Supplementary Material to
"Estimation of Stochastic Volatility Models by
Nonparametric Filtering"

SHIN KANAYA DENNIS KRISTENSEN
UNIVERSITY OF AARHUS AND CREATES UCL, IFS anp CREATES

We here provide proofs of some technical results, including Lemma D.1 and Theorem 7.1.

Proof of sup,c(o ) |Bi| = 0as.(TY/?1ogT) as T — oo (Section 3.3). By the reflection principle
of the BM (e.g., Section 2.6 of Karatzas and Shreve, 1991), we have Pr [maxtST B, > C] =2 -
20(C/V/T) for any C > 0, and Pr [mini<7 B; < C] = 2®(C/V/T) for any C < 0, where ® denotes

the cumulative distribution function of the standard normal. Then, for any ¢ > 0,
S b [maxtg 7By > eJY? (log J)} =237 {1-a(clogJ)}

00 1
< 2 ~&% (log J)* /2
S 2) 0 gy OPIE (g ) 2} < o0,

where we have used the inequality 1 — ® (z) < (1/z)exp {—z?/2} (Problem 9.22, Ch. 2, Karatzas
and Shreve, 1991). We can analogously show that for any ¢ < 0,

Zjo, Pr [mlnt<JBt<CJ 12\ /log J } <2Z {1— (lejlog J)} < oo.

These inequalities, together with the Borel-Cantelli lemma, imply that max;< j |Bt| = 0q4.5.(J 1/2 log J)
for any integer J > 1. For any arbitrary real number T' > 1, we set J = [T'] + 1, where [T'] denotes
the integer part of T, and then obtain

masi<r | Bil < maxiepry o1 |Bil = 0 (1] + 1) log (IT] +1)) = 04 (TV?10gT)
|

Lemma D.1. Suppose that a stochastic process {I'i}1>0 on a probability space (2, §, P) satisfies
the condition:

E[D, =T % < C |t —s|'T, (0.1)

for some positive constants a, b and C each of which is independent of s and t. Then, there exists
a continuous modification {T't}4>0 of {T't}t>0, which is a.s. Hélder continuous with exponent d for
every d € (0,b/a) with a coefficient ¥ := 35, J>+ (1/J1)%:

Pr |we Q|3A (w) s.t. sup I (w) = F; @) <9 =1L (0.2)

|t—s|€(0,A(w)); s,t€[0,00) |t - S|

Proof. The following arguments proceed along the lines of the proof of Theorem 2.2.8 in Karatzas

and Shreve (1991) where s, t are supposed to take values in some finite interval [0, T] (T = T fixed).



We first prove the global Holder property of the process on an enlarging interval, i.e., [0,7] where
T — oo, and next show that it actually holds over the infinite interval [0, 00). For any £ > 0, we

have a
E ([T, — T\

< Ce™4 |t _ S|1+b
ca

Pr|I'y —Ts| >¢] <

by Cebysev’s inequality, and thus I'; LI ass —t. Setting t = km/m!, s = (k —1)m/m! and € =
(m/m")?, we obtain Pr [‘Fk‘m/m! - I’(k_l)m/m!{ > (m/m!)d] <C (m/m!)(1+b_ad) and consequently,

d — b—ad
Pr Lg}%’;ﬁ Tkt = Tty mt| = (m/ml) ] < Cm{tHbmed) /(m!) .
By the fact that 3 °°_, m(1+t=ad) /(m1)b=0d exists and the Borel-Cantelli lemma, there exists a set
0 € § with Pr (%) = 1 such that
* * * . d

Yw e Q, Im* (w), Ym > m* (w) : 151%}7%! }ka/m[ — F(k—l)m/m!’ < (m/m/!) (0.3)
, where m* is a positive and integer-valued random variable. For each integer m (> 1) and any
integer [ > m, consider the following sets, E” := {km/l! | k=0,1,...,I!} and E™ := J2, E".
The set E}™ consists of (I! + 1) points in [0, m], while E™ consists of infinitely many points in [0, m].
Note that E™ is dense in [0, m] for any m. Now fix w (€ Q*) and m (> m* (w)). We shall show that

l
VI >m,Vt,s € E" with [t —s| € (0,m/m!): [y (w) =Ty (w)| <2 Y J2[J+1/((J+ 1Y,

J=m+1
(0.4)

To show this, we use the inductive method. First, we prove that the claim is true for [ = m + 1.
For any s,t € E" | with |t —s| € (0,m/m!), there exist some k1,k2 € {0,1,...,(m + 1)!} with
0 < k9 — k1 < m such that

Tt (w) = Ts (@)| < |Thy mr1)/mr1) (@) = Ty 1) (me1) fime 1) (@)
+ | Tyt 1) m1) st 1)t (@) = T2y met 1)/ (mer 1) (W)

+ -+ T g1y 1)/ (ma)t (W) = Crg(mert)/(meayt (W)] -

Each term on the right-hand side is bounded by m [(m +2)/ (m + 2)!]%, which is implied by
the fact E], | C Egﬁg and the inequality eq. (0.3). Thus, by the triangle inequalities, we
have |T; (w) — Ty (w)] < m2[(m+2)/(m+2)]% Second, suppose that eq. (0.4) is valid for
Il =m+1,...,L —1. For s < t, (s,t € EJ") with [t —s| € (0,m/m!), consider the num-
bers s; := min {u e u> s} and t; = max{u e u< t}, and notice that sq,t; €
EP' | C ET' C Ef_tll, s,t € EJ' C Eé_ﬁ7 s1—s <m/(L-1); and t — t; < m/(L—1)\
By the inequality eq. (0.3) with m = L 4 1, |[y, (w) — [y ()| < mL((L+1)/(L+1))? and
IT; (w) =Ty, (w)] < mL((L+1)/(L+1))% There are two possible relationships among s, ¢, s
and t1: (1) if [t — s| > m/ (L — 1)}, it holds that s < s; < ¢; <t (with at least one inequality strict);
(ii) if |t —s] < m/ (L —1)!, either of |t —s| < |s;1 —t1] = m/ (L —1)! or |s; —t1| = 0. Thus, we



have |t — s1| < max{m/ (L —1),|t — s|} < m/m!, and use the induction assumption (0.4) with
l=L-1:

— [ J+11°
Ty, (w) — T, ()] < QJZ;H J? ik (0.5)

Therefore,

- d
Tt (w) = Ds (w)| < 2mL((L+1) /(L + 1)) +2J§m:+lj2 (:7]111) <2J§m:+1ﬂ[jill>!].

We have shown eq. (0.4) for any [ (> m), as desired.

We can now show that {I'; (w) | ¢ € E™} is uniformly Holder in ¢ for Vw € Q* for any m. Consider
any numbers s,t € E™ with m > m* (=m*(w)) and |t —s| < A(w) = m*/m*!. Note that
E™ C E™ for m < m’'. We can pick some m’ (> m) such that s, € E™ with (m/ 4+ 2) / (m/ 4+ 2)! <
t—s<(m'+1)/(m +1)!. Then, by eq. (0.4), we obtain

d
Ty (w) — T (w)| < 2 Z J2{ JH] < [(m'+2)/(m +2)! xZJ2+d (1/71)¢

l+1

and thus, |I'y (w) — T (w)\/ It — 5| < ¢; where o := S, 2 (1/J1)%. Note that the existence
of ¥ can be checked by d’Alembert’s criterion for any d (> 0).

We define {T';}¢>0 as follows. For w ¢ Q*, set T's (w) =0, ¢t € [0,7m]. For w € Q* and t € E™, se
[y (w) =T (w). Forw e Q*and t € [0,m]N(E™)C, choose a sequence {s,}°° with s, (€ E™) — t;

o0

n—1 is also Cauchy, whose limit

by the uniform continuity and the fact that s, is Cauchy, {T's, (w)}
depends of ¢ but not on the particular sequence {s,}; and thus let I'; (w) = lim,, ; I's, (w). Thus,
the resulting process {ft}te l0,m] 18 continuous, and is also uniformly Hélder in ¢ € [0,m]. We will
show {T';} is a modification of {I';}: observe that for t € E™, Ty = I'; a.s.; for t € [0,m] N (E™)°
and {s,} with s, (€ E™) — t, we have I'y — T'; in probability (by eq. (0.1)) and I',, — T ass.,
which implies f‘t =TI} a.s.

Let m = [T] + 1 with [T] denoting the largest integer less than or equal to 7. Now, we have
proved that for any w € Q*, there exist some m* (w) and A (w) (= m*/m*!) such that Vm > m* (w)

sup It (w) - T, (w)‘/\t—s|d < sup Iy (w) — T (w)‘/\t—s\dgﬂ,

|t—s|€(0,A(w)) t—s|€(0,A(w))
t,s€[0,T] t,s€[0,m]

which implies that Pr (©;) = 1, where

01 = { 3A (W), 3T, VT (> T%), sup |Ft(“t)‘F;(“)| <. (0.6)
|t—s|€(0,A(w)); s5,t€[0,T [t=sl
Note that
0 C {FA (w), IT, sup |Ft(wt)7rj(w>| <4
|tfs\€(O,A(w)); $,6€[0,7*] [t=s]
—{5A W), ar, vr(< ), sup W <9 —q (0.7)

|t—s|€(0,A(w)); s,t€[0,T]



Since Pr(€;) = 1, we then have Pr(€9) = 1. For any events E, F' € §, we have the inequality:
Pr(ENF)>Pr(E)+Pr(F)—1. With £ = Q; and F = Qy, we obtain Pr (; N Qy) = 1, which,
together with

‘f‘t(w)—f‘s (w)|

M NQy = weN|3A (W), VT, sup T <9y,
\t—s|6(0,5(w)>; $,t€[0,T] [t=s]
implies the desired result, eq. (0.2). ®
Proof of Theorem 7.1. Let
U1(G) + =2000(02:67) |alo?:01)0 = (02, —02)]
U2 (j) : = 28@2/82(0-72'370;)[/62(03‘J70;)5 - (0-72'j+1 - 072'j)2]‘

Then, we can then write

. N-1 ,
S0, 0%) = T ) Uk(j) and
H'E [ﬁk( ;,JZ)S*k(e;,o?)*} Hi™' = By By + Vi, +Cop,

where
By : =—H; B[S (6,0%)]:
v+ =i (T B [000) - B GD G G) - Bl ()] )
Co + = (T2Y L B[00 - B ) W G) - B )X ) H

We below provide the proof for part (i) (kK = 1) only. Part (ii) (k = 2) can be proved in the same
way, and its proof is omitted. Let £ be the differential operator defined by Lf (z) = f' () a (z) +
f" (x) 6% () /2 for any twice differentiable function f. We first consider the expression of By, :

E[Ug(j)] = —0°E[0p,a(02;07)La (o +2/TH1/ / E [L0p,0(02;07) La (02)] dvduds
= —6°E [0p,a(07;07)La (0F)] [1+O (0 (0.8)

uniformly over j, where we have applied the martingale property of stochastic integrals and Ito’s
lemma to « (02) — a(o? ;) and g, a0 2.07) — 89104(0%;0{), and the last equality holds since

E [£05, (0% 07)La (02)] < { B [|£on,a(0% 00" B || £a (o )ﬂ}”2 <E[lp (@) =0m).

uniformly over any u and v, which follows from the moment conditions in Assumption C-SDR.
Now, the above definition of By, and eq. (0.8) implies eq. (7.3) of the main text. To find the



expression of Vj, , first note that

B [0 G 01 ()*] = 45 |00 atos0)am el 6

x {a2(03j)5 ~2(0% )0 (/w o (02) ds+/7+1/6 (02) dZs>

J

+2 / fj“ ( / %a(ai)dujt / Sﬂ(ag)dzu> a(02)ds

+2 / f”l ( / %a(ai)du+ / Sﬂ(ag)dzu> B(02)dZ, + / fj“ 52(gg)dsH

= F [891a(af; 07)0p, a(0?; 03)* 52 (0’?)] [1+ O (0)], uniformly over j

~~

:Q’{

2

where Ito’s lemma is applied to (07,

— 03]_)2 in the first equality; and the second equality follows
from arguments similar to those in deriving eq. (0.8). By the definition of V,, and the result that
E U (j)] = O (6%) uniformly over j,

Vo, = H; ! < 2 Z 59* o(1)]-0 (54)]> H7 ' =T'H7'QH 7 1+ 0(6)],
as claimed. To find the expression of Cy, , we write
O (02,:07) [a(0%,:07)0 = (02, = 02} = 11 () + T2 (7).
where T (j) := —0p, ( o7 ,6*) fT”l fsj Lo (02) duds and

T, (j) == 990 {/w/ )dZuds—/:jHB(a?) dZS}.

J

Then, by the martingale property of stochastic integrals, Fubini’s theorem and the conditions in (C-
SDR), E [Tl (1) Yo (j)*} =0and E [Tg (1) Yo (j)*} = 0 for 7 # j. Given the moment conditions

n (C-SDR), we can show that F [Tl (1) Yy (j)*} = O (6*) uniformly over any i # j, by using
arguments analogous to those for By, and Vy,. This, together with eq. (0.8),

B |(Ux (0) = B[V (0)) (Uw (3) = B [Ux GD*] = B2 () X1 (6)*] -2 [V (0] B[V G)]* = O (5%).

which, together with the definition of Cy, , implies that Cg, = O (52). This completes the proof. m
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