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Abstract

This supplement provides all the necessary results to show that a standardized version of the statistics

considered in Bugni (2014) satisfy the same conclusions regarding the rate of convergence of the error

in the coverage probability. To establish these findings, we require strengthening the finite moment

requirements from finite fourth absolute moments to slightly over sixth absolute moments.
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1 Introduction

Bugni (2014) considers the problem of inference in a partially identified moment (in)equality models based

on the criterion function approach. According to Assumptions CF.1-CF.2, the sample analogue criterion

functions are of the following form

Qn(θ) = G({[
√
nm̄n,j(θ)]−}Jj=1), (1.1)

where G is a non-stochastic function. The fact that G is non-stochastic implies that the sample moment

conditions are not allowed to be standardized, i.e., divided by the sample standard deviation. This could be

considered an important limitation relative to the existing literature.

The objective of this supplement is to show that the results in Bugni (2014) can be extended to allow

for standardized sample moment conditions, i.e., criterion functions of the form

Qn(θ) = G({[
√
nm̄n,j(θ)/σ̂n,j(θ)]−}Jj=1), (1.2)

where σ̂2
n,j(θ) ≡ n−1

∑n
i=1(m(Wi, θ)− m̄n,j(θ))

2 is the sample variance of {mj(Wi, θ)}ni=1 for j = 1, . . . , J .

The strategy to establish these results follows the one used in Bugni (2014). The results in that paper

are based on several representation theorems that express a statistic of interest as a well-understood random

variable plus an error term, which is shown to converge to zero at a sufficiently fast rate. These type of rep-

resentation results are obtained for the sample statistic and each of the approximating statistics (bootstrap,

asymptotic approximation, subsampling 1, and subsampling 2). This supplement shows that standardization

adds a new component to the error term of each of these representation results. As a consequence, all of the

results in Bugni (2014) extend for the criterion functions in Eq. (1.2) as long as this additional component

converges to zero at an appropriate rate. This supplement shows that occurs, provided that we strengthen

the finite moment requirements from finite fourth absolute moments to slightly over sixth absolute moments.

We introduce the following notation in addition to the one used in Bugni (2014). For all j = 1, . . . , J ,

σ2
j (θ) ≡ V [mj(Z, θ)]

σ̂2
n,j(θ) ≡ n−1

n∑
i=1

(mj(Zi, θ)− m̄n,j(θ))
2

σ̃2
n,j(θ) ≡ n−1

n∑
i=1

(mj(Zi, θ)− E[mj(Zi, θ)])
2

vsn,j(θ) ≡
√
n(m̄n,j(θ)− E[mj(Z, θ)])/σj(θ),

ṽsn,j(θ) ≡
√
n(m̄n,j(θ)− E[mj(Z, θ)])/σ̂n,j(θ),

vs,∗n,j(θ) ≡
√
n
(
m̄∗n,j(θ)− m̄n,j(θ)

)
/σ̂n,j(θ),

where the superscript “s” in vsn,j(θ), ṽ
s
n,j(θ), and vs,∗n,j(θ) denotes that the sample statistic is standardized.

2 Assumptions

In order to develop the results in this supplement, we replace Assumptions A.5, CF.1, and CF.2 in Bugni

(2014) by the following alternative assumptions.

Assumption A?.5. E[||m(Z, θ)||6+δ] <∞ for some δ > 0.
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Assumption CF?.1. The population criterion function is Q(θ) = G({[E[mj(Z, θ)]/σj(θ)]−}Jj=1), where

G : RJ+ → R is a non-stochastic and non-negative function that is strictly increasing in every coordinate,

weakly convex, continuous, homogeneous of degree β > 0, and satisfies G(y) = 0 if and only if y = 0J .

Assumption CF?.2. The population criterion function is Q(θ) = G({[E[mj(Z, θ)]/σj(θ)]−}Jj=1), where

G : RJ+ → R is one of the following two functions: (a) G(x) =
∑J
j=1$jxj or (b) G(x) = max{$jxj}Jj=1,

where $ ∈ RJ+ is an arbitrary vector of positive constants.

Assumption A?.5 strengthens the finite moment requirements from finite fourth absolute moments in

Assumption A.5 to slightly over sixth absolute moments. By virtue of Assumptions CF?.1-CF?.2, the

properly scaled sample analogue criterion function is now given by Eq. (1.2).

3 Representation results with standardization

This section establishes representation results for the sample statistic and each of the approximating statis-

tics. We note that all the proofs and several intermediate results are collected in the appendix of this

supplement. We begin with the representation result for the standardized sample statistic.

Theorem 3.1 (Representation result - Sample statistic). Assume Assumptions A.1-A.3, CF?.1, and that θ

satisfies Assumptions A.4 and A?.5. Let ρ ≡ rank(V [m(Z, θ)]).

1. If θ ∈ ∂ΘI , then Qn(θ) = H(
√
nȲn) + δn, where

(a) for any C <∞, P (|δn| > Cn−1/2) = o(n−1/2).

(b) Ȳn : Ωn → Rρ is a zero mean sample average of n i.i.d. observations from a distribution with

non-singular variance-covariance matrix V = Iρ and finite fourth moments,

(c) H : Rρ → R is continuous, non-negative, weakly convex, and homogeneous of degree β. H(y) = 0

implies for some non-zero vector b ∈ Rρ, b′y ≤ 0. For any µ > 0, any |h| ≥ µ > 0, any

C2 > 0, any positive sequence {gn}n≥1, and any positive sequence {εn}n≥1 with εn = o(1),

{H−1({h}εn) ∩ ‖y‖ ≤ C2
√
gn} ⊆ {H−1({h})}ηn where ηn = O(

√
gnεn), uniformly in h.

(d) If we add Assumption CF?.2, then for any µ > 0, any |h| ≥ µ > 0 and any sequence {εn}n≥1
with εn = o(1), {H−1({h}εn)} ⊆ {H−1({h})}γn where γn ≤ O(εn), uniformly in h.

2. If θ ∈ Int(ΘI), then lim inf{Qn(θ) = 0} a.s.

As a next step, we consider the standardized version of each of the approximating statistics in Bugni

(2014): bootstrap, asymptotic approximation, subsampling 1, and subsampling 2. In each case, one can

standardize resampling moment inequalities using: (a) the sample standard deviation or (b) the resampling

standard deviation. Both of these options give the same formal results but the latter requires slightly longer

arguments. For the sake of brevity, we express our approximation in terms of the first option. In particular:

• For the bootstrap, we replace Bugni (2014, Eq. (3.2)) with

Q∗n(θ) = G({[
√
n
(
m̄∗n,j(θ)− m̄n,j(θ)

)
/σ̂n,j(θ)]− × 1[m̄n,j(θ)/σ̂n,j(θ) ≤ τn/

√
n]}Jj=1)

= G({[v∗,sn,j(θ)]− × 1[m̄n,j(θ)/σ̂n,j(θ) ≤ τn/
√
n]}Jj=1),

where m̄∗n(θ) is the sample mean for the bootstrap sample.
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• For the asymptotic approximation, we replace Bugni (2014, Eq. (4.2)) with

QAAn (θ) = G

{[√n n∑
i=1

ζi (mj(Zi, θ)− m̄n,j(θ)) /σ̂n,j(θ)

]
−

× 1[m̄n,j(θ)/σ̂n,j(θ) ≤ τn/
√
n]

}J
j=1

 ,

where {ζi}ni=1 is an i.i.d. sample with ζi ∼ N(0, 1), independent of {Zi}ni=1.

• For subsampling 1, we replace Bugni (2014, Eq. (5.2)) with

QSS1

bn,n
(θ) = G({[

√
bn(m̄SS

n,bn,j(θ)− m̄n,j(θ))/σ̂n,j(θ)]− × 1[m̄n,j(θ)/σ̂n,j(θ) ≤ τn/
√
n]}Jj=1),

where m̄SS
n,bn

(θ) is the sample mean for the subsampling sample.

• For subsampling 2, we replace Bugni (2014, Eq. (5.4)) with

QSS2

bn,n
(θ) = G({[

√
bnm̄

SS
n,bn,j(θ)/σ̂n,j(θ)]−}

J
j=1).

where m̄SS
n,bn

(θ) is the sample mean for the subsampling sample.

We now establish the analogous representation results for each of these standardized approximation

methods. It is relevant to point out that the proofs of each of these build heavily on the corresponding

representation results in Bugni (2014).

Theorem 3.2 (Representation result - Bootstrap). Assume Assumptions A.1-A.3, CF?.1, and that θ satis-

fies Assumptions A.4-A.5. Let ρ ≡ rank(V [m(Z, θ)]).

1. If θ ∈ ∂ΘI then Q∗n(θ) = H(
√
nȲ ∗n ) + δ∗n, where

(a) for any C <∞, P (|δ∗n| > Cn−1/2|Xn) = o(n−1/2) a.s.

(b) {Ȳ ∗n |Xn} : Ωn → Rρ is a zero (conditional) mean sample average of n i.i.d. observations from

a distribution with a (conditional) variance-covariance matrix V̂ which is non-singular a.s. and

finite (conditional) fourth moments a.s., and ||V̂ − Ip|| ≤ Op(n−1/2).

(c) H : Rρ → R is the same function as in Theorem 3.1.

2. If θ ∈ Int(ΘI), then lim inf{Q∗n(θ) = 0} a.s.

Theorem 3.3 (Representation result - AA). Assume Assumptions A.1-A.3 , CF?.1, and that θ satisfies

Assumptions A.4-A.5. Let ρ ≡ rank(V [m(Z, θ)]).

1. If θ ∈ ∂ΘI then QAAn (θ) = H(
√
nȲ AAn ) + δAAn , where

(a) for any C <∞, P (|δAAn | > Cn−1/2|Xn) = o(n−1/2) a.s.

(b) {Ȳ AAn |Xn} : Ωn → Rρ is a zero (conditional) mean sample average of n i.i.d. observations from

a distribution with a (conditional) variance-covariance matrix V̂ which is non-singular a.s. and

finite (conditional) fourth moments a.s., and ||V̂ − Ip|| ≤ Op(n−1/2).

(c) H : Rρ → R is the same function as in Theorem 3.1.

2. If θ ∈ Int(ΘI), then lim inf{QAAn (θ) = 0} a.s.
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Theorem 3.4 (Representation result - SS1). Assume Assumptions A.1-A.3, CF?.1, and that θ satisfies

Assumptions A.4-A.5. Let ρ ≡ rank(V [m(Z, θ)]).

1. If θ ∈ ∂ΘI then QSS1

bn,n
(θ) = H(

√
bnȲ

SS
bn,n

) + δSS1

bn,n
, where

(a) lim inf{P (δSS1

bn,n
= 0|Xn) ≥ 1[||vn(mθ)|| ≤ τn]} and lim inf{δSS1

bn,n
= 0}, a.s.

(b) {Ȳ SSbn,n|Xn} : Ωn → Rρ is a zero (conditional) mean sample average of bn observations sampled

without replacement from a distribution with a (conditional) variance-covariance matrix V̂ which

is non-singular a.s. and finite (conditional) fourth moments a.s., and ||V̂ − Iρ|| ≤ Op(n−1/2).

(c) H : Rρ → R is the same function as in Theorem 3.1.

2. If θ ∈ Int(ΘI), then lim inf{QSS1

bn,n
(θ) = 0} a.s.

Theorem 3.5 (Representation result - SS2). Assume Assumptions A.1-A.3, CF?.1, and that θ satisfies

Assumptions A.4-A.5. Let ρ ≡ rank(V [m(Z, θ)]).

1. If θ ∈ ∂ΘI , then QSS2

bn,n
(θ) = H(

√
bnȲ

SS
bn,n

) + δSS2

bn,n
, where

(a) for some C > 0, P (|δSS2

bn,n
| > C

√
(ln lnn)bn/n|Xn) = o(b

−1/2
n ) a.s.

(b) {Ȳ SSbn,n|Xn} : Ωn → Rρ is a zero (conditional) mean sample average of bn observations sampled

without replacement from a distribution with a (conditional) variance-covariance matrix V̂ which

is non-singular a.s. and finite (conditional) fourth moments a.s., and ||V̂ − Iρ|| ≤ Op(n−1/2).

(c) H : Rρ → R is the same function as in Theorem 3.1.

2. If θ ∈ Int(ΘI), then lim inf{QSS2

bn,n
(θ) = 0} a.s.

Remark 3.1. Notice that the representation result for the sample statistic (i.e. Theorem 3.1) is the only

one of these results that requires slightly more than finite sixth absolute moments in Assumption A?.5. All

other representation results in this supplement can be established only using finite fourth absolute moments.

4 Conclusion

This supplement provides all the necessary results to show that a standardized version of the statistics

considered by Bugni (2014) satisfy the same conclusions regarding rate of convergence of the error in the

coverage probability. Our strategy is to establish that all the representation results used in Bugni (2014) for

non-standardized statistics can also be established for standardized statistics, both for the sample statistic

and for all approximating statistics (bootstrap, asymptotic approximation, subsampling 1, and subsampling

2). To establish these result we employ slightly longer formal arguments and we strengthen the finite moment

requirements from finite fourth absolute moments to slightly more than finite sixth absolute moments. Using

the representation results in this supplement, one can repeat the arguments in Bugni (2014) to establish the

exact same rates of convergence of the error in the coverage probability.
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Appendix A Appendix

A.1 Proofs of theorems

Proof of Theorem 3.1. Part 1. We show the result by slightly modifying the arguments in Bugni (2014, Part 1, The-

orem A.1). Let Σ ≡ V [m(Z, θ)] and, thus, ρ = rank(V [m(Z, θ)]), and let D ≡ Diag(Σ) and Ω ≡ D−1/2ΣD−1/2.

By definition, there are (J − ρ) coordinates of D−1/2m(Zi, θ) that can be expressed as a linear combination of the

remaining ρ coordinates of D−1/2m(Zi, θ) for all i = 1, . . . , n (a.s.). We refer to these ρ coordinates as the “funda-

mental” coordinates. Without loss of generality, we can rearrange D−1/2m(Zi, θ) s.t. the fundamental coordinates

are the last ρ ones. This implies that there is a matrix A ∈ R(J−ρ)×ρ s.t.

D−1/2m(Zi, θ) = [A′, Iρ]
′{mj(Zi, θ)/σj(θ)}ρj=1 for all i = 1, . . . , n, a.s. (A.1)

Let Ωρ denote the variance-covariance matrix of {mj(Zi, θ)/σj(θ)}ρj=1, which is necessarily positive definite and let

Ω
−1/2
ρ denote the inverse of its square root. Then, we define Yi ≡ Ω

−1/2
ρ {(mj(Zi, θ)−E[mj(Zi, θ)])/σj(θ)}ρj=1 for all

i = 1, . . . , n and the matrix B ≡ [A′, Iρ]
′Ω

1/2
ρ ∈ RJ×ρ.

By these definitions and by Eq. (A.1), we then conclude that BYi = D−1/2(m(Zi, θ) − E[m(Zi, θ)]) for all

i = 1, . . . , n. According to this definition, vsn(θ) =
√
nBȲn, E[Yi] = 0ρ, V (Yi) = Ip, and E[||Yi||c] < ∞ for all c > 0

s.t. E[||m(Z, θ)||c] <∞. Moreover, {m(Zi, θ)}ni=1 are i.i.d., and so {Yi}ni=1 are also i.i.d.

Let Bj ∈ R1×ρ denote the jth row of B. The function H(y) : Rρ → R is defined as H(y) ≡
G({[Bjy]−1[E[mj(Z, θ)] = 0]}Jj=1). The same arguments in Bugni (2014, Theorem A.1) can be used to show that

this function has all the desired properties. By definition,

H(
√
nȲn) ≡ G({[Bj

√
nȲn]−1[E[mj(Z, θ)] = 0]}Jj=1)) = G({[vsn,j(θ)]−1[E[mj(Z, θ)] = 0]}Jj=1))

and δn ≡ Qn(θ)−H(
√
nȲn). In turn, δn = δn,1 + δn,2 where

δn,1 ≡ Qn(θ)−G({
[
ṽsn,j(θ)

]
− 1[E[mj(Z, θ)] = 0]}Jj=1),

δn,2 ≡ G({
[
ṽsn,j(θ)

]
− 1[E[mj(Z, θ)] = 0]}Jj=1)−G({

[
vsn,j(θ)

]
− 1[E[mj(Z, θ)] = 0]}Jj=1). (A.2)

We consider these two terms in separate steps. Step 1 shows that shows that P (|δn,1| > 0) = o(n−1/2) by a slightly

modifying the arguments in Bugni (2014, Theorem A.1) and Step 2 shows that P (|δn,2| > Cn−1/2) = o(n−1/2) for

all C <∞. The combination of these two steps completes the proof of this part.

Step 1: Argument for δn,1. Since θ ∈ ∂ΘI ⊆ ΘI then E[m(Z, θ)] ≥ 0J . Let S ≡ {j ∈ {1, . . . , J} : E[mj(Z, θ)] =

0}, S̄ ≡ {1, . . . , J}/S (which may be empty), η ≡ minj∈S̄ E[mj(Z, θ)]/σj(θ) > 0 if S̄ 6= ∅ and η ≡ 0 if S̄ = ∅. For any

j = 1, . . . , J , consider the following argument. First, notice that:

[
√
nm̄n,j(θ)/σ̂n,j(θ)]− = [

√
nm̄n,j(θ)/σ̂n,j(θ)]−1[E[mj(Z, θ)] = 0] + [

√
nm̄n,j(θ)/σ̂n,j(θ)]−1[E[mj(Z, θ)] > 0]

≥ [ṽn,j(θ)]−1[E[mj(Z, θ)] = 0].

Second, notice that:

[
√
nm̄n,j(θ)/σ̂n,j(θ)]− = [

√
nm̄n,j(θ)/σ̂n,j(θ)]−1[E[mj(Z, θ)] = 0] + [

√
nm̄n,j(θ)/σ̂n,j(θ)]−1[E[mj(Z, θ)] > 0]

=

{
[ṽsn,j(θ)]−1[E[mj(Z, θ)] = 0]+

[vsn,j(θ) +
√
nEj [mj(Z, θ)]/σj(θ)]−1[E[mj(Z, θ)] > 0](σj(θ)/σ̂n,j(θ))

}
≤ [ṽsn,j(θ)]−1[E[mj(Z, θ)] = 0] + [vsn,j(θ) +

√
nη]−1[E[mj(Z, θ)] > 0](σj(θ)/σ̂n,j(θ)).

From both of these, we extract the following conclusions. If S̄ = ∅ then δn,1 = 0 and so P (|δn,1| > 0) = 0 = o(n−1/2).

If S̄ 6= ∅ then notice that
{

minj∈S̄ v
s
n,j(θ) +

√
nη ≥ 0

}
⊆ {δn,1 = 0}. Therefore, P (|δn,1| > 0) ≤ P (minj∈S̄ v

s
n,j(θ) +
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√
nη < 0). Thus, the proof of this step is completed by showing that:

P (min
j∈S̄

vsn,j(θ) +
√
nη < 0) = o(n−1/2).

To show this, notice that for any λ ∈ (1/4, 1/2) we have that:

P (min
j∈S̄

vsn,j(θ) +
√
nη < 0) = P

(
∪j∈S̄{v

s
n,j(θ) < −

√
nη}

)
≤
∑
j∈S̄

P
(
|vsn,j(θ)| >

√
nη}

)
≤

∑
j∈S̄

[1[nλ >
√
nη] + P (|vsn,j(θ)| > nλ)] = o(n−1/2),

where the rate of convergence follows from η > 0 (S1 6= ∅) and Lemma A.2.

Step 2: Argument for δn,2. We show that P
(
|δn,2| > Cn−1/2

)
= o(n−1/2) for all C <∞. This part of the proof

is the only genuinely new part of the argument relative to Bugni (2014, Theorem A.1).

Fix c > 0 arbitrarily small so that δ > (4 + 2δ)2c+ 4 and so O(n1/2−δ/4+(1+δ/2)2c) = o(n−1/2). Then,

P (|δn,2| > Cn−1/2) =

{
P ({|δn,2| > Cn−1/2} ∩ {∩Jj=1{{|vsn,j(θ)| ≤ nc/2β} ∩ {|σ̂n,j(θ)− σj(θ)| ≤ n−1/2−2c}}})

+P ({|δn,2| > Cn−1/2} ∩ {∪Jj=1{{|vsn,j(θ)| > nc/2β} ∪ {|σ̂n,j(θ)− σj(θ)| > n−1/2−2c}}})

}

≤
J∑
j=1

P (|vsn,j(θ)| > nc/2β) +

J∑
j=1

P (|σ̂n,j(θ)− σj(θ)| > n−1/2−2c),

where the inequality holds by Lemma A.4 for all sufficiently large n. The first sum is o(n−1/2) by Lemma A.2 (with

λ = c/2β) and the second sum is o(n−1/2) by Lemma A.8 (with λ = 2c). This completes the proof of this step.

Part 2. If θ ∈ Int(ΘI) then E[mj(Z, θ)] > 0 for all j = 1, . . . , J . Define η = minj=1,...,J{E[mj(Z, θ)]/σj(θ)} >
0. Consider any positive sequence {εn}n≥1 s.t.

√
ln lnn/εn = o(1) and εn/

√
n = o(1). Suppose that the event

{‖vsn(mθ)‖ ≤ εn} occurs. Then, for all n large enough, Qn(θ) ≤ G({[(−εn/
√
n + η)

√
n]−}Jj=1) = 0. Therefore,

lim inf{‖vsn(mθ)‖ ≤ εn} ⊆ lim inf{Qn(θ) = 0}. By the LIL, P (lim inf{‖vsn(mθ)‖ ≤ εn}) = 1 and the result follows.

Proof of Theorem 3.2. Part 1. We show the results by slightly modifying the arguments in Bugni (2014, Part 1,

Theorem A.2). Let the matrices Σ ∈ RJ×J , D ≡ Diag(Σ), A ∈ R(J−ρ)×ρ, Ωρ ∈ Rρ×ρ, and B ≡ [A′, Iρ]
′Ω

1/2
ρ ∈ RJ×ρ

be defined as in proof of Theorem 3.1. Also, define Σ̂ ≡ V̂ [m(Z, θ)] and D̂ ≡ Diag(Σ̂).

Since bootstrap samples are constructed from the original random sample, it has to be the case that the coordinates

of {m(Z∗i , θ)}ni=1 can be arranged into the same ρ “fundamental” and (J−ρ) “non-fundamental” coordinates described

in Theorem 3.1. In particular, the bootstrap sample satisfies Eq. (A.1). Then, by the argument in Theorem 3.1,

we define Y ∗i ≡ Ω
−1/2
ρ {(mj(Z

∗
i , θ) − m̄n,j(θ))/σ̂j(θ)}ρj=1 for all i = 1, . . . , n, which can be shown to satisfy BY ∗i =

D̂−1/2(m(Z∗i , θ)− m̄n(θ)) for all i = 1, . . . , n.

According to this definition of {Yi}ni=1, vs,∗n (θ) =
√
nBȲ ∗n , E[Y ∗i |Xn] = 0ρ, V [Y ∗i |Xn] = V̂ where V̂ =

Ω
−1/2
ρ Ω̂ρΩ

−1/2
ρ , where Ω̂ρ denotes the sample correlation of {mj(Z, θ)}ρj=1. By the SLLN, Σ̂ − Σ = o(1) a.s. which

implies that D̂−D = o(1) a.s. and Ω̂ρ−Ωρ = o(1) a.s. By this and the CMT, it then follows that V̂ − Iρ = o(1) a.s.,

implying that V̂ is non-singular, a.s. By a similar argument, the SLLN implies that E(||Y ∗i ||c|Xn) <∞ for all c > 0

s.t. E[‖m(Z, θ)‖c] < ∞. Moreover, {{Y ∗i }ni=1|Xn} are i.i.d. because {{m(Z∗i , θ)}ni=1|Xn} are i.i.d. Finally, if we add

Assumption A.5, the CLT and Slutzky’s theorem imply that
√
n(Ω̂− Ω̂) = Op(1) and, so, ||V̂ − Iρ|| ≤ Op(n−1/2).

Let H(y) : Rρ → R be defined as in Theorem 3.1. The same arguments in Bugni (2014, Theorem A.1) can be

used to show that this function has all the desired properties. By definition, it then follows that

H(
√
nȲ ∗n ) ≡ G({[Bj

√
nȲ ∗n ]−1[E[mj(Z, θ)] = 0]}Jj=1)) = G({[v∗,sn,j(θ)]−1[E[mj(Z, θ)] = 0]}Jj=1))

and δ∗n ≡ Q∗n(θ)−H(
√
nȲ ∗n ). To conclude the proof, it suffices to show that this error term satisfies P (|δ∗n| > 0|Xn) =

o(n−1/2). Since θ ∈ ∂ΘI ⊆ ΘI then E[mj(Z, θ)] ≥ 0 ∀j = 1, . . . , J . Let S ≡ {j ∈ {1, . . . , J} : E[mj(Z, θ)] > 0},
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S̄ ≡ {1, . . . , J}/S (which may be empty), η ≡ minj∈S̄ E[mj(Z, θ)]/σj(θ) > 0 if S̄ 6= ∅ and η ≡ 0 if S̄ = ∅, σ2
L(θ) ≡

minj=1,...,J σ
2
j (θ), σ2

H(θ) ≡ maxj=1,...,J σ
2
j (θ), CL ≡ (1 + σ2

L(θ)/(2σ2
H))−1/2, and CH ≡ (1 − σ2

L(θ)/(2σ2
H))−1/2 > 0.

Consider the following derivation:

{‖vsn(mθ)‖ ≤ τn/CH} ∩ {||σ̂2
n(θ)− σ2(θ)|| ≤ σ2

L(θ)/2}

⊆ ∩Jj=1{{|ṽsn,j(mθ)| ≤ (σj(θ)/σ̂n,j(θ))/(τn/CH)} ∩ {CL ≤ σj(θ)/σ̂n,j(θ) ≤ CH}}

⊆ ∩Jj=1{{
√
n|(m̄n,j(θ)− E[mj(Z, θ)])|/σ̂n,j(θ) ≤ τn} ∩ {CL ≤ σj(θ)/σ̂n,j(θ) ≤ CH}}

⊆ {∩j∈S{
√
nm̄n,j(θ)/σ̂n,j(θ) ≤ τn}} ∩ {∩j∈S̄{

√
nm̄n,j(θ)/σ̂n,j(θ) ≥ CL

√
nη − τn}}

⊆ {∩j∈S{
√
nm̄n,j(θ)/σ̂n,j(θ) ≤ τn}} ∩ {∩j∈S̄{

√
nm̄n,j(θ)/σ̂n,j(θ) > τn}} = {Q∗n(θ) = 0},

where all inclusions are based on elementary arguments and the last inclusion holds for all sufficiently large n. From

here, it then follows that

P (δ∗n = 0|Xn)n1/2 ≤ (P (‖vsn(mθ)‖ > τn/CH |Xn) + P (||σ̂2
n(θ)− σ2(θ)|| > σ2

L(θ)/2|Xn)− 1)n1/2

= (1[‖vsn(mθ)‖ > τn/CH ] + 1[||σ̂2
n(θ)− σ2(θ)|| > σ2

L(θ)/2])n1/2.

where the equality uses the fact that, conditionally on Xn, the events {‖vsn(mθ)‖ > τn/CH} and {||σ̂2
n(θ)− σ2(θ)|| >

σ2
L(θ)/2} are non-stochastic. To complete the proof, it suffices to show that P (lim inf{‖vsn(mθ)‖ > τn/CH}) = 1 and

P (lim inf{||σ̂2
n(θ)− σ2(θ)|| < σ2

L(θ)/2}) = 1. These two results follow from the LIL and the SLLN, respectively.

Part 2. If θ ∈ Int(ΘI) then E[mj(Z, θ)] > 0 for all j = 1, . . . , J . Let η ≡ minj=1,...,J E[mj(Z, θ)]/σj(θ) >

0, σ2
L(θ) ≡ minj=1,...,J σ

2
j (θ), σ2

H(θ) ≡ maxj=1,...,J σ
2
j (θ), CL ≡ (1 + σ2

L(θ)/(2σ2
H))−1/2, and CH ≡ (1 −

σ2
L(θ)/(2σ2

H))−1/2 > 0. By the same argument as in part 1, we have the following derivation:

{‖vsn(mθ)‖ ≤ τn/CH} ∩ {||σ̂2
n(θ)− σ2(θ)|| ≤ σ2

L(θ)/2}

⊆ ∩Jj=1{{|ṽsn,j(mθ)| ≤ (σj(θ)/σ̂n,j(θ))/(τn/CH)} ∩ {CL ≤ σj(θ)/σ̂n,j(θ) ≤ CH}}

⊆ ∩Jj=1{{
√
n|(m̄n,j(θ)− E[mj(Z, θ)])|/σ̂n,j(θ) ≤ τn} ∩ {CL ≤ σj(θ)/σ̂n,j(θ) ≤ CH}}

⊆ ∩Jj=1{
√
nm̄n,j(θ)/σ̂n,j(θ) ≥ CL

√
nη − τn}

⊆ ∩j∈S̄{
√
nm̄n,j(θ)/σ̂n,j(θ) > τn} = {Q∗n(θ) = 0},

where all inclusions are based on elementary arguments and the last inclusion holds for all sufficiently large n. From

here, it then follows that

{lim inf{‖vsn(mθ)‖ ≤ τn/CH}} ∩ {lim inf{||σ̂2
n(θ)− σ2(θ)|| ≤ σ2

L(θ)/2}}

= lim inf{{‖vsn(mθ)‖ ≤ τn/CH} ∩ {||σ̂2
n(θ)− σ2(θ)|| ≤ σ2

L(θ)/2}} ⊆ lim inf{Q∗n(θ) = 0}.

To complete the proof, it suffices to show that P (lim inf{‖vsn(mθ)‖ > τn/CH}) = 1 and P (lim inf{||σ̂2
n(θ)− σ2(θ)|| <

σ2
L(θ)/2}) = 1. These two results follow from the LIL and the SLLN, respectively.

Proof of Theorem 3.3. This proof follows closely the arguments used to prove Theorem 3.2. The only difference is

that we replace {Yi}ni=1 with {Y AAi }ni=1 defined by Y AAi ≡ Ω
−1/2
ρ {ζi(mj(Z

∗
i , θ)− m̄n,j(θ))/σ̂j(θ)}ρj=1.

Proof of Theorem 3.4. This proof follows closely the arguments used to prove Theorem 3.2. The only difference is

that we replace {Yi}ni=1 with {Y SSi }bni=1 defined by Y SSi ≡ Ω
−1/2
ρ {(mj(Z

SS
i , θ)− m̄n,j(θ))/σ̂j(θ)}ρj=1.

Proof of Theorem 3.5. We show the results by slightly modifying the arguments in Bugni (2014, Theorem A.15).

Since the structure of this proof is different from the one used to prove Theorems 3.3 or 3.4, we cover the main

differences.

Part 1. Define δSS2
bn,n

≡ QSS2
bn,n

(θ) − G({[vs,SSbn,n
(mj,θ)]−1[E[mj(Z, θ)] = 0]}Jj=1), where vs,SSbn,n

(mj,θ) ≡√
bn(m̄SS

bn,n,j(θ)− m̄n,j(θ))/σ̂n,j(θ). Parts (b)-(c) follow from Theorem 3.4 so we focus on part (a).
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For arbitrary δ ∈ (0, 1/2), let S ≡ {j ∈ {1, . . . , J} : E[mj(Z, θ)] = 0}, S̄ ≡ {1, . . . , J}/S, η ≡
minj∈S̄ E[mj(Z, θ)]/σj(θ) > 0, σ2

L(θ) ≡ minj=1,...,J σ
2
j (θ), λ ≡ maxj=1,...,J(1 + δ)

√
2V [mj(Z, θ)], and let An be

defined as follows:

An ≡ {|vs,SSbn,n
(mj,θ)| ≤ b(1−δ)/2n }Jj=1 ∩ {|vsn(mj,θ)| ≤ λ

√
ln lnn}Jj=1 ∩ {||σ̂2

n(θ)− σ2(θ)|| ≤ σ2
L(θ)/2}}. (A.3)

For any C > 0, notice that:

√
bnP (|δSS2

bn,n
| > C

√
(ln lnn)bn/n|Xn) ≤

√
bnP ({An}c|Xn) +

√
bnP ({|δSS2

bn,n
| > C

√
(ln lnn)bn/n} ∩An|Xn). (A.4)

The proof is completed by showing that the two terms on the RHS of Eq. (A.4) are o(1), a.s.

We begin with the first term in the RHS of Eq. (A.4). Consider the following derivation:

√
bnP ({An}c|Xn) =

{ ∑J
j=1

√
bnP (|vs,SSbn,n

(mj,θ)| > b
(1−δ)/2
n |Xn) +

∑J
j=1

√
bnP (|vsn(mj,θ)| > λ

√
ln lnn|Xn)+∑J

j=1

√
bnP (|σ̂2

n,j(θ)− σ2
j (θ)| > σ2

L(θ)/2|Xn)

}

=

{ ∑J
j=1

√
bnP (|vs,SSbn,n

(mj,θ)| > b
(1−δ)/2
n |Xn) +

∑J
j=1

√
bn1(|vsn(mj,θ)| > λ

√
ln lnn)+∑J

j=1

√
bn1(|σ̂2

n,j(θ)− σ2
j (θ)| > σ2

L(θ)/2),

}
,

where the first equality follows from elementary arguments and the second equality follows from the fact that

{vn(mj,θ)|Xn} is deterministic. Fix j = 1, . . . , J and ε > 0 arbitrarily. By the LIL, lim inf{|vn(mj,θ)| ≤ λ
√

ln lnn}Jj=1

a.s. and so P (lim
√
bn1(|vn(mj,θ)| > λ

√
ln lnn) = 0) = 1. By the SLLN, lim inf{|σ̂2

n,j(θ)− σ2
j (θ)| ≤ σ2

L(θ)/2} a.s. and

so P (lim
√
bn1(|σ̂2

n,j(θ)− σ2
j (θ)| > σ2

L(θ)/2) = 0) = 1. Next, consider the following derivation:

P (lim inf{P (|vs,SSbn,n
(mj,θ)| > b(1−δ)/2n |Xn)

√
bn ≤ ε})

≥ P

(
lim inf{P (|vs,SSbn,n

(mj,θ)| > b
(1−δ)/2
n |Xn)b

(δ−1)
n ≤ (1 + ε)}

∩ lim inf{b(δ−1/2)
n (1 + ε) ≤ ε}

)

≥

{
P (lim inf{P (|vs,SSbn,n

(mj,θ)| > b
(1−δ)/2
n |Xn)b

(δ−1)
n ≤ (1 + ε)})

+P (lim inf{b(δ−1/2)
n (1 + ε) ≤ ε})− 1

}
= P (lim inf{P (|vs,SSbn,n

(mj,θ)| > b(1−δ)/2n |Xn)b(δ−1)
n ≤ (1 + ε)}) ≤ P (lim inf{1 ≤ 1 + ε}) = 1,

where the two first two inequalities follow from elementary arguments, the following equality follows from b
(δ−1/2)
n =

o(1), and the third inequality is shown later in Eq. (A.5).

To complete this argument, consider the following derivation:

E(vs,SSbn,n
(mj,θ)

2|Xn)

=

(
q−1
n

∑qn
s=1 b

−1
n

∑bn
i=1(mj(X

SS
i,s , θ)− m̄n,j(θ))

2/σ̂2
n,j(θ)+

q−1
n

∑qn
s=1 b

−1
n

∑bn
a=1

∑bn
b=1,b6=a(mj(X

SS
a,s , θ)− m̄n,j(θ))(mj(X

SS
b,s , θ)− m̄n,j(θ))/σ̂

2
n,j(θ)

)

=

(
n−1∑n

i=1(mj(Xi, θ)− m̄n,j(θ))
2/σ̂2

n,j(θ)+

+2n−1(n− 1)−1∑n
a=1

∑n
b=1,b6=a(mj(Xa, θ)− m̄n,j(θ))(mj(Xb, θ)− m̄n,j(θ))/σ̂

2
n,j(θ)

)
≤ 1,

where the first equality holds by expanding squares, the following equality holds by the fact that we are sampling

without replacement, and the final inequality holds by verifying that, in the previous line, the first term equals

one and the second term is non-positive by the negative associated produced by sampling without replacement (see

Joag-Dev and Proschan (1983, Section 3.2(a))). Chebyshev’s inequality then implies that

1 ≥ E(vs,SSbn,n
(mj,θ)

2|Xn) ≥ P (|vs,SSbn,n
(mj,θ)| > b(1−δ)/2n |Xn)b(1−δ)n , (A.5)

which completes the proof for the first term on the RHS of Eq. (A.4).
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We now consider the second term RHS of Eq. (A.4). Condition on Xn and assume that An occurs. Then,

QSS2
bn,n

(θ) = G({[vs,SSbn,n
(mj,θ) +

√
bn/nv

s
n(mj,θ) +

√
bnE[mj(Z, θ)]/σ̂n,j(θ)]−}Jj=1) (A.6)

≤ G({[vs,SSbn,n
(mj,θ)− λ

√
(ln lnn)bn/n+

√
bnE[mj(Z, θ)]/σ̂n,j(θ)]−}Jj=1)

≤ G

{ [vs,SSbn,n
(mj,θ)− λ

√
(ln lnn)bn/n]

−
1[E[mj(Z, θ)] = 0]+

[−b1/2−δn − λ
√

(ln lnn)bn/n+
√
bn2η]−1[E[mj(Z, θ)] > 0]

}J
j=1


= G({[vs,SSbn,n

(mj,θ)− λ
√

(ln lnn)bn/n]−1[E[mj(Z, θ)] = 0]}Jj=1)

≤ G({[vs,SSbn,n
(mj,θ)]−1[E[mj(Z, θ)] = 0]}Jj=1 + λ

√
(ln lnn)bn/n1J), (A.7)

where the first equality is elementary, the second inequality holds because G is increasing and An implies that

vsn(mj,θ) ≥ −λ
√

ln lnn, the second inequality follows from the fact that An implies that vs,SSbn,n
(mj,θ) > −b(1−δ)/2n , the

next equality follows for all n large enough as η, λ, δ > 0, and the final inequality holds by elementary arguments. By

using similar arguments, we can establish an analogous lower bound for Qs,SS2
bn,n

(θ). As a consequence, if An occurs,

QSS2
bn,n

(θ) ∈

[
G({[vs,SSbn,n

(mj,θ)]−1[E[mj(Z, θ)] = 0]}Jj=1 − λ
√

(ln lnn)bn/n1J),

G({[vs,SSbn,n
(mj,θ)]−1[E[mj(Z, θ)] = 0]}Jj=1 + λ

√
(ln lnn)bn/n1J)

]

By Assumption CF.2, ∀x ∈ RJ and ∀ε > 0, ∃D > 0 s.t. |G(x+ ε)−G(x)| ≤ D||ε||. If we set C = Dλ > 0,

|δSS2
bn,n
| = |QSS2

bn,n
(θ)−G({[vs,SSbn,n

(mj,θ)]−1[E[mj(Z, θ)] = 0]}Jj=1)|

≤ max
r∈{−1,1}

{∣∣∣∣∣ G({[vs,SSbn,n
(mj,θ)]−1[E[mj(Z, θ)] = 0]}Jj=1 + rλ

√
(ln lnn)bn/n1J)

−G({[vs,SSbn,n
(mj,θ)]−1[E[mj(Z, θ)] = 0]}Jj=1)

∣∣∣∣∣
}

≤ D‖λ
√

(ln lnn)bn/n× 1J‖ = Dλ
√

(ln lnn)bn/n.

This completes the argument for the second term on the RHS of Eq. (A.4).

Part 2. Since QSS2
bn,n

(θ) ≥ 0, it suffices to show that
√
bnP (QSS2

bn,n
(θ) > 0|Xn) = o(1). For arbitrary δ ∈ (0, 1/2), let

η ≡ minj=1,...,J E[mj(Z, θ)]/σj(θ) > 0 and let An be defined as in Eq. (A.3). By elementary arguments

√
bnP (QSS2

bn,n
(θ) > 0|Xn) ≤

√
bnP ({An}c|Xn) +

√
bnP ({QSS2

bn,n
(θ) > 0} ∩An|Xn).

We can now repeat arguments used in part 1 to argue that both terms on the RHS are o(1), a.s. On the one hand, the

same argument as in part 1 implies that
√
bnP ({An}c|Xn) = o(1) a.s. On the other hand, if An occurs, the argument

used in Eq. (A.6) implies that QSS2
bn,n

(θ) ≤ G({[−b1/2−δn − λ
√

(ln lnn)bn/n+ η2
√
bn]−}Jj=1). Since η, δ > 0, the RHS

expression is equal to zero for all n large enough. This then implies that
√
bnP ({QSS2

bn,n
(θ) > 0} ∩ An|Xn) = o(1),

completing the proof.

A.2 Proofs of intermediate results

Lemma A.1. Assume Assumption A.1 and that θ ∈ Θ satisfies E[||m(Z, θ)||2+ψ] < ∞ for some ψ > 0. For all

j = 1, . . . , J ,

E
[
|mj(Zi, θ)− E[mj(Zi, θ)]|2+ψ

]
< ∞,

E
[∣∣(mj(Zi, θ)− E[mj(Zi, θ)])

2 − σ2
j (θ)

∣∣1+ψ/2
]

< ∞.

Proof. Fix j = 1, . . . , J arbitrarily and let σ2 ≡ σ2
j (θ) and Mi ≡ mj(Zi, θ) for all i = 1, . . . , n.

By Assumption A.5 and Holder’s inequality, E[|Mi|]2+ψ ≤ E[|Mi|2+ψ] < ∞. Another application of Holder’s

inequality yields |Mi−E[Mi]|2+ψ ≤ |Mi|2+ψ+ |E[Mi]
2+ψ and, so, E|Mi−E[Mi]|2+ψ ≤ E|Mi|2+ψ+ |E[Mi]|2+ψ <∞.

This proves the first result.
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Define Yi ≡ (Mi − E[Mi])
2 /σ2 − 1 and φ ≡ ψ/2. By definition,

E[|(Mi − E[Mi])
2 − σ2|1+φ] = σ2+φE

[∣∣∣∣ (Mi − E[Mi])
2

σ2
− 1

∣∣∣∣1+φ
]

= σ2+φE[|Yi|1+φ].

So, it suffices to show that E[|Yi|1+φ] < ∞. For the remainder of the proof let β > 1 be arbitrarily chosen. Notice

that

E[|Yi|1+φ] = E[|Yi|1+φ1[|Yi| > β]] + E[|Yi|1+φ1[|Yi| ≤ β]] ≤ E[|Yi|1+φ1[|Yi| > β]] + β1+φ.

So, it suffices to show that E[|Yi|1+φ1[|Yi| > β]] <∞. Since β > 1, it follows that

{|Yi| > β} ⊆
{{∣∣∣∣ (Mi − E[Mi])

2

σ2

∣∣∣∣ > β + 1

}
∩
{
|Yi| ≤

∣∣∣∣ (Mi − E[Mi])
2

σ2

∣∣∣∣}}
and, therefore,

E[|Yi|1+φ1[|Yi| > β]] ≤ E

[∣∣∣∣Mi − E[Mi]

σ

∣∣∣∣2+ψ

1

[
(Mi − E[Mi])

2

σ2
> β + 1

]]

≤ E

[∣∣∣∣Mi − E[Mi]

σ

∣∣∣∣2+ψ
]

=
1

σ2+ψ
E[|Mi − E[Mi]|2+ψ] <∞.

This proves the second result and completes the proof.

Remark A.1. Lemma A.1 can be used with ψ = 2 under Assumption A.5 or with ψ > 4 under Assumption A?.5.

Lemma A.2. Assume Assumption A.1 and that θ ∈ Θ satisfies Assumption A.5. For all j = 1, . . . , J and c > 0,

P [|vsn,j(θ)| > nc] = o(n−1/2).

Proof. For any ψ > 0, consider the following argument based on Chebyshev’s inequality:

P [|vsn,j(θ)| > nc]n(2+ψ)c = P [|vsn,j(θ)|2+ψ > n(2+ψ)c]n(2+ψ)c

≤ E[|vsn,j(θ)|2+ψ]

= E

∣∣∣∣∣n−1/2
n∑
i=1

[mj(Z, θ)− E[mj(Z, θ)]]

σj(θ)

∣∣∣∣∣
2+ψ


= σ

−(2+ψ)
j (θ)n−1−ψ/2E

∣∣∣∣∣
n∑
i=1

[mj(Z, θ)− E[mj(Z, θ)]]

∣∣∣∣∣
2+ψ


≤ σ

−(2+ψ)
j (θ)n−1−ψ/2E

[(
n∑
i=1

|mj(Z, θ)− E[mj(Z, θ)]|2+ψ

)]
≤ σ

−(2+ψ)
j (θ)n−ψ/2E

[
|mj(Z, θ)− E[mj(Z, θ)]|2+ψ

]
.

From this, Lemma A.1 with ψ = 2, and Assumption A.5, we conclude that

P [|vsn,j(θ)| > nc] = O(n−ψ/2−(2+ψ)c) = o(n−1/2),

where we have used that c > 0 and ψ ≥ 1.
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Lemma A.3. Assume Assumption CF?.1 and that θ ∈ ΘI satisfies Assumption A.4. Then, δn,2 in Eq. (A.2) satisfies

|δn,2| ≤
[(

1− maxj=1,...,J |σ̂n,j(θ)−σj(θ)|
minj=1,...,J σj(θ)

)−β
− 1

]
G({[vn,j(θ)]−1[E[mj(Z, θ)] = 0]}Jj=1),

Proof. For each j = 1, . . . , J , define vLn,j(θ) ≡ min{ṽsn,j(θ), vsn,j(θ)} and vHn,j(θ) ≡ max{ṽsn,j(θ), vsn,j(θ)}. Since θ ∈ ΘI ,

E[m(Z, θ)] ≥ 0J . Define S0,−(θ) ≡ {j = 1, . . . , J : E[mj(Z, θ)] = 0 ∩ vLn,j(θ) < 0} (which may be empty).

First, consider the case when S0,−(θ) = ∅. In this case, either E[mj(Z, θ)] > 0 or 0 ≤ vLn,j(θ) ≤ vHn,j(θ) for all

j = 1, . . . , J . Therefore,

{[ṽsn,j(θ)]−1[E[mj(Z, θ)] = 0]}Jj=1 = {[vsn,j(θ)]−1[E[mj(Z, θ)] = 0]}Jj=1 = 0J ,

and, thus, δn,2 = 0, and the statement holds.

Second, consider the case when S0,−(θ) 6= ∅. Define α ≡ maxj∈S0,−(θ){vLn,j(θ)/vHn,j(θ)} ≥ 1. Now consider the

following derivation:

αβG({[vHn,j(θ)]−1[E[mj(Z, θ)] = 0]}Jj=1) = G({[αvHn,j(θ)]−1[E[mj(Z, θ)] = 0]}j∈S0,−(θ), {0}j 6∈S0,−(θ))

≥ G({[vLn,j(θ)]−1[E[mj(Z, θ)] = 0]}j∈S0,−(θ), {0}j 6∈S0,−(θ))

= G({[vLn,j(θ)]−1[E[mj(Z, θ)] = 0]}Jj=1)

where the first equality follows from homogeneity of degree β and the fact that [αvHn,j(θ)]−1[E[mj(Z, θ)] = 0] = 0 for all

j 6∈ S0,−(θ), the first inequality follows from the monotonicity of G and αvHn,j(θ) < {vLn,j(θ)/vHn,j(θ)}vHn,j(θ) = vLn,j(θ)

for all j ∈ S0,−(θ), and the final equality follows from the fact that [vLn,j(θ)]−1[E[mj(Z, θ)] = 0] = 0 for all j 6∈ S0,−(θ).

From here, consider the following derivation:

|δn,2| ≤ G({[vLn,j(θ)]−1[E[mj(Z, θ)] = 0]}Jj=1)−G({[vHn,j(θ)]−1[E[mj(Z, θ)] = 0]}Jj=1)

≤ (αβ − 1)G({[vHn,j(θ)]−1[E[mj(Z, θ)] = 0]}Jj=1)

≤

[(
max

j=1,...,J

{
max

{
σ̂n,j(θ)

σj(θ)
,
σj(θ)

σ̂n,j(θ)

}})β
− 1

]
G({[vsn,j(θ)]−1[E[mj(Z, θ)] = 0]}Jj=1)

≤


(maxj=1,...,J

{
max

{
|σ̂n,j(θ)−σj(θ)|

σL(θ)
+ 1, 1

1−
|σ̂n,j(θ)−σj(θ)|

σL(θ)

}})β
− 1


×G({[vsn,j(θ)]−1[E[mj(Z, θ)] = 0]}Jj=1)


≤

[(
1− maxj=1,...,J |σ̂n,j(θ)− σj(θ)|

σL(θ)

)−β
− 1

]
G({[vsn,j(θ)]−1[E[mj(Z, θ)] = 0]}Jj=1),

where all inequalities are elementary and based on the definition of α and the monotonicity of G.

Lemma A.4. Assume Assumption CF?.1 and that θ ∈ ΘI satisfies Assumption A.4. Then, ∀c > 0, ∃N ∈ N s.t.

∀n ≥ N , δn,2 in Eq. (A.2) satisfies{{
max

j=1,...,J
|σ̂n,j(θ)− σj(θ)| ≤ n−1/2−2c

}
∩
{

max
j=1,...,k

|vsn,j(θ)| ≤ nc/2β
}}
⊆
{
|δn,2| ≤ n−1/2−c

}
.

Proof. First, assume that maxj=1,...,J |σ̂n,j(θ) − σj(θ)| ≤ n−1/2−2c. This implies that maxj=1,...,J |σ̂n,j(θ) −
σj(θ)|/minj=1,...,J σj(θ) ≤ 1/2 for all n sufficiently large. For x ∈ [0, 1/2] consider the function f(x) = (1−x)−β − 1.

By the intermediate value theorem, there is x̃ ∈ [0, 1/2] s.t. f(x) = f(0) + f ′(x̃)x = β(1 − x̃)−(β+1)x and, so,

|f(x)| < β2(β+1)x. Therefore,[(
1− maxj=1,...,J |σ̂n,j(θ)− σj(θ)|

minj=1,...,J σj(θ)

)−β
− 1

]
≤ β2(β+1) max

j=1,...,J
|σ̂n,j(θ)− σj(θ)| ≤ β2(β+1)n−1/2−2c.

12



Second, assume that maxj=1,...,J |vn,j(θ)| ≤ nc/2β . If we combine this with the monotonicity and the homogeneity

of G we deduce that

G({[vsn,j(θ)]−1[E[mj(Z, θ)] = 0]}Jj=1) ≤ nc/2G({1}Jj=1).

By combining these two steps with Lemma A.3, we conclude that maxj=1,...,J |σ̂n,j(θ) − σj(θ)| ≤ n−1/2−2c and

maxj=1,...,J |vsn,j(θ)| ≤ nc/2β imply that, for all n sufficiently large,

|δn,2| ≤ β2(β+1)n−1/2−2cnc/2G({1}Jj=1) ≤ β2(β+1)G({1}Jj=1)n−1/2−1.5c.

The RHS is less than n−1/2−c for all n sufficiently large, and this completes the proof.

Lemma A.5. Assume Assumption A.1 and that θ ∈ Θ satisfies E[||m(Z, θ)||2+ψ] < ∞ for some ψ > 0. For all

j = 1, . . . , J and any sequence {an}n≥1 = o(1),

P (|σ̃n,j(θ)− σj(θ)| > σan)(3σj(θ)an)1+ψ/2 ≤ n−ψ/2E[|(mj(Zi, θ)− E[mj(Zi, θ)])
2 − σ2

j (θ)|1+ψ/2].

Proof. Consider the following argument:

P (|σ̃n,j(θ)− σj(θ)| > σj(θ)an) = P ({σ̃n,j(θ)− σj(θ) > σj(θ)an} ∪ {σ̃n,j(θ)− σj(θ) < −σj(θ)an})

= P ({σ̃n,j(θ) > σj(θ) (1 + an)} ∪ {σ̃n,j(θ) < σj(θ) (1− an)})

= P

( {
(σ̃2
n,j(θ)− σ2

j (θ)) > σ2
j (θ)(2an + a2

n)
}
∪{

(σ̃2
n,j(θ)− σ2

j (θ)) < σ2
j (θ)(−2an + a2

n)
} )

≤

{
P
(
(σ̃2
n,j(θ)− σ2

j (θ)) > σ2
j (θ)(2an + a2

n)
)

+P
(
(σ̃2
n,j(θ)− σ2

j (θ)) < σ2
j (θ)(−2an + a2

n)
) }

≤ P
(
(σ̃2
n,j(θ)− σ2

j (θ)) > 3σ2
j (θ)an

)
+ P

(
(σ̃2
n,j(θ)− σ2

j (θ)) > −3σ2
j (θ)an

)
≤ P

(
|σ̃2
n,j(θ)− σ2

j (θ)| > 3σ2
j (θ)an

)
,

where all relationships are elementary and we have used that an = o(1) implies that there is n large enough s.t.

2an + a2
n < 3an and −2an + a2

n > −3an. From here we conclude that

P (|σ̃n,j(θ)− σj(θ)| > σj(θ)an)(3σj(θ)an)1+ψ/2 ≤ P (|σ̃2
n,j(θ)− σ2

j (θ)| > 3σ2
j (θ)an)(3σj(θ)an)1+ψ/2

≤ E(|σ̃2
n,j(θ)− σ2

j (θ)|1+ψ/2)

= E

(∣∣∣∣∑n
i=1(mj(Zi, θ)− E[mj(Zi, θ)])

2 − σ2
j (θ)

n

∣∣∣∣1+ψ/2
)

= n−ψ/2E

(
|
∑n
i=1(mj(Zi, θ)− E[mj(Zi, θ)])

2 − σ2
j (θ)|1+ψ/2

n

)

≤ n−ψ/2E

(∑n
i=1 |(mj(Zi, θ)− E[mj(Zi, θ)])

2 − σ2
j (θ)|1+ψ/2

n

)
= n−ψ/2E

[
|(mj(Zi, θ)− E[mj(Zi, θ)])

2 − σ2
j (θ)|1+ψ/2

]
,

where we have used Markov’s and Holder’s inequalities.

Lemma A.6. Assume Assumption A.1 and that θ ∈ Θ satisfies E[||m(Z, θ)||2+ψ] < ∞ for some ψ > 0. For all

j = 1, . . . , J and any sequence {an}n≥1 = o(1),

P (|σ̃n,j(θ)− σ̂n,j(θ)| > an)(3σj(θ)an)1+ψ/2

≤ n−1−ψE[|mj(Zi, θ)− E[mj(Zi, θ)]|2+ψ] + n−ψ/2E[|(mj(Zi, θ)− E[mj(Zi, θ)])
2 − σ2

j (θ)|1+ψ/2].
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Proof. First, consider the following argument:

P (|σ̃n,j(θ)− σ̂n,j(θ)| > an) (3σj(θ)an)1+ψ/2

= P (|σ̃2
n,j(θ)− σ̂2

n,j(θ)|1+ψ/2 > (3σj(θ)an)1+ψ/2)(3σj(θ)an)1+ψ/2

≤ E(|σ̃2
n,j(θ)− σ̂2

n,j(θ)|1+ψ/2)

= E

(∣∣∣∣∑n
i=1[(mj(Zi, θ)− m̄n,j(θ))

2 − (mj(Zi, θ)− E[mj(Zi, θ)])
2]

n

∣∣∣∣1+ψ/2
)

= E(|m̄n,j(θ)− E[mj(Zi, θ)]|2+ψ) ≤ n−1−ψE(|mj(Zi, θ)− E[mj(Zi, θ)]|2+ψ),

where every relationship is elementary. Now, consider the following derivation:

P (|σ̃n,j(θ)− σ̂n,j(θ)| > an)

= P ({σ̂n,j(θ) > an + σ̃n,j(θ)} ∪ {σ̂n,j(θ) < −an + σ̃n,j(θ)})

= P ({σ̂2
n,j(θ)− σ̃2

n,j(θ) > a2
n + 2anσ̃n,j(θ)} ∪ {σ̂2

n,j(θ)− σ̃2
n,j(θ) < a2

n − 2anσ̃n,j(θ)})

≤

{
P ({σ̂2

n,j(θ)− σ̃2
n,j(θ) > a2

n(1 + 2σj(θ)) + 2anσj(θ)} ∪ {σ̂2
n,j(θ)− σ̃2

n,j(θ) < a2
na

2
n(1 + 2σj(θ))− 2anσj(θ)})

+P (|σ̃n,j(θ)− σ̂n,j(θ)| > σj(θ)an)

}
≤ P (|σ̂2

n,j(θ)− σ̃2
n,j(θ)| > 3a2

nσj(θ)) + P (|σ̃n,j(θ)− σ̂n,j(θ)| > σj(θ)an),

where all relationships are elementary and we have used that an = o(1) implies that there is n large enough s.t.

a2
n(1 + 2σj(θ)) + 2anσj(θ) < 3anσj(θ) and a2

n(1 + 2σj(θ))− 2anσj(θ) > −3anσj(θ). From here we conclude that

P (|σ̃n,j(θ)− σ̂n,j(θ)| > an)(3σj(θ)an)1+ψ/2

≤ P (|σ̂2
n,j(θ)− σ̂2

n,j(θ)| > 3anσj(θ))(3σj(θ)an)1+ψ/2 + P (|σ̃n,j(θ)− σj(θ)| > σj(θ)an)(3σj(θ)an)1+ψ/2

≤ n−1−ψE(|mj(Zi, θ)− E[mj(Zi, θ)]|2+ψ) + n−ψ/2E[|(mj(Zi, θ)− E[mj(Zi, θ)])
2 − σ2

j (θ)|1+ψ/2],

where we have used Lemma A.5.

Lemma A.7. Assume Assumption A.1 and that θ ∈ Θ satisfies E[||m(Z, θ)||2+ψ] < ∞ for some ψ > 0. For all

j = 1, . . . , J and any sequence {an}n≥1 = o(1),

P (|σ̂n,j(θ)− σj(θ)| > 2an)(3σj(θ)an)1+ψ/2

≤ n−1−ψE[|mj(Zi, θ)− E[mj(Zi, θ)]|2+ψ] + n−ψ/22E[|(mj(Zi, θ)− E[mj(Zi, θ)])
2 − σ2

j (θ)|1+ψ/2].

Proof. By triangular inequality, |σ̂n,j(θ)− σj(θ)| ≤ |σ̂n,j(θ)− σ̃n,j(θ)|+ |σ̃n,j(θ)− σj(θ)| and therefore

P (|σ̂n,j(θ)− σj(θ)| > 2an) ≤ P ({|σ̂n,j(θ)− σ̃n,j(θ)| > an} ∪ {|σ̃n,j(θ)− σj(θ)| > an})

≤ P (|σ̂n,j(θ)− σ̃n,j(θ)| > an) + P (|σ̃n,j(θ)− σj(θ)| > an).

The result follows from the previous inequality and Lemmas A.5 and A.6 .

Lemma A.8. Assume Assumption A.1 and that θ ∈ Θ satisfies E[||m(Z, θ)||2+ψ] < ∞ for some ψ > 0. For all

j = 1, . . . , J and any c > 0,

P (|σ̂n,j(θ)− σj(θ) > n−1/2−c) = O(n1/2−ψ/4+(1+ψ/2)c).

Under Assumption A?.5 the RHS expression is o(n−1/2) for a choice of c > 0 that is small enough.

Proof. Let c ∈ (0, 1/2). By Lemmas A.1 and A.7 applied to an = n−1/2−c/2 = o(1), we conclude that

P (|σ̂n,j(θ)− σj(θ)| > n−1/2−c) = (3σn−1/2−c/2)−1−ψ/2O(n−1−ψ + n−ψ/2) = O(n1/2−ψ/4+(1+ψ/2)c).
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To complete the proof, we notice that O(n1/2−ψ/4+(1+ψ/2)c) = o(n−1/2) if and only if ψ > (4 + 2ψ)c+ 4. By making

c arbitrarily small, the condition can be achieved whenever ψ > 4, i.e., under Assumption A?.5.
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