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We here provide proofs of some technical results, including Lemma D.1 and Theorem 7.1.

Proof of supt2[0;T ] jBtj = oa:s:(T
1=2 log T ) as T ! 1 (Section 3.3). By the re�ection principle

of the BM (e.g., Section 2.6 of Karatzas and Shreve, 1991), we have Pr
�
maxt�T Bt > �C

�
= 2 �

2�( �C=
p
T ) for any �C > 0, and Pr [mint�T Bt < C] = 2�(C=

p
T ) for any C < 0, where � denotes

the cumulative distribution function of the standard normal. Then, for any �c > 0,X1

J=1
Pr
h
maxt�J Bt > �cJ

1=2 (log J)
i
= 2

X1

J=1
f1� � (�c log J)g

� 2
X1

J=1

1

�c(log J)
expf��c2 (log J)2 =2g <1;

where we have used the inequality 1� � (x) � (1=x) exp
�
�x2=2

	
(Problem 9.22, Ch. 2, Karatzas

and Shreve, 1991). We can analogously show that for any c < 0,X1

J=1
Pr
h
mint�J Bt < cJ1=2

p
log J

i
� 2

X1

J=1
f1� � (j�cj log J)g <1:

These inequalities, together with the Borel-Cantelli lemma, imply thatmaxt�J jBtj = oa:s:(J
1=2 log J)

for any integer J � 1. For any arbitrary real number T � 1, we set J = dT e+1, where dT e denotes
the integer part of T , and then obtain

maxt�T jBtj � maxt�dT e+1 jBtj = oa:s:((dT e+ 1)1=2 log (dT e+ 1)) = oa:s:

�
T 1=2 log T

�
:

�

Lemma D.1. Suppose that a stochastic process f�tgt�0 on a probability space (
;F; P ) satis�es
the condition:

E [j�t � �sja] � C jt� sj1+b ; (0.1)

for some positive constants a; b and C each of which is independent of s and t. Then, there exists

a continuous modi�cation f~�tgt�0 of f�tgt�0, which is a.s. Hölder continuous with exponent d for
every d 2 (0; b=a) with a coe¢ cient # :=

P1
J=1 J

2+d (1=J !)d:

Pr

24! 2 

������9 �� (!) s.t. sup

jt�sj2(0; ��(!)); s;t2[0;1)

j~�t (!)� ~�s (!) j
jt� sjd

� #

35 = 1: (0.2)

Proof. The following arguments proceed along the lines of the proof of Theorem 2.2.8 in Karatzas

and Shreve (1991) where s; t are supposed to take values in some �nite interval [0; T ] (T = �T �xed).
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We �rst prove the global Hölder property of the process on an enlarging interval, i.e., [0; T ] where

T ! 1, and next show that it actually holds over the in�nite interval [0;1). For any " > 0, we

have

Pr [j�t � �sj � "] � E [j�t � �sja]
"a

� C"�a jt� sj1+b

by µCeby�ev�s inequality, and thus �t
P! �s as s! t. Setting t = km=m!, s = (k � 1)m=m! and " =

(m=m!)d, we obtain Pr
h���km=m! � �(k�1)m=m!�� � (m=m!)di � C (m=m!)(1+b�ad) and consequently,

Pr

�
max
1�k�m!

���km=m! � �(k�1)m=m!�� � (m=m!)d� � Cm(1+b�ad)
.
(m!)b�ad :

By the fact that
P1
m=1m

(1+b�ad)=(m!)b�ad exists and the Borel-Cantelli lemma, there exists a set


� 2 F with Pr (
�) = 1 such that

8! 2 
�;9m� (!) ; 8m � m� (!) : max
1�k�m!

���km=m! � �(k�1)m=m!�� < (m=m!)d (0.3)

, where m� is a positive and integer-valued random variable. For each integer m (� 1) and any
integer l � m, consider the following sets, Eml := fkm=l! j k = 0; 1; : : : ; l!g and Em :=

S1
l=1E

m
l .

The set Eml consists of (l! + 1) points in [0;m], while E
m consists of in�nitely many points in [0;m].

Note that Em is dense in [0;m] for any m. Now �x ! (2 
�) and m (� m� (!)). We shall show that

8l > m;8t; s 2 Eml with jt� sj 2 (0;m=m!) : j�t (!)� �s (!)j � 2
lX

J=m+1

J2 [J + 1= ((J + 1)!)]d :

(0.4)

To show this, we use the inductive method. First, we prove that the claim is true for l = m + 1.

For any s; t 2 Emm+1 with jt� sj 2 (0;m=m!), there exist some k1; k2 2 f0; 1; : : : ; (m+ 1)!g with
0 � k2 � k1 � m such that

j�t (!)� �s (!)j �
���k1(m+1)=(m+1)! (!)� �(k1+1)(m+1)=(m+1)! (!)��

+
���(k1+1)(m+1)=(m+1)! (!)� �(k1+2)(m+1)=(m+1)! (!)��

+ � � �+
���(k2�1)(m+1)=(m+1)! (!)� �k2(m+1)=(m+1)! (!)�� :

Each term on the right-hand side is bounded by m [(m+ 2) = (m+ 2)!]d, which is implied by

the fact Emm+1 � Em+2m+2 and the inequality eq. (0.3). Thus, by the triangle inequalities, we

have j�t (!)� �s (!)j � m2 [(m+ 2) = (m+ 2)!]d. Second, suppose that eq. (0.4) is valid for

l = m + 1; : : : ; L � 1. For s < t; (s; t 2 EmL ) with jt� sj 2 (0;m=m!), consider the num-

bers s1 := min
�
u 2 EmL�1 : u � s

	
and t1 := max

�
u 2 EmL�1 : u � t

	
, and notice that s1; t1 2

EmL�1 � EmL � EL+1L+1 ; s; t 2 EmL � EL+1L+1 ; s1 � s < m= (L� 1)!; and t � t1 < m= (L� 1)!.
By the inequality eq. (0.3) with m = L + 1, j�s1 (!)� �s (!)j � mL ((L+ 1) = (L+ 1)!)d and

j�t (!)� �t1 (!)j � mL ((L+ 1) = (L+ 1)!)d. There are two possible relationships among s; t; s1
and t1: (i) if jt� sj � m= (L� 1)!, it holds that s � s1 � t1 � t (with at least one inequality strict);

(ii) if jt� sj < m= (L� 1)!, either of jt� sj < js1 � t1j = m= (L� 1)! or js1 � t1j = 0. Thus, we
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have jt1 � s1j � max fm= (L� 1)!; jt� sjg � m=m!, and use the induction assumption (0.4) with

l = L� 1:

j�t1 (!)� �s1 (!)j � 2
L�1X

J=m+1

J2
�
J + 1

(J + 1)!

�d
: (0.5)

Therefore,

j�t (!)� �s (!)j � 2mL ((L+ 1) = (L+ 1)!)d + 2
L�1X

J=m+1

J2
�
J + 1

(J + 1)!

�d
< 2

LX
J=m+1

J2
�
J + 1

(J + 1)!

�d
:

We have shown eq. (0.4) for any l (> m), as desired.

We can now show that f�t (!) j t 2 Emg is uniformly Hölder in t for 8! 2 
� for anym. Consider
any numbers s; t 2 Em with m � m� (= m� (!)) and jt� sj < �� (!) � m�=m�!. Note that

Em � Em
0
form � m0. We can pick somem0 (� m) such that s; t 2 Em0

with (m0 + 2) = (m0 + 2)! �
t� s < (m0 + 1) = (m0 + 1)!. Then, by eq. (0.4), we obtain

j�t (!)� �s (!)j � 2
1X

J=m0+1

J2
�
J + 1

(J + 1)!

�d
�
��
m0 + 2

�
=
�
m0 + 2

�
!
�d � 1X

J=1

J2+d (1=J !)d

and thus, j�t (!)� �s (!)j/ jt� sjd � ch where # :=
P1
J=1 J

2+d (1=J !)d. Note that the existence

of # can be checked by d�Alembert�s criterion for any d (> 0).

We de�ne f~�tgt�0 as follows. For ! =2 
�, set ~�t (!) = 0, t 2 [0;m]. For ! 2 
� and t 2 Em, set
~�t (!) = �t (!). For ! 2 
� and t 2 [0;m]\ (Em)c, choose a sequence fsng1n=1with sn (2 Em)! t;

by the uniform continuity and the fact that sn is Cauchy, f�sn (!)g1n=1 is also Cauchy, whose limit
depends of t but not on the particular sequence fsng; and thus let ~�t (!) = limsn!t �sn (!). Thus,
the resulting process f~�tgt2[0;m] is continuous, and is also uniformly Hölder in t 2 [0;m]. We will
show f~�tg is a modi�cation of f�tg: observe that for t 2 Em; ~�t = �t a.s.; for t 2 [0;m] \ (Em)c

and fsng with sn (2 Em) ! t; we have �sn ! �t in probability (by eq. (0.1)) and �sn ! ~�t a.s.,

which implies ~�t = �t a.s.

Let m = [T ] + 1 with [T ] denoting the largest integer less than or equal to T . Now, we have

proved that for any ! 2 
�, there exist some m� (!) and �� (!) (� m�=m�!) such that 8m � m� (!)

sup
jt�sj2(0; ��(!))

t;s2[0;T ]

���~�t (!)� ~�s (!)���. jt� sjd � sup
jt�sj2(0; ��(!))

t;s2[0;m]

���~�t (!)� ~�s (!)���. jt� sjd � #;

which implies that Pr (
1) = 1, where


1 :=

8<:9 �� (!) ; 9T �; 8T (� T �) ; sup
jt�sj2(0; ��(!)); s;t2[0;T ]

j~�t(!)�~�s(!)j
jt�sjd � #

9=; : (0.6)

Note that


1 �

8<:9 �� (!) ; 9T �; sup
jt�sj2(0; ��(!)); s;t2[0;T �]

j~�t(!)�~�s(!)j
jt�sjd � #

9=;
=

8<:9 �� (!) ; 9T �; 8T (� T�) ; sup
jt�sj2(0; ��(!)); s;t2[0;T ]

j~�t(!)�~�s(!)j
jt�sjd � #

9=; =: 
2: (0.7)

3



Since Pr (
1) = 1, we then have Pr (
2) = 1. For any events E;F 2 F; we have the inequality:
Pr (E \ F ) � Pr (E) + Pr (F )� 1. With E = 
1 and F = 
2, we obtain Pr (
1 \ 
2) = 1, which,
together with


1 \ 
2 =

8<:! 2 

������9 �� (!) ; 8T; sup

jt�sj2(0; ��(!)); s;t2[0;T ]

j~�t(!)�~�s(!)j
jt�sjd � #

9=; ;

implies the desired result, eq. (0.2).

Proof of Theorem 7.1. Let

U1 (j) : = 2@�1�(�
2
�j ; �

�
1)
h
�(�2�j ; �

�
1)� � (�2�j+1 � �

2
�j )
i
;

U2 (j) : = 2@�2�
2(�2�j ; �

�
2)[�

2(�2�j ; �
�
2)� � (�2�j+1 � �

2
�j )

2]:

Then, we can then write

Ŝk(�
�
k; �

2) = T�1
XN�1

j=1
Uk (j) and

H��1
k E

h
Ŝk(�

�
k; �

2)Ŝk(�
�
k; �

2)F
i
H��1
k = B�kB

F
�k
+ V�k + C�k ;

where

B�k : = �H��1
k E

h
Ŝk
�
��k; �

2
�i
;

V�k : = H��1
k

�
T�2

XN�1

j=1
E
h
(Uk (j)� E [Uk (j)]) (Uk (j)� E [Uk (j)])F

i�
H��1
k ;

C�k : = H��1
k

�
T�2

X
1�i6=j�N�1

E
h
(Uk (i)� E [Uk (i)]) (Uk (j)� E [Uk (j)])F

i�
H��1
k :

We below provide the proof for part (i) (k = 1) only. Part (ii) (k = 2) can be proved in the same

way, and its proof is omitted. Let L be the di¤erential operator de�ned by Lf (x) = f 0 (x)� (x) +

f 00 (x)�2 (x) =2 for any twice di¤erentiable function f . We �rst consider the expression of B�1 :

E [Uk (j)] = ��2E
�
@�1�(�

2
u; �

�
1)L�

�
�2u
��
+ 2

Z �j+1

�j

Z s

�j

Z u

�j

E
�
L@�1�(�2v; ��1)L�

�
�2u
��
dvduds

= ��2E
�
@�1�(�

2
t ; �

�
1)L�

�
�2t
��
[1 +O (�)] ; (0.8)

uniformly over j, where we have applied the martingale property of stochastic integrals and Ito�s

lemma to �
�
�2s
�
� �(�2�j ) and @�1�(�

2
u; �

�
1)� @�1�(�2�j ; �

�
1), and the last equality holds since

E
�
L@�1�(�2v; ��1)L�

�
�2u
��
�
n
E
h��L@�1�(�2v; ��1)��2iE h��L� ��2u���2io1=2 � E

h�� ��2t ���4i = O (1) ;

uniformly over any u and v, which follows from the moment conditions in Assumption C-SDR.

Now, the above de�nition of B�k and eq. (0.8) implies eq. (7.3) of the main text. To �nd the
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expression of V�k , �rst note that

E
h
U1 (j)U1 (j)

F
i
= 4E

�
@�1�(�

2
t ; �

�
1)@�1�(�

2
t ; �

�
1)
F

�
(
�2(�2�j )�

2 � 2�(�2�j )�
 Z �j+1

�j

�
�
�2s
�
ds+

Z �j+1

�j

�
�
�2s
�
dZs

!

+2

Z �j+1

�j

 Z s

�j

�(�2u)du+

Z s

�j

�(�2u)dZu

!
�(�2s)ds

+2

Z �j+1

�j

 Z s

�j

�(�2u)du+

Z s

�j

�(�2u)dZu

!
�(�2s)dZs +

Z �j+1

�j

�2(�2s)ds

)�
= �E

h
@�1�(�

2
t ; �

�
1)@�1�(�

2
t ; �

�
1)
F�2

�
�2t
�i| {z }

=
�1

[1 +O (�)] ; uniformly over j

where Ito�s lemma is applied to (�2�j+1 � �
2
�j )

2 in the �rst equality; and the second equality follows

from arguments similar to those in deriving eq. (0.8). By the de�nition of V�k and the result that
E [Uk (j)] = O

�
�2
�
uniformly over j,

V�k = H��1
k

�
T�2

XN�1

j=1

�
�
�1 [1 + o (1)]�O

�
�4
���

H��1
k = T�1H��1

k 
�1H
��1
k [1 +O (�)] ;

as claimed. To �nd the expression of C�k , we write

@�1�
�
�2�j ; �

�
1

�
[�(�2�j ; �

�
1)� � (�2�j+1 � �

2
�j )] =: �1 (j) + �2 (j) ;

where �1 (j) := �@�1�
�
�2�j ; �

�
1

� R �j+1
�j

R s
�j
L�
�
�2u
�
duds and

�2 (j) := @�1�
�
�2�j ; �

�
1

�(Z �j+1

�j

Z s

�j

�0
�
�2u
�
�
�
�2u
�
dZuds�

Z �j+1

�j

�
�
�2s
�
dZs

)
:

Then, by the martingale property of stochastic integrals, Fubini�s theorem and the conditions in (C-

SDR), E
h
�1 (i)�2 (j)

F
i
= 0 and E

h
�2 (i)�2 (j)

F
i
= 0 for i 6= j. Given the moment conditions

in (C-SDR), we can show that E
h
�1 (i)�1 (j)

F
i
= O

�
�4
�
uniformly over any i 6= j, by using

arguments analogous to those for B�k and V�k . This, together with eq. (0.8),

E
h
(Uk (i)� E [Uk (i)]) (Uk (j)� E [Uk (j)])F

i
= E[�1 (i)�1 (j)

F]�E [Uk (i)]E [Uk (j)]F = O
�
�4
�
;

which, together with the de�nition of C�k , implies that C�k = O
�
�2
�
. This completes the proof.
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