Supplementary Material on “Adaptive Nonparametric

Regression with Conditional Heteroskedasticity”
Sainan Jin?, Liangjun Su®, Zhijie Xiao®
@ School of Economics, Singapore Management University

b Department of Economics, Boston College

This appendix provides proofs for all technical lemmas in the above paper.

C Proofs of the Technical Lemmas

To facilitate the proof, we define an N x N matrix M, (z) and N x 1 vectors ¥ ,(z) (s = 1,2) as:

Mn,O,O(-'E) Mn,O,l(x) Mn,O,p(x) \Ilsgn,()(x)
Mml’()(x Mn,l,l x) Mn,l, LI}) \Ils,n,l ZB)

M, (z) = . ) . ( _ _p(  Uan(z) = ' ( , (C.1)
My po(z) Mppi(z) ... Mepp(z) Uy n,p(2)

where M, |1k (%) is an Njj| x N submatrix with the (,7) element given by

1 & X, —x @151 (D405 (1) X, -z
[Mn’ljl’lkl (x)]“ ~ nhd Z ( hi ) K ( hi ) ,

i=1

Uy . 15(2) is an Nj; x 1 subvector whose r-th element is given by

1 - Xi—.’E ¢m(T) Xi—.%'
PIIL”J@)L’EFZ( hi ) K( hy )Yi’

and Wy, j1(2) is an Nj; x 1 subvector whose r-th element is given by

ol &KX #1a1(") Xi—x\
[‘1’2,n,|j($)h=mz< I ) K( h )“

1

Define \Tlgn(x) analogously as Wy ,,(z) with u? being replaced by @7, where @; = Y; — m (X;). The p-th

7

order local polynomial estimates of m (x) and o2 (z) are given respectively by

i (z) = e; M7' (2) Uy ,(2) and 62 (z) = e; M ! () Uan(2).



For s = 1,2, let

Us,n,[)(x) Bs,n,[)(x)
Usn Bsn

Us,n (1') = ' ’1(:E) y Bs,n ($) = ' ’1(:E) ;
Ut np() By p(x)

where Us 1 (z) and B, ;1 (z) are defined analogously as W, ,, ;(z) so that Us ,, |; (x) and B, ;| (z) are

@], = o3 (5E) " (K
L], = o> () (B Ao,

where u1; = w;, ug; = u? — E(u?|X;) = 02 (X;) (g2 — 1), and A, (z) = B, (Xi) — > o<ljj<p Bsi (@)
x (X; — z)' . We further define Us., (z) analogously as Us, () but with ug; being replaced by s, =
@? — F (u?|X;) . Then

K3

Nij| x 1 subvectors whose r-th elements are given by

m(x) —m(z) = el ( Wi (x )+61M Ya )Bin(z), and (C.2)

T

5*(2) —0” (&) = e My (0)02n (2) + ey My () B ().
By Masry 1996(a), we can readily show that
i(z) —m(z) = e; [fx -1 ZK}“ © — X;) Zug + 2 ey M7 Bm® ) (2) 4 0, (R2TY) (C.3)
uniformly in z. Furthermore,

sup | My (z) — fx () M| = Op (von) and sup |m(z) — m(z)| = O, (V1p) . (C4)
reX reX

The following lemma studies the asymptotic property of the local polynomial estimator &2 (x) of 02(x).

Lemma C.1 Suppose Assumptions A1-A5 hold. Then &%(z) — o%(z) = e, M, T Hz)Usp, () + el M, ()
XBs () + Op ((Von + Vin)V1,) uniformly in x.

Proof of Lemma C.1. Let K* (X;,z) = ¢, M;Y(2)K (X; — ) /h1) Z;. Then 5% (z) = (nh{) ' S0, K*
(X, z)a?. It follows from M, !(x)M, (z) = Iy that

1 « =
WZK XZ,LE Zel ( z_x)/hfl)zlz]-’
14=1

and

nih'fZK (Xiyz) (X; —a) hdZel K ((X i*x)/hl)zi(Xifx)j:O,



for 1 < |j| < p. Consequently,
~ 1 <&
52(x) — 02(x) = ey M, (2)Wan(x) = i ; K* (Xj,x) {a =7 (2, Xi) }

where 72 (z, X;) = > 0<lil<p (DWo?) (2) (X; — z)' . Noting that @2 = [Y; — m(X,)]? = [0(Xi)e; +m (X;)
—m(X;))? = 0(X;)e? + 20(X;)ei[m (X;) — m(X;)] + [m (X;) — m(X;)]?, we have

(@) - o2(z) = nih‘li K (Xi) {02(X) — 7 (2, X0}

N e X (X (2
+nh§l;K (Xi,x) o°(X;) (EZ 1)

o 2K (X @) o (Xo)eu m (X,) — (X))
=1
nih% Z K* (X, z) [m (X;) — m(X;)]?

= A (x)+ A2 (z) + 245 (x) + Ay (), say.

Noting that Ag ; (z) = 0%(X;) 7> (v, X;), we have 4; (z) = ¢; M Y(x)Bay, (x) . In addition As (x) =
61 1(z)Us,, (z) by the definition of us;, and sup,cy |44 (z)] = v}, by (C.4). For A;(z), write
—As (ac) = A3y (z) + Asz (x), where

Ap (@) = # i‘K* (X, ) uiey M (X)) Upn (X:), and
Aze (z) = nhd ZK* (Xi,2) uie; M (X;)Bin (X3).
Note that
Ao (6) = i DI (S M (0] U (X0

nhd ZK* (X, 7) use; {Mn (@)~ — [Mfx (Xi)]’l} U (X))

Az (z ( ) — As1 5 (), say.

We dispose Agi o (x) first. By (C.4), the facts that sup,cy [|[U1n (2)]| = Op(n*1/2h1_d/2\/logn) and
SUpP,c n—lllii S IK* (X, 2) ui] = O, (1), we have

IN

sup |As1 2 ()] sup HM" ()" = [Mfx (Xi)]_lu sup ||Uz,, (z)]| sup Z |K* (X, x) u;]
rcX zeX zeX

= 0p(Von)0,(n~Y2h?\/logn)0,(1) = op(vo,,n—l/%l d/2\/1og n).

Using Uy, (z) = nhd i K (X —2) /h1) Zju; and K* (X;,x) = elTMn_l(a?)K (X; —2) /h1) Zs, we



Az (z) = n%h%deIMnl(x) ZZK((XZ- —x) /h) Ziey [Mfx (X)) K (X, — X;) /h1) Zjuu,
= n%h%deIMf(w) K ((Xi =) /ln) Ziey [Mfx (X)) 'K (X; — X;) /1) Zjusu;
1<i#j<n
s Mo (@) 3K (06 =) ) Zie] (M (X)) K (0) 2o

As1,14 (2) + As11p (), say.

Let ¢ij () = {ey [Mfx ()] 7" K (X — ) /h1) Zi}{ey [M fx (X)) K (X; — X;) /h1) Z;}usu;y. Then
by (04), A3171a (:E) = [1 + Op (’Uon)}figlﬂa (SC) s where

. 1
Asi1a () = 557 D i)
M <ii<n
is a second order degenerate U-statistic. We can readily show that A31,1a (x) = O, (n_lhfd) for

each = by Chebyshev inequality. By using Bickel’s (1975) standard chaining argument, we can show

SUpyex | 431,10 ()] = Op (R71hy “logn) . For Az 1, (), we have

IN
[ V)

T —1 ~
A S M K((X; - hy) Zie, [M X; K (0) Z;u;
sup [ Ag1 10 (2) i sup [, (2)]] sup hdz ) [h) Ziey [M fx (X;)] 7 K (0) Zyu

= 0, (n'h{%) 0,(1)0, (1) =0, (n'hy?).

It follows that sup, ¢y |As1,1 (z)] = Op (n_lhfd logn). Consequently, we have shown that sup,¢y |As1 (z)| =

Op (Uonn_l/Qh;d/Q\/log n).
Note that

Az (z) = nhdZK* (X3, ) wie; [Mfx (X)) By (X))

N T _ _
_n_hf ;K (Xis@) wiey { My (@) = [Mfx (X)) | Bi (X))
1=
= Aszq(x) — Asea(x), say.

As in the study of As; (z), using (C.4) and the fact that sup,cy |Bi, ()] = Op(h2™") we can readily
show that sup,c y [Az29 (2)] = Op(vo,hit") and that sup,cy |Azzs (z)] = Op(n=/2h; % /lognht ™).
Hence sup, c v |As2 ()| = Op(vonhh). Consequently, sup,.c v |4z ()| = Op(vonv1n,). This completes the
proof. W

Remark C.1. Using the notation defined in the proof of Lemma C.1, we can also show that A; (z) =
h’fHeIM_lBoJ(pH) (z)+o,(RET), and \/nhdA, () <, N(0, (c*(2)/fx () E (e — 1)2 ey MTITM e, ).

By standard results on local polynomial estimators, Lemma A.l implies

sup }U | = Uln ) (C-5)
TeEX



where vy, is the rate we can obtain even if the conditional mean function m (z) is known.

Let 0; and v,; (x) be as defined in Appendix A. To prove Lemmas A.1-A.2; we will frequently use the

facts that
§; = O, (R’ uniformly on the set {K;, >0}, (C.6)
vi(z) = O, ((hlf+1 +n 2R (1 4 (h/hl)p)) on the set {Kip > 0}, 7 =1,2,(C.7)
max |vy (z)] = Op(van), r=1,2. (C.8)

{Kiz>0}
To facilitate the asymptotic analysis, we also define the kernel density and derivative estimator based on
the unobserved errors {¢;}:

—= 1 € —¢&j —(s) 1 (s) [ €i —E&j
(e)=—3 , #) (e;) = S S5 ) fors=1,2,3.
fi(ed) e ko ( P ) and f; (&) PRI ko ™ or s 3

J#i J#i

We will need the result in the following lemma which is adopted from Hansen (2008).

Lemma C.2 Lete;, i =1,...,n, be IID. Assume that (i) the PDF of €;, f (), is uniformly bounded, and
the (p + 1)th derivative of ) (¢) is uniformly continuous; (ii) there exists ¢ > 0 such that sup, |¢|? f (¢) <
oo and |k;(()s) (e)| < Cle|™? for |e| large; (iii) ko (+) is a (p+1)th order kernel and [ leP T ko (e)| de < oo;

(iv) ho — 0 and nhi™?* /logn — 0o as n — co. Then

max (717 (2) = £ (20| = Op(h™" + 072527 /logm).

1<i<n
Proof of Lemma C.2. The above result is essentially a special case of Theorem 6 in Hansen (2008)
who allows for strong mixing processes. For an IID sequence, the parameters 5 and 6 in Hansen (2008)
correspond to co and one, respectively. Another noticeable difference is that Hansen considers the usual
kernel estimates whereas we consider the leave-one-out kernel estimates here. The difference between these
two kernel estimates is uniformly (nh(l)+s)_1k(()s) (0) , which is o(n_l/Qhal/%s\/@) under condition (iv)

and thus does not contribute to the uniform convergence rate of 758) () — f®) (&) to 0. W

Proof of Lemma A.1. We only prove the lemma with s = 0 as the other cases can be treated
analogously. Write f; () — f (&) = [f (i) — f ()] + [fi (F:) — F (2:)]. Noting that ko is a (p + 1)-
th order kernel with compact support by Assumption A6, the conditions on the kernel in Lemma C.2
are satisfied. One can readily check that the other conditions in that lemma are also satisfied under

Assumptions Al, A2, and A7. So we can apply Lemma C.2 to obtain maxi<;<n, |?Z (8;) — f(éz)| =
Op(hE™ 4 n=1/2n5 % /logn). Let

o E [w (P, (83))" —w(Pi(fiz))”Q] i) wm (X;) —m (X))
v o(Pi(B)'V? o(Pi(B,))/2 o (X))
o m(XG) —m(X;)] 0 (X)) —o (X))
i [EJ " (X;) ] 5(X;) (C.9)



Then
€4 —&j = (&_Zi—Ej)+T1ij.

By a first order Taylor expansion with an integral remainder, we have

FE)-TE) = % [ (S2) n (222)]

o —_1 ’ &_?1'—8]' V14 (:L')
B nhﬁZko( ho )«p<Pi<B2>>1/2

(C.10)

v Sk (B ) o [olP (89))2 - (P2 ol PiB)
i
1 ) (€ —Ej m(XJ>_m(X])
" 3;%(6 hos) o (X;)
1 ) (Ei—¢j m (X;) —m (X;)] 6 (X)) — o (X;)
' ;’“( o) [+ MR S
1 ! , (€ — €5 Fwry; ;[ & J
tg ) [ () - (352 )
= —DBy;(z) + By () + Bs; () + By (x) + Bs; (x), say.

We will establish the uniform probability order for Bj; (), j = 1,2, ...,5, in order.
For By; (x), we apply Lemma C.2 to obtain that, uniformly in i,

1 E; —Ej _ _ _
"—hgz%( ho j) = E)+ 0, (” 1/2h03/2\/@+h8+1>'
J#i

Then by (C.8) and the uniform boundedness of f’ (¢), we have

e |B1i (z)| = Op (van) -

Similarly, by (C.12), (C.8), and the uniform boundedness of f’ (¢)e, we have

(e |Bai (z)| = Op (van) -

Expanding M !(z) around its probability limit [M fx (z)]”", we have

1 E; —Ej _ T —
Bule) = ook (S ) o (e (A (6] U ()
J#i
1 Ci— €& _ T _
i ok (B ) o () () M (X)) Ui ()
0 j#i 0
1 Ei —E&; _ T _
i ok () o (el A (6] B ()
0 j#i 0
1 E; —Ej _ T -~
i Sk (B ) o () () M () B ()
0 j#i 0

Bsy;i (x) — Bsa;i (¢) + Basi (x) — Bsg; (),

(C.11)

(C.12)

(C.13)

(C.14)



where a,, () = [M fx (x)]”" [M, (z) — M fx (z)]. Write

Bus(a) = oz >H (B2 o el A (X1 0 ()
= g2 |1 (32| el e 06 Ui )
b > {i (B52) - 16 (S22 | o el s o v )
= Bs1:1 (x) + B2 (z), say.

For Bsi;1 (), we have

sup [|Uyn ()]
reX

IN

max |Baiig (v)] < max

n—1 , [Ei—€ -1
i E; {ko( P ﬂ X;gg” z) ey [Mfx (z)]

0, (1)0, (1) 0, (nil/Qh;d/Q\/log n) =0, (nil/Qh;d/Q\/log n) ,

where we use the facts that sup, ¢ v [|[U1,, (2)|| = Op(nfl/th_d/Qw/log n) by Masry (1996a), max;<;<n |hg >
xEjlko((Ei—¢gj)/ho)]—f (&) ] = O(hP™) by standard bias calculation for kernel estimates and max; <<y,
[f" (€] < sup, [f' (¢)] < C < oo

Let v; (&) = kg (& — €5)/ho) — Elk (€ — €5)/ho)]- Then

-1 Xl — _Xv‘7
Buia(z) = n%dhg D3 e ) er W () 2 (F5)
e (X - X
- th 222% &) 1 >€1 [M fx (X )] 1Z1K<%)uz
" 0 j#i 14,0 1
zhdhz S E) o (X)) ey [Mfx (X)) ZiK (0) u
0 ji
T ~ X, — X
-1 —1 i j
+n2hdh§ ;vﬂ &) (Xj)er IMfx (X;)] Z:K (T) u;

Bs1i2q () + Bs1i2p () + Bsii2c (), say.

By construction, Bsi; o, () is a second order degenerate U-statistic (see, e.g., Lee (1990)) and we can
bound it by straightforward moment calculations. Let e, = Cn~Y/2h]*\/logn for some C > 0. By the

Boole and Markov inequalities,

n n F [|B31i,2a ($)|4:|
P (1glg<x Bty (2)] > en> <3 P (Bsrine (@) 2 ) < SiiaV s
=1 =1 n

Let ai; = e, [Mfx (X;)] " Z,K (X, — X;)/h1) . Note that

E{|B31i,2($)|4} = m >

JsF#ls#i for s=1,2,3,4

X B {a, jy A1y 1y 5 Oy ja Vgy (8d) Wiy Vg, (Bi) Wiy Vg, (E:) Ui, (8i) uiy s



where the summations are only taken with respect to j and I’s. Consider the index set S = {js,l5, s = 1,
2, 3, 4}. If the number of distinct elements in S is larger than 4, then the expectation in the last
expression is zero by the IID condition in Assumption Al. We can readily show that E [‘th‘,g (x)|4] =
O(n=*h7?*hy%). Tt follows that

) nO(n~*h{%hy% O (n‘lha ‘ (1ogn)_2)

Cn—2hy** (logn)? a0 a ay,

- 0 (n_lh_(2p+1)_d) —0(1).

P (félz?iéXn | Bs1i,2q ()] > €ncn o

where recall oy, , = hlPHD/4=(+D](1og n)5+1. Then maxi<i<y, |B31i2q ()| = Op(an,on_l/zh;dﬁ\/log n)
by the Markov inequality. Analogously, we can show that maxi<i<y |Bs1i 2 (2)| = 0(n71/2h1_d/2\/10g n).

For Bs1;.2 (x), we continue to decompose it as follows

Bsiion (v) = n2hdh2 Z Yer [Mfx (X)) Z; {v; Es) uj — Bj [v; (&) w]}
thhQ Z Jer [IMfx (X)) 2B [v; (5:) w]
0 jti

Bsiiov (2) + Bsiiom2 (%),

where F; denotes expectation with respect to the variable indexed by j. We bound the second term first:

1<i< 1<i<n n

wax (B (1)) < e [1g ", oy ()] S 007 (6) fe] VA (07 2
=1

O, (1) O(n ™ hy "hg ) = Op(n~*hy %Ry ).

By the Boole and Markov inequalities,

LD {\3311',2171 ($)|4} nO(n—6p—2dp,~6
P ( max |Bsi;2p1 ()] > Gn) < - — ( 72(11 0 )2
lsisn i1 €n Cn=2h7=¢ (logn)

= O *hy*hy® (logn) ™) = o (1),

implying that maxi<;<n |Bs1;261 ()| = op(n*1/2h1_d/2\/log n). Hence maxi<i<,, | Bs1i2 (z)| = Op(nflhfdhal)
+op(n_1/2h;d/2\/log n). Consequently, we have shown that

max |Bsp; ()] = Op(n " hy%hg ") + (om0 + 0 (1)) Op(n /20y ¥\ /log n).

1<i<n

By (C.4), the fact that sup,cx ||Urn (z)|| = Op(n_l/Qh;dm\/log n), and the fact that maxi<;<n — Dt
- 0
|k} (2 — £5)/ho)| = O(hg), we can readily show that max;<;<, | Bsai ()| = Op(vonn=Y/2hy “*\/lognhg )
For the other terms, we have max) <;<, | Bss; ()| = O,(h2™1), and max; <i<p, | Baai ()] = Op(B2T10, (von)

O, (hgt) = Op(vonhi T hg ). Consequently,

max |Bs; (z)] = O, (n_lhfdho_l + vin + UOnvlnho_l + amon_l/Qh;d/Q\/log n) . (C.15)

1<i<n



Now write

_ 7 (X)) —o(X))
Bii(w) = hQZk()( )6]' 5 (X))

J#i !
—&\ (X)) —m (X)) 5 (X)) — o (X))
hg ( ) o (X)) 5 (X))

Buyi () + Bagi (x) .

By (C.4) and Lemma C.1, it is easy to show that maxi<;<n |Baa; ()| = O, (v3,hg") . Using analogous
arguments as used in the analysis of Bs; () and Lemma C.1, we can show that maxi<;<y, |Ba1; ()]

= 0p(n"hy%hg ' + vopvinhy b + K. Consequently,

max |Bui ()| = Op(n hi hgt + vonvinhg * + HETH. (C.16)

where we use the fact that v},hy " = o,(n " hy%hg ' + Y. As argued by Hansen (2008, pp.740-741),

under Assumption A6 there exists an integral function & such that

g+ wry; i —E&j _ €i —E;
Ey( i T 1) g IV < who 'k J il .
O( ho ) O( ho )’wo 0( ho )|r1j|
max |Bs; ()|

&; U n i\ (=
1<i<n < h3 Z < > T%W - 2 Zko < J) (522 +5?)
O j#i J#i
= 0O, (Utho ) (C.17)

It follows that

Combining (C.11), (C.13), (C.14), (C.15), (C.16), and (C.17) and using the facts that n='h; hy! =
o (v3,hg?) and that RETY = o(vs,) yield the desired result for s = 0.

When s > 0, we can decompose fi(s) (24) — 7(5) () as in (C.11) with the corresponding terms
denoted as Bf,f) (x) for r = 1,2,...,5. The probability orders of BS) (z) and Béj) (x) are the same as
those of By; (z) and Bs; (), those of Bé?) (z) and BS) (z) become O,(n~ hy%hg '™ + (vonhg ' ™% +
n,o)n =207 2 /logn + h'™1), and the probability order of BS (z) is O,(v3,hy?™*). Consequently,
maxi<i<n |7 () = T €)1 = Oplwan + (vonhg ™ + ann 20y 7 logn + v3,hp %), W

Proof of Lemma A.2. The proof is similar to but much simpler than that of Lemma A.1 and thus

omitted. W

Proof of Lemma A.3. The proof is analogous to that of Lemma USSLN in Gozalo and Linton (2000)
and thus we only sketch the proof for the r = 1 case. Let C,, = {q1 (-, 0) : 8 € ©}. Under the permissibility
and envelope integrability of C,,, the almost sure convergence of supgcg |2~ [Pugn,1 (Z,0) — Pgn1 (Z:,0)]|
is equivalent to its convergence in probability. By the boundedness of © and measurability of the ¢, i, the

class C,, is permissible in the sense of Pollard (1984, p196). We now show the envelope integrability of C,,.



By Assumption Al and the compactness of K, |log (f (¢; (8)))| < D(Y;) on the set K;, > 0. Consequently,
we can take the dominance function g, = D (Y) K ((z — X) /h). Let E[D (Y)|X] = D (X). Assumptions
Al and A3 ensure that

Pg,=E[D(X)K ((z — X) /h)] :hd/D(x—hu)f(x—hu)K(u)du:O(hd).

The envelope integrability allows us to truncate the functions to a finite range. Let o, > 1 be a

sequence of constants such that «, — oo as n — oo. Define

C:;n = {qzn = 0‘;1Qn,11 {qn < an} 1qn € Cn} .

Let b, be a non-increasing sequence of positive numbers for which nh%?2 > logn. By analysis sim-
ilar to that of Gozalo and Linton (2000) and Theorem II1.37 of Pollard (1984, p.34), to show that
sup | Pogn1 — Pgn1| = 0p (hdbn) , it suffices to show

Cn

sup |Pogs, — Pq,, | = 0p (hdbn) , (C.18)
c.
which holds provided
9y 1/2
sup { P [q5,]°} " < n"”? (C.19)
cx.
and
sup Ny (6,G,CL ) < Cre @ for 0 <e<1, (C.20)

*

o, 1€, the smallest value J for which there exists

where Ny (€, G,C}, ) is the covering number of C
functions g1, ...,gs such that minj<; G |q —g;| < € for each ¢ € C; , the supremum is taken over all
probability measures G, and C; and Cy are positive constants independent of n.

(C.19) holds by construction. For (C.20), we need to show that C; is a Euclidean class (Nolan and
Pollard, 1987, p.789). Since the functions in C}; , i, = a;*log (f (¢(8))) Gy (f (¢(8))) K ((x — X) /h)

1{q,, < a,}, are composed from the classes of functions

_ y—P(B) . Ty
e = {cﬂogf(—exp(P(BQ))).(ﬁl,ﬂ2) € B, clgl},
N y—P(B) T AT\
Co = {Csz<f<m>>~(ﬂ1aﬂg) € B, 02<1},
Cs = {K (.’ET63+C4> :c3 €RY C4ER}, and Cq = {1{c5q,, <1} :c5 € R},

it suffices to show that the C}s form Euclidean classes by Nolan and Pollard (1987, pp. 796-797) and
Pakes and Pollard (1989, Lemmas 2.14 and 2.15).

First, for j = 1,2, {P(B,)} forms a polynomial class of functions and is Euclidean by Lemma 2.12
of Pakes and Pollard (1989). By Example 2.10 of Pakes and Pollard (1989) and the bounded variation

10



assumption on f, the class {f (==) : m € R, s > 0} is Euclidean for the constant envelope sup, | f (¢)] . It
follows from Pakes and Pollard (1989, Lemmas 2.15) that C; is also Euclidean. Similarly, Cs is Euclidean.
By Nolan and Pollard (1987, Lemma 22) and the bounded variation of K, Cs forms a Euclidean class
with constant envelope sup,, |K (z)| . Finally, by Pollard (1984, Lemma II.25) and the Euclidean property
of C;, 7 =1,2,3, C4 is Euclidean. Consequently

1 n
Sl;p W ;qln <Z27 6) - qun (Zi7 9) = Oq.s. (bn) .
Since Pollard’s Theorem requires that b, > n~'/2h=%/2,/logn, we can take b, = n~/2h=42,/logn to

obtain the desired result. W

Proof of Lemma A.4. The proof is analogous to that of Newey (1991, Corollary 3.2). We first show

P, 1(0) is equicontinuous. Let D, ; (S) = 1{Y; ¢ S} D (Y;) K}, (x — X;) for a compact set S on R. By
the Holder inequality and the law of iterated expectations,
ED,;(S) = FEE[D,;(S)|X]
< B{P®Y: ¢ SIX)M VB (V) X K (@ - X))
- E [{P (v; ¢ 81X}V D (x)] Ky (2 — Xi)} . (C.21)
Note that

B[[D (X)) Kn (2 - X)) = / (D (e~ ho)]" f (@ — ho) K (v) dv < C’/K W)dv.  (C.22)

Consider €, > 0. By Assumption A2, we can choose S large enough such that P (Y; ¢ S|X;) is arbitrary
small to ensure ED,, ; (S) < en/4. Also, g, (2, 0) is uniformly continuous on (X x S) x O for each compact
set X' xS, implying that for any 6 € © there exists N' = A () such that SUP (2,0 e (X x S) x A |p1 (z, 9') —p1(z,
0)] < ¢/2. Consequently
su% |p1 (Zi,0") — p1(Zi,0)] <€/24+2-1{Y; ¢ S} D (V) Kj (v — X;). (C.23)
o'c

Let Ay, (e,m) = €/2+2D,, (S), where D,, (S) =n~1 3" | D, ; (S). By (C.23) and the triangle inequality

sup |Pnp1 (2,0") — Pup1 (2, 9)| <N, (6,7m).

0'eN
Also,
_ E[D,; (S
P (A (e,m) > €) = P (D, (S) >¢/4) < % <.

Consequently

sup |]5n,1 (9/) — Pua (6?)| = sup |E [Pnpl (Z, 6?') — Pup1 (Z, (9)”

0'eN 0'eN

< E|sup |Pup1 (Z2,0') — Pup1 (Z,0)|| < E[An (6,m)] <.

0'eN
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That is, {P,,1 (0)} is equicontinuous.
Notice that under our assumption on the compactness of B and the support of K, P; (35) is bounded.

So the proof for the equicontinuity of P, » () is simpler than that of P, ; (#) and thus omitted. W

Proof of Lemma B.1. We only prove the case (r,s) = (1,1) as the other cases are similar. For notational
simplicity, write Th,; = Tinj (1,1) . By the fact that o(Pi(3,))~'/2 - o(P; (83))"Y% = O, (v2y,) uniformly

in 7 on the set {K;, > 0}, we can write

i)~ s (8 = TEN B - ot (0
—lfg@?&jwm@»“+§%ﬂwm@»“aam%lﬂ
Thus
] 1 = A (a0 J;{(?i)_f/(éi) 20\ —1/2
|T1nJ| § nhd ; sz,Jqul,z (ﬂ ) [ﬁ (?z) f(él) SO(Pz (ﬂQ))
Op (Wan) o~ o & ooy | FL(ED 1 E)
+—7Lhd lzzl sz,Jqul,z (ﬁ ) lﬁ (?1) f(i‘_:z) ] ‘
Op (van) - A f'Ei)
+Td2 ; Kiz jGiqr: (8°) G

Since the last two terms are of smaller order, it suffices to show the first term (denoted as |Tin;|) is

O, (h°). By Lemma A.1, the definition of G;, and Assumption A7,

iz s F@rE i@
| RED fE)fi(F)

< Op (b7 wsna) + (' (50) /F () Op (07 van0) = Op (B) {1+ |f (&) /f(ED}. (C.25)

%

Therefore |T1nj| = Ozgfj) Dy )Km,qu’i (,30) (1 + ?gj;) o(P; (5(2)))_1/2’ = O, (h®) by Markov inequal-

ity and the fact that

1 (30 J ) - (30\\—1/2 s - T(E) [ (&) - (30\ -1
_ i o2 (X [ (&) I’ (&4) o
= e 5 (10 55 ) 0o
Ix (2) J 1/2
< L8 [k @ a{rz 1} =ow.

where I (f) = E [wz (¢i)] and we use the fact that o(P; (53)) is the p-th order Taylor expansion of o2 (X;)

around z. This completes the proof of the lemma. B
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Proof of Lemma B.2. We only prove the case (r,s) = (1,1) as the other cases are similar. For

notational simplicity, write To,j = Topn;j (1,1). That is, we will show
T2nj hd ZszJ {qlz ) —q1 (Y;,B (ﬂ(l)) (ﬂ?))} (hs)
y (C.24) and (C.25) in the proof of Lemma B.1, we can write
014(8) —a (¥is P2 (8) P, (8)] G

[Op(h€)<1 J;(( ) o(P, 62))‘1/2+0p(v2n)r+(f'(gf)fop(ugn)] G

1 E)N (30 \—1 3 e
< <1+ f(sz-)) [o(Pi (B3)) " + 1] G;0, (h°) .
Thus ) )
iy < 20 S 0l (14 (555 ]) e ) 1) 0,00

by Markov inequality and the fact that

s (1 |5 ) ot
- Lk Km,j( e ))) X)+1+0M)]|[{1+0()}
< fx(@)] /‘K ‘du 1+ I(f) +202(f )} 1+o(1)}=0(1).

This completes the proof of the lemma. B

Proof of Lemma B.3. We only prove the case (r,s) = (1,1) as the other cases are similar. For

notational simplicity, write T3,; = T3y (1,1). That is, we will show

1 " ~ 0\2 €
Tsnj = 3 ;:1: Kiz j (1 - Gz‘) a1 (B")" = Op (1)
We decompose T3,; as follows

Ths = i X Kies [L= G GOV )

T3p5,1 + T3nj,2, say.

By Lemma A.1,
max G~ Gil = max (G4 (22)) ~ G (f ()|
e, . i ) .
< 3 1123<Xn|fi (€4) = fE) | = 0710y (v3n0) = Op (R). (C.26)
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With this, we can readily obtain |[T3nj2| < Op (h€) =7 > i1 | Kix 5 ¥? () = O, (h°) by Markov inequal-

nhd

ity. For T3y,j,1, we have

E|T5p51] < 7 |Kinjl [1— Gy (f E:)]0° (&)

1
= ﬁE [[Kiz j

JE{[L =Gy (f ()] 9* () } {1 + 0 (1)} -

By the Holder inequality,

B{1-G(f ) ()} < B[ () 1{f() <2}
< (B @) IP () <2070
< CIP(f(e) <20) V7 =0 (30-0/CV) = 0 (),

where the last line follows from Lemma 6 of Robinson (1988) and the Markov inequality because by taking
B = b2 we have P (f (g;) < 2b) < 20 [ <5 dz + P (lei| > B) < 2020~ 12 + Bl bt/? = 0 (b/2) =
O (h*). This, in conjunction with the fact that 77E[|Kiz 3] = O (1), implies that Tsn51 = Op (h€) by
Markov inequality. Consequently, we have shown that T5,; = O, (h¢). B

Proof of Lemma B.4. Let f; = f; (€;) and f; = f(&;) .Note that f7* = f7* — (f; — f:)/f? + Ras,
where Ry; = (fi — f:)2/{(f2f;). First, we expand the trimming function to the second order:

ColF) — O () = o () (Fi = 1) + 50 () (7= 1) (C27)

where f7 is an intermediate value between f; and f;. Let p; (8) = ¢ (¢; (8))&: (B) + 1, p; = p; (B°), and
pi = (ei)ei+ 1. Let o, = (P (ﬂg))/p(PZ (,8(2))) Then we have

~Sig = ﬁél(m,j%{m [Gol(F) = 1] +1og (£ E0) (P (88)712) v (F E0) f (B0) & |

= N#_dzf@w,jwi {716y (£) = 1)+ 1og (£ E) (P (B9)72) 00 (f B)) f' (B0) i

¢_ Z wapibign (1) (fi= 1)

. 2
—I-m zzzl Kiz50:p:95 (f7) (fz - fz‘)

Sinj,1 + Sing,2 + Sinj,3, say.

Using a crude bound on the last term, we have |S1p5.3] = Op (U%mob_znl/th/Q) =0, (1) by Lemma A.1,
the fact that sup, |g; (s)| = O(b™2), and Assumption A7.

To show the first term is o, (1), write
/ Z / Z
Sln',l ‘Kzz,g i ‘Kzz,g i Sln',ll Sln',l?v say,
! nhd i—1 51 nhd i1 i52 ) )
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where &, = 15,0, and &5, = 1 {5,Gy (f3) + log(f (22) @(Ps (83) ") (f () f' (25) &}

Let Q1n,i (8) = log{f (¢i (8)) 9(Pi (B2)) ™"/} Kn (x — Xi), Qon,i (B) = log{f (ci (8)) ¢(P; (B2))""/?}
xGy(f (e; (B)) Kp (x — X;), and <, (B) = E[Q2n,i (B)] — E[Q1n,: (8)]. Then it is easy to show that (i)
sn (B%) — 0, (ii) s, (B) is differentiable in a small eg-neighborhood N, (8°) of 8° with N, (8°) = {8 :
||,8 — ﬁOH < ep}, (iii) ¢, (B) converges uniformly on N, (,80) . Then by Theorem 7.17 of Rudin (1976)
and the fact that h=60Q 1, ; (8°) /0By = —h =91, K j and h™H10Qa, ; (8°) /0By; = —h =94, Kiy j, we

have

E (Sinj12) = —\/ﬁhd/%—\le

OQan.: (ﬂ“)}
0

2j

—/nhPp N E

ann,i (/60) _
BT — {I1+0(1)} = E(Sinj11){1+0(1)}.

2j

Consequently, E (S1p3,1) = 0 (1) E (S1pj,11) = 0(1) as Sipj11 = nl/2p—d/2p [Kiz 1] = O (nl/th/Qh”H)
= O (1) . By straightforward calculations and the IID assumption, we can readily show that Var(Sip;1) =

0(1). Therefore, Sinj1 = 0p (1) by the Chebyshev inequality.

w — . _ _ 1 n
Now, we show that Sinj2 = 0p (1). Decompose S1pj2 = S1pj.21 + S1nj,22, Where Sipj 01 = SNy Yo

Kizjp:02,i (B°) av (f) (fz (€i)—F(e @)) s and Sipj22 = ﬁ S Kinjpiaz (B°) 9o () (F (&) — £ (80)) -
It suffices to show that Sinj2s = 0p (1), s = 1, 2. For Sip; 21, by a Taylor expansion and (C.9)-(C.10), we

have

Sn' = K’LCE iPi 7 : — k "
1nj,21 2\/—2 ,prgb(f J#[ ( ho ) 0( I )}

1 . _ -
= —nS/th/2h2 ZZKM,JSOzngb fl ( I ) i€ —Ei—f—Ej) + op (1)

i=1 ];ﬁz
_ 1 ZZK f k & Ulz
n3/2hd/2h2 Cs e iz, jPiPigb \Ji ho o(P ﬁg 1/2
1 i J)
g 2 3 Keeatitio (10 (H72 )
i=1 j#i
1 n (X)
o 2 2 Kieseipign () Ky ( T > J
i=1 j#i 0
1 ui + i sa(R-(ﬁ%))l/?w(Pi(BQ))W
PRCYCTR IV Kz jpipign (fi) ko (Z > - =
2n3/2hd/2h222 R ho ) (Pi(B83))"/? P(Pi(B))/?

i=1 j#i
+op (1)

—S1nj,211 + Sinj,212 + Sing,213 + Sing214 +0p (1) .

For the first term, by Lemma A.2 and the fact that vi; (z) = O, (v2n), @(Pi(Bs)) = ¢(P; (83))+ 0, (van)
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uniformly on the set {K;, > 0}, we have

v1; ()

2\/_2 Kizj0:0:90 (fi) fi (e z)W

|S1nj,211]

(%Y (

—ZW;KH,MPZ%(L)J’ (i) 2P, (B9)2

+0p (1)

IN

x) [0 Fz]mm Py (89))7pign (£:) £ (€1)] + 00 (1)

T
The first term in the last expression is o, (1) if n'/?h=42E | Ky jo,0(P; (B9) Y %psgs (f) f' (ei)] =
0 (’UQn) by Markov inequality. Note that

Ei—E&; = {6i[0 (XZ) — (p(PZ (,68))1/2} + 61}/(,0(]32 (,68))1/2 = Eidi +SZ (028)

where d; = o (X;) o(P; (89))"Y/2 =1 =0, (h**!) and §; = d;(P; (83)) /% = O, (kP*1) uniformly on
the set {K;, > 0}. Then by the triangle inequality,

h™E K 50:0(Pi (89)) 2 pigs (f1) ' (ei)

(P; (53))_1/2 [Pige (fi) 1 (e4) | Xi]

Kivjpi0(Pi (B3))~'/?

d; +

= h'E Kiz joi0

_ _d ’ E—Si
— i P [ s @aue s (555)
i | Kizgpip(Pi (B3))71/2 ,
< hip o /<f(5)<2bp(€)f (&) gy (f () f (e) de
sz‘Pz(p(P (ﬁg))71/2 / E_Si

= Snl —+ Sng, say.
For S,,1, we have

Sn1 L eE

Kiwsipro (P (83)) /2 (d; + 1) / () (&) g (F (2)) f () de

b<f(e)<2b

< sw [fE)a(fE)hTE

Kiz jpip(F; (5(2)))_1/2 (di + 1)_1 /<f( )<2b p(e)f1(e)de

b<f(e)<2b
< Ch B |Kingpuo(Pr (88) 72 (di+ 1) p(e) ' () de
b<f(e)<2b
1/2
< Ch*dE‘Km,mw(Pi (83) /% (di + 1)_1‘ {/ p(e)’ f(e) dﬁ/ ¥ (€) f(e) de}
b<f(e)<2b b<f(e)<2b

= 0O(h)
where the third inequality follows from the Hélder inequality and the independence between X; and

;- By a Taylor expansion, f (%) — f(g) = —f'(¢) (6; + die) . With this, we can readily show that

Sn2 = O (h) . Consequently, |S1pj211] = Op(v2,Vnhihe) = o0, (1)

16



For S1pj,212, using (C.2) we can write
X;) —m (X))

1 Ej ’ﬁ’L(
Sinjo12 = sz%mmgb(mko( o ) o (X))
i=1 j#i

= Ky iPi— Ei—¢€; Toar—
= n3/2hd/2h2 Z Z J ngb (fl) <h—03) €1 Mn ! (XJ) Ul,n (XJ)

n3/2hd/2h Z; ;

Sinj,212¢ + Sinj,2126- (C.29)

m i — — &4 T _
JS,D Pigb fz) k’o( ho j> €1 Mnl(Xj)Bl,n (XJ)

Recall Zl is defined analogously to Z; with h; in place of h. So Sinj 2124 can be written as

S1nj,212¢ = ZZQn (€ir€5) + ZZ Z S3n (64,65, €1)

i=1 j£i i=1 ji l#i,l#]

where Gon (€1, €5) = grs7aparmanz J&W’ pigy (fi) ko (5375]') er Mt (X;) 2K ( ) u; and 3 (€5, 5, €1)

= 2n5/2hi/2hdhg 2;?)?01 Pigb (fl) k[) (51 EJ) €1 M (X )Z K( )ul Let X = {Xla 7X7l} Then
E[S1nj21241X] =20, Z#i [Son (24, 25) |X] = Oy (n_1/2hd/2b_ ) = 0p, (1) . For the variance of Sipj,2124,

it is easy to show that

Var Z ZCQn (eie)IX| = O(n)E |:§2n (€i,65)" + San (€6 €5) s2n (g5, €1) X
=1 jti

+0 (n®) E [San (€i,65) S2n (£1,€5) + S2n (€0, €5) S2n (€15 64) [X]
= Op(n R )+ 0, (n727%) =0, (1).

Similarly, one can show that E (s3y (2i, 25, 21) |X) = 0 and Var [Zzl:l D iti 2z San (2is 25, 21) |X} =
op (1) . Consequently, Siyj 2124 = 0p (1) by the conditional Chebyshev inequality. For Siyj,2125, we have
Sinj2126 = Op(n1/2hd/2h’f+1) = 0p(1). Thus we have shown that Sipj212 = 0, (1). By analogous
arguments, Lemma A.1, and (C.8), we can show that Sinj21s = 0, (1) for s = 3,4. It follows that

S1n_j721 = Op (1) .

For Siyj,22, we make the following decomposition:

R _ _
Sinj22 = m ; Kz 50:02, (50) gp (fi){V (&) + B(Ei)} = Sinj,221 + Sinj,222,

R C))

)] — (&), (C.31)

where

<

—

ml
iy

N
|

e (2
BE) = n—OZE{ <

J#i
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and E; indicates expectation with respect to the variable indexed by j. Writing Sinj.221 as a second order
degenerate statistic we verify that F [Slnj7221]2 = 0(1) and thus Sinj201 = 0p (1) . For Sipj 202, we verify
that Sinj200 = Op(n1/2hd/2h8+1) = 0, (1). Consequently, Sij22 = 0p (1). This concludes the proof of

the lemma. W

Proof of Lemma B.5. By a geometric expansion: f; = f~* — (f; — f)/f% + (fi — [)2/(f2f:;) where
fi = fi (&), we have
S2nj =

1d§y@ﬂ@mmm%—%4wn}

_ HOEIICE
- Z_; iz,jPi ( ) sz

2\/—

" L) [ie) — £ ()]
Qf—i}sz FE)

n THEIACHENICH] M
oVt ;K’“M PE G

—Sonj.1 + Sanj,2 — Sonj,3-

where recall ¢; = ¢'(P; (8))/¢(P; (83)). It suffices to show that each of these three terms is o, (1) . For

Sanj,1, noticing that Gy(f;) — Go (fi) = gv (f:) (fi — fi) + g5 (f) (fi — fi)% we can apply Lemma A.2
and show that

S2nj,1 = 2\/—121 wc‘]%OzM Gy (fl)

') .
2\/_; iz,jPi f( z) EZGb(fZ)+ ;0(1)

Sonj11 + Sanji2 +0p (1)

For the first term, we have

e i EERERCE

, [ Ei —E&j _
3 2 )‘ko( I ])} &G (f)

- 2\/— Z fw:,;@z nh3 Z ko (6 > (85 —€j) &G (fi) + 0, (1)

0 57

Kizjp; 1 o (Ei—e;\ m(X;) —m (X))
2\/_Z f (&) hg_zik()( ho > o (X;) giGh (fi)

\/_Z fm;:pz h%; N<_i /')EjJ(X;)(Xj)(Xj)éiGb (fi) +op (1)

= Sopnj111 + Sonj112 +0p (1), say.




Write

o 24P w (Eime ) e Myt (X) Unn (X)) o
Sopjii1 = \/—lzl () nh3 Z ( > (X)) &Gy (fi)
T

Kiz 50 i €1 Mn_l X;j) Bin (X;) _
\/—Z £ j nh3zk ( ) a();) e (7

O g

= Sopjitia + Sonj,i11p-

Writing Sanj 1114 as a third order U-statistic, we can show that Sapji11a = Op(hd/z) = op (1) by con-
ditional moment calculations and conditional Chebyshev inequality. For Sapj 1115, we have Sonji116 =
0,(Vnhdh?t') = o, (1) . Similarly, we can verify that Sa,5.112 = 0, (1). Consequently San511 = 0, (1).
For Sapj12, we have

—

Sonj12 = /—Z fw,;:@z ! (ei} (_EZJ)C (gi)éiGb (f)

zw i 1 / 7i — <y / 71' — <y _
\/_Z I z—:ﬁ s {ko <€ hf) 5 [ko (8 hf)” G )
i) j#i

Ky i 1 (i &) "(& €
T o b Vel G RS EETE0
i=1 Z '

= Sopji21 + Sonj 122,

where E; indicates expectation with respect to the variable indexed by j. Noting Sapj 121 is a second
order statistic, it is easy to verify that F [82@121]2 = O(h?) = 0(1), implying that Sonj,i21 = 0p (1) . For
Sopj,122, Noticing that

2 [0 (%

0 j#i

)} ~ @) = @) [ (e

we can show that Sopj 122 = Op(\/nhdth) = 0, (1) . Consequently, Sapj12 = 0p (1) and Sanj1 = 0, (1).

For Sspj,2, we can easily show that

Sunge = - FZ et B[ @0 - 1] 6o 1)+, (1),

The rest of the proof is similar to that of Sap;1 and thus omitted. For Sapj s, by Lemma A.2, Sopj3 =
O,(Vnhdb=2v3,) = o0, (1) . This concludes the proof of the lemma. B
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Proof of Lemma B.6. Write S3,,; = l{SgnLl — S3pj,2 + S3nj,3 — S3nj,a}, where

Swin = Ko {105 (7:(20) 00 (7 (20)) 7L (B BsalBo)
<% 20) o (7:20) 7@
Sz = i Koo {lorg (P(B2)) 00 (£ (20) 7 (F0) Zaou(Bo)
- log<  (89)) oo (1 20) Fi @) 2w
Suga = =S Kung {08 (7 @0) 0 (7 (60) £ 60— log (F ) (7 ) 20 b 2

1=

3 =

Swia = 5 VjﬂwZ{z_;m,jlogso(P,» (89)) {o0 (7 ) F1E) = o (F GV ' G) | Zusor

where ¢; (85) = ¢'(Pi (B2))/¢(P; (Bs)) and ¢; = ¢; (83) . We will only show that Ss,51 = o, (1) since
the proofs of Ssp;.5 = 0, (1) for s =2, 3,4 are similar.

For 8,1, noticing that @y (x) = ((P; (83))"/2 — @(Pi(B2))'/?)/@(Pi(B2)"/? and ¥y, (z) = vy ()
/(Py(B,))"/? are both O, (va,) uniformly in i on the set {Ki, > 0}, and &; — & = &;0a; (x) — 01 (),
we can show that

Sanj1 = \/% ;Kz’x,j% {&JZ (8i) gb (fz (gz’)) 1 (8i) & {Ei2i () — D14 (2) }

bl

(8i) &i {EiD2i (z) — D1y (2) }

+ﬁ é Kizj;log (fi (éi)) % (f (%))

/—1 Y f. (& £ "=\ = (= ~
+W ;Kiz,j% log (fi (Ez)) 9o (f (57,)) 1 (81) & {E4Das (z) — T1q ()} + 0, (1)
= Ssnja1 + Ssnjiz + Sanjas +0p (1)

By Lemma A.1, we can show

1 < P N
Ssnj11 m;&za%tb(?i)gb(f@))f (81) Ei {€iT2i (z) — D13 ()}, (C.32)

Sanji2 ﬁ ;Kir,j% log (f (€:)) gy (f (82)) [ (i) Ei {Ei2i () — D1i (x)}, (C.33)

Sinjas =~ \/7%;Kix,j%log(f(éi))gb(f(@))f”(Ei)éi{éiﬂzi(:c)ﬂli(m)}. (C30)

The rest of the proof relies on the repeated applications of the dominated convergence arguments. For

example, the right hand side of (C.32) is smaller than

\/lT{K ax [0 ( )‘Z|Kiw7j(piw(gi)gb (f @) f (&) &2
\/_{K o |Z|Kmm o (f ) [ @)z,
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Noting that

ElKuwgoi @) o (FE) F G)E| = B Hu / 6@ (F ) F (O

13 —Si
d;i +1 f<di+1)dg]
Kz j¢; f'(e)°
< L jPi e"| de + O (h*
> §up [gb ‘ d +1 <f (e)<2b f( ) | ‘ ( )
(6)
< Cf(e / "lde + O (h
1 b< f(e)<2b f(5) ()
/ 2
< C/ F &) dz + 0 () :O(b(v—l)/(%) +he),
v<fie)<an | f(€)

where the last equality follows from similar argument to the proof of Lemma B.3, we have Sz,j11 =

Op (V2 Vnhd(bO~1/R7) 4 1)) = 0, (1) . Similarly, we can show that Sznj1s = 0p (1), s =2,3. B

Proof of Lemma B.7. Observe that

R = nhdZK<x ) (Gi3: (8°) 5 (8°) " — Gusi (B%) s (8°) ") © (X X[ )H !

- nME:K<$h )HlGﬁdﬁ)QWSTamﬁﬁaffwuxmel
b K (S5 A (6= G) (8w ()0 (R
+ }ﬂi}K(x_th) 17 (G G 5 (87) 50 (%) — i (87) 54 (%)) (XX

= Rin1+ Ring2 + Rin3, say.

It suffices to prove the lemma by showing that Rq,,, = 0, (1) for r = 1,2, 3. We only prove Ri,,1 = 0, (1)
and Rin,2 = 0p (1) as Rip 3 is a smaller order term and can be studied analogously.

First, we show that Rq,,1 = 0, (1) . Note that

Vv (2:) ¢/ (Pi(B2)) s (E) [1h: (Fi)zs+1]
5 (6%) 5 (8°) = o(F(02) 20(P.(p))”"
O (Pi(B));E) [ (ENE+1] o' (Pu(By)] [9:(2:)Ei+1] ;
20(Pi(63))”" 10(Pi(88))”
and s; (,80) S; (ﬁO)T has a similar expression with % (£;) in the place of @1 (8;) . Tt follows that
1 « z—X;
Rln,l - =4 Z K < l> Gz
nh P
P7(E)—p2(E:) @ {1, G|, E)E+1]—v(E)[¥(E:)E+1]}
o (Pi(89)) 20(Pi(BY))"* 7T
% ei{ i E)[PiE)E+1]—vE) W (E)E+1} gaf[@i(éi)éi-i-l]z—[w(gi)éﬁ.l]? ®(Z;Z; )
20(Pi(83))" 1

Rin,1,11 Rin,12

, say,
Rin,1,21 Rini,22
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where recall ; = ¢’ (P; (89)) /¢ (P; (89)), Rini21 = Rip 119, and Rin s, 7,5 = 1,2, are all N x N

matrices. We need to show that Rip 1,11, Rin,1,12 and Rin,1,22 are all o, (1) . Noting that

flE)’ fE)° -
fiG)f

0 E) — ¥ () =

we have

Rinii1 = # ZK (:r hXi> Gip (P ( g))il [7:[11 (&) — ¢ (gz‘)] Z,Z
i=1

- # zn:K (m _th> Giep (P; ( g))_l fie)? [3(@)2 - z‘/(éi)2] Z,Z]

1 — - X -1z \- = - =

+W ZK (:c o ) Gip (P ( (2))) fi(@) 2 (2)° {fi &) - fi (&‘)2} Z.Z]
i=1

= Riniit,a + Rini,11, say.

Noting that G; f; (@)72 =0 (b’2) , by Lemma A.2; we have

1O - X; -
Op (van1b™%) —= > ||K (x ) Gig (P (83)) " Z:Z]
i=1

IN

[Rin,1,11.all h

= Op (U3n71b72) Op (1) = Op (U3n71b72) = Op (1) .

By the same token, |Ri,,1,11,] = 0p (1). Thus Rip,1,11 = 0p (1) . Analogously, we can show Rip1,12 =

op (1) and Rin,1,22 = 0p (1) . Hence we have shown that Ri,1 = 0, (1) .

Now, we show that Ri,.2 = 0, (1) . By (C.26) and Markov inequality, we have

1 - xr — Xz
%Wmﬁ;K(h )
= O (h°) Op (1) = Op (1).

Rin2|

IN

5:(8°) 50 (8") " @ (z2])|

This completes the proof of the lemma. B

Proof of Lemma B.8. Observe that

1 & t—X;\ =1 |~ 05 (8% 9si(B) | & -
R n = - K ! H ! Gl - Gl X XlH !
2 nhd — ( h ) aﬁT aBT
L z—X;\ 54 93 (8°) 05 (B°)| _ < | 41
— nhd;[(< - H Gz{ B o ® X;

Ron,1 + Ran2 + Rop,3, say.
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We prove the lemma by showing that Rs,, s = op (1) for s = 1,2, 3. We will only show that Ro,.1 = op (1)
as the other two cases can be proved analogously. Recall ¢;, = ¢ (P; (53))2 — " (P (,83)) ¢ (P (ﬂg))

and ¢; = ¢’ (Pi (,3(2])) /e (Pi (ﬂg)) . Noting that

P $;(5i) i Pi(E)Ei+i(E)]
95; (B”) _ o(Pi(59)) TP ()T (ﬁo))z/z oxT
8" P [ViE)E+DE)]  2eip[Pi(E >al+1}+sa( :(89)) e[ ()& +4b, (50)] i
20(Pi(8))" a¢(P:(89))°
and Os; (,60) /(‘3ﬁ—r has similar expression with 1, (£;) in the place of 1}1 (2:), we have
1 & z—X;
RQn,l = W;K h Gz
DiED)—Y () o [PiE)—v @)+ (E)—v(E)]}
e(Pi(83)) ( 8)) 20(P:(89))" 7T
e {[F1(e0) w<s )est s —v(En]} e [BuE)vE]E | i, ®(ZiZ;)
20(P:(83))"* ag(P:(83))" 4
Ron,111 Ron,1,12
= ? Say7

T
R2n71712 Ron,1,22

where d; = ¢?5; [{p; (&) — ' (E)|Ei + [¥; (Bi) — ¥ (£5)]. As in the analysis of R1,, 1, using Lemma A.2, we
can readily demonstrate that Rap,111 = 0p (1), Ran1,12 = 0p (1) and Rap 1,22 = 0, (1) . It follows that
Ran1 = 0p(1). Similarly, we can show that Ra, s = op (1) for s = 2,3. This completes the proof of the

lemma. W

D Derivative Matrices in the Proof of Proposition 2.1

In this appendix, we give explicit expressions for the elements of some derivative matrices of the log-

likelihood function defined in the proof of Proposition 2.1. The elements of the Hessian matrix are

2
o (v B, By) = 2A0ef(EB) 1

0e? ‘P(ﬂ2)7
_ _ [8log f (2(B)) dlog f (e (B) | _¢¥ (B2)
q12 (y751762) - { 862 E(B)+ 86 }2@(ﬁ2)3/27
0l
w61y = o [ZELEE(5) 1]
¢ (By)° [Plogf(e(B)_ g2, 4Ologf (£(B))
490(/32)2{ 92 e(B)” + TE<B)+2}’
and g1 (y: B1,55) = @12 (y: B1,5,) by Young’s theorem, where, e.g., Z18/E — LIS 4ng
& logaggs(’@)) = & lgizf(a) . Note that when we restrict our attention to the case ¢ (u) = w or

e=e(B)
exp (u) , the above formulae can be greatly simplified.
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In addition, in the proof of Proposition 2.1, we also need that g,.s; (y; 81, 82) = % log (f (y; 81,083)) s

r,s,t = 1,2, should be well behaved. Using the expressions
9:(B) __ 1 2 2
0 (8) _ ( = ) _ ( o ) L Plosl(0) _ [ - f6)

Oe (B, 2 2
7\ Al ” e

and by straightforward calculations, we have

3
q11 (y; 81, 82) = Plogf(e(B) 1

Oe3 @(52)7
, . PPlogf(e(B)de(B) 1 9*log f (¢(B)) ¢’ (Ba)
quz (y; 81,82) = D23 9By ¢ (Ba) - D22 @(,82)27
3 2 /
@121 (Y5 81, B2) = {a 1og8f€§€ (8) 825(?)6( )+2a 1ogaj;§€ (8) 8;;?)} 2;(;[3)2:3/2 = qui2 (¥; B1, B2) ,
2
831 0 521 0 ' (B,
q122 (%51a52) = { Ogafgga(ﬂ)) ;‘Ef)e(ﬂ)JrQ ogaj;gé?(ﬁ)) géf)}Q;(;f)s)/za
9*log f ( (8)) dlog f (£ (B) | ¢ (B2) ¢ (82)”7 = 3¢/ (B,)" 0 (By)"*
+ {—852 e (B) + e } 20 (5)° ,
_ =" (By) [DPlog f(e(B)) dlog f (e(B)] 9e(B) . ¢'(By)° 0z (B)
221 (yaﬁlaﬁQ) - 290(62) |: 882 6(6)+ Oe :| 651 + 4@(62)2K’(6) 861
= (122 (%51,52)
G222 (y;,@l,,@2) = —2(2 ((ﬁﬁj) [8 10g3{:§€ (6))5(@4‘ 8log];£6 (ﬁ))} 8;;,5’)
9" (By) ¢ (Ba) — " (Ba) ' (By) [Olog f (e (B))E
2 (B,)” [ o= < )“}
¢ (Bs) . 92(B)
T, o5,
¢ (By) ¢ (By) — ' (B)’ ¢ (By) [0*log f (= (B)) 2, ,0log f(e(B))
+ 2@(52)4 { 5o e (B) +3Ts(6)+2},

3
@211 = qi21 = qu2, and @212 = qi22 = @221 by Young’s Theorem, where & (3) = %WE (5)2
—1—2%5 (8)+ 3%5 B) +3%§6(5)). Note that under our assumptions (X; has compact

support, the parameter space is compact, o (x) is bounded away from 0) the terms associated with ¢ (-)

or its derivatives are all well behaved when ¢ (-) is evaluated in the neighborhood of 9 ().
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