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This appendix provides proofs for all technical lemmas in the above paper.

C Proofs of the Technical Lemmas

To facilitate the proof, we define an  × matrix () and  × 1 vectors Ψ() ( = 1 2) as:

 () ≡

⎡⎢⎢⎢⎢⎢⎢⎣
00() 01()  0()

10() 11()  1()
...

...
. . .

...

0() 1()  ()

⎤⎥⎥⎥⎥⎥⎥⎦  Ψ() ≡
⎡⎢⎢⎢⎢⎢⎢⎣
Ψ0()

Ψ1()
...

Ψ()

⎤⎥⎥⎥⎥⎥⎥⎦  (C.1)

where ||||() is an || ×|| submatrix with the ( ) element given by

£
|||| ()

¤

≡ 1



X
=1

µ
 − 

1

¶||()+||()


µ
 − 

1

¶


Ψ1||() is an || × 1 subvector whose -th element is given by

£
Ψ1||()

¤

≡ 1



X
=1

µ
 − 

1

¶||()


µ
 − 

1

¶


and Ψ2||() is an || × 1 subvector whose -th element is given by

£
Ψ2||()

¤

≡ 1



X
=1

µ
 − 

1

¶||()


µ
 − 

1

¶
2 

Define eΨ2() analogously as Ψ2() with 2 being replaced by ̃2  where ̃ ≡  − ̃ ()  The -th

order local polynomial estimates of  () and 2 () are given respectively by

̃ () = 
>
1

−1
 ()Ψ1() and ̃2 () = 

>
1

−1
 () eΨ2().
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For  = 1 2 let

 () ≡

⎡⎢⎢⎢⎢⎢⎢⎣
0()

1()

:

1()

⎤⎥⎥⎥⎥⎥⎥⎦   () ≡

⎡⎢⎢⎢⎢⎢⎢⎣
0()

1()

:

()

⎤⎥⎥⎥⎥⎥⎥⎦ 

where  () and  () are defined analogously as Ψ() so that || () and || () are

|| × 1 subvectors whose -th elements are given by

£
|| ()

¤

=

1

1

X
=1

µ
 − 

1

¶||()


µ
 − 

1

¶


£
|| ()

¤

=

1

1

X
=1

µ
 − 

1

¶||()


µ
 − 

1

¶
∆ () 

where 1 ≡  2 ≡ 2 − (2 |) = 2 () (
2
 − 1) and ∆ () ≡  () −

P
0≤|j|≤ j ()

× ( − )
j
 We further define ̃2 () analogously as 2 () but with 2 being replaced by ̃2 ≡

̃2 −
¡
2 |

¢
 Then

̃()− () = 
>
1

−1
 ()1 () + 

>
1

−1
 ()1 ()  and (C.2)

̃2()− 2 () = 
>
1

−1
 ()̃2 () + 

>
1

−1
 ()2 () 

By Masry 1996(a), we can readily show that

̃()− () = 
>
1 [ () ]

−1 1


X
=1

1 (−)Z + 
+1
1 

>
1

−1m(+1) () + (
+1
1 ) (C.3)

uniformly in  Furthermore,

sup
∈X

|()−  () | =  (0) and sup
∈X

|̃()− ()| =  (1)  (C.4)

The following lemma studies the asymptotic property of the local polynomial estimator ̃2() of 2()

Lemma C.1 Suppose Assumptions A1-A5 hold. Then ̃2()− 2() = 
>
1

−1
 ()2 () + 

>
1

−1
 ()

×2 () + ((0 + 1)1) uniformly in 

Proof of Lemma C.1. Let∗ ( ) ≡ 
>
1

−1
 () (( − ) 1) Z̃ Then ̃

2() = (1)
−1P

=1
∗

( )̃
2
  It follows from −1 ()() =  that

1

1

X
=1

∗ ( ) =
1

1

X
=1


>
1

−1
 () (( − ) 1) Z̃ = 1

and
1

1

X
=1

∗ ( ) ( − )j =
1

1

X
=1


>
1

−1
 () (( − ) 1) Z̃ ( − )j = 0
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for 1 ≤ |j| ≤  Consequently,

̃2()− 2() = 
>
1

−1
 ()eΨ2() = 1

1

X
=1

∗ ( )
©
̃2 − 2 ()

ª


where 2 () ≡
P
0≤|j|≤

¡
(j)2

¢
() ( − )j  Noting that ̃2 = [− ̃()]

2 = [()+ ()

−̃()]
2 = 2()

2
 + 2()[ ()− ̃()] + [ ()− ̃()]

2 we have

̃2()− 2() =
1

1

X
=1

∗ ( )
©
2()− 2 ()

ª
+
1

1

X
=1

∗ ( )
2()

¡
2 − 1

¢
+
2

1

X
=1

∗ ( )() [ ()− ̃()]

+
1

1

X
=1

∗ ( ) [ ()− ̃()]
2

≡ 1 () +2 () + 23 () +4 ()  say.

Noting that ∆2 () = 2()−2 ()  we have 1 () = 
>
1

−1
 ()2 ()  In addition 2 () =


>
1

−1
 ()2 () by the definition of 2 and sup∈X |4 ()| = 21 by (C.4). For 3 ()  write

−3 () = 31 () +32 ()  where

31 () ≡ 1

1

X
=1

∗ ( )
>
1

−1
 ()1 ()  and

32 () ≡ 1

1

X
=1

∗ ( )
>
1

−1
 ()1 () 

Note that

31 () =
1

1

X
=1

∗ ( )
>
1 [ ()]

−1
1 ()

− 1

1

X
=1

∗ ( )
>
1

n
 ()

−1 − [ ()]
−1o

1 ()

≡ 311 ()−312 ()  say.

We dispose 312 () first. By (C.4), the facts that sup∈X k1 ()k = (
−12−21

√
log) and

sup∈X
1

1

P
=1 |∗ ( )| =  (1), we have

sup
∈X

|312 ()| ≤ sup
∈X

°°° ()
−1 − [ ()]

−1
°°° sup
∈X

k1 ()k sup
∈X

1

1

X
=1

|∗ ( )|

= (0)(
−12−21

p
log)(1) = (0

−12−21

p
log)

Using 1 () =
1

1

P
=1 (( − ) 1) Z̃ and ∗ ( ) = 

>
1

−1
 () (( − ) 1) Z̃ we
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have

311 () =
1

221

>
1

−1
 ()

X
=1

X
=1

 (( − ) 1) Z̃
>
1 [ ()]

−1
 (( −) 1) Z̃

=
1

221

>
1

−1
 ()

X
1≤6=≤

 (( − ) 1) Z̃
>
1 [ ()]

−1
 (( −) 1) Z̃

+
1

221

>
1

−1
 ()

X
=1

 (( − ) 1) Z̃
>
1 [ ()]

−1
 (0) Z̃

2


≡ 311 () +311 ()  say.

Let  () ≡ {>1 [ ()]
−1

 (( − ) 1) Z̃}{>1 [ ()]
−1

 (( −) 1) Z̃}  Then
by (C.4), 311 () = [1 + (0)]̄311 ()  where

̄311 () =
1

221

X
1≤6=≤

 () 

is a second order degenerate  -statistic. We can readily show that ̄311 () = 

¡
−1−1

¢
for

each  by Chebyshev inequality. By using Bickel’s (1975) standard chaining argument, we can show

sup∈X
¯̄
̄311 ()

¯̄
= 

¡
−1−1 log

¢
 For 311 ()  we have

sup
∈X

|311 ()| ≤ 1

1
sup
∈X

°°−1 ()
°° sup
∈X

°°°°° 1

1

X
=1

 (( − ) 1) Z̃
>
1 [ ()]

−1
 (0) Z̃

2


°°°°°
= 

¡
−1−1

¢
 (1) (1) = 

¡
−1−1

¢


It follows that sup∈X |311 ()| = 

¡
−1−1 log

¢
. Consequently, we have shown that sup∈X |31 ()| =

(0
−12−21

√
log)

Note that

32 () =
1

1

X
=1

∗ ( )
>
1 [ ()]

−1
1 ()

− 1

1

X
=1

∗ ( )
>
1

n
 ()

−1 − [ ()]
−1o

1 ()

≡ 321 ()−322 ()  say.

As in the study of 31 ()  using (C.4) and the fact that sup∈X |1 ()| = (
+1
1 ) we can readily

show that sup∈X |322 ()| = (0
+1
1 ) and that sup∈X |322 ()| = (

−12−21

√
log+11 )

Hence sup∈X |32 ()| = (0
+1
1 ) Consequently, sup∈X |3 ()| = (01) This completes the

proof. ¥

Remark C.1. Using the notation defined in the proof of Lemma C.1, we can also show that 1 () =


+1
1 

>
1

−1σ2(+1) ()+(
+1
1 ) and

p
12 ()

→ (0
¡
4() ()

¢

¡
21 − 1

¢2

>
1

−1Γ−1
>
1 )

By standard results on local polynomial estimators, Lemma A.1 implies

sup
∈X

¯̄
̃2()− 2()

¯̄
=  (1)  (C.5)
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where 1 is the rate we can obtain even if the conditional mean function  () is known.

Let  and  () be as defined in Appendix A. To prove Lemmas A.1-A.2, we will frequently use the

facts that

 = 

¡
+1

¢
uniformly on the set {  0}  (C.6)

 () = 

³
(+11 + −12−21 ) (1 + (1)

)
´
on the set {  0}   = 1 2(C.7)

max
{0}

| ()| =  (2)   = 1 2 (C.8)

To facilitate the asymptotic analysis, we also define the kernel density and derivative estimator based on

the unobserved errors {}:

  () =
1

0

X
 6=

0

µ
 − 

0

¶
 and 

()

 () =
1

1+0

X
 6=


()
0

µ
 − 

0

¶
for  = 1 2 3

We will need the result in the following lemma which is adopted from Hansen (2008).

Lemma C.2 Let   = 1   be IID. Assume that () the PDF of   (·)  is uniformly bounded, and
the (+ 1)th derivative of  () () is uniformly continuous; () there exists   0 such that sup ||  () 
∞ and |()0 () | ≤  ||− for || large; () 0 (·) is a (+1)th order kernel and

R ||++1 |0 ()|  ∞;
() 0 → 0 and 1+20  log→∞ as →∞ Then

max
1≤≤

¯̄̄

()

 (̄)−  () (̄)
¯̄̄
= (

+1
0 + −12−12−0

p
log)

Proof of Lemma C.2. The above result is essentially a special case of Theorem 6 in Hansen (2008)

who allows for strong mixing processes. For an IID sequence, the parameters  and  in Hansen (2008)

correspond to ∞ and one, respectively. Another noticeable difference is that Hansen considers the usual

kernel estimates whereas we consider the leave-one-out kernel estimates here. The difference between these

two kernel estimates is uniformly (1+0 )−1()0 (0)  which is (−12−12−0

√
log) under condition ()

and thus does not contribute to the uniform convergence rate of 
()

 (̄)−  () (̄) to 0. ¥

Proof of Lemma A.1. We only prove the lemma with  = 0 as the other cases can be treated

analogously. Write ̃ (
−→ ) −  (̄) = [ (̄) −  (̄)] + [̃ (

−→ ) −  (̄)] Noting that 0 is a ( + 1)-

th order kernel with compact support by Assumption A6, the conditions on the kernel in Lemma C.2

are satisfied. One can readily check that the other conditions in that lemma are also satisfied under

Assumptions A1, A2, and A7. So we can apply Lemma C.2 to obtain max1≤≤
¯̄
  (̄)−  (̄)

¯̄
=

(
+1
0 + −12−120

√
log) Let

1 ≡
̄

h

¡

¡
β02
¢¢12 − ((β̃2))

12
i

((β̃2))
12

− 1 ()

((β̃2))
12

+
̃ ()− ()

 ()

+

∙
 +

 ()− ̃ ()

 ()

¸
̃ ()−  ()

̃ ()
 (C.9)
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Then

−→  − ̃ = (̄ − ) + 1  (C.10)

By a first order Taylor expansion with an integral remainder, we have

̃ (
−→ )−  (̄) =

1

0

X
 6=

∙
0

µ−→  − ̃

0

¶
− 0

µ
̄ − 

0

¶¸

=
−1
20

X
 6=

00

µ
̄ − 

0

¶
1 ()

((β̃2))
12

+
1

20

X
 6=

00

µ
̄ − 

0

¶
̄

h
(

¡
β02
¢
)12 − ((β̃2))

12
i
((β̃2))

−12

+
1

20

X
 6=

00

µ
̄ − 

0

¶
̃ ()− ()

 ()

+
1

20

X
 6=

00

µ
̄ − 

0

¶ ∙
 +

 ()− ̃ ()

 ()

¸
̃ ()−  ()

̃ ()

+
1

20

X
 6=

Z 1

0

∙
00

µ
̄ −  + 1

0

¶
− 00

µ
̄ − 

0

¶¸
1

≡ −1 () +2 () +3 () +4 () +5 ()  say. (C.11)

We will establish the uniform probability order for  ()   = 1 2  5 in order.

For 1 ()  we apply Lemma C.2 to obtain that, uniformly in 

1

20

X
 6=

00

µ
̄ − 

0

¶
=  0 (̄) +

³
−12−320

p
log+ 

+1
0

´
 (C.12)

Then by (C.8) and the uniform boundedness of  0 (), we have

max
{0}

|1 ()| =  (2)  (C.13)

Similarly, by (C.12), (C.8), and the uniform boundedness of  0 ()  we have

max
{0}

|2 ()| =  (2)  (C.14)

Expanding −1 () around its probability limit [ ()]
−1

 we have

3 () =
1

20

X
 6=

00

µ
̄ − 

0

¶
−1 () 

>
1 [ ()]

−1
1 ()

− 1

20

X
 6=

00

µ
 − 

0

¶
−1 () 

>
1  ()

−1
 ()1 ()

+
1

20

X
 6=

00

µ
̄ − 

0

¶
−1 () 

>
1 [ ()]

−1
1 ()

− 1

20

X
 6=

00

µ
̄ − 

0

¶
−1 () 

>
1  ()

−1
 ()1 ()

≡ 31 ()−32 () +33 ()−34 () 
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where  () ≡ [ ()]
−1 [ ()− ()] Write

31 () =
1

20

X
 6=

00

µ
̄ − 

0

¶
−1 () 

>
1 [ ()]

−1
1 ()

=
1

20

X
 6=



∙
00

µ
̄ − 

0

¶¸
−1 () 

>
1 [ ()]

−1
1 ()

+
1

20

X
 6=

½
00

µ
̄ − 

0

¶
−

∙
00

µ
̄ − 

0

¶¸¾
−1 () 

>
1 [ ()]

−1
1 ()

≡ 311 () +312 ()  say.

For 311 ()  we have

max
1≤≤

|311 ()| ≤ max
1≤≤

¯̄̄̄
− 1
20



∙
00

µ
̄ − 

0

¶¸¯̄̄̄
× sup

∈X

°°°−1 () >1 [ ()]
−1
°°° sup
∈X

k1 ()k

=  (1) (1)

³
−12−21

p
log

´
= 

³
−12−21

p
log

´


where we use the facts that sup∈X k1 ()k = (
−12−21

√
log) by Masry (1996a), max1≤≤ |−20

× [
0
0((̄−)0)]− 0 (̄) | = (+10 ) by standard bias calculation for kernel estimates and max1≤≤

| 0 (̄)| ≤ sup | 0 ()| ≤  ∞

Let  (̄) = 00 ((̄ − )0)−[00 ((̄ − )0)] Then

312 () =
1

21
2
0

X
 6=

X


 (̄)
−1 () 

>
1 [ ()]

−1 Z̃
µ
 −

1

¶


=
1

21
2
0

X
 6=

X
 6=

 (̄)
−1 () 

>
1 [ ()]

−1 Z̃
µ
 −

1

¶


+
1

21
2
0

X
 6=

 (̄)
−1 () 

>
1 [ ()]

−1 Z̃ (0)

+
1

21
2
0

X
 6=

 (̄)
−1 () 

>
1 [ ()]

−1 Z̃
µ
 −

1

¶


≡ 312 () +312 () +312 ()  say.

By construction, 312 () is a second order degenerate  -statistic (see, e.g., Lee (1990)) and we can

bound it by straightforward moment calculations. Let  ≡ −12−21

√
log for some   0 By the

Boole and Markov inequalities,



µ
max
1≤≤

|312 ()| ≥ 

¶
≤

X
=1

 (|312 ()| ≥ ) ≤
X
=1


h
|312 ()|4

i
4



Let  = 
>
1 [ ()]

−1 Z̃ (( −)1)  Note that


h
|312 ()|4

i
=

1¡
21

2
0

¢4 X
 6= 6= for =1234

× {112233441 (̄)12 (̄)23 (̄)34 (̄)4} 
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where the summations are only taken with respect to  and ’s. Consider the index set  ≡ {   = 1
2 3 4} If the number of distinct elements in  is larger than 4 then the expectation in the last

expression is zero by the IID condition in Assumption A1. We can readily show that 
h
|312 ()|4

i
=

(−4−21 −60 ) It follows that



µ
max
1≤≤

|312 ()| ≥ 0

¶
≤ (−4−21 −60 )

−2−21 (log)2 40
=


³
−1−60 (log)−2

´
4

= 
³
−1−(2+1)−

´
=  (1) 

where recall  = [(2+)4−(+1)](log)+1 Then max1≤≤ |312 ()| = (0
−12−21

√
log)

by the Markov inequality. Analogously, we can show that max1≤≤ |312 ()| = (−12−21

√
log)

For 312 ()  we continue to decompose it as follows

312 () =
 (0)

21
2
0

X
 6=

−1 () 
>
1 [ ()]

−1
Z̃ { (̄) − [ (̄) ]}

+
 (0)

21
2
0

X
 6=

−1 () 
>
1 [ ()]

−1
Z̃ [ (̄) ]

≡ 3121 () +3122 () 

where  denotes expectation with respect to the variable indexed by We bound the second term first:

max
1≤≤

|3122 ()| ≤ max
1≤≤

¯̄
−10  [ (̄) ]

¯̄  (0)

210

X
=1

−1 ()
¯̄̄

>
1 [ ()]

−1
Z̃

¯̄̄
=  (1)(

−1−1 −10 ) = (
−1−1 −10 )

By the Boole and Markov inequalities,



µ
max
1≤≤

|3121 ()| ≥ 

¶
≤

X
=1


h
|3121 ()|4

i
4

=
(−6−41 −60 )

−2−21 (log)
2

= (−3−21 −60 (log)
−2
) =  (1) 

implying thatmax1≤≤ |3121 ()| = (
−12−21

√
log)Hencemax1≤≤ |312 ()| = (

−1−1 −10 )

+(
−12−21

√
log) Consequently, we have shown that

max
1≤≤

|31 ()| = (
−1−1 −10 ) + (0 +  (1))(

−12−21

p
log)

By (C.4), the fact that sup∈X k1 ()k = (
−12−21

√
log) and the fact thatmax1≤≤ 1

20

P
 6=

|00 (( − )0)| = (−10 ) we can readily show thatmax1≤≤ |32 ()| = (0
−12−21

√
log−10 )

For the other terms, we havemax1≤≤ |33 ()|= (
+1
1 ) andmax1≤≤ |34 ()| = (

+1
1 ) (0)



¡
−10

¢
= (0

+1
1 −10 ) Consequently,

max
1≤≤

|3 ()| = 

³
−1−1 −10 + 1 + 01

−1
0 + 0

−12−21

p
log

´
 (C.15)
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Now write

4 () =
1

20

X
 6=

00

µ
̄ − 

0

¶

̃ ()−  ()

̃ ()

+
1

20

X
 6=

00

µ
̄ − 

0

¶
 ()− ̃ ()

 ()

̃ ()−  ()

̃ ()

≡ 41 () +42 () 

By (C.4) and Lemma C.1, it is easy to show that max1≤≤ |42 ()| = 

¡
21

−1
0

¢
 Using analogous

arguments as used in the analysis of 3 () and Lemma C.1, we can show that max1≤≤ |41 ()|
= (

−1−1 −10 + 01
−1
0 + 

+1
1 ) Consequently,

max
1≤≤

|4 ()| = (
−1−1 −10 + 01

−1
0 + 

+1
1 ) (C.16)

where we use the fact that 21
−1
0 = (

−1−1 −10 + 
+1
1 ) As argued by Hansen (2008, pp.740-741),

under Assumption A6 there exists an integral function ∗0 such that¯̄̄̄
00

µ
̄ −  + 1

0

¶
− 00

µ
̄ − 

0

¶¯̄̄̄
≤ −10 ∗0

µ
̄ − 

0

¶
|1 | 

It follows that

max
1≤≤

|5 ()| ≤ 1

30

X
 6=

∗0

µ
̄ − 

0

¶
21 =



¡
22

¢
30

X
 6=

∗0

µ
̄ − 

0

¶¡
̄2 + 2

¢
= 

¡
22

−2
0

¢
 (C.17)

Combining (C.11), (C.13), (C.14), (C.15), (C.16), and (C.17) and using the facts that −1−1 −10 =


¡
21

−2
0

¢
and that 

+1
1 = (2) yield the desired result for  = 0

When   0 we can decompose ̃
()
 (−→ ) − 

()
(̄) as in (C.11) with the corresponding terms

denoted as 
()
 () for  = 1 2  5 The probability orders of 

()
1 () and 

()
2 () are the same as

those of 1 () and 2 ()  those of 
()
3 () and 

()
4 () become (

−1−1 −1−0 + (0
−1−
0 +

)
−12−21

√
log + 

+1
1 ) and the probability order of 

()
5 () is (

2
2
−2−
0 ). Consequently,

max1≤≤ |̃ () (−→ )− 
()
(̄) | = (2 + (0

−1−
0 + )

−12−21

√
log+ 22

−2−
0 ) ¥

Proof of Lemma A.2. The proof is similar to but much simpler than that of Lemma A.1 and thus

omitted. ¥

Proof of Lemma A.3. The proof is analogous to that of Lemma USSLN in Gozalo and Linton (2000)

and thus we only sketch the proof for the  = 1 case. Let C = {1 ( ) :  ∈ Θ}. Under the permissibility
and envelope integrability of C the almost sure convergence of sup∈Θ

¯̄
− [1 ( )− 1 ( )]

¯̄
is equivalent to its convergence in probability. By the boundedness of Θ and measurability of the 1, the

class C is permissible in the sense of Pollard (1984, p196). We now show the envelope integrability of C

9



By Assumption A1 and the compactness of  |log ( ( (β)))| ≤ () on the set  0 Consequently,

we can take the dominance function  =  ( ) ((−) )  Let  [ ( ) |] = ̄ ()  Assumptions

A1 and A3 ensure that

 = 
£
̄ () ((−) )

¤
= 

Z
̄ (− )  (− ) ()  = 

¡

¢


The envelope integrability allows us to truncate the functions to a finite range. Let   1 be a

sequence of constants such that  →∞ as →∞ Define

C∗ =
©
∗ = −1 11 { ≤ } :  ∈ C

ª


Let  be a non-increasing sequence of positive numbers for which 2 À log By analysis sim-

ilar to that of Gozalo and Linton (2000) and Theorem II.37 of Pollard (1984, p.34), to show that

sup
C
|1 − 1| = 

¡


¢
 it suffices to show

sup
C∗

¯̄


∗
 − ∗

¯̄
= 

¡


¢
 (C.18)

which holds provided

sup
C∗

n

£
∗
¤2o12

 2 (C.19)

and

sup1

¡
 C∗

¢ ≤ 1
−2 for 0   ≤ 1 (C.20)

where 1

¡
 C∗

¢
is the covering number of C∗  i.e., the smallest value  for which there exists

functions 1   such that min≤  | −  | ≤  for each  ∈ C∗  the supremum is taken over all

probability measures  and 1 and 2 are positive constants independent of 

(C.19) holds by construction. For (C.20), we need to show that C∗ is a Euclidean class (Nolan and
Pollard, 1987, p.789). Since the functions in C∗  ∗ = −1 log ( ( (β))) ( ( (β))) ((−) )

1 { ≤ }  are composed from the classes of functions

C1 =

(
1 log 

Ã
 −  (β1)p
exp ( (β2))

!
:
³
β
>
1 β

>
2

´>
∈ B 1 ≤ 1

)


C2 =

(
2

Ã


Ã
 −  (β1)p
exp ( (β2))

!!
:
³
β
>
1 β

>
2

´>
∈ B 2 ≤ 1

)


C3 =
n

³

>
3 + 4

´
: 3 ∈ R 4 ∈ R

o
 and C4 = {1 {5 ≤ 1} : 5 ∈ R} 

it suffices to show that the C0 form Euclidean classes by Nolan and Pollard (1987, pp. 796-797) and

Pakes and Pollard (1989, Lemmas 2.14 and 2.15).

First, for  = 1 2 { (β)} forms a polynomial class of functions and is Euclidean by Lemma 2.12
of Pakes and Pollard (1989). By Example 2.10 of Pakes and Pollard (1989) and the bounded variation
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assumption on  , the class { ¡− ¢
:  ∈ R,   0} is Euclidean for the constant envelope sup | ()|  It

follows from Pakes and Pollard (1989, Lemmas 2.15) that C1 is also Euclidean. Similarly, C2 is Euclidean.
By Nolan and Pollard (1987, Lemma 22) and the bounded variation of  C3 forms a Euclidean class
with constant envelope sup | ()|  Finally, by Pollard (1984, Lemma II.25) and the Euclidean property
of C   = 1 2 3 C4 is Euclidean. Consequently

sup


¯̄̄̄
¯ 1

X
=1

1 ( )−1 ( )

¯̄̄̄
¯ =  () 

Since Pollard’s Theorem requires that  À −12−2
√
log we can take  = −12−2

√
log to

obtain the desired result. ¥

Proof of Lemma A.4. The proof is analogous to that of Newey (1991, Corollary 3.2). We first show

̄1 () is equicontinuous. Let  () = 1 { ∈ } () (−) for a compact set  on R. By

the Hölder inequality and the law of iterated expectations,

 () =  [ () |]

≤ 
h
{ ( ∈ |)}(−1) { [ () |]}1  (−)

i
= 

h
{ ( ∈ |)}(−1)

£
̄ ()

¤1
 (−)

i
 (C.21)

Note that


h£
̄ ()

¤1
 (−)

i
=

Z £
̄ (− )

¤1
 (− ) ()  ≤ 

Z
 ()  (C.22)

Consider    0 By Assumption A2, we can choose  large enough such that  ( ∈ |) is arbitrary

small to ensure  ()  4. Also,  ( ) is uniformly continuous on (X ×)×Θ for each compact
set X× implying that for any  ∈ Θ there existsN ≡ N () such that sup(0)∈(X×)×N |1

¡
 0

¢−1(
)|  2 Consequently

sup
0∈N

¯̄
1
¡
 

0¢− 1 ( )
¯̄
 2 + 2 · 1 { ∈ } () (−)  (C.23)

Let 4 ( ) = 2+2̄ ()  where ̄ () = −1
P

=1 ()  By (C.23) and the triangle inequality

sup
0∈N

¯̄
1

¡
 0

¢− 1 ( )
¯̄
 4 ( ) 

Also,

 (4 ( )  ) = 
¡
̄ ()  4

¢ ≤  [ ()]

4
 

Consequently

sup
0∈N

¯̄
̄1

¡
0
¢− ̄1 ()

¯̄
= sup

0∈N

¯̄

£
1

¡
 0

¢− 1 ( )
¤¯̄

≤ 

∙
sup
0∈N

¯̄
1

¡
 0

¢− 1 ( )
¯̄¸ ≤  [4 ( )]  

11



That is,
©
̄1 ()

ª
is equicontinuous.

Notice that under our assumption on the compactness of B and the support of ,  (β2) is bounded.
So the proof for the equicontinuity of ̄2 () is simpler than that of ̄1 () and thus omitted. ¥

Proof of Lemma B.1. We only prove the case ( ) = (1 1) as the other cases are similar. For notational

simplicity, write 1j = 1j (1 1)  By the fact that ((β̃2))
−12−(

¡
β02
¢
)−12 =  (2) uniformly

in  on the set {  0}  we can write

̃1(β̃)− 1
¡
β0
¢
=

̃ 0 (
−→ )

̃ (
−→ )

((β̃2))
−12 −  0 (̄)

 (̄)
(

¡
β02
¢
)−12

=

"
̃ 0 (
−→ )

̃ (
−→ )

−  0 (̄)
 (̄)

#
((β̃2))

−12 +
 0 (̄)
 (̄)

h
((β̃2))

−12 − (
¡
β02
¢
)−12

i
=

"
̃ 0 (
−→ )

̃ (
−→ )

−  0 (̄)
 (̄)

# h
(

¡
β02
¢
)−12 + (2)

i
+

 0 (̄)
 (̄)

 (2)  (C.24)

Thus

|1j| ≤ 1



X
=1

¯̄̄̄
¯j̃1

¡
β0
¢ " ̃ 0 (−→ )

̃ (
−→ )

−  0 (̄)
 (̄)

#
(

¡
β02
¢
)−12

¯̄̄̄
¯

+
 (2)



X
=1

¯̄̄̄
¯j̃1

¡
β0
¢ " ̃ 0 (−→ )

̃ (
−→ )

−  0 (̄)
 (̄)

#¯̄̄̄
¯

+
 (2)



X
=1

¯̄̄̄
j̃1

¡
β0
¢  0 (̄)
 (̄)

¯̄̄̄


Since the last two terms are of smaller order, it suffices to show the first term (denoted as |̄1j|) is
 (

)  By Lemma A.1, the definition of ̃ and Assumption A7,¯̄̄̄
¯ ̃ 0 (−→ )

̃ (
−→ )

−  0 (̄)
 (̄)

¯̄̄̄
¯ ̃ =

¯̄̄̄
¯̄ ̃ 0 (−→ )−  0 (̄)

̃ (
−→ )

+
 0 (̄)

h
 (̄)− ̃ (

−→ )
i

 (̄) ̃ (
−→ )

¯̄̄̄
¯̄ ̃

≤ 

¡
−131

¢
+ ( 0 (̄)  (̄))

¡
−130

¢
=  (

) {1 + | 0 (̄)  (̄)|}  (C.25)

Therefore
¯̄
̄1j

¯̄
=

(
)



P
=1

¯̄̄
j1

¡
β0
¢ ³
1 +  0(̄)

(̄)

´
(

¡
β02
¢
)−12

¯̄̄
=  (

) by Markov inequal-

ity and the fact that

1




¯̄̄̄
j1

¡
β0
¢µ
1 +

 0 (̄)
 (̄)

¶
(

¡
β02
¢
)−12

¯̄̄̄
=

1




¯̄̄̄
j

 0 (̄)
 (̄)

µ
1 +

 0 (̄)
 (̄)

¶
(

¡
β02
¢
)−1
¯̄̄̄

=
1




¯̄̄̄
j

−2 ()
 0 ()
 ()

µ
1 +

 0 ()
 ()

¶¯̄̄̄
{1 +  (1)}

≤  ()

2 ()

Z ¯̄̄
 ()

j
¯̄̄

n
12 () +  ()

o
=  (1) 

where  () ≡ 
£
2 ()

¤
and we use the fact that (

¡
β02
¢
) is the -th order Taylor expansion of 2 ()

around  This completes the proof of the lemma. ¥
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Proof of Lemma B.2. We only prove the case ( ) = (1 1) as the other cases are similar. For

notational simplicity, write 2j = 2j (1 1)  That is, we will show

2j =
1



X
=1

j̃

n
̃1(β̃)− 1

¡
;

¡
β01
¢
 

¡
β02
¢¢o2

=  (
) 

By (C.24) and (C.25) in the proof of Lemma B.1, we can write¯̄̄
̃1(β̃)− 1

¡
;

¡
β01
¢
 

¡
β02
¢¢¯̄̄2

̃

=

"
 (

)

µ
1 +

¯̄̄̄
 0 (̄)
 (̄)

¯̄̄̄¶2 h
(

¡
β02
¢
)−12 +(2)

i2
+

µ
 0 (̄)
 (̄)

¶2
(

2
2)

#
̃

≤
µ
1 +

¯̄̄̄
 0 (̄)
 (̄)

¯̄̄̄¶2 £
(

¡
β02
¢
)−1 + 1

¤
̃ (

) 

Thus

2j ≤  (
)



X
=1

|j|
µ
1 +

¯̄̄̄
 0 (̄)
 (̄)

¯̄̄̄¶2 £
(

¡
β02
¢
)−1 + 1

¤
=  (

)

by Markov inequality and the fact that

1




¯̄̄̄
¯j

µ
1 +

¯̄̄̄
 0 (̄)
 (̄)

¯̄̄̄¶2 £
(

¡
β02
¢
)−1 + 1

¤¯̄̄̄¯
=

1




¯̄̄̄
¯j

µ
1 +

¯̄̄̄
 0 (̄)
 (̄)

¯̄̄̄¶2 £
−2 () + 1 +  (1)

¤¯̄̄̄¯ {1 +  (1)}

≤  ()
£
−2 () + 1

¤ Z ¯̄̄
 ()

j
¯̄̄

h
1 +  () + 212 ()

i
{1 +  (1)} =  (1) 

This completes the proof of the lemma. ¥

Proof of Lemma B.3. We only prove the case ( ) = (1 1) as the other cases are similar. For

notational simplicity, write 3j = 3j (1 1)  That is, we will show

3j =
1



X
=1

j

³
1− ̃

´
1

¡
β0
¢2
=  (

) 

We decompose 3j as follows

3j =
1



X
=1

j [1− ( (̄))]
2 (̄)

+
1



X
=1

j

h
 ( (̄))−(̃ (

−→ ))
i
2 (̄)

≡ 3j1 + 3j2 say.

By Lemma A.1,

max
1≤≤

|̃ −| = max
1≤≤

|(̃ (
−→ ))− ( (̄)) |

≤ 


max
1≤≤

|̃ (−→ )−  (̄) | = −1 (30) =  (
)  (C.26)
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With this, we can readily obtain |3j2| ≤  (
) 1



P
=1 |j|2 (̄) =  (

) by Markov inequal-

ity. For 3j1 we have

 |3j1| ≤ 

∙
1


|j| [1− ( (̄))]

2 (̄)

¸
=

1


 [|j|]

©
[1− ( ())]

2 ()
ª {1 +  (1)} 

By the Hölder inequality,


©
[1− ( ())]

2 ()
ª ≤ 

£
2 () 1 { () ≤ 2}

¤
≤ ©


£
2 ()

¤ª1
[ ( () ≤ 2)](−1)

≤  [ ( () ≤ 2)](−1) = 
³
(−1)(2)

´
=  () 

where the last line follows from Lemma 6 of Robinson (1988) and the Markov inequality because by taking

 = −12 we have  ( () ≤ 2) ≤ 2
R
||≤  + 

¡||  
¢ ≤ 22−12 +  || 12 = 

¡
12

¢
=

 ()  This, in conjunction with the fact that 1

 [|j|] =  (1)  implies that 3j1 =  (

) by

Markov inequality. Consequently, we have shown that 3j =  (
). ¥

Proof of Lemma B.4. Let ̃ = ̃ (
−→ ) and  =  (̄) Note that ̃

−1
 = −1 − (̃ − )

2
 + 2

where 2 ≡ (̃ − )
2{(2 ̃) First, we expand the trimming function to the second order:

(̃)− () =  ()
³
̃ − 

´
+
1

2
0 (

∗
 )
³
̃ − 

´2
 (C.27)

where ∗ is an intermediate value between ̃ and  Let  (β) ≡  ( (β))  (β) + 1 ̄ ≡ 
¡
β0
¢
 and

 ≡  ()  + 1 Let  ≡ 0(
¡
β02
¢
)(

¡
β02
¢
) Then we have

−S1j =
1

2
√


X
=1

j

n
̄

h
(̃)− 1

i
+ log

³
 (̄)(

¡
β02
¢
)−12

´
 ( (̄)) 

0 (̄) ̄
o

=
1

2
√


X
=1

j

n
̄ [ ()− 1] + log

³
 (̄)(

¡
β02
¢
)−12

´
 ( (̄)) 

0 (̄) ̄
o

+
1

2
√


X
=1

j̄ ()
³
̃ − 

´
+

1

4
√


X
=1

j̄
0
 (
∗
 )
³
̃ − 

´2
≡ S1j1 + S1j2 + S1j3 say.

Using a crude bound on the last term, we have |S1j3| = 

¡
230

−2122
¢
=  (1) by Lemma A.1,

the fact that sup |0 ()| = (−2) and Assumption A7.

To show the first term is  (1)  write

S1j1 = −1√


X
=1

j1 +
1√


X
=1

j2 ≡ −S1j11 + S1j12 say,

14



where 1 =
1
2 ̄ and 2 =

1
2

©
̄ () + log( (̄)(

¡
β02
¢
)−12) ( (̄))  0 (̄) ̄

ª


Let 1 (β) ≡ log{ ( (β))( (β2))−12} (−)  2 (β) ≡ log{ ( (β))( (β2))−12}
×( ( (β)) (−)  and  (β) ≡  [2 (β)] −  [1 (β)]  Then it is easy to show that (i)


¡
β0
¢→ 0 (ii)  (β) is differentiable in a small 0-neighborhood 0

¡
β0
¢
of β0 with 0

¡
β0
¢ ≡ {β :°°β − β0°° ≤ 0} (iii)  0 (β) converges uniformly on 0

¡
β0
¢
 Then by Theorem 7.17 of Rudin (1976)

and the fact that −|j|1
¡
β0
¢
β2j = −−1j and −|j|2

¡
β0
¢
β2j = −−2j we

have

 (S1j12) = −√2−|j|
"
2

¡
β0
¢

β2j

#

= −√2−|j|
"
1

¡
β0
¢

β2j

#
{1 +  (1)} =  (S1j11) {1 +  (1)} 

Consequently,  (S1j1) =  (1) (S1j11) =  (1) as S1j11 = 12−2 [j1] = 
¡
122+1

¢
=  (1)  By straightforward calculations and the IID assumption, we can readily show that Var(S1j1) =
 (1)  Therefore, S1j1 =  (1) by the Chebyshev inequality.

Now, we show that S1j2 =  (1)  Decompose S1j2 = S1j21+S1j22 where S1j21 ≡ 1

2
√


P
=1

j2
¡
β0
¢
 ()

³
̃ (
−→ )−  (̄)

´
 and S1j22 ≡ 1

2
√


P
=1j2

¡
β0
¢
 ()

¡
 (̄)−  (̄)

¢


It suffices to show that S1j2 =  (1)   = 1 2 For S1j21 by a Taylor expansion and (C.9)-(C.10), we
have

S1j21 =
1

2
√


X
=1

j̄ ()
1

0

X
 6=

∙
0

µ−→  − ̃

0

¶
− 0

µ
̄ − 

0

¶¸

=
1

232220

X
=1

X
 6=

j̄ () 
0
0

µ
 − 

0

¶
(−→  − ̃ − ̄ + ) +  (1)

= − 1

232220

X
=1

X
 6=

j̄ () 
0
0

µ
̄ − 

0

¶
1 ()

((β̃2))
12

+
1

232220

X
=1

X
 6=

j̄ () 
0
0

µ
̄ − 

0

¶
̃ ()− ()

 ()

+
1

232220

X
=1

X
 6=

j̄ () 
0
0

µ
̄ − 

0

¶

̃ ()−  ()

̃ ()

+
1

232220

X
=1

X
 6=

j̄ () 
0
0

µ
̄ − 

0

¶
 + 

((β
0
2))

12

((β
0
2))

12 − ((β̃2))
12

((β̃2))
12

+ (1)

≡ −S1j211 + S1j212 + S1j213 + S1j214 +  (1) 

For the first term, by Lemma A.2 and the fact that 1 () =  (2)  ((β̃2)) = (
¡
β02
¢
)+ (2)
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uniformly on the set {  0}, we have

|S1j211| =

¯̄̄̄
¯ 1

2
√


X
=1

j̄ () ̄
0
 ()

1 ()

((β̃2))
12

¯̄̄̄
¯

=

¯̄̄̄
¯ 1

2
√


X
=1

j̄ () 
0 ()

1 ()

(
¡
β02
¢
)12

¯̄̄̄
¯+  (1)

≤ max
{0}

|1 ()| 1

2
√


X
=1

¯̄̄
j(

¡
β02
¢
)−12̄ () 

0 ()
¯̄̄
+  (1) 

The first term in the last expression is  (1) if 
12−2

¯̄
j(

¡
β02
¢
)−12̄ ()  0 ()

¯̄
=


¡
−12

¢
by Markov inequality. Note that

̄ −  = {[ ()− (
¡
β02
¢
)12] + }(

¡
β02
¢
)12 =  +  (C.28)

where  ≡  ()(
¡
β02
¢
)−12 − 1 = 

¡
+1

¢
and  ≡ (

¡
β02
¢
)−12 = 

¡
+1

¢
uniformly on

the set {  0}. Then by the triangle inequality,

−
¯̄̄
j(

¡
β02
¢
)−12̄ () 

0 ()
¯̄̄

= −
¯̄̄
j(

¡
β02
¢
)−12 [̄ () 

0 () |]
¯̄̄

= −

¯̄̄̄
¯j(

¡
β02
¢
)−12

 + 1

Z
≤()≤2

[ () + 1] 0 ()  ( ()) 
µ
− 

 + 1

¶


¯̄̄̄
¯

≤ −

¯̄̄̄
¯j(

¡
β02
¢
)−12

 + 1

Z
≤()≤2

 ()  0 ()  ( ())  () 

¯̄̄̄
¯

+−

¯̄̄̄
¯j(

¡
β02
¢
)−12

 + 1

Z
≤()≤2

 ()  0 ()  ( ())
∙


µ
− 

 + 1

¶
−  ()

¸


¯̄̄̄
¯

≡ 1 + 2 say.

For 1 we have

1 = −

¯̄̄̄
¯j(

¡
β02
¢
)−12 ( + 1)

−1
Z
≤()≤2

 ()  0 ()  ( ())  () 

¯̄̄̄
¯

≤ sup
≤()≤2

[ ()  ( ())]
−

¯̄̄̄
¯j(

¡
β02
¢
)−12 ( + 1)

−1
Z
≤()≤2

 ()  0 () 

¯̄̄̄
¯

≤ −
¯̄̄
j(

¡
β02
¢
)−12 ( + 1)

−1
¯̄̄ ¯̄̄̄¯
Z
≤()≤2

 ()  0 () 

¯̄̄̄
¯

≤ −
¯̄̄
j(

¡
β02
¢
)−12 ( + 1)

−1
¯̄̄ (Z

≤()≤2
 ()

2
 () 

Z
≤()≤2

 ()  () 

)12
=  ()

where the third inequality follows from the Hölder inequality and the independence between  and

. By a Taylor expansion, 
³
−
1+

´
−  () ' − 0 () ¡ + 

¢
 With this, we can readily show that

2 =  ()  Consequently, |S1j211| = (2
√
) =  (1) 
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For S1j212 using (C.2) we can write

S1j212 =
1

232220

X
=1

X
 6=

j̄ () 
0
0

µ
̄ − 

0

¶
̃ ()− ()

 ()

=
1

232220

X
=1

X
 6=

j
 ()

̄ () 
0
0

µ
̄ − 

0

¶

>
1

−1
 ()1 ()

− 1

232220

X
=1

X
 6=

j
 ()

̄ () 
0
0

µ
̄ − 

0

¶

>
1

−1
 ()1 ()

≡ S1j212 + S1j212 (C.29)

Recall Z̃ is defined analogously to Z with 1 in place of  So S1j212 can be written as

S1j212 =
X
=1

X
 6=

2 ( ) +
X
=1

X
 6=

X
 6= 6=

3 (   ) 

where 2 ( ) =
1

25221
2
0

j
()

̄ () 
0
0

³
̄−
0

´

>
1

−1
 () Z̃

³
−

1

´
 and 3(   )

= 1
25221

2
0

j
2()

̄ () 
0
0

³
̄−
0

´

>
1

−1
 () Z̃

³
−

1

´
. Let X ≡ {1 } Then

[S1j212|X] =
P

=1

P
 6= [2 ( ) |X] = 

¡
−122−1

¢
=  (1)  For the variance of S1j212

it is easy to show that

Var

⎡⎣ X
=1

X
 6=

2 ( ) |X
⎤⎦ = 

¡
2
¢

h
2 ( )

2
+ 2 ( ) 2 (  ) |X

i
+

¡
3
¢
 [2 ( ) 2 ( ) + 2 ( ) 2 ( ) |X]

= 

¡
−3−−4−2

¢
+

¡
−2−2

¢
=  (1) 

Similarly, one can show that  (3 (   ) |X) = 0 and Var
hP

=1

P
 6=
P

 6= 6= 3 (   ) |X
i
=

 (1)  Consequently, S1j212 =  (1) by the conditional Chebyshev inequality. For S1j212 we have
S1j212 = (

122
+1
1 ) =  (1)  Thus we have shown that S1j212 =  (1)  By analogous

arguments, Lemma A.1, and (C.8), we can show that S1j21 =  (1) for  = 3 4 It follows that

S1j21 =  (1) 

For S1j22 we make the following decomposition:

S1j22 = 1

2
√


X
=1

j2
¡
β0
¢
 () {V (̄) + B (̄)} ≡ S1j221 + S1j222

where

V (̄) =
1

0

X
 6=

½
0

µ
̄ − 

0

¶
−

∙
0

µ
̄ − 

0

¶¸¾
 (C.30)

B (̄) =
1

0

X
 6=



∙
0

µ
̄ − 

0

¶¸
−  (̄)  (C.31)
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and  indicates expectation with respect to the variable indexed by Writing S1j221 as a second order
degenerate statistic we verify that  [S1j221]2 =  (1) and thus S1j221 =  (1)  For S1j222 we verify
that S1j222 = (

122
+1
0 ) =  (1)  Consequently, S1j22 =  (1)  This concludes the proof of

the lemma. ¥

Proof of Lemma B.5. By a geometric expansion: ̃ = −1 − (̃ − )2 + (̃ − )2(2̃) where

̃ = ̃ (̄)  we have

S2j =
1√


X
=1

j

n
̃

£
̃2

¡
β0
¢− 2

¡
β0
¢¤o

= − 1

2
√


X
=1

j
̃ 0 (̄)−  0 (̄)

 (̄)
̄̃

+
1

2
√


X
=1

j

̃ 0 (̄)
h
̃ (̄)−  (̄)

i
 (̄)

̄̃

− 1

2
√


X
=1

j

̃ 0 (̄)
h
̃ (̄)−  (̄)

i2
2 (̄) ̃ (̄)

̄̃

≡ −S2j1 + S2j2 − S2j3

where recall  ≡ 0(
¡
β02
¢
)(

¡
β02
¢
) It suffices to show that each of these three terms is  (1)  For

S2j1 noticing that (̃) −  () =  () (̃ − ) +
1
2
0
 (
∗
 ) (̃ − )

2, we can apply Lemma A.2

and show that

S2j1 =
1

2
√


X
=1

j
̃ 0 (̄)− 

0
(̄)

 (̄)
̄ ()

+
1

2
√


X
=1

j

0
(̄)−  0 (̄)
 (̄)

̄ () +  (1)

≡ S2j11 + S2j12 +  (1) 

For the first term, we have

S2j11 =
1

2
√


X
=1

j
 (̄)

1

20

X
 6=

∙
00

µ
̄ − ̃

0

¶
− 00

µ
̄ − 

0

¶¸
̄ ()

=
1

2
√


X
=1

j
 (̄)

1

30

X
 6=

000

µ
̄ − 

0

¶
(̃ − ) ̄ () +  (1)

=
1

2
√


X
=1

j
 (̄)

1

30

X
 6=

000

µ
̄ − 

0

¶
 ()− ̃ ()

 ()
̄ ()

+
1

2
√


X
=1

j
 (̄)

1

30

X
 6=

000

µ
̄ − 

0

¶

 ()− ̃ ()

 ()
̄ () +  (1)

≡ S2j111 + S2j112 +  (1)  say.
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Write

S2j111 =
1

2
√


X
=1

j
 (̄)

1

30

X
 6=

000

µ
̄ − 

0

¶

>
1

−1
 ()1 ()

 ()
̄ ()

+
1

2
√


X
=1

j
 (̄)

1

30

X
 6=

000

µ
̄ − 

0

¶

>
1

−1
 ()1 ()

 ()
̄ ()

≡ S2j111 + S2j111

Writing S2j111 as a third order  -statistic, we can show that S2j111 = (
2) =  (1) by con-

ditional moment calculations and conditional Chebyshev inequality. For S2j111 we have S2j111 =
(
√


+1
1 ) =  (1)  Similarly, we can verify that S2j112 =  (1)  Consequently S2j11 =  (1) 

For S2j12 we have

S2j12 =
1

2
√


X
=1

j
 (̄)


0
(̄)−  0 (̄)
 (̄)

̄ ()

=
1

2
√


X
=1

j
 (̄)

⎧⎨⎩ 1

20

X
 6=

½
00

µ
̄ − 

0

¶
−

∙
00

µ
̄ − 

0

¶¸¾⎫⎬⎭ ̄ ()

+
1

2
√


X
=1

j
 (̄)

⎧⎨⎩ 1

20

X
 6=



∙
00

µ
̄ − 

0

¶¸
−  0 (̄)

⎫⎬⎭ ̄ ()

= S2j121 + S2j122

where  indicates expectation with respect to the variable indexed by  Noting S2j121 is a second
order statistic, it is easy to verify that  [S2j121]2 = () =  (1)  implying that S2j121 =  (1)  For

S2j122 noticing that
1

20

X
 6=



∙
00

µ
̄ − 

0

¶¸
−  0 (̄) = 

+1
0  (+2) (̄)

Z
0 ()

+1

we can show that S2j122 = (
√


+1
0 ) =  (1)  Consequently, S2j12 =  (1) and S2j1 =  (1) 

For S2j2 we can easily show that

S2j2 = 1

2
√


X
=1

j
0 (̄)

 (̄)

h
̃ (̄)−  (̄)

i
̄ () +  (1) 

The rest of the proof is similar to that of S2j1 and thus omitted. For S2j3 by Lemma A.2, S2j3 =
(
√
−223) =  (1)  This concludes the proof of the lemma. ¥
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Proof of Lemma B.6. Write S3j = 1
2{S3j1 − S3j2 + S3j3 − S3j4} where

S3j1 ≡ 1√


X
=1

j

n
log
³
̃ (
−→ )

´


³
̃ (
−→ )

´
̃ 0 (
−→ )
−→ (β̃2)

− log
³
̃ (̄)

´


³
̃ (̄)

´
̃ 0 (̄) ̄

o


S3j2 ≡ 1

2
√


X
=1

j

n
log

³
(β̃2)

´


³
̃ (
−→ )

´
̃ 0 (
−→ )
−→ (β̃2)

− log ¡ ¡β02¢¢  ³̃ (̄)´ ̃ 0 (̄) ̄o 
S3j3 ≡ 1√



X
=1

j

n
log
³
̃ (̄)

´


³
̃ (̄)

´
̃ 0 (̄)− log ( (̄))  ( (̄))  0 (̄)

o
̄

S3j4 ≡ 1

2
√


X
=1

j log
¡

¡
β02
¢¢n



³
̃ (̄)

´
̃ 0 (̄)−  ( (̄)) 

0 (̄)
o
̄

where  (β2) ≡ 0( (β2))( (β2)) and  = 
¡
β02
¢
 We will only show that S3j1 =  (1) since

the proofs of S3j =  (1) for  = 2 3 4 are similar.

For S3j1 noticing that ̃2 () = ((
¡
β02
¢
)12 − ((β̃2))

12)((β̃2))
12 and ̃1 () = 1 ()

((β̃2))
12 are both  (2) uniformly in  on the set {  0}  and −→  − ̄ = ̄̃2 ()− ̃1 () 

we can show that

S3j1 =
1√


X
=1

j

n
̃ (̄) 

³
̃ (̄)

´
̃ 0 (̄) ̄ {̄̃2 ()− ̃1 ()}

+
1√


X
=1

j log
³
̃ (̄)

´
0
³
̃ (̄)

´
̃ 0 (̄) ̄ {̄̃2 ()− ̃1 ()}

+
1√


X
=1

j log
³
̃ (̄)

´


³
̃ (̄)

´
̃ 00 (̄) ̄ {̄̃2 ()− ̃1 ()}+  (1)

≡ S3j11 + S3j12 + S3j13 +  (1) 

By Lemma A.1, we can show

S3j11 ' 1√


X
=1

j (̄)  ( (̄)) 
0 (̄) ̄ {̄̃2 ()− ̃1 ()}  (C.32)

S3j12 ' 1√


X
=1

j log ( (̄)) 
0
 ( (̄)) 

0 (̄) ̄ {̄̃2 ()− ̃1 ()}  (C.33)

S3j13 ' 1√


X
=1

j log ( (̄))  ( (̄)) 
00 (̄) ̄ {̄̃2 ()− ̃1 ()}  (C.34)

The rest of the proof relies on the repeated applications of the dominated convergence arguments. For

example, the right hand side of (C.32) is smaller than

1√


max
{0}

|̃2 ()|
X
=1

¯̄
j (̄)  ( (̄)) 

0 (̄) ̄2
¯̄

+
1√


max
{0}

|̃1 ()|
X
=1

|j (̄)  ( (̄)) 
0 (̄) ̄| 
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Noting that

 |j (̄)  ( (̄)) 
0 (̄) ̄ | = 

∙¯̄̄̄
j
 + 1

Z
 ()  ( ()) 

0 () 
¯̄̄̄


µ
− 

 + 1

¶


¸
≤ sup


[ ( ())  ()]

¯̄̄̄
j
 + 1

¯̄̄̄ Z
≤()≤2

 0 ()2

 ()
|| + ()

≤  ()

Z
≤()≤2

¯̄̄̄
¯ 0 ()2 ()



¯̄̄̄
¯ + ()

≤ 

Z
≤()≤2

¯̄̄̄
¯ 0 ()2 ()



¯̄̄̄
¯ +

¡
+1

¢
= 

³
(−1)(2) + 

´


where the last equality follows from similar argument to the proof of Lemma B.3, we have S3j11 =
(2

√
((−1)(2) + )) =  (1)  Similarly, we can show that S3j1 =  (1)   = 2 3 ¥

Proof of Lemma B.7. Observe that

R1 =
1



X
=1



µ
−



¶
̄−1[̃̃

¡
β0
¢
̃
¡
β0
¢> −

¡
β0
¢

¡
β0
¢>
]⊗ (X̃X̃

>
 )̄

−1

=
1



X
=1



µ
−



¶
̄−1[̃

¡
β0
¢
̃
¡
β0
¢> − 

¡
β0
¢

¡
β0
¢>
]⊗ (X̃X̃

>
 )̄

−1

+
1



X
=1



µ
−



¶
̄−1

³
̃ −

´

¡
β0
¢

¡
β0
¢> ⊗ (X̃X̃

>
 )̄

−1

+
1



X
=1



µ
−



¶
̄−1

³
̃ −

´
[̃
¡
β0
¢
̃
¡
β0
¢> − 

¡
β0
¢

¡
β0
¢>
]⊗ (X̃X̃

>
 )̄

−1

≡ R11 +R12 +R13 say.

It suffices to prove the lemma by showing that R1 =  (1) for  = 1 2 3We only prove R11 =  (1)

and R12 =  (1) as R13 is a smaller order term and can be studied analogously.

First, we show that R11 =  (1)  Note that

̃
¡
β0
¢
̃
¡
β0
¢>
=

⎡⎢⎣ ̃
2
 (̄)

((02))
0((2))̃(̄)[̃(̄)̄+1]

2((02))
32

0((2))̃(̄)[̃(̄)̄+1]
2((02))

32

[0((2))]
2
[̃(̄)̄+1]

2

4((02))
2

⎤⎥⎦ 
and 

¡
β0
¢

¡
β0
¢>
has a similar expression with  (̄) in the place of ̃ (̄)  It follows that

R11 =
1



X
=1



µ
−



¶


×

⎡⎢⎣ ̃
2
 (̄)−2(̄)
((02))

{̃(̄)[̃(̄)̄+1]−(̄)[(̄)̄+1]}
2((02))

12

{̃(̄)[̃(̄)̄+1]−(̄)[(̄)̄+1]}
2((02))

12

2 [̃(̄)̄+1]
2−[(̄)̄+1]2
4

⎤⎥⎦⊗ (ZZ> )
≡

⎡⎣ R1111 R1112
R1121 R1122

⎤⎦  say,
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where recall  = 0
¡

¡
β02
¢¢

¡

¡
β02
¢¢
 R1121 = R>

1112 and R11   = 1 2 are all  ×

matrices. We need to show that R1111 R1112 and R1122 are all  (1)  Noting that

̃
2

 (̄)− 2 (̄) =
̃ 0 (̄)

2
 (̄)

2 − ̃ (̄)
2
 0 (̄)

2

̃ (̄)
2
 (̄)

2

=

h
̃ 0 (̄)

2 −  0 (̄)
2
i
 (̄)

2
+
h
 (̄)

2 − ̃ (̄)
2
i
 0 (̄)

2

̃ (̄)
2
 (̄)

2 

we have

R1111 =
1



X
=1



µ
−



¶


¡

¡
β02
¢¢−1 h

̃
2

 (̄)− 2 (̄)
i
ZZ

>


=
1



X
=1



µ
−



¶


¡

¡
β02
¢¢−1

̃ (̄)
−2 h

̃ 0 (̄)
2 −  0 (̄)

2
i
ZZ

>


+
1



X
=1



µ
−



¶


¡

¡
β02
¢¢−1

̃ (̄)
−2

 (̄)
2
h
̃ (̄)

2 −  (̄)
2
i
ZZ

>


≡ R1111 +R1111 say.

Noting that ̃ (̄)
−2 = 

¡
−2
¢
 by Lemma A.2, we have

kR1111k ≤ 

¡
31

−2¢ 1



X
=1

°°°° µ
−



¶


¡

¡
β02
¢¢−1

ZZ
>


°°°°
= 

¡
31

−2¢ (1) = 

¡
31

−2¢ =  (1) 

By the same token, |R1111| =  (1)  Thus R1111 =  (1)  Analogously, we can show R1112 =
 (1) and R1122 =  (1)  Hence we have shown that R11 =  (1) 

Now, we show that R12 =  (1)  By (C.26) and Markov inequality, we have

|R12| ≤  (
)

1



X
=1



µ
−



¶°°° ¡β0¢  ¡β0¢> ⊗ (ZZ> )°°°
=  (

) (1) =  (1) 

This completes the proof of the lemma. ¥

Proof of Lemma B.8. Observe that

R2 =
1



X
=1



µ
−



¶
̄−1

"
̃

̃
¡
β0
¢

β>
−


¡
β0
¢

β>

#
⊗ X̃̄

−1

=
1



X
=1



µ
−



¶
̄−1

("
̃

¡
β0
¢

β>
− 

¡
β0
¢

β>

#
⊗ X̃

)
̄−1

+
1



X
=1



µ
−



¶
̄−1

³
̃ −

´(
¡
β0
¢

β>
⊗ X̃

)
̄−1

+
1



X
=1



µ
−



¶
̄−1

³
̃ −

´("̃ ¡β0¢
β>

− 
¡
β0
¢

β>

#
⊗ X̃

)
̄−1

≡ R21 +R22 +R23 say.
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We prove the lemma by showing that R2 =  (1) for  = 1 2 3We will only show that R21 =  (1)

as the other two cases can be proved analogously. Recall  = 0
¡

¡
β02
¢¢2 − 00

¡

¡
β02
¢¢

¡

¡
β02
¢¢

and  ≡ 0
¡

¡
β02
¢¢

¡

¡
β02
¢¢
 Noting that

̃
¡
β0
¢

β
> =

⎛⎜⎝ ̃
0
(̄)

((02))
[̃

0
(̄)̄+̃(̄)]

2((02))
12

[̃
0
(̄)̄+̃(̄)]

2((02))
12

2[̃(̄)̄+1]+0((02))
2
̄[̃

0
(̄)̄+̃(̄)]

4((02))
2

⎞⎟⎠⊗ X̃>
 

and 
¡
β0
¢
β> has similar expression with  (̄) in the place of ̃ (̄)  we have

R21 =
1



X
=1



µ
−



¶


×

⎛⎜⎝ ̃
0
(̄)−0(̄)
((02))

{[̃0(̄)−0(̄)]̄+[̃(̄)−(̄)]}
2((02))

12

{[̃0(̄)−0(̄)]̄+[̃(̄)−(̄)]}
2((02))

12

2[̃(̄)−(̄)]̄
4((02))

2 + ̃
4

⎞⎟⎠⊗ (ZZ> )
≡

⎡⎣ R2111 R2112

R>2112 R2122

⎤⎦  say,
where ̃ ≡ 2 ̄[̃

0
 (̄)− 0 (̄)]̄ + [̃ (̄)−  (̄)]. As in the analysis of R11 using Lemma A.2, we

can readily demonstrate that R2111 =  (1)  R2112 =  (1) and R2122 =  (1)  It follows that

R21 =  (1)  Similarly, we can show that R2 =  (1) for  = 2 3 This completes the proof of the

lemma. ¥

D Derivative Matrices in the Proof of Proposition 2.1

In this appendix, we give explicit expressions for the elements of some derivative matrices of the log-

likelihood function defined in the proof of Proposition 2.1. The elements of the Hessian matrix are

11 (;1 2) =
2 log  ( ())

2
1

 (2)


12 (;1 2) =

½
2 log  ( ())

2
 () +

 log  ( ())



¾
0 (2)

2 (2)
32



22 (;1 2) =
−00 (2)
2 (2)

∙
 log  ( ())


 () + 1

¸
+
0 (2)

2

4 (2)
2

½
2 log  ( ())

2
 ()

2
+ 3

 log  ( ())


 () + 2

¾


and 21 (;1 2) = 12 (;1 2) by Young’s theorem, where, e.g.,
2 log ()

2 =  00()()− 0()2
2() and

2 log (())
2 ≡ 2 log ()

2

¯̄̄
=()

 Note that when we restrict our attention to the case  () =  or

exp ()  the above formulae can be greatly simplified.
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In addition, in the proof of Proposition 2.1, we also need that  (;1 2) ≡ 3


log ( (;1 2)) 

   = 1 2 should be well behaved. Using the expressions

 ()


=

⎛⎝ ()
1
()
2

⎞⎠ =

⎛⎝ − 1
(2)

12

− 0(2)
2(2)

 ()

⎞⎠ and
2 log  ()

2
=

 00()()−  0()2

2()

and by straightforward calculations, we have

111 (;1 2) =
3 log  ( ())

3
1

 (2)


112 (;1 2) =
3 log  ( ())

3
 ()

2

1

 (2)
− 2 log  ( ())

2
0 (2)
 (2)

2 

121 (;1 2) =

½
3 log  ( ())

3
 ()

1
 () + 2

2 log  ( ())

2
 ()

1

¾
0 (2)

2 (2)
32

= 112 (;1 2) 

122 (;1 2) =

½
3 log  ( ())

3
 ()

2
 () + 2

2 log  ( ())

2
 ()

2

¾
0 (2)

2 (2)
32



+

½
2 log  ( ())

2
 () +

 log  ( ())



¾
00 (2) (2)

32 − 3
2

0 (2)
2
 (2)

12

2 (2)
3 

221 (;1 2) =
−00 (2)
2 (2)

∙
2 log  ( ())

2
 () +

 log  ( ())



¸
 ()

1
+

0 (2)
2

4 (2)
2 ()

 ()

1

= 122 (;1 2)

222 (;1 2) =
−00 (2)
2 (2)

∙
2 log  ( ())

2
 () +

 log  ( ())



¸
 ()

2

−
000 (2) (2)− 00 (2)0 (2)

2 (2)
2

∙
 log  ( ())


 () + 1

¸
+
0 (2)

2

4 (2)
2 ()

 ()

2

+
0 (2)00 (2)− 0 (2)

3
 (2)

2 (2)
4

½
2 log  ( ())

2
 ()

2
+ 3

 log  ( ())


 () + 2

¾


211 = 121 = 112 and 212 = 122 = 221 by Young’s Theorem, where  () ≡ 3 log (())
3  ()2

+2
2 log (())

2  ()+3
2 log (())

2  ()+3 log (())  Note that under our assumptions ( has compact

support, the parameter space is compact, 2 () is bounded away from 0) the terms associated with  (·)
or its derivatives are all well behaved when  (·) is evaluated in the neighborhood of 02 () 
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