Supplementary Internet Appendix: Structural Threshold Regression^{*}

Andros Kourtellos[†] Thanasis Stengos [‡] Chih Ming Tan [§]

First Draft: May 2009 This Draft: February 26, 2015

Keywords: endogenous thresholds, sample splitting, nonlinear regression.

JEL Classification Codes: C13, C51

Abstract

This paper introduces the structural threshold regression (STR) model that allows for an endogenous threshold variable as well as for endogenous regressors. This model provides a parsimonious way of modeling nonlinearities and has many potential applications in economics and finance. Our framework can be viewed as a generalization of the simple threshold regression framework of Hansen (2000) and Caner and Hansen (2004) to allow for the endogeneity of the threshold variable and regime-specific heteroskedasticity. Our estimation of the threshold parameter is based on a two-stage concentrated least squares method that involves an inverse Mills ratio bias correction term in each regime. We derive its asymptotic distribution and propose a method to construct confidence intervals. We also provide inference for the slope parameters based on a generalized method of moments. Finally, we investigate the performance

^{*}We thank the editor Peter C. B. Phillips, the co-editor Oliver Linton, and two anonymous referees whose comments greatly improved the paper. We also thank Bruce Hansen for helpful comments and seminar participants at the Athens University of Economics and Business, Hebrew University of Jerusalem, Ryerson University, Simon Fraser University, Universit libre de Bruxelles, University of Cambridge, University of Palermo, University of Waterloo, the University of Western Ontario, 10th World Congress of the Econometric Society in Shanghai, 27th Annual Meeting of the Canadian Econometrics Study Group in Vancouver, and $23rd (EC)^2$ conference.

[†]Corresponding author: Department of Economics, University of Cyprus, P.O. Box 537, CY 1678 Nicosia, Cyprus, email: andros@ucy.ac.cy.

[‡]Department of Economics, University of Guelph, Guelph, Ontario N1G 2W1, Canada, email: tstengos@uoguelph.ca.

[§]Department of Economics, University of North Dakota, 293 Centennial Drive Stop 8369, Grand Forks, North Dakota, USA, email: chihming.tan@business.und.edu.

of the asymptotic approximations using a Monte Carlo simulation, which shows the applicability of the method in finite samples.

1 Monte Carlo Simulation Results

We explore two sets of simulation experiments that allow for the endogeneity of the threshold variable. The first set of simulations assumes a threshold regression model that allows for an endogenous threshold variable but retains the assumption of an exogenous slope variable (Model 1). The second set of simulations is based on a threshold regression model that allows for endogeneity in both the threshold and the slope variable (Model 2).

Model 1 is given by

$$y_i = \beta_1 + \beta_2 x_i + (\delta_1 + \delta_2 x_i) I\{q_i \le \gamma\} + u_i,$$
 (I.A.1)

where

$$q_i = 2 + z_{qi} + v_{qi}.$$
 (I.A.2)

The threshold parameter is set at the center of the distribution of q_i , hence $\gamma = 2$. The instrumental variable z_{qi} is given by

$$z_{qi} = \left(wx_i + (1-w)\varsigma_{zi}\right) / \sqrt{w^2 + (1-w)^2}$$
(I.A.3)

and

$$u_i = 0.1\varsigma_{ui} + \kappa v_{qi},\tag{I.A.4}$$

where x_i , v_{qi} , ς_{zi} , and ς_{ui} are independent *i.i.d.* N(0,1) random variables. The degree of endogeneity of the threshold is controlled by κ . The degree of correlation between the instrumental variable z_{qi} and the included exogenous slope variable x_i is controlled by w. We fix w = 0.5, $\beta_1 = \beta_2 = 1$, and $\delta_1 = 0$ and vary δ_2 over the values of 1, 2, 3, 4, 5, which correspond to a range of small to large threshold effects. We also vary κ over the values of 0.05, 0.50, 0.95 that correspond to low, medium, and large degrees of endogeneity of the threshold variable.

Model 2 is given by

$$y_i = \beta_1 + \beta_2 x_{1i} + \beta_3 x_{2i} + (\delta_1 + \delta_2 x_{1i} + \delta_3 x_{2i}) I\{q_i \le \gamma\} + u_i,$$
(I.A.5)

where q_i is given by equation (I.A.2) and

$$x_{1i} = z_{xi} + v_{xi}$$

where

$$z_{xi} = \left(wx_{2i} + (1-w)\varsigma_{zi}\right) / \sqrt{w^2 + (1-w)^2},$$
 (I.A.6)

and

$$u_{i} = \left(c_{xu}v_{xi} + c_{qu}v_{qi} + (1 - c_{xu} - c_{qu})\varsigma_{ui}\right) / \sqrt{c_{xu}^{2} + c_{qu}^{2} + (1 - c_{xu} - c_{qu})^{2}}, \qquad (I.A.7)$$

where x_{2i} , ζ_{zi} and ζ_{ui} are independent *i.i.d.* N(0,1) random variables. The degree of endogeneity of the threshold variable is controlled by the correlation coefficient between u_i and v_{qi} given by $c_{qu}/\sqrt{c_{xu}^2 + c_{qu}^2 + (1 - c_{xu} - c_{qu})^2}$. Similarly, the degree of endogeneity of x_{1i} is determined by the correlation between u_i and v_{xi} given by $c_{xu}/\sqrt{c_{xu}^2 + c_{qu}^2 + (1 - c_{xu} - c_{qu})^2}$. We fix c_{xu} , w = 0.5, $\beta_1 = \beta_2 = 1$, and $\delta_1 = \delta_2 = 0$. δ_3 varies over the values of 1, 2, 3, 4, 5. c_{qu} varies over the values of 0.05, 0.25, 0.45 that correspond to correlations between q_i and u_i of about 0.07, 0.4, 0.7, respectively.

We consider sample sizes of 100, 250, 500, and 1000 using 1000 Monte Carlo replications simulations. In unreported exercises we also investigated alternative values of w and c_{xu} and found qualitatively similar results. Tables I.A.1, I.A.2, and I.A.3 present the quantiles of the distribution of the STR (constrained) estimators for the threshold parameter, the slope coefficient of the upper regime, and the threshold effect, respectively. Table I.A.4 provides the 90% confidence interval coverage for the threshold parameter γ . Finally, Table I.A.5 presents the 95% confidence interval coverage for the slope coefficients β_2 and δ_2 in the case of Model 1 and β_3 and δ_3 in the case of Model 2.

					Moe	del 1 - e	ndogeneity	only in	the three	hold vari	able				
		$\delta_2 = 1$			$\delta_2 = 2$			$\delta_2 = 3$			$\delta_2 = 4$			$\delta_2 = 5$	
Quantile	5th	50th	95th	$5 \mathrm{th}$	50th	95th	5th	50th	95th	5th	50th	95th	$5 \mathrm{th}$	50th	95th
Sample size							low degre	ee of en	dogeneity						
100	1.890	1.976	2.022	1.897	1.976	2.000	1.898	1.976	1.999	1.898	1.976	1.999	1.899	1.976	1.999
250	1.955	1.991	2.009	1.958	1.990	2.000	1.958	1.990	2.000	1.958	1.990	2.000	1.958	1.990	2.000
500	1.977	1.995	2.005	1.977	1.995	2.000	1.978	1.995	2.000	1.978	1.995	2.000	1.978	1.995	2.000
1000	1.989	1.998	2.001	1.989	1.998	2.000	1.990	1.998	2.000	1.989	1.998	2.000	1.989	1.998	2.000
				medium degree of endogeneity											
100	1.802	1.982	2.134	1.872	1.979	2.058	1.877	1.977	2.043	1.883	1.978	2.026	1.888	1.977	2.019
250	1.922	1.992	2.059	1.950	1.991	2.026	1.955	1.991	2.014	1.956	1.991	2.010	1.956	1.990	2.002
500	1.962	1.997	2.029	1.972	1.996	2.010	1.975	1.995	2.006	1.976	1.995	2.006	1.976	1.995	2.004
1000	1.980	1.998	2.016	1.988	1.998	2.007	1.989	1.998	2.004	1.989	1.998	2.002	1.989	1.998	2.002
	high degree of endogeneity														
100	1.596	1.991	2.359	1.830	1.982	2.129	1.864	1.980	2.075	1.869	1.978	2.053	1.874	1.978	2.046
250	1.796	1.996	2.146	1.936	1.993	2.056	1.947	1.991	2.030	1.952	1.991	2.022	1.954	1.991	2.017
500	1.898	1.998	2.075	1.963	1.996	2.024	1.971	1.996	2.013	1.973	1.996	2.009	1.974	1.995	2.008
1000	1.942	1.999	2.038	1.981	1.998	2.015	1.985	1.998	2.008	1.988	1.998	2.007	1.989	1.998	2.004
Model 2 - endogeneity in both the threshold and slope variables															
				Ν	Iodel 2 -	endoge	eneity in bo	th the t	hreshold a	and slope	variable	es			
		$\delta_2 = 1$		N	Iodel 2 - $\delta_2 = 2$	endoge	eneity in bo	the the the the the second se	hreshold a	and slope	variable $\delta_2 = 4$	es		$\delta_2 = 5$	
Quantile	5th	$\delta_2 = 1$ 50th	95th	N 5th	$\begin{array}{l} \text{Iodel } 2 \\ \delta_2 = 2 \\ 50 \text{th} \end{array}$	endoge 95th	eneity in bo 5th	the the t $\delta_2 = 3$ 50th	hreshold a 95th	and slope 5th	variable $\delta_2 = 4$ 50th	es 95th	5th	$\delta_2 = 5$ 50th	95th
Quantile Sample size	5th	$\delta_2 = 1$ 50th	95th	M 5th	$\begin{array}{l} \text{Iodel } 2 \\ \delta_2 = 2 \\ 50 \text{th} \end{array}$	endoge 95th	eneity in bo 5th <i>low degr</i> e	both the t $\delta_2 = 3$ 50th $\epsilon e \ of \ end$	hreshold a 95th dogeneity	and slope 5th	variable $\delta_2 = 4$ 50th	es 95th	5th	$\delta_2 = 5$ 50th	95th
Quantile Sample size 100	5th 1.097	$\delta_2 = 1$ 50th 1.964	95th 2.842	M 5th 1.516	$\begin{aligned} \text{Iodel } 2 - \\ \delta_2 &= 2 \\ 50 \text{th} \\ 1.971 \end{aligned}$	endoge 95th 2.483	eneity in bo 5th <i>low degre</i> 1.744	both the t $\delta_2 = 3$ 50th ee of end 1.976	hreshold a 95th dogeneity 2.203	and slope 5th 1.802	variable $\delta_2 = 4$ 50th 1.975	es 95th 2.127	5th 1.834	$\delta_2 = 5$ 50th 1.976	95th 2.098
Quantile Sample size 100 250	5th 1.097 1.352	$\delta_2 = 1$ 50th 1.964 1.988	95th 2.842 2.608	M 5th 1.516 1.824	Iodel 2 - $\delta_2 = 2$ 50th 1.971 1.992	95th 2.483 2.186	5th <i>low degre</i> 1.744 1.900	bth the t $\delta_2 = 3$ 50th $ee \ of \ end$ 1.976 1.991	hreshold a 95th dogeneity 2.203 2.088	and slope 5th 1.802 1.924	variable $\delta_2 = 4$ 50th 1.975 1.991	es 95th 2.127 2.056	5th 1.834 1.941	$\delta_2 = 5$ 50th 1.976 1.991	95th 2.098 2.044
Quantile Sample size 100 250 500	5th 1.097 1.352 1.635	$\delta_2 = 1$ 50th 1.964 1.988 1.997	95th 2.842 2.608 2.324	5th 1.516 1.824 1.898	Iodel 2 - $\delta_2 = 2$ 50th 1.971 1.992 1.996	 endoge 95th 2.483 2.186 2.063 	5th 5th 1.744 1.900 1.948	the the the the set $\delta_2 = 3$ 50 th $\epsilon e \ of \ end 1.976$ 1.991 1.996	hreshold a 95th <i>dogeneity</i> 2.203 2.088 2.036	and slope 5th 1.802 1.924 1.960	$\delta_2 = 4$ $\delta_2 = 4$ 50th 1.975 1.991 1.996	95th 2.127 2.056 2.029	5th 1.834 1.941 1.969	$\delta_2 = 5$ 50th 1.976 1.991 1.996	95th 2.098 2.044 2.019
Quantile Sample size 100 250 500 1000	5th 1.097 1.352 1.635 1.819	$\delta_2 = 1$ 50th 1.964 1.988 1.997 1.997	95th 2.842 2.608 2.324 2.136	5th 1.516 1.824 1.898 1.958	Iodel 2 - $\delta_2 = 2$ 50th 1.971 1.992 1.996 1.998	 endoge 95th 2.483 2.186 2.063 2.031 	5th 5th 1.744 1.900 1.948 1.977	th the t $\delta_2 = 3$ 50th <i>ee of end</i> 1.976 1.991 1.996 1.998	hreshold a 95th <i>dogeneity</i> 2.203 2.088 2.036 2.021	5th 1.802 1.924 1.960 1.982	$\begin{aligned} &\delta_2 = 4 \\ & 50 \text{th} \\ & 1.975 \\ & 1.991 \\ & 1.996 \\ & 1.998 \end{aligned}$	95th 2.127 2.056 2.029 2.014	5th 1.834 1.941 1.969 1.985	$\delta_2 = 5$ 50th 1.976 1.991 1.996 1.998	95th 2.098 2.044 2.019 2.010
Quantile Sample size 100 250 500 1000	5th 1.097 1.352 1.635 1.819	$\delta_2 = 1$ 50th 1.964 1.988 1.997 1.997	95th 2.842 2.608 2.324 2.136	5th 1.516 1.824 1.898 1.958	$\begin{aligned} & \text{Iodel } 2 - \\ & \delta_2 = 2 \\ & 50\text{th} \\ & 1.971 \\ & 1.992 \\ & 1.996 \\ & 1.998 \end{aligned}$	95th 2.483 2.186 2.063 2.031	5th 5th 1.744 1.900 1.948 1.977 medium de	th the t $\delta_2 = 3$ 50th <i>ee of end</i> 1.976 1.991 1.996 1.998 <i>gree of e</i>	hreshold a 95th dogeneity 2.203 2.088 2.036 2.021 endogeneit	5th 1.802 1.924 1.960 1.982	$\begin{aligned} &\delta_2 = 4 \\ & 50 \text{th} \\ & 1.975 \\ & 1.991 \\ & 1.996 \\ & 1.998 \end{aligned}$	95th 2.127 2.056 2.029 2.014	5th 1.834 1.941 1.969 1.985	$\delta_2 = 5$ 50th 1.976 1.991 1.996 1.998	95th 2.098 2.044 2.019 2.010
Quantile Sample size 100 250 500 1000 1000	5th 1.097 1.352 1.635 1.819 1.079	$\delta_2 = 1$ 50th 1.964 1.988 1.997 1.997 1.937	95th 2.842 2.608 2.324 2.136 2.856	M 5th 1.516 1.824 1.898 1.958 1.392	$\begin{aligned} & \text{Iodel } 2 - \\ & \delta_2 = 2 \\ & 50\text{th} \\ & 1.971 \\ & 1.992 \\ & 1.996 \\ & 1.998 \\ & 1.964 \end{aligned}$	 endoge 95th 2.483 2.186 2.063 2.031 2.485 	5th 5th 1.744 1.900 1.948 1.977 medium de 1.709	b th the t $\delta_2 = 3$ 50 th 1.976 1.991 1.996 1.998 gree of each of the second sec	hreshold a 95th dogeneity 2.203 2.088 2.036 2.021 endogeneit 2.223	5th 1.802 1.924 1.960 1.982 <i>y</i> 1.808	$\begin{aligned} &\delta_2 = 4 \\ & 50 \text{th} \\ & 1.975 \\ & 1.991 \\ & 1.996 \\ & 1.998 \\ & 1.976 \end{aligned}$	95th 2.127 2.056 2.029 2.014 2.138	5th 1.834 1.941 1.969 1.985 1.840	$\delta_2 = 5$ 50th 1.976 1.991 1.996 1.998 1.976	95th 2.098 2.044 2.019 2.010 2.112
Quantile Sample size 100 250 500 1000 100 250	5th 1.097 1.352 1.635 1.819 1.079 1.223	$\delta_2 = 1$ 50th 1.964 1.988 1.997 1.997 1.937 1.968	95th 2.842 2.608 2.324 2.136 2.856 2.601	M 5th 1.516 1.824 1.898 1.958 1.392 1.776	$\begin{aligned} & \text{Iodel } 2 - \\ & \delta_2 = 2 \\ & 50\text{th} \\ & 1.971 \\ & 1.992 \\ & 1.996 \\ & 1.998 \\ & 1.964 \\ & 1.989 \end{aligned}$	 endoge 95th 2.483 2.186 2.063 2.031 2.485 2.186 	5th 5th 1.744 1.900 1.948 1.977 medium de 1.709 1.894	th the t $\delta_2 = 3$ 50th <i>ee of end</i> 1.976 1.991 1.996 1.998 <i>gree of e</i> 1.975 1.991	hreshold a 95th dogeneity 2.203 2.088 2.036 2.021 endogeneit 2.223 2.094	5th 1.802 1.924 1.960 1.982 <i>y</i> 1.808 1.918	$\begin{aligned} &\delta_2 = 4 \\ & 50 \text{th} \\ & 1.975 \\ & 1.991 \\ & 1.996 \\ & 1.998 \\ & 1.976 \\ & 1.991 \end{aligned}$	95th 2.127 2.056 2.029 2.014 2.138 2.056	5th 1.834 1.941 1.969 1.985 1.840 1.938	$\delta_2 = 5$ 50th 1.976 1.991 1.996 1.998 1.976 1.991	95th 2.098 2.044 2.019 2.010 2.112 2.046
Quantile Sample size 100 250 500 1000 100 250 500	5th 1.097 1.352 1.635 1.819 1.079 1.223 1.361	$\delta_2 = 1$ 50th 1.964 1.988 1.997 1.997 1.937 1.968 1.988	95th 2.842 2.608 2.324 2.136 2.856 2.601 2.436	M 5th 1.516 1.824 1.898 1.958 1.392 1.776 1.874	$\begin{aligned} &\text{Iodel } 2 - \\ &\delta_2 = 2 \\ &50\text{th} \\ &1.971 \\ &1.992 \\ &1.996 \\ &1.998 \\ &1.964 \\ &1.989 \\ &1.995 \end{aligned}$	 endoge 95th 2.483 2.186 2.063 2.031 2.485 2.186 2.067 	5th 5th 1.744 1.900 1.948 1.977 medium de 1.709 1.894 1.940	th the t $\delta_2 = 3$ 50th <i>i.ee of end</i> 1.976 1.991 1.996 1.998 <i>gree of e</i> 1.975 1.991 1.995	hreshold a 95th dogeneity 2.203 2.088 2.036 2.021 endogeneit 2.223 2.094 2.036	and slope 5th 1.802 1.924 1.960 1.982 <i>y</i> 1.808 1.918 1.958	$\begin{aligned} \delta_2 &= 4 \\ 50 \text{th} \\ 1.975 \\ 1.991 \\ 1.996 \\ 1.998 \\ 1.976 \\ 1.991 \\ 1.996 \end{aligned}$	95th 2.127 2.056 2.029 2.014 2.138 2.056 2.024	5th 1.834 1.941 1.969 1.985 1.840 1.938 1.967	$\delta_2 = 5$ 50th 1.976 1.991 1.996 1.998 1.976 1.991 1.996	95th 2.098 2.044 2.019 2.010 2.112 2.046 2.021
Quantile Sample size 100 250 500 1000 1000 250 500 1000	5th 1.097 1.352 1.635 1.819 1.079 1.223 1.361 1.640	$\delta_2 = 1 \\ 50th \\ 1.964 \\ 1.988 \\ 1.997 \\ 1.997 \\ 1.937 \\ 1.968 \\ 1.988 \\ 1.991 \\ 1.991 \\ 1.$	95th 2.842 2.608 2.324 2.136 2.856 2.601 2.436 2.211	5th 1.516 1.824 1.898 1.958 1.392 1.776 1.874 1.942	$\begin{aligned} &\text{Iodel } 2 - \\ &\delta_2 = 2 \\ &50\text{th} \\ &1.971 \\ &1.992 \\ &1.996 \\ &1.998 \\ &1.964 \\ &1.989 \\ &1.995 \\ &1.997 \end{aligned}$	 endoge 95th 2.483 2.186 2.063 2.031 2.485 2.186 2.067 2.035 	5th 1.744 1.900 1.948 1.977 medium de 1.709 1.894 1.940 1.973	th the t $\delta_2 = 3$ 50th <i>ee of end</i> 1.976 1.991 1.996 1.998 <i>gree of e</i> 1.975 1.991 1.995 1.998	hreshold a 95th dogeneity 2.203 2.088 2.036 2.021 endogeneit 2.223 2.094 2.036 2.021	and slope 5th 1.802 1.924 1.960 1.982 <i>y</i> 1.808 1.918 1.958 1.981	$\begin{aligned} & \text{variable} \\ \delta_2 &= 4 \\ & 50\text{th} \\ & 1.975 \\ & 1.991 \\ & 1.996 \\ & 1.998 \\ & 1.976 \\ & 1.991 \\ & 1.996 \\ & 1.998 \end{aligned}$	95th 2.127 2.056 2.029 2.014 2.138 2.056 2.024 2.014	5th 1.834 1.941 1.969 1.985 1.840 1.938 1.967 1.984	$\delta_2 = 5 \\ 50 \text{th} \\ 1.976 \\ 1.991 \\ 1.996 \\ 1.998 \\ 1.976 \\ 1.991 \\ 1.996 \\ 1.998 \\$	95th 2.098 2.044 2.019 2.010 2.112 2.046 2.021 2.010
Quantile Sample size 100 250 500 1000 250 500 1000	5th 1.097 1.352 1.635 1.819 1.079 1.223 1.361 1.640	$\delta_2 = 1 \\ 50 \text{th} \\ 1.964 \\ 1.988 \\ 1.997 \\ 1.997 \\ 1.997 \\ 1.937 \\ 1.968 \\ 1.988 \\ 1.991 \\ \end{cases}$	95th 2.842 2.608 2.324 2.136 2.856 2.601 2.436 2.211	5th 1.516 1.824 1.898 1.958 1.392 1.776 1.874 1.942	$\begin{aligned} &\text{Iodel } 2 - \\ &\delta_2 = 2 \\ &50\text{th} \\ &1.971 \\ &1.992 \\ &1.996 \\ &1.998 \\ &1.964 \\ &1.989 \\ &1.995 \\ &1.997 \end{aligned}$	95th 2.483 2.186 2.063 2.031 2.485 2.186 2.067 2.035	5th 5th 1.744 1.900 1.948 1.977 medium de 1.709 1.894 1.940 1.973 high degr	th the t $\delta_2 = 3$ 50th <i>ee of end</i> 1.976 1.991 1.996 1.998 <i>gree of e</i> 1.975 1.991 1.995 1.998 <i>ee of en</i>	hreshold a 95th dogeneity 2.203 2.088 2.036 2.021 endogeneit 2.223 2.094 2.036 2.021 dogeneity	5th 1.802 1.924 1.960 1.982 5y 1.808 1.918 1.958 1.981	$\begin{aligned} & \text{variable} \\ \delta_2 &= 4 \\ & 50\text{th} \\ & 1.975 \\ & 1.991 \\ & 1.996 \\ & 1.998 \\ & 1.976 \\ & 1.991 \\ & 1.996 \\ & 1.998 \end{aligned}$	95th 2.127 2.056 2.029 2.014 2.138 2.056 2.024 2.014	5th 1.834 1.941 1.969 1.985 1.840 1.938 1.967 1.984	$\delta_2 = 5$ 50th 1.976 1.991 1.996 1.998 1.976 1.991 1.996 1.998	95th 2.098 2.044 2.019 2.010 2.112 2.046 2.021 2.010
Quantile Sample size 100 250 500 1000 100 250 500 1000 1000	5th 1.097 1.352 1.635 1.819 1.079 1.223 1.361 1.640 1.051	$\delta_2 = 1$ 50th 1.964 1.988 1.997 1.997 1.937 1.968 1.988 1.991 1.924	95th 2.842 2.608 2.324 2.136 2.856 2.601 2.436 2.211 2.872	5th 1.516 1.824 1.898 1.958 1.392 1.776 1.874 1.942 1.333	$\begin{aligned} &\text{Iodel } 2 - \\ &\delta_2 = 2 \\ &50\text{th} \\ &1.971 \\ &1.992 \\ &1.996 \\ &1.998 \\ &1.964 \\ &1.989 \\ &1.995 \\ &1.995 \\ &1.997 \\ &1.954 \end{aligned}$	 endoge 95th 2.483 2.186 2.063 2.031 2.485 2.186 2.067 2.035 2.470 	5th 5th 1.744 1.900 1.948 1.977 medium de 1.709 1.894 1.940 1.973 high degr 1.714	th the t $\delta_2 = 3$ 50th <i>ee of end</i> 1.976 1.991 1.996 1.998 <i>gree of e</i> 1.995 1.998 <i>ee of en</i> 1.995 1.998 <i>ee of en</i> 1.973	hreshold a 95th dogeneity 2.203 2.088 2.036 2.021 endogeneit 2.223 2.094 2.036 2.021 dogeneity 2.198	5th 1.802 1.924 1.960 1.982 5y 1.808 1.918 1.958 1.981 1.784	$\begin{aligned} &\delta_2 = 4 \\ & 50 \text{th} \\ & 1.975 \\ & 1.991 \\ & 1.996 \\ & 1.998 \\ & 1.976 \\ & 1.991 \\ & 1.996 \\ & 1.998 \\ & 1.975 \end{aligned}$	95th 2.127 2.056 2.029 2.014 2.138 2.056 2.024 2.014 2.129	5th 1.834 1.941 1.969 1.985 1.840 1.938 1.967 1.984 1.829	$\delta_2 = 5$ 50th 1.976 1.991 1.996 1.998 1.976 1.991 1.996 1.998 1.976	95th 2.098 2.044 2.019 2.010 2.112 2.046 2.021 2.010 2.102
Quantile Sample size 100 250 500 1000 100 250 500 1000 100 250	5th 1.097 1.352 1.635 1.819 1.079 1.223 1.361 1.640 1.051 1.200	$\delta_2 = 1$ 50th 1.964 1.988 1.997 1.997 1.937 1.968 1.988 1.991 1.924 1.955	95th 2.842 2.608 2.324 2.136 2.856 2.601 2.436 2.211 2.872 2.552	5th 1.516 1.824 1.898 1.958 1.392 1.776 1.874 1.942 1.333 1.704	$\begin{aligned} & \text{Iodel } 2 - \delta_2 &= 2 \\ & 50 \text{th} \\ & 1.971 \\ & 1.992 \\ & 1.996 \\ & 1.998 \\ & 1.964 \\ & 1.989 \\ & 1.995 \\ & 1.995 \\ & 1.997 \\ & 1.954 \\ & 1.986 \end{aligned}$	 endoge 95th 2.483 2.186 2.063 2.031 2.485 2.186 2.067 2.035 2.470 2.183 	5th 5th 1.744 1.900 1.948 1.977 medium de 1.709 1.894 1.940 1.973 high degr 1.714 1.888	th the t $\delta_2 = 3$ 50th <i>ee of end</i> 1.976 1.991 1.996 1.998 <i>gree of e</i> 1.995 1.998 <i>ee of en</i> 1.995 1.998 <i>ee of en</i> 1.973 1.989	hreshold a 95th dogeneity 2.203 2.088 2.036 2.021 endogeneit 2.223 2.094 2.036 2.021 dogeneity 2.198 2.096	and slope 5th 1.802 1.924 1.960 1.982 <i>y</i> 1.808 1.918 1.958 1.981 1.784 1.920	$\begin{aligned} &\delta_2 = 4 \\ & 50\text{th} \\ & 1.975 \\ & 1.991 \\ & 1.996 \\ & 1.998 \\ & 1.976 \\ & 1.991 \\ & 1.996 \\ & 1.998 \\ & 1.975 \\ & 1.990 \end{aligned}$	95th 2.127 2.056 2.029 2.014 2.138 2.056 2.024 2.014 2.129 2.050	5th 1.834 1.941 1.969 1.985 1.840 1.938 1.967 1.984 1.829 1.939	$\delta_2 = 5$ 50th 1.976 1.991 1.996 1.998 1.976 1.991 1.996 1.998 1.976 1.991	95th 2.098 2.044 2.019 2.010 2.112 2.046 2.021 2.010 2.102 2.043
Quantile Sample size 100 250 500 1000 100 250 500 1000 100 250 500	5th 1.097 1.352 1.635 1.819 1.079 1.223 1.361 1.640 1.051 1.200 1.332	$\delta_2 = 1$ 50th 1.964 1.988 1.997 1.997 1.937 1.968 1.988 1.991 1.924 1.955 1.976	95th 2.842 2.608 2.324 2.136 2.856 2.601 2.436 2.211 2.872 2.552 2.455	5th 1.516 1.824 1.898 1.958 1.392 1.776 1.874 1.942 1.333 1.704 1.855	$\begin{aligned} &\text{Iodel } 2 - \delta_2 = 2 \\ & 50\text{th} \\ & 1.971 \\ & 1.992 \\ & 1.996 \\ & 1.998 \\ & 1.964 \\ & 1.989 \\ & 1.995 \\ & 1.997 \\ & 1.954 \\ & 1.986 \\ & 1.993 \end{aligned}$	 endoge 95th 2.483 2.186 2.063 2.031 2.485 2.186 2.067 2.035 2.470 2.183 2.072 	5th 5th 1.744 1.900 1.948 1.977 medium de 1.709 1.894 1.940 1.973 high degr 1.714 1.888 1.939	th the t $\delta_2 = 3$ 50th <i>ee of end</i> 1.976 1.991 1.996 1.998 <i>gree of e</i> 1.975 1.991 1.995 1.998 <i>ee of en</i> 1.973 1.989 1.995	hreshold a 95th dogeneity 2.203 2.088 2.036 2.021 endogeneity 2.223 2.094 2.036 2.021 dogeneity 2.198 2.096 2.034	and slope 5th 1.802 1.924 1.960 1.982 <i>y</i> 1.808 1.918 1.958 1.981 1.784 1.920 1.957	$\begin{aligned} & \text{variable} \\ \delta_2 &= 4 \\ & 50\text{th} \\ & 1.975 \\ & 1.991 \\ & 1.996 \\ & 1.998 \\ & 1.976 \\ & 1.998 \\ & 1.996 \\ & 1.998 \\ & 1.975 \\ & 1.990 \\ & 1.996 \end{aligned}$	95th 2.127 2.056 2.029 2.014 2.138 2.056 2.024 2.014 2.129 2.050 2.023	5th 1.834 1.941 1.969 1.985 1.840 1.938 1.967 1.984 1.829 1.939 1.966	$\delta_2 = 5$ 50th 1.976 1.991 1.996 1.998 1.976 1.991 1.996 1.998 1.976 1.991 1.996 1.991 1.996	95th 2.098 2.044 2.019 2.010 2.112 2.046 2.021 2.010 2.102 2.043 2.019
Quantile Sample size 100 250 500 1000 100 250 500 1000 250 500 1000	5th 1.097 1.352 1.635 1.819 1.079 1.223 1.361 1.640 1.051 1.200 1.332 1.549	$\delta_2 = 1$ 50th 1.964 1.988 1.997 1.997 1.937 1.968 1.988 1.991 1.924 1.955 1.976 1.977	95th 2.842 2.608 2.324 2.136 2.856 2.601 2.436 2.211 2.872 2.552 2.455 2.235	5th 1.516 1.824 1.898 1.958 1.392 1.776 1.874 1.942 1.333 1.704 1.855 1.926	$\begin{aligned} &\text{Iodel } 2 - \delta_2 = 2 \\ & 50\text{th} \\ & 1.971 \\ & 1.992 \\ & 1.996 \\ & 1.998 \\ & 1.964 \\ & 1.989 \\ & 1.995 \\ & 1.995 \\ & 1.997 \\ & 1.954 \\ & 1.986 \\ & 1.993 \\ & 1.997 \end{aligned}$	 endoge 95th 2.483 2.186 2.063 2.031 2.485 2.186 2.067 2.035 2.470 2.183 2.072 2.037 	5th 1.744 1.900 1.948 1.977 medium der 1.709 1.894 1.970 1.894 1.940 1.973 high degr 1.714 1.888 1.939 1.974	th the t $\delta_2 = 3$ 50th <i>ee of end</i> 1.976 1.991 1.998 <i>gree of e</i> 1.975 1.991 1.995 1.998 <i>ee of en</i> 1.973 1.989 1.995 1.998	hreshold a 95th dogeneity 2.203 2.088 2.036 2.021 endogeneity 2.223 2.094 2.036 2.021 dogeneity 2.198 2.096 2.034 2.022	and slope 5th 1.802 1.924 1.960 1.982 <i>y</i> 1.808 1.918 1.958 1.981 1.784 1.920 1.957 1.980	$\begin{aligned} & \text{variable} \\ \delta_2 &= 4 \\ & 50 \text{th} \\ & 1.975 \\ & 1.991 \\ & 1.996 \\ & 1.998 \\ & 1.976 \\ & 1.998 \\ & 1.976 \\ & 1.998 \\ & 1.975 \\ & 1.990 \\ & 1.996 \\ & 1.998 \end{aligned}$	95th 2.127 2.056 2.029 2.014 2.138 2.056 2.024 2.014 2.129 2.050 2.023 2.014	5th 1.834 1.941 1.969 1.985 1.840 1.938 1.967 1.984 1.829 1.939 1.966 1.983	$\delta_2 = 5$ 50th 1.976 1.991 1.996 1.998 1.976 1.991 1.996 1.998 1.976 1.991 1.996 1.998	95th 2.098 2.044 2.019 2.010 2.112 2.046 2.021 2.010 2.102 2.043 2.019 2.010

Table I.A.1: Quantiles of the distribution of the STR threshold estimator $\widehat{\gamma}$

Table I.A.2: Quantiles of the distribution of the STR estimator for the slope coefficient of the upper regime

		_			Ν	Model 1:	Quantiles	of the c	listributio	on of $\widehat{\beta}_{2,L}$	S			_		
_		$\delta_2 = 1$	$\delta_2 = 2$				$\delta_2 = 3$			$\delta_2 = 4$		$\delta_2 = 5$				
Quantile	5th	50th	95th	5th	50th	95th	5th	50th	95th	5th	50th	95th	5th	50th	95th	
Sample size							low degre	ee of en	dogeneity							
100	0.969	1.000	1.035	0.969	1.000	1.035	0.969	1.000	1.035	0.969	1.000	1.036	0.969	1.000	1.036	
250	0.980	1.000	1.021	0.980	1.000	1.021	0.980	1.000	1.021	0.980	1.000	1.021	0.980	1.000	1.021	
500	0.986	1.000	1.015	0.986	1.000	1.015	0.986	1.000	1.015	0.986	1.000	1.015	0.986	1.000	1.015	
1000	0.990	1.000	1.010	0.990	1.000	1.010	0.990	1.000	1.010	0.990	1.000	1.010	0.990	1.000	1.010	
				medium degree of endogeneity												
100	0.861	1.002	1.176	0.863	0.998	1.177	0.863	0.997	1.177	0.863	0.997	1.177	0.863	0.997	1.177	
250	0.910	1.003	1.102	0.910	1.002	1.102	0.908	1.002	1.102	0.907	1.003	1.101	0.907	1.003	1.101	
500	0.936	0.998	1.065	0.936	0.998	1.065	0.935	0.998	1.065	0.935	0.998	1.065	0.935	0.998	1.065	
1000	0.956	1.000	1.046	0.956	1.000	1.046	0.956	1.000	1.046	0.956	1.000	1.046	0.956	1.000	1.046	
			high degree of endogeneity													
100	0.752	1.015	1.357	0.736	0.998	1.332	0.738	0.996	1.326	0.736	0.995	1.328	0.740	0.994	1.327	
250	0.836	1.009	1.200	0.833	1.004	1.191	0.829	1.002	1.191	0.829	1.001	1.191	0.829	1.002	1.191	
500	0.885	0.999	1.128	0.883	0.997	1.120	0.886	0.997	1.119	0.886	0.997	1.119	0.886	0.996	1.119	
1000	0.919	1.000	1.088	0.918	0.999	1.086	0.918	0.998	1.085	0.918	0.999	1.085	0.918	0.999	1.085	
										^						
					M	odel 2:	Quantiles c	of the di	stribution	of $\beta_{3,GM}$	M					
Quantile	5th	50th	95th	5th	50th	95th	5th	50th	95th	5th	50th	95th	5th	50th	95th	
Sample size		$\delta_3 = 1$			$\delta_3 = 2$			$\delta_3 = 3$			$\delta_3 = 4$			$\delta_3 = 5$		
							low degre	ee of en	dogeneity							
100	0.636	1.020	1.432	0.678	1.022	1.374	0.693	1.014	1.340	0.712	1.009	1.315	0.715	1.006	1.313	
250	0.792	1.000	1.249	0.805	0.996	1.213	0.808	1.000	1.211	0.808	1.001	1.201	0.809	1.001	1.191	
500	0.869	1.003	1.171	0.876	1.002	1.141	0.876	1.001	1.138	0.875	1.000	1.138	0.876	0.999	1.138	
1000	0.903	1.004	1.104	0.906	1.002	1.097	0.909	1.002	1.095	0.909	1.001	1.095	0.910	1.001	1.096	
							medium de	gree of a	endogenei	ty						
100	0.676	1.052	1.468	0.685	1.042	1.434	0.697	1.019	1.380	0.703	1.013	1.342	0.707	1.010	1.333	
250	0.794	1.020	1.279	0.802	1.000	1.221	0.816	0.999	1.208	0.814	0.998	1.202	0.816	0.998	1.198	
500	0.875	1.015	1.225	0.880	1.004	1.155	0.881	1.003	1.143	0.878	1.001	1.139	0.877	1.000	1.140	
1000	0.911	1.015	1.158	0.909	1.003	1.102	0.911	1.002	1.094	0.910	1.002	1.095	0.910	1.001	1.094	
							high degr	ree of en	dogeneity							
100	0.680	1.076	1.483	0.703	1.048	1.491	0.708	1.024	1.403	0.706	1.017	1.371	0.706	1.010	1.369	
250	0.813	1.045	1.308	0.814	1.017	1.238	0.818	1.002	1.209	0.819	1.000	1.207	0.818	1.000	1.206	
500	0.882	1.032	1.250	0.880	1 011	1 160	0.877	1.005	1 1/13	0.877	1.004	1 1/0	0.877	1.003	1 140	
	0.001	1.001	1.200	0.000	1.011	1.109	0.011	1.000	1.140	0.011	1.001	1.140	0.011	1.000	1.110	

					М	odel 1:	Quantiles o	of the dis	stribution	of $\hat{\delta}_{2,LS}$					
		$\delta_2 = 1$			$\delta_2 = 2$			$\delta_2 = 3$,	$\delta_2 = 4$			$\delta_2 = 5$	
Quantile	5th	50th	95th	5th	50th	95th	5th	50th	95th	5th	50th	95th	5th	50th	95th
Sample size							low degree	of endo	geneity						
100	0.964	0.999	1.041	1.964	1.999	2.041	2.964	2.999	3.041	3.964	3.999	4.041	4.964	4.999	5.041
250	0.977	1.000	1.026	1.977	2.000	2.026	2.977	3.000	3.026	3.977	4.000	4.026	4.977	5.000	5.026
500	0.982	1.001	1.018	1.982	2.001	2.018	2.982	3.001	3.018	3.982	4.001	4.018	4.982	5.001	5.018
1000	0.988	1.000	1.012	1.988	2.000	2.012	2.988	3.000	3.012	3.988	4.000	4.012	4.988	5.000	5.012
						η	redium degr	ree of en	dogeneity						
100	0.850	0.994	1.148	1.861	2.004	2.151	2.863	3.006	3.151	3.865	4.007	4.152	4.866	5.007	5.154
250	0.911	0.993	1.086	1.917	1.997	2.090	2.919	2.998	3.091	3.919	3.998	4.092	4.919	4.998	5.093
500	0.939	1.000	1.064	1.941	2.001	2.066	2.942	3.002	3.067	3.941	4.002	4.067	4.941	5.002	5.067
1000	0.960	1.001	1.040	1.961	2.001	2.041	2.961	3.001	3.041	3.961	4.001	4.041	4.961	5.001	5.041
							high degree	e of ende	ogeneity						
100	0.651	0.957	1.250	1.731	1.991	2.283	2.737	3.002	3.288	3.749	4.009	4.287	4.749	5.011	5.286
250	0.804	0.970	1.149	1.842	1.989	2.161	2.846	2.994	3.161	3.849	3.994	4.163	4.850	4.994	5.166
500	0.870	0.989	1.115	1.888	2.001	2.120	2.891	3.002	3.124	3.891	4.003	4.123	4.893	5.003	5.122
1000	0.916	0.995	1.074	1.922	2.000	2.078	2.925	3.000	3.079	3.925	4.001	4.079	4.925	5.001	5.079
										~					
					Mo	del 2: Q	uantiles of	the dist	ribution of	of $\delta_{3,GMM}$	ŗ				
_		$\delta_3 = 1$			$\delta_3 = 2$			$\delta_3 = 3$			$\delta_3 = 4$			$\delta_3 = 5$	
Quantile	5th	50th	95th	5th	50th	95th	5th	50th	95th	5th	50th	95th	5th	50th	95th
Sample size							low degree	of endo	geneity						
100	0.3824	0.9801	1.4113	1.487	1.971	2.385	2.565	2.981	3.385	3.596	3.985	4.385	4.609	4.984	5.384
250	0.6874	0.996	1.2467	1.753	1.993	2.244	2.761	2.998	3.246	3.769	3.999	4.245	4.771	4.999	5.245
500	0.7937	0.9979	1.1659	1.825	1.996	2.163	2.829	3.000	3.164	3.827	4.000	4.166	4.826	5.001	5.164
1000	0.8757	0.9948	1.1169	1.881	1.997	2.115	2.881	3.000	3.111	3.882	3.999	4.115	4.881	5.000	5.116
						n	redium degr	ree of en	dogeneity						
100	0.338	0.930	1.372	1.439	1.956	2.370	2.558	2.966	3.365	3.590	3.976	4.371	4.608	4.979	5.365
250	0.621	0.972	1.225	1.735	1.986	2.228	2.759	2.991	3.226	3.762	3.996	4.227	4.772	4.997	5.230
500	0.725	0.979	1.155	1.822	1.992	2.153	2.833	2.997	3.153	3.837	4.000	4.157	4.838	5.000	5.157
1000	0.823	0.979	1.108	1.881	1.991	2.112	2.886	2.994	3.116	3.884	3.994	4.116	4.887	4.994	5.116
							high degree	e of ende	ogeneity						
100	0.396	0.898	1.309	1.423	1.930	2.329	2.572	2.973	3.341	3.620	3.984	4.343	4.630	4.991	5.353
250	0.619	0.938	1.181	1.719	1.970	2.202	2.769	2.985	3.205	3.789	3.992	4.204	4.790	4.993	5.211
500	0.707	0.952	1.123	1.819	1.988	2.140	2.852	2.996	3.138	3.856	4.000	4.142	4.856	5.001	5.145
1000	0.788	0.960	1.096	1.883	1.988	2.098	2.895	2.994	3.102	3.898	3.995	4.102	4.897	4.995	5.102

Table I.A.3: Quantiles of the distribution of the STR estimator for the threshold effect

			Mo	del 1		Model 2									
	δ_2	1	2	3	4	5	δ_3	1	2	3	4	5			
Sample size		low a	legree d	of endo	geneity			low a	legree d	of endo	geneity				
50		0.89	0.84	0.83	0.83	0.83		0.81	0.82	0.83	0.85	0.85			
100		0.98	0.96	0.96	0.96	0.96		0.91	0.92	0.93	0.94	0.94			
250		1.00	1.00	1.00	1.00	1.00		0.97	0.97	0.97	0.98	0.98			
500		1.00	1.00	1.00	1.00	1.00		1.00	1.00	0.99	0.99	1.00			
1000		1.00	1.00	1.00	1.00	1.00		1.00	1.00	1.00	1.00	1.00			
		me	dium d	egree oʻ	f endog	eneity		medium degree of endogeneity							
50		0.93	0.90	0.86	0.85	0.84		0.73	0.78	0.82	0.84	0.84			
100		0.98	0.99	0.98	0.98	0.97		0.81	0.89	0.92	0.92	0.93			
250		1.00	1.00	1.00	1.00	1.00		0.92	0.95	0.97	0.98	0.98			
500		1.00	1.00	1.00	1.00	1.00		0.98	0.99	0.99	0.99	0.99			
1000		1.00	1.00	1.00	1.00	1.00		0.99	1.00	1.00	1.00	1.00			
high degree of endogeneity								high degree of endogeneity							
50		0.84	0.92	0.91	0.89	0.88		0.67	0.75	0.81	0.82	0.84			
100		0.93	0.98	0.98	0.98	0.98		0.76	0.84	0.89	0.93	0.95			
250		0.99	1.00	1.00	1.00	1.00		0.85	0.95	0.97	0.99	0.99			
500		1.00	1.00	1.00	1.00	1.00		0.91	0.98	0.99	1.00	1.00			
1000		1.00	1.00	1.00	1.00	1.00		0.94	1.00	1.00	1.00	1.00			

Table I.A.4: Nominal 90% confidence interval coverage for γ

Model 1											Model 2										
	Coverage for β_2 Coverage for δ_2										Coverage for β_3				Coverage for δ_3						
δ_2 Sample size	1	2	3	4	5	1	2	3	4	5	δ_3	1	2	3	4	5	1	2	3	4	5
1	low degree of endogeneity										low degree of endogeneity										
50	0.90	0.90	0.90	0.90	0.90	0.92	0.92	0.92	0.92	0.92	50	0.80	0.84	0.87	0.88	0.89	0.80	0.84	0.87	0.88	0.89
100	0.92	0.92	0.92	0.92	0.92	0.94	0.94	0.94	0.94	0.94	100	0.83	0.88	0.91	0.92	0.92	0.83	0.88	0.91	0.92	0.92
250	0.93	0.93	0.93	0.93	0.93	0.93	0.94	0.94	0.94	0.94	250	0.91	0.93	0.93	0.94	0.94	0.91	0.93	0.93	0.94	0.94
500	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	500	0.91	0.93	0.94	0.93	0.93	0.91	0.93	0.94	0.93	0.93
1000	0.95	0.95	0.95	0.95	0.95	0.96	0.96	0.96	0.96	0.96	1000	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94
			n	nedium	degree	of end	ogeneit	y			medium degree of endogeneity										
50	0.77	0.79	0.79	0.79	0.79	0.88	0.90	0.90	0.90	0.90	50	0.78	0.80	0.83	0.85	0.86	0.79	0.83	0.86	0.88	0.89
100	0.81	0.81	0.81	0.81	0.81	0.91	0.92	0.92	0.92	0.92	100	0.81	0.84	0.89	0.89	0.90	0.81	0.86	0.90	0.91	0.92
250	0.85	0.85	0.85	0.85	0.86	0.94	0.95	0.95	0.95	0.95	250	0.82	0.89	0.91	0.91	0.91	0.86	0.92	0.94	0.94	0.94
500	0.85	0.85	0.85	0.85	0.85	0.94	0.94	0.94	0.94	0.94	500	0.83	0.92	0.93	0.93	0.93	0.85	0.92	0.93	0.93	0.93
1000	0.86	0.86	0.86	0.86	0.86	0.96	0.96	0.96	0.96	0.96	1000	0.83	0.92	0.93	0.93	0.93	0.86	0.93	0.94	0.94	0.94
				high d	egree o	f endog	eneity				high degree of endogeneity										
50	0.74	0.76	0.78	0.78	0.78	0.84	0.88	0.89	0.90	0.90	50	0.74	0.75	0.80	0.82	0.83	0.79	0.81	0.84	0.87	0.87
100	0.78	0.80	0.80	0.80	0.80	0.88	0.91	0.91	0.91	0.92	100	0.76	0.80	0.84	0.86	0.86	0.78	0.83	0.89	0.90	0.90
250	0.83	0.84	0.84	0.85	0.84	0.93	0.95	0.95	0.95	0.95	250	0.77	0.86	0.88	0.89	0.89	0.83	0.90	0.93	0.93	0.94
500	0.83	0.85	0.85	0.85	0.85	0.93	0.94	0.94	0.94	0.94	500	0.78	0.89	0.91	0.92	0.91	0.82	0.92	0.94	0.94	0.94
1000	0.86	0.86	0.86	0.85	0.85	0.95	0.96	0.96	0.96	0.96	1000	0.76	0.89	0.90	0.91	0.90	0.79	0.93	0.94	0.94	0.94

Table I.A.5: Nominal 95% confidence interval coverage for the slope coefficients

2 Supplementary Proofs

Lemma I.A.1 For some $C < \infty$ and $\underline{\gamma} \leq \gamma' \leq \gamma \leq \overline{\gamma}$ and $r \leq 4$, uniformly in γ

$$Eh_i^r(\gamma, \gamma') \leq C|\gamma - \gamma'|$$
 (I.A.8)

$$Ek_i^r(\gamma, \gamma') \leq C|\gamma - \gamma'|$$
 (I.A.9)

Proof: Define $d_i(\gamma) = I_{\{q_i \leq \gamma\}}$ and $d_i^{\perp}(\gamma) = I_{\{q_i > \gamma\}}$. Define $h_i(\gamma, \gamma') = |(h_i(\gamma) - h_i(\gamma'))e_i|$ and $k_i(\gamma, \gamma') = |(h_i(\gamma) - h_i(\gamma'))|$. In the case of the STR model in equation (3.16) $h_i(\gamma) = (g_{xi}d_i(\gamma), \lambda_{1i}(\gamma)d_i(\gamma), \lambda_{2i}(\gamma)d_i(\gamma))'$ and thus $h_i(\gamma, \gamma')$ takes the form

$$h_i(\gamma, \gamma') = \begin{pmatrix} |g_{xi}e_i||d_i(\gamma) - d_i(\gamma')| \\ |\lambda_{1i}(\gamma)d_i(\gamma)e_i - \lambda_{1i}(\gamma')d_i(\gamma')e_i| \\ |\lambda_{2i}(\gamma)d_i(\gamma)e_i - \lambda_{2i}(\gamma')d_i(\gamma')e_i| \end{pmatrix}$$

From Lemma A.1 of Hansen (2000) we obtain that $E|g_{xi}e_i||d_i(\gamma) - d_i(\gamma')|^r \leq C_1|\gamma - \gamma'|$. Then it is sufficient to show that

$$E|\lambda_{1i}(\gamma)d_i(\gamma)e_i - \lambda_{1i}(\gamma')d_i(\gamma')e_i|^r \le C_2|\gamma - \gamma'|$$
$$E|\lambda_{2i}(\gamma)d_i(\gamma)e_i - \lambda_{2i}(\gamma')d_i(\gamma')e_i|^r \le C_3|\gamma - \gamma'|$$

Given that $\bar{\lambda}_{1i} = \sup_{\gamma \in \Gamma} |\lambda_{1i}(\gamma)|, \quad \frac{d}{d\gamma} E(|\lambda_{1i}(\gamma)e_i|^r d_i(\gamma)) = E(|\lambda_{1i}(\gamma)e_i|^r|q = \gamma)f_q(\gamma) \leq [E(|\lambda_{1i}(\gamma)e_i|^4|q = \gamma)]^{r/4}f_q(\gamma) \leq [E(|\bar{\lambda}_{1i}e_i|^4|q = \gamma)]^{r/4}f_q(\gamma) \leq C^{r/4}\bar{f} \leq C_1, \text{ where } C_1 = \max[1, C].$ Similarly, we obtain that $\frac{d}{d\gamma} E(|\lambda_{2i}(\gamma)e_i|^r d_i(\gamma)) \leq C_2.$

Then, by a first-order Taylor series expansion and Assumption 2.3, we show (I.A.8). Equation (I.A.9) follows analogously.

$$Eh_i^r(\gamma,\gamma') = \begin{pmatrix} E|g_{xi}e_i|^r d_i(\gamma) - E|g_{xi}e_i|^r d_i(\gamma')|\\ E|\lambda_{1i}(\gamma)e_i|^r d_i(\gamma) - E|\lambda_{1i}(\gamma')e_i|^r d_i(\gamma')\\ E|\lambda_{2i}(\gamma)e_i|^r d_i(\gamma) - E|\lambda_{2i}(\gamma')e_i|^r d_i(\gamma') \end{pmatrix} \leq C|\gamma - \gamma'|$$

where $C = (C'_1, C'_2, C'_3)'$.

Lemma I.A.2 Recall that $a_n = n^{1-2a}$. Let $H_i = (g_{xi}, e_i, \hat{r}_i)$. Then,

$$\sup_{\gamma \in \Gamma} \left| \frac{1}{\sqrt{n}} \sum_{i=1}^{n} H_i \hat{r}'_i I(q_i \le \gamma) \right| = O_p(1) \tag{I.A.10}$$

(ii) For $0 < B < \infty$ such that for all $\varepsilon > 0$ and $\delta > 0$, there is a $\overline{v} < \infty$ and $\overline{n} < \infty$ such that for all $n \ge \overline{n}$:

$$P\left(\sup_{\bar{v}/a_n \le |\gamma - \gamma_0| \le B} \left| \frac{\sum_{i=1}^n H_i \hat{r}'_i (I(q_i \le \gamma) - I(q_i \le \gamma_0))}{n^{1-\alpha} |\gamma - \gamma_0|} \right| \ge \delta\right) \le \varepsilon$$
(I.A.11)

(iii)

$$\sup_{|v|\leq \bar{v}} n^{-\alpha} \left| \sum_{i=1}^{n} H_i \widehat{r}'_i (I(q_i \leq \gamma_0 + v/a_n) - I(q_i \leq \gamma_0)) \right| \xrightarrow{p} 0$$
(I.A.12)

Proof:

From Assumptions 1 and 2 and the linear first stage models (2.2) and (2.9) we get $\sqrt{n}(\Pi_x - \widehat{\Pi}_x) = O_p(1)$ and $\sqrt{n}(\pi_q - \widehat{\pi}_q) = O_p(1)$. Furthermore, given the continuity of the inverse Mills ratio terms we obtain $\sqrt{n}(\overline{\lambda}_{1i} - \widehat{\lambda}_{1i}) = O_p(1)$, and $\sqrt{n}(\overline{\lambda}_{2i} - \widehat{\lambda}_{2i}) = O_p(1)$. By letting $\breve{\Pi} = (\Pi_x, \overline{\lambda}_{1i}, \overline{\lambda}_{2i})'$ and $\widetilde{\breve{\Pi}} = (\widehat{\Pi}_x, \widehat{\lambda}_{1i}, \widehat{\lambda}_{2i})'$ we obtain $\sqrt{n}(\breve{\Pi}_x - \widetilde{\breve{\Pi}}_x) = O_p(1)$. Then using Lemma 1 of Caner and Hansen (2004) we establish (I.A.10), (I.A.11), and (I.A.12).

Lemma I.A.3 Uniformly in $\gamma \in \Gamma$ as $n \longrightarrow \infty$

$$\frac{1}{n}\widehat{X}^*(\gamma)'\widehat{X}^*(\gamma) = \frac{1}{n}\sum_{i=1}^n \widehat{x}_i^*(\gamma)\widehat{x}_i^*(\gamma)' \xrightarrow{p} M(\gamma) \tag{I.A.13}$$

$$\frac{1}{n}\widehat{X}^*(\gamma_0)'G^*(\gamma_0) = \frac{1}{n}\sum_{i=1}^n \widehat{x}_i^*(\gamma_0)\widehat{x}_i^*(\gamma_0)' \xrightarrow{p} M(\gamma_0) \tag{I.A.14}$$

$$\frac{1}{\sqrt{n}}\widehat{X}^*(\gamma)'\widetilde{e} = \frac{1}{\sqrt{n}}\sum_{i=1}^n \widehat{x}_i^*(\gamma)\widetilde{e}_i = O_p(1)$$
(I.A.15)

Proof:

Let

$$M(\gamma) = \left(\begin{array}{cc} M_{\gamma}(\gamma) & 0\\ 0 & M_{\perp}(\gamma) \end{array}\right)$$

where

$$M_{\gamma}(\gamma) = \begin{pmatrix} E\left(g_{xi}g'_{xi}I(q_{i} \leq \gamma)\right) & E(\lambda_{1i}\left(\gamma\right)g_{xi}I(q_{i} \leq \gamma)\right) & E(\lambda_{2i}\left(\gamma\right)g_{xi}I(q_{i} \leq \gamma)) \\ E(\lambda_{1i}\left(\gamma\right)g'_{xi}I(q_{i} \leq \gamma)\right) & E\left(\lambda_{1i}\left(\gamma\right)\right)^{2}I(q_{i} \leq \gamma) & E\lambda_{1i}\left(\gamma\right)\lambda_{2i}\left(\gamma\right)I(q_{i} \leq \gamma) \\ E(\lambda_{2i}\left(\gamma\right)g'_{xi}I(q_{i} \leq \gamma)\right) & E(\lambda_{2i}\left(\gamma\right)\lambda_{1i}\left(\gamma\right)I(q_{i} \leq \gamma)) & E\left(\lambda_{2i}\left(\gamma\right)\right)^{2}I(q_{i} \leq \gamma) \end{pmatrix}$$

and

$$M_{\perp}(\gamma) = \begin{pmatrix} E\left(g_{xi}g'_{xi}I(q_{i} > \gamma)\right) & E(\lambda_{1i}\left(\gamma\right)g_{xi}I(q_{i} > \gamma)\right) & E(\lambda_{2i}\left(\gamma\right)g_{xi}I(q_{i} > \gamma)) \\ E(\lambda_{1i}\left(\gamma\right)g'_{xi}I(q_{i} > \gamma)\right) & E\left(\lambda_{1i}\left(\gamma\right)\right)^{2}I(q_{i} > \gamma) & E\lambda_{1i}\left(\gamma\right)\lambda_{2i}\left(\gamma\right)I(q_{i} > \gamma) \\ E(\lambda_{2i}\left(\gamma\right)g'_{xi}I(q_{i} > \gamma)\right) & E(\lambda_{2i}\left(\gamma\right)\lambda_{1i}\left(\gamma\right)I(q_{i} > \gamma)) & E\left(\lambda_{2i}\left(\gamma\right)\right)^{2}I(q_{i} > \gamma) \end{pmatrix} \end{pmatrix}$$

To show (I.A.13) note that

$$\begin{split} \frac{1}{n}\widehat{X}_{\gamma}(\gamma)'\widehat{X}_{\gamma}(\gamma) &= \begin{pmatrix} \frac{1}{n}\widehat{X}'_{\gamma}\widehat{X}_{\gamma} & \frac{1}{n}\widehat{X}'_{\gamma}\widehat{\lambda}_{1\gamma}(\gamma) & \frac{1}{n}\widehat{X}'_{\gamma}\widehat{\lambda}_{2\gamma}(\gamma) \\ \frac{1}{n}\widehat{\lambda}_{1\gamma}(\gamma)'\widehat{X}_{\gamma} & \frac{1}{n}\widehat{\lambda}_{1\gamma}(\gamma)'\widehat{\lambda}_{1\gamma}(\gamma) & \frac{1}{n}\widehat{\lambda}_{1\gamma}(\gamma)'\widehat{\lambda}_{2\gamma}(\gamma) \\ \frac{1}{n}\widehat{\lambda}_{2\gamma}(\gamma)'\widehat{X}_{\gamma} & \frac{1}{n}\widehat{\lambda}_{2\gamma}(\gamma)'\widehat{\lambda}_{1\gamma}(\gamma) & \frac{1}{n}\widehat{\lambda}_{2\gamma}(\gamma)'\widehat{\lambda}_{2\gamma}(\gamma) \end{pmatrix} \\ &= \\ \begin{pmatrix} \frac{1}{n}\sum_{i}(\widehat{x}_{i}\widehat{x}'_{i}I(q_{i}\leq\gamma)) & \frac{1}{n}\sum_{i}\widehat{\lambda}_{1i}(\gamma)\widehat{x}_{i}I(q_{i}\leq\gamma) & \frac{1}{n}\sum_{i}\widehat{\lambda}_{2i}(\gamma)\widehat{x}_{i}I(q_{i}\leq\gamma) \\ \frac{1}{n}\sum_{i}\widehat{\lambda}_{1i}(\gamma)\widehat{x}'_{i}I(q_{i}\leq\gamma)) & \frac{1}{n}\sum_{i}(\widehat{\lambda}_{1i}(\gamma))^{2}I(q_{i}\leq\gamma) & \frac{1}{n}\sum_{i}\widehat{\lambda}_{1i}(\gamma)\widehat{\lambda}_{2i}(\gamma)I(q_{i}\leq\gamma) \\ \frac{1}{n}\sum_{i}\widehat{\lambda}_{2i}(\gamma)\widehat{x}'_{i}I(q_{i}\leq\gamma)) & \frac{1}{n}\sum_{i}\widehat{\lambda}_{1i}(\gamma)\widehat{\lambda}_{2i}(\gamma)I(q_{i}\leq\gamma) & \frac{1}{n}\sum_{i}(\widehat{\lambda}_{2i}(\gamma))^{2}I(q_{i}\leq\gamma) \\ \frac{1}{n}\sum_{i}\widehat{\lambda}_{2i}(\gamma)\widehat{x}'_{i}I(q_{i}\leq\gamma)) & \frac{1}{n}\sum_{i}\widehat{\lambda}_{1i}(\gamma)\widehat{\lambda}_{2i}(\gamma)I(q_{i}\leq\gamma) & \frac{1}{n}\sum_{i}(\widehat{\lambda}_{2i}(\gamma))^{2}I(q_{i}\leq\gamma) \end{pmatrix} \end{pmatrix}. \end{split}$$

From (I.A.10) and Lemma 1 of Hansen (1996) we get

$$\frac{1}{n}\sum_{i}(\widehat{x}_{i}\widehat{x}'_{i}I(q_{i} \leq \gamma)) = \frac{1}{n}\sum_{i}g_{xi}g'_{xi}I(q_{i} \leq \gamma) - \frac{1}{n}\sum_{i}g_{xi}\widehat{r}'_{xi}I(q_{i} \leq \gamma) -\frac{1}{n}\sum_{i}\widehat{r}_{xi}g'_{xi}I(q_{i} \leq \gamma) + \frac{1}{n}\sum_{i}\widehat{r}_{xi}\widehat{r}'_{xi}I(q_{i} \leq \gamma) \xrightarrow{p} E\left(g_{xi}g'_{xi}I(q_{i} \leq \gamma)\right).$$

Additionally, for j=1,2 we have

$$\frac{1}{n}\sum_{i}\widehat{\lambda}_{ji}(\gamma)\,\widehat{x}_{i}I(q_{i}\leq\gamma) = \frac{1}{n}\sum_{i}\lambda_{ji}(\gamma)g_{xi}'I(q_{i}\leq\gamma) - \frac{1}{n}\sum_{i}\widehat{r}_{xi}\lambda_{ji}(\gamma)I(q_{i}\leq\gamma) -\frac{1}{n}\sum_{i}\widehat{r}_{\lambda_{ji}}\lambda_{ji}(\gamma)I(q_{i}\leq\gamma) + \frac{1}{n}\sum_{i}\widehat{r}_{\lambda_{ji}}\widehat{r}_{xi}I(q_{i}\leq\gamma) \xrightarrow{p} E\lambda_{ji}(\gamma)g_{xi}'I(q_{i}\leq\gamma),$$

$$\frac{1}{n} \sum_{i} (\widehat{\lambda}_{ji}(\gamma))^{2} I(q_{i} \leq \gamma) = \frac{1}{n} \sum_{i} (\lambda_{ji}(\gamma))^{2} I(q_{i} \leq \gamma) - \frac{2}{n} \sum_{i} \widehat{r}_{\lambda_{ji}} \lambda_{ji}(\gamma) I(q_{i} \leq \gamma) + \frac{1}{n} \sum_{i} (\widehat{r}_{\lambda_{ji}})^{2} I(q_{i} \leq \gamma) \xrightarrow{p} E(\lambda_{ji}(\gamma))^{2} I(q_{i} \leq \gamma)),$$

and

$$\frac{1}{n}\sum_{i}\widehat{\lambda}_{1i}(\gamma)\widehat{\lambda}_{2i}(\gamma)I(q_{i} \leq \gamma) = \frac{1}{n}\sum_{i}\lambda_{1i}(\gamma)\lambda_{2i}(\gamma)I(q_{i} \leq \gamma) - \frac{1}{n}\sum_{i}\lambda_{1i}(\gamma)\widehat{r}_{\lambda_{1i}}I(q_{i} \leq \gamma) -\frac{1}{n}\sum_{i}\lambda_{2i}(\gamma)\widehat{r}_{\lambda_{2i}}I(q_{i} \leq \gamma) + \frac{1}{n}\sum_{i}\widehat{r}_{\lambda_{1i}}\widehat{r}_{\lambda_{2i}}I(q_{i} \leq \gamma) \xrightarrow{p} E(\lambda_{1i}(\gamma)\lambda_{2i}(\gamma)I(q_{i} \leq \gamma))$$

Then, uniformly in $\gamma \in \Gamma$, we obtain $\frac{1}{n} \widehat{X}_{\gamma}(\gamma)' \widehat{X}_{\gamma}(\gamma) \xrightarrow{p} M_{\gamma}(\gamma)$. Similarly, we can show that $\frac{1}{n} \widehat{X}_{\perp}(\gamma)' \widehat{X}_{\perp}(\gamma) \xrightarrow{p} M_{\perp}(\gamma)$. Hence,

$$\frac{1}{n}\widehat{X}^*(\gamma)'\widehat{X}^*(\gamma) \xrightarrow{p} M(\gamma) = \begin{pmatrix} M_{\gamma}(\gamma) & 0\\ 0 & M_{\perp}(\gamma) \end{pmatrix}$$

Equation (I.A.14) follows similarly.

To show (I.A.15) note that

$$\frac{1}{\sqrt{n}}\widehat{X}_{\gamma}(\gamma)'\widetilde{e} = \begin{pmatrix} \frac{1}{\sqrt{n}}\sum_{i}\widehat{x}_{i}\widetilde{e}_{i}I(q_{i} \leq \gamma) \\ \frac{1}{\sqrt{n}}\sum_{i}\widehat{\lambda}_{1i}(\gamma)\widetilde{e}_{i}I(q_{i} \leq \gamma) \\ \frac{1}{\sqrt{n}}\sum_{i}\widehat{\lambda}_{2i}(\gamma)\widetilde{e}_{i}I(q_{i} \leq \gamma) \end{pmatrix}$$

Using I.A.10, Lemma 2 of Caner and Hansen (2004), Lemma A.4 of Hansen (2000) we get

$$\frac{1}{\sqrt{n}}\sum_{i} (\widehat{x}_i \widetilde{e}_i I(q_i \le \gamma)) = O_p(1)$$

and for j = 1, 2

$$\frac{1}{\sqrt{n}}\sum_{i}\widehat{\lambda}_{ji}(\gamma)\widetilde{e}_{i}I(q_{i}\leq\gamma) = \frac{1}{\sqrt{n}}\sum_{i}\lambda_{ji}(\gamma)e_{i}I(q_{i}\leq\gamma) + \frac{1}{\sqrt{n}}\sum_{i}\widehat{r}_{\lambda_{ji}}e_{i}I(q_{i}\leq\gamma) + \frac{1}{\sqrt{n}}\sum_{i}\lambda_{ji}(\gamma)\widehat{r}'_{xi}\beta_{2}I(q_{i}\leq\gamma) - \frac{1}{\sqrt{n}}\sum_{i}\widehat{r}_{\lambda_{ji}}\widehat{r}'_{xi}\beta_{2}I(q_{i}\leq\gamma) = O_{p}(1).$$

Therefore, $\frac{1}{\sqrt{n}}\widehat{X}_{\gamma}(\gamma)'\widetilde{e} = O_p(1)$. Similarly, we can show that $\frac{1}{\sqrt{n}}\widehat{X}_{\perp}(\gamma)'\widetilde{e} = O_p(1)$. Hence,

$$\frac{1}{\sqrt{n}}\widehat{X}^*(\gamma)'\widetilde{e} = O_p(1).$$

Lemma I.A.4 $a_n(\widehat{\gamma} - \gamma_0) = O_p(1).$

Proof: First we establish that the unconstrained and the constrained problems share the same rate of convergence by exploiting the relationship between the constrained and unconstrained problems

$$S^{R}(\gamma) = S_{n}^{U}(\gamma) + (\vartheta - R'\beta)'(R'(\widehat{X}^{*}(\gamma)'\widehat{X}^{*}(\gamma))^{-1}R)^{-1}(\vartheta - R'\beta)$$

Then the proof proceeds in steps.

Let $\hat{\beta}_{\gamma}$ denote the estimated coefficients of $\hat{\beta}$ associated with the partitioned regressor matrix $\hat{X}^*(\gamma)$, the unconstrained sum of squared residuals $S_n^U(\gamma)$, and threshold value γ . Let $\hat{\beta}_{\gamma_0}$ denote the estimated coefficients of $\hat{\beta}$ associated with the partitioned regressor matrix $\hat{X}^*(\gamma_0)$, the unconstrained sum of squared residuals $S_n^U(\gamma_0)$, and threshold value γ_0 . We also use the subscript 0 to denote the parameter at the true value. Using Lemma A.2 of Perron and Qu (2006) we can deduce that

$$(\widehat{X}^{*}(\gamma)'\widehat{X}^{*}(\gamma))^{-1} = (\widehat{X}^{*}(\gamma_{0})'\widehat{X}^{*}(\gamma_{0}))^{-1} + O_{p}(\frac{|\gamma - \gamma_{0}|}{n^{2}})$$
(I.A.16)

and

$$(R'(\widehat{X}^*(\gamma)'\widehat{X}^*(\gamma))^{-1}R)^{-1} = (R'(\widehat{X}^*(\gamma_0)'\widehat{X}^*(\gamma_0))^{-1}R)^{-1} + O_p(|\gamma - \gamma_0|).$$
(I.A.17)

Consider

$$\begin{aligned} \widehat{\beta}_{\Delta} &= \widehat{\beta}_{\gamma} - \widehat{\beta}_{\gamma_{0}} \\ &= (\widehat{X}^{*}(\gamma)'\widehat{X}^{*}(\gamma))^{-1}\widehat{X}^{*}(\gamma)'(G^{*}(\gamma_{0})\beta_{0} + e) - (\widehat{X}^{*}(\gamma_{0})'\widehat{X}^{*}(\gamma_{0}))^{-1}\widehat{X}^{*}(\gamma_{0})'(G^{*}(\gamma_{0})\beta_{0} + e) \\ &= (\widehat{X}^{*}(\gamma_{0})'\widehat{X}^{*}(\gamma_{0}))^{-1}((\widehat{X}^{*}(\gamma) - \widehat{X}^{*}(\gamma_{0}))'G^{*}(\gamma_{0})\beta_{0} \\ &\quad + (\widehat{X}^{*}(\gamma_{0})'\widehat{X}^{*}(\gamma_{0}))^{-1}((\widehat{X}^{*}(\gamma) - \widehat{X}^{*}(\gamma_{0}))'e + |\gamma - \gamma_{0}|O_{p}(\frac{1}{n}) \\ &= (\widehat{X}^{*}(\gamma_{0})'\widehat{X}^{*}(\gamma_{0}))^{-1/2}A_{n} \end{aligned}$$

with

$$A_{n} = \widehat{X}^{*}(\gamma_{0})'\widehat{X}^{*}(\gamma_{0}))^{-1/2}(\widehat{X}^{*}(\gamma) - \widehat{X}^{*}(\gamma_{0}))'G^{*}(\gamma_{0})\beta_{0}$$
$$+ (\widehat{X}^{*}(\gamma_{0})'\widehat{X}^{*}(\gamma_{0}))^{-1/2}(\widehat{X}^{*}(\gamma)' - \widehat{X}^{*}(\gamma_{0})')e + |\gamma - \gamma_{0}|O_{p}(\frac{1}{\sqrt{n}}) = |\gamma - \gamma_{0}|O_{p}(n^{-1/2}),$$

where the first equality uses (I.A.16). To get the second equality note that

$$(\widehat{X}^*(\gamma) - \widehat{X}^*(\gamma_0))'G^*(\gamma_0) = |\gamma - \gamma_0|O_p(1),$$

$$\widehat{X}^*(\gamma_0)'\widehat{X}^*(\gamma_0))^{-1/2}(\widehat{X}^*(\gamma) - \widehat{X}^*(\gamma_0))'G^*(\gamma_0)\beta_0 = |\gamma - \gamma_0|O_p(\frac{1}{\sqrt{n}}), \text{ and}$$

$$(\widehat{X}^*(\gamma) - \widehat{X}^*(\gamma_0))'e = |\gamma - \gamma_0|O_p(1).$$

Therefore, $\widehat{\beta}_{\Delta} = |\gamma - \gamma_0|O_p(n^{-1}).$

$$\begin{split} \text{Furthermore, note that } \widehat{\beta}_{\Delta} R = |\gamma - \gamma_{0}|O_{p}(n^{-1}) \text{ and } (\vartheta - R'\beta)' = |\gamma - \gamma_{0}|O_{p}(n^{-1}). \text{ Then,} \\ S_{n}^{R}(\gamma) - S_{n}^{R}(\gamma_{0}) = [S_{n}^{U}(\gamma) - S_{n}^{U}(\gamma_{0})] + [(\vartheta - R'\widehat{\beta}_{\gamma})'(R'(\widehat{X}^{*}(\gamma)'\widehat{X}^{*}(\gamma)))^{-1}R)^{-1}(\vartheta - R'\widehat{\beta}_{\gamma}) \\ &- (\vartheta - R'\widehat{\beta}_{\gamma_{0}})'(R'(\widehat{X}^{*}(\gamma_{0})'\widehat{X}^{*}(\gamma_{0})))^{-1}R)^{-1}(\vartheta - R'\beta_{\gamma_{0}})] \\ = [S_{n}^{U}(\gamma) - S_{n}^{U}(\gamma_{0})] + [(\vartheta - R'\widehat{\beta}_{\gamma})'(R'(\widehat{X}^{*}(\gamma_{0}))^{-1}R)^{-1}(\vartheta - R'\widehat{\beta}_{\gamma_{0}})] \\ &- (\vartheta - R'\widehat{\beta}_{\gamma_{0}})'(R'(\widehat{X}^{*}(\gamma_{0})'\widehat{X}^{*}(\gamma_{0})))^{-1}R)^{-1}(\vartheta - R'\widehat{\beta}_{\gamma_{0}})] + (\gamma - \gamma_{0})^{2}O_{p}(n^{-1}) \\ = [S_{n}^{U}(\gamma) - S_{n}^{U}(\gamma_{0})] + (\widehat{\beta}_{\gamma_{0}} + \widehat{\beta}_{\Delta})'R(R'(\widehat{X}^{*}(\gamma_{0})'\widehat{X}^{*}(\gamma_{0})))^{-1}R)^{-1}R'(\widehat{\beta}_{\gamma_{0}} + \widehat{\beta}_{\Delta}) \\ &- \widehat{\beta}_{\gamma_{0}}^{*}R(R'(\widehat{X}^{*}(\gamma_{0})'\widehat{X}^{*}(\gamma_{0})))^{-1}R)^{-1}R'\widehat{\beta}_{\gamma_{0}} - 2\vartheta'R(R'(\widehat{X}^{*}(\gamma_{0})'\widehat{X}^{*}(\gamma_{0})))^{-1}R)^{-1}R'(\widehat{\beta}_{\gamma} - \widehat{\beta}_{\gamma_{0}}) \\ &+ |\gamma - \gamma_{0}|^{2}O_{p}(n^{-1}) \\ = [S_{n}^{U}(\gamma) - S_{n}^{U}(\gamma_{0})] + 2\widehat{\beta}_{\Delta}^{*}R(R'(\widehat{X}^{*}(\gamma_{0})'\widehat{X}^{*}(\gamma_{0})))^{-1}R)^{-1}R'(\widehat{X}^{*}(\gamma_{0})'\widehat{X}^{*}(\gamma_{0})))^{-1}\widehat{X}^{*}(\gamma_{0})'e \\ &+ \widehat{\beta}_{\Delta}R(R'(\widehat{X}^{*}(\gamma_{0})'\widehat{X}^{*}(\gamma_{0})))^{-1}R)^{-1}R'(\widehat{\beta}_{\Delta} \\ &+ 2\widehat{\beta}_{\Delta}R(R'(\widehat{X}^{*}(\gamma_{0})'\widehat{X}^{*}(\gamma_{0})))^{-1}R)^{-1}R'\widehat{\beta}_{\Delta} \\ &+ 2\widehat{\beta}_{\Delta}R(R'(\widehat{X}^{*}(\gamma_{0})'\widehat{X}^{*}(\gamma_{0})))^{-1}R)^{-1}R'\widehat{\beta}_{\Delta} \\ &+ 2\widehat{\beta}_{\Delta}R(R'(\widehat{X}^{*}(\gamma_{0})'\widehat{X}^{*}(\gamma_{0})))^{-1}R)^{-1}R'\widehat{\beta}_{\Delta} \\ &+ 2\widehat{\beta}_{\Delta}R(R'(\widehat{X}^{*}(\gamma_{0})'\widehat{X}^{*}(\gamma_{0})))^{-1}R)^{-1}R'\widehat{\beta}_{\Delta} \\ &+ 2\widehat{\beta}_{\Delta}R(R'(\widehat{X}^{*}(\gamma_{0})'\widehat{X}^{*}(\gamma_{0})))^{-1}R)^{-1}R'(\widehat{X}^{*}(\gamma_{0})'\widehat{X}^{*}(\gamma_{0})))^{-1}\widehat{X}^{*}(\gamma_{0}))\beta_{0} \\ &+ |\gamma - \gamma_{0}|^{2}O_{p}(n^{-1}). \end{split}$$

Now consider the second term divided by $|\gamma-\gamma_0|$

$$\begin{split} &||2\widehat{\beta}_{\Delta}'R(R'(\widehat{X}^{*}(\gamma_{0})'\widehat{X}^{*}(\gamma_{0}))^{-1}R)^{-1}R'(\widehat{X}^{*}(\gamma_{0})'\widehat{X}^{*}(\gamma_{0}))^{-1}\widehat{X}^{*}(\gamma_{0})'e||/n^{2\alpha-1}(\gamma-\gamma_{0})\\ &= ||A_{n}'((\widehat{X}^{*}(\gamma_{0})'\widehat{X}^{*}(\gamma_{0}))^{-1/2}R\left(R'(\widehat{X}^{*}(\gamma_{0})'\widehat{X}^{*}(\gamma_{0}))^{-1}R\right)^{-1}R'(\widehat{X}^{*}(\gamma_{0})'\widehat{X}^{*}(\gamma_{0}))^{-1/2})\\ &\cdot ((\widehat{X}^{*}(\gamma_{0})'\widehat{X}^{*}(\gamma_{0}))^{-1/2}e)||/n^{2\alpha-1}(\gamma-\gamma_{0}) \end{split}$$

$$\leq ||A'_n|||((\widehat{X}^*(\gamma_0)'\widehat{X}^*(\gamma_0))^{-1/2}e)||/n^{2\alpha-1}(\gamma-\gamma_0) = o_p(1)$$

Note that the third term is nonnegative and divided by $n^{2\alpha-1}(\gamma - \gamma_0)$ is also $o_p(1)$. The key object in the fourth term is $(G^*(\gamma') - \hat{X}^*(\gamma_0))\beta_0$ which is also $o_p(1)$ when it is divided by $n^{2\alpha-1}(\gamma - \gamma_0)$.

Therefore,

$$\frac{S_n^R(\gamma) - S_n^R(\gamma_0)}{n^{2\alpha - 1}(\gamma - \gamma_0)} \ge \frac{S_n^U(\gamma) - S_n^U(\gamma_0)}{n^{2\alpha - 1}(\gamma - \gamma_0)} + o_p(1)$$
(I.A.18)

We can now focus on the unconstrained problem since the rates of convergence for the constrained and unconstrained problems are the same. Let the constants B, d, t be defined as B > 0, $0 < d < \infty$, $0 < t < \infty$. Let $\check{M} = \sup_{|\gamma - \gamma_0| \leq B} |M_{\gamma}(\gamma)^{-1}|$ and $\check{D} = \sup_{|\gamma - \gamma_0| \leq B} |D(\gamma)f(\gamma)|$. Define $\check{M}^* = \check{M} + \check{M}^2 \tau$. Fix $\epsilon > 0$, pick τ and reduce B so that

$$\tau + 3k\breve{M}^*(\bar{D}C + 2\tau)(1 + \breve{M}^*(M_0(\gamma_0) + \tau)) \le d/12$$
 (I.A.19a)

$$\tau(M_0(\gamma_0) + \tau)\breve{M}^*(1 + 3t\breve{M}^*) \le d/12$$
 (I.A.19b)

$$\tau^2 \check{M}^* (2 + 3t \check{M}^*) \le d/12$$
 (I.A.19c)

Without loss of generality assume $\tau \leq t$ and define $\Delta_i(\gamma) = I(q \leq \gamma) - I(q \leq \gamma_0)$.

By Lemma A.7 of Hansen (2000) and (I.A.11), there exist sufficiently large $\bar{v} = v(\epsilon) < \infty$ and $\bar{n} = \bar{n}(\epsilon) < \infty$ that for all $n \geq \bar{n}$, the following events given by equations (I.A.20a)-(I.A.20d) hold jointly with probability exceeding $1 - \epsilon/2$.

$$\sup_{\bar{\nu}/a_n \le |\gamma - \gamma_0| \le B} \frac{\sum |g_i(\gamma)|^2 \Delta_i(\gamma)}{n(\gamma - \gamma_0)} \le 13d/12$$
(I.A.20a)

$$\inf_{\bar{\nu}/a_n \le |\gamma - \gamma_0| \le B} \frac{\sum (c'g_i(\gamma))^2 \Delta_i(\gamma)}{n(\gamma - \gamma_0)} \ge 11d/12 \qquad (I.A.20b)$$

$$\sup_{\bar{\nu}/a_n \le |\gamma - \gamma_0| \le B} \left| -\frac{\sum g_i(\gamma)\hat{r}'_i \Delta_i(\gamma)}{n(\gamma - \gamma_0)} - \frac{\sum \hat{r}_i g_i(\gamma)' \Delta_i(\gamma)}{n(\gamma - \gamma_0)} + \frac{\sum \hat{r}_i \hat{r}_i \Delta_i(\gamma)}{n(\gamma - \gamma_0)} \right| \le \tau$$
(I.A.20c)

$$\sup_{\bar{\nu}/a_n \le |\gamma - \gamma_0| \le B} \left| \frac{\sum (g_i(\gamma) - \hat{r}_i) \widetilde{e}_i \Delta_i(\gamma)}{n^{1 - \alpha} (\gamma - \gamma_0)} \right| \le \tau$$
(I.A.20d)

Additionally, by Proposition 1 the following events given by equations (I.A.21a)-(I.A.21e) hold jointly with probability exceeding $1 - \epsilon$.

$$|\hat{\gamma} - \gamma_0| \le B \tag{I.A.21a}$$

$$\sup_{\gamma \in \Gamma} \left| \frac{1}{n} \widehat{X}_{\gamma}(\gamma) \widehat{X}_{\gamma}(\gamma) - M_{\gamma}(\gamma) \right| \le \tau$$
 (I.A.21b)

$$\sup_{\gamma \in \Gamma} \left\| \frac{1}{n} \widehat{X}_{\gamma}(\gamma) \widehat{X}_{\gamma}(\gamma) \right\| - |M_{\gamma}(\gamma)| \le \tau$$
(I.A.21c)

$$\left| \left| \frac{1}{n} \widehat{X}_0(\gamma_0)' G_0(\gamma_0) \right| - M_0(\gamma_0) \right| \le \tau$$
 (I.A.21d)

$$\sup_{\gamma \in \Gamma} \left| \frac{1}{n^{1-\alpha}} \widehat{X}_{\gamma}(\gamma) \widetilde{e} \right| \le \tau \tag{I.A.21e}$$

Hence, the events (I.A.20a)-(I.A.21e) hold jointly with probability exceeding $1-\epsilon.$

We calculate

$$G_{0}(\gamma_{0})'(P^{*}(\gamma_{0}) - P^{*}(\gamma))G_{0}(\gamma_{0})$$

$$= (\widehat{X}_{\gamma}(\gamma)'\widehat{X}_{\gamma}(\gamma) - \widehat{X}_{0}(\gamma_{0})'\widehat{X}_{0}(\gamma_{0}))$$

$$- (\widehat{X}_{\gamma}(\gamma)'\widehat{X}_{\gamma}(\gamma) - \widehat{X}_{0}(\gamma_{0})'\widehat{X}_{0}(\gamma_{0}))(I_{l} - (\widehat{X}_{\gamma}(\gamma)'\widehat{X}_{\gamma}(\gamma))^{-1}\widehat{X}_{0}(\gamma_{0})'G_{0}(\gamma_{0})$$

$$- (I_{l} - G_{0}(\gamma_{0})'\widehat{X}_{0}(\gamma_{0})(\widehat{X}_{0}(\gamma_{0})'\widehat{X}_{0}(\gamma_{0}))^{-1})$$

$$\times (\widehat{X}_{\gamma}(\gamma)'\widehat{X}_{\gamma}(\gamma) - \widehat{X}_{0}(\gamma_{0})'\widehat{X}_{0}(\gamma_{0}))(\widehat{X}_{\gamma}(\gamma)'\widehat{X}_{\gamma}(\gamma))^{-1}\widehat{X}_{0}(\gamma_{0})'G_{0}(\gamma_{0})$$
(I.A.22)

$$G_{0}(\gamma_{0})'(P^{*}(\gamma_{0}) - P^{*}(\gamma))\widetilde{e}$$

$$= G_{0}(\gamma_{0})'\widehat{X}_{0}(\gamma_{0})(\widehat{X}_{0}(\gamma_{0})'\widehat{X}_{0}(\gamma_{0}))^{-1}(\widehat{X}_{\gamma}(\gamma)'\widehat{X}_{\gamma}(\gamma) - \widehat{X}_{0}(\gamma_{0})'\widehat{X}_{0}(\gamma_{0}))$$

$$\times (\widehat{X}_{\gamma}(\gamma)'\widehat{X}_{\gamma}(\gamma))^{-1}\widehat{X}_{0}(\gamma_{0})'\widetilde{e}$$

$$- G_{0}(\gamma_{0})'\widehat{X}_{0}(\gamma_{0})(\widehat{X}_{0}(\gamma_{0})'\widehat{X}_{0}(\gamma_{0}))^{-1}(\widehat{X}_{\gamma}(\gamma)'\widetilde{e} - \widehat{X}_{0}(\gamma_{0})'\widetilde{e})$$
(I.A.23)

$$\widetilde{e}'(P^*(\gamma_0) - P^*(\gamma))\widetilde{e} = \widetilde{e}'(P_0(\gamma_0) - P_{\gamma}(\gamma))\widetilde{e} + \widetilde{e}'(P_{\perp}(\gamma_0) - P_{\perp}(\gamma))\widetilde{e}$$
(I.A.24)

The first term of (I.A.24) is calculated as follows

$$\widetilde{e}'(P_{0}(\gamma_{0}) - P_{\gamma}(\gamma))\widetilde{e}
= \widetilde{e}'\widehat{X}_{0}(\gamma_{0})(\widehat{X}_{0}(\gamma_{0})'\widehat{X}_{0}(\gamma_{0}))^{-1}(\widehat{X}_{\gamma}(\gamma)'\widehat{X}_{\gamma}(\gamma) - \widehat{X}_{0}(\gamma_{0})'\widehat{X}_{0}(\gamma_{0}))
\times (\widehat{X}_{\gamma}(\gamma)'\widehat{X}_{\gamma}(\gamma))^{-1}\widehat{X}_{0}(\gamma_{0})'\widetilde{e}
- 2\widetilde{e}'\widehat{X}_{0}(\gamma_{0})(\widehat{X}_{\gamma}(\gamma)'\widehat{X}_{\gamma}(\gamma))^{-1}(\widehat{X}_{\gamma}(\gamma)'\widetilde{e} - \widehat{X}_{0}(\gamma_{0})'\widetilde{e})$$
(I.A.25)

The second term of (I.A.24) can be calculated similarly. Using definitions in Lemma I.A.3

we calculate the following decomposition

$$\widehat{X}_{\gamma}(\gamma)'\widehat{X}_{\gamma}(\gamma) - \widehat{X}_{0}(\gamma_{0})'\widehat{X}_{0}(\gamma_{0}) = \sum_{i=1}^{n} g_{i}(\gamma)g_{i}(\gamma)'\Delta_{i}(\gamma) - \sum_{i=1}^{n} g_{i}(\gamma)\widehat{r}'_{i}\Delta_{i}(\gamma) - \sum_{i=1}^{n} g_{i}(\gamma)\Delta_{i}(\gamma)'\widehat{r}_{i} + \sum_{i=1}^{n} \widehat{r}_{i}\widehat{r}'_{i}\Delta_{i}(\gamma)$$
(I.A.26)

Then, by applying Lemma 4 of Caner and Hansen (2004) and using equations (I.A.22), (I.A.23), (I.A.24), (I.A.25), and (I.A.26) we get that (I.A.20a)-(I.A.20d) and (I.A.21a)-(I.A.21e) imply the following:

$$\inf_{\bar{\varepsilon}/a_n \le |\gamma - \gamma_0| \le B} c' \left(\frac{G_0(\gamma_0)'(P^*(\gamma_0) - P^*(\gamma))G_0(\gamma_0)}{n(\gamma - \gamma_0)} \right) c \ge 5d/6$$
(I.A.27)

$$\sup_{\bar{\varepsilon}/a_n \le |\gamma - \gamma_0| \le B} \left| \frac{c'G'_0(\gamma_0)(P^*(\gamma_0) - P^*(\gamma))\tilde{e}}{n^{1-\alpha}(\gamma - \gamma_0)} \right| \le d/12$$
(I.A.28)

$$\sup_{\overline{\varepsilon}/a_n \le |\gamma - \gamma_0| \le B} \left| \frac{\widetilde{e}'(P^*(\gamma_0) - P^*(\gamma))\widetilde{e}}{n^{1 - 2\alpha}(\gamma - \gamma_0)} \right| \le d/6$$
(I.A.29)

where $d \in (0, \infty)$.

Using equation (A.3) of the Appendix in conjunction with the above inequalities in (I.A.27), (I.A.28), and (I.A.27) we can then write $S_n^U(\gamma) - S_n^U(\gamma_0)$ for $\bar{\nu}/a_n \leq |\gamma - \gamma_0| \leq C$ as

$$\frac{S_n^U(\gamma) - S_n^U(\gamma_0)}{n^{1-2\alpha}(\gamma - \gamma_0)} = \frac{\widetilde{e}'(P^*(\gamma_0) - P^*(\gamma))\widetilde{e}}{n^{1-2\alpha}(\gamma - \gamma_0)} + 2\frac{\widetilde{e}'(P^*(\gamma_0) - P^*(\gamma))G_0(\gamma_0)c}{n^{1-\alpha}(\gamma - \gamma_0)}$$

$$+ \frac{c'G_0(\gamma_0)'(P^*(\gamma_0) - P^*(\gamma))G_0(\gamma_0)c}{n(\gamma - \gamma_0)}$$

$$\geq d/2 \qquad (I.A.30a)$$

Since $S_n(\widehat{\gamma}) \leq S_n(\gamma_0)$, the joint events in equations (I.A.20a)-(I.A.20d) and (I.A.21a)-(I.A.21e) imply that $|\widehat{\gamma} - \gamma_0| \leq \overline{\varepsilon}/a_n$. Moreover, since (I.A.20a)-(I.A.20d) and (I.A.21a)-(I.A.21e) hold jointly with probability more than $1 - \epsilon$ for all $n \geq \overline{n}$, we have that $P(n^{1-2\alpha}|\widehat{\gamma} - \gamma_0| > \overline{\varepsilon}) \leq \epsilon$ for $n \geq \overline{n}$. Hence, $a_n(\widehat{\gamma} - \gamma_0) = O_p(1)$.

Lemma I.A.5 $On [-\bar{v}, \bar{v}],$

$$Q_n(\upsilon) = S_n^U(\gamma_0) - S_n^U(\gamma_0 + \upsilon/a_n) \Rightarrow \mathcal{Q}(\upsilon)$$

where

$$\mathcal{Q}(\upsilon) = \begin{cases} -\mu |\upsilon| + 2\zeta_1^{1/2} \mathcal{W}_1(\upsilon), & uniformly \text{ on } \upsilon \in [-\bar{\upsilon}, 0] \\ -\mu |\upsilon| + 2\zeta_2^{1/2} \mathcal{W}_2(\upsilon), & uniformly \text{ on } \upsilon \in [0, \bar{\upsilon}] \end{cases}$$

with $\mu = c'Dcf$ and $\zeta_i = c'\Omega_i cf$, for i = 1, 2.

Proof: Our proof strategy follows Caner and Hansen (2004). Let us first reparameterize all functions of γ as functions of v. For example, $X_v(v) = \widehat{X}_{\gamma_0+v/a_n}(\gamma_0+v/a_n)$, $P_v^*(v) = P_{\gamma_0+v/a_n}^*(\gamma_0+v/a_n)$ and for $\Delta_i(\gamma) = I(q_i \leq \gamma) - I(q_i \leq \gamma_0)$ we have $\Delta_i(v) = \Delta_i(\gamma_0+v/a_n)$. Then, using (A.3) of the Appendix we obtain

$$Q_{n}(\upsilon) = S_{n}^{U}(\gamma_{0}) - S_{n}^{U}(\gamma_{0} + \upsilon/a_{n})$$

= $(n^{-\alpha}c'G_{0}(\gamma_{0})' + \widetilde{e}')P^{*}(\gamma_{0})(G_{0}(\gamma_{0})cn^{-\alpha} + \widetilde{e}) - (n^{-\alpha}c'G(\gamma_{0})' + \widetilde{e}')P^{*}(\upsilon)(G_{0}(\gamma_{0})cn^{-\alpha} + \widetilde{e})$
= $n^{-2a}c'G_{0}(\gamma_{0})'(P^{*}(\gamma_{0}) - P^{*}(\upsilon))G_{0}(\gamma_{0})c$ (i)

$$+ n^{-a} c' G_0(\gamma_0)' (P^*(\gamma_0) - P^*(\upsilon)) \widetilde{e}$$
 (ii)

$$+ \tilde{e}'(P^*(\gamma_0) - P^*(\upsilon))\tilde{e}$$
 (iii) (I.A.31a)

We proceed by studying the behavior of (i)-(iii).

(i) First, we establish that

$$n^{-2\alpha} \sup \left| \widehat{X}_{\gamma}(\gamma)' \widehat{X}_{\gamma}(\gamma) - \widehat{X}_{0}(\gamma_{0})' \widehat{X}_{0}(\gamma_{0}) \right| = O_{p}(1)$$
(I.A.32)

Using equations (I.A.26), (I.A.12), and Lemma A.10 of Hansen (2000) we get

$$\begin{split} n^{-2\alpha} \left| \widehat{X}_{\upsilon}(\upsilon)' \widehat{X}_{\upsilon}(\upsilon) - \widehat{X}_{0}(\gamma_{0})' \widehat{X}_{0}(\gamma_{0}) \right| &\leq n^{-2\alpha} \sum_{i=1}^{n} |g_{i}(\upsilon)|^{2} \Delta_{i}(\upsilon) + 2n^{-2\alpha} \left| \sum_{i=1}^{n} g_{i}(\upsilon) \widetilde{e}'_{i} \Delta_{i}(\upsilon) \right| \\ &+ n^{-2\alpha} \left| \sum_{i=1}^{n} \widetilde{e}_{i} \widetilde{e}'_{i} \Delta_{i}(\upsilon) \right| \\ &\Rightarrow (|D_{1}f| |\upsilon|) I(\upsilon < 0) + (|D_{2}f| |\upsilon|) I(\upsilon > 0) \end{split}$$

This demonstrates equation (I.A.32).

Second, we obtain from equation (I.A.13) of Lemma I.A.3 that

$$\frac{1}{n}\widehat{X}_{\nu}(\nu)'\widehat{X}_{\nu}(\nu) \Rightarrow M(\gamma_0) \tag{I.A.33}$$

Then using equations (I.A.22), (I.A.32), (I.A.33), equation (I.A.12) of Lemma I.A.2, and Lemma I.A.3, we get that

$$n^{-2a}c'G_{0}(\gamma_{0})'(P_{\gamma_{0}}^{*}(\gamma_{0}) - P_{\upsilon}^{*}(\upsilon))G_{0}(\gamma_{0})c$$

= $n^{-2\alpha}c'(\widehat{X}_{\upsilon}(\upsilon)'\widehat{X}_{\upsilon}(\upsilon) - \widehat{X}_{0}(\gamma_{0})'\widehat{X}_{0}(\gamma_{0}))c$

$$-n^{-2\alpha}c'(\hat{X}_{v}(v)'\hat{X}_{v}(v) - \hat{X}_{0}(\gamma_{0})'\hat{X}_{0}(\gamma_{0}))(I_{l} - (\hat{X}_{v}(v)'\hat{X}_{v}(v))^{-1}(\hat{X}_{0}(\gamma_{0})'\hat{X}_{0}(\gamma_{0})))c$$

$$-c'(I_{m} - G_{0}(\gamma_{0})'\hat{X}_{0}(\gamma_{0})(\hat{X}_{0}(\gamma_{0})'\hat{X}_{0}(\gamma_{0}))^{-1})$$

$$\times n^{-2\alpha}(\hat{X}_{v}(v)'\hat{X}_{v}(v) - \hat{X}_{0}(\gamma_{0})'\hat{X}_{0}(\gamma_{0}))(\hat{X}_{v}(v)'\hat{X}_{v}(v))^{-1}\hat{X}_{0}(\gamma_{0}))'G_{0}(\gamma_{0})c$$

$$= n^{-2\alpha}\sum_{i=1}^{n}(c'g_{i}(v))^{2}\Delta_{i}(v) + o_{p}(1), \text{ uniformly in } v \in [-\bar{v}, \bar{v}].$$
(I.A.34)

Hence, using equation (I.A.34) and Lemma A.10 of Hansen (2000), uniformly in $v \in [-\bar{v}, \bar{v}]$, we obtain that term (i) of $Q_n(v)$

$$n^{-2a}c'G_0(\gamma_0)'(P^*_{\gamma_0}(\gamma_0) - P^*_{\upsilon}(\upsilon))G_0(\gamma_0)c \Rightarrow \mu|\upsilon|.$$
(I.A.35)

(ii) First, note that using Lemma (I.A.3) and equation (I.A.33)

$$n^{\alpha}(\widehat{X}_{v}(v)'\widehat{X}_{v}(v))^{-1}\widehat{X}_{0}(\gamma_{0})\widetilde{e} = (n^{-1}(\widehat{X}_{v}(v)'\widehat{X}_{v}(v))^{-1}n^{-1(1-\alpha)}\widehat{X}_{0}(\gamma_{0})'\widetilde{e} = o_{p}(1)$$
(I.A.36)

Second, let $\mathcal{B}_1(v)$ and $\mathcal{B}_2(v)$ be independent one-sided vector Brownian motions with covariance matrices $\Omega_1 f$ and $\Omega_2 f$, respectively. Then, by equation (I.A.12) and Lemma A.11 of Hansen (2000) we have

$$n^{-\alpha}(\widehat{X}_{\upsilon}(\upsilon)'\widetilde{e} - \widehat{X}_{0}(\gamma_{0})'\widetilde{e})$$

$$= n^{-\alpha}\sum_{i=1}^{n}\widehat{g}_{i}(\upsilon)\widetilde{e}_{i}\Delta_{i}(\upsilon)$$

$$= n^{-\alpha}\sum_{i=1}^{n}\widehat{g}_{i}(\upsilon)\widehat{r}_{i}'\beta^{*}\Delta_{i}(\upsilon) + n^{-\alpha}\sum_{i=1}^{n}g_{i}(\upsilon)e_{i}\Delta_{i}(\upsilon) - n^{-\alpha}\sum_{i=1}^{n}\widehat{r}_{i}e_{i}\Delta_{i}(\upsilon)$$

$$= n^{-\alpha}\sum_{i=1}^{n}g_{i}(\upsilon)e_{i}\Delta_{i}(\upsilon) + o_{p}(1)$$

$$\Rightarrow \begin{cases} \mathcal{B}_1(\upsilon), & \text{uniformly on } \upsilon \in [-\bar{\upsilon}, 0] \\ \mathcal{B}_2(\upsilon), & \text{uniformly on } \upsilon \in [0, \bar{\upsilon}] \end{cases}$$
(I.A.37)

Therefore, using equations (I.A.23), (I.A.32), (I.A.33), (I.A.36) and (I.A.37) we obtain

$$n^{-a}c'G_{0}(\gamma_{0})'(P^{*}(\gamma_{0}) - P^{*}(\upsilon))\widetilde{e}$$

$$= G_{0}(\gamma_{0})'\widehat{X}_{0}(\gamma_{0})(\widehat{X}_{0}(\gamma_{0})'\widehat{X}_{0}(\gamma_{0}))^{-1}$$

$$\times n^{-2\alpha}(\widehat{X}_{\gamma}(\gamma)'\widehat{X}_{\gamma}(\gamma) - \widehat{X}_{0}(\gamma_{0})'\widehat{X}_{0}(\gamma_{0}))n^{\alpha}(\widehat{X}_{\upsilon}(\upsilon)'\widehat{X}_{\upsilon}(\upsilon))^{-1}\widehat{X}_{0}(\gamma_{0})'\widetilde{e}$$

$$- G_{0}(\gamma_{0})'\widehat{X}_{0}(\gamma)(\widehat{X}_{\upsilon}(\upsilon)'\widehat{X}_{\upsilon}(\upsilon))^{-1}n^{-\alpha}(\widehat{X}_{\upsilon}(\upsilon)'\widetilde{e} - \widehat{X}_{0}(\gamma_{0})'\widetilde{e})$$

$$= -n^{-\alpha}(\widehat{X}_{\upsilon}(\upsilon)'\widetilde{e} - \widehat{X}_{0}(\gamma_{0})'\widetilde{e}) + o_{p}(1)$$

$$\Rightarrow \begin{cases} \mathcal{B}_{1}(\upsilon), & \text{uniformly on } \upsilon \in [-\overline{\upsilon}, 0] \\ \mathcal{B}_{2}(\upsilon), & \text{uniformly on } \upsilon \in [0, \overline{\upsilon}] \end{cases}$$

Hence,

$$n^{-a}c'G_0(\gamma_0)'(P^*(\gamma_0) - P^*(\upsilon))\tilde{e} \Rightarrow \begin{cases} 2\zeta_1^{1/2}\mathcal{W}_1(\upsilon), & \text{uniformly on } \upsilon \in [-\bar{\upsilon}, 0] \\ 2\zeta_2^{1/2}\mathcal{W}_2(\upsilon), & \text{uniformly on } \upsilon \in [0, \bar{\upsilon}] \end{cases}$$
(I.A.38)

where $W_1(v)$ and $W_2(v)$ are standard Brownian motions with variances $\zeta_1 = c'\Omega_1 cf$ and $\zeta_2 = c'\Omega_2 cf$, respectively.

(iii) Using equations (I.A.25), (I.A.32), (I.A.36), and (I.A.37)

$$\begin{split} \widetilde{e}'(P_0(\gamma_0) - P_v(\upsilon))\widetilde{e} &= \\ & n^{\alpha}\widetilde{e}'\widehat{X}_0(\gamma_0))(\widehat{X}_0(\gamma_0))'\widehat{X}_0(\gamma_0)))^{-1}n^{-2\alpha}(\widehat{X}_v(\upsilon)'\widehat{X}_v(\upsilon) - \widehat{X}_0(\gamma_0)'\widehat{X}_0(\gamma_0)) \\ & \times n^{\alpha}(\widehat{X}_v(\upsilon)'\widehat{X}_v(\upsilon))^{-1}\widehat{X}_0(\gamma_0)'\widetilde{e} \\ & - 2n^{-\alpha}(\widetilde{e}'\widehat{X}_v(\upsilon) - \widetilde{e}'\widehat{X}_0(\gamma_0))n^{\alpha}(\widehat{X}_v(\upsilon)'\widehat{X}_v(\upsilon))^{-1}\widehat{X}_0(\gamma_0)'\widetilde{e} \\ & = o_p(1), \quad \text{uniformly in } \upsilon \in [-\overline{\upsilon}, \overline{\upsilon}]. \end{split}$$

Using a similar argument for $\tilde{e}'(P_{\perp 0}(\gamma_0) - P_{\perp v}(v))\tilde{e}$ together with equation (I.A.24) we get that the term (iii) of $Q_n(v)$

$$\widetilde{e}'(P^*(\gamma_0) - P^*(v))\widetilde{e} \Rightarrow 0. \tag{I.A.39}$$

Using equation of $Q_n(v)$ and (I.A.35)-(I.A.39) we get

$$Q_n(v) \Rightarrow \begin{cases} -\mu |v| + 2\zeta_1^{1/2} \mathcal{W}_1(v), & \text{uniformly on } v \in [-\bar{v}, 0] \\ -\mu |v| + 2\zeta_2^{1/2} \mathcal{W}_2(v), & \text{uniformly on } v \in [0, \bar{v}] \end{cases}$$
(I.A.40)

Lemma I.A.6 If $\widetilde{W}_j \xrightarrow{p} W_j > 0$ for j = 1, 2 then the unconstrained estimators are asymptotically Normal

$$\sqrt{n}(\widetilde{\beta}_1 - \beta_1) \xrightarrow{d} N(0, V_1)$$
$$\sqrt{n}(\widetilde{\beta}_2 - \beta_2) \xrightarrow{d} N(0, V_2)$$

where

$$V_1 = (S'_1 W_1 S_1)^{-1} S'_1 W_1 \Sigma_1 W_1 S_1 (S'_1 W_1 S_1)^{-1}$$
(I.A.42a)

$$V_2 = (S'_2 W_2 S_2)^{-1} S'_2 W_2 \Sigma_2 W_2 S_2 (S'_2 W_2 S_2)^{-1}.$$
 (I.A.42b)

The constrained GMM class estimators are also asymptotically Normal

$$\sqrt{n}(\widehat{\beta}_C - \beta) \xrightarrow{d} N(0, V_C)$$
 (I.A.43)

where

$$V_{C} = V - W^{-1}R(R'W^{-1}R)^{-1}R'V - VR(R'W^{-1}R)^{-1}R'W^{-1}$$

-W^{-1}R(R'W^{-1}R)^{-1}R'VR(R'W^{-1}R)^{-1}R'W^{-1}(I.A.44)

and $V = diag(V_1, V_2)$.

Proof: First, we prove the asymptotic normality of the unconstrained estimators and in particular we start by providing details for the proof of $\tilde{\beta}_1$. Let $\hat{X}_v(v)$, $\hat{X}_{\perp}(v)$, $\Delta \hat{X}_v(v)$, $\hat{Z}_v(v)$ denote the matrices obtained by stacking the following unconstrained vectors

$$\begin{aligned} \widehat{x}_{i}(\gamma_{0} + n^{-(1-2\alpha)}\upsilon)'I(q_{i} \leq \gamma_{0} + n^{-(1-2\alpha)}\upsilon), \\ \widehat{x}_{i}(\gamma_{0} + n^{-(1-2\alpha)}\upsilon)'I(q_{i} > \gamma_{0} + n^{-(1-2\alpha)}\upsilon), \\ \widehat{x}_{i}(\gamma_{0} + n^{-(1-2\alpha)}\upsilon)'I(q_{i} \leq \gamma_{0} + n^{-(1-2\alpha)}\upsilon) - \widehat{x}_{i}(\gamma_{0} + n^{-(1-2\alpha)}\upsilon)I(q_{i} \leq \gamma_{0}), \\ \widehat{z}_{i}(\gamma_{0} + n^{-(1-2\alpha)}\upsilon)'I(q_{i} \leq \gamma_{0} + n^{-(1-2\alpha)}\upsilon). \end{aligned}$$

Given that $\widehat{\pi}_q$ is consistent for π_q , we obtain $\widehat{\lambda}_{1i}(\gamma) \xrightarrow{p} \lambda_{1i}(\gamma)$ and $\widehat{\lambda}_{2i}(\gamma) \xrightarrow{p} \lambda_{2i}(\gamma)$ by applying the continuous mapping theorem. Furthermore, from Lemma 1 of Hansen (1996) and Lemmas A.4 and A.10 of Hansen (2000) we can deduce that uniformly on $v \in [-\overline{v}, \overline{v}]$ we obtain

$$n^{-1}\widehat{Z}'_{\upsilon}\widehat{X}_{\upsilon}(\upsilon) \xrightarrow{p} S_1$$
 (I.A.45)

$$n^{-1/2}\widehat{Z}_{v}(v)'e \Rightarrow N(0,\Sigma_{1}) \tag{I.A.46}$$

$$n^{-2\alpha} \widehat{Z}_{\nu}(\nu)' \Delta \widehat{X}_{\nu}(\nu) = O_p(1)$$
(I.A.47)

Let

$$\widetilde{\beta}_1(v) = (\widehat{X}_v(v)'\widehat{Z}_v(v)\widetilde{W}_1(v)\widehat{Z}_v(v)'\widehat{X}_v(v))^{-1}\widehat{X}_v(v)'\widehat{Z}_v(v)\widetilde{W}_1(v)\widehat{Z}_v(v)'Y,$$
$$\widetilde{\beta}_2(v) = (\widehat{X}_v(v)'\widehat{Z}_v(v)\widetilde{W}_2(v)\widehat{Z}_v(v)'\widehat{X}_v(v))^{-1}\widehat{X}_v(v)'\widehat{Z}_v(v)\widetilde{W}_2(v)\widehat{Z}_v(v)'Y$$

and write the unconstrained model as

$$Y = \widehat{X}_{\upsilon}(\upsilon)\beta_1 + \widehat{X}_{\perp}(\upsilon)\beta_2 - \Delta\widehat{X}_{\upsilon}(\upsilon)\delta_n + e \qquad (I.A.48)$$

Using equation (I.A.48) we get

$$\begin{split} \sqrt{n}(\widetilde{\beta}_{1}(\upsilon) - \beta_{1}) &= \\ ((\frac{1}{n}\widehat{X}_{\upsilon}(\upsilon)'\widehat{Z}_{\upsilon}(\upsilon))\widetilde{W}_{1}(\upsilon)(\frac{1}{n}\widehat{Z}_{\upsilon}(\upsilon)'\widehat{X}_{\upsilon}(\upsilon)))^{-1}(\frac{1}{n}\widehat{X}_{\upsilon}(\upsilon)'\widehat{Z}_{\upsilon}(\upsilon)\widetilde{W}_{1}(\upsilon)(\frac{1}{\sqrt{n}}\widehat{Z}_{\upsilon}'\upsilon - \frac{1}{\sqrt{n}}\widehat{Z}_{\upsilon}(\upsilon)'\Delta\widehat{X}_{\upsilon}(\upsilon)\delta_{n})) \end{split}$$

and by equations (I.A.45) - (I.A.47) we obtain uniformly on $\upsilon \in [-\bar{\upsilon},\bar{\upsilon}]$

$$\sqrt{n}(\widetilde{\beta}_1(\upsilon) - \beta_1) \Rightarrow (S_1' W_1 S_1)^{-1} S_1 W_1 N(0, \Sigma_1).$$

Given Lemma 1, $\hat{v} = n^{1-2\alpha} (\hat{\gamma} - \gamma_0) = n^{1-2\alpha} (\tilde{\gamma} - \gamma_0) = O_p(1)$, and using $\tilde{\beta}_1 = \tilde{\beta}_1(\hat{v})$ we get

$$\sqrt{n}(\widetilde{\beta}_1 - \beta_1) = \sqrt{n}(\widetilde{\beta}_1(\upsilon) - \beta_1) \Rightarrow (S_1'W_1S_1)^{-1}S_1'W_1N(0, \Sigma_1) \sim N(0, V_1)$$

where $V_1 = (S'_1 W_1 S_1)^{-1} (S'_1 W_1 \Sigma_1 W_1 S_1) (S'_1 W_1 S_1)^{-1}$. Similarly, we can get $\sqrt{n} (\widetilde{\beta}_2 - \beta_2) \Rightarrow N(0, V_2)$ with $V_2 = (S'_2 W_2 S_2)^{-1} (S'_2 W_2 \Sigma_2 W_2 S_2) (S'_2 W_2 S_2)^{-1}$ as stated.

Next, we prove the asymptotic normality of the constrained estimator. First, note we can easily verify that

$$\sqrt{n}(\widetilde{\beta} - \beta) \xrightarrow{d} N(0, V)$$
 (I.A.49)

where $V = diag(V_1, V_2)$.

Recall the relationship between the constrained and unconstrained estimators

$$\widehat{\beta}_C = \widetilde{\beta} - \widetilde{W}R(R'\widetilde{W}R)^{-1}(R'\widetilde{\beta} - \vartheta)$$
(I.A.50)

Therefore, given rank(R) = r and $\widetilde{W} \xrightarrow{p} W > 0$ we obtain

$$\sqrt{n}(\widehat{\beta}_C - \beta) \xrightarrow{d} (I - WR(R'WR)^{-1}R')\sqrt{n}(\widetilde{\beta} - \beta) = N(0, V_C)$$
 (I.A.51)

as stated. \blacksquare