 004	. 948	. 946	. 732
2500	2	0	. 9	-. 074	-	-. 550	. 104	-	. 030	. 836	. 928	. 000
2500	2	1	. 9	$-.031$	-	-. 475	. 106	-	. 030	. 877	. 938	. 000
2500	2	2	. 9	. 021	-	-. 289	. 109	-	. 029	. 939	. 955	. 000
2500	4	0	. 9	-. 033	$-.033$	-. 292	. 050	. 128	. 015	. 852	. 932	. 000
2500	4	1	. 9	. 000	$-.047$	$-.226$. 053	. 150	. 014	. 923	. 924	. 000
2500	4	2	. 9	. 004	-. 004	$-.082$. 035	. 051	. 013	. 961	. 951	. 000
2500	6	0	. 9	-. 016	-. 018	$-.200$. 034	. 053	. 010	. 877	. 930	. 000
2500	6	1	. 9	. 005	-. 034	-. 143	. 036	. 072	. 010	. 937	. 923	. 000
2500	6	2	. 9	. 000	$-.005$	$-.028$. 016	. 029	. 009	. 952	. 949	. 062
2500	8	0	. 9	-. 006	$-.011$	-. 152	. 026	. 030	. 008	. 903	. 933	. 000
2500	8	1	. 9	. 004	-. 023	-. 102	. 026	. 044	. 008	. 947	. 919	. 000
2500	8	2	. 9	. 000	$-.005$	$-.007$. 011	. 021	. 007	. 951	. 945	. 711
2500	16	0	. 9	. 002	$-.004$	$-.071$. 013	. 009	. 004	. 956	. 933	. 000
2500	16	1	. 9	. 000	-. 010	$-.042$. 008	. 015	. 004	. 956	. 898	. 000
2500	16	2	. 9	. 000	$-.005$. 008	. 004	. 010	. 003	. 952	. 931	. 234
2500	24	0	. 9	. 000	-. 002	$-.040$. 005	. 005	. 003	. 953	. 929	. 000
2500	24	1	. 9	. 000	-. 006	$-.023$. 004	. 008	. 003	. 952	. 894	. 000
2500	24	2	. 9	. 000	$-.005$. 007	. 003	. 007	. 002	. 949	. 909	. 099
2500	2	0	. 99	$-.074$	-	$-.505$. 104	-	. 03	. 835	. 930	. 000
2500	2	1	. 99	$-.07$	-	-. 497	. 105	-	. 03	. 836	. 934	. 000
2500	2	2	. 99	$-.054$	-	-. 475	. 105	-	. 03	. 858	. 928	. 000
2500	4	0	. 99	$-.038$	-. 672	-. 255	. 049	. 458	. 014	. 841	. 696	. 000
2500	4	1	. 99	$-.034$	-. 709	$-.248$. 049	. 476	. 015	. 849	. 688	. 000
2500	4	2	. 99	$-.02$	-. 359	$-.226$. 049	. 402	. 014	. 881	. 818	. 000
2500	6	0	. 99	$-.026$	$-.46$	$-.172$. 032	. 253	. 01	. 841	. 549	. 000
2500	6	1	. 99	-. 021	$-.525$	-. 164	. 032	. 277	. 01	. 858	. 515	. 000
2500	6	2	. 99	-. 01	-. 255	-. 144	. 033	. 211	. 01	. 895	. 751	. 000
2500	8	0	. 99	-. 019	-. 33	$-.13$. 024	. 168	. 008	. 85	. 437	. 000
2500	8	1	. 99	$-.015$	$-.402$	$-.123$. 024	. 19	. 008	. 865	. 364	. 000
2500	8	2	. 99	$-.004$	-. 189	$-.103$. 025	. 136	. 007	. 908	. 672	. 000
2500	16	0	. 99	-. 01	-. 124	$-.067$. 012	. 053	. 004	. 848	. 242	. 000
2500	16	1	. 99	$-.005$	-. 192	$-.06$. 012	. 073	. 004	. 887	. 098	. 000
2500	16	2	. 99	. 001	-. 085	$-.042$. 013	. 044	. 004	. 935	. 421	. 000
2500	24	0	. 99	$-.006$	$-.066$	$-.046$. 008	. 025	. 003	. 856	. 175	. 000
2500	24	1	. 99	$-.002$	$-.116$	$-.039$. 008	. 039	. 003	. 899	. 032	. 000
2500	24	2	. 99	. 001	$-.053$	$-.023$. 008	. 023	. 002	. 951	. 275	. 000

Notes: Data generated as $y_{i t}=\rho_{0} y_{i t-1}+\alpha_{i}+\varepsilon_{i t}(i=1, \ldots, N ; t=1, \ldots T)$ with $\alpha_{i} \sim \mathcal{N}(0,1), \varepsilon_{i t} \sim \mathcal{N}(0,1)$, and ψ the degree of outlyingness of the initial observations $y_{i 0}$. Entries: bias, standard deviation (std), and coverage rate of 95% confidence interval (ci.95) of adjusted likelihood ($\widehat{\rho}_{\mathrm{al}}$), Arellano-Bond ($\widehat{\rho}_{\mathrm{ab}}$), and Hahn-Kuersteiner ($\widehat{\rho}_{\mathrm{hk}}$) estimators; '-' indicates non-existence of the moment; 10,000 Monte Carlo replications.

Table 1. Simulation results for the first-order autoregression (cont'd)

N	T	ψ	ρ_{0}	bias			std			ci. 95		
				$\widehat{\rho}_{\text {al }}$	$\widehat{\rho}_{\text {ab }}$	$\widehat{\rho}_{\text {hk }}$	$\widehat{\rho}_{\text {al }}$	$\widehat{\rho}_{\text {ab }}$	$\widehat{\rho}_{\text {hk }}$	$\widehat{\rho}_{\text {al }}$	$\widehat{\rho}_{\text {ab }}$	$\widehat{\rho}_{\text {hk }}$
5000	2	0	. 5	-. 064	-	-. 751	. 086	-	. 021	. 831	. 933	. 000
5000	2	1	. 5	. 008	-	-. 375	. 063	-	. 020	. 957	. 949	. 000
5000	2	2	. 5	. 000	-	. 107	. 020	-	. 016	. 950	. 948	. 000
5000	4	0	. 5	. 002	$-.001$	-. 294	. 029	. 022	. 009	. 965	. 952	. 000
5000	4	1	. 5	. 001	-. 001	-. 139	. 016	. 024	. 010	. 951	. 948	. 000
5000	4	2	. 5	. 000	. 000	. 072	. 009	. 012	. 008	. 950	. 950	. 000
5000	6	0	. 5	. 000	-. 001	-. 146	. 012	. 012	. 007	. 951	. 954	. 000
5000	6	1	. 5	. 000	-. 001	$-.072$. 009	. 014	. 007	. 951	. 948	. 000
5000	6	2	. 5	. 000	. 000	. 044	. 006	. 009	. 006	. 950	. 951	. 000
5000	8	0	. 5	. 000	$-.001$	$-.085$. 008	. 008	. 006	. 947	. 950	. 000
5000	8	1	. 5	. 000	$-.001$	$-.043$. 007	. 010	. 006	. 950	. 949	. 000
5000	8	2	. 5	. 000	. 000	. 029	. 005	. 008	. 005	. 946	. 949	. 000
5000	16	0	. 5	. 000	. 000	$-.021$. 004	. 004	. 004	. 949	. 947	. 000
5000	16	1	. 5	. 000	-. 001	-. 011	. 004	. 005	. 004	. 950	. 949	. 078
5000	16	2	. 5	. 000	$-.001$. 009	. 003	. 005	. 003	. 951	. 951	. 152
5000	24	0	. 5	. 000	. 000	-. 009	. 003	. 003	. 003	. 948	. 948	. 089
5000	24	1	. 5	. 000	. 000	-. 005	. 003	. 004	. 003	. 948	. 949	. 495
5000	24	2	. 5	. 000	. 000	. 004	. 003	. 003	. 003	. 949	. 950	. 550
5000	2	0	. 9	-. 064	-	-. 551	. 086	-	. 021	. 831	. 933	. 000
5000	2	1	. 9	-. 021	-	-. 475	. 089	-	. 021	. 887	. 939	. 000
5000	2	2	. 9	. 016	-	-. 289	. 088	-	. 021	. 942	. 953	. 000
5000	4	0	. 9	-. 027	-. 018	-. 291	. 041	. 091	. 010	. 858	. 942	. 000
5000	4	1	. 9	. 004	-. 024	-. 225	. 044	. 106	. 010	. 930	. 940	. 000
5000	4	2	. 9	. 001	$-.003$	$-.082$. 023	. 036	. 009	. 962	. 948	. 000
5000	6	0	. 9	-. 011	$-.008$	$-.200$. 028	. 037	. 007	. 886	. 945	. 000
5000	6	1	. 9	. 005	$-.017$	$-.143$. 030	. 052	. 007	. 945	. 938	. 000
5000	6	2	. 9	. 000	-. 003	-. 028	. 012	. 021	. 006	. 951	. 945	. 002
5000	8	0	. 9	-. 004	-. 006	-. 152	. 022	. 021	. 006	. 904	. 939	. 000
5000	8	1	. 9	. 003	-. 011	-. 102	. 020	. 032	. 005	. 954	. 933	. 000
5000	8	2	. 9	. 000	-. 002	$-.007$. 008	. 015	. 005	. 952	. 948	. 528
5000	16	0	. 9	. 001	-. 002	$-.071$. 009	. 007	. 003	. 960	. 940	. 000
5000	16	1	. 9	. 000	$-.005$	-. 042	. 005	. 010	. 003	. 949	. 928	. 000
5000	16	2	. 9	. 000	-. 002	. 008	. 003	. 007	. 002	. 950	. 940	. 044
5000	24	0	. 9	. 000	$-.001$	$-.041$. 004	. 004	. 002	. 951	. 938	. 000
5000	24	1	. 9	. 000	$-.003$	$-.023$. 003	. 006	. 002	. 948	. 919	. 000
5000	24	2	. 9	. 000	-. 002	. 007	. 002	. 005	. 002	. 946	. 931	. 006
5000	2	0	. 99	-. 064	-	-. 506	. 086	-	. 021	. 831	. 933	. 000
5000	2	1	. 99	-. 060	-	-. 498	. 087	-	. 021	. 838	. 931	. 000
5000	2	2	. 99	-. 045	,	$-.475$. 087	-	. 021	. 858	. 929	. 000
5000	4	0	. 99	-. 032	$-.591$	$-.255$. 040	. 443	. 010	. 841	. 713	. 000
5000	4	1	. 99	-. 027	-. 655	-. 247	. 040	. 474	. 010	. 861	. 718	. 000
5000	4	2	. 99	-. 015	-. 212	-. 226	. 041	. 316	. 010	. 881	. 860	. 000
5000	6	0	. 99	-. 021	-. 368	-. 171	. 027	. 232	. 007	. 841	. 614	. 000
5000	6	1	. 99	-. 017	-. 466	$-.164$. 027	. 269	. 007	. 862	. 564	. 000
5000	6	2	. 99	-. 006	-. 148	-. 144	. 027	. 151	. 007	. 903	. 828	. 000
5000	8	0	. 99	-. 017	-. 246	-. 130	. 020	. 142	. 005	. 839	. 552	. 000
5000	8	1	. 99	-. 011	-. 349	-. 122	. 020	. 183	. 005	. 869	. 438	. 000
5000	8	2	. 99	-. 002	-. 110	-. 102	. 021	. 096	. 005	. 918	. 788	. 000
5000	16	0	. 99	-. 008	$-.078$	$-.067$. 010	. 039	. 003	. 844	. 448	. 000
5000	16	1	. 99	-. 004	$-.151$	$-.060$. 010	. 062	. 003	. 891	. 173	. 000
5000	16	2	. 99	. 002	$-.050$	-. 042	. 011	. 031	. 003	. 941	. 624	. 000
5000	24	0	. 99	-. 005	$-.040$	$-.046$. 007	. 018	. 002	. 859	. 381	. 000
5000	24	1	. 99	-. 001	$-.086$	$-.039$. 007	. 031	. 002	. 911	. 089	. 000
5000	24	2	. 99	. 001	$-.031$	$-.023$. 006	. 016	. 002	. 954	. 501	. 000

Notes: Data generated as $y_{i t}=\rho_{0} y_{i t-1}+\alpha_{i}+\varepsilon_{i t}(i=1, \ldots, N ; t=1, \ldots T)$ with $\alpha_{i} \sim \mathcal{N}(0,1), \varepsilon_{i t} \sim \mathcal{N}(0,1)$, and ψ the degree of outlyingness of the initial observations $y_{i 0}$. Entries: bias, standard deviation (std), and coverage rate of 95% confidence interval (ci.95) of adjusted likelihood ($\widehat{\rho}_{\mathrm{al}}$), Arellano-Bond ($\widehat{\rho}_{\mathrm{ab}}$), and Hahn-Kuersteiner ($\widehat{\rho}_{\mathrm{hk}}$) estimators; '-_' indicates non-existence of the moment; 10, 000 Monte Carlo replications.

Table 1. Simulation results for the first-order autoregression (cont'd)

N	T	ψ	ρ_{0}	bias			std			ci. 95		
				$\widehat{\rho}_{\text {al }}$	$\widehat{\rho}_{\text {ab }}$	$\widehat{\rho}_{\text {hk }}$	$\widehat{\rho}_{\text {al }}$	$\widehat{\rho}_{\text {ab }}$	$\widehat{\rho}_{\text {hk }}$	$\widehat{\rho}_{\text {al }}$	$\widehat{\rho}_{\text {ab }}$	$\widehat{\rho}_{\text {hk }}$
10000	2	0	. 5	$-.055$	-	-. 750	. 072	-	. 015	. 831	. 931	. 000
10000	2	1	. 5	. 003	-	$-.375$. 040	-	. 014	. 962	. 950	. 000
10000	2	2	. 5	. 000	-	. 107	. 014	-	. 011	. 953	. 949	. 000
10000	4	0	. 5	. 001	. 000	-. 294	. 020	. 015	. 007	. 958	. 951	. 000
10000	4	1	. 5	. 000	-. 001	-. 139	. 011	. 017	. 007	. 949	. 948	. 000
10000	4	2	. 5	. 000	. 000	. 072	. 006	. 008	. 006	. 950	. 951	. 000
10000	6	0	. 5	. 000	. 000	-. 146	. 008	. 008	. 005	. 951	. 951	. 000
10000	6	1	. 5	. 000	-. 001	-. 072	. 006	. 010	. 005	. 948	. 952	. 000
10000	6	2	. 5	. 000	. 000	. 044	. 004	. 006	. 004	. 950	. 951	. 000
10000	8	0	. 5	. 000	. 000	-. 084	. 005	. 006	. 004	. 948	. 949	. 000
10000	8	1	. 5	. 000	. 000	$-.043$. 005	. 007	. 004	. 950	. 949	. 000
10000	8	2	. 5	. 000	. 000	. 029	. 004	. 005	. 003	. 951	. 952	. 000
10000	16	0	. 5	. 000	. 000	-. 021	. 003	. 003	. 003	. 947	. 947	. 000
10000	16	1	. 5	. 000	. 000	-. 012	. 003	. 004	. 003	. 951	. 946	. 003
10000	16	2	. 5	. 000	. 000	. 009	. 002	. 003	. 002	. 951	. 952	. 015
10000	24	0	. 5	. 000	. 000	-. 009	. 002	. 002	. 002	. 953	. 951	. 003
10000	24	1	. 5	. 000	. 000	-. 005	. 002	. 003	. 002	. 955	. 952	. 214
10000	24	2	. 5	. 000	. 000	. 004	. 002	. 002	. 002	. 955	. 952	. 268
10000	2	0	. 9	-. 055	-	-. 550	. 072	-	. 015	. 831	. 931	. 000
10000	2	1	. 9	-. 013	-	-. 475	. 074	-	. 015	. 898	. 947	. 000
10000	2	2	. 9	. 013		-. 289	. 066	-	. 014	. 955	. 949	. 000
10000	4	0	. 9	-. 021	-. 008	-. 291	. 034	. 065	. 007	. 864	. 945	. 000
10000	4	1	. 9	. 005	-. 012	-. 226	. 037	. 076	. 007	. 936	. 942	. 000
10000	4	2	. 9	. 001	-. 001	-. 082	. 016	. 025	. 007	. 955	. 948	. 000
10000	6	0	. 9	-. 008	-. 004	-. 200	. 023	. 027	. 005	. 892	. 947	. 000
10000	6	1	. 9	. 004	-. 009	-. 143	. 023	. 037	. 005	. 950	. 942	. 000
10000	6	2	. 9	. 000	-. 001	-. 028	. 008	. 015	. 004	. 952	. 951	. 000
10000	8	0	. 9	-. 001	-. 003	-. 152	. 018	. 015	. 004	. 919	. 946	. 000
10000	8	1	. 9	. 001	-. 006	-. 102	. 014	. 023	. 004	. 961	. 940	. 000
10000	8	2	. 9	. 000	-. 001	-. 007	. 005	. 011	. 003	. 946	. 946	. 288
10000	16	0	. 9	. 000	-. 001	-. 071	. 006	. 005	. 002	. 961	. 945	. 000
10000	16	1	. 9	. 000	-. 002	-. 042	. 004	. 007	. 002	. 954	. 941	. 000
10000	16	2	. 9	. 000	-. 001	. 008	. 002	. 005	. 002	. 948	. 946	. 001
10000	24	0	. 9	. 000	-. 001	-. 040	. 003	. 003	. 002	. 955	. 941	. 000
10000	24	1	. 9	. 000	-. 001	-. 023	. 002	. 004	. 001	. 955	. 939	. 000
10000	24	2	. 9	. 000	-. 001	. 007	. 001	. 004	. 001	. 953	. 941	. 000
10000	2	0	. 99	-. 055	-	-. 505	. 072	-	. 015	. 831	. 931	. 000
10000	2	1	. 99	-. 050	-	-. 497	. 072	-	. 015	. 841	. 928	. 000
10000	2	2	. 99	-. 034	-	-. 476	. 072	-	. 015	. 868	. 929	. 000
10000	4	0	. 99	-. 027	-. 461	$-.255$. 034	. 406	. 007	. 842	. 754	. 000
10000	4	1	. 99	-. 022	-. 565	-. 248	. 034	. 459	. 007	. 856	. 731	. 000
10000	4	2	. 99	-. 010	-. 101	-. 226	. 034	. 215	. 007	. 891	. 908	. 000
10000	6	0	. 99	-. 018	-. 259	-. 171	. 022	. 189	. 005	. 847	. 703	. 000
10000	6	1	. 99	-. 013	-. 390	-. 164	. 022	. 251	. 005	. 869	. 614	. 000
10000	6	2	. 99	-. 003	-. 078	-. 143	. 023	. 107	. 005	. 910	. 879	. 000
10000	8	0	. 99	-. 013	-. 160	-. 130	. 017	. 110	. 004	. 846	. 683	. 000
10000	8	1	. 99	-. 009	$-.275$	-. 122	. 017	. 161	. 004	. 873	. 526	. 000
10000	8	2	. 99	. 000	-. 059	-. 102	. 018	. 068	. 004	. 927	. 852	. 000
10000	16	0	. 99	-. 007	-. 046	-. 067	. 008	. 028	. 002	. 848	. 635	. 000
10000	16	1	. 99	-. 002	-. 104	-. 060	. 009	. 048	. 002	. 899	. 326	. 000
10000	16	2	. 99	. 001	-. 027	-. 042	. 009	. 022	. 002	. 948	. 769	. 000
10000	24	0	. 99	-. 004	-. 022	-. 046	. 006	. 013	. 001	. 860	. 606	. 000
10000	24	1	. 99	-. 001	-. 056	-. 039	. 006	. 023	. 001	. 917	. 238	. 000
10000	24	2	. 99	. 001	-. 017	$-.023$. 004	. 011	. 001	. 960	. 691	. 000

Notes: Data generated as $y_{i t}=\rho_{0} y_{i t-1}+\alpha_{i}+\varepsilon_{i t}(i=1, \ldots, N ; t=1, \ldots T)$ with $\alpha_{i} \sim \mathcal{N}(0,1), \varepsilon_{i t} \sim \mathcal{N}(0,1)$, and ψ the degree of outlyingness of the initial observations $y_{i 0}$. Entries: bias, standard deviation (std), and coverage rate of 95% confidence interval (ci.95) of adjusted likelihood ($\widehat{\rho}_{\mathrm{al}}$), Arellano-Bond ($\widehat{\rho}_{\mathrm{ab}}$), and Hahn-Kuersteiner ($\widehat{\rho}_{\mathrm{hk}}$) estimators; '-, indicates non-existence of the moment; 10, 000 Monte Carlo replications.

Table 2. Simulation results for the second-order autoregression

N	T	ψ	ρ_{0}	bias			std			ci. 95		
				$\widehat{\rho}_{\text {al }}$	$\widehat{\rho}_{\text {ab }}$	$\widehat{\rho}_{\text {hk }}$	$\widehat{\rho}_{\text {al }}$	$\widehat{\rho}_{\text {ab }}$	$\widehat{\rho}_{\text {hk }}$	$\widehat{\rho}_{\text {al }}$	$\widehat{\rho}_{\text {ab }}$	$\widehat{\rho}_{\text {hk }}$
100	2	. 3	. 6	-. 143	-	-. 848	. 262	-	. 304	. 822	. 927	. 029
			. 2	-. 349	-	-. 742	. 665	-	. 807	. 956	. 945	. 479
100	2	1	. 6	-. 146	-	-. 844	. 267	-	. 167	. 811	. 914	. 000
			. 2	-. 173	-	-. 730	. 285	-	. 273	. 879	. 918	. 047
100	2	2	. 6	-. 143	-	-. 846	. 265	-	. 152	. 819	. 923	. 000
			. 2	-. 139	-	-. 733	. 244		. 180	. 838	. 923	. 001
100	4	. 3	. 6	-. 069	-. 282	-. 327	. 122	. 283	. 065	. 860	. 781	. 000
			. 2	-. 030	-. 123	-. 121	. 098	. 135	. 093	. 930	. 810	. 528
100	4	1	. 6	-. 001	-. 044	-. 204	. 122	. 121	. 061	. 920	. 919	. 050
			. 2	-. 001	-. 022	-. 051	. 095	. 091	. 083	. 949	. 927	. 786
100	4	2	. 6	. 009	-. 011	-. 005	. 082	. 064	. 048	. 954	. 941	. 953
			. 2	. 005	-. 005	. 073	. 073	. 065	. 066	. 955	. 941	. 731
100	6	. 3	. 6	-. 035	-. 153	-. 206	. 082	. 137	. 050	. 896	. 778	. 008
			. 2	-. 017	-. 074	-. 086	. 069	. 078	. 059	. 933	. 822	. 552
100	6	1	. 6	. 007	-. 037	-. 111	. 083	. 074	. 046	. 945	. 905	. 287
			. 2	. 004	-. 017	-. 013	. 066	. 058	. 056	. 959	. 932	. 889
100	6	2	. 6	. 001	-. 012	. 026	. 047	. 045	. 036	. 951	. 934	. 915
			. 2	. 001	-. 004	. 086	. 046	. 045	. 047	. 944	. 942	. 475
100	8	. 3	. 6	-. 015	-. 101	-. 144	. 064	. 088	. 043	. 923	. 778	. 056
			. 2	-. 008	-. 052	-. 066	. 055	. 056	. 046	. 946	. 843	. 608
100	8	1	. 6	. 006	-. 033	-. 071	. 063	. 055	. 039	. 956	. 895	. 501
			. 2	. 003	-. 015	-. 003	. 052	. 045	. 044	. 962	. 931	. 915
100	8	2	. 6	. 000	-. 012	. 027	. 038	. 038	. 031	. 940	. 930	. 883
			. 2	. 001	-. 002	. 075	. 036	. 036	. 038	. 944	. 947	. 432
100	16	. 3	. 6	. 003	-. 041	-. 050	. 037	. 036	. 028	. 963	. 793	. 512
			. 2	. 002	-. 025	-. 030	. 035	. 031	. 028	. 963	. 868	. 780
100	16	1	. 6	. 000	-. 024	-. 024	. 031	. 030	. 027	. 950	. 871	. 826
			. 2	. 000	-. 011	. 001	. 029	. 028	. 027	. 949	. 926	. 933
100	16	2	. 6	. 000	-. 011	. 015	. 025	. 026	. 023	. 945	. 922	. 905
			. 2	. 000	-. 003	. 041	. 024	. 024	. 025	. 946	. 945	. 576
100	24	. 3	. 6	. 000	$-.029$	$-.024$. 024	. 025	. 022	. 952	. 790	. 767
			. 2	. 000	-. 018	-. 016	. 024	. 023	. 022	. 952	. 872	. 869
100	24	1	. 6	. 000	-. 020	-. 012	. 022	. 023	. 021	. 944	. 858	. 896
			. 2	-. 001	-. 011	. 000	. 022	. 022	. 021	. 950	. 917	. 942
100	24	2	. 6	. 000	-. 012	. 009	. 020	. 020	. 019	. 949	. 909	. 931
			. 2	. 000	-. 003	. 025	. 019	. 020	. 020	. 943	. 942	. 723

Notes: Data generated as $y_{i t}=\rho_{01} y_{i t-1}+\rho_{02} y_{i t-2}+\alpha_{i}+\varepsilon_{i t}(i=1, \ldots, N ; t=1, \ldots T)$ with $\alpha_{i} \sim \mathcal{N}(0,1), \varepsilon_{i t} \sim \mathcal{N}(0,1)$, and ψ the degree of outlyingness of the initial observations ($y_{i 0}, y_{i,-1}$). Entries: bias, standard deviation (std), and coverage rate of 95% confidence interval (ci.95) of adjusted likelihood ($\widehat{\rho}_{\text {al }}$), Arellano-Bond ($\widehat{\rho}_{\text {ab }}$), and Hahn-Kuersteiner $\left(\widehat{\rho}_{\mathrm{hk}}\right)$ estimators; ' -' indicates non-existence of the moment; 10,000 Monte Carlo replications.

Table 2. Simulation results for the second-order autoregression (cont'd)

N	T	ψ	ρ_{0}	bias			std			ci. 95		
				$\widehat{\rho}_{\text {al }}$	$\widehat{\rho}_{\text {ab }}$	$\widehat{\rho}_{\text {hk }}$	$\widehat{\rho}_{\text {al }}$	$\widehat{\rho}_{\text {ab }}$	$\widehat{\rho}_{\text {hk }}$	$\widehat{\rho}_{\text {al }}$	$\widehat{\rho}_{\text {ab }}$	$\widehat{\rho}_{\text {hk }}$
100	2	. 3	1	-. 141	-	-. 856	. 263	-	. 273	. 822	. 927	. 016
			$-.2$	-. 196	-	-. 370	. 572	-	. 721	. 965	. 966	. 591
100	2	1	1	-. 145	-	-. 860	. 268	-	. 146	. 811	. 914	. 000
			$-.2$	-. 102	-	-. 381	. 215	-	. 227	. 912	. 921	. 226
100	2	2	1	-. 142	-	-. 859	. 265	-	. 133	. 819	. 923	. 000
			$-.2$	-. 082	-	-. 376	. 158	-	. 133	. 856	. 924	. 035
100	4	. 3	1	-. 069	$-.237$	-. 360	. 117	. 261	. 059	. 861	. 802	. 000
			$-.2$. 007	-. 018	. 009	. 088	. 084	. 095	. 962	. 939	. 810
100	4	1	1	. 009	-. 030	-. 213	. 114	. 099	. 053	. 929	. 929	. 012
			$-.2$. 008	-. 004	. 013	. 081	. 079	. 086	. 963	. 939	. 823
100	4	2	1	. 003	-. 008	-. 022	. 059	. 051	. 037	. 949	. 942	. 931
			$-.2$. 003	-. 001	. 061	. 061	. 060	. 069	. 946	. 943	. 712
100	6	. 3	1	$-.030$	-. 112	-. 216	. 076	. 116	. 047	. 905	. 815	. 001
			$-.2$. 002	-. 018	-. 024	. 063	. 058	. 060	. 963	. 928	. 835
100	6	1	1	. 008	-. 025	$-.105$. 073	. 062	. 043	. 954	. 921	. 271
			$-.2$. 004	-. 001	. 031	. 054	. 052	. 056	. 955	. 941	. 829
100	6	2	1	. 000	-. 009	. 017	. 038	. 039	. 031	. 945	. 940	. 940
			$-.2$. 001	. 002	. 088	. 041	. 042	. 045	. 943	. 945	. 405
100	8	. 3	1	-. 008	-. 067	-. 137	. 059	. 072	. 041	. 937	. 837	. 052
			$-.2$. 003	-. 014	-. 029	. 050	. 045	. 046	. 964	. 935	. 830
100	8	1	1	. 002	-. 024	-. 064	. 051	. 048	. 037	. 953	. 911	. 540
			$-.2$. 001	-. 001	. 026	. 043	. 042	. 043	. 945	. 941	. 851
100	8	2	1	-. 001	-. 009	. 015	. 033	. 034	. 028	. 939	. 934	. 934
			$-.2$. 001	. 003	. 077	. 033	. 034	. 037	. 946	. 943	. 365
100	16	. 3	1	. 001	-. 026	-. 037	. 030	. 032	. 027	. 950	. 868	. 672
			$-.2$. 001	-. 009	-. 014	. 029	. 028	. 027	. 949	. 932	. 905
100	16	1	1	-. 001	-. 018	-. 019	. 027	. 028	. 025	. 944	. 903	. 868
			$-.2$. 000	-. 003	. 010	. 026	. 026	. 026	. 948	. 945	. 919
100	16	2	1	. 000	-. 009	. 004	. 023	. 024	. 022	. 944	. 928	. 951
			$-.2$. 000	. 001	. 038	. 023	. 023	. 024	. 949	. 947	. 597
100	24	. 3	1	-. 001	-. 019	-. 016	. 022	. 023	. 021	. 948	. 867	. 862
			$-.2$. 000	$-.007$	$-.007$. 022	. 022	. 021	. 945	. 935	. 934
100	24	1	1	. 000	-. 015	-. 009	. 021	. 022	. 021	. 945	. 899	. 916
			$-.2$. 000	-. 004	. 004	. 021	. 021	. 021	. 945	. 945	. 934
100	24	2	1	$-.001$	-. 010	. 002	. 019	. 020	. 019	. 948	. 918	. 946
			$-.2$. 000	. 000	. 022	. 019	. 019	. 020	. 945	. 945	. 771

Notes: Data generated as $y_{i t}=\rho_{01} y_{i t-1}+\rho_{02} y_{i t-2}+\alpha_{i}+\varepsilon_{i t}(i=1, \ldots, N ; t=1, \ldots T)$ with $\alpha_{i} \sim \mathcal{N}(0,1), \varepsilon_{i t} \sim \mathcal{N}(0,1)$, and ψ the degree of outlyingness of the initial observations ($y_{i 0}, y_{i,-1}$). Entries: bias, standard deviation (std), and coverage rate of 95% confidence interval (ci.95) of adjusted likelihood ($\widehat{\rho}_{\mathrm{al}}$), Arellano-Bond ($\widehat{\rho}_{\mathrm{ab}}$), and Hahn-Kuersteiner ($\widehat{\rho}_{\mathrm{hk}}$) estimators; '-' indicates non-existence of the moment; 10, 000 Monte Carlo replications.

Table 2. Simulation results for the second-order autoregression (cont'd)

N	T	ψ	ρ_{0}	bias			std			ci. 95		
				$\widehat{\rho}_{\text {al }}$	$\widehat{\rho}_{\text {ab }}$	$\widehat{\rho}_{\text {hk }}$	$\widehat{\rho}_{\text {al }}$	$\widehat{\rho}_{\text {ab }}$	$\widehat{\rho}_{\text {hk }}$	$\widehat{\rho}_{\text {al }}$	$\widehat{\rho}_{\text {ab }}$	$\widehat{\rho}_{\text {hk }}$
250	2	. 3	. 6	-. 125	-	-. 840	. 199	-	. 190	. 822	. 925	. 000
			. 2	-. 296	-	-. 721	. 437	-	. 504	. 955	. 931	. 310
250	2	1	. 6	-. 122	-	-. 844	. 198	-	. 106	. 822	. 920	. 000
			. 2	-. 137	-	-. 729	. 201	-	. 173	. 874	. 922	. 001
250	2	2	. 6	-. 123	-	-. 843	. 200	-	. 096	. 826	. 929	. 000
			. 2	-. 117	-	-. 728	. 182	-	. 114	. 840	. 927	. 000
250	4	. 3	. 6	$-.050$	$-.131$	-. 326	. 092	. 197	. 041	. 868	. 864	. 000
			. 2	-. 021	$-.057$	-. 117	. 068	. 095	. 058	. 925	. 882	. 276
250	4	1	. 6	. 008	-. 019	-. 202	. 094	. 077	. 039	. 933	. 934	. 000
			. 2	. 004	$-.009$	-. 049	. 066	. 058	. 053	. 957	. 944	. 701
250	4	2	. 6	. 003	-. 004	-. 006	. 048	. 040	. 030	. 956	. 946	. 949
			. 2	. 002	-. 002	. 073	. 044	. 041	. 042	. 952	. 947	. 476
250	6	. 3	. 6	-. 022	$-.072$	-. 205	. 062	. 091	. 032	. 900	. 871	. 000
			. 2	-. 010	-. 034	-. 083	. 048	. 053	. 038	. 936	. 892	. 269
250	6	1	. 6	. 008	-. 016	-. 109	. 061	. 047	. 029	. 954	. 935	. 027
			. 2	. 005	-. 006	-. 012	. 045	. 037	. 035	. 962	. 941	. 880
250	6	2	. 6	. 001	$-.004$. 025	. 029	. 028	. 023	. 948	. 945	. 834
			. 2	. 000	-. 002	. 086	. 029	. 028	. 030	. 951	. 948	. 129
250	8	. 3	. 6	$-.007$	-. 046	-. 143	. 047	. 058	. 027	. 928	. 872	. 000
			. 2	$-.002$	$-.023$	$-.065$. 039	. 038	. 029	. 951	. 900	. 293
250	8	1	. 6	. 004	-. 013	-. 071	. 042	. 035	. 025	. 965	. 933	. 157
			. 2	. 002	-. 006	-. 003	. 033	. 029	. 028	. 964	. 943	. 907
250	8	2	. 6	. 001	-. 004	. 026	. 024	. 024	. 020	. 944	. 942	. 761
			. 2	. 000	-. 001	. 076	. 024	. 024	. 024	. 944	. 942	. 092
250	16	. 3	. 6	. 002	-. 018	-. 050	. 024	. 023	. 018	. 964	. 879	. 154
			. 2	. 001	-. 011	-. 029	. 023	. 020	. 018	. 963	. 909	. 582
250	16	1	. 6	. 000	-. 010	-. 023	. 019	. 019	. 017	. 950	. 918	. 683
			. 2	. 000	$-.005$. 001	. 018	. 017	. 017	. 949	. 942	. 932
250	16	2	. 6	. 000	-. 004	. 015	. 016	. 016	. 014	. 949	. 940	. 830
			. 2	. 000	-. 001	. 042	. 015	. 015	. 016	. 949	. 949	. 206
250	24	. 3	. 6	. 000	-. 012	-. 024	. 015	. 016	. 014	. 950	. 878	. 544
			. 2	. 000	-. 008	-. 016	. 015	. 015	. 014	. 949	. 915	. 776
250	24	1	. 6	. 000	-. 008	-. 012	. 014	. 015	. 013	. 949	. 909	. 843
			. 2	. 000	$-.005$. 001	. 014	. 014	. 014	. 952	. 938	. 937
250	24	2	. 6	. 000	-. 005	. 009	. 013	. 013	. 012	. 949	. 938	. 890
			. 2	. 000	-. 002	. 025	. 012	. 012	. 013	. 946	. 946	. 440

Notes: Data generated as $y_{i t}=\rho_{01} y_{i t-1}+\rho_{02} y_{i t-2}+\alpha_{i}+\varepsilon_{i t}(i=1, \ldots, N ; t=1, \ldots T)$ with $\alpha_{i} \sim \mathcal{N}(0,1), \varepsilon_{i t} \sim \mathcal{N}(0,1)$, and ψ the degree of outlyingness of the initial observations ($y_{i 0}, y_{i,-1}$). Entries: bias, standard deviation (std), and coverage rate of 95% confidence interval (ci.95) of adjusted likelihood ($\widehat{\rho}_{\text {al }}$), Arellano-Bond ($\widehat{\rho}_{\mathrm{ab}}$), and Hahn-Kuersteiner $\left(\widehat{\rho}_{\mathrm{hk}}\right)$ estimators; ' -' indicates non-existence of the moment; 10,000 Monte Carlo replications.

Table 2. Simulation results for the second-order autoregression (cont'd)

N	T	ψ	ρ_{0}	bias			std			ci. 95		
				$\widehat{\rho}_{\text {al }}$	$\widehat{\rho}_{\text {ab }}$	$\widehat{\rho}_{\text {hk }}$	$\widehat{\rho}_{\text {al }}$	$\widehat{\rho}_{\text {ab }}$	$\widehat{\rho}_{\text {hk }}$	$\widehat{\rho}_{\text {al }}$	$\widehat{\rho}_{\text {ab }}$	$\widehat{\rho}_{\text {hk }}$
250	2	. 3	1	-. 124	-	-. 864	. 200	-	. 170	. 822	. 925	. 000
			$-.2$	-. 169	-	-. 393	. 369	-	. 449	. 967	. 948	. 491
250	2	1	1	-. 122	-	-. 859	. 199	-	. 092	. 822	. 920	. 000
			$-.2$	-. 081	-	-. 376	. 146	-	. 143	. 905	. 924	. 049
250	2	2	1	-. 123	-	-. 859	. 200	-	. 082	. 826	. 929	. 000
			$-.2$	-. 069	-	-. 378	. 115	-	. 081	. 859	. 927	. 000
250	4	. 3	1	-. 048	-. 103	$-.360$. 088	. 176	. 037	. 869	. 882	. 000
			$-.2$. 004	-. 008	. 010	. 057	. 056	. 060	. 969	. 949	. 812
250	4	1	1	. 012	-. 013	-. 212	. 086	. 063	. 034	. 945	. 935	. 000
			$-.2$. 005	-. 001	. 014	. 053	. 050	. 055	. 961	. 944	. 814
250	4	2	1	. 001	$-.003$	-. 022	. 036	. 032	. 023	. 951	. 946	. 881
			$-.2$. 001	. 000	. 060	. 038	. 038	. 044	. 949	. 947	. 539
250	6	. 3	1	$-.017$	-. 050	-. 214	. 057	. 076	. 030	. 910	. 892	. 000
			$-.2$. 002	-. 007	-. 024	. 041	. 037	. 039	. 966	. 943	. 787
250	6	1	1	. 005	-. 011	-. 104	. 049	. 039	. 027	. 961	. 939	. 020
			$-.2$. 002	. 000	. 031	. 034	. 033	. 035	. 952	. 947	. 753
250	6	2	1	. 000	-. 003	. 017	. 024	. 025	. 020	. 948	. 944	. 897
			$-.2$. 000	. 001	. 088	. 026	. 026	. 029	. 948	. 949	. 081
250	8	. 3	1	-. 001	-. 030	-. 136	. 043	. 047	. 026	. 943	. 897	. 000
			$-.2$. 003	-. 006	-. 029	. 033	. 030	. 029	. 968	. 940	. 738
250	8	1	1	. 001	-. 009	-. 064	. 031	. 030	. 023	. 959	. 936	. 186
			$-.2$. 000	. 000	. 026	. 026	. 026	. 027	. 949	. 949	. 765
250	8	2	1	. 000	-. 003	. 015	. 021	. 022	. 018	. 946	. 942	. 892
			$-.2$. 000	. 001	. 076	. 021	. 022	. 023	. 944	. 944	. 057
250	16	. 3	1	. 000	-. 011	-. 036	. 019	. 020	. 017	. 952	. 914	. 389
			$-.2$. 000	-. 004	-. 014	. 018	. 018	. 017	. 946	. 942	. 846
250	16	1	1	. 000	-. 008	-. 019	. 017	. 018	. 016	. 949	. 933	. 761
			$-.2$. 000	-. 001	. 010	. 016	. 016	. 017	. 952	. 952	. 888
250	16	2	1	. 000	-. 004	. 005	. 015	. 016	. 014	. 950	. 941	. 935
			$-.2$. 000	. 000	. 037	. 014	. 015	. 015	. 947	. 947	. 254
250	24	. 3	1	. 000	-. 008	-. 016	. 014	. 015	. 014	. 950	. 917	. 756
			$-.2$. 000	-. 003	$-.007$. 014	. 014	. 013	. 948	. 943	. 911
250	24	1	1	. 000	-. 006	-. 009	. 013	. 014	. 013	. 949	. 927	. 882
			$-.2$. 000	-. 002	. 005	. 013	. 013	. 013	. 950	. 950	. 926
250	24	2	1	. 000	-. 004	. 002	. 012	. 013	. 012	. 949	. 942	. 944
			$-.2$. 000	. 000	. 022	. 012	. 012	. 012	. 949	. 950	. 542

Notes: Data generated as $y_{i t}=\rho_{01} y_{i t-1}+\rho_{02} y_{i t-2}+\alpha_{i}+\varepsilon_{i t}(i=1, \ldots, N ; t=1, \ldots T)$ with $\alpha_{i} \sim \mathcal{N}(0,1), \varepsilon_{i t} \sim \mathcal{N}(0,1)$, and ψ the degree of outlyingness of the initial observations ($y_{i 0}, y_{i,-1}$). Entries: bias, standard deviation (std), and coverage rate of 95% confidence interval (ci.95) of adjusted likelihood ($\widehat{\rho}_{\mathrm{al}}$), Arellano-Bond ($\widehat{\rho}_{\mathrm{ab}}$), and Hahn-Kuersteiner ($\widehat{\rho}_{\mathrm{hk}}$) estimators; '-' indicates non-existence of the moment; 10, 000 Monte Carlo replications.

Table 2. Simulation results for the second-order autoregression (cont'd)

N	T	ψ	ρ_{0}	bias			std			ci. 95		
				$\widehat{\rho}_{\text {al }}$	$\widehat{\rho}_{\text {ab }}$	$\widehat{\rho}_{\text {hk }}$	$\widehat{\rho}_{\text {al }}$	$\widehat{\rho}_{\text {ab }}$	$\widehat{\rho}_{\text {hk }}$	$\widehat{\rho}_{\text {al }}$	$\widehat{\rho}_{\text {ab }}$	$\widehat{\rho}_{\text {hk }}$
500	2	. 3	. 6	-. 104	-	$-.845$. 163	-	. 134	. 827	. 928	. 000
			. 2	$-.253$	-	$-.733$. 331	-	. 356	. 952	. 926	. 142
500	2	1	. 6	-. 105	-	$-.843$. 163	-	. 075	. 830	. 925	. 000
			. 2	-. 114	-	$-.730$. 160	-	. 122	. 864	. 924	. 000
500	2	2	. 6	-. 104	-	$-.843$. 162	-	. 067	. 834	. 927	. 000
			. 2	$-.098$	-	-. 729	. 147	-	. 080	. 843	. 927	. 000
500	4	. 3	. 6	$-.040$	$-.067$	-. 325	. 076	. 144	. 030	. 867	. 900	. 000
			. 2	$-.017$	$-.030$	-. 116	. 051	. 071	. 042	. 922	. 909	. 079
500	4	1	. 6	. 012	$-.009$	$-.202$. 077	. 056	. 027	. 942	. 938	. 000
			. 2	. 007	$-.003$	$-.049$. 051	. 041	. 037	. 962	. 950	. 566
500	4	2	. 6	. 001	$-.002$	$-.006$. 033	. 029	. 021	. 956	. 947	. 951
			. 2	. 001	$-.001$. 074	. 032	. 029	. 030	. 946	. 946	. 206
500	6	. 3	. 6	-. 014	-. 038	$-.205$. 050	. 066	. 022	. 905	. 908	. 000
			. 2	$-.007$	-. 018	$-.083$. 037	. 038	. 026	. 940	. 919	. 062
500	6	1	. 6	. 006	-. 008	-. 109	. 047	. 034	. 021	. 954	. 937	. 000
			. 2	. 004	-. 003	-. 012	. 032	. 026	. 025	. 968	. 949	. 862
500	6	2	. 6	. 000	-. 002	. 026	. 021	. 020	. 016	. 947	. 948	. 681
			. 2	. 000	$-.001$. 086	. 020	. 020	. 021	. 950	. 946	. 009
500	8	. 3	. 6	$-.003$	$-.023$	-. 143	. 039	. 041	. 019	. 927	. 912	. 000
			. 2	-. 002	-. 012	$-.065$. 030	. 028	. 020	. 948	. 920	. 076
500	8	1	. 6	. 003	$-.007$	$-.070$. 030	. 025	. 017	. 964	. 940	. 014
			. 2	. 001	$-.003$	-. 002	. 024	. 020	. 020	. 960	. 946	. 911
500	8	2	. 6	. 000	$-.002$. 026	. 017	. 017	. 014	. 949	. 949	. 568
			. 2	. 000	. 000	. 077	. 016	. 016	. 017	. 952	. 952	. 004
500	16	. 3	. 6	. 001	-. 010	$-.050$. 017	. 017	. 013	. 962	. 909	. 016
			. 2	. 001	-. 006	-. 029	. 016	. 014	. 012	. 961	. 932	. 316
500	16	1	. 6	. 000	$-.005$	$-.023$. 013	. 014	. 012	. 953	. 933	. 459
			. 2	. 000	-. 002	. 002	. 013	. 012	. 012	. 948	. 943	. 932
500	16	2	. 6	. 000	$-.002$. 015	. 011	. 011	. 010	. 948	. 946	. 701
			. 2	. 000	. 000	. 042	. 011	. 011	. 011	. 951	. 949	. 028
500	24	. 3	. 6	. 000	$-.006$	$-.024$. 011	. 011	. 010	. 949	. 914	. 274
			. 2	. 000	$-.004$	$-.016$. 011	. 011	. 010	. 949	. 930	. 618
500	24	1	. 6	. 000	-. 004	$-.012$. 010	. 010	. 010	. 949	. 931	. 741
			. 2	. 000	$-.002$. 001	. 010	. 010	. 010	. 949	. 943	. 932
500	24	2	. 6	. 000	$-.002$. 009	. 009	. 009	. 009	. 948	. 942	. 819
			. 2	. 000	$-.001$. 026	. 009	. 009	. 009	. 948	. 946	. 155

Notes: Data generated as $y_{i t}=\rho_{01} y_{i t-1}+\rho_{02} y_{i t-2}+\alpha_{i}+\varepsilon_{i t}(i=1, \ldots, N ; t=1, \ldots T)$ with $\alpha_{i} \sim \mathcal{N}(0,1), \varepsilon_{i t} \sim \mathcal{N}(0,1)$, and ψ the degree of outlyingness of the initial observations ($y_{i 0}, y_{i,-1}$). Entries: bias, standard deviation (std), and coverage rate of 95% confidence interval (ci.95) of adjusted likelihood ($\widehat{\rho}_{\text {al }}$), Arellano-Bond ($\widehat{\rho}_{\mathrm{ab}}$), and Hahn-Kuersteiner $\left(\widehat{\rho}_{\text {hk }}\right)$ estimators; ' -' indicates non-existence of the moment; 10,000 Monte Carlo replications.

Table 2. Simulation results for the second-order autoregression (cont'd)

N	T	ψ	ρ_{0}	bias			std			ci. 95		
				$\widehat{\rho}_{\text {al }}$	$\widehat{\rho}_{\text {ab }}$	$\widehat{\rho}_{\text {hk }}$	$\widehat{\rho}_{\text {al }}$	$\widehat{\rho}_{\text {ab }}$	$\widehat{\rho}_{\text {hk }}$	$\widehat{\rho}_{\text {al }}$	$\widehat{\rho}_{\text {ab }}$	$\widehat{\rho}_{\text {hk }}$
500	2	3	1	-. 104	-	-. 860	. 164	-	. 118	. 827	. 928	. 000
			$-.2$	-. 145	-	-. 380	. 274	-	. 314	. 965	. 932	. 379
500	2	1	1	-. 105	-	-. 859	. 163	-	. 064	. 830	. 925	. 000
			$-.2$	-. 068	-	-. 377	. 113	-	. 101	. 892	. 923	. 003
500	2	2	1	-. 104	-	-. 859	. 162	-	. 058	. 833	. 927	. 000
			$-.2$	-. 057	-	-. 377	. 091	-	. 058	. 855	. 927	. 000
500	4	. 3	1	-. 036	-. 053	-. 359	. 072	. 127	. 027	. 875	. 911	. 000
			$-.2$. 003	-. 004	. 010	. 041	. 040	. 042	. 971	. 947	. 799
500	4	1	1	. 011	$-.007$	-. 212	. 069	. 044	. 024	. 950	. 944	. 000
			$-.2$. 003	-. 001	. 014	. 038	. 035	. 039	. 960	. 949	. 802
500	4	2	1	. 001	$-.002$	-. 022	. 025	. 023	. 017	. 951	. 947	. 792
			$-.2$. 001	. 000	. 060	. 027	. 027	. 031	. 947	. 949	. 314
500	6	. 3	1	$-.010$	$-.025$	-. 213	. 047	. 055	. 021	. 911	. 920	. 000
			$-.2$. 001	-. 004	-. 025	. 030	. 027	. 028	. 965	. 946	. 708
500	6	1	1	. 002	$-.005$	$-.103$. 033	. 027	. 019	. 962	. 948	. 000
			$-.2$. 001	. 000	. 030	. 023	. 023	. 025	. 951	. 947	. 636
500	6	2	1	. 000	-. 002	. 017	. 017	. 017	. 014	. 951	. 947	. 828
			$-.2$. 000	. 000	. 088	. 018	. 019	. 020	. 948	. 948	. 004
500	8	. 3	1	. 002	-. 014	-. 136	. 036	. 033	. 018	. 942	. 927	. 000
			$-.2$. 002	-. 003	-. 029	. 024	. 021	. 020	. 969	. 945	. 583
500	8	1	1	. 001	-. 005	-. 063	. 022	. 022	. 016	. 952	. 943	. 022
			$-.2$. 000	. 000	. 026	. 018	. 019	. 019	. 949	. 949	. 629
500	8	2	1	. 000	-. 002	. 015	. 014	. 015	. 013	. 950	. 951	. 816
			$-.2$. 000	. 000	. 076	. 015	. 015	. 016	. 952	. 953	. 001
500	16	. 3	1	. 000	-. 006	-. 036	. 013	. 014	. 012	. 944	. 930	. 127
			$-.2$. 000	-. 002	-. 014	. 013	. 013	. 012	. 952	. 948	. 762
500	16	1	1	. 000	-. 004	-. 019	. 012	. 013	. 012	. 949	. 943	. 586
			$-.2$. 000	. 000	. 010	. 012	. 012	. 012	. 949	. 950	. 842
500	16	2	1	. 000	-. 002	. 005	. 011	. 011	. 010	. 948	. 942	. 925
			$-.2$. 000	. 000	. 037	. 010	. 010	. 011	. 949	. 949	. 047
500	24	. 3	1	. 000	-. 004	-. 016	. 010	. 011	. 010	. 944	. 928	. 591
			$-.2$. 000	-. 002	-. 007	. 010	. 010	. 009	. 949	. 946	. 885
500	24	1	1	. 000	-. 003	-. 009	. 009	. 010	. 009	. 949	. 939	. 824
			$-.2$. 000	-. 001	. 005	. 009	. 009	. 009	. 950	. 948	. 913
500	24	2	1	. 000	-. 002	. 002	. 009	. 009	. 009	. 951	. 945	. 940
			$-.2$. 000	. 000	. 022	. 008	. 009	. 009	. 949	. 947	. 269

Notes: Data generated as $y_{i t}=\rho_{01} y_{i t-1}+\rho_{02} y_{i t-2}+\alpha_{i}+\varepsilon_{i t}(i=1, \ldots, N ; t=1, \ldots T)$ with $\alpha_{i} \sim \mathcal{N}(0,1), \varepsilon_{i t} \sim \mathcal{N}(0,1)$, and ψ the degree of outlyingness of the initial observations $\left(y_{i 0}, y_{i,-1}\right)$. Entries: bias, standard deviation (std), and coverage rate of 95% confidence interval (ci.95) of adjusted likelihood ($\widehat{\rho}_{\mathrm{al}}$), Arellano-Bond ($\widehat{\rho}_{\mathrm{ab}}$), and Hahn-Kuersteiner ($\widehat{\rho}_{\mathrm{hk}}$) estimators; '-' indicates non-existence of the moment; 10, 000 Monte Carlo replications.

Table 2. Simulation results for the second-order autoregression (cont'd)

N	T	ψ	ρ_{0}	bias			std			ci. 95		
				$\widehat{\rho}_{\text {al }}$	$\widehat{\rho}_{\text {ab }}$	$\widehat{\rho}_{\text {hk }}$	$\widehat{\rho}_{\text {al }}$	$\widehat{\rho}_{\text {ab }}$	$\widehat{\rho}_{\text {hk }}$	$\widehat{\rho}_{\text {al }}$	$\widehat{\rho}_{\text {ab }}$	$\widehat{\rho}_{\text {hk }}$
1000	2	. 3	. 6	$-.093$	-	-. 842	. 134	-	. 095	. 831	. 931	. 000
			. 2	$-.207$	-	$-.728$. 248	-	. 253	. 945	. 933	. 029
1000	2	1	. 6	-. 091	-	$-.843$. 134	-	. 052	. 833	. 928	. 000
			. 2	-. 096	-	$-.729$. 124	-	. 085	. 863	. 930	. 000
1000	2	2	. 6	$-.093$	-	$-.844$. 136	-	. 047	. 825	. 932	. 000
			. 2	$-.086$	-	$-.730$. 122	-	. 056	. 834	. 932	. 000
1000	4	. 3	. 6	$-.032$	$-.035$	$-.325$. 063	. 105	. 021	. 862	. 925	. 000
			. 2	$-.014$	$-.016$	$-.116$. 039	. 051	. 029	. 920	. 928	. 005
1000	4	1	. 6	. 013	$-.003$	$-.202$. 062	. 038	. 019	. 953	. 949	. 000
			. 2	. 006	-. 002	-. 048	. 039	. 029	. 026	. 964	. 953	. 368
1000	4	2	. 6	. 000	$-.001$	$-.005$. 023	. 020	. 015	. 954	. 950	. 941
			. 2	. 001	. 000	. 074	. 022	. 021	. 021	. 950	. 950	. 030
1000	6	. 3	. 6	-. 009	-. 019	$-.205$. 041	. 048	. 016	. 912	. 930	. 000
			. 2	$-.004$	-. 009	$-.083$. 028	. 028	. 019	. 939	. 936	. 003
1000	6	1	. 6	. 004	$-.004$	-. 109	. 033	. 023	. 015	. 963	. 947	. 000
			. 2	. 002	$-.002$	$-.011$. 023	. 019	. 018	. 967	. 950	. 832
1000	6	2	. 6	. 000	$-.001$. 026	. 015	. 014	. 011	. 948	. 946	. 422
			. 2	. 000	. 000	. 086	. 015	. 014	. 015	. 946	. 946	. 000
1000	8	. 3	. 6	. 001	$-.012$	$-.143$. 032	. 030	. 014	. 941	. 929	. 000
			. 2	. 000	$-.007$	$-.065$. 023	. 020	. 015	. 949	. 933	. 004
1000	8	1	. 6	. 001	$-.003$	$-.070$. 020	. 017	. 012	. 963	. 945	. 000
			. 2	. 001	$-.001$	$-.002$. 016	. 015	. 014	. 957	. 946	. 914
1000	8	2	. 6	. 000	$-.001$. 027	. 012	. 012	. 010	. 951	. 948	. 259
			. 2	. 000	. 000	. 076	. 012	. 012	. 012	. 943	. 946	. 000
1000	16	. 3	. 6	. 000	$-.005$	$-.050$. 012	. 012	. 009	. 957	. 932	. 000
			. 2	. 000	$-.003$	$-.029$. 011	. 010	. 009	. 952	. 936	. 075
1000	16	1	. 6	. 000	$-.003$	$-.023$. 010	. 010	. 008	. 948	. 940	. 184
			. 2	. 000	$-.001$. 002	. 009	. 009	. 009	. 947	. 944	. 928
1000	16	2	. 6	. 000	$-.001$. 015	. 008	. 008	. 007	. 953	. 949	. 481
			. 2	. 000	. 000	. 042	. 007	. 008	. 008	. 954	. 954	. 000
1000	24	. 3	. 6	. 000	$-.003$	$-.024$. 008	. 008	. 007	. 950	. 932	. 053
			. 2	. 000	$-.002$	$-.016$. 007	. 007	. 007	. 954	. 941	. 364
1000	24	1	. 6	. 000	$-.002$	$-.011$. 007	. 007	. 007	. 946	. 937	. 568
			. 2	. 000	$-.001$. 001	. 007	. 007	. 007	. 950	. 948	. 935
1000	24	2	. 6	. 000	$-.001$. 009	. 006	. 007	. 006	. 949	. 947	. 690
			. 2	. 000	. 000	. 026	. 006	. 006	. 006	. 950	. 950	. 014

Notes: Data generated as $y_{i t}=\rho_{01} y_{i t-1}+\rho_{02} y_{i t-2}+\alpha_{i}+\varepsilon_{i t}(i=1, \ldots, N ; t=1, \ldots T)$ with $\alpha_{i} \sim \mathcal{N}(0,1), \varepsilon_{i t} \sim \mathcal{N}(0,1)$, and ψ the degree of outlyingness of the initial observations ($y_{i 0}, y_{i,-1}$). Entries: bias, standard deviation (std), and coverage rate of 95% confidence interval (ci.95) of adjusted likelihood ($\widehat{\rho}_{\text {al }}$), Arellano-Bond ($\widehat{\rho}_{\mathrm{ab}}$), and Hahn-Kuersteiner $\left(\widehat{\rho}_{\text {hk }}\right)$ estimators; ' -' indicates non-existence of the moment; 10,000 Monte Carlo replications.

Table 2. Simulation results for the second-order autoregression (cont'd)

N	T	ψ	ρ_{0}	bias			std			ci. 95		
				$\widehat{\rho}_{\text {al }}$	$\widehat{\rho}_{\text {ab }}$	$\widehat{\rho}_{\text {hk }}$	$\widehat{\rho}_{\text {al }}$	$\widehat{\rho}_{\text {ab }}$	$\widehat{\rho}_{\text {hk }}$	$\widehat{\rho}_{\text {al }}$	$\widehat{\rho}_{\text {ab }}$	$\widehat{\rho}_{\text {hk }}$
1000	2	. 3	1	-. 092	-	-. 859	. 134	-	. 085	. 831	. 931	. 000
			$-.2$	-. 120	-	-. 379	. 202	-	. 225	. 960	. 935	. 223
1000	2	1	1	-. 091	-	-. 859	. 134	-	. 046	. 833	. 928	. 000
			$-.2$	-. 057	-	-. 378	. 085	-	. 072	. 890	. 930	. 000
1000	2	2	1	-. 093	-	-. 859	. 136	-	. 041	. 825	. 932	. 000
			$-.2$	-. 051	-	-. 376	. 075	-	. 041	. 844	. 933	. 000
1000	4	. 3	1	-. 029	-. 028	-. 359	. 060	. 090	. 019	. 876	. 935	. 000
			$-.2$. 001	-. 003	. 011	. 029	. 029	. 030	. 969	. 948	. 791
1000	4	1	1	. 008	-. 003	-. 211	. 051	. 032	. 017	. 960	. 946	. 000
			$-.2$. 002	. 000	. 013	. 026	. 025	. 027	. 956	. 947	. 782
1000	4	2	1	. 000	-. 001	-. 022	. 018	. 016	. 012	. 948	. 948	. 589
			$-.2$. 000	. 000	. 061	. 019	. 019	. 022	. 953	. 954	. 096
1000	6	. 3	1	-. 005	-. 013	$-.214$. 039	. 040	. 015	. 916	. 934	. 000
			$-.2$. 001	-. 002	-. 024	. 021	. 019	. 019	. 967	. 950	. 583
1000	6	1	1	. 001	-. 003	-. 103	. 022	. 020	. 013	. 957	. 951	. 000
			$-.2$. 000	. 000	. 031	. 017	. 017	. 018	. 948	. 945	. 439
1000	6	2	1	. 000	-. 001	. 017	. 012	. 012	. 010	. 946	. 949	. 677
			$-.2$. 000	. 000	. 088	. 013	. 013	. 015	. 950	. 948	. 000
1000	8	. 3	1	. 004	-. 008	$-.135$. 029	. 024	. 013	. 954	. 935	. 000
			$-.2$. 001	-. 002	-. 029	. 018	. 015	. 014	. 965	. 948	. 358
1000	8	1	1	. 000	-. 002	-. 063	. 015	. 015	. 012	. 954	. 948	. 000
			-. 2	. 000	. 000	. 026	. 013	. 013	. 014	. 947	. 950	. 409
1000	8	2	1	. 000	-. 001	. 015	. 010	. 011	. 009	. 953	. 948	. 654
			$-.2$. 000	. 000	. 076	. 011	. 011	. 011	. 947	. 950	. 000
1000	16	. 3	1	. 000	-. 003	-. 036	. 009	. 010	. 009	. 947	. 944	. 010
			$-.2$. 000	-. 001	$-.014$. 009	. 009	. 009	. 947	. 945	. 599
1000	16	1	1	. 000	-. 002	-. 019	. 009	. 009	. 008	. 948	. 946	. 316
			$-.2$. 000	. 000	. 010	. 008	. 008	. 008	. 947	. 946	. 752
1000	16	2	1	. 000	-. 001	. 005	. 007	. 008	. 007	. 949	. 949	. 889
			$-.2$. 000	. 000	. 038	. 007	. 007	. 008	. 953	. 951	. 001
1000	24	. 3	1	. 000	-. 002	-. 015	. 007	. 007	. 007	. 952	. 944	. 342
			$-.2$. 000	-. 001	$-.007$. 007	. 007	. 007	. 950	. 951	. 811
1000	24	1	1	. 000	-. 002	-. 009	. 007	. 007	. 007	. 946	. 939	. 690
			$-.2$. 000	. 000	. 005	. 007	. 007	. 007	. 949	. 949	. 874
1000	24	2	1	. 000	-. 001	. 002	. 006	. 006	. 006	. 947	. 947	. 934
			-. 2	. 000	. 000	. 022	. 006	. 006	. 006	. 951	. 951	. 044

Notes: Data generated as $y_{i t}=\rho_{01} y_{i t-1}+\rho_{02} y_{i t-2}+\alpha_{i}+\varepsilon_{i t}(i=1, \ldots, N ; t=1, \ldots T)$ with $\alpha_{i} \sim \mathcal{N}(0,1), \varepsilon_{i t} \sim \mathcal{N}(0,1)$, and ψ the degree of outlyingness of the initial observations $\left(y_{i 0}, y_{i,-1}\right)$. Entries: bias, standard deviation (std), and coverage rate of 95% confidence interval (ci.95) of adjusted likelihood ($\widehat{\rho}_{\mathrm{al}}$), Arellano-Bond ($\widehat{\rho}_{\mathrm{ab}}$), and Hahn-Kuersteiner ($\widehat{\rho}_{\mathrm{hk}}$) estimators; '-' indicates non-existence of the moment; 10, 000 Monte Carlo replications.

Table 2. Simulation results for the second-order autoregression (cont'd)

N	T	ψ	ρ_{0}	bias			std			ci. 95		
				$\widehat{\rho}_{\text {al }}$	$\widehat{\rho}_{\text {ab }}$	$\widehat{\rho}_{\text {hk }}$	$\widehat{\rho}_{\text {al }}$	$\widehat{\rho}_{\text {ab }}$	$\widehat{\rho}_{\text {hk }}$	$\widehat{\rho}_{\text {al }}$	$\widehat{\rho}_{\text {ab }}$	$\widehat{\rho}_{\text {hk }}$
2500	2	. 3	. 6	$-.074$	-	-. 843	. 104	-	. 060	. 831	. 931	. 000
			. 2	-. 158	-	-. 731	. 168	-	. 159	. 931	. 931	. 000
2500	2	1	. 6	-. 075	-	-. 843	. 103	-	. 033	. 836	. 931	. 000
			. 2	-. 075	-	-. 729	. 094	-	. 055	. 855	. 932	. 000
2500	2	2	. 6	-. 076	-	-. 844	. 105	-	. 030	. 827	. 935	. 000
			. 2	-. 070	-	-. 731	. 093	-	. 036	. 836	. 935	. 000
2500	4	. 3	. 6	-. 022	-. 014	-. 325	. 048	. 067	. 013	. 878	. 946	. 000
			. 2	-. 009	-. 006	-. 116	. 028	. 033	. 019	. 916	. 944	. 000
2500	4	1	. 6	. 007	-. 002	-. 202	. 044	. 024	. 012	. 953	. 947	. 000
			. 2	. 004	-. 001	-. 049	. 026	. 018	. 017	. 968	. 951	. 077
2500	4	2	. 6	. 000	. 000	-. 005	. 015	. 013	. 009	. 949	. 949	. 930
			. 2	. 000	. 000	. 074	. 014	. 013	. 013	. 950	. 950	. 000
2500	6	. 3	. 6	-. 003	-. 008	-. 205	. 032	. 031	. 010	. 919	. 939	. 000
			. 2	-. 0001	-. 004	-. 083	. 021	. 018	. 012	. 941	. 942	. 000
2500	6	1	. 6	. 001	-. 002	-. 109	. 020	. 015	. 009	. 963	. 950	. 000
			. 2	. 001	-. 001	-. 011	. 014	. 012	. 011	. 958	. 951	. 737
2500	6	2	. 6	. 000	. 000	. 026	. 009	. 009	. 007	. 949	. 953	. 062
			. 2	. 000	. 000	. 086	. 009	. 009	. 009	. 947	. 947	. 000
2500	8	. 3	. 6	. 003	-. 005	-. 143	. 025	. 019	. 009	. 941	. 948	. 000
			. 2	. 002	-. 003	-. 064	. 017	. 013	. 009	. 957	. 944	. 000
2500	8	1	. 6	. 000	-. 002	-. 070	. 012	. 011	. 008	. 954	. 946	. 000
			. 2	. 000	-. 001	-. 002	. 010	. 009	. 009	. 949	. 949	. 908
2500	8	2	. 6	. 000	. 000	. 027	. 007	. 007	. 006	. 949	. 950	. 013
			. 2	. 000	. 000	. 076	. 007	. 007	. 008	. 950	. 948	. 000
2500	16	. 3	. 6	. 000	-. 002	-. 050	. 007	. 007	. 006	. 951	. 940	. 000
			. 2	. 000	-. 001	-. 029	. 007	. 006	. 006	. 953	. 947	. 000
2500	16	1	. 6	. 000	-. 001	-. 023	. 006	. 006	. 005	. 951	. 945	. 007
			. 2	. 000	. 000	. 001	. 006	. 006	. 005	. 950	. 948	. 924
2500	16	2	. 6	. 000	-. 001	. 015	. 005	. 005	. 005	. 951	. 952	. 102
			. 2	. 000	. 000	. 042	. 005	. 005	. 005	. 944	. 944	. 000
2500	24	. 3	. 6	. 000	-. 001	-. 024	. 005	. 005	. 004	. 948	. 941	. 000
			. 2	. 000	-. 001	-. 016	. 005	. 005	. 004	. 952	. 945	. 048
2500	24	1	. 6	. 000	-. 001	-. 011	. 004	. 005	. 004	. 950	. 946	. 206
			. 2	. 000	. 000	. 001	. 004	. 004	. 004	. 949	. 947	. 933
2500	24	2	. 6	. 000	$-.001$. 009	. 004	. 004	. 004	. 949	. 948	. 366
			. 2	. 000	. 000	. 026	. 004	. 004	. 004	. 949	. 949	. 000

Notes: Data generated as $y_{i t}=\rho_{01} y_{i t-1}+\rho_{02} y_{i t-2}+\alpha_{i}+\varepsilon_{i t}(i=1, \ldots, N ; t=1, \ldots T)$ with $\alpha_{i} \sim \mathcal{N}(0,1), \varepsilon_{i t} \sim \mathcal{N}(0,1)$, and ψ the degree of outlyingness of the initial observations ($y_{i 0}, y_{i,-1}$). Entries: bias, standard deviation (std), and coverage rate of 95% confidence interval (ci.95) of adjusted likelihood ($\widehat{\rho}_{\text {al }}$), Arellano-Bond ($\widehat{\rho}_{\mathrm{ab}}$), and Hahn-Kuersteiner $\left(\widehat{\rho}_{\text {hk }}\right)$ estimators; ' -' indicates non-existence of the moment; 10,000 Monte Carlo replications.

Table 2. Simulation results for the second-order autoregression (cont'd)

N	T	ψ	ρ_{0}	bias			std			ci. 95		
				$\widehat{\rho}_{\text {al }}$	$\widehat{\rho}_{\text {ab }}$	$\widehat{\rho}_{\text {hk }}$	$\widehat{\rho}_{\text {al }}$	$\widehat{\rho}_{\text {ab }}$	$\widehat{\rho}_{\text {hk }}$	$\widehat{\rho}_{\text {al }}$	$\widehat{\rho}_{\text {ab }}$	$\widehat{\rho}_{\text {hk }}$
2500	2	. 3	1	-. 074	-	-. 859	. 104	-	. 053	. 831	. 931	. 000
			$-.2$	-. 093	-	$-.377$. 134	-	. 141	. 956	. 931	. 043
2500	2	1	1	-. 075	-	-. 858	. 104	-	. 029	. 836	. 931	. 000
			$-.2$	-. 045	-	$-.376$. 062	-	. 045	. 878	. 931	. 000
2500	2	2	1	-. 076	-	-. 859	. 105	-	. 026	. 827	. 935	. 000
			$-.2$	-. 041	-	-. 377	. 056	-	. 026	. 845	. 935	. 000
2500	4	. 3	1	-. 019	-. 011	$-.358$. 047	. 058	. 012	. 885	. 945	. 000
			$-.2$. 001	$-.001$. 010	. 019	. 018	. 019	. 968	. 950	. 747
2500	4	1	1	. 003	$-.001$	$-.211$. 030	. 020	. 011	. 959	. 949	. 000
			$-.2$. 001	. 000	. 014	. 016	. 016	. 017	. 956	. 951	. 702
2500	4	2	1	. 000	. 000	$-.022$. 011	. 010	. 007	. 949	. 949	. 192
			$-.2$. 000	. 000	. 060	. 012	. 012	. 014	. 946	. 949	. 002
2500	6	. 3	1	. 001	$-.005$	$-.213$. 031	. 025	. 010	. 931	. 943	. 000
			$-.2$. 001	$-.001$	$-.024$. 014	. 012	. 012	. 969	. 947	. 309
2500	6	1	1	. 000	$-.001$	-. 103	. 014	. 012	. 008	. 952	. 950	. 000
			$-.2$. 000	. 000	. 031	. 010	. 010	. 011	. 951	. 950	. 118
2500	6	2	1	. 000	. 000	. 017	. 008	. 008	. 006	. 948	. 950	. 290
			$-.2$. 000	. 000	. 088	. 008	. 008	. 009	. 947	. 945	. 000
2500	8	. 3	1	. 004	$-.003$	$-.135$. 021	. 015	. 008	. 955	. 950	. 000
			$-.2$. 001	$-.001$	$-.029$. 012	. 010	. 009	. 969	. 947	. 061
2500	8	1	1	. 000	$-.001$	$-.063$. 010	. 010	. 007	. 952	. 945	. 000
			$-.2$. 000	. 000	. 026	. 008	. 008	. 009	. 951	. 949	. 093
2500	8	2	1	. 000	. 000	. 015	. 007	. 007	. 006	. 949	. 951	. 277
			$-.2$. 000	. 000	. 076	. 007	. 007	. 007	. 949	. 949	. 000
2500	16	. 3	1	. 000	$-.001$	$-.036$. 006	. 006	. 005	. 951	. 946	. 000
			$-.2$. 000	. 000	$-.014$. 006	. 006	. 005	. 948	. 949	. 242
2500	16	1	1	. 000	$-.001$	$-.019$. 005	. 006	. 005	. 949	. 948	. 034
			$-.2$. 000	. 000	. 010	. 005	. 005	. 005	. 950	. 951	. 497
2500	16	2	1	. 000	$.000$. 005	. 005	. 005	. 004	. 951	. 950	. 800
			$-.2$. 000	. 000	. 038	. 005	. 005	. 005	. 948	. 946	. 000
2500	24	. 3	1	. 000	$-.001$	$-.016$. 004	. 005	. 004	. 949	. 945	. 038
			$-.2$. 000	. 000	$-.007$. 004	. 004	. 004	. 949	. 948	. 641
2500	24	1	1	. 000	$-.001$	$-.009$. 004	. 004	. 004	. 951	. 947	. 390
			$-.2$. 000	. 000	. 005	. 004	. 004	. 004	. 949	. 951	. 781
2500	24	2	1	. 000	. 000	. 002	. 004	. 004	. 004	. 951	. 949	. 898
			$-.2$. 000	. 000	. 022	. 004	. 004	. 004	. 951	. 950	. 000

Notes: Data generated as $y_{i t}=\rho_{01} y_{i t-1}+\rho_{02} y_{i t-2}+\alpha_{i}+\varepsilon_{i t}(i=1, \ldots, N ; t=1, \ldots T)$ with $\alpha_{i} \sim \mathcal{N}(0,1), \varepsilon_{i t} \sim \mathcal{N}(0,1)$, and ψ the degree of outlyingness of the initial observations $\left(y_{i 0}, y_{i,-1}\right)$. Entries: bias, standard deviation (std), and coverage rate of 95% confidence interval (ci.95) of adjusted likelihood ($\widehat{\rho}_{\mathrm{al}}$), Arellano-Bond ($\widehat{\rho}_{\mathrm{ab}}$), and Hahn-Kuersteiner ($\widehat{\rho}_{\mathrm{hk}}$) estimators; '-' indicates non-existence of the moment; 10, 000 Monte Carlo replications.

Table 2. Simulation results for the second-order autoregression (cont'd)

N	T	ψ	ρ_{0}	bias			std			ci. 95		
				$\widehat{\rho}_{\text {al }}$	$\widehat{\rho}_{\text {ab }}$	$\widehat{\rho}_{\text {hk }}$	$\widehat{\rho}_{\text {al }}$	$\widehat{\rho}_{\text {ab }}$	$\widehat{\rho}_{\text {hk }}$	$\widehat{\rho}_{\text {al }}$	$\widehat{\rho}_{\text {ab }}$	$\widehat{\rho}_{\text {hk }}$
5000	2	. 3	. 6	$-.064$	-	-. 843	. 087	-	. 042	. 831	. 931	. 000
			. 2	-. 124	-	-. 729	. 125	-	. 113	. 926	. 933	. 000
5000	2	1	. 6	$-.063$	-	-. 843	. 086	-	. 023	. 839	. 930	. 000
			. 2	$-.063$	-	-. 729	. 077	-	. 038	. 853	. 929	. 000
5000	2	2	. 6	-. 061	-	-. 843	. 086	-	. 021	. 841	. 928	. 000
			. 2	-. 056	-	-. 730	. 076	-	. 025	. 844	. 928	. 000
5000	4	. 3	. 6	$-.016$	$-.007$	-. 325	. 040	. 048	. 009	. 880	. 944	. 000
			. 2	$-.007$	$-.003$	-. 116	. 022	. 023	. 013	. 916	. 946	. 000
5000	4	1	. 6	. 004	-. 001	$-.202$. 030	. 017	. 009	. 959	. 953	. 000
			. 2	. 002	. 000	-. 048	. 018	. 013	. 012	. 966	. 948	. 004
5000	4	2	. 6	. 000	. 000	$-.005$. 010	. 009	. 007	. 948	. 949	. 890
			. 2	. 000	. 000	. 074	. 010	. 009	. 009	. 950	. 948	. 000
5000	6	. 3	. 6	$-.001$	$-.004$	$-.205$. 027	. 022	. 007	. 922	. 942	. 000
			. 2	. 000	-. 002	-. 082	. 017	. 013	. 008	. 940	. 948	. 000
5000	6	1	. 6	. 000	$-.001$	-. 109	. 014	. 011	. 007	. 952	. 947	. 000
			. 2	. 000	. 000	$-.011$. 010	. 008	. 008	. 952	. 949	. 595
5000	6	2	. 6	. 000	. 000	. 026	. 007	. 006	. 005	. 950	. 951	. 002
			. 2	. 000	. 000	. 086	. 006	. 006	. 007	. 952	. 952	. 000
5000	8	. 3	. 6	. 003	-. 003	-. 143	. 021	. 013	. 006	. 949	. 946	. 000
			. 2	. 002	$-.001$	-. 064	. 014	. 009	. 006	. 960	. 945	. 000
5000	8	1	. 6	. 000	$-.001$	-. 070	. 009	. 008	. 006	. 954	. 949	. 000
			. 2	. 000	. 000	-. 002	. 007	. 006	. 006	. 948	. 950	. 892
5000	8	2	. 6	. 000	. 000	. 027	. 005	. 005	. 004	. 950	. 951	. 000
			. 2	. 000	. 000	. 076	. 005	. 005	. 005	. 947	. 947	. 000
5000	16	. 3	. 6	. 000	-. 001	$-.050$. 005	. 005	. 004	. 950	. 947	. 000
			. 2	. 000	-. 001	-. 029	. 005	. 005	. 004	. 950	. 949	. 000
5000	16	1	. 6	. 000	$-.001$	$-.023$. 004	. 004	. 004	. 950	. 949	. 000
			. 2	. 000	. 000	. 002	. 004	. 004	. 004	. 952	. 951	. 909
5000	16	2	. 6	. 000	. 000	. 015	. 004	. 004	. 003	. 950	. 948	. 005
			. 2	. 000	. 000	. 042	. 003	. 003	. 004	. 948	. 949	. 000
5000	24	. 3	. 6	. 000	$-.001$	-. 024	. 003	. 004	. 003	. 955	. 950	. 000
			. 2	. 000	. 000	-. 016	. 003	. 003	. 003	. 950	. 948	. 001
5000	24	1	. 6	. 000	. 000	$-.011$. 003	. 003	. 003	. 950	. 945	. 025
			. 2	. 000	. 000	. 001	. 003	. 003	. 003	. 949	. 950	. 928
5000	24	2	. 6	. 000	. 000	. 009	. 003	. 003	. 003	. 952	. 951	. 094
			. 2	. 000	. 000	. 026	. 003	. 003	. 003	. 948	. 949	. 000

Notes: Data generated as $y_{i t}=\rho_{01} y_{i t-1}+\rho_{02} y_{i t-2}+\alpha_{i}+\varepsilon_{i t}(i=1, \ldots, N ; t=1, \ldots T)$ with $\alpha_{i} \sim \mathcal{N}(0,1), \varepsilon_{i t} \sim \mathcal{N}(0,1)$, and ψ the degree of outlyingness of the initial observations ($y_{i 0}, y_{i,-1}$). Entries: bias, standard deviation (std), and coverage rate of 95% confidence interval (ci.95) of adjusted likelihood ($\widehat{\rho}_{\text {al }}$), Arellano-Bond ($\widehat{\rho}_{\mathrm{ab}}$), and Hahn-Kuersteiner $\left(\widehat{\rho}_{\mathrm{hk}}\right)$ estimators; ' -' indicates non-existence of the moment; 10,000 Monte Carlo replications.

Table 2. Simulation results for the second-order autoregression (cont'd)

N	T	ψ	ρ_{0}	bias			std			ci. 95		
				$\widehat{\rho}_{\text {al }}$	$\widehat{\rho}_{\text {ab }}$	$\widehat{\rho}_{\text {hk }}$	$\widehat{\rho}_{\text {al }}$	$\widehat{\rho}_{\text {ab }}$	$\widehat{\rho}_{\text {hk }}$	$\widehat{\rho}_{\text {al }}$	$\widehat{\rho}_{\text {ab }}$	$\widehat{\rho}_{\text {hk }}$
5000	2	. 3	1	-. 064	-	-. 859	. 087	-	. 038	. 831	. 931	. 000
			$-.2$	-. 074	-	-. 377	. 098	-	. 100	. 951	. 934	. 002
5000	2	1	1	-. 063	-	-. 859	. 086	-	. 020	. 839	. 930	. 000
			$-.2$	-. 037	-	-. 377	. 049	-	. 032	. 871	. 929	. 000
5000	2	2	1	-. 061	-	-. 859	. 086	-	. 019	. 841	. 928	. 000
			$-.2$	-. 033	-	-. 377	. 046	-	. 019	. 850	. 927	. 000
5000	4	. 3	1	-. 013	-. 005	-. 358	. 040	. 041	. 008	. 889	. 948	. 000
			$-.2$. 001	. 000	. 010	. 014	. 013	. 013	. 970	. 949	. 697
5000	4	1	1	. 001	-. 001	-. 211	. 020	. 014	. 007	. 960	. 953	. 000
			$-.2$. 000	. 000	. 014	. 011	. 011	. 012	. 950	. 951	. 596
5000	4	2	1	. 000	. 000	-. 022	. 008	. 007	. 005	. 949	. 951	. 020
			$-.2$. 000	. 000	. 060	. 008	. 008	. 010	. 949	. 948	. 000
5000	6	. 3	1	. 003	-. 003	-. 213	. 026	. 018	. 007	. 935	. 945	. 000
			$-.2$. 001	. 000	-. 024	. 010	. 009	. 009	. 969	. 950	. 090
5000	6	1	1	. 000	-. 001	-. 103	. 010	. 009	. 006	. 946	. 948	. 000
			$-.2$. 000	. 000	. 031	. 007	. 008	. 008	. 946	. 946	. 010
5000	6	2	1	. 000	. 000	. 017	. 005	. 005	. 004	. 950	. 951	. 040
			-. 2	. 000	. 000	. 088	. 006	. 006	. 006	. 951	. 951	. 000
5000	8	. 3	1	. 002	-. 002	-. 135	. 016	. 011	. 006	. 962	. 946	. 000
			$-.2$. 001	. 000	-. 029	. 008	. 007	. 006	. 968	. 946	. 002
5000	8	1	1	. 000	-. 001	-. 063	. 007	. 007	. 005	. 952	. 949	. 000
			$-.2$. 000	. 000	. 026	. 006	. 006	. 006	. 951	. 950	. 005
5000	8	2	1	. 000	. 000	. 015	. 005	. 005	. 004	. 952	. 949	. 045
			$-.2$. 000	. 000	. 076	. 005	. 005	. 005	. 950	. 948	. 000
5000	16	. 3	1	. 000	-. 001	-. 036	. 004	. 005	. 004	. 952	. 949	. 000
			$-.2$. 000	. 000	-. 014	. 004	. 004	. 004	. 951	. 952	. 040
5000	16	1	1	. 000	. 000	-. 019	. 004	. 004	. 004	. 953	. 949	. 001
			$-.2$. 000	. 000	. 010	. 004	. 004	. 004	. 954	. 953	. 223
5000	16	2	1	. 000	. 000	. 005	. 003	. 003	. 003	. 949	. 949	. 631
			$-.2$. 000	. 000	. 038	. 003	. 003	. 003	. 950	. 949	. 000
5000	24	. 3	1	. 000	. 000	-. 016	. 003	. 003	. 003	. 949	. 951	. 001
			$-.2$. 000	. 000	$-.007$. 003	. 003	. 003	. 949	. 952	. 377
5000	24	1	1	. 000	. 000	-. 009	. 003	. 003	. 003	. 948	. 949	. 120
			$-.2$. 000	. 000	. 005	. 003	. 003	. 003	. 948	. 949	. 618
5000	24	2	1	. 000	. 000	. 002	. 003	. 003	. 003	. 950	. 950	. 845
			$-.2$. 000	. 000	. 022	. 003	. 003	. 003	. 950	. 949	. 000

Notes: Data generated as $y_{i t}=\rho_{01} y_{i t-1}+\rho_{02} y_{i t-2}+\alpha_{i}+\varepsilon_{i t}(i=1, \ldots, N ; t=1, \ldots T)$ with $\alpha_{i} \sim \mathcal{N}(0,1), \varepsilon_{i t} \sim \mathcal{N}(0,1)$, and ψ the degree of outlyingness of the initial observations $\left(y_{i 0}, y_{i,-1}\right)$. Entries: bias, standard deviation (std), and coverage rate of 95% confidence interval (ci.95) of adjusted likelihood ($\widehat{\rho}_{\mathrm{al}}$), Arellano-Bond ($\widehat{\rho}_{\mathrm{ab}}$), and Hahn-Kuersteiner ($\widehat{\rho}_{\mathrm{hk}}$) estimators; '-' indicates non-existence of the moment; 10, 000 Monte Carlo replications.

Table 2. Simulation results for the second-order autoregression (cont'd)

N	T	ψ	ρ_{0}	bias			std			ci. 95		
				$\widehat{\rho}_{\text {al }}$	$\widehat{\rho}_{\text {ab }}$	$\widehat{\rho}_{\text {hk }}$	$\widehat{\rho}_{\text {al }}$	$\widehat{\rho}_{\text {ab }}$	$\widehat{\rho}_{\text {hk }}$	$\widehat{\rho}_{\text {al }}$	$\widehat{\rho}_{\text {ab }}$	$\widehat{\rho}_{\text {hk }}$
10000	2	. 3	. 6	$-.054$	-	-. 843	. 071	-	. 030	. 836	. 928	. 000
			. 2	$-.098$	-	-. 730	. 092	-	. 079	. 914	. 928	. 000
10000	2	1	. 6	$-.054$	-	-. 843	. 072	-	. 016	. 839	. 932	. 000
			. 2	$-.053$	-	-. 730	. 063	-	. 027	. 849	. 932	. 000
10000	2	2	. 6	-. 054	-	-. 843	. 071	-	. 015	. 835	. 923	. 000
			. 2	-. 049	-	-. 729	. 063	-	. 018	. 840	. 924	. 000
10000	4	. 3	. 6	$-.011$	$-.003$	-. 324	. 033	. 034	. 006	. 889	. 946	. 000
			. 2	$-.005$	-. 001	-. 116	. 018	. 017	. 009	. 915	. 947	. 000
10000	4	1	. 6	. 002	. 000	$-.202$. 020	. 012	. 006	. 962	. 950	. 000
			. 2	. 001	. 000	-. 048	. 013	. 009	. 008	. 962	. 949	. 000
10000	4	2	. 6	. 000	. 000	$-.005$. 007	. 006	. 005	. 951	. 952	. 819
			. 2	. 000	. 000	. 074	. 007	. 006	. 007	. 950	. 951	. 000
10000	6	. 3	. 6	. 001	-. 002	-. 205	. 023	. 015	. 005	. 929	. 948	. 000
			. 2	. 001	-. 001	-. 083	. 013	. 009	. 006	. 944	. 952	. 000
10000	6	1	. 6	. 000	-. 001	-. 109	. 009	. 008	. 005	. 954	. 948	. 000
			. 2	. 000	. 000	-. 011	. 007	. 006	. 006	. 953	. 951	. 370
10000	6	2	. 6	. 000	. 000	. 026	. 005	. 005	. 004	. 950	. 950	. 000
			. 2	. 000	. 000	. 086	. 005	. 004	. 005	. 954	. 954	. 000
10000	8	. 3	. 6	. 003	$-.001$	-. 143	. 016	. 009	. 004	. 951	. 947	. 000
			. 2	. 001	. 000	-. 064	. 010	. 006	. 005	. 958	. 948	. 000
10000	8	1	. 6	. 000	. 000	$-.070$. 006	. 005	. 004	. 953	. 951	. 000
			. 2	. 000	. 000	-. 002	. 005	. 005	. 004	. 949	. 951	. 878
10000	8	2	. 6	. 000	. 000	. 027	. 004	. 004	. 003	. 949	. 949	. 000
			. 2	. 000	. 000	. 076	. 004	. 004	. 004	. 950	. 952	. 000
10000	16	. 3	. 6	. 000	. 000	-. 050	. 004	. 004	. 003	. 948	. 950	. 000
			. 2	. 000	. 000	-. 029	. 003	. 003	. 003	. 951	. 947	. 000
10000	16	1	. 6	. 000	. 000	-. 023	. 003	. 003	. 003	. 948	. 946	. 000
			. 2	. 000	. 000	. 002	. 003	. 003	. 003	. 950	. 951	. 886
10000	16	2	. 6	. 000	. 000	. 015	. 002	. 003	. 002	. 948	. 948	. 000
			. 2	. 000	. 000	. 042	. 002	. 002	. 002	. 953	. 952	. 000
10000	24	. 3	. 6	. 000	. 000	-. 024	. 002	. 003	. 002	. 951	. 946	. 000
			. 2	. 000	. 000	-. 016	. 002	. 002	. 002	. 951	. 950	. 000
10000	24	1	. 6	. 000	. 000	$-.011$. 002	. 002	. 002	. 951	. 949	. 000
			. 2	. 000	. 000	. 001	. 002	. 002	. 002	. 947	. 949	. 919
10000	24	2	. 6	. 000	. 000	. 009	. 002	. 002	. 002	. 948	. 948	. 004
			. 2	. 000	. 000	. 026	. 002	. 002	. 002	. 951	. 950	. 000

Notes: Data generated as $y_{i t}=\rho_{01} y_{i t-1}+\rho_{02} y_{i t-2}+\alpha_{i}+\varepsilon_{i t}(i=1, \ldots, N ; t=1, \ldots T)$ with $\alpha_{i} \sim \mathcal{N}(0,1), \varepsilon_{i t} \sim \mathcal{N}(0,1)$, and ψ the degree of outlyingness of the initial observations ($y_{i 0}, y_{i,-1}$). Entries: bias, standard deviation (std), and coverage rate of 95% confidence interval (ci.95) of adjusted likelihood ($\widehat{\rho}_{\mathrm{al}}$), Arellano-Bond ($\widehat{\rho}_{\text {ab }}$), and Hahn-Kuersteiner $\left(\widehat{\rho}_{\mathrm{hk}}\right)$ estimators; ' -' indicates non-existence of the moment; 10,000 Monte Carlo replications.

Table 2. Simulation results for the second-order autoregression (cont'd)

N	T	ψ	ρ_{0}	bias			std			ci. 95		
				$\widehat{\rho}_{\text {al }}$	$\widehat{\rho}_{\text {ab }}$	$\widehat{\rho}_{\text {hk }}$	$\widehat{\rho}_{\text {al }}$	$\widehat{\rho}_{\text {ab }}$	$\widehat{\rho}_{\text {hk }}$	$\widehat{\rho}_{\text {al }}$	$\widehat{\rho}_{\text {ab }}$	$\widehat{\rho}_{\text {hk }}$
10000	2	. 3	1	-. 054	-	-. 859	. 071	-	. 026	. 836	. 928	. 000
			$-.2$	-. 059	-	-. 376	. 072	-	. 070	. 941	. 929	. 000
10000	2	1	1	-. 054	-	-. 859	. 072	-	. 014	. 839	. 932	. 000
			$-.2$	-. 031	-	-. 377	. 040	-	. 022	. 863	. 932	. 000
10000	2	2	1	-. 054	-	-. 859	. 071	-	. 013	. 835	. 923	. 000
			$-.2$	-. 029	-	-. 377	. 037	-	. 013	. 845	. 924	. 000
10000	4	. 3	1	-. 008	-. 002	-. 358	. 033	. 030	. 006	. 896	. 947	. 000
			$-.2$. 000	. 000	. 010	. 010	. 009	. 009	. 968	. 949	. 581
10000	4	1	1	. 001	. 000	-. 211	. 014	. 010	. 005	. 953	. 952	. 000
			$-.2$. 000	. 000	. 014	. 008	. 008	. 009	. 951	. 951	. 420
10000	4	2	1	. 000	. 000	-. 022	. 006	. 005	. 004	. 952	. 953	. 000
			$-.2$. 000	. 000	. 060	. 006	. 006	. 007	. 950	. 951	. 000
10000	6	. 3	1	. 003	-. 001	-. 213	. 022	. 013	. 005	. 941	. 949	. 000
			$-.2$. 001	. 000	-. 024	. 008	. 006	. 006	. 968	. 951	. 006
10000	6	1	1	. 000	. 000	-. 103	. 007	. 006	. 004	. 951	. 951	. 000
			$-.2$. 000	. 000	. 031	. 005	. 005	. 006	. 952	. 954	. 000
10000	6	2	1	. 000	. 000	. 017	. 004	. 004	. 003	. 950	. 949	. 000
			$-.2$. 000	. 000	. 087	. 004	. 004	. 005	. 952	. 953	. 000
10000	8	. 3	1	. 001	-. 001	$-.135$. 011	. 007	. 004	. 963	. 948	. 000
			$-.2$. 000	. 000	-. 029	. 006	. 005	. 005	. 962	. 948	. 000
10000	8	1	1	. 000	. 000	-. 063	. 005	. 005	. 004	. 953	. 951	. 000
			$-.2$. 000	. 000	. 026	. 004	. 004	. 004	. 953	. 951	. 000
10000	8	2	1	. 000	. 000	. 015	. 003	. 003	. 003	. 949	. 949	. 001
			$-.2$. 000	. 000	. 076	. 003	. 003	. 004	. 952	. 953	. 000
10000	16	. 3	1	. 000	. 000	-. 036	. 003	. 003	. 003	. 947	. 952	. 000
			$-.2$. 000	. 000	-. 014	. 003	. 003	. 003	. 948	. 946	. 001
10000	16	1	1	. 000	. 000	-. 019	. 003	. 003	. 003	. 948	. 946	. 000
			$-.2$. 000	. 000	. 010	. 003	. 003	. 003	. 948	. 950	. 033
10000	16	2	1	. 000	. 000	. 005	. 002	. 002	. 002	. 948	. 948	. 370
			$-.2$. 000	. 000	. 038	. 002	. 002	. 002	. 951	. 951	. 000
10000	24	. 3	1	. 000	. 000	-. 016	. 002	. 002	. 002	. 950	. 947	. 000
			$-.2$. 000	. 000	-. 007	. 002	. 002	. 002	. 951	. 948	. 112
10000	24	1	1	. 000	. 000	-. 009	. 002	. 002	. 002	. 950	. 947	. 007
			$-.2$. 000	. 000	. 005	. 002	. 002	. 002	. 948	. 950	. 373
10000	24	2	1	. 000	. 000	. 002	. 002	. 002	. 002	. 950	. 950	. 744
			$-.2$. 000	. 000	. 022	. 002	. 002	. 002	. 950	. 950	. 000

Notes: Data generated as $y_{i t}=\rho_{01} y_{i t-1}+\rho_{02} y_{i t-2}+\alpha_{i}+\varepsilon_{i t}(i=1, \ldots, N ; t=1, \ldots T)$ with $\alpha_{i} \sim \mathcal{N}(0,1), \varepsilon_{i t} \sim \mathcal{N}(0,1)$, and ψ the degree of outlyingness of the initial observations ($y_{i 0}, y_{i,-1}$). Entries: bias, standard deviation (std), and coverage rate of 95% confidence interval (ci.95) of adjusted likelihood ($\widehat{\rho}_{\mathrm{al}}$), Arellano-Bond ($\widehat{\rho}_{\text {ab }}$), and Hahn-Kuersteiner $\left(\widehat{\rho}_{\mathrm{hk}}\right)$ estimators; ' -' indicates non-existence of the moment; 10,000 Monte Carlo replications.

Table 3. Simulation results for the first-order autoregression with a covariate

N	T	ψ	γ	θ_{0}	bias			std			ci. 95		
					$\widehat{\rho}_{\text {al }}$	$\widehat{\rho}_{\text {ab }}$	$\widehat{\rho}_{\text {hk }}$	$\widehat{\rho}_{\text {al }}$	$\widehat{\rho}_{\text {ab }}$	$\widehat{\rho}_{\text {hk }}$	$\widehat{\rho}_{\text {al }}$	$\widehat{\rho}_{\text {ab }}$	$\widehat{\rho}_{\text {hk }}$
100	2	0	. 5	. 5	-. 089	-	-. 661	. 267	-	. 153	. 845	. 884	. 001
				. 5	-. 025	-	-. 168	. 249	-	. 191	. 959	. 940	. 660
100	2	1	. 5	. 5	. 017	-	-. 416	. 270	-	. 146	. 897	. 915	. 056
				. 5	-. 002	-	. 005	. 251	-	. 205	. 969	. 956	. 834
100	2	2	. 5	. 5	. 026	-	. 078	. 181	-	. 118	. 946	. 937	. 904
				. 5	-. 010	-	-. 022	. 257	-	. 258	. 945	. 942	. 840
100	4	0	. 5	. 5	. 013	-. 094	-. 248	. 142	. 118	. 068	. 932	. 845	. 028
				. 5	. 000	-. 013	-. 032	. 127	. 124	. 121	. 958	. 942	. 885
100	4	1	. 5	. 5	. 011	-. 070	-. 127	. 119	. 104	. 067	. 943	. 878	. 394
				. 5	-. 004	. 006	. 013	. 127	. 124	. 121	. 951	. 945	. 906
100	4	2	. 5	. 5	. 000	-. 025	. 076	. 063	. 062	. 056	. 943	. 919	. 646
				. 5	$-.004$	$.006$	-. 032	. 127	. 126	. 128	. 947	. 946	. 909
100	6	0	. 5	. 5	. 003	-. 065	-. 116	. 079	. 069	. 050	. 956	. 834	. 282
				. 5	. 001	. 000	-. 001	. 091	. 091	. 091	. 947	. 947	. 918
100	6	1	. 5	. 5	. 000	-. 054	-. 053	. 061	. 063	. 048	. 952	. 858	. 726
				. 5	. 001	. 011	. 010	. 091	. 091	. 090	. 948	. 945	. 923
100	6	2	. 5	. 5	-. 001	-. 026	. 055	. 042	. 044	. 040	. 945	. 905	. 639
				. 5	. 001	. 010	-. 021	. 092	. 092	. 091	. 948	. 945	. 928
100	8	0	. 5	. 5	-. 001	-. 052	-. 063	. 051	. 051	. 041	. 947	. 820	. 584
				. 5	. 001	. 003	. 004	. 075	. 075	. 075	. 944	. 944	. 927
100	8	1	. 5	. 5	-. 001	-. 047	-. 026	. 045	. 049	. 039	. 941	. 833	. 842
				. 5	. 001	. 011	. 006	. 076	. 076	. 075	. 944	. 942	. 932
100	8	2	. 5	. 5	-. 001	-. 026	. 041	. 034	. 037	. 034	. 940	. 883	. 685
				. 5	. 000	. 010	-. 015	. 076	. 076	. 075	. 943	. 942	. 931
100	16	0	. 5	. 5		$-.037$	-. 011	. 026	. 027	. 025	. 944	. 728	. 903
				. 5	$.001$	$.007$. 002	. 048	. 048	. 047	. 947	. 947	. 945
100	16	1	. 5	. 5	-. 001	-. 036	-. 003	. 025	. 026	. 024	. 945	. 738	. 926
				. 5	. 001	. 010	. 001	. 048	. 048	. 047	. 947	. 945	. 946
100	16	2	. 5	. 5	-. 001	-. 027	. 017	. 022	. 023	. 022	. 945	. 787	. 840
				. 5	. 001	. 010	-. 006	. 048	. 048	. 047	. 947	. 944	. 944
100	24	0	. 5	. 5	. 000	-. 032	-. 003	. 020	. 020	. 019	. 944	. 646	. 929
				. 5	. 000	. 008	. 001	. 037	. 038	. 037	. 950	. 945	. 952
100	24	1	. 5	. 5	. 000	-. 031	. 001	. 019	. 020	. 019	. 946	. 655	. 929
				. 5	. 000	. 009	. 000	. 037	. 038	. 037	. 950	. 941	. 952
100	24	2	. 5	. 5	. 000	-. 026	. 010	. 018	. 018	. 018	. 944	. 702	. 887
				. 5	. 000	. 009	-. 003	. 038	. 038	. 037	. 951	. 941	. 953

Notes: Data generated as $y_{i t}=\theta_{01} y_{i t-1}+\theta_{02} x_{i t}+\alpha_{i}+\varepsilon_{i t}, x_{i t}=.5 \alpha_{i}+\gamma x_{i t-1}+u_{i t}(i=1, \ldots, N ; t=1, \ldots T)$ with $\alpha_{i} \sim \mathcal{N}(0,1), \varepsilon_{i t} \sim \mathcal{N}(0,1), u_{i t} \sim \mathcal{N}(0, .25), \psi$ the degree of outlyingness of the initial observations $y_{i 0}$, and $x_{i 0}$ drawn from the stationary distribution. Entries: bias, standard deviation (std), and coverage rate of 95% confidence interval (ci.95) of adjusted likelihood ($\widehat{\theta}_{\mathrm{al}}$), Arellano-Bond ($\widehat{\theta}_{\mathrm{ab}}$), and Hahn-Kuersteiner ($\widehat{\theta}_{\mathrm{hk}}$) estimators; '—' indicates non-existence of the moment; 10,000 Monte Carlo replications.

Table 3. Simulation results for the first-order autoregression with a covariate (cont'd)

N	T	ψ	γ	θ_{0}	bias			std			ci. 95		
					$\widehat{\rho}_{\text {al }}$	$\widehat{\rho}_{\text {ab }}$	$\widehat{\rho}_{\text {hk }}$	$\widehat{\rho}_{\text {al }}$	$\widehat{\rho}_{\text {ab }}$	$\widehat{\rho}_{\text {hk }}$	$\widehat{\rho}_{\text {al }}$	$\widehat{\rho}_{\text {ab }}$	$\widehat{\rho}_{\text {hk }}$
100	2	0	. 5	. 9	-. 141	-	-. 546	. 267	-	. 153	. 817	. 819	. 018
				. 1	-. 009	-	-. 030	. 233	-	. 192	. 973	. 976	. 826
100	2	1	. 5	. 9	-. 106	-	-. 488	. 268	-	. 152	. 836	. 824	. 042
				. 1	. 003	-	. 022	. 236	-	. 197	. 974	. 976	. 833
100	2	2	. 5	. 9	-. 019	-	-. 318	. 270	-	. 148	. 880	. 882	. 257
				. 1	. 001	-	. 046	. 249	-	. 213	. 970	. 957	. 825
100	4	0	. 5	. 9	-. 081	-. 544	-. 292	. 126	. 238	. 072	. 846	. 349	. 007
				. 1	-. 007	-. 026	-. 017	. 122	. 115	. 113	. 972	. 943	. 901
100	4	1	. 5	. 9	-. 047	-. 469	-. 236	. 126	. 235	. 072	. 878	. 432	. 045
				. 1	. 001	. 037	. 017	. 124	. 115	. 115	. 974	. 937	. 903
100	4	2	. 5	. 9	. 008	-. 156	-. 099	. 126	. 140	. 067	. 924	. 762	. 568
				. 1	-. 006	. 032	. 018	. 129	. 123	. 121	. 967	. 938	. 906
100	6	0	. 5	. 9	$-.051$	$-.367$	-. 201	. 086	. 133	. 050	. 861	. 191	. 006
				. 1	-. 001	-. 012	$-.007$. 090	. 089	. 086	. 971	. 943	. 918
100	6	1	. 5	. 9	-. 022	-. 304	-. 149	. 085	. 127	. 049	. 901	. 293	. 070
				. 1	. 003	. 033	. 016	. 091	. 088	. 087	. 968	. 932	. 918
100	6	2	. 5	. 9	. 009	-. 109	-. 037	. 082	. 074	. 044	. 942	. 680	. 802
				. 1	-. 002	. 028	. 009	. 094	. 090	. 090	. 960	. 934	. 926
100	8	0	. 5	. 9	-. 033	$-.267$	-. 153	. 066	. 089	. 039	. 879	. 120	. 009
				. 1	-. 001	$-.007$	-. 004	. 075	. 075	. 073	. 968	. 941	. 921
100	8	1	. 5	. 9	-. 009	-. 221	-. 105	. 066	. 085	. 038	. 914	. 207	. 118
				. 1	. 001	. 025	. 012	. 075	. 074	. 073	. 966	. 930	. 925
100	8	2	. 5	. 9	. 008	-. 084	-. 012	. 060	. 050	. 033	. 949	. 600	. 888
				. 1	-. 002	. 022	. 003	. 077	. 075	. 075	. 951	. 933	. 932
100	16	0	. 5	. 9	$-.003$	$-.127$	-. 071	. 038	. 034	. 022	. 926	. 025	. 046
				. 1	. 000	. 000	. 000	. 047	. 048	. 047	. 966	. 949	. 938
100	16	1	. 5	. 9	. 002	-. 110	-. 042	. 037	. 033	. 021	. 943	. 054	. 345
				. 1	. 000	. 013	. 005	. 048	. 048	. 047	. 957	. 941	. 941
100	16	2	. 5	. 9	. 000	$-.053$. 008	. 023	. 022	. 017	. 955	. 307	. 869
				. 1	. 000	. 013	-. 002	. 048	. 048	. 047	. 947	. 941	. 943
100	24	0	. 5	. 9	. 002	$-.085$	-. 041	. 027	. 021	. 016	. 951	. 009	. 172
				. 1	. 000	. 001	. 001	. 037	. 038	. 037	. 955	. 950	. 946
100	24	1	. 5	. 9	. 001	-. 076	-. 023	. 022	. 020	. 015	. 955	. 018	. 545
				. 1	. 000	. 009	. 003	. 037	. 038	. 037	. 950	. 943	. 947
100	24	2	. 5	. 9	. 000	-. 043	. 007	. 014	. 015	. 012	. 948	. 136	$.841$
				. 1	. 000	. 009	-. 001	. 037	. 038	. 037	. 950	. 941	. 951

Notes: Data generated as $y_{i t}=\theta_{01} y_{i t-1}+\theta_{02} x_{i t}+\alpha_{i}+\varepsilon_{i t}, x_{i t}=.5 \alpha_{i}+\gamma x_{i t-1}+u_{i t}(i=1, \ldots, N ; t=1, \ldots T)$ with $\alpha_{i} \sim \mathcal{N}(0,1), \varepsilon_{i t} \sim \mathcal{N}(0,1), u_{i t} \sim \mathcal{N}(0, .25), \psi$ the degree of outlyingness of the initial observations $y_{i 0}$, and $x_{i 0}$ drawn from the stationary distribution. Entries: bias, standard deviation (std), and coverage rate of 95% confidence interval (ci.95) of adjusted likelihood ($\widehat{\theta}_{\mathrm{al}}$), Arellano-Bond ($\widehat{\theta}_{\mathrm{ab}}$), and Hahn-Kuersteiner ($\widehat{\theta}_{\mathrm{hk}}$) estimators; '—, indicates non-existence of the moment; 10, 000 Monte Carlo replications.

Table 3. Simulation results for the first-order autoregression with a covariate (cont'd)

N	T	ψ	γ	θ_{0}	bias			std			ci. 95		
					$\widehat{\rho}_{\text {al }}$	$\widehat{\rho}_{\text {ab }}$	$\widehat{\rho}_{\text {hk }}$	$\widehat{\rho}_{\text {al }}$	$\widehat{\rho}_{\text {ab }}$	$\widehat{\rho}_{\text {hk }}$	$\widehat{\rho}_{\text {al }}$	$\widehat{\rho}_{\text {ab }}$	$\widehat{\rho}_{\text {hk }}$
100	2	0	. 5	. 99	-. 143	-	-. 504	. 267	-	. 153	. 816	. 812	. 041
				. 01	-. 003	-	-. 005	. 232	-	. 195	. 975	. 979	. 833
100	2	1	. 5	. 99	-. 140	-	-. 498	. 267	-	. 153	. 817	. 811	. 043
				. 01	. 001	-	. 010	. 232	-	. 195	. 975	. 980	. 832
100	2	2	. 5	. 99	-. 127	-	-. 477	. 268	-	. 153	. 825	. 818	. 057
				. 01	. 005	-	. 025	. 234	-	. 197	. 974	. 976	. 831
100	4	0	. 5	. 99	-. 087	-. 673	-. 259	. 122	. 258	. 072	. 837	. 242	. 023
				. 01	-. 004	-. 006	-. 005	. 121	. 115	. 113	. 973	. 952	. 909
100	4	1	. 5	. 99	-. 083	-. 658	-. 252	. 122	. 259	. 072	. 844	. 256	. 028
				. 01	-. 001	. 021	. 006	. 121	. 115	. 113	. 974	. 945	. 908
100	4	2	. 5	. 99	-. 070	-. 620	-. 232	. 122	. 259	. 072	. 857	. 283	. 050
				. 01	. 002	. 045	. 015	. 122	. 115	. 114	. 974	. 930	. 904
100	6	0	. 5	. 99	-. 062	-. 493	-. 175	. 081	. 152	. 049	. 839	. 060	. 019
				. 01	. 000	-. 001	. 000	. 089	. 089	. 085	. 970	. 945	. 922
100	6	1	. 5	. 99	-. 057	-. 477	-. 168	. 081	. 152	. 049	. 847	. 070	. 026
				. 01	. 003	. 022	. 008	. 089	. 089	. 085	. 969	. 941	. 922
100	6	2	. 5	. 99	$-.045$	-. 435	-. 148	. 080	. 149	. 048	. 864	. 101	. 062
				. 01	. 004	. 042	. 015	. 090	. 088	. 086	. 970	. 923	. 921
100	8	0	. 5	. 99	$-.047$	-. 380	$-.133$. 061	. 104	. 037	. 843	. 014	. 019
				. 01	. 000	-. 001	. 000	. 074	. 076	. 072	. 969	. 941	. 926
100	8	1	. 5	. 99	-. 042	-. 366	-. 126	. 061	. 104	. 037	. 853	. 019	. 030
				. 01	. 002	. 018	. 006	. 074	. 075	. 072	. 971	. 935	. 927
100	8	2	. 5	. 99	$-.030$	-. 326	-. 106	. 060	. 101	. 037	. 878	. 037	. 088
				. 01	. 003	. 033	. 011	. 074	. 074	. 072	. 971	. 923	. 927
100	16	0	. 5	. 99	-. 024	-. 202	-. 068	. 031	. 041	. 020	. 851	. 000	. 019
				. 01	. 000	-. 001	. 000	. 047	. 049	. 046	. 974	. 950	. 941
100	16	1	. 5	. 99	-. 019	-. 192	-. 061	. 031	. 041	. 020	. 869	. 000	. 043
				. 01	. 001	. 010	. 003	. 047	. 048	. 047	. 974	. 945	. 941
100	16	2	. 5	. 99	-. 009	-. 159	-. 044	. 030	. 038	. 019	. 902	. 001	. 212
				. 01	. 001	. 017	. 005	. 047	. 048	. 047	. 972	. 937	. 943
100	24	0	. 5	. 99	-. 016	-. 138	-. 047	. 021	. 023	. 013	. 858	. 000	. 017
				. 01	. 000	. 000	. 000	. 037	. 038	. 037	. 972	. 951	. 948
100	24	1	. 5	. 99	$-.012$	-. 129	-. 040	. 021	. 023	. 013	. 880	. 000	. 054
				. 01	. 001	. 007	. 002	. 037	. 038	. 037	. 972	. 946	. 949
100	24	2	. 5	. 99	-. 003	-. 103	-. 024	. 020	. 021	. 012	. 919	. 000	. 349
				. 01	. 001	. 011	. 003	. 037	. 038	. 037	. 970	. 939	. 949

Notes: Data generated as $y_{i t}=\theta_{01} y_{i t-1}+\theta_{02} x_{i t}+\alpha_{i}+\varepsilon_{i t}, x_{i t}=.5 \alpha_{i}+\gamma x_{i t-1}+u_{i t}(i=1, \ldots, N ; t=1, \ldots T)$ with $\alpha_{i} \sim \mathcal{N}(0,1), \varepsilon_{i t} \sim \mathcal{N}(0,1), u_{i t} \sim \mathcal{N}(0, .25), \psi$ the degree of outlyingness of the initial observations $y_{i 0}$, and $x_{i 0}$ drawn from the stationary distribution. Entries: bias, standard deviation (std), and coverage rate of 95% confidence interval (ci. 95) of adjusted likelihood ($\widehat{\theta}_{\mathrm{al}}$), Arellano-Bond ($\widehat{\theta}_{\mathrm{ab}}$), and Hahn-Kuersteiner ($\widehat{\theta}_{\mathrm{hk}}$) estimators; '- ' indicates non-existence of the moment; 10,000 Monte Carlo replications.

Table 3. Simulation results for the first-order autoregression with a covariate (cont'd)

N	T	ψ	γ	θ_{0}	bias			std			ci. 95		
					$\widehat{\rho}_{\text {al }}$	$\widehat{\rho}_{\text {ab }}$	$\widehat{\rho}_{\text {hk }}$	$\widehat{\rho}_{\text {al }}$	$\widehat{\rho}_{\text {ab }}$	$\widehat{\rho}_{\text {hk }}$	$\widehat{\rho}_{\text {al }}$	$\widehat{\rho}_{\text {ab }}$	$\widehat{\rho}_{\text {hk }}$
100	2	0	. 99	. 5	. 006	-	. 392	. 088	-	. 091	. 948	. 946	. 747
				. 5	. 000	-	. 094	. 288	-	. 371	. 940	. 939	. 841
100	2	1	. 99	. 5	-. 082	-	-. 648	. 268	-	. 152	. 848	. 884	. 001
				. 5	-. 002	-	. 003	. 277	-	. 217	. 973	. 964	. 830
100	2	2	. 99	. 5	. 003	-	. 444	. 078	-	. 086	. 942	. 942	. 521
				. 5	-. 003	-	-. 117	. 287	-	. 396	. 938	. 938	. 798
100	4	0	. 99	. 5	. 000	-. 010	. 201	. 042	. 040	. 044	. 941	. 935	. 005
				. 5	-. 004	$-.005$. 007	. 127	. 127	. 141	. 941	. 942	. 913
100	4	1	. 99	. 5	. 015	$-.084$	$-.222$. 139	. 112	. 068	. 932	. 857	. 059
				. 5	$-.007$. 016	. 047	. 132	. 128	. 124	. 958	. 944	. 876
100	4	2	. 99	. 5	$-.001$	-. 009	. 227	. 038	. 037	. 041	. 941	. 937	. 000
				. 5	-. 004	. 000	-. 124	. 128	. 128	. 147	. 944	. 944	. 809
100	6	0	. 99	. 5	$-.001$	$-.013$. 126	. 031	. 031	. 033	. 943	. 925	. 026
				. 5	. 000	. 001	$-.013$. 084	. 084	. 086	. 941	. 941	. 934
100	6	1	. 99	. 5	. 001	$-.059$	$-.095$. 072	. 065	. 049	. 956	. 846	. 419
				. 5	. 000	. 023	. 036	. 088	. 087	. 085	. 945	. 936	. 895
100	6	2	. 99	. 5	$-.001$	$-.011$. 145	. 028	. 028	. 030	. 945	. 928	. 002
				. 5	. 000	. 007	$-.095$. 086	. 086	. 090	. 943	. 942	. 777
100	8	0	. 99	. 5	$-.001$	$-.015$. 088	. 027	. 027	. 027	. 942	. 910	. 085
				. 5	. 000	. 003	$-.021$. 063	. 064	. 062	. 940	. 940	. 929
100	8	1	. 99	. 5	$-.001$	-. 048	$-.046$. 048	. 048	. 040	. 944	. 829	. 722
				. 5	$.000$. 023	. 022	. 067	. 067	. 065	. 942	. 931	. 918
100	8	2	. 99	. 5	. 000	-. 012	. 103	. 024	. 025	. 026	. 942	. 917	. 016
				. 5	. 000	. 008	$-.075$. 065	. 066	. 065	. 943	. 942	. 763
100	16	0	. 99	. 5	$-.001$	-. 019	. 035	. 019	. 019	. 019	. 944	. 834	. 485
				. 5	. 000	. 010	$-.019$. 033	. 033	. 031	. 945	. 936	. 913
100	16	1	. 99	. 5	-. 002	$-.034$	$-.003$. 025	. 026	. 024	. 944	. 743	. 924
				. 5	. 001	. 023	. 002	. 035	. 036	. 034	. 943	. 900	. 943
100	16	2	. 99	. 5	$-.001$	$-.016$. 042	. 017	. 018	. 018	. 945	. 849	. 299
				. 5	. 000	. 013	$-.035$. 034	. 035	. 033	. 948	. 927	. 815
100	24	0	. 99	. 5	$-.001$	-. 020	. 020	. 015	. 015	. 015	. 950	. 760	. 700
				. 5	. 000	. 013	$-.013$. 023	. 024	. 023	. 944	. 913	. 908
100	24	1	. 99	. 5	$-.001$	-. 029	. 003	. 018	. 019	. 018	. 948	. 671	. 935
				. 5	. 001	. 023	$-.002$. 025	. 026	. 025	. 945	. 855	. 946
100	24	2	. 99	. 5	. 000	$-.018$. 024	. 015	. 015	. 015	. 946	. 777	. 574
				. 5	. 000	. 016	$-.021$. 025	. 025	. 024	. 942	. 898	. 854

Notes: Data generated as $y_{i t}=\theta_{01} y_{i t-1}+\theta_{02} x_{i t}+\alpha_{i}+\varepsilon_{i t}, x_{i t}=.5 \alpha_{i}+\gamma x_{i t-1}+u_{i t}(i=1, \ldots, N ; t=1, \ldots T)$ with $\alpha_{i} \sim \mathcal{N}(0,1), \varepsilon_{i t} \sim \mathcal{N}(0,1), u_{i t} \sim \mathcal{N}(0, .25), \psi$ the degree of outlyingness of the initial observations $y_{i 0}$, and $x_{i 0}$ drawn from the stationary distribution. Entries: bias, standard deviation (std), and coverage rate of 95% confidence interval (ci.95) of adjusted likelihood ($\widehat{\theta}_{\mathrm{al}}$), Arellano-Bond ($\widehat{\theta}_{\mathrm{ab}}$), and Hahn-Kuersteiner ($\widehat{\theta}_{\mathrm{hk}}$) estimators; '—, indicates non-existence of the moment; 10, 000 Monte Carlo replications.

Table 3. Simulation results for the first-order autoregression with a covariate (cont'd)

N	T	ψ	γ	θ_{0}	bias			std			ci. 95		
					$\widehat{\rho}_{\text {al }}$	$\widehat{\rho}_{\text {ab }}$	$\widehat{\rho}_{\text {hk }}$	$\widehat{\rho}_{\text {al }}$	$\widehat{\rho}_{\text {ab }}$	$\widehat{\rho}_{\text {hk }}$	$\widehat{\rho}_{\text {al }}$	$\widehat{\rho}_{\text {ab }}$	$\widehat{\rho}_{\text {hk }}$
100	2	0	. 99	. 9	-. 045	-	-. 382	. 266	-	. 151	. 870	. 915	. 145
				. 1	-. 005	-	-. 022	. 284	-	. 240	. 970	. 955	. 828
100	2	1	. 99	. 9	-. 138	-	-. 541	. 268	-	. 153	. 819	. 814	. 020
				. 1	-. 002	-	. 001	. 270	-	. 222	. 974	. 978	. 829
100	2	2	. 99	. 9	-. 004	-	-. 278	. 270	-	. 147	. 888	. 925	. 346
				. 1	-. 002	-	. 015	. 289	-	. 250	. 970	. 950	. 831
100	4	0	. 99	. 9	-. 008	-. 119	-. 155	. 126	. 122	. 070	. 910	. 808	. 268
				. 1	-. 005	-. 009	-. 011	. 127	. 123	. 121	. 965	. 943	. 903
100	4	1	. 99	. 9	-. 077	-. 539	-. 285	. 126	. 238	. 072	. 852	. 352	. 009
				. 1	. 000	. 028	. 013	. 124	. 122	. 117	. 972	. 942	. 897
100	4	2	. 99	. 9	. 012	-. 074	-. 078	. 125	. 097	. 066	. 928	. 857	. 685
				. 1	-. 006	. 008	. 008	. 130	. 125	. 124	. 963	. 944	. 907
100	6	0	. 99	. 9	. 002	-. 101	-. 086	. 086	. 072	. 047	. 928	. 700	. 421
				. 1	. 000	$-.003$	-. 003	. 085	. 083	. 083	. 959	. 940	. 919
100	6	1	. 99	. 9	-. 046	-. 354	-. 193	. 085	. 131	. 050	. 865	. 201	. 010
				. 1	. 005	. 039	. 021	. 084	. 086	. 082	. 968	. 920	. 900
100	6	2	. 99	. 9	. 010	-. 063	-. 024	. 081	. 056	. 043	. 942	. 786	. 868
				. 1	-. 002	. 016	. 006	. 088	. 084	. 084	. 953	. 936	. 925
100	8	0	. 99	. 9	. 004	-. 087	-. 055	. 066	. 050	. 036	. 933	. 581	. 544
				. 1	. 000	-. 001	-. 001	. 064	. 064	. 063	. 956	. 940	. 925
100	8	1	. 99	. 9	-. 027	-. 251	-. 143	. 066	. 087	. 039	. 888	. 142	. 018
				. 1	. 004	. 038	. 022	. 064	. 067	. 063	. 967	. 908	. 897
100	8	2	. 99	. 9	. 007	-. 054	-. 003	. 057	. 040	. 032	. 951	. 718	. 908
				. 1	-. 002	. 017	. 000	. 066	. 064	. 063	. 949	. 934	. 933
100	16	0	. 99	. 9	. 001	-. 060	-. 016	. 030	. 023	. 019	. 953	. 256	. 799
				. 1	. 000	. 004	. 001	. 031	. 033	. 031	. 947	. 942	. 941
100	16	1	. 99	. 9	-. 001	-. 115	-. 060	. 038	. 033	. 021	. 933	. 041	. 110
				. 1	. 000	. 033	. 017	. 033	. 035	. 033	. 962	. 842	. 890
100	16	2	. 99	. 9	. 000	-. 040	. 013	. 022	. 018	. 017	. 950	. 420	. 806
				. 1	. 000	. 020	-. 007	. 033	. 034	. 032	. 944	. 899	. 941
100	24	0	. 99	. 9	. 000	-. 049	$-.007$. 017	. 015	. 014	. 951	. 101	. 870
				. 1	. 000	. 008	. 001	. 021	. 023	. 021	. 940	. 931	. 942
100	24	1	. 99	. 9	. 001	$-.075$	-. 031	. 025	. 019	. 015	. 951	. 017	. 364
				. 1	. 000	. 030	. 012	. 023	. 025	. 022	. 951	. 764	. 900
100	24	2	. 99	. 9	$-.001$	$-.034$. 012	$.014$. 013	$.012$. 948	. 217	$.740$
				. 1	. 000	. 022	-. 008	. 023	. 023	. 022	. 941	. 841	. 935

Notes: Data generated as $y_{i t}=\theta_{01} y_{i t-1}+\theta_{02} x_{i t}+\alpha_{i}+\varepsilon_{i t}, x_{i t}=.5 \alpha_{i}+\gamma x_{i t-1}+u_{i t}(i=1, \ldots, N ; t=1, \ldots T)$ with $\alpha_{i} \sim \mathcal{N}(0,1), \varepsilon_{i t} \sim \mathcal{N}(0,1), u_{i t} \sim \mathcal{N}(0, .25), \psi$ the degree of outlyingness of the initial observations $y_{i 0}$, and $x_{i 0}$ drawn from the stationary distribution. Entries: bias, standard deviation (std), and coverage rate of 95% confidence interval (ci. 95) of adjusted likelihood ($\widehat{\theta}_{\mathrm{al}}$), Arellano-Bond ($\widehat{\theta}_{\mathrm{ab}}$), and Hahn-Kuersteiner ($\widehat{\theta}_{\mathrm{hk}}$) estimators; '- 'indicates non-existence of the moment; 10,000 Monte Carlo replications.

Table 3. Simulation results for the first-order autoregression with a covariate (cont'd)

N	T	ψ	γ	θ_{0}	bias			std			ci. 95		
					$\widehat{\rho}_{\text {al }}$	$\widehat{\rho}_{\text {ab }}$	$\widehat{\rho}_{\text {hk }}$	$\widehat{\rho}_{\text {al }}$	$\widehat{\rho}_{\text {ab }}$	$\widehat{\rho}_{\text {hk }}$	$\widehat{\rho}_{\text {al }}$	$\widehat{\rho}_{\text {ab }}$	$\widehat{\rho}_{\text {hk }}$
100	2	0	. 99	. 99	-. 142	-	$-.503$. 267	-	. 153	. 815	. 812	. 042
				. 01	$-.003$	-	$-.005$. 269	-	. 226	. 973	. 980	. 831
100	2	1	. 99	. 99	-. 142	-	-. 502	. 267	-	. 153	. 814	. 816	. 042
				. 01	-. 002	-	. 000	. 269	-	. 226	. 973	. 981	. 832
100	2	2	. 99	. 99	-. 131	-	-. 485	. 268	-	. 153	. 821	. 829	. 052
				. 01	. 000	-	. 005	. 271	-	. 227	. 974	. 976	. 830
100	4	0	. 99	. 99	-. 086	-. 660	$-.257$. 122	. 260	. 072	. 838	. 252	. 023
				. 01	-. 005	-. 007	$-.006$. 123	. 125	. 116	. 972	. 946	. 905
100	4	1	. 99	. 99	-. 086	-. 662	-. 257	. 122	. 260	. 072	. 838	. 249	. 024
				. 01	-. 003	. 006	-. 001	. 123	. 125	. 116	. 972	. 946	. 904
100	4	2	. 99	. 99	-. 075	-. 481	-. 240	. 122	. 244	. 072	. 850	. 405	. 040
				. 01	-. 002	. 012	. 004	. 124	. 121	. 117	. 971	. 945	. 905
100	6	0	. 99	. 99	-. 061	-. 482	-. 174	. 081	. 154	. 049	. 838	. 071	. 019
				. 01	. 000	-. 001	$-.001$. 083	. 091	. 080	. 969	. 945	. 918
100	6	1	. 99	. 99	-. 061	-. 481	-. 174	. 081	. 152	. 049	. 842	. 066	. 021
				. 01	. 002	. 013	. 005	. 083	. 090	. 080	. 970	. 942	. 917
100	6	2	. 99	. 99	-. 050	$-.351$	$-.157$. 080	. 137	. 049	. 858	. 177	. 043
				. 01	$.003$. 020	. 009	. 083	. 085	. 080	. 970	. 939	. 917
100	8	0	. 99	. 99	-. 047	-. 371	-. 132	. 061	. 105	. 037	. 844	. 017	. 021
				. 01	-. 001	-. 002	-. 001	. 062	. 070	. 061	. 972	. 945	. 924
100	8	1	. 99	. 99	-. 046	-. 371	-. 131	. 061	. 106	. 037	. 845	. 018	. 022
				. 01	. 001	. 013	. 004	. 062	. 070	. 061	. 970	. 942	. 923
100	8	2	. 99	. 99	-. 035	-. 271	$-.115$. 061	. 094	. 037	. 868	. 084	. 057
				. 01	. 002	. 020	. 008	. 063	. 066	. 061	. 969	. 933	. 923
100	16	0	. 99	. 99	-. 023	-. 196	$-.067$. 031	. 041	. 020	. 854	. 000	. 022
				. 01	. 000	-. 001	. 000	. 031	. 038	. 032	. 972	. 946	. 934
100	16	1	. 99	. 99	-. 022	-. 196	$-.066$. 031	. 041	. 020	. 855	. 000	. 025
				. 01	. 001	. 014	. 004	. 031	. 038	. 032	. 971	. 932	. 930
100	16	2	. 99	. 99	-. 014	-. 145	-. 051	. 031	. 036	. 019	. 888	. 002	. 113
				. 01	. 002	. 021	. 007	. 032	. 035	. 031	. 969	. 906	. 929
100	24	0	. 99	. 99	-. 015	-. 134	$-.045$. 021	. 023	. 013	. 861	. 000	. 021
				. 01	. 000	. 000	. 000	. 021	. 026	. 022	. 970	. 943	. 933
100	24	1	. 99	. 99	-. 014	-. 133	$-.045$. 021	. 023	. 013	. 864	. 000	. 027
				. 01	. 002	. 014	. 005	. 021	. 026	. 022	. 969	. 911	. 929
100	24	2	. 99	. 99	-. 007	-. 099	-. 031	. 021	. 020	. 013	. 903	. 000	. 179
				. 01	. 001	. 021	. 007	. 022	. 025	. 021	. 969	. 857	. 928

Notes: Data generated as $y_{i t}=\theta_{01} y_{i t-1}+\theta_{02} x_{i t}+\alpha_{i}+\varepsilon_{i t}, x_{i t}=.5 \alpha_{i}+\gamma x_{i t-1}+u_{i t}(i=1, \ldots, N ; t=1, \ldots T)$ with $\alpha_{i} \sim \mathcal{N}(0,1), \varepsilon_{i t} \sim \mathcal{N}(0,1), u_{i t} \sim \mathcal{N}(0, .25), \psi$ the degree of outlyingness of the initial observations $y_{i 0}$, and $x_{i 0}$ drawn from the stationary distribution. Entries: bias, standard deviation (std), and coverage rate of 95% confidence interval (ci.95) of adjusted likelihood ($\widehat{\theta}_{\text {al }}$), Arellano-Bond ($\widehat{\theta}_{\mathrm{ab}}$), and Hahn-Kuersteiner ($\widehat{\theta}_{\mathrm{hk}}$) estimators; '- ' indicates non-existence of the moment; 10, 000 Monte Carlo replications.

Table 3. Simulation results for the first-order autoregression with a covariate (cont'd)

N	T	ψ	γ	θ_{0}	bias			std			ci. 95		
					$\widehat{\rho}_{\text {al }}$	$\widehat{\rho}_{\text {ab }}$	$\widehat{\rho}_{\text {hk }}$	$\widehat{\rho}_{\text {al }}$	$\widehat{\rho}_{\text {ab }}$	$\widehat{\rho}_{\text {hk }}$	$\widehat{\rho}_{\text {al }}$	$\widehat{\rho}_{\text {ab }}$	$\widehat{\rho}_{\text {hk }}$
250	2	0	. 5	. 5	-. 068		-. 662	. 200	-	. 095	. 860	. 920	. 000
				. 5	-. 018		-. 167	. 159	-	. 120	. 965	. 949	. 484
250	2	1	. 5	. 5	. 025		-. 417	. 204	-	. 091	. 918	. 937	. 000
				. 5	-. 002	-	. 006	. 160	-	. 130	. 968	. 951	. 834
250	2	2	. 5	. 5	. 009	-	. 076	. 104	-	. 073	. 955	. 944	. 803
				. 5	-. 004		-. 022	. 160		. 164	. 946	. 945	. 837
250	4	0	. 5	. 5	. 014	-. 038	-. 246	. 104	. 080	. 043	. 945	. 912	. 000
				. 5	. 001	-. 005	-. 030	. 081	. 079	. 077	. 956	. 947	. 869
250	4	1	. 5	. 5	. 004	-. 028	-. 125	. 072	. 067	. 042	. 957	. 926	. 093
				. 5	-. 002	. 003	. 015	. 080	. 079	. 077	. 950	. 948	. 899
250	4	2	. 5	. 5	. 000	-. 010	. 077	. 039	. 039	. 035	. 951	. 942	. 330
				. 5	-. 001	. 003	-. 030	. 081	. 080	. 081	. 947	. 948	. 891
250	6	0	. 5	. 5	. 000	-. 028	-. 115	. 048	. 046	. 032	. 958	. 906	. 028
				. 5	. 001	. 000	-. 001	. 058	. 058	. 058	. 944	. 944	. 913
250	6	1	. 5	. 5	-. 001	-. 024	-. 052	. 039	. 042	. 031	. 950	. 911	. 489
				. 5	. 001	. 005	. 010	. 058	. 058	. 057	. 946	. 945	. 920
250	6	2	. 5	. 5	-. 001	-. 011	. 055	. 027	. 028	. 026	. 948	. 930	. 334
				. 5	. 001	. 005	-. 021	. 058	. 059	. 058	. 947	. 945	. 913
250	8	0	. 5	. 5	. 000	-. 023	-. 062	. 032	. 033	. 026	. 947	. 894	. 261
				. 5	. 001	. 002	. 004	. 047	. 047	. 047	. 947	. 947	. 926
250	8	1	. 5	. 5	. 000	-. 020	-. 025	. 028	. 031	. 025	. 946	. 901	. 756
				. 5	. 001	. 005	. 006	. 047	. 047	. 047	. 946	. 945	. 931
250	8	2	. 5	. 5	. 000	-. 011	. 041	. 022	. 023	. 021	. 947	. 921	. 401
				. 5	. 001	. 005	-. 015	. 047	. 048	. 047	. 948	. 945	. 925
250	16	0	. 5	. 5	-. 001	-. 016	-. 011	. 017	. 018	. 016	. 944	. 854	. 865
				. 5	. 000	. 002	. 001	. 030	. 030	. 030	. 947	. 947	. 940
250	16	1	. 5	. 5	. 000	-. 015	-. 002	. 016	. 018	. 016	. 942	. 859	. 921
				. 5	. 000	. 004	. 000	. 030	. 031	. 030	. 947	. 945	. 942
250	16	2	. 5	. 5	. 000	-. 011	. 017	. 014	. 015	. 014	. 945	. 884	. 696
				. 5	. 000	. 003	-. 007	. 031	. 031	. 030	. 947	. 946	. 939
250	24	0	. 5	. 5	. 000	-. 014	-. 002	. 012	. 013	. 012	. 947	. 821	. 929
				. 5	. 000	. 003	. 001	. 024	. 024	. 024	. 950	. 948	. 948
250	24	1	. 5	. 5	. 000	-. 013	. 001	. 012	. 013	. 012	. 948	. 824	. 930
				. 5	. 000	. 004	. 000	. 024	. 024	. 024	. 951	. 948	. 949
250	24	2	. 5	. 5	. 000	-. 011	. 010	. 011	. 012	. 011	. 946	. 849	. 814
				. 5	. 000	. 004	-. 003	. 024	. 024	. 024	. 952	. 948	. 947

Notes: Data generated as $y_{i t}=\theta_{01} y_{i t-1}+\theta_{02} x_{i t}+\alpha_{i}+\varepsilon_{i t}, x_{i t}=.5 \alpha_{i}+\gamma x_{i t-1}+u_{i t}(i=1, \ldots, N ; t=1, \ldots T)$ with $\alpha_{i} \sim \mathcal{N}(0,1), \varepsilon_{i t} \sim \mathcal{N}(0,1), u_{i t} \sim \mathcal{N}(0, .25), \psi$ the degree of outlyingness of the initial observations $y_{i 0}$, and $x_{i 0}$ drawn from the stationary distribution. Entries: bias, standard deviation (std), and coverage rate of 95% confidence interval (ci. 95) of adjusted likelihood ($\widehat{\theta}_{\mathrm{al}}$), Arellano-Bond ($\widehat{\theta}_{\mathrm{ab}}$), and Hahn-Kuersteiner ($\widehat{\theta}_{\mathrm{hk}}$) estimators; '- ' indicates non-existence of the moment; 10,000 Monte Carlo replications.

Table 3. Simulation results for the first-order autoregression with a covariate (cont'd)

N	T	ψ	γ	θ_{0}	bias			std			ci. 95		
					$\widehat{\rho}_{\text {al }}$	$\widehat{\rho}_{\text {ab }}$	$\widehat{\rho}_{\text {hk }}$	$\widehat{\rho}_{\text {al }}$	$\widehat{\rho}_{\text {ab }}$	$\widehat{\rho}_{\text {hk }}$	$\widehat{\rho}_{\text {al }}$	$\widehat{\rho}_{\text {ab }}$	$\widehat{\rho}_{\text {hk }}$
250	2	0	. 5	. 9	-. 119	-	-. 546	. 199	-	. 095	. 829	. 829	. 000
				. 1	$-.007$	-	-. 029	. 148	-	. 121	. 976	. 973	. 822
250	2	1	. 5	. 9	-. 084	-	-. 489	. 200	-	. 095	. 853	. 836	. 000
				. 1	. 002	-	. 023	. 151	-	. 124	. 977	. 975	. 824
250	2	2	. 5	. 9	-. 003	-	-. 319	. 203	-	. 092	. 901	. 918	. 032
				. 1	-. 001	-	. 047	. 161	-	. 135	. 972	. 956	. 803
250	4	0	. 5	. 9	-. 064	$-.406$	-. 290	. 096	. 210	. 046	. 846	. 487	. 000
				. 1	-. 004	-. 018	-. 014	. 077	. 074	. 072	. 972	. 941	. 894
250	4	1	. 5	. 9	-. 031	-. 319	-. 234	. 096	. 196	. 046	. 886	. 588	. 000
				. 1	. 001	. 027	. 020	. 079	. 074	. 073	. 971	. 935	. 891
250	4	2	. 5	. 9	. 013	-. 071	-. 097	. 097	. 094	. 042	. 935	. 868	. 261
				. 1	-. 004	. 015	. 021	. 083	. 080	. 077	. 962	. 942	. 896
250	6	0	. 5	. 9	$-.037$	$-.253$	-. 199	. 065	. 109	. 032	. 865	. 354	. 000
				. 1	-. 001	-. 008	-. 007	. 057	. 056	. 055	. 971	. 943	. 914
250	6	1	. 5	. 9	-. 010	-. 195	-. 147	. 067	. 100	. 031	. 908	. 491	. 001
				. 1	. 002	. 021	. 016	. 058	. 056	. 055	. 971	. 930	. 905
250	6	2	. 5	. 9	. 007	$-.051$	$-.035$. 059	. 051	. 028	. 948	. 817	. 653
				. 1	-. 001	. 013	. 009	. 060	. 058	. 057	. 956	. 942	. 920
250	8	0	. 5	. 9	-. 021	-. 176	-. 151	. 050	. 070	. 025	. 890	. 284	. 000
				. 1	. 000	-. 005	-. 004	. 047	. 046	. 046	. 974	. 946	. 924
250	8	1	. 5	. 9	. 000	-. 136	-. 103	. 051	. 065	. 024	. 928	. 421	. 003
				. 1	. 000	. 016	. 012	. 047	. 046	. 046	. 968	. 934	. 919
250	8	2	. 5	. 9	. 004	$-.039$	$-.010$. 038	. 034	. 021	. 958	. 779	. 866
				. 1	-. 001	. 011	. 003	. 048	. 047	. 047	. 951	. 941	. 933
250	16	0	. 5	. 9	. 001	$-.074$	$-.070$. 029	. 025	. 014	. 941	. 161	. 000
				. 1	. 000	$-.001$	-. 001	. 030	. 030	. 030	. 964	. 946	. 934
250	16	1	. 5	. 9	. 003	-. 064	-. 041	. 026	. 024	. 013	. 952	. 229	. 054
				. 1	-. 001	. 007	. 004	. 030	. 030	. 030	. 952	. 941	. 934
250	16	2	. 5	. 9	. 000	$-.025$. 008	. 014	. 014	. 011	. 950	. 598	. 810
				. 1	-. 001	. 005	-. 003	. 030	. 030	. 030	. 946	. 944	. 942
250	24	0	. 5	. 9	. 002	$-.047$	$-.040$. 019	. 015	. 010	. 957	. 099	. 007
				. 1	. 000	. 001	. 001	. 024	. 024	. 024	. 954	. 950	. 942
250	24	1	. 5	. 9	. 001	$-.043$	$-.023$. 014	. 014	. 009	. 961	. 130	. 213
				. 1	. 000	. 005	. 003	. 024	. 024	. 024	. 951	. 946	. 944
250	24	2	. 5	. 9	. 000	-. 021	. 008	. 009	. 010	. 008	. 946	. 420	$.741$
				. 1	. 000	. 005	$-.002$. 024	. 024	. 024	. 950	. 948	. 948

Notes: Data generated as $y_{i t}=\theta_{01} y_{i t-1}+\theta_{02} x_{i t}+\alpha_{i}+\varepsilon_{i t}, x_{i t}=.5 \alpha_{i}+\gamma x_{i t-1}+u_{i t}(i=1, \ldots, N ; t=1, \ldots T)$ with $\alpha_{i} \sim \mathcal{N}(0,1), \varepsilon_{i t} \sim \mathcal{N}(0,1), u_{i t} \sim \mathcal{N}(0, .25), \psi$ the degree of outlyingness of the initial observations $y_{i 0}$, and $x_{i 0}$ drawn from the stationary distribution. Entries: bias, standard deviation (std), and coverage rate of 95% confidence interval (ci.95) of adjusted likelihood ($\widehat{\theta}_{\mathrm{al}}$), Arellano-Bond ($\widehat{\theta}_{\mathrm{ab}}$), and Hahn-Kuersteiner ($\widehat{\theta}_{\mathrm{hk}}$) estimators; '—, indicates non-existence of the moment; 10, 000 Monte Carlo replications.

Table 3. Simulation results for the first-order autoregression with a covariate (cont'd)

N	T	ψ	γ	θ_{0}	bias			std			ci. 95		
					$\widehat{\rho}_{\text {al }}$	$\widehat{\rho}_{\text {ab }}$	$\widehat{\rho}_{\text {hk }}$	$\widehat{\rho}_{\text {al }}$	$\widehat{\rho}_{\text {ab }}$	$\widehat{\rho}_{\text {hk }}$	$\widehat{\rho}_{\text {al }}$	$\widehat{\rho}_{\text {ab }}$	$\widehat{\rho}_{\text {hk }}$
250	2	0	. 5	. 99	-. 122	-	-. 505	. 199	-	. 095	. 828	. 819	. 000
				. 01	-. 002	-	-. 004	. 148	-	. 123	. 977	. 985	. 834
250	2	1	. 5	. 99	-. 118	-	-. 498	. 199	-	. 095	. 832	. 822	. 000
				. 01	. 001	-	. 012	. 148	-	. 123	. 977	. 982	. 833
250	2	2	. 5	. 99	-. 105	-	-. 478	. 199	-	. 095	. 841	. 826	. 001
				. 01	. 004	-	. 026	. 150	-	. 125	. 977	. 974	. 823
250	4	0	. 5	. 99	-. 070	$-.673$	-. 257	. 093	. 261	. 046	. 834	. 248	. 000
				. 01	-. 002	-. 004	-. 003	. 077	. 074	. 072	. 973	. 951	. 903
250	4	1	. 5	. 99	-. 066	-. 642	-. 250	. 094	. 261	. 046	. 841	. 270	. 000
				. 01	. 001	. 023	. 009	. 077	. 073	. 072	. 974	. 941	. 902
250	4	2	. 5	. 99	-. 053	-. 568	-. 230	. 093	. 252	. 046	. 858	. 333	. 000
				. 01	. 003	. 044	. 018	. 078	. 073	. 072	. 974	. 914	. 894
250	6	0	. 5	. 99	-. 048	$-.487$	-. 172	. 062	. 149	. 031	. 836	. 057	. 000
				. 01	. 000	-. 002	-. 001	. 057	. 056	. 054	. 973	. 950	. 919
250	6	1	. 5	. 99	-. 043	-. 459	-. 166	. 062	. 147	. 031	. 846	. 075	. 000
				. 01	. 003	. 020	. 008	. 057	. 056	. 054	. 973	. 936	. 915
250	6	2	. 5	. 99	-. 031	-. 385	-. 146	. 062	. 140	. 031	. 871	. 137	. 000
				. 01	. 004	. 036	. 015	. 057	. 055	. 055	. 974	. 903	. 908
250	8	0	. 5	. 99	$-.035$	-. 379	-. 131	. 046	. 105	. 024	. 852	. 016	. 000
				. 01	. 000	-. 002	. 000	. 046	. 047	. 045	. 976	. 949	. 930
250	8	1	. 5	. 99	-. 031	-. 354	-. 124	. 046	. 104	. 024	. 863	. 023	. 000
				. 01	. 002	. 017	. 006	. 046	. 046	. 045	. 975	. 936	. 928
250	8	2	. 5	. 99	-. 019	-. 282	-. 104	. 046	. 096	. 024	. 890	. 067	. 001
				. 01	. 002	. 029	. 011	. 047	. 046	. 045	. 974	. 908	. 922
250	16	0	. 5	. 99	-. 018	-. 199	-. 068	. 023	. 041	. 012	. 852	. 000	. 000
				. 01	-. 001	-. 001	-. 001	. 030	. 031	. 030	. 975	. 947	. 938
250	16	1	. 5	. 99	$-.014$	-. 182	-. 061	. 023	. 040	. 012	. 874	. 000	. 000
				. 01	. 000	. 009	. 003	. 030	. 031	. 030	. 974	. 937	. 937
250	16	2	. 5	. 99	$-.004$	-. 129	-. 043	. 023	. 033	. 012	. 915	. 003	. 014
				. 01	. 000	. 013	. 004	. 030	. 030	. 030	. 971	. 925	. 937
250	24	0	. 5	. 99	-. 012	-. 134	-. 046	. 016	. 023	. 009	. 860	. 000	. 000
				. 01	. 000	. 000	. 000	. 023	. 024	. 023	. 975	. 949	. 944
250	24	1	. 5	. 99	-. 008	-. 121	-. 039	. 016	. 023	. 008	. 887	. 000	. 000
				. 01	. 001	. 006	. 002	. 024	. 024	. 023	. 974	. 940	. 944
250	24	2	. 5	$.99$	$.000$	$-.081$	$-.023$	$.016$	$\text { . } 018$	$.008$. 929	$.000$	$.067$
				. 01	. 000	. 009	. 003	. 024	. 024	. 023	. 967	. 934	. 945

Notes: Data generated as $y_{i t}=\theta_{01} y_{i t-1}+\theta_{02} x_{i t}+\alpha_{i}+\varepsilon_{i t}, x_{i t}=.5 \alpha_{i}+\gamma x_{i t-1}+u_{i t}(i=1, \ldots, N ; t=1, \ldots T)$ with $\alpha_{i} \sim \mathcal{N}(0,1), \varepsilon_{i t} \sim \mathcal{N}(0,1), u_{i t} \sim \mathcal{N}(0, .25), \psi$ the degree of outlyingness of the initial observations $y_{i 0}$, and $x_{i 0}$ drawn from the stationary distribution. Entries: bias, standard deviation (std), and coverage rate of 95% confidence interval (ci. 95) of adjusted likelihood ($\widehat{\theta}_{\mathrm{al}}$), Arellano-Bond ($\widehat{\theta}_{\mathrm{ab}}$), and Hahn-Kuersteiner ($\widehat{\theta}_{\mathrm{hk}}$) estimators; '- 'indicates non-existence of the moment; 10,000 Monte Carlo replications.

Table 3. Simulation results for the first-order autoregression with a covariate (cont'd)

N	T	ψ	γ	θ_{0}	bias			std			ci. 95		
					$\widehat{\rho}_{\text {al }}$	$\widehat{\rho}_{\text {ab }}$	$\widehat{\rho}_{\text {hk }}$	$\widehat{\rho}_{\text {al }}$	$\widehat{\rho}_{\text {ab }}$	$\widehat{\rho}_{\text {hk }}$	$\widehat{\rho}_{\text {al }}$	$\widehat{\rho}_{\text {ab }}$	$\widehat{\rho}_{\text {hk }}$
250	2	0	. 99	. 5	. 002	-	. 388	. 055	-	. 057	. 950	. 947	. 457
				. 5	-. 001	-	. 095	. 179	-	. 232	. 945	. 945	. 824
250	2	1	. 99	. 5	-. 062	-	-. 649	. 200	-	. 095	. 868	. 923	. 000
				. 5	-. 001	-	. 004	. 175	-	. 136	. 976	. 961	. 836
250	2	2	. 99	. 5	. 001	-	. 442	. 049	-	. 053	. 950	. 948	. 252
				. 5	-. 002	-	-. 119	. 180	-	. 248	. 945	. 945	. 764
250	4	0	. 99	. 5	. 000	-. 004	. 201	. 026	. 025	. 028	. 950	. 949	. 000
				. 5	-. 001	$-.001$. 012	. 081	. 081	. 090	. 945	. 945	. 908
250	4	1	. 99	. 5	. 013	-. 034	-. 220	. 100	. 075	. 043	. 948	. 915	. 000
				. 5	-. 004	$.007$. 050	. 085	. 083	. 079	. 953	. 942	. 827
250	4	2	. 99	. 5	-. 001	-. 004	. 228	. 023	. 023	. 025	. 952	. 952	. 000
				. 5	-. 001	. 001	-. 121	. 082	. 082	. 094	. 944	. 945	. 656
250	6	0	. 99	. 5	. 000	$-.005$. 127	. 020	. 020	. 021	. 949	. 943	. 000
				. 5	. 000	. 001	-. 013	. 052	. 052	. 054	. 948	. 948	. 931
250	6	1	. 99	. 5	-. 001	$-.025$	-. 094	. 044	. 043	. 032	. 953	. 905	. 101
				. 5	. 001	. 010	. 036	. 055	. 055	. 053	. 950	. 947	. 859
250	6	2	. 99	. 5	-. 001	$-.004$. 145	. 018	. 018	. 019	. 949	. 939	. 000
				. 5	. 001	. 003	-. 095	. 053	. 053	. 056	. 950	. 950	. 563
250	8	0	. 99	. 5	. 000	-. 006	. 089	. 017	. 017	. 017	. 946	. 936	. 001
				. 5	. 001	. 002	-. 020	. 040	. 040	. 039	. 943	. 941	. 909
250	8	1	. 99	. 5	-. 001	-. 021	-. 045	. 030	. 031	. 025	. 947	. 899	. 483
				. 5	. 001	. 011	. 022	. 042	. 043	. 041	. 945	. 938	. 891
250	8	2	. 99	. 5	. 000	$-.005$. 103	. 015	. 015	. 016	. 946	. 936	. 000
				. 5	. 001	. 004	-. 074	. 041	. 041	. 041	. 942	. 942	. 533
250	16	0	. 99	. 5	. 000	-. 008	. 035	. 012	. 012	. 012	. 949	. 904	. 129
				. 5	. 000	. 004	-. 019	. 021	. 021	. 020	. 948	. 944	. 844
250	16	1	. 99	. 5	. 000	-. 014	-. 002	. 016	. 017	. 015	. 945	. 862	. 924
				. 5	. 000	. 009	. 001	. 023	. 023	. 022	. 947	. 928	. 943
250	16	2	. 99	. 5	. 000	-. 006	. 042	. 011	. 011	. 011	. 950	. 913	. 027
				. 5	. 000	. 005	-. 036	. 022	. 022	. 021	. 949	. 942	. 606
250	24	0	. 99	. 5	. 000	-. 008	. 021	. 010	. 010	. 010	. 946	. 871	. 402
				. 5	. 000	. 006	-. 013	. 015	. 015	. 014	. 950	. 932	. 843
250	24	1	. 99	. 5	. 000	$-.012$. 003	. 012	. 012	. 012	. 949	. 826	. 922
				. 5	. 000	. 010	-. 003	. 016	. 016	. 016	. 949	. 909	. 945
250	24	2	. 99	. 5	. 000	$-.007$. 025	. 009	. 009	. 009	. 947	. 882	. 213
				. 5	. 000	. 007	-. 022	. 015	. 016	. 015	. 950	. 930	. 701

Notes: Data generated as $y_{i t}=\theta_{01} y_{i t-1}+\theta_{02} x_{i t}+\alpha_{i}+\varepsilon_{i t}, x_{i t}=.5 \alpha_{i}+\gamma x_{i t-1}+u_{i t}(i=1, \ldots, N ; t=1, \ldots T)$ with $\alpha_{i} \sim \mathcal{N}(0,1), \varepsilon_{i t} \sim \mathcal{N}(0,1), u_{i t} \sim \mathcal{N}(0, .25), \psi$ the degree of outlyingness of the initial observations $y_{i 0}$, and $x_{i 0}$ drawn from the stationary distribution. Entries: bias, standard deviation (std), and coverage rate of 95% confiydence interval (ci. 95) of adjusted likelihood ($\widehat{\theta}_{\mathrm{al}}$), Arellano-Bond ($\widehat{\theta}_{\mathrm{ab}}$), and Hahn-Kuersteiner ($\widehat{\theta}_{\mathrm{hk}}$) estimators; '- 'indicates non-existence of the moment; 10, 000 Monte Carlo replications.

Table 3. Simulation results for the first-order autoregression with a covariate (cont'd)

N	T	ψ	γ	θ_{0}	bias			std			ci. 95		
					$\widehat{\rho}_{\text {al }}$	$\widehat{\rho}_{\text {ab }}$	$\widehat{\rho}_{\text {hk }}$	$\widehat{\rho}_{\text {al }}$	$\widehat{\rho}_{\text {ab }}$	$\widehat{\rho}_{\text {hk }}$	$\widehat{\rho}_{\text {al }}$	$\widehat{\rho}_{\text {ab }}$	$\widehat{\rho}_{\text {hk }}$
250	2	0	. 99	. 9	-. 028	-	-. 384	. 202	-	. 094	. 885	. 935	. 005
				. 1	-. 003	-	-. 021	. 178	-	. 150	. 973	. 955	. 826
250	2	1	. 99	. 9	-. 116	-	-. 541	. 199	-	. 095	. 833	. 825	. 000
				. 1	-. 001	-	. 002	. 170	-	. 139	. 977	. 983	. 833
250	2	2	. 99	. 9	. 010	-	-. 279	. 204	-	. 091	. 909	. 944	. 070
				. 1	-. 003	-	. 016	. 182	-	. 157	. 972	. 949	. 834
250	4	0	. 99	. 9	. 003	$-.051$	-. 153	. 098	. 082	. 044	. 926	. 892	. 029
				. 1	-. 001	$-.003$	-. 008	. 082	. 080	. 077	. 965	. 946	. 898
250	4	1	. 99	. 9	-. 059	-. 395	-. 283	. 096	. 208	. 046	. 852	. 496	. 000
				. 1	. 002	. 023	. 016	. 080	. 077	. 075	. 973	. 938	. 887
250	4	2	. 99	. 9	. 014	-. 031	-. 076	. 095	. 063	. 042	. 940	. 912	. 443
				. 1	-. 003	. 004	. 011	. 083	. 081	. 079	. 958	. 945	. 899
250	6	0	. 99	. 9	. 007	-. 045	-. 083	. 066	. 048	. 030	. 939	. 835	. 117
				. 1	. 001	-. 001	-. 002	. 053	. 052	. 051	. 960	. 948	. 921
250	6	1	. 99	. 9	-. 032	-. 235	-. 190	. 066	. 105	. 032	. 872	. 388	. 000
				. 1	. 004	. 026	. 021	. 052	. 052	. 051	. 973	. 925	. 888
250	6	2	. 99	. 9	. 006	-. 027	-. 022	. 056	. 037	. 027	. 949	. 879	. 808
				. 1	-. 001	. 007	. 006	. 054	. 052	. 052	. 954	. 947	. 926
250	8	0	. 99	. 9	. 007	-. 039	-. 052	. 049	. 033	. 023	. 950	. 783	. 240
				. 1	. 001	. 000	. 000	. 040	. 040	. 040	. 951	. 942	. 921
250	8	1	. 99	. 9	-. 016	-. 159	-. 141	. 051	. 067	. 025	. 898	. 330	. 000
				. 1	. 003	. 025	. 022	. 041	. 041	. 040	. 970	. 902	. 866
250	8	2	. 99	. 9	. 003	-. 023	-. 001	. 035	. 026	. 020	. 961	. 846	. 909
				. 1	. 000	. 008	. 001	. 042	. 041	. 040	. 946	. 936	. 928
250	16	0	. 99	. 9	. 000	-. 028	-. 015	. 018	. 015	. 012	. 959	. 565	. 671
				. 1	. 000	. 002	. 001	. 020	. 020	. 020	. 946	. 946	. 937
250	16	1	. 99	. 9	. 003	-. 064	-. 059	. 028	. 024	. 013	. 944	. 217	. 003
				. 1	-. 001	. 019	. 017	. 021	. 022	. 021	. 964	. 861	. 834
250	16	2	. 99	. 9	. 000	-. 017	. 014	. 013	. 012	. 010	. 951	. 698	. 648
				. 1	. 000	. 009	-. 007	. 021	. 021	. 020	. 948	. 929	. 931
250	24	0	. 99	. 9	. 000	-. 023	-. 006	. 011	. 010	. 009	. 951	. 378	. 831
				. 1	. 000	. 004	. 001	. 013	. 014	. 013	. 950	. 943	. 947
250	24	1	. 99	. 9	. 001	-. 041	-. 030	. 016	. 014	. 009	. 960	. 148	. 062
				. 1	. 000	. 016	. 012	. 014	. 015	. 014	. 956	. 814	. 847
250	24	2	. 99	. 9	. 000	-. 015	. 013	. 008	. 008	. 007	. 946	. 539	. 500
				. 1	. 000	. 010	-. 008	. 014	. 014	. 014	. 953	. 900	. 914

Notes: Data generated as $y_{i t}=\theta_{01} y_{i t-1}+\theta_{02} x_{i t}+\alpha_{i}+\varepsilon_{i t}, x_{i t}=.5 \alpha_{i}+\gamma x_{i t-1}+u_{i t}(i=1, \ldots, N ; t=1, \ldots T)$ with $\alpha_{i} \sim \mathcal{N}(0,1), \varepsilon_{i t} \sim \mathcal{N}(0,1), u_{i t} \sim \mathcal{N}(0, .25), \psi$ the degree of outlyingness of the initial observations $y_{i 0}$, and $x_{i 0}$ drawn from the stationary distribution. Entries: bias, standard deviation (std), and coverage rate of 95% confidence interval (ci. 95) of adjusted likelihood ($\widehat{\theta}_{\mathrm{al}}$), Arellano-Bond ($\widehat{\theta}_{\mathrm{ab}}$), and Hahn-Kuersteiner ($\widehat{\theta}_{\mathrm{hk}}$) estimators; '- ' indicates non-existence of the moment; 10,000 Monte Carlo replications.

Table 3. Simulation results for the first-order autoregression with a covariate (cont'd)

N	T	ψ	γ	θ_{0}	bias			std			ci. 95		
					$\widehat{\rho}_{\text {al }}$	$\widehat{\rho}_{\text {ab }}$	$\widehat{\rho}_{\text {hk }}$	$\widehat{\rho}_{\text {al }}$	$\widehat{\rho}_{\text {ab }}$	$\widehat{\rho}_{\text {hk }}$	$\widehat{\rho}_{\text {al }}$	$\widehat{\rho}_{\text {ab }}$	$\widehat{\rho}_{\text {hk }}$
250	2	0	. 99	. 99	-. 120	-	-. 503	. 199	-	. 095	. 830	. 830	. 000
				. 01	-. 002	-	-. 004	. 170	-	. 141	. 977	. 982	. 831
250	2	1	. 99	. 99	-. 120	-	-. 503	. 199	-	. 095	. 830	. 824	. 000
				. 01	-. 001	-	. 001	. 170	-	. 141	. 977	. 982	. 834
250	2	2	. 99	. 99	-. 109	-	-. 485	. 199	-	. 095	. 837	. 859	. 001
				. 01	. 000	-	. 006	. 171	-	. 143	. 977	. 977	. 834
250	4	0	. 99	. 99	-. 069	-. 622	-. 255	. 093	. 263	. 046	. 836	. 286	. 000
				. 01	-. 002	-. 004	-. 003	. 079	. 079	. 074	. 972	. 952	. 899
250	4	1	. 99	. 99	-. 069	-. 628	-. 255	. 094	. 263	. 046	. 837	. 281	. 000
				. 01	. 000	. 008	. 003	. 079	. 079	. 074	. 973	. 949	. 897
250	4	2	. 99	. 99	-. 058	-. 320	-. 238	. 093	. 196	. 046	. 853	. 566	. 000
				. 01	. 001	. 010	. 007	. 079	. 076	. 074	. 973	. 946	. 896
250	6	0	. 99	. 99	-. 047	-. 449	-. 171	. 062	. 152	. 031	. 839	. 088	. 000
				. 01	. 000	-. 002	-. 001	. 051	. 055	. 050	. 975	. 952	. 919
250	6	1	. 99	. 99	-. 047	-. 454	-. 170	. 062	. 150	. 031	. 840	. 082	. 000
				. 01	. 001	. 012	. 005	. 051	. 056	. 050	. 975	. 946	. 917
250	6	2	. 99	. 99	-. 036	-. 239	-. 154	. 062	. 111	. 031	. 862	. 347	. 000
				. 01	. 002	. 014	. 009	. 052	. 051	. 050	. 975	. 944	. 917
250	8	0	. 99	. 99	-. 034	-. 350	-. 129	. 046	. 104	. 024	. 853	. 023	. 000
				. 01	. 000	-. 001	. 000	. 039	. 044	. 039	. 973	. 948	. 919
250	8	1	. 99	. 99	-. 034	-. 351	-. 128	. 046	. 105	. 024	. 853	. 025	. 000
				. 01	. 002	. 013	. 005	. 040	. 044	. 039	. 973	. 940	. 918
250	8	2	. 99	. 99	-. 024	-. 185	$-.112$. 046	. 073	. 024	. 878	. 199	. 000
				. 01	. 002	. 014	. 009	. 040	. 040	. 039	. 972	. 931	. 914
250	16	0	. 99	. 99	-. 017	-. 183	-. 066	. 023	. 040	. 012	. 856	. 000	. 000
				. 01	. 000	-. 001	-. 001	. 020	. 023	. 020	. 973	. 949	. 932
250	16	1	. 99	. 99	-. 017	-. 182	$-.065$. 023	. 040	. 012	. 859	. 000	. 000
				. 01	. 001	. 013	. 004	. 020	. 023	. 020	. 972	. 916	. 928
250	16	2	. 99	. 99	-. 008	-. 099	-. 050	. 023	. 027	. 012	. 901	. 013	. 003
				. 01	. 001	. 014	. 007	. 020	. 021	. 020	. 971	. 897	. 918
250	24	0	. 99	. 99	-. 011	-. 124	$-.045$. 016	. 023	. 009	. 868	. 000	. 000
				. 01	. 000	. 000	. 000	. 013	. 016	. 013	. 976	. 950	. 937
250	24	1	. 99	. 99	-. 010	-. 122	-. 044	. 016	. 022	. 009	. 870	. 000	. 000
				. 01	. 001	. 013	. 005	. 013	. 016	. 013	. 975	. 873	. 920
250	24	2	. 99	. 99	$-.003$	$-.069$	$-.030$. 016	. 015	. 008	. 915	. 000	$.011$
				. 01	. 001	. 015	. 007	. 014	. 014	. 013	. 974	. 831	. 911

Notes: Data generated as $y_{i t}=\theta_{01} y_{i t-1}+\theta_{02} x_{i t}+\alpha_{i}+\varepsilon_{i t}, x_{i t}=.5 \alpha_{i}+\gamma x_{i t-1}+u_{i t}(i=1, \ldots, N ; t=1, \ldots T)$ with $\alpha_{i} \sim \mathcal{N}(0,1), \varepsilon_{i t} \sim \mathcal{N}(0,1), u_{i t} \sim \mathcal{N}(0, .25), \psi$ the degree of outlyingness of the initial observations $y_{i 0}$, and $x_{i 0}$ drawn from the stationary distribution. Entries: bias, standard deviation (std), and coverage rate of 95% confidence interval (ci.95) of adjusted likelihood ($\widehat{\theta}_{\mathrm{al}}$), Arellano-Bond ($\widehat{\theta}_{\mathrm{ab}}$), and Hahn-Kuersteiner ($\widehat{\theta}_{\mathrm{hk}}$) estimators; '—, indicates non-existence of the moment; 10, 000 Monte Carlo replications.

Table 3. Simulation results for the first-order autoregression with a covariate (cont'd)

N	T	ψ	γ	θ_{0}	bias			std			ci. 95		
					$\widehat{\rho}_{\text {al }}$	$\widehat{\rho}_{\text {ab }}$	$\widehat{\rho}_{\text {hk }}$	$\widehat{\rho}_{\text {al }}$	$\widehat{\rho}_{\text {ab }}$	$\widehat{\rho}_{\text {hk }}$	$\widehat{\rho}_{\text {al }}$	$\widehat{\rho}_{\text {ab }}$	$\widehat{\rho}_{\text {hk }}$
500	2	0	. 5	. 5	-. 052	-	-. 662	. 166	-	. 067	. 867	. 934	. 000
				. 5	-. 012	-	-. 165	. 115	-	. 085	. 965	. 954	. 284
500	2	1	. 5	. 5	. 031	-	-. 417	. 170	-	. 064	. 929	. 947	. 000
				. 5	. 000		. 008	. 112	-	. 091	. 967	. 954	. 831
500	2	2	. 5	. 5	. 005	-	. 075	. 070	-	. 052	. 955	. 947	. 648
				. 5	-. 001	-	-. 020	. 112	-	. 114	. 952	. 951	. 837
500	4	0	. 5	. 5	. 011	-. 019	-. 245	. 080	. 058	. 030	. 950	. 928	. 000
				. 5	. 002	-. 002	-. 029	. 057	. 056	. 054	. 955	. 949	. 847
500	4	1	. 5	. 5	. 003	-. 014	-. 124	. 050	. 049	. 030	. 958	. 936	. 006
				. 5	. 000	. 002	. 016	. 056	. 056	. 054	. 950	. 949	. 896
500	4	2	. 5	. 5	. 000	-. 005	. 078	. 028	. 028	. 025	. 945	. 945	. 085
				. 5	. 000	. 002	-. 030	. 057	. 057	. 057	. 949	. 949	. 872
500	6	0	. 5	. 5	. 001	-. 014	-. 114	. 033	. 033	. 022	. 953	. 927	. 000
				. 5	. 000	. 000	-. 002	. 040	. 040	. 041	. 947	. 946	. 919
500	6	1	. 5	. 5	. 000	-. 012	-. 051	. 027	. 030	. 021	. 953	. 935	. 240
				. 5	. 000	. 002	. 010	. 041	. 041	. 040	. 947	. 945	. 918
500	6	2	. 5	. 5	. 000	-. 005	. 056	. 019	. 020	. 018	. 951	. 940	. 081
				. 5	. 000	. 002	-. 022	. 041	. 041	. 041	. 946	. 946	. 895
500	8	0	. 5	. 5	. 000	-. 011	-. 061	. 022	. 024	. 018	. 951	. 926	. 054
				. 5	. 000	. 001	. 003	. 033	. 033	. 033	. 947	. 947	. 929
500	8	1	. 5	. 5	$.000$	-. 010	-. 025	. 020	. 022	. 017	. 950	. 927	. 619
				. 5	$.000$. 002	. 005	. 033	. 033	. 033	. 948	. 947	. 932
500	8	2	. 5	. 5	. 000	-. 005	. 042	. 015	. 016	. 015	. 949	. 936	. 138
				. 5	. 000	. 002	-. 016	. 033	. 033	. 033	. 947	. 947	. 908
500	16	0	. 5	. 5	. 000	-. 008	-. 010	. 012	. 013	. 011	. 949	. 905	. 818
				. 5	. 000	. 002	. 002	. 021	. 021	. 021	. 950	. 950	. 943
500	16	1	. 5	. 5	. 000	-. 008	-. 002	. 011	. 012	. 011	. 951	. 909	. 928
				. 5	. 000	. 002	. 001	. 021	. 022	. 021	. 950	. 949	. 944
500	16	2	. 5	. 5	. 000	-. 006	. 017	. 010	. 011	. 010	. 950	. 920	. 503
				. 5	. 000	. 002	-. 006	. 022	. 022	. 021	. 950	. 949	. 935
500	24	0	. 5	. 5	. 000	-. 007	-. 002	. 009	. 009	. 009	. 946	. 883	. 922
				. 5	. 000	. 002	. 000	. 017	. 017	. 017	. 948	. 947	. 945
500	24	1	. 5	. 5	. 000	$-.007$. 001	. 009	. 009	. 008	. 948	. 883	. 930
				. 5	. 000	. 002	. 000	. 017	. 017	. 017	. 949	. 947	. 945
500	24	2	. 5	. 5	. 000	-. 006	. 010	. 008	. 008	. 008	. 948	. 897	. 704
				. 5	. 000	. 002	-. 004	. 017	. 017	. 017	. 949	. 948	. 941

Notes: Data generated as $y_{i t}=\theta_{01} y_{i t-1}+\theta_{02} x_{i t}+\alpha_{i}+\varepsilon_{i t}, x_{i t}=.5 \alpha_{i}+\gamma x_{i t-1}+u_{i t}(i=1, \ldots, N ; t=1, \ldots T)$ with $\alpha_{i} \sim \mathcal{N}(0,1), \varepsilon_{i t} \sim \mathcal{N}(0,1), u_{i t} \sim \mathcal{N}(0, .25), \psi$ the degree of outlyingness of the initial observations $y_{i 0}$, and $x_{i 0}$ drawn from the stationary distribution. Entries: bias, standard deviation (std), and coverage rate of 95% confidence interval (ci. 95) of adjusted likelihood ($\widehat{\theta}_{\mathrm{al}}$), Arellano-Bond ($\widehat{\theta}_{\mathrm{ab}}$), and Hahn-Kuersteiner ($\widehat{\theta}_{\mathrm{hk}}$) estimators; '- ' indicates non-existence of the moment; 10,000 Monte Carlo replications.

Table 3. Simulation results for the first-order autoregression with a covariate (cont'd)

N	T	ψ	γ	θ_{0}	bias			std			ci. 95		
					$\widehat{\rho}_{\text {al }}$	$\widehat{\rho}_{\text {ab }}$	$\widehat{\rho}_{\text {hk }}$	$\widehat{\rho}_{\text {al }}$	$\widehat{\rho}_{\text {ab }}$	$\widehat{\rho}_{\text {hk }}$	$\widehat{\rho}_{\text {al }}$	$\widehat{\rho}_{\text {ab }}$	$\widehat{\rho}_{\text {hk }}$
500	2	0	. 5	. 9	-. 103	-	-. 546	. 164	-	. 067	. 829	. 834	. 000
				. 1	-. 005	-	$-.027$. 105	-	. 085	. 977	. 966	. 813
500	2	1	. 5	. 9	-. 066	-	-. 489	. 165	-	. 067	. 859	. 842	. 000
				. 1	. 004	-	. 025	. 107	-	. 087	. 978	. 968	. 817
500	2	2	. 5	. 9	. 009	-	-. 319	. 169	-	. 065	. 912	. 936	. 000
				. 1	-. 001	-	. 049	. 113	-	. 095	. 973	. 959	. 780
500	4	0	. 5	. 9	-. 051	$-.283$	-. 289	. 079	. 175	. 032	. 850	. 611	. 000
				. 1	-. 002	-. 012	-. 013	. 055	. 053	. 051	. 974	. 942	. 890
500	4	1	. 5	. 9	-. 019	-. 205	-. 232	. 080	. 158	. 032	. 891	. 711	. 000
				. 1	. 002	. 018	. 021	. 056	. 054	. 051	. 975	. 940	. 884
500	4	2	. 5	. 9	. 013	-. 036	-. 096	. 078	. 069	. 030	. 942	. 908	. 060
				. 1	-. 003	. 008	. 021	. 059	. 057	. 054	. 964	. 947	. 887
500	6	0	. 5	. 9	$-.028$	-. 164	-. 198	. 053	. 086	. 023	. 875	. 547	. 000
				. 1	-. 001	$-.005$	$-.007$. 040	. 039	. 039	. 975	. 944	. 914
500	6	1	. 5	. 9	-. 003	$-.118$	$-.146$. 054	. 076	. 022	. 923	. 669	. 000
				. 1	. 000	. 013	. 016	. 041	. 040	. 039	. 969	. 938	. 899
500	6	2	. 5	. 9	. 005	-. 026	-. 034	. 042	. 037	. 020	. 958	. 888	. 475
				. 1	-. 001	. 007	. 009	. 042	. 041	. 040	. 952	. 943	. 921
500	8	0	. 5	. 9	-. 015	-. 109	-. 150	. 041	. 055	. 017	. 897	. 499	. 000
				. 1	-. 001	-. 003	-. 005	. 033	. 032	. 032	. 972	. 947	. 923
500	8	1	. 5	. 9	. 004	-. 082	-. 103	. 042	. 049	. 017	. 934	. 609	. 000
				. 1	-. 001	. 009	. 012	. 033	. 033	. 032	. 966	. 942	. 913
500	8	2	. 5	. 9	. 002	$-.021$	$-.010$. 026	. 024	. 015	. 962	. 860	. 833
				. 1	-. 001	. 005	. 002	. 034	. 033	. 033	. 948	. 946	. 932
500	16	0	. 5	. 9	. 002	$-.043$	$-.070$. 024	. 019	. 010	. 946	. 391	. 000
				. 1	. 000	. 000	. 000	. 021	. 021	. 021	. 962	. 949	. 937
500	16	1	. 5	. 9	. 001	$-.037$	-. 041	. 018	. 018	. 009	. 959	. 448	. 002
				. 1	. 000	. 004	. 005	. 021	. 021	. 021	. 950	. 947	. 933
500	16	2	. 5	. 9	. 000	$-.013$. 008	. 010	. 011	. 008	. 948	. 760	. 720
				. 1	. 000	. 003	-. 002	. 021	. 021	. 021	. 950	. 948	. 941
500	24	0	. 5	. 9	. 001	$-.027$	$-.040$. 013	. 011	. 007	. 962	. 300	. 000
				. 1	. 000	. 000	. 000	. 017	. 017	. 017	. 949	. 948	. 940
500	24	1	. 5	. 9	. 000	$-.025$	$-.022$. 009	. 011	. 007	. 956	. 337	. 031
				. 1	. 000	. 003	. 002	. 017	. 017	. 017	. 949	. 945	. 941
500	24	2	. 5	. 9	. 000	$-.011$. 008	. 006	. 007	. 005	. 949	. 643	. 584
				. 1	. 000	. 002	$-.002$. 017	. 017	. 017	. 949	. 947	. 943

Notes: Data generated as $y_{i t}=\theta_{01} y_{i t-1}+\theta_{02} x_{i t}+\alpha_{i}+\varepsilon_{i t}, x_{i t}=.5 \alpha_{i}+\gamma x_{i t-1}+u_{i t}(i=1, \ldots, N ; t=1, \ldots T)$ with $\alpha_{i} \sim \mathcal{N}(0,1), \varepsilon_{i t} \sim \mathcal{N}(0,1), u_{i t} \sim \mathcal{N}(0, .25), \psi$ the degree of outlyingness of the initial observations $y_{i 0}$, and $x_{i 0}$ drawn from the stationary distribution. Entries: bias, standard deviation (std), and coverage rate of 95% confidence interval (ci.95) of adjusted likelihood ($\widehat{\theta}_{\mathrm{al}}$), Arellano-Bond ($\widehat{\theta}_{\mathrm{ab}}$), and Hahn-Kuersteiner ($\widehat{\theta}_{\mathrm{hk}}$) estimators; '—, indicates non-existence of the moment; 10, 000 Monte Carlo replications.

Table 3. Simulation results for the first-order autoregression with a covariate (cont'd)

N	T	ψ	γ	θ_{0}	bias			std			ci. 95		
					$\widehat{\rho}_{\text {al }}$	$\widehat{\rho}_{\text {ab }}$	$\widehat{\rho}_{\text {hk }}$	$\widehat{\rho}_{\text {al }}$	$\widehat{\rho}_{\text {ab }}$	$\widehat{\rho}_{\text {hk }}$	$\widehat{\rho}_{\text {al }}$	$\widehat{\rho}_{\text {ab }}$	$\widehat{\rho}_{\text {hk }}$
500	2	0	. 5	. 99	-. 105	-	-. 505	. 164	-	. 067	. 828	. 814	. 000
				. 01	. 000	-	-. 002	. 105	-	. 087	. 978	. 984	. 837
500	2	1	. 5	. 99	-. 100	-	-. 498	. 164	-	. 067	. 833	. 815	. 000
				. 01	. 003	-	. 013	. 105	-	. 087	. 977	. 979	. 829
500	2	2	. 5	. 99	-. 087	-	-. 478	. 164	-	. 067	. 842	. 823	. 000
				. 01	. 006		. 028	. 106	-	. 088	. 977	. 963	. 813
500	4	0	0.5	. 99	-. 058	-. 670	-. 255	. 077	. 259	. 032	. 837	. 251	. 000
				. 01	-. 001	-. 004	-. 002	. 054	. 052	. 050	. 976	. 955	. 907
500	4	1	. 5	. 99	-. 053	-. 617	-. 248	. 077	. 259	. 032	. 841	. 290	. 000
				. 01	. 002	. 022	. 009	. 055	. 051	. 050	. 977	. 937	. 904
500	4	2	. 5	. 99	-. 041	-. 500	-. 228	. 077	. 243	. 032	. 861	. 389	. 000
				. 01	. 003	. 039	. 019	. 055	. 051	. 051	. 975	. 896	. 888
500	6	0	0.5	. 99	-. 039	-. 481	-. 172	. 050	. 150	. 022	. 844	. 065	. 000
				. 01	. 000	-. 002	$-.001$. 040	. 040	. 038	. 974	. 949	. 923
500	6	1	. 5	. 99	-. 035	-. 433	-. 165	. 050	. 149	. 022	. 854	. 101	. 000
				$.01$. 002	. 020	. 008	. 040	. 039	. 038	. 973	. 924	. 917
500	6	2	. 5	. 99	-. 022	-. 320	-. 145	. 050	. 131	. 022	. 882	. 217	. 000
				. 01	. 002	. 031	. 014	. 040	. 039	. 038	. 973	. 886	. 902
500	8	0	0.5	. 99	-. 030	-. 372	-. 130	. 038	. 104	. 017	. 850	. 017	. 000
				. 01	. 000	-. 002	-. 001	. 032	. 033	. 032	. 974	. 952	. 930
500	8	1	. 5	. 99	-. 025	-. 330	-. 123	. 037	. 101	. 017	. 863	. 032	. 000
				. 01	. 001	. 016	. 006	. 033	. 032	. 032	. 975	. 930	. 926
500	8	2	. 5	. 99	-. 013	-. 228	-. 104	. 038	. 083	. 016	. 893	. 121	. 000
				. 01	. 001	. 023	. 011	. 033	. 032	. 032	. 974	. 898	. 919
500	16	0	0.5	. 99	-. 015	-. 193	-. 067	. 019	. 040	. 009	. 847	. 000	. 000
				. 01	. 000	-. 001	. 000	. 021	. 022	. 021	. 976	. 951	. 940
500	16	1	. 5	. 99	-. 011	-. 166	-. 060	. 019	. 038	. 009	. 871	. 000	. 000
				. 01	. 001	. 009	. 003	. 021	. 021	. 021	. 975	. 933	. 938
500	16	2	. 5	$.99$	-. 002	-. 098	-. 043	. 020	. 028	. 008	. 917	. 014	. 000
				$.01$. 000	. 011	. 005	. 021	. 021	. 021	. 971	. 922	. 937
500	24	0	0.5	. 99	-. 010	-. 128	-. 046	. 013	. 023	. 006	. 862	. 000	. 000
				. 01	. 000	-. 001	. 000	. 017	. 017	. 017	. 976	. 950	. 942
500	24	1	. 5	. 99	-. 005	-. 110	-. 039	. 013	. 022	. 006	. 897	. 000	. 000
				. 01	. 000	. 006	. 002	. 017	. 017	. 017	. 975	. 939	. 942
500	24	2	. 5	. 99	. 001	-. 060	-. 023	. 013	. 014	. 006	. 938	. 002	. 003
				. 01	. 000	. 006	. 002	. 017	. 017	. 017	. 965	. 934	. 942

Notes: Data generated as $y_{i t}=\theta_{01} y_{i t-1}+\theta_{02} x_{i t}+\alpha_{i}+\varepsilon_{i t}, x_{i t}=.5 \alpha_{i}+\gamma x_{i t-1}+u_{i t}(i=1, \ldots, N ; t=1, \ldots T)$ with $\alpha_{i} \sim \mathcal{N}(0,1), \varepsilon_{i t} \sim \mathcal{N}(0,1), u_{i t} \sim \mathcal{N}(0, .25), \psi$ the degree of outlyingness of the initial observations $y_{i 0}$, and $x_{i 0}$ drawn from the stationary distribution. Entries: bias, standard deviation (std), and coverage rate of 95% confidence interval (ci. 95) of adjusted likelihood ($\widehat{\theta}_{\mathrm{al}}$), Arellano-Bond ($\widehat{\theta}_{\mathrm{ab}}$), and Hahn-Kuersteiner ($\widehat{\theta}_{\mathrm{hk}}$) estimators; '- ' indicates non-existence of the moment; 10,000 Monte Carlo replications.

Table 3. Simulation results for the first-order autoregression with a covariate (cont'd)

N	T	ψ	γ	θ_{0}	bias			std			ci. 95		
					$\widehat{\rho}_{\text {al }}$	$\widehat{\rho}_{\text {ab }}$	$\widehat{\rho}_{\text {hk }}$	$\widehat{\rho}_{\text {al }}$	$\widehat{\rho}_{\text {ab }}$	$\widehat{\rho}_{\text {hk }}$	$\widehat{\rho}_{\text {al }}$	$\widehat{\rho}_{\text {ab }}$	$\widehat{\rho}_{\text {hk }}$
500	2	0	. 99	. 5	. 001	-	. 387	. 039	-	. 041	. 947	. 949	. 266
				. 5	. 001	-	. 098	. 128	-	. 165	. 949	. 948	. 794
500	2	1	. 99	. 5	-. 044	-	-. 649	. 166	-	. 067	. 873	. 938	. 000
				. 5	. 002	-	. 007	. 125	-	. 097	. 977	. 958	. 831
500	2	2	. 99	. 5	. 001	-	. 442	. 034	-	. 038	. 949	. 946	. 102
				. 5	. 001	-	-. 117	. 127	-	. 175	. 948	. 948	. 714
500	4	0	0.99	. 5	. 000	-. 002	. 201	. 019	. 018	. 020	. 950	. 948	. 000
				. 5	. 000	. 000	. 013	. 057	. 057	. 063	. 951	. 951	. 905
500	4	1	. 99	. 5	. 009	$-.017$	-. 219	. 073	. 054	. 031	. 952	. 931	. 000
				. 5	$-.002$. 004	. 051	. 060	. 058	. 055	. 953	. 949	. 763
500	4	2	. 99	. 5	. 000	-. 002	. 228	. 017	. 016	. 018	. 947	. 949	. 000
				. 5	. 000	. 001	-. 120	. 058	. 057	. 067	. 947	. 949	. 454
500	6	0	0.99	. 5	. 000	-. 002	. 127	. 014	. 014	. 015	. 946	. 946	. 000
				. 5	. 000	. 001	-. 013	. 037	. 037	. 038	. 948	. 947	. 920
500	6	1	. 99	. 5	. 000	-. 012	-. 093	. 031	. 031	. 022	. 951	. 933	. 007
				. 5	. 000	. 005	. 036	. 039	. 039	. 038	. 948	. 945	. 792
500	6	2	. 99	. 5	. 000	-. 002	. 146	. 013	. 013	. 013	. 948	. 944	. 000
				. 5	. 001	. 002	$-.095$. 038	. 038	. 040	. 948	. 948	. 292
500	8	0	0.99	. 5	. 000	-. 003	. 089	. 012	. 012	. 012	. 948	. 940	. 000
				. 5	. 000	. 001	-. 021	. 028	. 028	. 027	. 949	. 949	. 872
500	8	1	. 99	. 5	. 000	-. 010	-. 044	. 021	. 022	. 018	. 949	. 928	. 233
				. 5	. 000	. 005	. 021	. 030	. 030	. 029	. 950	. 947	. 861
500	8	2	. 99	. 5	. 000	-. 002	. 103	. 011	. 011	. 011	. 949	. 942	. 000
				. 5	. 000	. 002	-. 075	. 029	. 029	. 029	. 947	. 947	. 241
500	16	0	0.99	. 5	. 000	-. 004	. 036	. 008	. 009	. 009	. 945	. 927	. 009
				. 5	. 000	. 002	-. 019	. 015	. 015	. 014	. 948	. 945	. 738
500	16	1	. 99	. 5	. 000	-. 007	-. 001	. 011	. 012	. 011	. 947	. 909	. 924
				. 5	. 000	. 005	. 001	. 016	. 016	. 015	. 946	. 938	. 941
500	16	2	. 99	. 5	. 000	-. 003	. 042	. 008	. 008	. 008	. 951	. 929	. 001
				. 5	. 000	. 003	-. 035	. 016	. 016	. 015	. 946	. 942	. 338
500	24	0	0.99	. 5	. 000	-. 004	. 021	. 007	. 007	. 007	. 947	. 908	. 131
				. 5	. 000	. 003	-. 014	. 010	. 011	. 010	. 947	. 940	. 729
500	24	1	. 99	. 5	. 000	-. 006	. 004	. 008	. 009	. 008	. 949	. 888	. 907
				. 5	. 000	. 005	-. 003	. 011	. 012	. 011	. 949	. 930	. 939
500	24	2	. 99	. 5	. 000	-. 004	. 025	. 007	. 007	. 007	. 948	. 909	. 034
				. 5	. 000	. 003	-. 022	. 011	. 011	. 011	. 949	. 940	. 475

Notes: Data generated as $y_{i t}=\theta_{01} y_{i t-1}+\theta_{02} x_{i t}+\alpha_{i}+\varepsilon_{i t}, x_{i t}=.5 \alpha_{i}+\gamma x_{i t-1}+u_{i t}(i=1, \ldots, N ; t=1, \ldots T)$ with $\alpha_{i} \sim \mathcal{N}(0,1), \varepsilon_{i t} \sim \mathcal{N}(0,1), u_{i t} \sim \mathcal{N}(0, .25), \psi$ the degree of outlyingness of the initial observations $y_{i 0}$, and $x_{i 0}$ drawn from the stationary distribution. Entries: bias, standard deviation (std), and coverage rate of 95% confidence interval (ci.95) of adjusted likelihood ($\widehat{\theta}_{\mathrm{al}}$), Arellano-Bond ($\widehat{\theta}_{\mathrm{ab}}$), and Hahn-Kuersteiner ($\widehat{\theta}_{\mathrm{hk}}$) estimators; '—, indicates non-existence of the moment; 10, 000 Monte Carlo replications.

Table 3. Simulation results for the first-order autoregression with a covariate (cont'd)

N	T	ψ	γ	θ_{0}	bias			std			ci. 95		
					$\widehat{\rho}_{\text {al }}$	$\widehat{\rho}_{\text {ab }}$	$\widehat{\rho}_{\text {hk }}$	$\widehat{\rho}_{\text {al }}$	$\widehat{\rho}_{\text {ab }}$	$\widehat{\rho}_{\text {hk }}$	$\widehat{\rho}_{\text {al }}$	$\widehat{\rho}_{\text {ab }}$	$\widehat{\rho}_{\text {hk }}$
500	2	0	. 99	. 9	-. 016	-	-. 383	. 168	-	. 066	. 891	. 944	. 000
				. 1	. 000	-	$-.018$. 127	-	. 106	. 975	. 954	. 826
500	2	1	. 99	. 9	-. 099	-	-. 541	. 164	-	. 067	. 833	. 828	. 000
				. 1	. 002	-	. 005	. 122	-	. 099	. 978	. 981	. 835
500	2	2	. 99	. 9	. 020	-	$-.279$. 170	-	. 064	. 920	. 945	. 004
				. 1	. 000	-	. 019	. 130	-	. 111	. 969	. 952	. 830
500	4	0	0.99	. 9	. 008	$-.027$	-. 152	. 081	. 060	. 031	. 932	. 917	. 001
				. 1	. 000	$-.001$	$-.006$. 057	. 056	. 054	. 968	. 951	. 906
500	4	1	. 99	. 9	-. 046	$-.271$	$-.281$. 079	. 172	. 032	. 854	. 625	. 000
				. 1	. 003	. 017	. 017	. 056	. 054	. 052	. 974	. 943	. 882
500	4	2	. 99	. 9	. 012	$-.015$	$-.074$. 075	. 045	. 030	. 947	. 932	. 200
				. 1	-. 002	. 002	. 012	. 059	. 057	. 055	. 957	. 949	. 901
500	6	0	0.99	. 9	. 009	$-.023$	$-.083$. 054	. 034	. 021	. 947	. 895	. 011
				. 1	. 001	. 000	$-.002$. 037	. 037	. 036	. 958	. 947	. 922
500	6	1	. 99	. 9	$-.023$	$-.149$	$-.189$. 053	. 083	. 023	. 885	. 581	. 000
				. 1	. 003	. 017	. 021	. 037	. 037	. 036	. 971	. 926	. 861
500	6	2	. 99	. 9	. 003	$-.014$	$-.021$. 038	. 026	. 019	. 960	. 913	. 736
				. 1	. 000	. 004	. 006	. 038	. 038	. 037	. 948	. 946	. 921
500	8	0	0.99	. 9	. 005	$-.020$	$-.052$. 037	. 024	. 016	. 954	. 862	. 051
				. 1	. 000	. 000	$-.001$. 028	. 028	. 028	. 952	. 949	. 927
500	8	1	. 99	. 9	$-.010$	$-.096$	$-.140$. 041	. 051	. 017	. 907	. 547	. 000
				. 1	$.001$. 015	. 021	. 029	. 029	. 028	. 973	. 920	. 829
500	8	2	. 99	. 9	. 001	$-.012$	$-.001$. 024	. 018	. 014	. 960	. 900	. 912
				. 1	-. 001	. 004	. 000	. 029	. 028	. 028	. 948	. 944	. 932
500	16	0	0.99	. 9	. 000	$-.014$	$-.014$. 013	. 011	. 009	. 956	. 748	. 485
				. 1	. 000	. 001	. 001	. 014	. 014	. 014	. 947	. 946	. 936
500	16	1	. 99	. 9	. 002	$-.037$	$-.059$. 022	. 017	. 009	. 951	. 455	. 000
				. 1	-. 001	. 011	. 017	. 015	. 015	. 015	. 960	. 892	. 738
500	16	2	. 99	. 9	. 000	$-.009$. 014	. 009	. 009	. 007	. 947	. 816	. 431
				. 1	. 000	. 005	$-.007$. 015	. 015	. 014	. 946	. 932	. 909
500	24	0	0.99	. 9	. 000	$-.012$	$-.006$. 008	. 007	. 006	. 949	. 606	. 752
				. 1	. 000	. 002	. 001	. 010	. 010	. 010	. 946	. 940	. 940
500	24	1	. 99	. 9	. 000	$-.023$	$-.030$. 011	. 010	. 007	. 961	. 374	. 002
				. 1	. 000	. 009	. 012	. 010	. 010	. 010	. 946	. 861	. 749
500	24	2	. 99	. 9	. 000	$-.008$. 013	. 006	. 006	. 005	. 949	. 724	. 246
				. 1	. 000	. 005	$-.008$. 010	. 010	. 010	. 948	. 917	. 860

Notes: Data generated as $y_{i t}=\theta_{01} y_{i t-1}+\theta_{02} x_{i t}+\alpha_{i}+\varepsilon_{i t}, x_{i t}=.5 \alpha_{i}+\gamma x_{i t-1}+u_{i t}(i=1, \ldots, N ; t=1, \ldots T)$ with $\alpha_{i} \sim \mathcal{N}(0,1), \varepsilon_{i t} \sim \mathcal{N}(0,1), u_{i t} \sim \mathcal{N}(0, .25), \psi$ the degree of outlyingness of the initial observations $y_{i 0}$, and $x_{i 0}$ drawn from the stationary distribution. Entries: bias, standard deviation (std), and coverage rate of 95% confiydence interval (ci.95) of adjusted likelihood ($\widehat{\theta}_{\mathrm{al}}$), Arellano-Bond ($\widehat{\theta}_{\mathrm{ab}}$), and Hahn-Kuersteiner ($\widehat{\theta}_{\mathrm{hk}}$) estimators; '—' indicates non-existence of the moment; 10,000 Monte Carlo replications.

Table 3. Simulation results for the first-order autoregression with a covariate (cont'd)

N	T	ψ	γ	θ_{0}	bias			std			ci. 95		
					$\widehat{\rho}_{\text {al }}$	$\widehat{\rho}_{\text {ab }}$	$\widehat{\rho}_{\text {hk }}$	$\widehat{\rho}_{\text {al }}$	$\widehat{\rho}_{\text {ab }}$	$\widehat{\rho}_{\text {hk }}$	$\widehat{\rho}_{\text {al }}$	$\widehat{\rho}_{\text {ab }}$	$\widehat{\rho}_{\text {hk }}$
500	2	0	. 99	. 99	-. 104	-	-. 503	. 164	-	. 067	. 829	. 827	. 000
				. 01	. 001	-	-. 002	. 121	-	. 100	. 978	. 983	. 833
500	2	1	. 99	. 99	-. 103	-	-. 503	. 164	-	. 067	. 830	. 827	. 000
				. 01	. 002	-	. 004	. 121	-	. 100	. 978	. 981	. 835
500	2	2	. 99	. 99	-. 091	-	-. 485	. 164	-	. 067	. 840	. 888	. 000
				. 01	. 003	-	. 009	. 122	-	. 101	. 979	. 971	. 833
500	4	0	0.99	. 99	-. 057	-. 566	-. 254	. 077	. 259	. 032	. 840	. 331	. 000
				. 01	. 000	-. 003	-. 002	. 055	. 055	. 052	. 976	. 957	. 906
500	4	1	. 99	. 99	-. 056	-. 575	-. 253	. 077	. 259	. 032	. 837	. 325	. 000
				. 01	. 001	. 008	. 004	. 055	. 055	. 052	. 975	. 957	. 905
500	4	2	. 99	. 99	-. 045	-. 199	-. 236	. 077	. 152	. 032	. 853	. 706	. 000
				. 01	. 001	. 007	. 008	. 056	. 054	. 052	. 974	. 951	. 904
500	6	0	0.99	. 99	$-.038$	$-.407$	$-.170$. 050	. 148	. 022	. 845	. 126	. 000
				. 01	. 000	-. 001	. 000	. 037	. 038	. 035	. 974	. 953	. 918
500	6	1	. 99	. 99	-. 038	-. 411	-. 170	. 050	. 150	. 022	. 847	. 116	. 000
				. 01	. 001	. 011	. 005	. 037	. 039	. 035	. 973	. 944	. 915
500	6	2	. 99	. 99	$-.027$	-. 152	-. 153	. 050	. 084	. 022	. 870	. 535	. 000
				. 01	. 002	. 009	. 009	. 037	. 036	. 035	. 971	. 942	. 910
500	8	0	0.99	. 99	-. 029	$-.315$	-. 129	. 038	. 101	. 017	. 852	. 042	. 000
				. 01	. 000	-. 001	-. 001	. 028	. 030	. 027	. 975	. 952	. 924
500	8	1	. 99	. 99	-. 028	$-.317$	-. 128	. 038	. 101	. 017	. 854	. 040	. 000
				. 01	. 001	. 011	. 004	. 028	. 030	. 027	. 975	. 937	. 922
500	8	2	. 99	. 99	$-.018$	-. 119	-. 112	. 038	. 056	. 017	. 883	. 394	. 000
				. 01	. 001	. 009	. 008	. 028	. 028	. 027	. 975	. 938	. 913
500	16	0	0.99	. 99	$-.014$	$-.163$	-. 066	. 019	. 038	. 009	. 854	. 000	. 000
				. 01	. 000	. 000	. 000	. 014	. 016	. 014	. 972	. 950	. 931
500	16	1	. 99	. 99	$-.014$	-. 162	-. 065	. 019	. 038	. 009	. 857	. 000	. 000
				. 01	. 001	. 012	. 005	. 014	. 016	. 014	. 971	. 893	. 914
500	16	2	. 99	. 99	$-.005$	$-.065$	-. 050	. 019	. 021	. 008	. 900	. 082	. 000
				. 01	. 001	. 010	. 008	. 014	. 015	. 014	. 970	. 897	. 898
500	24	0	0.99	. 99	-. 009	-. 110	-. 044	. 013	. 021	. 006	. 867	. 000	. 000
				. 01	. 000	. 000	. 000	. 010	. 011	. 010	. 975	. 947	. 931
500	24	1	. 99	. 99	$-.008$	$-.107$	-. 043	. 013	. 021	. 006	. 873	. 000	. 000
				. 01	. 001	. 011	. 005	. 010	. 011	. 010	. 975	. 820	. 896
500	24	2	. 99	. 99	$-.001$	$-.045$	$-.030$. 013	. 012	. 006	. 925	. 013	. 000
				. 01	. 000	. 010	. 006	. 010	. 010	. 010	. 973	. 832	. 875

Notes: Data generated as $y_{i t}=\theta_{01} y_{i t-1}+\theta_{02} x_{i t}+\alpha_{i}+\varepsilon_{i t}, x_{i t}=.5 \alpha_{i}+\gamma x_{i t-1}+u_{i t}(i=1, \ldots, N ; t=1, \ldots T)$ with $\alpha_{i} \sim \mathcal{N}(0,1), \varepsilon_{i t} \sim \mathcal{N}(0,1), u_{i t} \sim \mathcal{N}(0, .25), \psi$ the degree of outlyingness of the initial observations $y_{i 0}$, and $x_{i 0}$ drawn from the stationary distribution. Entries: bias, standard deviation (std), and coverage rate of 95% confidence interval (ci.95) of adjusted likelihood ($\widehat{\theta}_{\mathrm{al}}$), Arellano-Bond ($\widehat{\theta}_{\mathrm{ab}}$), and Hahn-Kuersteiner ($\widehat{\theta}_{\mathrm{hk}}$) estimators; '-- indicates non-existence of the moment; 10, 000 Monte Carlo replications.

Table 3. Simulation results for the first-order autoregression with a covariate (cont'd)

N	T	ψ	γ	θ_{0}	bias			std			ci. 95		
					$\widehat{\rho}_{\text {al }}$	$\widehat{\rho}_{\text {ab }}$	$\widehat{\rho}_{\text {hk }}$	$\widehat{\rho}_{\text {al }}$	$\widehat{\rho}_{\text {ab }}$	$\widehat{\rho}_{\text {hk }}$	$\widehat{\rho}_{\text {al }}$	$\widehat{\rho}_{\text {ab }}$	$\widehat{\rho}_{\text {hk }}$
1000	2	0	. 5	. 5	$-.040$	-	-. 662	. 137	-	. 048	. 873	. 943	. 000
				. 5	$-.010$	-	-. 165	. 083	-	. 060	. 961	. 953	. 085
1000	2	1	. 5	. 5	. 026	-	-. 417	. 138	-	. 046	. 938	. 949	. 000
				. 5	$-.001$	-	. 007	. 079	-	. 064	. 965	. 953	. 834
1000	2	2	. 5	. 5	. 002	-	. 074	. 048	-	. 037	. 954	. 952	. 404
				. 5	$-.001$	-	-. 021	. 078	-	. 080	. 951	. 952	. 827
1000	4	0	. 5	. 5	. 006	-. 010	-. 245	. 056	. 042	. 021	. 957	. 937	. 000
				. 5	. 001	$-.001$	-. 028	. 040	. 039	. 038	. 953	. 952	. 801
1000	4	1	. 5	. 5	. 001	$-.007$	-. 124	. 034	. 035	. 021	. 958	. 944	. 000
				. 5	. 000	. 001	. 016	. 040	. 039	. 038	. 951	. 951	. 880
1000	4	2	. 5	. 5	. 000	$-.002$. 078	. 019	. 020	. 017	. 956	. 950	. 003
				. 5	. 000	. 001	$-.030$. 040	. 040	. 040	. 952	. 951	. 831
1000	6	0	. 5	. 5	. 000	$-.007$	-. 114	. 023	. 023	. 016	. 953	. 941	. 000
				. 5	. 000	. 000	-. 002	. 028	. 028	. 028	. 955	. 956	. 922
1000	6	1	. 5	. 5	. 000	$-.006$	$-.051$. 019	. 021	. 015	. 954	. 943	. 045
				. 5	. 000	. 001	. 009	. 029	. 029	. 028	. 954	. 955	. 910
1000	6	2	. 5	. 5	. 000	-. 003	. 056	. 013	. 014	. 013	. 954	. 947	. 004
				. 5	. 000	. 001	-. 022	. 029	. 029	. 029	. 953	. 953	. 859
1000	8	0	. 5	. 5	. 000	$-.006$	$-.061$. 016	. 017	. 013	. 952	. 937	. 002
				. 5	. 000	. 000	. 003	. 023	. 024	. 024	. 952	. 952	. 928
1000	8	1	. 5	. 5	. 000	$-.005$	-. 025	. 014	. 016	. 012	. 953	. 935	. 391
				. 5	. 000	. 001	. 005	. 024	. 024	. 023	. 951	. 951	. 926
1000	8	2	. 5	. 5	. 000	$-.003$. 042	. 011	. 012	. 010	. 953	. 946	. 013
				. 5	. 000	. 001	-. 016	. 024	. 024	. 024	. 952	. 952	. 875
1000	16	0	. 5	. 5	. 000	$-.004$	$-.010$. 008	. 009	. 008	. 949	. 925	. 699
				. 5	. 000	. 001	. 002	. 015	. 015	. 015	. 945	. 944	. 936
1000	16	1	. 5	. 5	. 000	-. 004	-. 002	. 008	. 009	. 008	. 950	. 930	. 921
				. 5	. 000	. 001	. 001	. 015	. 015	. 015	. 946	. 944	. 939
1000	16	2	. 5	. 5	. 000	$-.003$. 017	. 007	. 008	. 007	. 950	. 935	. 229
				. 5	. 000	. 001	$-.006$. 015	. 015	. 015	. 947	. 944	. 926
1000	24	0	. 5	. 5	. 000	-. 004	-. 002	. 006	. 007	. 006	. 953	. 917	. 917
				. 5	. 000	. 001	. 001	. 012	. 012	. 012	. 952	. 951	. 948
1000	24	1	. 5	. 5	. 000	-. 004	. 001	. 006	. 007	. 006	. 954	. 921	. 932
				. 5	. 000	. 001	. 000	. 012	. 012	. 012	. 953	. 951	. 950
1000	24	2	. 5	. 5	. 000	$-.003$. 010	. 005	. 006	. 005	. 954	. 922	. 491
				. 5	. 000	. 001	$-.004$. 012	. 012	. 012	. 953	. 951	. 940

Notes: Data generated as $y_{i t}=\theta_{01} y_{i t-1}+\theta_{02} x_{i t}+\alpha_{i}+\varepsilon_{i t}, x_{i t}=.5 \alpha_{i}+\gamma x_{i t-1}+u_{i t}(i=1, \ldots, N ; t=1, \ldots T)$ with $\alpha_{i} \sim \mathcal{N}(0,1), \varepsilon_{i t} \sim \mathcal{N}(0,1), u_{i t} \sim \mathcal{N}(0, .25), \psi$ the degree of outlyingness of the initial observations $y_{i 0}$, and $x_{i 0}$ drawn from the stationary distribution. Entries: bias, standard deviation (std), and coverage rate of 95% confidence interval (ci.95) of adjusted likelihood ($\widehat{\theta}_{\mathrm{al}}$), Arellano-Bond ($\widehat{\theta}_{\mathrm{ab}}$), and Hahn-Kuersteiner ($\widehat{\theta}_{\mathrm{hk}}$) estimators; '—, indicates non-existence of the moment; 10, 000 Monte Carlo replications.

Table 3. Simulation results for the first-order autoregression with a covariate (cont'd)

N	T	ψ	γ	θ_{0}	bias			std			ci. 95		
					$\widehat{\rho}_{\text {al }}$	$\widehat{\rho}_{\text {ab }}$	$\widehat{\rho}_{\text {hk }}$	$\widehat{\rho}_{\text {al }}$	$\widehat{\rho}_{\text {ab }}$	$\widehat{\rho}_{\text {hk }}$	$\widehat{\rho}_{\text {al }}$	$\widehat{\rho}_{\text {ab }}$	$\widehat{\rho}_{\text {hk }}$
1000	2	0	. 5	. 9	$-.090$	-	-. 546	. 135	-	. 048	. 828	. 855	. 000
				. 1	-. 005	-	$-.027$. 074	-	. 060	. 976	. 959	. 793
1000	2	1	. 5	. 9	-. 055	-	-. 489	. 135	-	. 048	. 865	. 870	. 000
				. 1	. 003	-	. 024	. 076	-	. 062	. 978	. 965	. 803
1000	2	2	. 5	. 9	. 013	-	-. 319	. 140	-	. 047	. 921	. 944	. 000
				. 1	-. 002	-	. 048	. 081	-	. 067	. 971	. 957	. 734
1000	4	0	. 5	. 9	-. 041	$-.174$	-. 289	. 064	. 142	. 023	. 856	. 736	. 000
				. 1	-. 002	$-.007$	-. 013	. 039	. 038	. 036	. 975	. 945	. 881
1000	4	1	. 5	. 9	-. 011	-. 118	-. 232	. 065	. 121	. 023	. 907	. 813	. 000
				. 1	. 001	. 011	. 021	. 040	. 039	. 036	. 975	. 945	. 853
1000	4	2	. 5	. 9	. 010	-. 018	-. 096	. 060	. 050	. 021	. 954	. 928	. 002
				. 1	-. 003	. 004	. 021	. 042	. 041	. 038	. 962	. 951	. 859
1000	6	0	. 5	. 9	$-.022$	$-.096$	-. 198	. 044	. 068	. 016	. 872	. 703	. 000
				. 1	-. 001	$-.003$	-. 007	. 028	. 028	. 027	. 979	. 955	. 913
1000	6	1	. 5	. 9	. 001	$-.067$	-. 146	. 046	. 058	. 015	. 928	. 781	. 000
				. 1	. 000	. 007	. 016	. 029	. 028	. 027	. 972	. 946	. 873
1000	6	2	. 5	. 9	. 002	-. 014	-. 034	. 029	. 027	. 014	. 962	. 916	. 212
				. 1	. 000	. 003	. 009	. 029	. 029	. 028	. 955	. 952	. 916
1000	8	0	. 5	. 9	$-.010$	$-.063$	$-.150$. 034	. 041	. 012	. 895	. 687	. 000
				. 1	. 000	-. 002	-. 004	. 023	. 023	. 023	. 973	. 950	. 918
1000	8	1	. 5	. 9	. 005	-. 045	-. 103	. 035	. 036	. 012	. 942	. 763	. 000
				. 1	-. 001	. 005	. 012	. 024	. 024	. 023	. 966	. 945	. 890
1000	8	2	. 5	. 9	. 001	$-.010$	$-.010$. 017	. 017	. 010	. 956	. 909	. 764
				. 1	. 000	. 003	. 003	. 024	. 024	. 023	. 953	. 949	. 933
1000	16	0	. 5	. 9	. 003	$-.024$	$-.070$. 019	. 014	. 007	. 951	. 609	. 000
				. 1	. 000	. 000	. 000	. 015	. 015	. 015	. 954	. 947	. 933
1000	16	1	. 5	. 9	. 001	$-.020$	-. 041	. 012	. 013	. 006	. 965	. 658	. 000
				. 1	. 000	. 003	. 005	. 015	. 015	. 015	. 947	. 941	. 921
1000	16	2	. 5	. 9	. 000	$-.007$. 009	. 007	. 007	. 005	. 953	. 855	. 529
				. 1	. 000	. 002	-. 002	. 015	. 015	. 015	. 947	. 943	. 939
1000	24	0	. 5	. 9	. 000	$-.015$	-. 040	. 009	. 008	. 005	. 965	. 553	. 000
				. 1	. 000	. 000	. 000	. 012	. 012	. 012	. 950	. 950	. 942
1000	24	1	. 5	. 9	. 000	$-.014$	$-.023$. 007	. 008	. 005	. 956	. 576	. 000
				. 1	. 000	. 002	. 003	. 012	. 012	. 012	. 950	. 950	. 939
1000	24	2	. 5	$.9$	$.000$	$-.006$. 008	. 004	. 005	. 004	. 954	. 786	$.355$
				. 1	. 000	. 001	$-.002$. 012	. 012	. 012	. 951	. 950	. 945

Notes: Data generated as $y_{i t}=\theta_{01} y_{i t-1}+\theta_{02} x_{i t}+\alpha_{i}+\varepsilon_{i t}, x_{i t}=.5 \alpha_{i}+\gamma x_{i t-1}+u_{i t}(i=1, \ldots, N ; t=1, \ldots T)$ with $\alpha_{i} \sim \mathcal{N}(0,1), \varepsilon_{i t} \sim \mathcal{N}(0,1), u_{i t} \sim \mathcal{N}(0, .25), \psi$ the degree of outlyingness of the initial observations $y_{i 0}$, and $x_{i 0}$ drawn from the stationary distribution. Entries: bias, standard deviation (std), and coverage rate of 95% confidence interval (ci.95) of adjusted likelihood ($\widehat{\theta}_{\mathrm{al}}$), Arellano-Bond ($\widehat{\theta}_{\mathrm{ab}}$), and Hahn-Kuersteiner ($\widehat{\theta}_{\mathrm{hk}}$) estimators; '—, indicates non-existence of the moment; 10, 000 Monte Carlo replications.

Table 3. Simulation results for the first-order autoregression with a covariate (cont'd)

N	T	ψ	γ	θ_{0}	bias			std			ci. 95		
					$\widehat{\rho}_{\text {al }}$	$\widehat{\rho}_{\text {ab }}$	$\widehat{\rho}_{\text {hk }}$	$\widehat{\rho}_{\text {al }}$	$\widehat{\rho}_{\text {ab }}$	$\widehat{\rho}_{\text {hk }}$	$\widehat{\rho}_{\text {al }}$	$\widehat{\rho}_{\text {ab }}$	$\widehat{\rho}_{\text {hk }}$
1000	2	0	. 5	. 99	-. 092	-	-. 505	. 135	-	. 048	. 825	. 824	. 000
				. 01	-. 001	-	-. 002	. 074	-	. 061	. 980	. 984	. 833
1000	2	1	. 5	. 99	-. 088	-	-. 498	. 135	-	. 048	. 832	. 832	. 000
				. 01	. 002	-	. 013	. 074	-	. 061	. 980	. 975	. 822
1000	2	2	. 5	. 99	-. 075	-	-. 478	. 135	-	. 048	. 843	. 838	. 000
				. 01	. 004		. 027	. 075		. 062	. 977	. 953	. 798
1000	4	0	. 5	. 99	-. 048	-. 667	-. 255	. 063	. 260	. 023	. 839	. 253	. 000
				. 01	-. 001	-. 003	-. 002	. 039	. 037	. 036	. 976	. 951	. 908
1000	4	1	. 5	. 99	-. 044	-. 566	-. 249	. 062	. 251	. 023	. 849	. 328	. 000
				. 01	. 001	. 021	. 010	. 039	. 036	. 036	. 976	. 921	. 898
1000	4	2	. 5	. 99	-. 031	-. 395	-. 228	. 062	. 214	. 023	. 874	. 488	. 000
				. 01	. 002	. 032	. 019	. 039	. 037	. 036	. 976	. 873	. 864
1000	6	0	. 5	. 99	-. 033	-. 472	-. 172	. 042	. 150	. 016	. 835	. 071	. 000
				. 01	. 000	-. 002	-. 001	. 028	. 028	. 027	. 979	. 955	. 928
1000	6	1	. 5	. 99	-. 029	-. 390	-. 165	. 042	. 144	. 016	. 850	. 144	. 000
				. 01	. 001	. 017	. 008	. 028	. 027	. 027	. 978	. 913	. 915
1000	6	2	. 5	. 99	-. 017	-. 240	-. 145	. 042	. 110	. 015	. 881	. 348	. 000
				$.01$. 002	. 023	. 014	. 029	. 028	. 027	. 977	. 874	. 884
1000	8	0	. 5	. 99	-. 025	-. 361	-. 130	. 031	. 102	. 012	. 840	. 017	. 000
				. 01	. 000	-. 002	-. 001	. 023	. 024	. 023	. 976	. 950	. 930
1000	8	1	. 5	. 99	-. 020	-. 291	-. 123	. 031	. 095	. 012	. 859	. 053	. 000
				. 01	. 001	. 014	. 006	. 023	. 023	. 023	. 976	. 911	. 918
1000	8	2	. 5	. 99	-. 009	-. 163	-. 104	. 031	. 066	. 012	. 897	. 252	. 000
				. 01	.001	. 017	. 011	. 024	. 023	. 023	. 975	. 889	. 899
1000	16	0	. 5	. 99	-. 012	-. 182	-. 067	. 016	. 039	. 006	. 852	. 000	. 000
				. 01	. 000	. 000	. 000	. 015	. 015	. 015	. 973	. 948	. 937
1000	16	1	. 5	. 99	-. 008	-. 142	-. 060	. 016	. 035	. 006	. 883	. 001	. 000
				. 01	. 001	. 008	. 003	. 015	. 015	. 015	. 972	. 918	. 928
1000	16	2	. 5	. 99	. 000	-. 066	-. 042	. 016	. 021	. 006	. 928	. 080	. 000
				. 01	. 000	. 007	. 005	. 015	. 015	. 015	. 967	. 916	. 923
1000	24	0	. 5	. 99	$-.008$	$-.118$	-. 046	. 011	. 021	. 004	. 853	. 000	. 000
				. 01	$.000$	$.000$. 000	. 012	. 012	. 012	. 976	. 952	. 945
1000	24	1	. 5	. 99	-. 004	-. 093	-. 039	. 011	. 019	. 004	. 893	. 000	. 000
				. 01	. 000	. 005	. 002	. 012	. 012	. 012	. 974	. 934	. 942
1000	24	2	. 5	. 99	. 001	-. 039	-. 023	. 011	. 011	. 004	. 941	. 027	. 000
				. 01	. 000	. 004	. 003	. 012	. 012	. 012	. 964	. 936	. 941

Notes: Data generated as $y_{i t}=\theta_{01} y_{i t-1}+\theta_{02} x_{i t}+\alpha_{i}+\varepsilon_{i t}, x_{i t}=.5 \alpha_{i}+\gamma x_{i t-1}+u_{i t}(i=1, \ldots, N ; t=1, \ldots T)$ with $\alpha_{i} \sim \mathcal{N}(0,1), \varepsilon_{i t} \sim \mathcal{N}(0,1), u_{i t} \sim \mathcal{N}(0, .25), \psi$ the degree of outlyingness of the initial observations $y_{i 0}$, and $x_{i 0}$ drawn from the stationary distribution. Entries: bias, standard deviation (std), and coverage rate of 95% confidence interval (ci. 95) of adjusted likelihood ($\widehat{\theta}_{\mathrm{al}}$), Arellano-Bond ($\widehat{\theta}_{\mathrm{ab}}$), and Hahn-Kuersteiner ($\widehat{\theta}_{\mathrm{hk}}$) estimators; '- 'indicates non-existence of the moment; 10,000 Monte Carlo replications.

Table 3. Simulation results for the first-order autoregression with a covariate (cont'd)

N	T	ψ	γ	θ_{0}	bias			std			ci. 95		
					$\widehat{\rho}_{\text {al }}$	$\widehat{\rho}_{\text {ab }}$	$\widehat{\rho}_{\text {hk }}$	$\widehat{\rho}_{\text {al }}$	$\widehat{\rho}_{\text {ab }}$	$\widehat{\rho}_{\text {hk }}$	$\widehat{\rho}_{\text {al }}$	$\widehat{\rho}_{\text {ab }}$	$\widehat{\rho}_{\text {hk }}$
1000	2	0	. 99	. 5	. 000	-	. 387	. 028	-	. 029	. 945	. 946	. 126
				. 5	. 000	-	. 096	. 089	-	. 116	. 949	. 949	. 734
1000	2	1	. 99	. 5	-. 033	-	-. 649	. 137	-	. 048	. 881	. 945	. 000
				. 5	. 000	-	. 006	. 088	-	. 068	. 975	. 953	. 832
1000	2	2	. 99	. 5	. 000	-	. 441	. 024	-	. 027	. 953	. 951	. 021
				. 5	. 000	-	-. 118	. 089	-	. 123	. 949	. 949	. 635
1000	4	0	. 99	. 5	. 000	$-.001$. 201	. 013	. 013	. 014	. 951	. 951	. 000
				. 5	. 000	. 000	. 013	. 040	. 040	. 044	. 950	. 950	. 899
1000	4	1	. 99	. 5	. 004	-. 009	-. 219	. 049	. 039	. 021	. 964	. 940	. 000
				. 5	-. 001	. 002	. 051	. 042	. 041	. 039	. 954	. 953	. 631
1000	4	2	. 99	. 5	. 000	$-.001$. 228	. 012	. 011	. 013	. 956	. 954	. 000
				. 5	. 000	. 000	-. 121	. 040	. 040	. 046	. 951	. 951	. 183
1000	6	0	. 99	. 5	. 000	$-.001$. 127	. 010	. 010	. 010	. 949	. 947	. 000
				. 5	. 000	. 000	-. 013	. 026	. 026	. 027	. 949	. 949	. 907
1000	6	1	. 99	. 5	. 000	-. 006	-. 092	. 022	. 022	. 016	. 953	. 938	. 000
				. 5	. 000	. 002	. 035	. 027	. 027	. 026	. 950	. 951	. 671
1000	6	2	. 99	. 5	. 000	-. 001	. 146	. 009	. 009	. 009	. 952	. 950	. 000
				. 5	. 000	. 001	$-.096$. 027	. 027	. 028	. 949	. 950	. 059
1000	8	0	. 99	. 5	. 000	$-.002$. 089	. 008	. 008	. 009	. 949	. 946	. 000
				. 5	. 000	. 000	-. 021	. 020	. 020	. 019	. 952	. 951	. 801
1000	8	1	. 99	. 5	. 000	$-.005$	-. 044	. 015	. 016	. 013	. 952	. 937	. 037
				. 5	. 000	. 003	. 021	. 021	. 021	. 020	. 951	. 948	. 781
1000	8	2	. 99	. 5	. 000	$-.001$. 104	. 008	. 008	. 008	. 951	. 950	. 000
				. 5	. 000	. 001	$-.075$. 020	. 020	. 020	. 953	. 951	. 035
1000	16	0	. 99	. 5	. 000	$-.002$. 036	. 006	. 006	. 006	. 949	. 939	. 000
				. 5	. 000	. 001	-. 019	. 010	. 010	. 010	. 950	. 949	. 524
1000	16	1	. 99	. 5	. 000	$-.004$	-. 001	. 008	. 009	. 008	. 948	. 925	. 920
				. 5	. 000	. 002	. 001	. 011	. 012	. 011	. 946	. 940	. 943
1000	16	2	. 99	. 5	. 000	$-.002$. 042	. 005	. 006	. 006	. 954	. 944	. 000
				. 5	. 000	. 001	-. 036	. 011	. 011	. 011	. 949	. 946	. 082
1000	24	0	. 99	. 5	. 000	$-.002$. 021	. 005	. 005	. 005	. 948	. 932	. 009
				. 5	. 000	. 001	-. 014	. 007	. 007	. 007	. 950	. 947	. 519
1000	24	1	. 99	. 5	. 000	$-.003$. 004	. 006	. 006	. 006	. 952	. 920	. 887
				. 5	. 000	. 003	-. 003	. 008	. 008	. 008	. 951	. 940	. 933
1000	24	2	. 99	. 5	. 000	-. 002	. 025	. 005	. 005	. 005	. 950	. 931	. 000
				. 5	. 000	. 002	$-.022$. 008	. 008	. 008	. 952	. 946	. 178

Notes: Data generated as $y_{i t}=\theta_{01} y_{i t-1}+\theta_{02} x_{i t}+\alpha_{i}+\varepsilon_{i t}, x_{i t}=.5 \alpha_{i}+\gamma x_{i t-1}+u_{i t}(i=1, \ldots, N ; t=1, \ldots T)$ with $\alpha_{i} \sim \mathcal{N}(0,1), \varepsilon_{i t} \sim \mathcal{N}(0,1), u_{i t} \sim \mathcal{N}(0, .25), \psi$ the degree of outlyingness of the initial observations $y_{i 0}$, and $x_{i 0}$ drawn from the stationary distribution. Entries: bias, standard deviation (std), and coverage rate of 95% confidence interval (ci.95) of adjusted likelihood ($\widehat{\theta}_{\mathrm{al}}$), Arellano-Bond ($\widehat{\theta}_{\mathrm{ab}}$), and Hahn-Kuersteiner ($\widehat{\theta}_{\mathrm{hk}}$) estimators; '—, indicates non-existence of the moment; 10, 000 Monte Carlo replications.

Table 3. Simulation results for the first-order autoregression with a covariate (cont'd)

N	T	ψ	γ	θ_{0}	bias			std			ci. 95		
					$\widehat{\rho}_{\text {al }}$	$\widehat{\rho}_{\text {ab }}$	$\widehat{\rho}_{\text {hk }}$	$\widehat{\rho}_{\text {al }}$	$\widehat{\rho}_{\text {ab }}$	$\widehat{\rho}_{\text {hk }}$	$\widehat{\rho}_{\text {al }}$	$\widehat{\rho}_{\text {ab }}$	$\widehat{\rho}_{\text {hk }}$
1000	2	0	. 99	. 9	-. 006	-	-. 383	. 140	-	. 047	. 899	. 946	. 000
				. 1	. 000	-	-. 019	. 089	-	. 074	. 971	. 951	. 821
1000	2	1	. 99	. 9	-. 086	-	-. 541	. 135	-	. 048	. 833	. 844	. 000
				. 1	. 001	-	. 004	. 085	-	. 069	. 975	. 981	. 835
1000	2	2	. 99	. 9	. 021	-	-. 280	. 140	-	. 046	. 929	. 947	. 000
				. 1	-. 001	-	. 018	. 091	-	. 078	. 967	. 950	. 827
1000	4	0	. 99	. 9	. 011	-. 014	-. 152	. 068	. 043	. 022	. 941	. 937	. 000
				. 1	. 000	-. 001	-. 007	. 040	. 040	. 038	. 964	. 951	. 903
1000	4	1	. 99	. 9	-. 036	-. 165	-. 281	. 064	. 139	. 023	. 866	. 749	. 000
				. 1	. 002	. 010	. 017	. 040	. 039	. 037	. 976	. 947	. 868
1000	4	2	. 99	. 9	. 008	-. 008	-. 074	. 054	. 032	. 021	. 957	. 945	. 029
				. 1	-. 002	. 001	. 012	. 041	. 040	. 039	. 956	. 951	. 895
1000	6	0	. 99	. 9	. 006	-. 012	-. 083	. 041	. 025	. 015	. 950	. 925	. 000
				. 1	. 000	. 000	-. 003	. 026	. 026	. 026	. 954	. 949	. 921
1000	6	1	. 99	. 9	-. 017	-. 085	-. 190	. 044	. 065	. 016	. 886	. 730	. 000
				. 1	. 002	. 009	. 021	. 026	. 026	. 025	. 975	. 938	. 816
1000	6	2	. 99	. 9	. 001	-. 007	-. 021	. 026	. 019	. 014	. 961	. 931	. 571
				. 1	. 000	. 002	. 005	. 027	. 026	. 026	. 952	. 949	. 922
1000	8	0	. 99	. 9	. 002	-. 011	-. 052	. 026	. 017	. 011	. 956	. 903	. 002
				. 1	. 000	. 000	-. 001	. 020	. 020	. 020	. 952	. 951	. 932
1000	8	1	. 99	. 9	-. 005	-. 054	-. 140	. 034	. 039	. 012	. 911	. 721	. 000
				. 1	. 001	. 009	. 022	. 020	. 020	. 020	. 974	. 932	. 732
1000	8	2	. 99	. 9	. 001	-. 006	-. 001	. 016	. 013	. 010	. 954	. 927	. 912
				. 1	. 000	. 002	. 000	. 020	. 020	. 020	. 951	. 951	. 937
1000	16	0	. 99	. 9	. 000	-. 0008	-. 014	. 009	. 008	. 006	. 950	. 839	. 231
				. 1	. 000	. 000	. 001	. 010	. 010	. 010	. 950	. 950	. 938
1000	16	1	. 99	. 9	. 002	-. 020	-. 058	. 017	. 013	. 007	. 956	. 664	. 000
				. 1	-. 001	. 006	. 017	. 011	. 011	. 010	. 959	. 911	. 559
1000	16	2	. 99	. 9	. 000	-. 005	. 014	. 006	. 006	. 005	. 953	. 887	. 163
				. 1	. 000	. 002	-. 007	. 010	. 010	. 010	. 947	. 941	. 881
1000	24	0	. 99	. 9	. 000	-. 006	-. 006	. 005	. 005	. 004	. 949	. 774	. 619
				. 1	. 000	. 001	. 001	. 007	. 007	. 007	. 951	. 949	. 944
1000	24	1	. 99	. 9	. 000	-. 012	-. 030	. 007	. 007	. 005	. 955	. 613	. 000
				. 1	. 000	. 005	. 012	. 007	. 007	. 007	. 951	. 900	. 567
1000	24	2	. 99	. 9	$.000$	$-.004$	$.013$. 004	$.004$. 004	. 951	. 835	. 043
				. 1	. 000	. 003	-. 008	. 007	. 007	. 007	. 951	. 937	. 784

Notes: Data generated as $y_{i t}=\theta_{01} y_{i t-1}+\theta_{02} x_{i t}+\alpha_{i}+\varepsilon_{i t}, x_{i t}=.5 \alpha_{i}+\gamma x_{i t-1}+u_{i t}(i=1, \ldots, N ; t=1, \ldots T)$ with $\alpha_{i} \sim \mathcal{N}(0,1), \varepsilon_{i t} \sim \mathcal{N}(0,1), u_{i t} \sim \mathcal{N}(0, .25), \psi$ the degree of outlyingness of the initial observations $y_{i 0}$, and $x_{i 0}$ drawn from the stationary distribution. Entries: bias, standard deviation (std), and coverage rate of 95% confiydence interval (ci. 95) of adjusted likelihood ($\widehat{\theta}_{\mathrm{al}}$), Arellano-Bond ($\widehat{\theta}_{\mathrm{ab}}$), and Hahn-Kuersteiner ($\widehat{\theta}_{\mathrm{hk}}$) estimators; '-' indicates non-existence of the moment; 10,000 Monte Carlo replications.

Table 3. Simulation results for the first-order autoregression with a covariate (cont'd)

N	T	ψ	γ	θ_{0}	bias			std			ci. 95		
					$\widehat{\rho}_{\text {al }}$	$\widehat{\rho}_{\text {ab }}$	$\widehat{\rho}_{\text {hk }}$	$\widehat{\rho}_{\text {al }}$	$\widehat{\rho}_{\text {ab }}$	$\widehat{\rho}_{\text {hk }}$	$\widehat{\rho}_{\text {al }}$	$\widehat{\rho}_{\text {ab }}$	$\widehat{\rho}_{\text {hk }}$
1000	2		. 99	. 99	-. 091	-	-. 503	. 135	-	. 048	. 827	. 846	. 000
		0		. 01	. 000	-	-. 002	. 085	-	. 070	. 975	. 982	. 836
1000	2	1	. 99	. 99	-. 091	-	-. 502	. 135	-	. 048	. 828	. 842	. 000
				. 01	. 001	-	. 003	. 085	-	. 070	. 975	. 981	. 835
1000	2	2	. 99	. 99	$-.080$	-	$-.485$. 135	-	. 048	. 841	. 917	. 000
				. 01	. 001	-	. 008	. 086	-	. 071	. 975	. 967	. 833
1000	4	0	0.99	. 99	-. 047	$-.477$	$-.254$. 063	. 245	. 023	. 839	. 417	. 000
				. 01	$-.001$	-. 002	-. 002	. 039	. 038	. 036	. 977	. 955	. 905
1000	4	1	. 99	. 99	$-.046$	$-.485$	$-.253$. 063	. 245	. 023	. 843	. 406	. 000
				. 01	. 000	. 007	. 004	. 039	. 038	. 036	. 977	. 953	. 905
1000	4	2	. 99	. 99	-. 036	$-.111$	$-.236$. 062	. 114	. 023	. 866	. 817	. 000
				. 01	. 001	. 004	. 008	. 039	. 038	. 037	. 976	. 952	. 898
1000	6	0	0.99	. 99	$-.032$	-. 340	-. 170	. 042	. 137	. 016	. 839	. 196	. 000
				. 01	. 000	-. 002	$-.001$. 026	. 026	. 025	. 976	. 953	. 920
1000	6	1	. 99	. 99	-. 032	-. 348	$-.170$. 042	. 139	. 016	. 840	. 187	. 000
				. 01	. 001	. 008	. 004	. 026	. 026	. 025	. 975	. 948	. 917
1000	6	2	. 99	. 99	-. 022	$-.087$	$-.153$. 042	. 063	. 015	. 869	. 704	. 000
				. 01	. 001	. 005	. 008	. 026	. 026	. 025	. 976	. 949	. 906
1000	8	0	0.99	. 99	-. 024	-. 263	$-.128$. 031	. 092	. 012	. 846	. 085	. 000
				. 01	. 000	-. 001	$-.001$. 019	. 020	. 019	. 977	. 954	. 927
1000	8	1	. 99	. 99	-. 023	-. 265	-. 128	. 031	. 092	. 012	. 848	. 077	. 000
				. 01	. 001	. 009	. 005	. 020	. 020	. 019	. 977	. 933	. 919
1000	8	2	. 99	. 99	$-.013$	$-.068$	-. 112	. 031	. 040	. 012	. 883	. 614	. 000
				. 01	. 001	. 005	. 009	. 020	. 020	. 019	. 976	. 943	. 900
1000	16	0	0.99	. 99	$-.011$	$-.135$	$-.065$. 016	. 034	. 006	. 861	. 002	. 000
				. 01	. 000	. 000	. 000	. 010	. 011	. 010	. 975	. 952	. 934
1000	16	1	. 99	. 99	-. 011	$-.133$	$-.065$. 016	. 033	. 006	. 864	. 003	. 000
				. 01	. 001	. 010	. 005	. 010	. 011	. 010	. 974	. 866	. 901
1000	16	2	. 99	. 99	$-.003$	-. 038	$-.050$. 016	. 015	. 006	. 914	. 277	. 000
				. 01	. 000	. 006	. 007	. 010	. 010	. 010	. 973	. 914	. 862
1000	24	0	0.99	. 99	$-.007$	-. 090	$-.044$. 011	. 018	. 004	. 862	. 000	. 000
				. 01	. 000	. 000	. 000	. 007	. 007	. 007	. 976	. 954	. 937
1000	24	1	. 99	. 99	$-.007$	$-.087$	$-.043$. 011	. 018	. 004	. 871	. 000	. 000
				. 01	. 001	. 009	. 005	. 007	. 007	. 007	. 976	. 773	. 874
1000	24	2	. 99	. 99	. 000	$-.027$	$-.030$. 011	. 008	. 004	. 928	. 098	. 000
				. 01	. 000	. 006	. 006	. 007	. 007	. 007	. 975	. 871	. 822

Notes: Data generated as $y_{i t}=\theta_{01} y_{i t-1}+\theta_{02} x_{i t}+\alpha_{i}+\varepsilon_{i t}, x_{i t}=.5 \alpha_{i}+\gamma x_{i t-1}+u_{i t}(i=1, \ldots, N ; t=1, \ldots T)$ with $\alpha_{i} \sim \mathcal{N}(0,1), \varepsilon_{i t} \sim \mathcal{N}(0,1), u_{i t} \sim \mathcal{N}(0, .25), \psi$ the degree of outlyingness of the initial observations $y_{i 0}$, and $x_{i 0}$ drawn from the stationary distribution. Entries: bias, standard deviation (std), and coverage rate of 95% confidence interval (ci. 95) of adjusted likelihood ($\widehat{\theta}_{\mathrm{al}}$), Arellano-Bond ($\widehat{\theta}_{\mathrm{ab}}$), and Hahn-Kuersteiner ($\widehat{\theta}_{\mathrm{hk}}$) estimators; '- 'indicates non-existence of the moment; 10, 000 Monte Carlo replications.

Table 3. Simulation results for the first-order autoregression with a covariate (cont'd)

N	T	ψ	γ	θ_{0}	bias			std			ci. 95		
					$\widehat{\rho}_{\text {al }}$	$\widehat{\rho}_{\text {ab }}$	$\widehat{\rho}_{\text {hk }}$	$\widehat{\rho}_{\text {al }}$	$\widehat{\rho}_{\text {ab }}$	$\widehat{\rho}_{\text {hk }}$	$\widehat{\rho}_{\text {al }}$	$\widehat{\rho}_{\text {ab }}$	$\widehat{\rho}_{\text {hk }}$
2500	2	0	. 5	. 5	-. 024	-	-. 662	. 105	-	. 030	. 889	. 950	. 000
				. 5	-. 006	-	-. 166	. 056	-	. 038	. 961	. 953	. 002
2500	2	1	. 5	. 5	. 019	-	-. 417	. 100	-	. 028	. 947	. 951	. 000
				. 5	. 000	-	. 007	. 050	-	. 041	. 956	. 950	. 824
2500	2	2	. 5	. 5	. 001	-	. 074	. 030	-	. 023	. 952	. 950	. 067
				. 5	. 000		-. 021	. 050	-	. 051	. 949	. 950	. 806
2500	4	0	. 5	. 5	. 002	-. 004	-. 245	. 033	. 026	. 014	. 961	. 948	. 000
				. 5	. 000	. 000	-. 028	. 025	. 025	. 024	. 954	. 954	. 675
2500	4	1	. 5	. 5	. 001	-. 003	-. 124	. 022	. 022	. 014	. 950	. 949	. 000
				. 5	. 000	. 000	. 016	. 025	. 025	. 024	. 955	. 955	. 837
2500	4	2	. 5	. 5	. 000	-. 001	. 078	. 012	. 013	. 011	. 949	. 951	. 000
				. 5	. 000	. 000	-. 030	. 025	. 025	. 025	. 954	. 953	. 715
2500	6	0	. 5	. 5	. 000	-. 003	-. 114	. 015	. 015	. 010	. 949	. 948	. 000
				. 5	. 000	$.000$	-. 002	. 018	. 018	. 018	. 951	. 951	. 918
2500	6	1	. 5	. 5	. 000	-. 002	-. 051	. 012	. 014	. 010	. 950	. 945	. 000
				. 5	. 000	. 001	. 010	. 018	. 018	. 018	. 950	. 952	. 883
2500	6	2	. 5	. 5	. 000	-. 001	. 056	. 009	. 009	. 008	. 950	. 947	. 000
				. 5	. 000	. 001	-. 022	. 018	. 018	. 018	. 951	. 952	. 741
2500	8	0	. 5	. 5	. 000	-. 002	-. 061	. 010	. 011	. 008	. 948	. 945	. 000
				. 5	. 000	. 000	. 003	. 015	. 015	. 015	. 952	. 951	. 926
2500	8	1	. 5	. 5	. 000	-. 002	-. 025	. 009	. 010	. 008	. 950	. 942	. 075
				. 5	. 000	. 000	. 005	. 015	. 015	. 015	. 952	. 951	. 921
2500	8	2	. 5	. 5	. 000	-. 001	. 041	. 007	. 007	. 007	. 953	. 948	. 000
				. 5	. 000	. 000	-. 016	. 015	. 015	. 015	. 951	. 951	. 790
2500	16	0	. 5	. 5	. 000	-. 002	-. 010	. 005	. 006	. 005	. 949	. 939	. 425
				. 5	. 000	. 000	. 002	. 009	. 009	. 009	. 954	. 954	. 942
2500	16	1	. 5	. 5	. 000	-. 002	-. 001	. 005	. 006	. 005	. 951	. 942	. 915
				. 5	. 000	. 001	. 000	. 009	. 010	. 009	. 954	. 955	. 948
2500	16	2	. 5	. 5	. 000	-. 001	. 017	. 004	. 005	. 004	. 949	. 946	. 014
				. 5	. 000	. 000	-. 006	. 010	. 010	. 009	. 955	. 954	. 899
2500	24	0	. 5	. 5	. 000	-. 001	-. 002	. 004	. 004	. 004	. 948	. 933	. 889
				. 5	. 000	. 000	. 001	. 008	. 008	. 008	. 948	. 948	. 944
2500	24	1	. 5	. 5	. 000	-. 001	. 001	. 004	. 004	. 004	. 948	. 934	. 910
				. 5	. 000	. 000	. 000	. 008	. 008	. 008	. 950	. 948	. 945
2500	24	2	. 5	. 5	. 000	-. 001	. 010	. 003	. 004	. 003	. 948	. 936	. 139
				. 5	. 000	. 000	-. 004	. 008	. 008	. 008	. 950	. 949	. 916

Notes: Data generated as $y_{i t}=\theta_{01} y_{i t-1}+\theta_{02} x_{i t}+\alpha_{i}+\varepsilon_{i t}, x_{i t}=.5 \alpha_{i}+\gamma x_{i t-1}+u_{i t}(i=1, \ldots, N ; t=1, \ldots T)$ with $\alpha_{i} \sim \mathcal{N}(0,1), \varepsilon_{i t} \sim \mathcal{N}(0,1), u_{i t} \sim \mathcal{N}(0, .25), \psi$ the degree of outlyingness of the initial observations $y_{i 0}$, and $x_{i 0}$ drawn from the stationary distribution. Entries: bias, standard deviation (std), and coverage rate of 95% confidence interval (ci. 95) of adjusted likelihood ($\widehat{\theta}_{\mathrm{al}}$), Arellano-Bond ($\widehat{\theta}_{\mathrm{ab}}$), and Hahn-Kuersteiner ($\widehat{\theta}_{\mathrm{hk}}$) estimators; '- 'indicates non-existence of the moment; 10,000 Monte Carlo replications.

Table 3. Simulation results for the first-order autoregression with a covariate (cont'd)

N	T	ψ	γ	θ_{0}	bias			std			ci. 95		
					$\widehat{\rho}_{\text {al }}$	$\widehat{\rho}_{\text {ab }}$	$\widehat{\rho}_{\text {hk }}$	$\widehat{\rho}_{\text {al }}$	$\widehat{\rho}_{\text {ab }}$	$\widehat{\rho}_{\text {hk }}$	$\widehat{\rho}_{\text {al }}$	$\widehat{\rho}_{\text {ab }}$	$\widehat{\rho}_{\text {hk }}$
2500	2	0	. 5	. 9	$-.072$	-	-. 546	. 104	-	. 030	. 839	. 895	. 000
				. 1	-. 003	-	-. 027	. 048	-	. 038	. 976	. 951	. 731
2500	2	1	. 5	. 9	-. 038	-	-. 489	. 105	-	. 030	. 878	. 899	. 000
				. 1	. 002	-	. 024	. 048	-	. 039	. 974	. 952	. 756
2500	2	2	. 5	. 9	. 018	-	-. 319	. 110	-	. 029	. 930	. 950	. 000
				. 1	-. 003	-	. 048	. 052	-	. 042	. 968	. 951	. 596
2500	4	0	. 5	. 9	-. 031	-. 080	-. 288	. 050	. 100	. 015	. 861	. 855	. 000
				. 1	-. 001	-. 003	-. 013	. 024	. 024	. 022	. 976	. 951	. 852
2500	4	1	. 5	. 9	-. 003	-. 051	-. 232	. 052	. 082	. 015	. 913	. 888	. 000
				. 1	. 000	. 005	. 021	. 025	. 025	. 023	. 977	. 949	. 772
2500	4	2	. 5	. 9	. 004	-. 007	-. 096	. 038	. 032	. 014	. 960	. 942	. 000
				. 1	-. 001	. 002	. 022	. 026	. 026	. 024	. 959	. 953	. 786
2500	6	0	. 5	. 9	$-.015$	-. 043	-. 198	. 034	. 046	. 010	. 886	. 838	. 000
				. 1	. 000	-. 001	-. 007	. 018	. 018	. 017	. 975	. 950	. 895
2500	6	1	. 5	. 9	. 004	-. 029	-. 146	. 036	. 038	. 010	. 937	. 882	. 000
				. 1	. 000	. 003	. 016	. 018	. 018	. 017	. 969	. 950	. 799
2500	6	2	. 5	. 9	. 001	-. 005	-. 034	. 017	. 017	. 009	. 958	. 937	. 013
				. 1	. 000	. 002	. 009	. 019	. 018	. 018	. 951	. 952	. 894
2500	8	0	. 5	. 9	$-.005$	-. 028	-. 150	. 026	. 028	. 008	. 908	. 830	. 000
				. 1	. 000	-. 001	-. 005	. 015	. 015	. 014	. 974	. 952	. 913
2500	8	1	. 5	. 9	. 005	-. 020	-. 103	. 027	. 024	. 008	. 946	. 861	. 000
				. 1	-. 001	. 002	. 012	. 015	. 015	. 014	. 962	. 950	. 840
2500	8	2	. 5	. 9	. 000	-. 005	-. 010	. 011	. 011	. 007	. 950	. 929	. 561
				. 1	. 000	. 001	. 002	. 015	. 015	. 015	. 951	. 949	. 933
2500	16	0	. 5	. 9	. 002	-. 010	-. 069	. 013	. 009	. 004	. 957	. 808	. 000
				. 1	. 000	. 000	. 000	. 009	. 009	. 009	. 955	. 953	. 940
2500	16	1	. 5	. 9	. 000	-. 009	-. 041	. 008	. 008	. 004	. 957	. 834	. 000
				. 1	. 000	. 001	. 005	. 009	. 009	. 009	. 953	. 952	. 909
2500	16	2	. 5	. 9	. 000	$-.003$. 009	. 004	. 005	. 003	. 952	. 911	. 188
				. 1	. 000	. 001	-. 002	. 009	. 009	. 009	. 953	. 953	. 942
2500	24	0	. 5	. 9	. 000	-. 006	-. 040	. 005	. 005	. 003	. 952	. 777	. 000
				. 1	. 000	. 000	. 001	. 008	. 008	. 008	. 946	. 946	. 936
2500	24	1	. 5	. 9	. 000	-. 006	-. 022	. 004	. 005	. 003	. 953	. 786	. 000
				. 1	. 000	. 001	. 003	. 008	. 008	. 008	. 948	. 947	. 929
2500	24	2	. 5	. 9	$.000$	$-.002$	$.008$. 003	. 003	. 002	. 950	. 884	$.058$
				. 1	. 000	. 001	-. 002	. 008	. 008	. 008	. 948	. 946	. 938

Notes: Data generated as $y_{i t}=\theta_{01} y_{i t-1}+\theta_{02} x_{i t}+\alpha_{i}+\varepsilon_{i t}, x_{i t}=.5 \alpha_{i}+\gamma x_{i t-1}+u_{i t}(i=1, \ldots, N ; t=1, \ldots T)$ with $\alpha_{i} \sim \mathcal{N}(0,1), \varepsilon_{i t} \sim \mathcal{N}(0,1), u_{i t} \sim \mathcal{N}(0, .25), \psi$ the degree of outlyingness of the initial observations $y_{i 0}$, and $x_{i 0}$ drawn from the stationary distribution. Entries: bias, standard deviation (std), and coverage rate of 95% confidence interval (ci.95) of adjusted likelihood ($\widehat{\theta}_{\mathrm{al}}$), Arellano-Bond ($\widehat{\theta}_{\mathrm{ab}}$), and Hahn-Kuersteiner ($\widehat{\theta}_{\mathrm{hk}}$) estimators; '—, indicates non-existence of the moment; 10, 000 Monte Carlo replications.

Table 3. Simulation results for the first-order autoregression with a covariate (cont'd)

N	T	ψ	γ	θ_{0}	bias			std			ci. 95		
					$\widehat{\rho}_{\text {al }}$	$\widehat{\rho}_{\text {ab }}$	$\widehat{\rho}_{\text {hk }}$	$\widehat{\rho}_{\text {al }}$	$\widehat{\rho}_{\text {ab }}$	$\widehat{\rho}_{\text {hk }}$	$\widehat{\rho}_{\text {al }}$	$\widehat{\rho}_{\text {ab }}$	$\widehat{\rho}_{\text {hk }}$
2500	2	0	. 5	. 99	-. 074	-	-. 505	. 104	-	. 030	. 836	. 831	. 000
				. 01	. 000	-	-. 003	. 047	-	. 039	. 977	. 984	. 829
2500	2	1	. 5	. 99	-. 070	-	-. 498	. 104	-	. 030	. 841	. 841	. 000
				. 01	. 002	-	. 013	. 047	-	. 039	. 976	. 963	. 811
2500	2	2	. 5	. 99	-. 057	-	-. 478	. 104	-	. 030	. 857	. 855	. 000
				. 01	. 003	-	. 027	. 048	-	. 039	. 974	. 928	. 741
2500	4	0	. 5	. 99	-. 038	-. 634	-. 255	. 049	. 254	. 015	. 842	. 273	. 000
				. 01	. 000	-. 003	-. 001	. 024	. 023	. 022	. 978	. 954	. 909
2500	4	1	. 5	. 99	-. 034	-. 445	-. 248	. 049	. 227	. 015	. 851	. 439	. 000
				. 01	. 001	. 017	. 010	. 024	. 023	. 022	. 977	. 896	. 880
2500	4	2	. 5	. 99	-. 022	-. 235	-. 228	. 049	. 162	. 015	. 879	. 659	. 000
				. 01	. 002	. 020	. 019	. 025	. 026	. 023	. 977	. 875	. 793
2500	6	0	. 5	. 99	-. 026	-. 441	-. 172	. 032	. 147	. 010	. 844	. 088	. 000
				. 01	. 000	-. 002	-. 001	. 018	. 017	. 017	. 974	. 954	. 925
2500	6	1	. 5	. 99	-. 021	-. 292	-. 165	. 032	. 122	. 010	. 862	. 258	. 000
				. 01	. 001	. 014	. 008	. 018	. 017	. 017	. 976	. 887	. 892
2500	6	2	. 5	. 99	-. 010	-. 132	-. 145	. 032	. 077	. 010	. 898	. 582	. 000
				. 01	. 001	. 013	. 015	. 018	. 018	. 017	. 975	. 891	. 818
2500	8	0	. 5	. 99	-. 019	-. 334	-. 130	. 024	. 098	. 008	. 847	. 028	. 000
				. 01	. 000	-. 002	-. 001	. 015	. 015	. 014	. 976	. 952	. 933
2500	8	1	. 5	. 99	-. 015	-. 214	-. 123	. 024	. 079	. 008	. 865	. 146	. 000
				. 01	. 001	. 010	. 006	. 015	. 014	. 014	. 978	. 898	. 907
2500	8	2	. 5	. 99	-. 004	$-.087$	-. 103	. 025	. 047	. 007	. 909	. 518	. 000
				. 01	. 000	. 009	. 011	. 015	. 015	. 014	. 975	. 909	. 853
2500	16	0	. 5	. 99	-. 010	-. 155	$-.067$. 012	. 035	. 004	. 853	. 001	. 000
				. 01	. 000	-. 001	. 000	. 009	. 009	. 009	. 975	. 954	. 942
2500	16	1	. 5	. 99	-. 005	-. 099	-. 060	. 012	. 027	. 004	. 889	. 014	. 000
				. 01	. 000	. 005	. 003	. 009	. 009	. 009	. 976	. 916	. 926
2500	16	2	. 5	. 99	. 001	-. 033	-. 042	. 013	. 014	. 004	. 939	. 341	. 000
				. 01	. 000	. 004	. 005	. 010	. 009	. 009	. 967	. 935	. 912
2500	24	0	. 5	. 99	-. 006	-. 095	-. 046	. 008	. 018	. 003	. 857	. 000	. 000
				. 01	. 000	. 000	. 000	. 008	. 008	. 008	. 973	. 947	. 940
2500	24	1	. 5	. 99	-. 002	-. 063	-. 039	. 008	. 014	. 003	. 899	. 001	. 000
				. 01	. 000	. 003	. 002	. 008	. 008	. 008	. 971	. 927	. 931
2500	24	2	. 5	. 99	$.001$	$-.019$	-. 023	. 009	. 007	. 002	. 948	. 219	. 000
				. 01	. 000	. 002	. 003	. 008	. 008	. 008	. 957	. 940	. 930

Notes: Data generated as $y_{i t}=\theta_{01} y_{i t-1}+\theta_{02} x_{i t}+\alpha_{i}+\varepsilon_{i t}, x_{i t}=.5 \alpha_{i}+\gamma x_{i t-1}+u_{i t}(i=1, \ldots, N ; t=1, \ldots T)$ with $\alpha_{i} \sim \mathcal{N}(0,1), \varepsilon_{i t} \sim \mathcal{N}(0,1), u_{i t} \sim \mathcal{N}(0, .25), \psi$ the degree of outlyingness of the initial observations $y_{i 0}$, and $x_{i 0}$ drawn from the stationary distribution. Entries: bias, standard deviation (std), and coverage rate of 95% confidence interval (ci.95) of adjusted likelihood ($\widehat{\theta}_{\mathrm{al}}$), Arellano-Bond ($\widehat{\theta}_{\mathrm{ab}}$), and Hahn-Kuersteiner ($\widehat{\theta}_{\mathrm{hk}}$) estimators; '—, indicates non-existence of the moment; 10, 000 Monte Carlo replications.

Table 3. Simulation results for the first-order autoregression with a covariate (cont'd)

N	T	ψ	γ	θ_{0}	bias			std			ci. 95		
					$\widehat{\rho}_{\text {al }}$	$\widehat{\rho}_{\text {ab }}$	$\widehat{\rho}_{\text {hk }}$	$\widehat{\rho}_{\text {al }}$	$\widehat{\rho}_{\text {ab }}$	$\widehat{\rho}_{\text {hk }}$	$\widehat{\rho}_{\text {al }}$	$\widehat{\rho}_{\text {ab }}$	$\widehat{\rho}_{\text {hk }}$
2500	2	0	. 99	. 5	. 000	-	. 387	. 017	-	. 018	. 949	. 948	. 022
				. 5	. 000	-	. 097	. 057	-	. 073	. 954	. 954	. 565
2500	2	1	. 99	. 5	$-.018$	-	-. 649	. 106	-	. 030	. 897	. 952	. 000
				. 5	. 000	-	. 006	. 056	-	. 043	. 976	. 956	. 833
2500	2	2	. 99	. 5	. 000	-	. 441	. 015	-	. 017	. 951	. 950	. 000
				. 5	. 000	-	-. 118	. 057	-	. 078	. 954	. 954	. 430
2500	4	0	. 99	. 5	. 000	. 000	. 201	. 008	. 008	. 009	. 950	. 950	. 000
				. 5	. 000	. 000	. 013	. 025	. 025	. 028	. 952	. 952	. 878
2500	4	1	. 99	. 5	. 002	-. 003	-. 219	. 029	. 024	. 014	. 955	. 948	. 000
				. 5	. 000	. 001	. 051	. 026	. 026	. 025	. 951	. 950	. 338
2500	4	2	. 99	. 5	. 000	. 000	. 228	. 007	. 007	. 008	. 949	. 948	. 000
				. 5	. 000	. 000	-. 121	. 026	. 026	. 030	. 951	. 951	. 008
2500	6	0	. 99	. 5	. 000	$-.001$. 127	. 006	. 006	. 007	. 950	. 950	. 000
				. 5	. 000	. 000	$-.013$. 017	. 017	. 017	. 949	. 949	. 860
2500	6	1	. 99	. 5	. 000	$-.003$	-. 092	. 014	. 014	. 010	. 950	. 947	. 000
				. 5	. 000	. 001	. 035	. 017	. 017	. 017	. 953	. 951	. 374
2500	6	2	. 99	. 5	. 000	. 000	. 146	. 006	. 006	. 006	. 949	. 947	. 000
				. 5	. 000	. 000	-. 096	. 017	. 017	. 018	. 951	. 951	. 000
2500	8	0	. 99	. 5	. 000	$-.001$. 089	. 005	. 005	. 006	. 948	. 948	. 000
				. 5	. 000	. 000	$-.021$. 012	. 012	. 012	. 950	. 949	. 582
2500	8	1	. 99	. 5	. 000	$-.002$	-. 044	. 010	. 010	. 008	. 948	. 945	. 000
				. 5	. 000	. 001	. 021	. 013	. 013	. 013	. 948	. 946	. 586
2500	8	2	. 99	. 5	. 000	$-.001$. 103	. 005	. 005	. 005	. 952	. 952	. 000
				. 5	. 000	. 000	$-.075$. 013	. 013	. 013	. 948	. 947	. 000
2500	16	0	. 99	. 5	. 000	$-.001$. 036	. 004	. 004	. 004	. 948	. 943	. 000
				. 5	. 000	. 000	-. 019	. 007	. 007	. 006	. 948	. 947	. 155
2500	16	1	. 99	. 5	. 000	$-.001$	$-.001$. 005	. 005	. 005	. 948	. 941	. 915
				. 5	. 000	. 001	. 001	. 007	. 007	. 007	. 950	. 948	. 943
2500	16	2	. 99	. 5	. 000	-. 001	. 043	. 003	. 004	. 004	. 953	. 949	. 000
				. 5	. 000	. 001	-. 036	. 007	. 007	. 007	. 948	. 949	. 000
2500	24	0	. 99	. 5	. 000	$-.001$. 021	. 003	. 003	. 003	. 950	. 944	. 000
				. 5	. 000	. 001	-. 014	. 005	. 005	. 005	. 946	. 944	. 142
2500	24	1	. 99	. 5	. 000	$-.001$. 004	. 004	. 004	. 004	. 949	. 939	. 795
				. 5	. 000	. 001	-. 003	. 005	. 005	. 005	. 947	. 943	. 901
2500	24	2	. 99	. 5	. 000	-. 001	. 025	. 003	. 003	. 003	. 952	. 943	. 000
				. 5	. 000	. 001	$-.022$. 005	. 005	. 005	. 950	. 948	. 005

Notes: Data generated as $y_{i t}=\theta_{01} y_{i t-1}+\theta_{02} x_{i t}+\alpha_{i}+\varepsilon_{i t}, x_{i t}=.5 \alpha_{i}+\gamma x_{i t-1}+u_{i t}(i=1, \ldots, N ; t=1, \ldots T)$ with $\alpha_{i} \sim \mathcal{N}(0,1), \varepsilon_{i t} \sim \mathcal{N}(0,1), u_{i t} \sim \mathcal{N}(0, .25), \psi$ the degree of outlyingness of the initial observations $y_{i 0}$, and $x_{i 0}$ drawn from the stationary distribution. Entries: bias, standard deviation (std), and coverage rate of 95% confiydence interval (ci.95) of adjusted likelihood ($\widehat{\theta}_{\mathrm{al}}$), Arellano-Bond ($\widehat{\theta}_{\mathrm{ab}}$), and Hahn-Kuersteiner ($\widehat{\theta}_{\mathrm{hk}}$) estimators; '—, indicates non-existence of the moment; 10, 000 Monte Carlo replications.

Table 3. Simulation results for the first-order autoregression with a covariate (cont'd)

N	T	ψ	γ	θ_{0}	bias			std			ci. 95		
					$\widehat{\rho}_{\text {al }}$	$\widehat{\rho}_{\text {ab }}$	$\widehat{\rho}_{\text {hk }}$	$\widehat{\rho}_{\text {al }}$	$\widehat{\rho}_{\text {ab }}$	$\widehat{\rho}_{\text {hk }}$	$\widehat{\rho}_{\text {al }}$	$\widehat{\rho}_{\text {ab }}$	$\widehat{\rho}_{\text {hk }}$
2500	2	0	. 99	. 9	. 006	-	-. 383	. 110	-	. 029	. 920	. 948	. 000
				. 1	. 000	-	-. 019	. 057	-	. 047	. 973	. 954	. 804
2500	2	1	. 99	. 9	-. 069	-	-. 541	. 104	-	. 030	. 843	. 875	. 000
				. 1	. 001		. 004	. 055	-	. 044	. 978	. 976	. 837
2500	2	2	. 99	. 9	. 021	-	-. 280	. 109	-	. 029	. 938	. 949	. 000
				. 1	-. 001	-	. 018	. 058	-	. 050	. 965	. 954	. 808
2500	4	0	. 99	. 9	. 009	-. 005	-. 152	. 051	. 027	. 014	. 952	. 946	. 000
				. 1	. 001	. 000	-. 006	. 025	. 025	. 024	. 959	. 952	. 900
2500	4	1	. 99	. 9	-. 027	-. 075	-. 281	. 050	. 097	. 015	. 869	. 859	. 000
				. 1	. 002	. 005	. 018	. 025	. 025	. 023	. 976	. 946	. 807
2500	4	2	. 99	. 9	. 003	-. 003	-. 074	. 032	. 020	. 013	. 961	. 945	. 000
				. 1	. 000	. 001	. 012	. 026	. 025	. 025	. 953	. 952	. 870
2500	6	0	. 99	. 9	. 003	$-.005$	-. 082	. 026	. 016	. 009	. 959	. 938	. 000
				. 1	. 000	. 000	-. 002	. 017	. 016	. 016	. 950	. 950	. 919
2500	6	1	. 99	. 9	-. 010	$-.038$	-. 189	. 034	. 043	. 010	. 898	. 855	. 000
				. 1	. 001	. 004	. 021	. 017	. 017	. 016	. 973	. 943	. 661
2500	6	2	. 99	. 9	. 001	-. 003	-. 020	. 016	. 012	. 009	. 955	. 941	. 249
				. 1	. 000	. 001	. 005	. 017	. 017	. 016	. 952	. 950	. 912
2500	8	0	. 99	. 9	. 001	-. 004	$-.051$. 015	. 011	. 007	. 963	. 931	. 000
				. 1	. 000	. 000	-. 001	. 012	. 012	. 012	. 948	. 947	. 926
2500	8	1	. 99	. 9	$-.001$	-. 024	-. 140	. 027	. 026	. 008	. 922	. 845	. 000
				. 1	. 000	. 003	. 021	. 013	. 013	. 012	. 972	. 940	. 522
2500	8	2	. 99	. 9	. 000	$-.002$	$-.001$. 010	. 008	. 006	. 949	. 940	. 906
				. 1	. 000	. 001	. 000	. 013	. 013	. 013	. 949	. 948	. 933
2500	16	0	. 99	. 9	. 000	-. 003	-. 014	. 006	. 005	. 004	. 950	. 903	. 018
				. 1	. 000	. 000	. 001	. 006	. 006	. 006	. 947	. 947	. 933
2500	16	1	. 99	. 9	. 001	-. 008	-. 058	. 010	. 008	. 004	. 962	. 833	. 000
				. 1	. 000	. 003	. 017	. 007	. 007	. 007	. 955	. 936	. 206
2500	16	2	. 99	. 9	. 000	-. 002	. 014	. 004	. 004	. 003	. 954	. 927	. 006
				. 1	. 000	. 001	$-.007$. 007	. 007	. 006	. 950	. 946	. 778
2500	24	0	. 99	. 9	. 000	-. 003	-. 006	. 003	. 003	. 003	. 950	. 880	. 334
				. 1	. 000	. 000	. 001	. 004	. 004	. 004	. 948	. 948	. 935
2500	24	1	. 99	. 9	. 000	$-.005$	-. 030	. 005	. 005	. 003	. 951	. 805	. 000
				. 1	. 000	. 002	. 012	. 005	. 005	. 004	. 948	. 925	. 224
2500	24	2	. 99	. 9	$.000$	$-.002$. 013	. 003	$.003$. 002	. 951	. 907	$.000$
				. 1	. 000	. 001	-. 008	. 005	. 005	. 004	. 947	. 943	. 530

Notes: Data generated as $y_{i t}=\theta_{01} y_{i t-1}+\theta_{02} x_{i t}+\alpha_{i}+\varepsilon_{i t}, x_{i t}=.5 \alpha_{i}+\gamma x_{i t-1}+u_{i t}(i=1, \ldots, N ; t=1, \ldots T)$ with $\alpha_{i} \sim \mathcal{N}(0,1), \varepsilon_{i t} \sim \mathcal{N}(0,1), u_{i t} \sim \mathcal{N}(0, .25), \psi$ the degree of outlyingness of the initial observations $y_{i 0}$, and $x_{i 0}$ drawn from the stationary distribution. Entries: bias, standard deviation (std), and coverage rate of 95% confidence interval (ci. 95) of adjusted likelihood ($\widehat{\theta}_{\mathrm{al}}$), Arellano-Bond ($\widehat{\theta}_{\mathrm{ab}}$), and Hahn-Kuersteiner ($\widehat{\theta}_{\mathrm{hk}}$) estimators; '-' indicates non-existence of the moment; 10,000 Monte Carlo replications.

Table 3. Simulation results for the first-order autoregression with a covariate (cont'd)

N	T	ψ	γ	θ_{0}	bias			std			ci. 95		
					$\widehat{\rho}_{\text {al }}$	$\widehat{\rho}_{\text {ab }}$	$\widehat{\rho}_{\text {hk }}$	$\widehat{\rho}_{\text {al }}$	$\widehat{\rho}_{\text {ab }}$	$\widehat{\rho}_{\text {hk }}$	$\widehat{\rho}_{\text {al }}$	$\widehat{\rho}_{\text {ab }}$	$\widehat{\rho}_{\text {hk }}$
2500	2	0	. 99	. 99	-. 073	-	-. 503	. 104	-	. 030	. 838	. 864	. 000
				. 01	. 000	-	-. 003	. 055	-	. 045	. 977	. 977	. 836
2500	2	1	. 99	. 99	-. 073	-	-. 502	. 104	-	. 030	. 839	. 859	. 000
				. 01	. 001	-	. 003	. 055	-	. 045	. 979	. 978	. 837
2500	2	2	. 99	. 99	-. 062	-	-. 485	. 104	-	. 030	. 851	. 938	. 000
				. 01	. 001	-	. 008	. 055	-	. 045	. 978	. 961	. 830
2500	4	0	. 99	. 99	-. 037	-. 310	-. 253	. 049	. 198	. 015	. 846	. 590	. 000
				. 01	. 000	-. 001	-. 001	. 025	. 024	. 023	. 976	. 954	. 907
2500	4	1	. 99	. 99	-. 037	-. 323	-. 253	. 049	. 199	. 015	. 843	. 567	. 000
				. 01	. 001	. 005	. 004	. 025	. 024	. 023	. 977	. 951	. 900
2500	4	2	. 99	. 99	-. 026	-. 048	-. 236	. 049	. 076	. 015	. 869	. 894	. 000
				. 01	. 001	. 002	. 009	. 025	. 025	. 023	. 977	. 952	. 884
2500	6	0	. 99	. 99	$-.025$	-. 225	-. 170	. 032	. 109	. 010	. 851	. 375	. 000
				. 01	. 000	-. 001	-. 001	. 016	. 016	. 016	. 974	. 952	. 920
2500	6	1	. 99	. 99	-. 024	-. 231	-. 169	. 032	. 108	. 010	. 853	. 366	. 000
				. 01	. 001	. 006	. 004	. 016	. 016	. 016	. 974	. 938	. 907
2500	6	2	. 99	. 99	-. 014	-. 038	-. 153	. 032	. 042	. 010	. 884	. 841	. 000
				. 01	. 001	. 002	. 009	. 016	. 016	. 016	. 975	. 949	. 874
2500	8	0	. 99	. 99	-. 018	$-.174$	-. 128	. 024	. 070	. 008	. 854	. 228	. 000
				. 01	. 000	-. 001	-. 001	. 012	. 012	. 012	. 973	. 948	. 921
2500	8	1	. 99	. 99	-. 018	$-.177$	-. 127	. 024	. 070	. 008	. 855	. 218	. 000
				. 01	. 000	. 006	. 004	. 012	. 012	. 012	. 975	. 925	. 904
2500	8	2	. 99	. 99	-. 008	-. 031	-. 111	. 024	. 027	. 007	. 894	. 787	. 000
				. 01	. 000	. 002	. 008	. 013	. 012	. 012	. 974	. 945	. 860
2500	16	0	. 99	. 99	-. 0008	-. 088	-. 065	. 012	. 025	. 004	. 863	. 025	. 000
				. 01	. 000	. 000	. 000	. 006	. 006	. 006	. 972	. 949	. 931
2500	16	1	. 99	. 99	-. 008	-. 086	-. 064	. 012	. 024	. 004	. 868	. 027	. 000
				. 01	. 001	. 006	. 005	. 006	. 007	. 006	. 973	. 849	. 854
2500	16	2	. 99	. 99	-. 001	-. 017	-. 050	. 013	. 010	. 004	. 923	. 599	. 000
				. 01	. 000	. 003	. 007	. 007	. 006	. 006	. 972	. 932	. 745
2500	24	0	. 99	. 99	-. 005	-. 057	-. 044	. 008	. 013	. 003	. 871	. 003	. 000
				. 01	. 000	. 000	. 000	. 004	. 004	. 004	. 973	. 948	. 929
2500	24	1	. 99	. 99	$-.005$	-. 055	-. 043	. 008	. 013	. 003	. 877	. 004	. 000
				. 01	. 000	. 006	. 005	. 004	. 005	. 004	. 972	. 754	. 771
2500	24	2	. 99	. 99	$.001$	$-.012$	-. 030	. 009	. 006	. 003	. 934	. 416	$.000$
				. 01	. 000	. 003	. 006	. 005	. 004	. 004	. 968	. 907	. 644

Notes: Data generated as $y_{i t}=\theta_{01} y_{i t-1}+\theta_{02} x_{i t}+\alpha_{i}+\varepsilon_{i t}, x_{i t}=.5 \alpha_{i}+\gamma x_{i t-1}+u_{i t}(i=1, \ldots, N ; t=1, \ldots T)$ with $\alpha_{i} \sim \mathcal{N}(0,1), \varepsilon_{i t} \sim \mathcal{N}(0,1), u_{i t} \sim \mathcal{N}(0, .25), \psi$ the degree of outlyingness of the initial observations $y_{i 0}$, and $x_{i 0}$ drawn from the stationary distribution. Entries: bias, standard deviation (std), and coverage rate of 95% confidence interval (ci.95) of adjusted likelihood ($\widehat{\theta}_{\mathrm{al}}$), Arellano-Bond ($\widehat{\theta}_{\mathrm{ab}}$), and Hahn-Kuersteiner ($\widehat{\theta}_{\mathrm{hk}}$) estimators; '—, indicates non-existence of the moment; 10, 000 Monte Carlo replications.

Table 3. Simulation results for the first-order autoregression with a covariate (cont'd)

N	T	ψ	γ	θ_{0}	bias			std			ci. 95		
					$\widehat{\rho}_{\text {al }}$	$\widehat{\rho}_{\text {ab }}$	$\widehat{\rho}_{\text {hk }}$	$\widehat{\rho}_{\text {al }}$	$\widehat{\rho}_{\text {ab }}$	$\widehat{\rho}_{\text {hk }}$	$\widehat{\rho}_{\text {al }}$	$\widehat{\rho}_{\text {ab }}$	$\widehat{\rho}_{\text {hk }}$
5000	2	0	. 5	. 5	-. 015	-	-. 662	. 089	-	. 021	. 891	. 944	. 000
				. 5	-. 004	-	-. 165	. 041	-	. 027	. 960	. 952	. 000
5000	2	1	. 5	. 5	. 012	-	-. 417	. 074	-	. 020	. 953	. 947	. 000
				. 5	. 000	-	. 007	. 035	-	. 029	. 955	. 953	. 823
5000	2	2	. 5	. 5	. 000	-	. 074	. 021	-	. 016	. 952	. 951	. 002
				. 5	. 000	-	-. 021	. 035	-	. 036	. 951	. 950	. 771
5000	4	0	. 5	. 5	. 001	-. 002	-. 245	. 023	. 019	. 010	. 951	. 945	. 000
				. 5	. 000	. 000	-. 028	. 018	. 018	. 017	. 949	. 950	. 496
5000	4	1	. 5	. 5	. 000	-. 001	-. 124	. 015	. 016	. 010	. 947	. 946	. 000
				. 5	. 000	. 000	. 016	. 018	. 018	. 017	. 951	. 949	. 760
5000	4	2	. 5	. 5	. 000	. 000	. 078	. 009	. 009	. 008	. 948	. 948	. 000
				. 5	. 000	. 000	-. 030	. 018	. 018	. 018	. 951	. 949	. 539
5000	6	0	. 5	. 5	. 000	-. 001	-. 114	. 011	. 011	. 007	. 951	. 947	. 000
				. 5	. 000	. 000	-. 002	. 013	. 013	. 013	. 951	. 951	. 917
5000	6	1	. 5	. 5	. 000	$-.001$	-. 051	. 009	. 010	. 007	. 951	. 948	. 000
				. 5	. 000	. 000	. 009	. 013	. 013	. 013	. 951	. 950	. 847
5000	6	2	. 5	. 5	. 000	-. 001	. 056	. 006	. 006	. 006	. 950	. 950	. 000
				. 5	. 000	. 000	-. 022	. 013	. 013	. 013	. 950	. 949	. 561
5000	8	0	. 5	. 5	. 000	-. 001	-. 061	. 007	. 007	. 006	. 954	. 949	. 000
				. 5	. 000	. 000	. 003	. 010	. 010	. 010	. 952	. 951	. 919
5000	8	1	. 5	. 5	. 000	$-.001$	-. 025	. 006	. 007	. 005	. 953	. 951	. 003
				. 5	. 000	. 000	. 005	. 010	. 010	. 010	. 952	. 952	. 903
5000	8	2	. 5	. 5	. 000	-. 001	. 041	. 005	. 005	. 005	. 951	. 952	. 000
				. 5	. 000	. 000	-. 016	. 011	. 011	. 010	. 952	. 951	. 645
5000	16	0	. 5	. 5	. 000	$-.001$	-. 010	. 004	. 004	. 004	. 951	. 947	. 156
				. 5	. 000	. 000	. 002	. 007	. 007	. 007	. 951	. 950	. 934
5000	16	1	. 5	. 5	. 000	-. 001	-. 001	. 004	. 004	. 003	. 953	. 950	. 902
				. 5	. 000	. 000	. 000	. 007	. 007	. 007	. 951	. 951	. 944
5000	16	2	. 5	. 5	. 000	-. 0001	. 017	. 003	. 003	. 003	. 953	. 952	. 000
				. 5	. 000	. 000	-. 006	. 007	. 007	. 007	. 951	. 950	. 841
5000	24	0	. 5	. 5	. 000	-. 001	-. 002	. 003	. 003	. 003	. 951	. 945	. 850
				. 5	. 000	. 000	. 000	. 005	. 005	. 005	. 952	. 951	. 947
5000	24	1	. 5	. 5	. 000	-. 001	. 001	. 003	. 003	. 003	. 951	. 942	. 889
				. 5	. 000	. 000	. 000	. 005	. 005	. 005	. 950	. 949	. 945
5000	24	2	. 5	. 5	. 000	$-.001$. 010	. 002	. 003	. 002	. 948	. 942	. 011
				. 5	. 000	. 000	-. 004	. 005	. 005	. 005	. 952	. 952	. 892

Notes: Data generated as $y_{i t}=\theta_{01} y_{i t-1}+\theta_{02} x_{i t}+\alpha_{i}+\varepsilon_{i t}, x_{i t}=.5 \alpha_{i}+\gamma x_{i t-1}+u_{i t}(i=1, \ldots, N ; t=1, \ldots T)$ with $\alpha_{i} \sim \mathcal{N}(0,1), \varepsilon_{i t} \sim \mathcal{N}(0,1), u_{i t} \sim \mathcal{N}(0, .25), \psi$ the degree of outlyingness of the initial observations $y_{i 0}$, and $x_{i 0}$ drawn from the stationary distribution. Entries: bias, standard deviation (std), and coverage rate of 95% confiydence interval (ci. 95) of adjusted likelihood ($\widehat{\theta}_{\mathrm{al}}$), Arellano-Bond ($\widehat{\theta}_{\mathrm{ab}}$), and Hahn-Kuersteiner ($\widehat{\theta}_{\mathrm{hk}}$) estimators; '——'indicates non-existence of the moment; 10,000 Monte Carlo replications.

Table 3. Simulation results for the first-order autoregression with a covariate (cont'd)

N	T	ψ	γ	θ_{0}	bias			std			ci. 95		
					$\widehat{\rho}_{\text {al }}$	$\widehat{\rho}_{\text {ab }}$	$\widehat{\rho}_{\text {hk }}$	$\widehat{\rho}_{\text {al }}$	$\widehat{\rho}_{\text {ab }}$	$\widehat{\rho}_{\text {hk }}$	$\widehat{\rho}_{\text {al }}$	$\widehat{\rho}_{\text {ab }}$	$\widehat{\rho}_{\text {hk }}$
5000	2	0	. 5	. 9	$-.062$	-	-. 546	. 087	-	. 021	. 836	. 911	. 000
				. 1	-. 003	-	$-.027$. 034	-	. 027	. 976	. 951	. 638
5000	2	1	. 5	. 9	-. 028	-	-. 489	. 088	-	. 021	. 881	. 919	. 000
				. 1	. 002	-	. 024	. 034	-	. 028	. 976	. 953	. 681
5000	2	2	. 5	. 9	. 017	-	-. 319	. 091	-	. 021	. 939	. 949	. 000
				. 1	-. 002		. 048	. 038	-	. 030	. 968	. 950	. 415
5000	4	0	. 5	. 9	-. 026	$-.041$	-. 289	. 042	. 075	. 010	. 854	. 898	. 000
				. 1	-. 001	-. 002	-. 013	. 018	. 018	. 016	. 976	. 950	. 802
5000	4	1	. 5	. 9	. 000	-. 026	-. 232	. 044	. 060	. 010	. 917	. 916	. 000
				. 1	. 000	. 002	. 021	. 018	. 018	. 016	. 972	. 946	. 646
5000	4	2	. 5	. 9	. 002	$-.004$	-. 096	. 025	. 023	. 010	. 959	. 947	. 000
				. 1	. 000	. 001	. 022	. 018	. 018	. 017	. 952	. 949	. 662
5000	6	0	. 5	. 9	-. 010	$-.023$	-. 198	. 028	. 034	. 007	. 890	. 894	. 000
				. 1	. 000	-. 001	$-.007$. 013	. 013	. 012	. 972	. 949	. 866
5000	6	1	. 5	. 9	. 005	$-.015$	-. 146	. 030	. 028	. 007	. 947	. 913	. 000
				. 1	$-.001$. 002	. 016	. 013	. 013	. 012	. 965	. 948	. 686
5000	6	2	. 5	. 9	. 000	$-.003$	-. 034	. 012	. 012	. 006	. 952	. 943	. 000
				. 1	. 000	. 001	. 009	. 013	. 013	. 013	. 952	. 950	. 861
5000	8	0	. 5	. 9	$-.002$	$-.014$	$-.150$. 022	. 020	. 006	. 914	. 892	. 000
				. 1	. 000	. 000	$-.005$. 010	. 010	. 010	. 972	. 951	. 902
5000	8	1	. 5	. 9	. 003	-. 010	$-.103$. 020	. 017	. 005	. 953	. 909	. 000
				. 1	. 000	. 001	. 012	. 011	. 011	. 010	. 957	. 951	. 749
5000	8	2	. 5	. 9	. 000	$-.002$	-. 010	. 008	. 008	. 005	. 949	. 942	. 313
				. 1	. 000	. 001	. 003	. 011	. 011	. 010	. 951	. 951	. 929
5000	16	0	. 5	. 9	. 001	$-.005$	-. 069	. 009	. 006	. 003	. 958	. 874	. 000
				. 1	. 000	. 000	. 000	. 007	. 007	. 007	. 953	. 953	. 937
5000	16	1	. 5	. 9	. 000	-. 004	-. 041	. 005	. 006	. 003	. 952	. 888	. 000
				. 1	. 000	. 001	. 005	. 007	. 007	. 007	. 952	. 951	. 874
5000	16	2	. 5	. 9	. 000	$-.001$. 009	. 003	. 003	. 002	. 950	. 928	. 028
				. 1	. 000	. 000	-. 002	. 007	. 007	. 007	. 952	. 951	. 934
5000	24	0	. 5	. 9	. 000	$-.003$	-. 040	. 004	. 004	. 002	. 953	. 861	. 000
				. 1	. 000	. 000	. 000	. 005	. 005	. 005	. 951	. 951	. 943
5000	24	1	. 5	. 9	. 000	$-.003$	-. 022	. 003	. 004	. 002	. 951	. 865	. 000
				. 1	. 000	. 000	. 002	. 005	. 005	. 005	. 951	. 952	. 919
5000	24	2	. 5	. 9	. 000	$-.001$. 008	. 002	. 002	. 002	. 949	. 918	. 002
				. 1	. 000	. 000	-. 002	. 005	. 005	. 005	. 951	. 952	. 932

Notes: Data generated as $y_{i t}=\theta_{01} y_{i t-1}+\theta_{02} x_{i t}+\alpha_{i}+\varepsilon_{i t}, x_{i t}=.5 \alpha_{i}+\gamma x_{i t-1}+u_{i t}(i=1, \ldots, N ; t=1, \ldots T)$ with $\alpha_{i} \sim \mathcal{N}(0,1), \varepsilon_{i t} \sim \mathcal{N}(0,1), u_{i t} \sim \mathcal{N}(0, .25), \psi$ the degree of outlyingness of the initial observations $y_{i 0}$, and $x_{i 0}$ drawn from the stationary distribution. Entries: bias, standard deviation (std), and coverage rate of 95% confidence interval (ci.95) of adjusted likelihood ($\widehat{\theta}_{\mathrm{al}}$), Arellano-Bond ($\widehat{\theta}_{\mathrm{ab}}$), and Hahn-Kuersteiner ($\widehat{\theta}_{\mathrm{hk}}$) estimators; '—, indicates non-existence of the moment; 10, 000 Monte Carlo replications.

Table 3. Simulation results for the first-order autoregression with a covariate (cont'd)

N	T	ψ	γ	θ_{0}	bias			std			ci. 95		
					$\widehat{\rho}_{\text {al }}$	$\widehat{\rho}_{\text {ab }}$	$\widehat{\rho}_{\text {hk }}$	$\widehat{\rho}_{\text {al }}$	$\widehat{\rho}_{\text {ab }}$	$\widehat{\rho}_{\text {hk }}$	$\widehat{\rho}_{\text {al }}$	$\widehat{\rho}_{\text {ab }}$	$\widehat{\rho}_{\text {hk }}$
5000	2	0	. 5	. 99	-. 064	-	-. 505	. 087	-	. 021	. 832	. 821	. 000
				. 01	. 000	-	-. 002	. 034	-	. 027	. 978	. 984	. 833
5000	2	1	. 5	. 99	$-.060$	-	-. 498	. 087	-	. 021	. 839	. 841	. 000
				. 01	. 002	-	. 013	. 034	-	. 027	. 978	. 949	. 789
5000	2	2	. 5	. 99	$-.047$	-	-. 478	. 087	-	. 021	. 854	. 873	. 000
				. 01	. 003	-	. 027	. 034	-	. 028	. 976	. 917	. 649
5000	4	0	. 5	. 99	$-.033$	-. 596	$-.255$. 041	. 242	. 010	. 826	. 296	. 000
				. 01	. 000	$-.003$	-. 001	. 017	. 016	. 016	. 976	. 954	. 906
5000	4	1	. 5	. 99	-. 029	-. 326	-. 248	. 041	. 193	. 010	. 842	. 563	. 000
				. 01	$.001$. 013	. 010	. 017	. 017	. 016	. 977	. 883	. 841
5000	4	2	. 5	. 99	$-.017$	-. 139	-. 228	. 041	. 127	. 010	. 878	. 778	. 000
				. 01	$.001$. 012	. 019	. 018	. 020	. 016	. 975	. 894	. 685
5000	6	0	. 5	. 99	$-.021$	-. 405	-. 172	. 027	. 137	. 007	. 844	. 113	. 000
				. 01	. 000	-. 002	-. 001	. 013	. 012	. 012	. 974	. 950	. 924
5000	6	1	. 5	. 99	$-.017$	-. 208	$-.165$. 027	. 099	. 007	. 862	. 397	. 000
				. 01	. 001	. 010	. 008	. 013	. 012	. 012	. 975	. 888	. 864
5000	6	2	. 5	. 99	-. 006	-. 076	-. 145	. 027	. 058	. 007	. 903	. 736	. 000
				. 01	. 001	. 007	. 014	. 013	. 013	. 012	. 973	. 913	. 720
5000	8	0	. 5	. 99	$-.016$	$-.295$	-. 130	. 020	. 090	. 005	. 848	. 044	. 000
				. 01	. 000	-. 001	-. 001	. 010	. 010	. 010	. 974	. 953	. 931
5000	8	1	. 5	. 99	$-.012$	$-.148$	-. 123	. 020	. 062	. 005	. 871	. 297	. 000
				. 01	$.001$. 007	. 006	. 010	. 010	. 010	. 975	. 899	. 883
5000	8	2	. 5	. 99	$-.002$	-. 049	-. 103	. 021	. 034	. 005	. 914	. 697	. 000
				. 01	. 000	. 005	. 011	. 011	. 011	. 010	. 973	. 925	. 775
5000	16	0	. 5	. 99	$-.008$	$-.125$	$-.067$. 010	. 030	. 003	. 851	. 003	. 000
				. 01	. 000	. 000	. 000	. 007	. 007	. 007	. 976	. 952	. 942
5000	16	1	. 5	. 99	-. 004	-. 065	-. 060	. 010	. 020	. 003	. 890	. 081	. 000
				. 01	. 000	. 004	. 003	. 007	. 007	. 007	. 975	. 919	. 908
5000	16	2	. 5	. 99	. 002	-. 018	-. 042	. 011	. 010	. 003	. 942	. 578	. 000
				. 01	. 000	. 002	. 005	. 007	. 007	. 007	. 965	. 940	. 876
5000	24	0	. 5	. 99	$-.005$	-. 071	-. 046	. 007	. 015	. 002	. 857	. 000	. 000
				. 01	. 000	. 000	. 000	. 005	. 005	. 005	. 976	. 953	. 946
5000	24	1	. 5	. 99	$-.001$	-. 040	-. 039	. 007	. 011	. 002	. 907	. 021	. 000
				. 01	. 000	. 002	. 002	. 005	. 005	. 005	. 974	. 935	. 927
5000	24	2	. 5	. 99	. 001	-. 010	-. 023	. 006	. 005	. 002	. 951	. 473	. 000
				. 01	. 000	. 001	. 002	. 005	. 005	. 005	. 957	. 950	. 919

Notes: Data generated as $y_{i t}=\theta_{01} y_{i t-1}+\theta_{02} x_{i t}+\alpha_{i}+\varepsilon_{i t}, x_{i t}=.5 \alpha_{i}+\gamma x_{i t-1}+u_{i t}(i=1, \ldots, N ; t=1, \ldots T)$ with $\alpha_{i} \sim \mathcal{N}(0,1), \varepsilon_{i t} \sim \mathcal{N}(0,1), u_{i t} \sim \mathcal{N}(0, .25), \psi$ the degree of outlyingness of the initial observations $y_{i 0}$, and $x_{i 0}$ drawn from the stationary distribution. Entries: bias, standard deviation (std), and coverage rate of 95% confidence interval (ci. 95) of adjusted likelihood ($\widehat{\theta}_{\mathrm{al}}$), Arellano-Bond ($\widehat{\theta}_{\mathrm{ab}}$), and Hahn-Kuersteiner ($\widehat{\theta}_{\mathrm{hk}}$) estimators; '- ' indicates non-existence of the moment; 10,000 Monte Carlo replications.

Table 3. Simulation results for the first-order autoregression with a covariate (cont'd)

N	T	ψ	γ	θ_{0}	bias			std			ci. 95		
					$\widehat{\rho}_{\text {al }}$	$\widehat{\rho}_{\text {ab }}$	$\widehat{\rho}_{\text {hk }}$	$\widehat{\rho}_{\text {al }}$	$\widehat{\rho}_{\text {ab }}$	$\widehat{\rho}_{\text {hk }}$	$\widehat{\rho}_{\text {al }}$	$\widehat{\rho}_{\text {ab }}$	$\widehat{\rho}_{\text {hk }}$
5000	2	0	. 99	. 5	. 000	-	. 386	. 012	-	. 013	. 949	. 951	. 002
				. 5	. 000	-	. 097	. 040	-	. 052	. 951	. 952	. 339
5000	2	1	. 99	. 5	$-.010$	-	-. 649	. 090	-	. 021	. 903	. 947	. 000
				. 5	. 000	-	. 006	. 040	-	. 031	. 976	. 954	. 823
5000	2	2	. 99	. 5	. 000	-	. 441	. 011	-	. 012	. 951	. 950	. 000
				. 5	. 000	-	-. 117	. 040	-	. 056	. 953	. 952	. 225
5000	4	0	. 99	. 5	. 000	. 000	. 201	. 006	. 006	. 006	. 949	. 950	. 000
				. 5	. 000	. 000	. 013	. 018	. 018	. 020	. 948	. 949	. 844
5000	4	1	. 99	. 5	. 000	-. 002	-. 219	. 021	. 018	. 010	. 949	. 942	. 000
				. 5	. 000	. 001	. 051	. 019	. 018	. 017	. 947	. 949	. 102
5000	4	2	. 99	. 5	. 000	. 000	. 228	. 005	. 005	. 006	. 949	. 949	. 000
				. 5	. 000	. 000	-. 121	. 018	. 018	. 021	. 948	. 949	. 000
5000	6	0	. 99	. 5	. 000	. 000	. 127	. 004	. 004	. 005	. 950	. 953	. 000
				. 5	. 000	. 000	-. 013	. 012	. 012	. 012	. 950	. 950	. 780
5000	6	1	. 99	. 5	. 000	-. 001	-. 092	. 010	. 010	. 007	. 952	. 947	. 000
				. 5	. 000	. 001	. 035	. 012	. 012	. 012	. 950	. 950	. 124
5000	6	2	. 99	. 5	. 000	. 000	. 146	. 004	. 004	. 004	. 949	. 947	. 000
				. 5	. 000	. 000	-. 095	. 012	. 012	. 013	. 950	. 951	. 000
5000	8	0	. 99	. 5	. 000	. 000	. 089	. 004	. 004	. 004	. 952	. 953	. 000
				. 5	. 000	. 000	-. 021	. 009	. 009	. 009	. 952	. 952	. 320
5000	8	1	. 99	. 5	. 000	$-.001$	-. 044	. 007	. 007	. 006	. 957	. 948	. 000
				. 5	. 000	. 001	. 021	. 009	. 009	. 009	. 954	. 952	. 308
5000	8	2	. 99	. 5	. 000	. 000	. 103	. 003	. 003	. 004	. 951	. 950	. 000
				. 5	. 000	. 000	-. 075	. 009	. 009	. 009	. 953	. 954	. 000
5000	16	0	. 99	. 5	. 000	. 000	. 036	. 003	. 003	. 003	. 949	. 949	. 000
				. 5	. 000	. 000	-. 019	. 005	. 005	. 004	. 949	. 951	. 011
5000	16	1	. 99	. 5	. 000	-. 001	-. 001	. 004	. 004	. 003	. 948	. 944	. 907
				. 5	. 000	. 001	. 001	. 005	. 005	. 005	. 950	. 950	. 942
5000	16	2	. 99	. 5	. 000	. 000	. 042	. 002	. 003	. 003	. 951	. 950	. 000
				. 5	. 000	. 000	-. 036	. 005	. 005	. 005	. 950	. 950	. 000
5000	24	0	. 99	. 5	. 000	. 000	. 021	. 002	. 002	. 002	. 949	. 946	. 000
				. 5	. 000	. 000	-. 014	. 003	. 003	. 003	. 946	. 945	. 010
5000	24	1	. 99	. 5	. 000	$-.001$. 004	. 003	. 003	. 003	. 948	. 945	. 652
				. 5	. 000	. 001	-. 003	. 004	. 004	. 004	. 948	. 946	. 861
5000	24	2	. 99	. 5	. 000	. 000	. 025	. 002	. 002	. 002	. 949	. 948	. 000
				. 5	. 000	. 000	-. 022	. 003	. 004	. 003	. 949	. 948	. 000

Notes: Data generated as $y_{i t}=\theta_{01} y_{i t-1}+\theta_{02} x_{i t}+\alpha_{i}+\varepsilon_{i t}, x_{i t}=.5 \alpha_{i}+\gamma x_{i t-1}+u_{i t}(i=1, \ldots, N ; t=1, \ldots T)$ with $\alpha_{i} \sim \mathcal{N}(0,1), \varepsilon_{i t} \sim \mathcal{N}(0,1), u_{i t} \sim \mathcal{N}(0, .25), \psi$ the degree of outlyingness of the initial observations $y_{i 0}$, and $x_{i 0}$ drawn from the stationary distribution. Entries: bias, standard deviation (std), and coverage rate of 95% confiydence interval (ci.95) of adjusted likelihood ($\widehat{\theta}_{\mathrm{al}}$), Arellano-Bond ($\widehat{\theta}_{\mathrm{ab}}$), and Hahn-Kuersteiner ($\widehat{\theta}_{\mathrm{hk}}$) estimators; '—, indicates non-existence of the moment; 10, 000 Monte Carlo replications.

Table 3. Simulation results for the first-order autoregression with a covariate (cont'd)

N	T	ψ	γ	θ_{0}	bias			std			ci. 95		
					$\widehat{\rho}_{\text {al }}$	$\widehat{\rho}_{\text {ab }}$	$\widehat{\rho}_{\text {hk }}$	$\widehat{\rho}_{\text {al }}$	$\widehat{\rho}_{\text {ab }}$	$\widehat{\rho}_{\text {hk }}$	$\widehat{\rho}_{\text {al }}$	$\widehat{\rho}_{\text {ab }}$	$\widehat{\rho}_{\text {hk }}$
5000	2	0	. 99	. 9	. 010	-	-. 383	. 093	-	. 021	. 923	. 950	. 000
				. 1	. 001		-. 019	. 041	-	. 034	. 971	. 951	. 766
5000	2	1	. 99	. 9	-. 058	-	-. 541	. 087	-	. 021	. 841	. 896	. 000
				. 1	. 001		. 004	. 039	-	. 031	. 979	. 974	. 827
5000	2	2	. 99	. 9	. 017	-	-. 280	. 087	-	. 021	. 946	. 950	. 000
				. 1	-. 001		. 018	. 041		. 035	. 962	. 953	. 779
5000	4	0	. 99	. 9	. 006	-. 003	-. 152	. 038	. 019	. 010	. 950	. 948	. 000
				. 1	. 000	. 000	-. 006	. 018	. 018	. 017	. 953	. 948	. 882
5000	4	1	. 99	. 9	-. 022	-. 038	-. 281	. 042	. 073	. 010	. 866	. 898	. 000
				. 1	. 001	. 003	. 017	. 018	. 018	. 016	. 974	. 946	. 719
5000	4	2	. 99	. 9	. 001	-. 002	-. 074	. 022	. 015	. 009	. 957	. 947	. 000
				. 1	. 000	. 000	. 012	. 018	. 018	. 017	. 949	. 949	. 830
5000	6	0	. 99	. 9	. 001	-. 002	-. 082	. 017	. 011	. 007	. 961	. 946	. 000
				. 1	. 000	$.000$	-. 002	. 012	. 012	. 012	. 949	. 949	. 913
5000	6	1	. 99	. 9	-. 006	-. 020	-. 189	. 029	. 032	. 007	. 904	. 901	. 000
				. 1	. 001	. 002	. 021	. 012	. 012	. 011	. 972	. 947	. 453
5000	6	2	. 99	. 9	. 000	-. 001	-. 020	. 011	. 008	. 006	. 951	. 945	. 049
				. 1	. 000	. 000	. 005	. 012	. 012	. 012	. 950	. 951	. 896
5000	8	0	. 99	. 9	. 001	-. 002	-. 051	. 011	. 008	. 005	. 956	. 942	. 000
				. 1	. 000	. 000	-. 001	. 009	. 009	. 009	. 953	. 953	. 927
5000	8	1	. 99	. 9	. 001	-. 012	-. 140	. 023	. 018	. 006	. 927	. 900	. 000
				. 1	. 000	. 002	. 022	. 009	. 009	. 009	. 975	. 947	. 240
5000	8	2	. 99	. 9	. 000	-. 001	-. 001	. 007	. 006	. 005	. 949	. 944	. 908
				. 1	. 000	. 000	. 000	. 009	. 009	. 009	. 951	. 952	. 936
5000	16	0	. 99	. 9	. 000	-. 002	-. 014	. 004	. 003	. 003	. 952	. 932	. 000
				. 1	. 000	. 000	. 001	. 004	. 004	. 004	. 952	. 953	. 937
5000	16	1	. 99	. 9	. 000	-. 004	-. 058	. 007	. 006	. 003	. 958	. 885	. 000
				. 1	. 000	. 001	. 017	. 005	. 005	. 005	. 952	. 942	. 030
5000	16	2	. 99	. 9	. 000	-. 001	. 014	. 003	. 003	. 002	. 946	. 937	. 000
				. 1	. 000	. 001	-. 007	. 005	. 005	. 004	. 953	. 950	. 619
5000	24	0	. 99	. 9	. 000	-. 001	-. 006	. 002	. 002	. 002	. 954	. 914	. 095
				. 1	. 000	. 000	. 001	. 003	. 003	. 003	. 950	. 949	. 931
5000	24	1	. 99	. 9	. 000	-. 003	-. 030	. 003	. 003	. 002	. 948	. 876	. 000
				. 1	. 000	. 001	. 012	. 003	. 003	. 003	. 951	. 941	. 033
5000	24	2	. 99	. 9	. 000	-. 001	. 013	. 002	. 002	. 002	. 952	. 933	. 000
				. 1	. 000	. 001	-. 008	. 003	. 003	. 003	. 948	. 947	. 239

Notes: Data generated as $y_{i t}=\theta_{01} y_{i t-1}+\theta_{02} x_{i t}+\alpha_{i}+\varepsilon_{i t}, x_{i t}=.5 \alpha_{i}+\gamma x_{i t-1}+u_{i t}(i=1, \ldots, N ; t=1, \ldots T)$ with $\alpha_{i} \sim \mathcal{N}(0,1), \varepsilon_{i t} \sim \mathcal{N}(0,1), u_{i t} \sim \mathcal{N}(0, .25), \psi$ the degree of outlyingness of the initial observations $y_{i 0}$, and $x_{i 0}$ drawn from the stationary distribution. Entries: bias, standard deviation (std), and coverage rate of 95% confidence interval (ci. 95) of adjusted likelihood ($\widehat{\theta}_{\mathrm{al}}$), Arellano-Bond ($\widehat{\theta}_{\mathrm{ab}}$), and Hahn-Kuersteiner ($\widehat{\theta}_{\mathrm{hk}}$) estimators; '-' indicates non-existence of the moment; 10,000 Monte Carlo replications.

Table 3. Simulation results for the first-order autoregression with a covariate (cont'd)

N	T	ψ	γ	θ_{0}	bias			std			ci. 95		
					$\widehat{\rho}_{\text {al }}$	$\widehat{\rho}_{\text {ab }}$	$\widehat{\rho}_{\text {hk }}$	$\widehat{\rho}_{\text {al }}$	$\widehat{\rho}_{\text {ab }}$	$\widehat{\rho}_{\text {hk }}$	$\widehat{\rho}_{\text {al }}$	$\widehat{\rho}_{\text {ab }}$	$\widehat{\rho}_{\text {hk }}$
5000	2	0	. 99	. 99	-. 063	-	-. 503	. 087	-	. 021	. 834	. 890	. 000
				. 01	. 000	-	-. 002	. 039	-	. 032	. 978	. 973	. 827
5000	2	1	. 99	. 99	-. 063	-	-. 503	. 087	-	. 021	. 834	. 891	. 000
				. 01	. 001	-	. 003	. 039	-	. 032	. 978	. 975	. 828
5000	2	2	. 99	. 99	-. 052	-	-. 485	. 087	-	. 021	. 848	. 948	. 000
				. 01	. 001	-	. 008	. 039	-	. 032	. 979	. 956	. 818
5000	4	0	. 99	. 99	-. 032	-. 189	-. 253	. 041	. 148	. 010	. 830	. 723	. 000
				. 01	. 000	-. 001	-. 001	. 018	. 017	. 016	. 975	. 954	. 902
5000	4	1	. 99	. 99	-. 032	-. 202	-. 253	. 041	. 155	. 010	. 832	. 705	. 000
				. 01	. 001	. 003	. 004	. 018	. 017	. 016	. 975	. 951	. 897
5000	4	2	. 99	. 99	-. 021	-. 024	-. 236	. 041	. 056	. 010	. 867	. 917	. 000
				. 01	. 001	. 001	. 009	. 018	. 018	. 016	. 974	. 949	. 859
5000	6	0	. 99	. 99	-. 020	-. 142	-. 170	. 027	. 081	. 007	. 849	. 560	. 000
				. 01	. 000	-. 001	-. 001	. 012	. 011	. 011	. 976	. 952	. 920
5000	6	1	. 99	. 99	-. 020	-. 148	-. 169	. 027	. 082	. 007	. 851	. 542	. 000
				. 01	. 001	. 004	. 004	. 012	. 012	. 011	. 976	. 940	. 894
5000	6	2	. 99	. 99	-. 010	-. 019	-. 153	. 027	. 030	. 007	. 889	. 897	. 000
				. 01	. 001	. 001	. 009	. 012	. 012	. 011	. 975	. 948	. 832
5000	8	0	. 99	. 99	-. 015	-. 109	-. 128	. 020	. 052	. 005	. 854	. 428	. 000
				. 01	. 000	-. 001	-. 001	. 009	. 009	. 008	. 977	. 954	. 924
5000	8	1	. 99	. 99	-. 015	-. 113	-. 127	. 020	. 053	. 005	. 856	. 415	. 000
				. 01	. 000	. 004	. 004	. 009	. 009	. 008	. 975	. 931	. 888
5000	8	2	. 99	. 99	-. 006	-. 016	-. 111	. 020	. 020	. 005	. 898	. 867	. 000
				. 01	. 000	. 001	. 008	. 009	. 009	. 008	. 975	. 952	. 792
5000	16	0	. 99	. 99	$-.007$	-. 055	-. 065	. 010	. 018	. 003	. 863	. 126	. 000
				. 01	. 000	. 000	. 000	. 004	. 004	. 004	. 977	. 952	. 934
5000	16	1	. 99	. 99	-. 006	-. 054	-. 064	. 010	. 018	. 003	. 868	. 130	. 000
				. 01	. 000	. 004	. 005	. 004	. 005	. 004	. 976	. 869	. 786
5000	16	2	. 99	. 99	. 000	-. 009	-. 050	. 011	. 007	. 003	. 928	. 756	. 000
				. 01	. 000	. 001	. 007	. 005	. 004	. 004	. 974	. 942	. 574
5000	24	0	. 99	. 99	-. 004	-. 036	-. 044	. 007	. 010	. 002	. 873	. 039	. 000
				. 01	. 000	. 000	. 000	. 003	. 003	. 003	. 971	. 946	. 930
5000	24	1	. 99	. 99	-. 004	-. 034	-. 043	. 007	. 010	. 002	. 881	. 047	. 000
				. 01	. 000	. 004	. 005	. 003	. 003	. 003	. 970	. 805	. 633
5000	24	2	. 99	. 99	. 001	$-.006$	-. 030	. 007	. 004	. 002	. 940	. 651	. 000
				. 01	. 000	. 001	. 006	. 003	. 003	. 003	. 966	. 925	. 410

Notes: Data generated as $y_{i t}=\theta_{01} y_{i t-1}+\theta_{02} x_{i t}+\alpha_{i}+\varepsilon_{i t}, x_{i t}=.5 \alpha_{i}+\gamma x_{i t-1}+u_{i t}(i=1, \ldots, N ; t=1, \ldots T)$ with $\alpha_{i} \sim \mathcal{N}(0,1), \varepsilon_{i t} \sim \mathcal{N}(0,1), u_{i t} \sim \mathcal{N}(0, .25), \psi$ the degree of outlyingness of the initial observations $y_{i 0}$, and $x_{i 0}$ drawn from the stationary distribution. Entries: bias, standard deviation (std), and coverage rate of 95% confidence interval (ci.95) of adjusted likelihood ($\widehat{\theta}_{\mathrm{al}}$), Arellano-Bond ($\widehat{\theta}_{\mathrm{ab}}$), and Hahn-Kuersteiner ($\widehat{\theta}_{\mathrm{hk}}$) estimators; '—, indicates non-existence of the moment; 10, 000 Monte Carlo replications.

Table 3. Simulation results for the first-order autoregression with a covariate (cont'd)

N	T	ψ	γ	θ_{0}	bias			std			ci. 95		
					$\widehat{\rho}_{\text {al }}$	$\widehat{\rho}_{\text {ab }}$	$\widehat{\rho}_{\text {hk }}$	$\widehat{\rho}_{\text {al }}$	$\widehat{\rho}_{\text {ab }}$	$\widehat{\rho}_{\text {hk }}$	$\widehat{\rho}_{\text {al }}$	$\widehat{\rho}_{\text {ab }}$	$\widehat{\rho}_{\text {hk }}$
10000	2	0	. 5	. 5	-. 007	-	-. 662	. 074	-	. 015	. 905	. 950	. 000
				. 5	-. 002	-	-. 166	. 030	-	. 019	. 960	. 953	. 000
10000	2	1	. 5	. 5	. 006	-	-. 417	. 050	-	. 014	. 958	. 949	. 000
				. 5	. 000	-	. 007	. 024	-	. 020	. 954	. 953	. 817
10000	2	2	. 5	. 5	. 001	-	. 074	. 015	-	. 012	. 946	. 946	. 000
				. 5	. 000	-	-. 021	. 025	-	. 025	. 953	. 952	. 705
10000	4	0	. 5	. 5	. 000	-. 001	-. 245	. 016	. 013	. 007	. 951	. 949	. 000
				. 5	. 000	. 000	-. 028	. 013	. 013	. 012	. 949	. 949	. 243
10000	4	1	. 5	. 5	. 000	-. 001	-. 124	. 011	. 011	. 007	. 951	. 953	. 000
				. 5	. 000	. 000	. 016	. 013	. 013	. 012	. 949	. 949	. 629
10000	4	2	. 5	. 5	. 000	. 000	. 078	. 006	. 006	. 006	. 952	. 953	. 000
				. 5	. 000	. 000	-. 030	. 013	. 013	. 013	. 948	. 949	. 283
10000	6	0	. 5	. 5	. 000	-. 001	-. 114	. 007	. 007	. 005	. 949	. 945	. 000
				. 5	. 000	. 000	-. 002	. 009	. 009	. 009	. 951	. 951	. 915
10000	6	1	. 5	. 5	. 000	-. 001	-. 051	. 006	. 007	. 005	. 953	. 947	. 000
				. 5	. 000	. 000	. 010	. 009	. 009	. 009	. 951	. 951	. 760
10000	6	2	. 5	. 5	. 000	. 000	. 056	. 004	. 005	. 004	. 951	. 946	. 000
				. 5	. 000	. 000	-. 022	. 009	. 009	. 009	. 952	. 952	. 299
10000	8	0	. 5	. 5	. 000	-. 001	-. 061	. 005	. 005	. 004	. 947	. 947	. 000
				. 5	. 000	. 000	. 003	. 007	. 007	. 008	. 946	. 945	. 897
10000	8	1	. 5	. 5	. 000	. 000	-. 025	. 004	. 005	. 004	. 950	. 951	. 000
				. 5	. 000	. 000	. 005	. 008	. 008	. 007	. 946	. 946	. 860
10000	8	2	. 5	. 5	. 000	. 000	. 042	. 003	. 004	. 003	. 947	. 950	. 000
				. 5	. 000	. 000	-. 016	. 008	. 008	. 007	. 946	. 946	. 403
10000	16	0	. 5	. 5	. 000	. 000	-. 010	. 003	. 003	. 003	. 951	. 948	. 013
				. 5	. 000	. 000	. 002	. 005	. 005	. 005	. 950	. 949	. 926
10000	16	1	. 5	. 5	. 000	. 000	-. 001	. 002	. 003	. 002	. 949	. 947	. 872
				. 5	. 000	. 000	. 000	. 005	. 005	. 005	. 950	. 949	. 943
10000	16	2	. 5	. 5	. 000	. 000	. 017	. 002	. 002	. 002	. 948	. 945	. 000
				. 5	. 000	. 000	-. 006	. 005	. 005	. 005	. 950	. 949	. 726
10000	24	0	. 5	. 5	. 000	. 000	-. 002	. 002	. 002	. 002	. 948	. 947	. 765
				. 5	. 000	. 000	. 001	. 004	. 004	. 004	. 947	. 947	. 942
10000	24	1	. 5	. 5	. 000	. 000	. 001	. 002	. 002	. 002	. 954	. 946	. 844
				. 5	. 000	. 000	. 000	. 004	. 004	. 004	. 954	. 956	. 942
10000	24	2	. 5	. 5	$.000$. 000	. 010	. 002	. 002	. 002	. 951	. 949	$.000$
				. 5	. 000	. 000	-. 004	. 004	. 004	. 004	. 951	. 951	. 836

Notes: Data generated as $y_{i t}=\theta_{01} y_{i t-1}+\theta_{02} x_{i t}+\alpha_{i}+\varepsilon_{i t}, x_{i t}=.5 \alpha_{i}+\gamma x_{i t-1}+u_{i t}(i=1, \ldots, N ; t=1, \ldots T)$ with $\alpha_{i} \sim \mathcal{N}(0,1), \varepsilon_{i t} \sim \mathcal{N}(0,1), u_{i t} \sim \mathcal{N}(0, .25), \psi$ the degree of outlyingness of the initial observations $y_{i 0}$, and $x_{i 0}$ drawn from the stationary distribution. Entries: bias, standard deviation (std), and coverage rate of 95% confiydence interval (ci. 95) of adjusted likelihood ($\widehat{\theta}_{\mathrm{al}}$), Arellano-Bond ($\widehat{\theta}_{\mathrm{ab}}$), and Hahn-Kuersteiner ($\widehat{\theta}_{\mathrm{hk}}$) estimators; '-' indicates non-existence of the moment; 10,000 Monte Carlo replications.

Table 3. Simulation results for the first-order autoregression with a covariate (cont'd)

N	T	ψ	γ	θ_{0}	bias			std			ci. 95		
					$\widehat{\rho}_{\text {al }}$	$\widehat{\rho}_{\text {ab }}$	$\widehat{\rho}_{\text {hk }}$	$\widehat{\rho}_{\text {al }}$	$\widehat{\rho}_{\text {ab }}$	$\widehat{\rho}_{\text {hk }}$	$\widehat{\rho}_{\text {al }}$	$\widehat{\rho}_{\text {ab }}$	$\widehat{\rho}_{\text {hk }}$
10000	2	0	. 5	. 9	-. 051	-	-. 546	. 072	-	. 015	. 843	. 933	. 000
				. 1	-. 003	-	$-.027$. 024	-	. 019	. 976	. 957	. 473
10000	2	1	. 5	. 9	-. 018	-	-. 489	. 073	-	. 015	. 892	. 935	. 000
				. 1	. 001	-	. 024	. 024	-	. 019	. 977	. 957	. 557
10000	2	2	. 5	. 9	. 015	-	-. 319	. 073	-	. 015	. 947	. 947	. 000
				. 1	-. 002	-	. 048	. 027	-	. 021	. 966	. 952	. 191
10000	4	0	. 5	. 9	-. 020	$-.022$	-. 288	. 035	. 054	. 007	. 864	. 924	. 000
				. 1	-. 001	-. 001	-. 013	. 012	. 013	. 011	. 976	. 948	. 699
10000	4	1	. 5	. 9	. 003	$-.014$	-. 232	. 037	. 043	. 007	. 930	. 934	. 000
				. 1	. 000	. 001	. 021	. 013	. 013	. 011	. 970	. 948	. 426
10000	4	2	. 5	. 9	. 001	-. 002	-. 096	. 017	. 016	. 007	. 955	. 951	. 000
				. 1	. 000	. 000	. 022	. 013	. 013	. 012	. 949	. 950	. 457
10000	6	0	. 5	. 9	-. 007	$-.012$	-. 198	. 023	. 025	. 005	. 901	. 918	. 000
				. 1	. 000	. 000	$-.007$. 009	. 009	. 009	. 973	. 951	. 816
10000	6	1	. 5	. 9	. 004	$-.008$	$-.145$. 024	. 020	. 005	. 952	. 925	. 000
				. 1	. 000	. 001	. 016	. 009	. 009	. 009	. 962	. 949	. 469
10000	6	2	. 5	. 9	. 000	$-.002$	$-.034$. 008	. 009	. 004	. 952	. 945	. 000
				. 1	. 000	. 001	. 009	. 009	. 009	. 009	. 953	. 952	. 789
10000	8	0	. 5	. 9	. 000	$-.007$	$-.150$. 019	. 014	. 004	. 919	. 919	. 000
				. 1	. 000	. 000	-. 004	. 007	. 007	. 007	. 968	. 946	. 867
10000	8	1	. 5	. 9	. 002	$-.005$	-. 103	. 014	. 012	. 004	. 958	. 932	. 000
				. 1	. 000	. 001	. 012	. 008	. 008	. 007	. 948	. 945	. 569
10000	8	2	. 5	. 9	. 000	$-.001$	$-.010$. 005	. 006	. 003	. 949	. 947	. 089
				. 1	. 000	. 000	. 003	. 008	. 008	. 007	. 946	. 947	. 912
10000	16	0	. 5	. 9	. 000	$-.003$	$-.069$. 006	. 005	. 002	. 963	. 914	. 000
				. 1	. 000	. 000	. 000	. 005	. 005	. 005	. 950	. 949	. 934
10000	16	1	. 5	. 9	. 000	$-.002$	$-.041$. 004	. 004	. 002	. 951	. 920	. 000
				. 1	. 000	. 000	. 005	. 005	. 005	. 005	. 951	. 951	. 817
10000	16	2	. 5	. 9	. 000	$-.001$. 009	. 002	. 002	. 002	. 951	. 939	. 001
				. 1	. 000	. 000	-. 002	. 005	. 005	. 005	. 950	. 951	. 920
10000	24	0	. 5	. 9	. 000	$-.002$	$-.040$. 003	. 003	. 002	. 951	. 902	. 000
				. 1	. 000	. 000	. 000	. 004	. 004	. 004	. 949	. 949	. 936
10000	24	1	. 5	. 9	. 000	$-.001$	$-.022$. 002	. 002	. 001	. 953	. 910	. 000
				. 1	. 000	. 000	. 003	. 004	. 004	. 004	. 948	. 948	. 889
10000	24	2	. 5	$\text { . } 9$. 000	$-.001$. 008	. 001	. 002	. 001	. 950	. 935	. 000
				. 1	. 000	. 000	$-.002$. 004	. 004	. 004	. 949	. 949	. 918

Notes: Data generated as $y_{i t}=\theta_{01} y_{i t-1}+\theta_{02} x_{i t}+\alpha_{i}+\varepsilon_{i t}, x_{i t}=.5 \alpha_{i}+\gamma x_{i t-1}+u_{i t}(i=1, \ldots, N ; t=1, \ldots T)$ with $\alpha_{i} \sim \mathcal{N}(0,1), \varepsilon_{i t} \sim \mathcal{N}(0,1), u_{i t} \sim \mathcal{N}(0, .25), \psi$ the degree of outlyingness of the initial observations $y_{i 0}$, and $x_{i 0}$ drawn from the stationary distribution. Entries: bias, standard deviation (std), and coverage rate of 95% confidence interval (ci.95) of adjusted likelihood ($\widehat{\theta}_{\mathrm{al}}$), Arellano-Bond ($\widehat{\theta}_{\mathrm{ab}}$), and Hahn-Kuersteiner ($\widehat{\theta}_{\mathrm{hk}}$) estimators; '—, indicates non-existence of the moment; 10, 000 Monte Carlo replications.

Table 3. Simulation results for the first-order autoregression with a covariate (cont'd)

N	T	ψ	γ	θ_{0}	bias			std			ci. 95		
					$\widehat{\rho}_{\text {al }}$	$\widehat{\rho}_{\text {ab }}$	$\widehat{\rho}_{\text {hk }}$	$\widehat{\rho}_{\text {al }}$	$\widehat{\rho}_{\text {ab }}$	$\widehat{\rho}_{\text {hk }}$	$\widehat{\rho}_{\text {al }}$	$\widehat{\rho}_{\text {ab }}$	$\widehat{\rho}_{\text {hk }}$
10000	2	0	. 5	. 99	-. 053	-	-. 505	. 072	-	. 015	. 839	. 831	. 000
				. 01	. 000	-	-. 003	. 024	-	. 019	. 978	. 983	. 833
10000	2	1	. 5	. 99	-. 049	-	-. 498	. 072	-	. 015	. 847	. 871	. 000
				. 01	. 001	-	. 013	. 024	-	. 019	. 977	. 940	. 753
10000	2	2	. 5	. 99	-. 036	-	-. 478	. 072	-	. 015	. 865	. 902	. 000
				. 01	. 002		. 027	. 024		. 019	. 977	. 926	. 501
10000	4	0	. 5	. 99	-. 027	-. 532	-. 255	. 034	. 235	. 007	. 839	. 349	. 000
				. 01	. 000	-. 003	-. 001	. 012	. 011	. 011	. 975	. 949	. 908
10000	4	1	. 5	. 99	-. 023	-. 207	-. 248	. 034	. 152	. 007	. 855	. 699	. 000
				. 01	. 001	. 008	. 010	. 012	. 013	. 011	. 974	. 897	. 785
10000	4	2	. 5	. 99	-. 011	$-.075$	-. 228	. 034	. 095	. 007	. 888	. 861	. 000
				. 01	. 001	. 006	. 019	. 013	. 014	. 011	. 973	. 922	. 487
10000	6	0	. 5	. 99	-. 018	-. 342	-. 171	. 022	. 126	. 005	. 850	. 176	. 000
				. 01	. 000	-. 001	-. 001	. 009	. 009	. 009	. 974	. 946	. 922
10000	6	1	. 5	. 99	-. 013	-. 130	-. 165	. 022	. 075	. 005	. 871	. 585	. 000
				. 01	. 001	. 006	. 008	. 009	. 009	. 009	. 975	. 895	. 797
10000	6	2	. 5	. 99	-. 003	-. 041	-. 145	. 023	. 043	. 005	. 914	. 832	. 000
				. 01	. 001	. 004	. 015	. 009	. 010	. 009	. 974	. 926	. 534
10000	8	0	. 5	. 99	-. 014	-. 238	-. 130	. 017	. 079	. 004	. 845	. 098	. 000
				. 01	. 000	-. 001	-. 001	. 007	. 007	. 007	. 973	. 944	. 928
10000	8	1	. 5	. 99	-. 009	-. 090	-. 123	. 017	. 047	. 004	. 874	. 506	. 000
				. 01	. 001	. 005	. 006	. 007	. 007	. 007	. 974	. 902	. 821
10000	8	2	. 5	. 99	. 000	-. 026	-. 103	. 018	. 025	. 004	. 921	. 822	. 000
				. 01	. 000	. 003	. 011	. 008	. 008	. 007	. 971	. 929	. 610
10000	16	0	. 5	. 99	$-.007$	-. 089	-. 067	. 008	. 024	. 002	. 851	. 019	. 000
				. 01	. 000	. 000	. 000	. 005	. 005	. 005	. 976	. 949	. 939
10000	16	1	. 5	. 99	-. 003	-. 039	-. 060	. 008	. 015	. 002	. 900	. 273	. 000
				. 01	. 000	. 002	. 003	. 005	. 005	. 005	. 976	. 932	. 881
10000	16	2	. 5	. 99	. 001	-. 009	-. 042	. 009	. 007	. 002	. 953	. 756	. 000
				. 01	. 000	. 001	. 005	. 005	. 005	. 005	. 959	. 946	. 816
10000	24	0	. 5	. 99	-. 004	-. 048	-. 046	. 006	. 011	. 001	. 857	. 008	. 000
				. 01	. 000	. 000	. 000	. 004	. 004	. 004	. 976	. 949	. 940
10000	24	1	. 5	. 99	-. 001	-. 024	-. 039	. 006	. 008	. 001	. 918	. 141	. 000
				. 01	. 000	. 001	. 002	. 004	. 004	. 004	. 970	. 936	. 906
10000	24	2	. 5	. 99	. 000	-. 005	-. 023	. 004	. 004	. 001	. 960	. 695	. 000
				. 01	. 000	. 001	. 003	. 004	. 004	. 004	. 950	. 946	. 888

Notes: Data generated as $y_{i t}=\theta_{01} y_{i t-1}+\theta_{02} x_{i t}+\alpha_{i}+\varepsilon_{i t}, x_{i t}=.5 \alpha_{i}+\gamma x_{i t-1}+u_{i t}(i=1, \ldots, N ; t=1, \ldots T)$ with $\alpha_{i} \sim \mathcal{N}(0,1), \varepsilon_{i t} \sim \mathcal{N}(0,1), u_{i t} \sim \mathcal{N}(0, .25), \psi$ the degree of outlyingness of the initial observations $y_{i 0}$, and $x_{i 0}$ drawn from the stationary distribution. Entries: bias, standard deviation (std), and coverage rate of 95% confidence interval (ci. 95) of adjusted likelihood ($\widehat{\theta}_{\mathrm{al}}$), Arellano-Bond ($\widehat{\theta}_{\mathrm{ab}}$), and Hahn-Kuersteiner ($\widehat{\theta}_{\mathrm{hk}}$) estimators; '-' indicates non-existence of the moment; 10,000 Monte Carlo replications.

Table 3. Simulation results for the first-order autoregression with a covariate (cont'd)

N	T	ψ	γ	θ_{0}	bias			std			ci. 95		
					$\widehat{\rho}_{\text {al }}$	$\widehat{\rho}_{\text {ab }}$	$\widehat{\rho}_{\text {hk }}$	$\widehat{\rho}_{\text {al }}$	$\widehat{\rho}_{\text {ab }}$	$\widehat{\rho}_{\text {hk }}$	$\widehat{\rho}_{\text {al }}$	$\widehat{\rho}_{\text {ab }}$	$\widehat{\rho}_{\text {hk }}$
10000	2	0	. 99	. 5	. 000	-	. 386	. 009	-	. 009	. 948	. 949	. 000
				. 5	. 000	-	. 097	. 028	-	. 036	. 952	. 952	. 113
10000	2	1	. 99	. 5	-. 001	-	-. 649	. 075	-	. 015	. 914	. 948	. 000
				. 5	. 000	-	. 006	. 028	-	. 021	. 973	. 953	. 826
10000	2	2	. 99	. 5	. 000	-	. 441	. 008	-	. 009	. 948	. 946	. 000
				. 5	. 000	-	-. 118	. 028	-	. 038	. 953	. 953	. 046
10000	4	0	. 99	. 5	. 000	. 000	. 201	. 004	. 004	. 004	. 952	. 952	. 000
				. 5	. 000	. 000	. 013	. 013	. 013	. 014	. 950	. 949	. 783
10000	4	1	. 99	. 5	. 000	$-.001$	-. 219	. 015	. 012	. 007	. 949	. 949	. 000
				. 5	. 000	. 000	. 051	. 013	. 013	. 012	. 949	. 948	. 007
10000	4	2	. 99	. 5	. 000	. 000	. 228	. 004	. 004	. 004	. 951	. 950	. 000
				. 5	. 000	. 000	-. 121	. 013	. 013	. 015	. 947	. 948	. 000
10000	6	0	. 99	. 5	. 000	. 000	. 127	. 003	. 003	. 003	. 946	. 950	. 000
				. 5	. 000	. 000	-. 013	. 008	. 008	. 009	. 948	. 948	. 623
10000	6	1	. 99	. 5	. 000	$-.001$	-. 092	. 007	. 007	. 005	. 947	. 946	. 000
				. 5	. 000	. 000	. 035	. 009	. 009	. 008	. 949	. 949	. 008
10000	6	2	. 99	. 5	. 000	. 000	. 146	. 003	. 003	. 003	. 950	. 950	. 000
				. 5	. 000	. 000	-. 095	. 009	. 009	. 009	. 949	. 948	. 000
10000	8	0	. 99	. 5	. 000	. 000	. 089	. 003	. 003	. 003	. 953	. 951	. 000
				. 5	. 000	. 000	-. 021	. 006	. 006	. 006	. 951	. 951	. 066
10000	8	1	. 99	. 5	. 000	. 000	-. 044	. 005	. 005	. 004	. 949	. 950	. 000
				. 5	. 000	. 000	. 021	. 007	. 007	. 006	. 948	. 948	. 075
10000	8	2	. 99	. 5	. 000	. 000	. 103	. 002	. 002	. 003	. 949	. 949	. 000
				. 5	. 000	. 000	-. 075	. 006	. 006	. 006	. 949	. 947	. 000
10000	16	0	. 99	. 5	. 000	. 000	. 036	. 002	. 002	. 002	. 953	. 951	. 000
				. 5	. 000	. 000	-. 019	. 003	. 003	. 003	. 950	. 950	. 000
10000	16	1	. 99	. 5	. 000	. 000	-. 001	. 002	. 003	. 002	. 953	. 950	. 887
				. 5	. 000	. 000	. 001	. 004	. 004	. 003	. 951	. 951	. 939
10000	16	2	. 99	. 5	. 000	. 000	. 042	. 002	. 002	. 002	. 950	. 947	. 000
				. 5	. 000	. 000	-. 036	. 003	. 003	. 003	. 951	. 951	. 000
10000	24	0	. 99	. 5	. 000	. 000	. 021	. 002	. 002	. 002	. 948	. 947	. 000
				. 5	. 000	. 000	-. 014	. 002	. 002	. 002	. 951	. 950	. 000
10000	24	1	. 99	. 5	. 000	. 000	. 004	. 002	. 002	. 002	. 947	. 945	. 416
				. 5	. 000	. 000	-. 003	. 003	. 003	. 002	. 951	. 949	. 773
10000	24	2	. 99	. 5	. 000	. 000	. 025	. 001	. 002	. 002	. 951	. 947	. 000
				. 5	. 000	. 000	-. 022	. 002	. 002	. 002	. 946	. 947	. 000

Notes: Data generated as $y_{i t}=\theta_{01} y_{i t-1}+\theta_{02} x_{i t}+\alpha_{i}+\varepsilon_{i t}, x_{i t}=.5 \alpha_{i}+\gamma x_{i t-1}+u_{i t}(i=1, \ldots, N ; t=1, \ldots T)$ with $\alpha_{i} \sim \mathcal{N}(0,1), \varepsilon_{i t} \sim \mathcal{N}(0,1), u_{i t} \sim \mathcal{N}(0, .25), \psi$ the degree of outlyingness of the initial observations $y_{i 0}$, and $x_{i 0}$ drawn from the stationary distribution. Entries: bias, standard deviation (std), and coverage rate of 95% confidence interval (ci.95) of adjusted likelihood ($\widehat{\theta}_{\mathrm{al}}$), Arellano-Bond ($\widehat{\theta}_{\mathrm{ab}}$), and Hahn-Kuersteiner ($\widehat{\theta}_{\mathrm{hk}}$) estimators; '-- indicates non-existence of the moment; 10, 000 Monte Carlo replications.

Table 3. Simulation results for the first-order autoregression with a covariate (cont'd)

N	T	ψ	γ	θ_{0}	bias			std			ci. 95		
					$\widehat{\rho}_{\text {al }}$	$\widehat{\rho}_{\text {ab }}$	$\widehat{\rho}_{\text {hk }}$	$\widehat{\rho}_{\text {al }}$	$\widehat{\rho}_{\text {ab }}$	$\widehat{\rho}_{\text {hk }}$	$\widehat{\rho}_{\text {al }}$	$\widehat{\rho}_{\text {ab }}$	$\widehat{\rho}_{\text {hk }}$
10000	2	0	. 99	. 9	. 013	-	-. 383	. 077	-	. 015	. 933	. 949	. 000
				. 1	. 001	-	-. 019	. 028	-	. 023	. 967	. 953	. 701
10000	2	1	. 99	. 9	-. 048	-	-. 541	. 072	-	. 015	. 849	. 919	. 000
				. 1	. 000	-	. 004	. 027	-	. 022	. 977	. 969	. 838
10000	2	2	. 99	. 9	. 012	-	-. 280	. 065	-	. 014	. 953	. 947	. 000
				. 1	-. 001		. 018	. 028	-	. 024	. 957	. 953	. 735
10000	4	0	. 99	. 9	. 003	$-.001$	-. 152	. 027	. 014	. 007	. 961	. 949	. 000
				. 1	. 000	. 000	-. 006	. 013	. 013	. 012	. 950	. 949	. 859
10000	4	1	. 99	. 9	-. 016	-. 020	-. 281	. 035	. 052	. 007	. 877	. 924	. 000
				. 1	. 001	. 001	. 017	. 013	. 013	. 012	. 972	. 947	. 567
10000	4	2	. 99	. 9	. 000	$-.001$	-. 074	. 015	. 010	. 007	. 953	. 951	. 000
				. 1	. 000	. 000	. 012	. 013	. 013	. 012	. 949	. 948	. 759
10000	6	0	. 99	. 9	. 001	-. 001	-. 082	. 012	. 008	. 005	. 959	. 950	. 000
				. 1	. 000	. 000	-. 002	. 008	. 008	. 008	. 947	. 948	. 908
10000	6	1	. 99	. 9	-. 003	-. 010	-. 189	. 024	. 023	. 005	. 915	. 924	. 000
				. 1	. 000	. 001	. 021	. 009	. 009	. 008	. 974	. 946	. 196
10000	6	2	. 99	. 9	. 000	$-.001$	-. 020	. 008	. 006	. 004	. 952	. 948	. 001
				. 1	. 000	. 000	. 005	. 009	. 008	. 008	. 949	. 948	. 871
10000	8	0	. 99	. 9	. 000	$-.001$	-. 051	. 007	. 005	. 004	. 953	. 946	. 000
				. 1	. 000	. 000	-. 001	. 006	. 006	. 006	. 949	. 950	. 925
10000	8	1	. 99	. 9	. 002	-. 006	-. 140	. 019	. 013	. 004	. 933	. 927	. 000
				. 1	. 000	. 001	. 022	. 007	. 007	. 006	. 971	. 946	. 046
10000	8	2	. 99	. 9	. 000	$-.001$. 000	. 005	. 004	. 003	. 949	. 947	. 906
				. 1	. 000	. 000	. 000	. 006	. 006	. 006	. 949	. 948	. 935
10000	16	0	. 99	. 9	. 000	$-.001$	-. 014	. 003	. 002	. 002	. 949	. 936	. 000
				. 1	. 000	. 000	. 001	. 003	. 003	. 003	. 952	. 952	. 931
10000	16	1	. 99	. 9	. 000	-. 002	-. 058	. 005	. 004	. 002	. 957	. 922	. 000
				. 1	. 000	. 001	. 017	. 003	. 003	. 003	. 952	. 948	. 001
10000	16	2	. 99	. 9	. 000	. 000	. 014	. 002	. 002	. 002	. 951	. 944	. 000
				. 1	. 000	. 000	-. 007	. 003	. 003	. 003	. 951	. 951	. 347
10000	24	0	. 99	. 9	. 000	$-.001$	-. 006	. 002	. 002	. 001	. 953	. 936	. 005
				. 1	. 000	. 000	. 001	. 002	. 002	. 002	. 955	. 955	. 926
10000	24	1	. 99	. 9	. 000	$-.001$	-. 029	. 002	. 002	. 001	. 950	. 912	. 000
				. 1	. 000	. 001	. 012	. 002	. 002	. 002	. 952	. 946	. 001
10000	24	2	. 99	. 9	. 000	. 000	. 013	. 001	. 001	. 001	. 949	. 937	. 000
				. 1	. 000	. 000	-. 008	. 002	. 002	. 002	. 953	. 952	. 038

Notes: Data generated as $y_{i t}=\theta_{01} y_{i t-1}+\theta_{02} x_{i t}+\alpha_{i}+\varepsilon_{i t}, x_{i t}=.5 \alpha_{i}+\gamma x_{i t-1}+u_{i t}(i=1, \ldots, N ; t=1, \ldots T)$ with $\alpha_{i} \sim \mathcal{N}(0,1), \varepsilon_{i t} \sim \mathcal{N}(0,1), u_{i t} \sim \mathcal{N}(0, .25), \psi$ the degree of outlyingness of the initial observations $y_{i 0}$, and $x_{i 0}$ drawn from the stationary distribution. Entries: bias, standard deviation (std), and coverage rate of 95% confidence interval (ci. 95) of adjusted likelihood ($\widehat{\theta}_{\mathrm{al}}$), Arellano-Bond ($\widehat{\theta}_{\mathrm{ab}}$), and Hahn-Kuersteiner ($\widehat{\theta}_{\mathrm{hk}}$) estimators; '-' indicates non-existence of the moment; 10,000 Monte Carlo replications.

Table 3. Simulation results for the first-order autoregression with a covariate (cont'd)

N	T	ψ	γ	θ_{0}	bias			std			ci. 95		
					$\widehat{\rho}_{\text {al }}$	$\widehat{\rho}_{\text {ab }}$	$\widehat{\rho}_{\text {hk }}$	$\widehat{\rho}_{\text {al }}$	$\widehat{\rho}_{\text {ab }}$	$\widehat{\rho}_{\text {hk }}$	$\widehat{\rho}_{\text {al }}$	$\widehat{\rho}_{\text {ab }}$	$\widehat{\rho}_{\text {hk }}$
10000	2	0	. 99	. 99	-. 052	-	-. 503	. 072	-	. 015	. 841	. 911	. 000
				. 01	. 000	-	-. 003	. 027	-	. 022	. 978	. 970	. 841
10000	2	1	. 99	. 99	-. 052	-	-. 503	. 072	-	. 015	. 842	. 912	. 000
				. 01	. 000	-	. 003	. 027	-	. 022	. 977	. 972	. 840
10000	2	2	. 99	. 99	-. 041	-	$-.485$. 072	-	. 015	. 858	. 947	. 000
				. 01	. 001		. 008	. 027	-	. 022	. 977	. 955	. 819
10000	4	0	. 99	. 99	$-.026$	-. 106	$-.253$. 034	. 112	. 007	. 843	. 823	. 000
				. 01	. 000	-. 001	-. 001	. 012	. 012	. 012	. 973	. 951	. 904
10000	4	1	. 99	. 99	-. 026	-. 114	-. 253	. 034	. 115	. 007	. 845	. 811	. 000
				. 01	. 000	. 002	. 004	. 012	. 012	. 012	. 973	. 947	. 887
10000	4	2	. 99	. 99	$-.016$	$-.013$	$-.236$. 034	. 040	. 007	. 875	. 935	. 000
				. 01	. 001	. 000	. 009	. 013	. 013	. 012	. 972	. 947	. 821
10000	6	0	. 99	. 99	$-.017$	$-.080$	-. 170	. 022	. 060	. 005	. 853	. 722	. 000
				. 01	. 000	. 000	-. 001	. 008	. 008	. 008	. 973	. 948	. 916
10000	6	1	. 99	. 99	-. 016	$-.085$	-. 169	. 022	. 061	. 005	. 856	. 715	. 000
				. 01	. 000	. 002	. 004	. 008	. 008	. 008	. 973	. 943	. 875
10000	6	2	. 99	. 99	$-.007$	$-.010$	$-.153$. 023	. 022	. 005	. 900	. 922	. 000
				. 01	. 000	. 001	. 009	. 008	. 008	. 008	. 973	. 946	. 745
10000	8	0	. 99	. 99	$-.012$	$-.062$	-. 128	. 017	. 039	. 004	. 853	. 636	. 000
				. 01	. 000	. 000	-. 001	. 006	. 006	. 006	. 975	. 949	. 922
10000	8	1	. 99	. 99	$-.012$	$-.065$	-. 127	. 017	. 039	. 004	. 854	. 624	. 000
				. 01	. 000	. 002	. 005	. 006	. 006	. 006	. 975	. 938	. 842
10000	8	2	. 99	. 99	$-.003$	-. 008	-. 111	. 017	. 014	. 004	. 909	. 907	. 000
				. 01	. 000	. 001	. 008	. 006	. 006	. 006	. 974	. 948	. 651
10000	16	0	. 99	. 99	$-.006$	$-.032$	$-.065$. 008	. 013	. 002	. 863	. 352	. 000
				. 01	. 000	. 000	. 000	. 003	. 003	. 003	. 976	. 954	. 936
10000	16	1	. 99	. 99	$-.005$	$-.031$	$-.064$. 008	. 013	. 002	. 874	. 363	. 000
				. 01	. 000	. 002	. 005	. 003	. 003	. 003	. 975	. 898	. 630
10000	16	2	. 99	. 99	. 001	$-.004$	$-.050$. 009	. 005	. 002	. 938	. 861	. 000
				. 01	. 000	. 001	. 007	. 003	. 003	. 003	. 972	. 948	. 303
10000	24	0	. 99	. 99	$-.003$	$-.020$	$-.044$. 006	. 007	. 001	. 880	. 200	. 000
				. 01	. 000	. 000	. 000	. 002	. 002	. 002	. 979	. 954	. 939
10000	24	1	. 99	. 99	$-.003$	-. 019	$-.043$. 006	. 007	. 001	. 889	. 222	. 000
				. 01	. 000	. 002	. 005	. 002	. 002	. 002	. 973	. 851	. 384
10000	24	2	. 99	. 99	. 001	-. 003	$-.030$. 006	. 003	. 001	. 952	. 794	. 000
				. 01	. 000	. 001	. 006	. 002	. 002	. 002	. 968	. 941	. 130

Notes: Data generated as $y_{i t}=\theta_{01} y_{i t-1}+\theta_{02} x_{i t}+\alpha_{i}+\varepsilon_{i t}, x_{i t}=.5 \alpha_{i}+\gamma x_{i t-1}+u_{i t}(i=1, \ldots, N ; t=1, \ldots T)$ with $\alpha_{i} \sim \mathcal{N}(0,1), \varepsilon_{i t} \sim \mathcal{N}(0,1), u_{i t} \sim \mathcal{N}(0, .25), \psi$ the degree of outlyingness of the initial observations $y_{i 0}$, and $x_{i 0}$ drawn from the stationary distribution. Entries: bias, standard deviation (std), and coverage rate of 95% confidence interval (ci. 95) of adjusted likelihood ($\widehat{\theta}_{\mathrm{al}}$), Arellano-Bond ($\widehat{\theta}_{\mathrm{ab}}$), and Hahn-Kuersteiner ($\widehat{\theta}_{\mathrm{hk}}$) estimators; '- 'indicates non-existence of the moment; 10,000 Monte Carlo replications.

