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This supplementary material contains a detailed Monte Carlo analysis comparing our

proposal for signal extraction with two natural competitors adapted to the semiparametric

character of the problem at hand: a Wiener-Kolmogorov filter in the time domain as proposed

by Harvey (1998) and smoothing via the Kalman filter in a truncated AR process. The

applicability of our proposal is finally illustrated in an empirical analysis of a daily series of

returns from the Dow Jones Industrial index.

1 Finite sample performance

We compare the performance of our proposal with two extensions of existing techniques for

signal extraction in SV models: the Kalman filter, which is the most widely used tool for

estimating the volatility in parametric short memory SV models, and the proposal by Harvey

(1998) for parametric LMSV based on a Wiener-Kolmogorov filter in the time domain.

1.1 Kalman filter in LMSV

SV models can be naturally expressed in state space form and the Kalman filter can be used

to construct the likelihood function and to extract the volatility component. This approach

gives reliable results with short memory volatility components, but a strong persistent xt

poses difficulties which may render the Kalman filter quite unreliable and unmanageable
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due to the huge dimension of the corresponding state space model. In fact, Chan and

Palma (1998) show that the state space representation of a long memory process cannot be

finite dimensional, though they do not deal with SV models. The exact likelihood function

can however be computed in a finite number of steps, but the computation may be rather

cumbersome, with a number of computations of order n3 for n denoting the sample size,

which makes it quite unmanageable for the sample sizes usually found in financial series.

Moreover its application requires a full parameterization of xt including its short memory

part, and this is a restriction that we wish to avoid. A partial solution to this problem is to

work with a truncated MA or AR expression as suggested by Chan and Palma (1998). This

reduces the number of operations required for a single evaluation of the likelihood function

to the order of n.

Truncating the MA expansion gives rise to the inconvenience of a very slow decay of

the MA coefficients. In a long memory set up, the lag-j coefficient in the MA expansion is

proportional to jd−1, which implies that the truncating point needs to be quite large if serious

problems of misspecification are to be avoided. Chan and Palma (1998) suggest instead

truncating the first differences of the series such that the lag-j coefficient of the MA expansion

is now of order jd−2 and the truncation can be executed with fewer components. This strategy

performs well for estimating a parametric Fractional ARIMA process, as suggested by Chan

and Palma (1998), but its application to signal extraction in LMSV models as defined in

the main text poses certain problems. First, in contrast with parametric models where

the number of parameters to be estimated remains fixed independently of the truncation

point, in our local or semiparametric context the number of parameters increases with the

truncation point. Second, taking first differences implies an undesirable transformation of

the signal which has to be reversed to get estimates of the original signal. This is not exact

in finite samples and depends on the initial values selected. Third, the added noise in the

measurement equation of the differenced model is no longer white noise but a noninvertible

MA(1).

For signal extraction in local LMSV models such as those discussed here we have found it

more suitable to truncate an AR expansion of the original series and to estimate the volatility

component by smoothing using the Kalman filter. The advantages of this approach are that

it allows a lower truncation (which implies fewer parameters to be estimated) because the AR

coefficients decrease faster to zero (proportional to j−d−1), it needs no prior transformations

of the data and it does not affect the white noise character of the added noise. However, the

approach suffers from problems caused by the misspecification of the long memory signal,

whereas our proposal incorporates this characteristic into the definition of the weights of the
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filter.

1.2 Wiener-Kolmogorov filter in the time domain (Harvey)

Harvey (1998) proposes estimating a stationary xt by applying a linear Wiener-Kolmogorov

filter that minimizes the mean square error (MSE). Under the assumptions in the paper it

takes the form

x̃ = (I − σ2uΣ
−1
y )(y − µ) (1)

where Σy is the variance covariance matrix of y and σ2u is the variance of the added noise.

The empirical implementation of this signal extraction strategy suffers from some serious

drawbacks. First it requires inversion of Σy, which can be very computationally demanding

if the sample size is large. Moreover, due to the persistent autocorrelation Σy may be

close to being singular and its inverse may be rather unstable. Secondly, unknowns have to

be estimated and the quality of the estimates significantly affects the signal extraction, as

evidenced by the results in this Monte Carlo analysis. Thirdly, it is only valid for stationary

series. In a non stationary context Harvey (1998) suggests prior differencing such that

the added noise loses its white noise characteristic and the original signal is estimated by

integrating the estimated differenced signal as explained and implemented in the Monte

Carlo analysis below.

1.3 Monte Carlo analysis

The finite sample performance of the signal extraction methods is analyzed in 1000 replica-

tions of series generated as

yt = xt + ut t = 1, 2, ..., n,

for xt = κx∗t , (1− L)d0x∗t = wt and six different specifications are considered for signal and

noise:

Model 1 : d0 = 0.4, wt = w∗
t and ut = log ǫ2t with

(
ǫt
w∗
t−1

)
∼ NID

[(
0
0

)
,

(
1 ρ
ρ 1

)]

Model 2 : Same as Model 1 but with (1− 0.8L)wt = w∗
t .

Model 3 : Same as Model 1 but with (1− 0.2L+ 0.8L2)wt = w∗
t .

Model 4 : Same as Model 1 but with d0 = 0.8.
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Model 5 : d0 = 0.4 and (wt, ut)
′ = H

1/2
t ηt for ηt ∼ N(0, I2), I2 is the identity matrix

of dimension 2, Ht = diag(a1h1t, a2h2t), hit = α0 + α1w
2
t−1 + α2u

2
t−1 for i = 1, 2,

α = (α0, α1, α2) = (0.0001, 0.25, 0.04) and a1, a2 are constants chosen to maintain the

unconditional variances of signal and noise as in Model 1.

Model 6 : d0 = 0.4, ut = log ǫ2t and wt = g(ǫt−1)/
√
var(g(ǫt−1)) with g(ǫt) = 0.3(|ǫt| −√

2/π)− 0.2ǫt for ǫt ∼ NID(0, 1) such that var(g(ǫt−1)) = 0.0727.

Model 1 corresponds to a stationary signal with spectral power concentration around the

origin. Two different values of ρ are considered, ρ = 0, −0.8, the latter indicating a strong

negative relationship between the two series of innovations (leverage) while maintaining the

martingale difference characteristic of zt = exp(xt/2)ǫt. Note however that in both cases

xt and ut are uncorrelated at all leads and lags, satisfying assumption A.4, and the results

obtained with the two values of ρ are practically indistinguishable. Therefore, only the

results with ρ = 0 are shown hereafter; the results with ρ = −0.8 are available upon request.

Model 2 includes a short memory component in the form of an AR(1) polynomial with a

large positive coefficient. This component adds spectral power to the spectral pole caused by

the fractional difference operator and makes local estimates of d0 highly biased. The effect

of this bias on the estimation of the signal is analyzed here. The signal in Model 3 contains a

pseudo cyclical component such that fx(λ) shows a peak at a frequency close to π/2. In this

case the structure of the signal at frequencies far from the origin is more complex, although

knowledge of this complexity is not required at any point in order to implement the signal

extraction strategies. The signal in Model 4 is nonstationary but mean reverting and is

generated as

yt = y0 + κ
t∑

s=1

vs + ut

with y0 =
∑0

s=−1000 vs, (1 − L)−0.2vs = w∗
s and the rest of parameters as before. The

memory parameter of the signal is now d = 0.8. Model 5 is introduced to asses the impact

of higher order dependences between signal and noise, while keeping them uncorrelated.

The innovations of signal and noise are assumed to be dependent but uncorrelated ARCH

processes (for more details see Wong and Li, 1997 and Iglesias and Phillips, 2005). The

values of α are selected as in Wong and Li (1997). Considering that

Ew2
t = a1

α0

1− α2 − α1
and Eu2t = a2

α0

1− α2 − α1
,

the constants (a1, a2) are chosen to satisfy E(w2
t ) = 1 and E(u2t ) = π2/2 such that both

signal and noise have the same variances as in Model 1. Note however that, contrary to the

previous models, Model 5 does not correspond to any LMSV since the exponential of yt does
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not have a martingale difference structure and exp(ut/2) is not i.i.d.. Finally Model 6 is a

FIEGARCH model with the innovations of the signal sharing the same mean zero and unit

variance as in Model 1 but with signal and noise correlated. In fact, since ǫt ∼ NID(0, 1),

cov(ut−1, wt) = cov(log ǫ2t−1, g(ǫt−1))/
√
var(g(ǫt−1)) = 1.23 and the weights in the optimal

filter are

ψj = 1j=0 −
1

π

∫ π

0

θ

fy(λ)
cos(jλ)dλ− 1

π

∫ π

0

fRux(λ)

fy(λ)
cos(jλ)dλ+

1

π

∫ π

0

f Iux(λ)

fy(λ)
sin(jλ)dλ

where fRux and f Iux are the real and imaginary parts of the cross spectral density function of

ut and xt. We include this model because of its popularity and as a tool for analyzing the

effects of ignoring the correlation between signal and noise in the definition of the filter for

signal extraction.

In order to assess the impact of different signal to noise ratios, we consider two different

values of κ that give rise to long run noise to signal ratios (NSR hereafter) fu(0)/κ
2fw(0) =

π2, 5π2. These NSRs were chosen because they are close to those found empirically when

an LMSV model is fitted to financial time series (see Breidt et al. 1998 and Pérez and Ruiz,

2003 among others). The first is close to the ratios considered in Deo and Hurvich (2001)

and Sun and Phillips (2003). The second involves a much larger variance of the noise than

of the signal. In this case signal estimation is far more difficult. Since the variance of ut is

σ2u = π2/2 we take κ2 = 0.5, 0.1 times (2πfw(0))
−1. The sample size is n = 2048 which is

comparable to the size of many financial series, e.g. that analyzed in the next section, and

permits the exact use of the Fast Fourier Transform.

Six different estimators of the volatility component are considered:

1. x̂
(1)
t|n is the frequency domain estimator defined in (10) and (7) in the paper with M =

100 (larger values do not result in any improvement) and f and θ estimated by f̂y and

the local Whittle estimator θ̂.

2. x̂
(2)
t|n is the infeasible frequency domain estimator with M = 100 and true fy and θ.

3. x̂
(3)
t|n is the proposal by Harvey (1998), x̃ in (1), with true variance and covariances

(infeasible). Instead of inverting the 2048 × 2048 matrix Σy we follow the suggestion

by Harvey (1998) and consider weights for a smaller sample size. In particular we

use weights corresponding to a sample size of 256, padding the rest of the values with

zeroes.

4. x̂
(4)
t|n is a plug-in version of x̂

(3)
t|n where the covariances of yt have been replaced by their

sample counterparts and σ2u by the local Whittle estimate as in x̂
(1)
t|n.
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5. x̂
(5)
t|n is obtained by smoothing via the Kalman filter based on an AR(10)1 model for

the signal and the parameters are estimated by parametric Whittle estimation2.

6. x̂
(6)
t|n = yt − µ̂, which is often used as an approximation to volatility in financial time

series.

The estimators x̂
(2)
t|n and x̂

(3)
t|n are clearly not feasible whereas x̂

(1)
t|n and x̂

(4)
t|n are their plug-in

feasible (after bandwidth selection) versions. x̂
(5)
t|n is calculated by smoothing in the Kalman

filter based on a misspecified AR fit to the long memory volatility component and x̂
(6)
t|n is a

naive option that ignores the existence of noise.

The performance of the different signal extraction strategies is assessed by considering

two criteria: The Monte Carlo MSE and the correlation between the true xt and its estimated

counterpart. The MSE and the correlation of the infeasible optimal filter x̃t|∞ defined in (3)

and (4) in the text of the paper with µ known are considered as a benchmark. Note that the

filter in x̂
(2)
t|n differs from the optimal one in the truncation to M = 100 lags, the estimation

of the constant µ and the discretization to obtain the weights. Similarly x̂
(3)
t|n differs from the

optimal filter in the estimation of µ and the truncation to calculate the weights. In Model

6 the differences are even larger because x̂
(2)
t|n and x̂

(3)
t|n are based on a misspecified model

which ignores the cross spectral density between signal and noise. In the stationary case

both MSE and correlation of the optimal filter can be obtained analytically. Taking into

account that the spectral density function of x̃t|∞ is |fxy(λ)|2/fy(λ) and that the covariance

between x̃t|∞ and xt is equal to the variance of x̃t|∞, the MSE and the correlation of x̃t|∞

with xt, denoted hereafter as MSEopt and Corropt respectively, can be easily obtained by

numerical integration as

MSEopt = E[x̃t|∞ − xt]
2 =

∫ π

−π

fx(λ)fy(λ)− |fxy(λ)|2
fy(λ)

dλ

and

Corropt =



∫ π
−π

|fxy(λ)|2

fy(λ)
dλ

∫ π
−π fx(λ)dλ




1/2

.

which in Models 1-5 becomes

MSEopt = E[x̃t|∞ − xt]
2 =

∫ π

−π

fx(λ)fu(λ)

fy(λ)
dλ

1We also tried other truncations for the order of the autorregression and found the results to be similar
or worse. For example, for Model 1 the MCMSEs defined in (2) obtained with AR(p) for p = 10, 15, 20, 25
are 1.204, 1.332, 1.565 and 1.607, justifying the choice of the smaller truncation 10.

2The application of the Kalman filter to construct the likelihood function and estimate the parameters is
computationally very demanding and inaccurate in large samples with a large number of parameters to be
estimated as in this case. Parametric Whittle estimation is much faster and more reliable in this context.
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and

Corropt =




∫ π
−π

f2
x(λ)
fy(λ)

dλ
∫ π
−π fx(λ)dλ




1/2

.

due to uncorrelation between signal and noise. They are shown in Table 1 for Models 1,

2, 3, 5 and 6 (remember that Model 4 is nonstationary) for both NSRs considered. Both

MSE and correlation depend inversely on the NSR because the large NSR is associated in

our design of the Monte Carlo with a smaller variance of the signal.

Table 1: MSE and correlation with the infeasible optimal signal extractor

MSEopt Corropt
Models 1,5 NSR = π2 0.541 0.556

NSR = 5π2 0.137 0.357

Model 2 NSR = π2 0.172 0.713

NSR = 5π2 0.053 0.488

Model 3 NSR = π2 1.313 0.777

NSR = 5π2 0.467 0.544

Model 6 NSR = π2 0.353 0.741

NSR = 5π2 0.086 0.671

To obtain comparable measures for different NSRs we standardize the MSE by the vari-

ance of the signal (the differenced signal in Model 4) and define the global typified Monte

Carlo Mean Square Error as

MCMSE(i) =
1

σ2
1

n

n∑

t=1

1

N

N∑

k=1

(x̂
(i)
t,k|n − xt,k)

2 (2)

for i = 1, 2, ..., 6 corresponding to the different estimators of the signal, where N is the

number of replications, σ2 = σ2x in Models 1, 2, 3, 5 and 6, σ2 = σ2v in Model 4 and the

subindex t, k indicates observation t in the Monte Carlo replication k. Standardizing by

σ2 enables different situations to be compared directly independently of the variance of the

signal, which is lower in the case of the larger NSR, such that the differences in MCMSE are

attributable only to the NSR.

The performance of x̂
(1)
t|n depends on the selection of m for local Whittle estimation and

m∗ for (pseudo) spectral density estimation. The criteria for bandwidth selection proposed in

the paper are not automatic and, although they are data-driven, they require the intervention

of the researcher. Therefore, it is interesting to analyze how sensitive the estimation of the

signal is to the selection ofm andm∗. To that end Table 2 shows the MCMSE and the average

correlation of x̂
(1)
t|n with the true signal (in round brackets) in N = 1000 replications of Models

2 and 3 with different choices of m and m∗. The results with Models 1, 4 and 5 are similar to
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those with Model 2 and are thus omitted. Model 6 is not considered because x̂
(1)
t|n is based in

this case on the erroneous uncorrelation assumption A.4. In general x̂
(1)
t|n is quite robust to the

selection of m∗ but different m may lead to significantly different results. Table 2 shows that

in Model 2 (and also in Models 1,4 and 5) the largerm is, the lower MCMSE is and the higher

the correlation is, even though the bias of the estimation of d in that case is quite large. This

can be explained by the fact that d only enters x̂
(1)
t|n via the estimation of the spectral density

function by f̂y(λv) over the whole band of Fourier frequencies. A positively biased estimate

of d implies an excessive damping of the periodogram due to the factor |λv + λj |2d̂, but this
effect is eventually offset by λ−2d̂

v . However Model 3 shows greater structure in the spectral

density at frequencies far from the origin, and a lower m is recommended. The spectral

peak around frequency λ512 in Model 3 should be avoided in local Whittle estimation and

bandwidths containing that frequency and neighboring ones lead in general to worse results.

Large bandwidths result in a negative bias on the estimation of d such that |λv+λj |2d̂ is not

sufficient to neutralize the divergent behaviour of the periodogram at frequencies close to the

origin. This peak can be easily detected in practice by visual inspection of f̂y at frequencies

sufficiently far from the origin. Based on these considerations we choose (m,m∗) = (1000, 80)

for Models 1, 2, 4, 5 and 6 and (m,m∗) = (300, 60) in Model 3.

The constant µ is estimated in Models 1, 2, 3, 5 and 6 by the sample mean. In the

nonstationary Model 4 the average of the first 10 initial observations is used, which is Op(1)

under the type I definition of nonstationary long memory used here, and gives better results

than using y1. Harvey’s method of signal extraction in the time domain is not directly

applicable in Model 4 because the variance is undefined. In this case Harvey (1998) suggests

extracting the signal in the differenced series and integrating back to get an estimate of the

original signal. We follow this idea and estimate the differenced signal as

∆̂x = (I − σ2uDΣ−1
∆y)∆y (3)

with D being a matrix with 2 on the leading diagonal, -1 on the first off-diagonals on either

side and 0 on the rest of its elements. Note that µ disappears here due to differencing. We

could also have used the prior differencing-integration back strategy proposed by Harvey

(1998) in order to avoid estimation of the constant µ in the rest of the models, but this

approach needs initial values to be selected in the integrating step and performs worse than

working directly with the original series (results available upon request), which is one of

the main advantages of the strategies in the frequency domain. x̂
(3)
t|n is then obtained by

integrating back as

x̂
(3)
t|n = x̂

(3)
t−1|n + ∆̂xt , t = 2, ..., n,
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Table 2: Sensitivity to the choice of m and m∗

Model 2
NSR = π2

m=40 m=100 m=300 m=600 m=800 m=1000
m∗ = 40 5.659 3.634 1.367 0.882 0.793 0.771

(0.317) (0.438) (0.575) (0.633) (0.647) (0.655)
m∗ = 60 5.603 3.619 1.351 0.862 0.773 0.749

(0.330) (0.451) (0.591) (0.653) (0.668) (0.677)
m∗ = 80 5.563 3.614 1.348 0.857 0.767 0.744

(0.339) (0.458) (0.599) (0.663) (0.678) (0.687)
m∗ = 100 5.530 3.614 1.351 0.860 0.770 0.746

(0.347) (0.463) (0.604) (0.668) (0.684) (0.693)

NSR = 5π2

m∗ = 40 18.500 15.389 10.408 7.177 6.428 5.987
(0.193) (0.236) (0.281) (0.302) (0.309) (0.310)

m∗ = 60 18.446 15.372 10.381 7.142 6.391 5.949
(0.205) (0.252) (0.302) (0.326) (0.334) (0.335)

m∗ = 80 18.452 15.405 10.414 7.168 6.416 5.972
(0.211) (0.259) (0.310) (0.336) (0.344) (0.345)

m∗ = 100 18.488 15.457 10.475 7.222 6.471 6.024
(0.213) (0.262) (0.313) (0.339) (0.347) (0.348)

Model 3
NSR = π2

m=40 m=100 m=300 m=600 m=800 m=1000
m∗ = 40 1.088 0.767 0.512 0.723 0.876 1.041

(0.590) (0.692) (0.740) (0.626) (0.505) (0.555)
m∗ = 60 1.072 0.763 0.508 0.707 0.844 1.019

(0.595) (0.695) (0.743) (0.630) (0.518) (0.567)
m∗ = 80 1.060 0.763 0.509 0.698 0.821 1.004

(0.598) (0.695) (0.742) (0.629) (0.525) (0.574)
m∗ = 100 1.053 0.765 0.514 0.693 0.805 0.994

(0.598) (0.693) (0.739) (0.625) (0.528) (0.579)

NSR = 5π2

m∗ = 40 3.269 2.620 1.890 1.297 1.438 2.325
(0.353) (0.398) (0.431) (0.293) (0.363) (0.384)

m∗ = 60 3.264 2.622 1.891 1.280 1.430 2.321
(0.353) (0.397) (0.431) (0.291) (0.364) (0.385)

m∗ = 80 3.271 2.635 1.905 1.279 1.437 2.330
(0.347) (0.390) (0.423) (0.282) (0.358) (0.379)

m∗ = 100 3.284 2.653 1.925 1.286 1.451 2.343
(0.340) (0.380) (0.411) (0.269) (0.348) (0.370)

MCMSE and correlation with true signal (in round brackets) of x̂
(1)

t|n with different m and m
∗.

with x̂
(3)
1|n = 0. The feasible version x̂

(4)
t|n is similarly obtained with the local Whittle estimate

of σ2u in the original series and the sample autocovariances of the differenced series. Using

the original series to estimate σ2u guarantees its consistency. Had we used the differenced
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series we would have had to deal with an antipersistent signal perturbed by a noninvertible

noise, where the consistency of the local Whittle estimator has not been established. The

sample autocovariances are however those of the differenced series. Although their statistical

properties are unknown when applied to a signal perturbed by a noninvertible noise, their

large negative bias in a stationary long memory plus noise context (Pérez, 2000) leads us

to conjecture that there will also be a large (even larger) bias in an antipersistent signal

plus noninvertible noise series. Frequency domain methods do not suffer from this problem

because the ψj are fully estimated in the original series.

The top number in each cell in Table 3 shows the MCMSE for every model and signal

extractor for N = 1000 replications. Note that the MCMSE corresponding to Model 4 is

not comparable with the other models since the MSE is standardized by a different quantity

(the variance of the differenced signal). The number in the middle, in round brackets, is the

global correlation, which is constructed as the average of the sample correlations between the

series of true and estimated signals over the 1000 replications. Finally the bottom number

in each cell, in square brackets, is the number of times that the Ljung Box statistic does

not reject the hypothesis that the first 100 autocorrelations of the squared standardized

residuals (ε̂
2(i)
t|n = exp(yt − x̂

(i)
t|n)) are null at the 5% significance level. Table 3 also shows

the standardized MSEopt and Corropt (in italics) in the first column as a benchmark (not

available for the nonstationary Model 4).

The performances of the infeasible techniques x̂
(2)
t|n and x̂

(3)
t|n are similar in all cases. The

MCMSE is larger than optimal in both cases, but the correlation can be larger than that

obtained with the optimal filter because optimality has been defined in a MSE sense. The

feasible (after bandwidth selection) frequency domain version is significantly better than its

time domain counterpart in terms of MSE, correlation with the true signal and nonrejection

of no autocorrelation in the squared standardized residuals. The large bias of the sample

autocovariances (Hosking, 1996) in an LMSV model (Pérez 2000) helps to explain the worse

behavior of the time domain estimates. Considering the feasible strategies in Models 1-5,

where the null cross spectral density is correctly imposed in the filters, x̂
(1)
t|n is only beaten

by x̂
(5)
t|n in terms of MSE in the stationary cases with large NSR. But even in those cases

x̂
(1)
t|n is the best option in terms of correlation with the true signal and no autocorrelation in

the squared standardized residuals. The naive x̂
(6)
t|n is the worst option, and the time domain

proposal x̂
(4)
t|n is the second worst. Regarding the FIEGARCH in Model 6, the unaccounted

correlation between signal and noise significantly lowers the performance of the strategies

based on a null cross spectral density, as expected. However, the rejection of the absence of

autocorrelation in the squared standardized residuals is quite frequent, suggesting that the
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Table 3: Global MSE and correlation measures

x̃t|∞ x̂
(1)
t|n x̂

(2)
t|n x̂

(3)
t|n x̂

(4)
t|n x̂

(5)
t|n x̂

(6)
t|n

Model 1

NSR = π2 0.523 0.788 0.711 0.719 1.299 1.166 4.948
(0.556) (0.545) (0.579) (0.572) (0.331) (0.158) (0.379)

[842] [923] [916] [422] [28] [377]

NSR = 5π2 0.662 4.017 0.871 0.875 6.032 2.718 23.983
(0.357) (0.289) (0.376) (0.372) (0.116) ( 0.082) (0.178)

[678] [923] [918] [164] [153] [375]

Model 2

NSR = π2 0.286 0.744 0.638 0.656 1.620 1.616 8.528
(0.713) (0.687) (0.734) (0.716) (0.389) (0.083) (0.271)

[717] [869] [861] [122] [0] [387]

NSR = 5π2 0.443 5.972 0.798 0.803 9.453 4.257 41.468
(0.488) (0.345) (0.504) (0.498) (0.115) (0.038) (0.123)

[650] [907] [890] [116] [133] [409]

Model 3

NSR = π2 0.368 0.508 0.427 0.428 0.661 0.865 1.439
(0.777) (0.743) (0.779) (0.778) (0.652) (0.416) (0.636)

[775] [879] [872] [677] [299] [413]

NSR = 5π2 0.654 1.891 0.714 0.715 2.444 1.340 6.959
(0.544) (0.431) (0.545) (0.544) (0.297) (0.206) (0.345)

[676] [925] [909] [351] [47] [379]

Model 4

NSR = π2 86.088 85.970 85.509 91.806 109.608 94.156
(0.968) (0.970) (0.970) (0.926) (0.567) (0.847)
[820] [856] [899] [102] [8] [321]

NSR = 5π2 91.255 90.235 85.254 124.873 118.380 135.317
(0.933) (0.942) (0.943) (0.747) (0.288) (0.603)
[692] [786] [844] [33] [0] [323]

Model 5

NSR = π2 0.523 0.811 0.709 0.709 1.317 1.188 4.944
(0.556) (0.545) (0.581) (0.581) (0.336) (0.158) (0.379)

NSR = 5π2 0.662 4.521 0.865 0.869 6.507 2.960 24.010
(0.357) (0.293) (0.382) (0.382) (0.119) ( 0.085) (0.180)

Model 6

NSR = π2 0.341 3.455 0.671 0.674 3.516 1.209 4.965
(0.741) (0.430) (0.638) (0.637) (0.422) (0.157) (0.373)

[181] [162] [167] [13] [18] [398]

NSR = 5π2 0.416 9.784 0.789 0.801 10.586 2.727 24.009
(0.671) (0.319) (0.516) (0.500) (0.235) ( 0.029) (0.176)

[508] [160] [163] [177] [3] [407]

Note: MCMSE, global correlation between xt and x̂
(i)

t|n (in round brackets) and nonrejections of no

correlation in squared standardized residuals (in square brackets). Optimals in italic (benchmark) and best
feasibles in bold.
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LMSV model with uncorrelated signal and noise is not suitable for capturing the behavior

of these series.

2 Estimating the volatility of daily Dow Jones returns

The returns of the daily Dow Jones Industrial Index, zt, from December 12, 1996 to November

14, 2012 (n = 4008) are analyzed with the proposed signal extraction strategy. Figure 1 shows

the periodogram of the returns and of the log of squared centered returns yt = log(zt − z̄)2,

justifying the lack of linear correlation in the returns and the high persistence in the log of

squares, a behavior consistent with LMSV. To corroborate the visual impression of absence

of autocorrelation in the returns we use the corrected version of the Box-Pierce statistic as

suggested by Deo (2000) and Lobato et al. (2001), which is robust to the presence of higher

order dependence typical of financial time series. The corrected Box-Pierce statistic for the

first 100 autocorrelations takes a value of 113.75 with a p-value of 0.164, confirming the

absence of linear correlation in the returns for the usual levels of significance.

Figure 1: Periodogram: Daily Dow Jones returns (12/12/1996-01/18/2011)
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The local Whittle estimates of the memory parameter d and θ in yt are displayed in

Figure 2 for a grid of bandwidths m = 81, ..., 700. There is a notable positive correlation

between the two series of estimates, which is expected because the asymptotic correlation

between the local Whittle estimators of d and θ10 is
√
1 + 4d/(1 + 2d), that is between 0.80

and 0.85 for d between 0.5 and 0.75. The local Whittle estimates plugged into the formulae

for signal extraction are obtained with m = 500, giving d̂ = 0.67 and θ̂ = 0.69. This value of

12



m is chosen because it falls within a stable range of estimates. Note also that for most of the

bandwidths considered in Figure 2 the estimates are spread within a narrow band (between

0.6 and 0.7 for d and 0.5, 0.7 for θ) such that other choices would not significantly alter the

results obtained hereafter.

Figure 2: Local Whittle estimates in yt = log(zt − z̄)2

100 300 500 700

0.
55

0.
60

0.
65

0.
70

a) LW estimates of d

m

100 300 500 700

0.
1

0.
3

0.
5

0.
7

b) LW estimates of theta

m

The choice ofm∗ in step 2 is based on the smoothness of the spectral density at frequencies

far from the origin. Figure 3 shows f̂(λ) for m∗ = 10, 60 and 120, where the first 40 Fourier

frequencies are omitted to avoid a masking effect of the predominant pole at the origin. The

low m∗ seems to lead to a very rough estimate but with no significant prevalence of any

interval of frequencies. The estimate with m∗ = 60 seems to reflect some short memory

behavior, which is masked with the largest m∗. Based on this reasoning m∗ = 60 seems a

sensible choice. Note also that according to the sensitivity analysis in the previous section

neighboring values of m∗ are expected to lead to similar results. However, to analyze the

sensitivity of the proposed methodology to the choice of the bandwidth in this particular

series we consider the three options m∗ = 10, 60 and 120 in the following steps.

In step 3 we calculate ψ̂j for the three different m∗ considered and chose the truncation

point M as the lowest value such that |ψ̂j | ≤ 0.002, ∀j > M . Figure 4 shows ψ̂j as a

function of j, together with the choice of M, which is 1250, 120 and 45 for m∗ = 10, 60 and

120 respectively. Finally, since the estimates of d fall well within the nonstationary region

we estimate the constant by µ̂ =
∑10

t=1 yt/10.

Figure 5 shows the series of returns zt together with the estimates of the variances of the

13



Figure 3: Spectral density estimation
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returns conditional on the volatility component in an LMSV model calculated as

σ̂2t = σ̂2 exp(x̂
(1)
t|n)

where

σ̂2 =
1

n

n∑

t=1

z2t exp(−x̂(1)t|n)

as suggested in Harvey (1998), for m∗ = 10, 60 and 120. All three show similar shapes,

especially with the two larger bandwidths, evidencing the low sensitivity of the procedure to
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Figure 4: Weights ψ̂j and M
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the choice of m∗ (M). The increase in volatility in the subprime crisis dominates the figure,

with conditional variances three times larger than the second peak in importance. The

increase is significantly steep after September 2008, coinciding with the Federal takeover

of Fannie Mae and Freddie Mac and the bankruptcy of Lehman Brothers (mid September

2008), the defeat of the Emergency Economic Stabilization Act in the United States House

of Representatives (end of September 2008), the worst week for the stock market in 75 years

(second week of October, coinciding with the largest estimated volatility) and the problems

of Citigroup with the 60% fall in its share price (November 2008). The second largest peak

corresponds to the second half of 2002. This period is post September 11, 2001, and only

shows a very short period of high volatility around September 17, the first trading day after

9/11. It is also prior to the beginning of the war in Iraq (March 2003). The months prior to

the attack were of great uncertainty. In July 2002 president Bush confirmed a major shift

in national security strategy from containment to preemption, increasing uncertainty on the

markets. Large volatilities also turn up in October motivated by Congress’ authorization of

President Bush to use military force against Iraq. The launch of the war however did not

increase volatility because it implied a reduction of uncertainty with a general belief that

the war was not going to last long. The third highest peak corresponds to the second half of

2011, coinciding with the debt-ceiling crisis in the USA. Other peaks in volatility can also be

observed in Figure 5, e.g. at the end of August 1998, coinciding with the Russian crisis, which

together with the Asian crisis and the fears of further problems in South America produced

a sharp fall in stock markets, and the end of 1999 and the first half of 2000 due to the

Argentinian crisis and the Dot Com crash. However these other peaks are less long-lasting

and less significant.

To validate the suitability of the volatility estimates we check whether the squared stan-

dardized residuals ε̂2t|n = z2t /σ̂
2
t are uncorrelated. The p-values for the Ljung-Box statistics

15



Figure 5: Estimation of conditional variance
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with the first 100 autocorrelations for m∗ = 10, 60 and 120 are 0.000, 0.113 and 0.138 respec-

tively. This leads us to discard the estimates of the volatility with m∗ = 10, while the other

two options give similarly valid results, reinforcing the validity of an LMSV model for this

series and rejecting the possibility of other options with strong persistent volatility (such as

FIEGARCH models) or with spurious long memory (such as breaks in the mean).
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